Sample records for hydrological model structures

  1. Multi-model approach to assess the impact of climate change on runoff

    NASA Astrophysics Data System (ADS)

    Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.

    2015-10-01

    The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a decrease of the lowest flows, except for the SWAT model with the mean hydrological impact climate change scenario. The results of this study indicate that besides the uncertainty introduced by the climate change scenarios also the hydrological model structure uncertainty should be taken into account in the assessment of climate change impacts on hydrology. To make it more straightforward and transparent to include model structural uncertainty in hydrological impact studies, there is a need for hydrological modelling tools that allow flexible structures and methods to validate model structures in their ability to assess impacts under unobserved future climatic conditions.

  2. Hydrologic connectivity: Quantitative assessments of hydrologic-enforced drainage structures in an elevation model

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.

    2016-01-01

    Elevation data derived from light detection and ranging present challenges for hydrologic modeling as the elevation surface includes bridge decks and elevated road features overlaying culvert drainage structures. In reality, water is carried through these structures; however, in the elevation surface these features impede modeled overland surface flow. Thus, a hydrologically-enforced elevation surface is needed for hydrodynamic modeling. In the Delaware River Basin, hydrologic-enforcement techniques were used to modify elevations to simulate how constructed drainage structures allow overland surface flow. By calculating residuals between unfilled and filled elevation surfaces, artificially pooled depressions that formed upstream of constructed drainage structure features were defined, and elevation values were adjusted by generating transects at the location of the drainage structures. An assessment of each hydrologically-enforced drainage structure was conducted using field-surveyed culvert and bridge coordinates obtained from numerous public agencies, but it was discovered the disparate drainage structure datasets were not comprehensive enough to assess all remotely located depressions in need of hydrologic-enforcement. Alternatively, orthoimagery was interpreted to define drainage structures near each depression, and these locations were used as reference points for a quantitative hydrologic-enforcement assessment. The orthoimagery-interpreted reference points resulted in a larger corresponding sample size than the assessment between hydrologic-enforced transects and field-surveyed data. This assessment demonstrates the viability of rules-based hydrologic-enforcement that is needed to achieve hydrologic connectivity, which is valuable for hydrodynamic models in sensitive coastal regions. Hydrologic-enforced elevation data are also essential for merging with topographic/bathymetric elevation data that extend over vulnerable urbanized areas and dynamic coastal regions.

  3. Jump-Diffusion models and structural changes for asset forecasting in hydrology

    NASA Astrophysics Data System (ADS)

    Tranquille Temgoua, André Guy; Martel, Richard; Chang, Philippe J. J.; Rivera, Alfonso

    2017-04-01

    Impacts of climate change on surface water and groundwater are of concern in many regions of the world since water is an essential natural resource. Jump-Diffusion models are generally used in economics and other related fields but not in hydrology. The potential application could be made for hydrologic data series analysis and forecast. The present study uses Jump-Diffusion models by adding structural changes to detect fluctuations in hydrologic processes in relationship with climate change. The model implicitly assumes that modifications in rivers' flowrates can be divided into three categories: (a) normal changes due to irregular precipitation events especially in tropical regions causing major disturbance in hydrologic processes (this component is modelled by a discrete Brownian motion); (b) abnormal, sudden and non-persistent modifications in hydrologic proceedings are handled by Poisson processes; (c) the persistence of hydrologic fluctuations characterized by structural changes in hydrological data related to climate variability. The objective of this paper is to add structural changes in diffusion models with jumps, in order to capture the persistence of hydrologic fluctuations. Indirectly, the idea is to observe if there are structural changes of discharge/recharge over the study area, and to find an efficient and flexible model able of capturing a wide variety of hydrologic processes. Structural changes in hydrological data are estimated using the method of nonlinear discrete filters via Method of Simulated Moments (MSM). An application is given using sensitive parameters such as baseflow index and recession coefficient to capture discharge/recharge. Historical dataset are examined by the Volume Spread Analysis (VSA) to detect real time and random perturbations in hydrologic processes. The application of the method allows establishing more accurate hydrologic parameters. The impact of this study is perceptible in forecasting floods and groundwater recession. Keywords: hydrologic processes, Jump-Diffusion models, structural changes, forecast, climate change

  4. Testing the Structure of Hydrological Models using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  5. Hydrologic consistency as a basis for assessing complexity of monthly water balance models for the continental United States

    NASA Astrophysics Data System (ADS)

    Martinez, Guillermo F.; Gupta, Hoshin V.

    2011-12-01

    Methods to select parsimonious and hydrologically consistent model structures are useful for evaluating dominance of hydrologic processes and representativeness of data. While information criteria (appropriately constrained to obey underlying statistical assumptions) can provide a basis for evaluating appropriate model complexity, it is not sufficient to rely upon the principle of maximum likelihood (ML) alone. We suggest that one must also call upon a "principle of hydrologic consistency," meaning that selected ML structures and parameter estimates must be constrained (as well as possible) to reproduce desired hydrological characteristics of the processes under investigation. This argument is demonstrated in the context of evaluating the suitability of candidate model structures for lumped water balance modeling across the continental United States, using data from 307 snow-free catchments. The models are constrained to satisfy several tests of hydrologic consistency, a flow space transformation is used to ensure better consistency with underlying statistical assumptions, and information criteria are used to evaluate model complexity relative to the data. The results clearly demonstrate that the principle of consistency provides a sensible basis for guiding selection of model structures and indicate strong spatial persistence of certain model structures across the continental United States. Further work to untangle reasons for model structure predominance can help to relate conceptual model structures to physical characteristics of the catchments, facilitating the task of prediction in ungaged basins.

  6. Towards methodical modelling: Differences between the structure and output dynamics of multiple conceptual models

    NASA Astrophysics Data System (ADS)

    Knoben, Wouter; Woods, Ross; Freer, Jim

    2016-04-01

    Conceptual hydrologic models consist of a certain arrangement of spatial and temporal dynamics consisting of stores, fluxes and transformation functions, depending on the modeller's choices and intended use. They have the advantages of being computationally efficient, being relatively easy model structures to reconfigure and having relatively low input data demands. This makes them well-suited for large-scale and large-sample hydrology, where appropriately representing the dominant hydrologic functions of a catchment is a main concern. Given these requirements, the number of parameters in the model cannot be too high, to avoid equifinality and identifiability issues. This limits the number and level of complexity of dominant hydrologic processes the model can represent. Specific purposes and places thus require a specific model and this has led to an abundance of conceptual hydrologic models. No structured overview of these models exists and there is no clear method to select appropriate model structures for different catchments. This study is a first step towards creating an overview of the elements that make up conceptual models, which may later assist a modeller in finding an appropriate model structure for a given catchment. To this end, this study brings together over 30 past and present conceptual models. The reviewed model structures are simply different configurations of three basic model elements (stores, fluxes and transformation functions), depending on the hydrologic processes the models are intended to represent. Differences also exist in the inner workings of the stores, fluxes and transformations, i.e. the mathematical formulations that describe each model element's intended behaviour. We investigate the hypothesis that different model structures can produce similar behavioural simulations. This can clarify the overview of model elements by grouping elements which are similar, which can improve model structure selection.

  7. Coupling a distributed hydrological model with detailed forest structural information for large-scale global change impact assessment

    NASA Astrophysics Data System (ADS)

    Eisner, Stephanie; Huang, Shaochun; Majasalmi, Titta; Bright, Ryan; Astrup, Rasmus; Beldring, Stein

    2017-04-01

    Forests are recognized for their decisive effect on landscape water balance with structural forest characteristics as stand density or species composition determining energy partitioning and dominant flow paths. However, spatial and temporal variability in forest structure is often poorly represented in hydrological modeling frameworks, in particular in regional to large scale hydrological modeling and impact analysis. As a common practice, prescribed land cover classes (including different generic forest types) are linked to parameter values derived from literature, or parameters are determined by calibration. While national forest inventory (NFI) data provide comprehensive, detailed information on hydrologically relevant forest characteristics, their potential to inform hydrological simulation over larger spatial domains is rarely exploited. In this study we present a modeling framework that couples the distributed hydrological model HBV with forest structural information derived from the Norwegian NFI and multi-source remote sensing data. The modeling framework, set up for the entire of continental Norway at 1 km spatial resolution, is explicitly designed to study the combined and isolated impacts of climate change, forest management and land use change on hydrological fluxes. We use a forest classification system based on forest structure rather than biomes which allows to implicitly account for impacts of forest management on forest structural attributes. In the hydrological model, different forest classes are represented by three parameters: leaf area index (LAI), mean tree height and surface albedo. Seasonal cycles of LAI and surface albedo are dynamically simulated to make the framework applicable under climate change conditions. Based on a hindcast for the pilot regions Nord-Trøndelag and Sør-Trøndelag, we show how forest management has affected regional hydrological fluxes during the second half of the 20th century as contrasted to climate variability.

  8. Alternative spatial configurations to reflect landscape structure in a hydrological model: SUMMA applications to the Reynolds Creek Watershed and the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Nijssen, Bart; Clark, Martyn; Mizukami, Naoki; Chegwidden, Oriana

    2016-04-01

    Most existing hydrological models use a fixed representation of landscape structure. For example, high-resolution, spatially-distributed models may use grid cells that exchange moisture through the saturated subsurface or may divide the landscape into hydrologic response units that only exchange moisture through surface channels. Alternatively, many regional models represent the landscape through coarse elements that do not model any moisture exchange between these model elements. These spatial organizations are often represented at a low-level in the model code and its data structures, which makes it difficult to evaluate different landscape representations using the same hydrological model. Instead, such experimentation requires the use of multiple, different hydrological models, which in turn complicates the analysis, because differences in model outcomes are no longer constrained by differing spatial representations. This inflexibility in the representation of landscape structure also limits a model's capability for scaling local processes to regional outcomes. In this study, we used the Structure for Unifying Multiple Modeling Alternatives (SUMMA) to evaluate different model spatial configurations to represent landscape structure and to evaluate scaling behavior. SUMMA can represent the moisture exchange between arbitrarily shaped landscape elements in a number of different ways, while using the same model parameterizations for vertical fluxes. This allows us to isolate the effects of changes in landscape representations on modeled hydrological fluxes and states. We examine the effects of spatial configuration in Reynolds Creek, Idaho, USA, which is a research watershed with gaged areas from 1-20 km2. We then use the same modeling system to evaluate scaling behavior in simulated hydrological fluxes in the Columbia River Basin, Pacific Northwest, USA. This basin drains more than 500,000 km2 and includes the Reynolds Creek Watershed.

  9. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE PAGES

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable conditions.« less

  10. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable conditions.« less

  11. Testing the structure of a hydrological model using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  12. Estimating the Uncertain Mathematical Structure of Hydrological Model via Bayesian Data Assimilation

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Gupta, H.; O'Donell, G.; Wheater, H.

    2008-12-01

    The structure of hydrological model at macro scale (e.g. watershed) is inherently uncertain due to many factors, including the lack of a robust hydrological theory at the macro scale. In this work, we assume that a suitable conceptual model for the hydrologic system has already been determined - i.e., the system boundaries have been specified, the important state variables and input and output fluxes to be included have been selected, and the major hydrological processes and geometries of their interconnections have been identified. The structural identification problem then is to specify the mathematical form of the relationships between the inputs, state variables and outputs, so that a computational model can be constructed for making simulations and/or predictions of system input-state-output behaviour. We show how Bayesian data assimilation can be used to merge both prior beliefs in the form of pre-assumed model equations with information derived from the data to construct a posterior model. The approach, entitled Bayesian Estimation of Structure (BESt), is used to estimate a hydrological model for a small basin in England, at hourly time scales, conditioned on the assumption of 3-dimensional state - soil moisture storage, fast and slow flow stores - conceptual model structure. Inputs to the system are precipitation and potential evapotranspiration, and outputs are actual evapotranspiration and streamflow discharge. Results show the difference between prior and posterior mathematical structures, as well as provide prediction confidence intervals that reflect three types of uncertainty: due to initial conditions, due to input and due to mathematical structure.

  13. Mapping (un)certainties in the sign of hydrological projections

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke; Addor, Nans; Mizukami, Naoki; Newman, Andrew; Torfs, Paul; Clark, Martyn; Uijlenhoet, Remko; Teuling, Ryan

    2017-04-01

    While hydrological projections are of vital importance, particularly for water infrastructure design and food production, they are also prone to different sources of uncertainty. Using a multi-model set-up we investigated the uncertainty in hydrological projections for the period 2070-2100 associated with the parameterization of hydrological models, hydrological model structure, and General Circulation Models (GCMs) needed to force the hydrological model, for 605 basins throughout the contiguous United States. The use of such a large sample of basins gave us the opportunity to recognize spatial patterns in the results, and to attribute the uncertainty to particular hydrological processes. We investigated the sign of the projected change in mean annual runoff. The parameterization influenced the sign of change in 5 to 34% of the basins, depending on the hydrological model and GCM forcing. The hydrological model structure led to uncertainty in the sign of the change in 13 to 26% of the basins, depending on GCM forcing. This uncertainty could largely be attributed to the conceptualization of snow processes in the hydrological models. In 14% of the basins, none of the hydrological models was behavioural, which could be related to catchments with high aridity and intermittent flow behaviour. In 41 to 69% of the basins, the sign of the change was uncertain due to GCM forcing, which could be attributed to disagreement among the climate models regarding the projected change in precipitation. The results demonstrate that even the sign of change in mean annual runoff is highly uncertain in the majority of the investigated basins. If we want to use hydrological projections for water management purposes, including the design of water infrastructure, we clearly need to increase our understanding of climate and hydrological processes and their feedbacks.

  14. Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models

    USGS Publications Warehouse

    Clark, Martyn P.; Slater, Andrew G.; Rupp, David E.; Woods, Ross A.; Vrugt, Jasper A.; Gupta, Hoshin V.; Wagener, Thorsten; Hay, Lauren E.

    2008-01-01

    The problems of identifying the most appropriate model structure for a given problem and quantifying the uncertainty in model structure remain outstanding research challenges for the discipline of hydrology. Progress on these problems requires understanding of the nature of differences between models. This paper presents a methodology to diagnose differences in hydrological model structures: the Framework for Understanding Structural Errors (FUSE). FUSE was used to construct 79 unique model structures by combining components of 4 existing hydrological models. These new models were used to simulate streamflow in two of the basins used in the Model Parameter Estimation Experiment (MOPEX): the Guadalupe River (Texas) and the French Broad River (North Carolina). Results show that the new models produced simulations of streamflow that were at least as good as the simulations produced by the models that participated in the MOPEX experiment. Our initial application of the FUSE method for the Guadalupe River exposed relationships between model structure and model performance, suggesting that the choice of model structure is just as important as the choice of model parameters. However, further work is needed to evaluate model simulations using multiple criteria to diagnose the relative importance of model structural differences in various climate regimes and to assess the amount of independent information in each of the models. This work will be crucial to both identifying the most appropriate model structure for a given problem and quantifying the uncertainty in model structure. To facilitate research on these problems, the FORTRAN‐90 source code for FUSE is available upon request from the lead author.

  15. Assessing the skill of hydrology models at simulating the water cycle in the HJ Andrews LTER: Assumptions, strengths and weaknesses

    EPA Science Inventory

    Simulated impacts of climate on hydrology can vary greatly as a function of the scale of the input data, model assumptions, and model structure. Four models are commonly used to simulate streamflow in model assumptions, and model structure. Four models are commonly used to simu...

  16. Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach

    NASA Astrophysics Data System (ADS)

    Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault

    2017-08-01

    Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.

  17. Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty: STRUCTURAL UNCERTAINTY DIAGNOSTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moges, Edom; Demissie, Yonas; Li, Hong-Yi

    2016-04-01

    In most water resources applications, a single model structure might be inadequate to capture the dynamic multi-scale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integratemore » expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses are used to assess the presence of multiple dominant processes and the adequacy of a single model, as well as to identify the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas, the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response.« less

  18. Assessment of variability in the hydrological cycle of the Loess Plateau, China: examining dependence structures of hydrological processes

    NASA Astrophysics Data System (ADS)

    Guo, A.; Wang, Y.

    2017-12-01

    Investigating variability in dependence structures of hydrological processes is of critical importance for developing an understanding of mechanisms of hydrological cycles in changing environments. In focusing on this topic, present work involves the following: (1) identifying and eliminating serial correlation and conditional heteroscedasticity in monthly streamflow (Q), precipitation (P) and potential evapotranspiration (PE) series using the ARMA-GARCH model (ARMA: autoregressive moving average; GARCH: generalized autoregressive conditional heteroscedasticity); (2) describing dependence structures of hydrological processes using partial copula coupled with the ARMA-GARCH model and identifying their variability via copula-based likelihood-ratio test method; and (3) determining conditional probability of annual Q under different climate scenarios on account of above results. This framework enables us to depict hydrological variables in the presence of conditional heteroscedasticity and to examine dependence structures of hydrological processes while excluding the influence of covariates by using partial copula-based ARMA-GARCH model. Eight major catchments across the Loess Plateau (LP) are used as study regions. Results indicate that (1) The occurrence of change points in dependence structures of Q and P (PE) varies across the LP. Change points of P-PE dependence structures in all regions almost fully correspond to the initiation of global warming, i.e., the early 1980s. (3) Conditional probabilities of annual Q under various P and PE scenarios are estimated from the 3-dimensional joint distribution of (Q, P and PE) based on the above change points. These findings shed light on mechanisms of the hydrological cycle and can guide water supply planning and management, particularly in changing environments.

  19. Simulating Fire Disturbance and Plant Mortality Using Antecedent Eco-hydrological Conditions to Inform a Physically Based Combustion Model

    NASA Astrophysics Data System (ADS)

    Atchley, A. L.; Linn, R.; Middleton, R. S.; Runde, I.; Coon, E.; Michaletz, S. T.

    2016-12-01

    Wildfire is a complex agent of change that both affects and depends on eco-hydrological systems, thereby constituting a tightly linked system of disturbances and eco-hydrological conditions. For example, structure, build-up, and moisture content of fuel are dependent on eco-hydrological regimes, which impacts fire spread and intensity. Fire behavior, on the other hand, determines the severity and extent of eco-hydrological disturbance, often resulting in a mosaic of untouched, stressed, damaged, or completely destroyed vegetation within the fire perimeter. This in turn drives new eco-hydrological system behavior. The cycles of disturbance and recovery present a complex evolving system with many unknowns especially in the face of climate change that has implications for fire risk, water supply, and forest composition. Physically-based numerical experiments that attempt to capture the complex linkages between eco-hydrological regimes that affect fire behavior and the echo-hydrological response from those fire disturbances help build the understanding required to project how fire disturbance and eco-hydrological conditions coevolve over time. Here we explore the use of FIRETEC—a physically-based 3D combustion model that solves conservation of mass, momentum, energy, and chemical species—to resolve fire spread over complex terrain and fuel structures. Uniquely, we couple a physically-based plant mortality model with FIRETEC and examine the resultant hydrologic impact. In this proof of concept demonstration we spatially distribute fuel structure and moisture content based on the eco-hydrological condition to use as input for FIRETEC. The fire behavior simulation then produces localized burn severity and heat injures which are used as input to a spatially-informed plant mortality model. Ultimately we demonstrate the applicability of physically-based models to explore integrated disturbance and eco-hydrologic response to wildfire behavior and specifically map how fire spread and intensity is affect by the antecedent eco-hydrological condition, which then affects the resulting tree mortality patterns.

  20. Hydrological Modeling in the Bull Run Watershed in Support of a Piloting Utility Modeling Applications (PUMA) Project

    NASA Astrophysics Data System (ADS)

    Nijssen, B.; Chiao, T. H.; Lettenmaier, D. P.; Vano, J. A.

    2016-12-01

    Hydrologic models with varying complexities and structures are commonly used to evaluate the impact of climate change on future hydrology. While the uncertainties in future climate projections are well documented, uncertainties in streamflow projections associated with hydrologic model structure and parameter estimation have received less attention. In this study, we implemented and calibrated three hydrologic models (the Distributed Hydrology Soil Vegetation Model (DHSVM), the Precipitation-Runoff Modeling System (PRMS), and the Variable Infiltration Capacity model (VIC)) for the Bull Run watershed in northern Oregon using consistent data sources and best practice calibration protocols. The project was part of a Piloting Utility Modeling Applications (PUMA) project with the Portland Water Bureau (PWB) under the umbrella of the Water Utility Climate Alliance (WUCA). Ultimately PWB would use the model evaluation to select a model to perform in-house climate change analysis for Bull Run Watershed. This presentation focuses on the experimental design of the comparison project, project findings and the collaboration between the team at the University of Washington and at PWB. After calibration, the three models showed similar capability to reproduce seasonal and inter-annual variations in streamflow, but differed in their ability to capture extreme events. Furthermore, the annual and seasonal hydrologic sensitivities to changes in climate forcings differed among models, potentially attributable to different model representations of snow and vegetation processes.

  1. Ensemble catchment hydrological modelling for climate change impact analysis

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick

    2014-05-01

    It is vital to investigate how the hydrological model structure affects the climate change impact given that future changes not in the range for which the models were calibrated or validated are likely. Thus an ensemble modelling approach which involves a diversity of models with different structures such as spatial resolutions and process descriptions is crucial. The ensemble modelling approach was applied to a set of models: from the lumped conceptual models NAM, PDM and VHM, an intermediate detailed and distributed model WetSpa, to the highly detailed and fully distributed model MIKE-SHE. Explicit focus was given to the high and low flow extremes. All models were calibrated for sub flows and quick flows derived from rainfall and potential evapotranspiration (ETo) time series. In general, all models were able to produce reliable estimates of the flow regimes under the current climate for extreme peak and low flows. An intercomparison of the low and high flow changes under changed climatic conditions was made using climate scenarios tailored for extremes. Tailoring was important for two reasons. First, since the use of many scenarios was not feasible it was necessary to construct few scenarios that would reasonably represent the range of extreme impacts. Second, scenarios would be more informative as changes in high and low flows would be easily traced to changes of ETo and rainfall; the tailored scenarios are constructed using seasonal changes that are defined using different levels of magnitude (high, mean and low) for rainfall and ETo. After simulation of these climate scenarios in the five hydrological models, close agreement was found among the models. The different models predicted similar range of peak flow changes. For the low flows, however, the differences in the projected impact range by different hydrological models was larger, particularly for the drier scenarios. This suggests that the hydrological model structure is critical in low flow predictions, more than in high flow conditions. Hence, the mechanism of the slow flow component simulation requires further attention. It is concluded that a multi-model ensemble approach where different plausible model structures are applied, is extremely useful. It improves the reliability of climate change impact results and allows decision making to be based on uncertainty assessment that includes model structure related uncertainties. References: Ntegeka, V., Baguis, P., Roulin, E., Willems, P., 2014. Developing tailored climate change scenarios for hydrological impact assessments. Journal of Hydrology, 508C, 307-321 Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Willems, P., De Smedt, F., Batelaan, O., 2013. Climate change impact on river flows and catchment hydrology: a comparison of two spatially distributed models. Hydrological Processes, 27(25), 3649-3662. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Van Steenbergen, N., De Smedt, F., Batelaan, O., Pereira, F., Willems, P., 2014. Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. Journal of Hydrology, in press. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., De Smedt, F., Batelaan, O., Pereira, F., Willems, P., 2014. Intercomparison of climate scenario impact predictions by a lumped and distributed model ensemble. Journal of Hydrology, in revision.

  2. Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model

    NASA Astrophysics Data System (ADS)

    Chang, Yong; Wu, Jichun; Jiang, Guanghui; Kang, Zhiqiang

    2017-05-01

    Conceptual models often suffer from the over-parameterization problem due to limited available data for the calibration. This leads to the problem of parameter nonuniqueness and equifinality, which may bring much uncertainty of the simulation result. How to find out the appropriate model structure supported by the available data to simulate the catchment is still a big challenge in the hydrological research. In this paper, we adopt a multi-model framework to identify the dominant hydrological process and appropriate model structure of a karst spring, located in Guilin city, China. For this catchment, the spring discharge is the only available data for the model calibration. This framework starts with a relative complex conceptual model according to the perception of the catchment and then this complex is simplified into several different models by gradually removing the model component. The multi-objective approach is used to compare the performance of these different models and the regional sensitivity analysis (RSA) is used to investigate the parameter identifiability. The results show this karst spring is mainly controlled by two different hydrological processes and one of the processes is threshold-driven which is consistent with the fieldwork investigation. However, the appropriate model structure to simulate the discharge of this spring is much simpler than the actual aquifer structure and hydrological processes understanding from the fieldwork investigation. A simple linear reservoir with two different outlets is enough to simulate this spring discharge. The detail runoff process in the catchment is not needed in the conceptual model to simulate the spring discharge. More complex model should need more other additional data to avoid serious deterioration of model predictions.

  3. Genetic Programming for Automatic Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resources Research, 47(11).

  4. Benchmarking hydrological model predictive capability for UK River flows and flood peaks.

    NASA Astrophysics Data System (ADS)

    Lane, Rosanna; Coxon, Gemma; Freer, Jim; Wagener, Thorsten

    2017-04-01

    Data and hydrological models are now available for national hydrological analyses. However, hydrological model performance varies between catchments, and lumped, conceptual models are not able to produce adequate simulations everywhere. This study aims to benchmark hydrological model performance for catchments across the United Kingdom within an uncertainty analysis framework. We have applied four hydrological models from the FUSE framework to 1128 catchments across the UK. These models are all lumped models and run at a daily timestep, but differ in the model structural architecture and process parameterisations, therefore producing different but equally plausible simulations. We apply FUSE over a 20 year period from 1988-2008, within a GLUE Monte Carlo uncertainty analyses framework. Model performance was evaluated for each catchment, model structure and parameter set using standard performance metrics. These were calculated both for the whole time series and to assess seasonal differences in model performance. The GLUE uncertainty analysis framework was then applied to produce simulated 5th and 95th percentile uncertainty bounds for the daily flow time-series and additionally the annual maximum prediction bounds for each catchment. The results show that the model performance varies significantly in space and time depending on catchment characteristics including climate, geology and human impact. We identify regions where models are systematically failing to produce good results, and present reasons why this could be the case. We also identify regions or catchment characteristics where one model performs better than others, and have explored what structural component or parameterisation enables certain models to produce better simulations in these catchments. Model predictive capability was assessed for each catchment, through looking at the ability of the models to produce discharge prediction bounds which successfully bound the observed discharge. These results improve our understanding of the predictive capability of simple conceptual hydrological models across the UK and help us to identify where further effort is needed to develop modelling approaches to better represent different catchment and climate typologies.

  5. Macroscale hydrologic modeling of ecologically relevant flow metrics

    Treesearch

    Seth J. Wenger; Charles H. Luce; Alan F. Hamlet; Daniel J. Isaak; Helen M. Neville

    2010-01-01

    Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe...

  6. On how to avoid input and structural uncertainties corrupt the inference of hydrological parameters using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Hernández, Mario R.; Francés, Félix

    2015-04-01

    One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the application of BJI with a GA error model outperforms the hydrological parameters robustness (diminishing the divergence model phenomenon) and improves the reliability of the streamflow predictive distribution, in respect of the results of a bad error model as SLS. Finally, the most likely prediction in a validation period, for both BJI+GA and SLS error models shows a similar performance.

  7. From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions

    NASA Astrophysics Data System (ADS)

    Fenicia, Fabrizio; Kavetski, Dmitri; Savenije, Hubert H. G.; Pfister, Laurent

    2016-02-01

    This paper explores the development and application of distributed hydrological models, focusing on the key decisions of how to discretize the landscape, which model structures to use in each landscape element, and how to link model parameters across multiple landscape elements. The case study considers the Attert catchment in Luxembourg—a 300 km2 mesoscale catchment with 10 nested subcatchments that exhibit clearly different streamflow dynamics. The research questions are investigated using conceptual models applied at hydrologic response unit (HRU) scales (1-4 HRUs) on 6 hourly time steps. Multiple model structures are hypothesized and implemented using the SUPERFLEX framework. Following calibration, space/time model transferability is tested using a split-sample approach, with evaluation criteria including streamflow prediction error metrics and hydrological signatures. Our results suggest that: (1) models using geology-based HRUs are more robust and capture the spatial variability of streamflow time series and signatures better than models using topography-based HRUs; this finding supports the hypothesis that, in the Attert, geology exerts a stronger control than topography on streamflow generation, (2) streamflow dynamics of different HRUs can be represented using distinct and remarkably simple model structures, which can be interpreted in terms of the perceived dominant hydrologic processes in each geology type, and (3) the same maximum root zone storage can be used across the three dominant geological units with no loss in model transferability; this finding suggests that the partitioning of water between streamflow and evaporation in the study area is largely independent of geology and can be used to improve model parsimony. The modeling methodology introduced in this study is general and can be used to advance our broader understanding and prediction of hydrological behavior, including the landscape characteristics that control hydrologic response, the dominant processes associated with different landscape types, and the spatial relations of catchment processes. This article was corrected on 14 MAR 2016. See the end of the full text for details.

  8. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, FrançOis P.; Poulin, Annie; Leconte, Robert

    2011-12-01

    General circulation models (GCMs) and greenhouse gas emissions scenarios (GGES) are generally considered to be the two major sources of uncertainty in quantifying the climate change impacts on hydrology. Other sources of uncertainty have been given less attention. This study considers overall uncertainty by combining results from an ensemble of two GGES, six GCMs, five GCM initial conditions, four downscaling techniques, three hydrological model structures, and 10 sets of hydrological model parameters. Each climate projection is equally weighted to predict the hydrology on a Canadian watershed for the 2081-2100 horizon. The results show that the choice of GCM is consistently a major contributor to uncertainty. However, other sources of uncertainty, such as the choice of a downscaling method and the GCM initial conditions, also have a comparable or even larger uncertainty for some hydrological variables. Uncertainties linked to GGES and the hydrological model structure are somewhat less than those related to GCMs and downscaling techniques. Uncertainty due to the hydrological model parameter selection has the least important contribution among all the variables considered. Overall, this research underlines the importance of adequately covering all sources of uncertainty. A failure to do so may result in moderately to severely biased climate change impact studies. Results further indicate that the major contributors to uncertainty vary depending on the hydrological variables selected, and that the methodology presented in this paper is successful at identifying the key sources of uncertainty to consider for a climate change impact study.

  9. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics

    NASA Astrophysics Data System (ADS)

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; Godsey, Sarah E.; Maxwell, Reed M.; McNamara, James P.; Tague, Christina

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water-related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross-site focus on "critical zone hydrology" has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: "how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?" Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.

  10. Upscaling from research watersheds: an essential stage of trustworthy general-purpose hydrologic model building

    NASA Astrophysics Data System (ADS)

    McNamara, J. P.; Semenova, O.; Restrepo, P. J.

    2011-12-01

    Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in terms of runoff and variable states of soil and snow over a simulation period 2000 - 2009. The parameters of the model were hand-adjusted based on rational sense, observational data and available understanding of underlying processes. For the first run some processes as riparian vegetation impact on runoff and streamflow/groundwater interaction were handled in a conceptual way. It was shown that the use of Hydrograph model which requires modest amount of parameter calibration may serve also as a quality control for observations. Based on the obtained parameters values and process understanding at the research watershed the model was applied to the larger scale watersheds located in similar environment - the Boise River at South Fork (1660 km2) and Twin Springs (2155 km2). The evaluation of the results of such upscaling will be presented.

  11. Intercomparison of hydrological model structures and calibration approaches in climate scenario impact projections

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, Thomas; Tavakoli, Mohsen; Ntegeka, Victor; De Smedt, Florimond; Batelaan, Okke; Pereira, Fernando; Willems, Patrick

    2014-11-01

    The objective of this paper is to investigate the effects of hydrological model structure and calibration on climate change impact results in hydrology. The uncertainty in the hydrological impact results is assessed by the relative change in runoff volumes and peak and low flow extremes from historical and future climate conditions. The effect of the hydrological model structure is examined through the use of five hydrological models with different spatial resolutions and process descriptions. These were applied to a medium sized catchment in Belgium. The models vary from the lumped conceptual NAM, PDM and VHM models over the intermediate detailed and distributed WetSpa model to the fully distributed MIKE SHE model. The latter model accounts for the 3D groundwater processes and interacts bi-directionally with a full hydrodynamic MIKE 11 river model. After careful and manual calibration of these models, accounting for the accuracy of the peak and low flow extremes and runoff subflows, and the changes in these extremes for changing rainfall conditions, the five models respond in a similar way to the climate scenarios over Belgium. Future projections on peak flows are highly uncertain with expected increases as well as decreases depending on the climate scenario. The projections on future low flows are more uniform; low flows decrease (up to 60%) for all models and for all climate scenarios. However, the uncertainties in the impact projections are high, mainly in the dry season. With respect to the model structural uncertainty, the PDM model simulates significantly higher runoff peak flows under future wet scenarios, which is explained by its specific model structure. For the low flow extremes, the MIKE SHE model projects significantly lower low flows in dry scenario conditions in comparison to the other models, probably due to its large difference in process descriptions for the groundwater component, the groundwater-river interactions. The effect of the model calibration was tested by comparing the manual calibration approach with automatic calibrations of the VHM model based on different objective functions. The calibration approach did not significantly alter the model results for peak flow, but the low flow projections were again highly influenced. Model choice as well as calibration strategy hence have a critical impact on low flows, more than on peak flows. These results highlight the high uncertainty in low flow modelling, especially in a climate change context.

  12. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics

    DOE PAGES

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; ...

    2015-08-07

    Here, hydrology is an integrative discipline linking the broad array of water–related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy tomore » the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross–site focus on “critical zone hydrology” has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: “how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?” Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.« less

  13. An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes

    DOE PAGES

    Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...

    2017-07-10

    Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less

  14. The integrated effects of future climate and hydrologic uncertainty on sustainable flood risk management

    NASA Astrophysics Data System (ADS)

    Steinschneider, S.; Wi, S.; Brown, C. M.

    2013-12-01

    Flood risk management performance is investigated within the context of integrated climate and hydrologic modeling uncertainty to explore system robustness. The research question investigated is whether structural and hydrologic parameterization uncertainties are significant relative to other uncertainties such as climate change when considering water resources system performance. Two hydrologic models are considered, a conceptual, lumped parameter model that preserves the water balance and a physically-based model that preserves both water and energy balances. In the conceptual model, parameter and structural uncertainties are quantified and propagated through the analysis using a Bayesian modeling framework with an innovative error model. Mean climate changes and internal climate variability are explored using an ensemble of simulations from a stochastic weather generator. The approach presented can be used to quantify the sensitivity of flood protection adequacy to different sources of uncertainty in the climate and hydrologic system, enabling the identification of robust projects that maintain adequate performance despite the uncertainties. The method is demonstrated in a case study for the Coralville Reservoir on the Iowa River, where increased flooding over the past several decades has raised questions about potential impacts of climate change on flood protection adequacy.

  15. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics: CRITICAL ZONE HYDROLOGY

    DOE PAGES

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; ...

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water‐related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to themore » base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross‐site focus on “critical zone hydrology” has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: “how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?” Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.« less

  16. Effects of different regional climate model resolution and forcing scales on projected hydrologic changes

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo A.; Mizukami, Naoki; Ikeda, Kyoko; Clark, Martyn P.; Gutmann, Ethan D.; Arnold, Jeffrey R.; Brekke, Levi D.; Rajagopalan, Balaji

    2016-10-01

    We examine the effects of regional climate model (RCM) horizontal resolution and forcing scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water balance and hydrologic signature measures. To this end, we conduct our study in three catchments located in the headwaters of the Colorado River basin. Meteorological forcings for current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional climate model, and hydrologic changes are computed using four different hydrologic model structures. These projected changes are compared to those obtained from running hydrologic simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km. The results show that the horizontal resolution of WRF simulations heavily affects basin-averaged precipitation amounts, propagating into large differences in simulated signature measures across model structures. The implications of re-scaled forcing datasets on historical performance were primarily observed on simulated runoff seasonality. We also found that the effects of WRF grid resolution on projected changes in mean annual runoff and evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic signature measures were found to be generally smaller than those coming from WRF resolution; however, forcing aggregation in many cases reversed the direction of projected changes in hydrologic behavior.

  17. Uncertainty Propagation of Non-Parametric-Derived Precipitation Estimates into Multi-Hydrologic Model Simulations

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. E.; Nikolopoulos, E. I.; Anagnostou, E. N.

    2017-12-01

    Quantifying the uncertainty of global precipitation datasets is beneficial when using these precipitation products in hydrological applications, because precipitation uncertainty propagation through hydrologic modeling can significantly affect the accuracy of the simulated hydrologic variables. In this research the Iberian Peninsula has been used as the study area with a study period spanning eleven years (2000-2010). This study evaluates the performance of multiple hydrologic models forced with combined global rainfall estimates derived based on a Quantile Regression Forests (QRF) technique. In QRF technique three satellite precipitation products (CMORPH, PERSIANN, and 3B42 (V7)); an atmospheric reanalysis precipitation and air temperature dataset; satellite-derived near-surface daily soil moisture data; and a terrain elevation dataset are being utilized in this study. A high-resolution, ground-based observations driven precipitation dataset (named SAFRAN) available at 5 km/1 h resolution is used as reference. Through the QRF blending framework the stochastic error model produces error-adjusted ensemble precipitation realizations, which are used to force four global hydrological models (JULES (Joint UK Land Environment Simulator), WaterGAP3 (Water-Global Assessment and Prognosis), ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) and SURFEX (Stands for Surface Externalisée) ) to simulate three hydrologic variables (surface runoff, subsurface runoff and evapotranspiration). The models are forced with the reference precipitation to generate reference-based hydrologic simulations. This study presents a comparative analysis of multiple hydrologic model simulations for different hydrologic variables and the impact of the blending algorithm on the simulated hydrologic variables. Results show how precipitation uncertainty propagates through the different hydrologic model structures to manifest in reduction of error in hydrologic variables.

  18. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  19. THE DOWNSLOPE PROPAGATION OF A DISTURBANCE IN A FORESTED CATCHMENT: AN ECO-HYDROLOGIC SIMULATION STUDY

    EPA Science Inventory

    We developed and applied a spatially-explicit, eco-hydrologic model to examine how a landscape disturbance affects hydrologic processes, ecosystem cycling of C and N, and ecosystem structure. We simulated how the pattern and magnitude of tree removal in a catchment influences fo...

  20. Development of Hydro-Informatic Modelling System and its Application

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, C.; Zheng, H.; Zhang, L.; Wu, X.

    2009-12-01

    The understanding of hydrological cycle is the core of hydrology and the scientific base of water resources management. Meanwhile, simulation of hydrological cycle has long been regarded as an important tool for the assessment, utilization and protection of water resources. In this paper, a new tool named Hydro-Informatic Modelling System (HIMS) has been developed and introduced with case studies in the Yellow River Basin in China and 331 catchments in Australia. The case studies showed that HIMS can be employed as an integrated platform for hydrological simulation in different regions. HIMS is a modular based framework of hydrological model designed for different utilization such as flood forecasting, water resources planning and evaluating hydrological impacts of climate change and human activities. The unique of HIMS is its flexibility in providing alternative modules in the simulation of hydrological cycle, which successfully overcome the difficulties in the availability of input data, the uncertainty of parameters, and the difference of rainfall-runoff processes. The modular based structure of HIMS makes it possible for developing new hydrological models by the users.

  1. Retrieving hydrological connectivity from empirical causality in karst systems

    NASA Astrophysics Data System (ADS)

    Delforge, Damien; Vanclooster, Marnik; Van Camp, Michel; Poulain, Amaël; Watlet, Arnaud; Hallet, Vincent; Kaufmann, Olivier; Francis, Olivier

    2017-04-01

    Because of their complexity, karst systems exhibit nonlinear dynamics. Moreover, if one attempts to model a karst, the hidden behavior complicates the choice of the most suitable model. Therefore, both intense investigation methods and nonlinear data analysis are needed to reveal the underlying hydrological connectivity as a prior for a consistent physically based modelling approach. Convergent Cross Mapping (CCM), a recent method, promises to identify causal relationships between time series belonging to the same dynamical systems. The method is based on phase space reconstruction and is suitable for nonlinear dynamics. As an empirical causation detection method, it could be used to highlight the hidden complexity of a karst system by revealing its inner hydrological and dynamical connectivity. Hence, if one can link causal relationships to physical processes, the method should show great potential to support physically based model structure selection. We present the results of numerical experiments using karst model blocks combined in different structures to generate time series from actual rainfall series. CCM is applied between the time series to investigate if the empirical causation detection is consistent with the hydrological connectivity suggested by the karst model.

  2. A new moving strategy for the sequential Monte Carlo approach in optimizing the hydrological model parameters

    NASA Astrophysics Data System (ADS)

    Zhu, Gaofeng; Li, Xin; Ma, Jinzhu; Wang, Yunquan; Liu, Shaomin; Huang, Chunlin; Zhang, Kun; Hu, Xiaoli

    2018-04-01

    Sequential Monte Carlo (SMC) samplers have become increasing popular for estimating the posterior parameter distribution with the non-linear dependency structures and multiple modes often present in hydrological models. However, the explorative capabilities and efficiency of the sampler depends strongly on the efficiency in the move step of SMC sampler. In this paper we presented a new SMC sampler entitled the Particle Evolution Metropolis Sequential Monte Carlo (PEM-SMC) algorithm, which is well suited to handle unknown static parameters of hydrologic model. The PEM-SMC sampler is inspired by the works of Liang and Wong (2001) and operates by incorporating the strengths of the genetic algorithm, differential evolution algorithm and Metropolis-Hasting algorithm into the framework of SMC. We also prove that the sampler admits the target distribution to be a stationary distribution. Two case studies including a multi-dimensional bimodal normal distribution and a conceptual rainfall-runoff hydrologic model by only considering parameter uncertainty and simultaneously considering parameter and input uncertainty show that PEM-SMC sampler is generally superior to other popular SMC algorithms in handling the high dimensional problems. The study also indicated that it may be important to account for model structural uncertainty by using multiplier different hydrological models in the SMC framework in future study.

  3. Representing Northern Peatland Hydrology and Biogeochemistry with ALM Land Surface Model

    NASA Astrophysics Data System (ADS)

    Shi, X.; Ricciuto, D. M.; Thornton, P. E.; Hanson, P. J.; Xu, X.; Mao, J.; Warren, J.; Yuan, F.; Norby, R. J.; Sebestyen, S.; Griffiths, N.; Weston, D. J.; Walker, A.

    2017-12-01

    Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pool and vulnerability to hydrological change. Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. Firstly, we introduce a new configuration of the land model (ALM) of Accelerated Climate model for Energy (ACME), which includes a fully prognostic water table calculation for a vegetated peatland. Secondly, we couple our new hydrology treatment with vertically structured soil organic matter pool, and the addition of components from methane biogeochemistry. Thirdly, we introduce a new PFT for mosses and implement the water content dynamics and physiology of mosses. We inform and test our model based on SPRUCE experiment to get the reasonable results for the seasonal dynamics water table depths, water content dynamics and physiology of mosses, and correct soil carbon profiles. Then, we use our new model structure to test the how the water table depth and CH4 emission will respond to elevated CO2 and different warming scenarios.

  4. A multiple hypotheses uncertainty analysis in hydrological modelling: about model structure, landscape parameterization, and numerical integration

    NASA Astrophysics Data System (ADS)

    Pilz, Tobias; Francke, Till; Bronstert, Axel

    2016-04-01

    Until today a large number of competing computer models has been developed to understand hydrological processes and to simulate and predict streamflow dynamics of rivers. This is primarily the result of a lack of a unified theory in catchment hydrology due to insufficient process understanding and uncertainties related to model development and application. Therefore, the goal of this study is to analyze the uncertainty structure of a process-based hydrological catchment model employing a multiple hypotheses approach. The study focuses on three major problems that have received only little attention in previous investigations. First, to estimate the impact of model structural uncertainty by employing several alternative representations for each simulated process. Second, explore the influence of landscape discretization and parameterization from multiple datasets and user decisions. Third, employ several numerical solvers for the integration of the governing ordinary differential equations to study the effect on simulation results. The generated ensemble of model hypotheses is then analyzed and the three sources of uncertainty compared against each other. To ensure consistency and comparability all model structures and numerical solvers are implemented within a single simulation environment. First results suggest that the selection of a sophisticated numerical solver for the differential equations positively affects simulation outcomes. However, already some simple and easy to implement explicit methods perform surprisingly well and need less computational efforts than more advanced but time consuming implicit techniques. There is general evidence that ambiguous and subjective user decisions form a major source of uncertainty and can greatly influence model development and application at all stages.

  5. Comparison of global optimization approaches for robust calibration of hydrologic model parameters

    NASA Astrophysics Data System (ADS)

    Jung, I. W.

    2015-12-01

    Robustness of the calibrated parameters of hydrologic models is necessary to provide a reliable prediction of future performance of watershed behavior under varying climate conditions. This study investigated calibration performances according to the length of calibration period, objective functions, hydrologic model structures and optimization methods. To do this, the combination of three global optimization methods (i.e. SCE-UA, Micro-GA, and DREAM) and four hydrologic models (i.e. SAC-SMA, GR4J, HBV, and PRMS) was tested with different calibration periods and objective functions. Our results showed that three global optimization methods provided close calibration performances under different calibration periods, objective functions, and hydrologic models. However, using the agreement of index, normalized root mean square error, Nash-Sutcliffe efficiency as the objective function showed better performance than using correlation coefficient and percent bias. Calibration performances according to different calibration periods from one year to seven years were hard to generalize because four hydrologic models have different levels of complexity and different years have different information content of hydrological observation. Acknowledgements This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  6. Development of a biosphere hydrological model considering vegetation dynamics and its evaluation at basin scale under climate change

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Ishidaira, Hiroshi

    2012-01-01

    SummaryThe biosphere and hydrosphere are intrinsically coupled. The scientific question is if there is a substantial change in one component such as vegetation cover, how will the other components such as transpiration and runoff generation respond, especially under climate change conditions? Stand-alone hydrological models have a detailed description of hydrological processes but do not sufficiently parameterize vegetation as a dynamic component. Dynamic global vegetation models (DGVMs) are able to simulate transient structural changes in major vegetation types but do not simulate runoff generation reliably. Therefore, both hydrological models and DGVMs have their limitations as well as advantages for addressing this question. In this study a biosphere hydrological model (LPJH) is developed by coupling a prominent DGVM (Lund-Postdam-Jena model referred to as LPJ) with a stand-alone hydrological model (HYMOD), with the objective of analyzing the role of vegetation in the hydrological processes at basin scale and evaluating the impact of vegetation change on the hydrological processes under climate change. The application and validation of the LPJH model to four basins representing a variety of climate and vegetation conditions shows that the performance of LPJH is much better than that of the original LPJ and is similar to that of stand-alone hydrological models for monthly and daily runoff simulation at the basin scale. It is argued that the LPJH model gives more reasonable hydrological simulation since it considers both the spatial variability of soil moisture and vegetation dynamics, which make the runoff generation mechanism more reliable. As an example, it is shown that changing atmospheric CO 2 content alone would result in runoff increases in humid basins and decreases in arid basins. Theses changes are mainly attributable to changes in transpiration driven by vegetation dynamics, which are not simulated in stand-alone hydrological models. Therefore LPJH potentially provides a powerful tool for simulating vegetation response to climate changes in the biosphere hydrological cycle.

  7. Assessment of Required Accuracy of Digital Elevation Data for Hydrologic Modeling

    NASA Technical Reports Server (NTRS)

    Kenward, T.; Lettenmaier, D. P.

    1997-01-01

    The effect of vertical accuracy of Digital Elevation Models (DEMs) on hydrologic models is evaluated by comparing three DEMs and resulting hydrologic model predictions applied to a 7.2 sq km USDA - ARS watershed at Mahantango Creek, PA. The high resolution (5 m) DEM was resempled to a 30 m resolution using method that constrained the spatial structure of the elevations to be comparable with the USGS and SIR-C DEMs. This resulting 30 m DEM was used as the reference product for subsequent comparisons. Spatial fields of directly derived quantities, such as elevation differences, slope, and contributing area, were compared to the reference product, as were hydrologic model output fields derived using each of the three DEMs at the common 30 m spatial resolution.

  8. Picturing and modelling catchments by representative hillslopes

    NASA Astrophysics Data System (ADS)

    Loritz, Ralf; Hassler, Sibylle; Jackisch, Conrad; Zehe, Erwin

    2016-04-01

    Hydrological modelling studies often start with a qualitative sketch of the hydrological processes of a catchment. These so-called perceptual models are often pictured as hillslopes and are generalizations displaying only the dominant and relevant processes of a catchment or hillslope. The problem with these models is that they are prone to become too much predetermined by the designer's background and experience. Moreover it is difficult to know if that picture is correct and contains enough complexity to represent the system under study. Nevertheless, because of their qualitative form, perceptual models are easy to understand and can be an excellent tool for multidisciplinary exchange between researchers with different backgrounds, helping to identify the dominant structures and processes in a catchment. In our study we explore whether a perceptual model built upon an intensive field campaign may serve as a blueprint for setting up representative hillslopes in a hydrological model to reproduce the functioning of two distinctly different catchments. We use a physically-based 2D hillslope model which has proven capable to be driven by measured soil-hydrological parameters. A key asset of our approach is that the model structure itself remains a picture of the perceptual model, which is benchmarked against a) geo-physical images of the subsurface and b) observed dynamics of discharge, distributed state variables and fluxes (soil moisture, matric potential and sap flow). Within this approach we are able to set up two behavioral model structures which allow the simulation of the most important hydrological fluxes and state variables in good accordance with available observations within the 19.4 km2 large Colpach catchment and the 4.5 km2 large Wollefsbach catchment in Luxembourg without the necessity of calibration. This corroborates, contrary to the widespread opinion, that a) lower mesoscale catchments may be modelled by representative hillslopes and b) physically-based models can be parametrized based on comprehensive field data and a good perceptual model. Our results particularly indicate that the main challenge in understanding and modelling the seasonal water balance of a catchment is a proper representation of the phenological cycle of vegetation, not exclusively the structure of the subsurface and spatial variability of soil hydraulic parameters.

  9. Marrying Hydrological Modelling and Integrated Assessment for the needs of Water Resource Management

    NASA Astrophysics Data System (ADS)

    Croke, B. F. W.; Blakers, R. S.; El Sawah, S.; Fu, B.; Guillaume, J. H. A.; Kelly, R. A.; Patrick, M. J.; Ross, A.; Ticehurst, J.; Barthel, R.; Jakeman, A. J.

    2014-09-01

    This paper discusses the integration of hydrology with other disciplines using an Integrated Assessment (IA) and modelling approach to the management and allocation of water resources. Recent developments in the field of socio-hydrology aim to develop stronger relationships between hydrology and the human dimensions of Water Resource Management (WRM). This should build on an existing wealth of knowledge and experience of coupled human-water systems. To further strengthen this relationship and contribute to this broad body of knowledge, we propose a strong and durable "marriage" between IA and hydrology. The foundation of this marriage requires engagement with appropriate concepts, model structures, scales of analyses, performance evaluation and communication - and the associated tools and models that are needed for pragmatic deployment or operation. To gain insight into how this can be achieved, an IA case study in water allocation in the Lower Namoi catchment, NSW, Australia is presented.

  10. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    NASA Astrophysics Data System (ADS)

    Velázquez, J. A.; Schmid, J.; Ricard, S.; Muerth, M. J.; Gauvin St-Denis, B.; Minville, M.; Chaumont, D.; Caya, D.; Ludwig, R.; Turcotte, R.

    2012-06-01

    Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971-2000) and a future (2041-2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows.

  11. Cyberinfrastructure to Support Collaborative and Reproducible Computational Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Goodall, J. L.; Castronova, A. M.; Bandaragoda, C.; Morsy, M. M.; Sadler, J. M.; Essawy, B.; Tarboton, D. G.; Malik, T.; Nijssen, B.; Clark, M. P.; Liu, Y.; Wang, S. W.

    2017-12-01

    Creating cyberinfrastructure to support reproducibility of computational hydrologic models is an important research challenge. Addressing this challenge requires open and reusable code and data with machine and human readable metadata, organized in ways that allow others to replicate results and verify published findings. Specific digital objects that must be tracked for reproducible computational hydrologic modeling include (1) raw initial datasets, (2) data processing scripts used to clean and organize the data, (3) processed model inputs, (4) model results, and (5) the model code with an itemization of all software dependencies and computational requirements. HydroShare is a cyberinfrastructure under active development designed to help users store, share, and publish digital research products in order to improve reproducibility in computational hydrology, with an architecture supporting hydrologic-specific resource metadata. Researchers can upload data required for modeling, add hydrology-specific metadata to these resources, and use the data directly within HydroShare.org for collaborative modeling using tools like CyberGIS, Sciunit-CLI, and JupyterHub that have been integrated with HydroShare to run models using notebooks, Docker containers, and cloud resources. Current research aims to implement the Structure For Unifying Multiple Modeling Alternatives (SUMMA) hydrologic model within HydroShare to support hypothesis-driven hydrologic modeling while also taking advantage of the HydroShare cyberinfrastructure. The goal of this integration is to create the cyberinfrastructure that supports hypothesis-driven model experimentation, education, and training efforts by lowering barriers to entry, reducing the time spent on informatics technology and software development, and supporting collaborative research within and across research groups.

  12. Regional Eco-hydrologic Sensitivity to Projected Amazonian Land Use Scenarios

    NASA Astrophysics Data System (ADS)

    Knox, R. G.; Longo, M.; Zhang, K.; Levine, N. M.; Moorcroft, P. R.; Bras, R. L.

    2011-12-01

    Given business as usual land-use practices, it is estimated that by 2050 roughly half of the Amazon's pre-anthropogenic closed-canopy forest stands would remain. Of this, eight of the Amazon's twelve major hydrologic basins would lose more than half of their forest cover to deforestation. With the availability of these land-use projections, we may start to question the associated response of the region's hydrologic climate to significant land-cover change. Here the Ecosystem-Demography Model 2 (EDM2, a dynamic and spatially distributed terrestrial model of plant structure and composition, succession, disturbance and thermodynamic transfer) is coupled with the Brazilian Regional Atmospheric Model (BRAMS, a three-dimensional limited area model of the atmospheric fluid momentum equations and physics parameterizations for closing the system of equations at the lower boundary, convection, radiative transfer, microphysics, etc). This experiment conducts decadal simulations, framed with high-reliability lateral boundary conditions of reanalysis atmospheric data (ERA-40 interim) and variable impact of land-use scenarios (SimAmazonia). This is done by initializing the regional ecosystem structure with both aggressive and conservationist deforestation scenarios, and also by differentially allowing and not-allowing dynamic vegetation processes. While the lateral boundaries of the simulation will not reflect the future climate in the region, reanalysis data has provided improved realism as compared to results derived from GCM boundary data. Therefore, the ecosystem response (forest composition and structure) and the time-space patterns of hydrologic information (soil moisture, rainfall, evapotranspiration) are objectively compared in the context of a sensitivity experiment, as opposed to a forecast. The following questions are addressed. How do aggressive and conservative scenarios of Amazonian deforestation effect the regional patterning of hydrologic information in the Amazon and South American Convergence Zone, and does forest response in these regions influence that patterning of hydrologic information?

  13. A question driven socio-hydrological modeling process

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Portney, K.; Islam, S.

    2016-01-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies. This distinction between the two policies was not apparent using a traditional noncoupled model.

  14. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.

    2015-04-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.

  15. Balancing the stochastic description of uncertainties as a function of hydrologic model complexity

    NASA Astrophysics Data System (ADS)

    Del Giudice, D.; Reichert, P.; Albert, C.; Kalcic, M.; Logsdon Muenich, R.; Scavia, D.; Bosch, N. S.; Michalak, A. M.

    2016-12-01

    Uncertainty analysis is becoming an important component of forecasting water and pollutant fluxes in urban and rural environments. Properly accounting for errors in the modeling process can help to robustly assess the uncertainties associated with the inputs (e.g. precipitation) and outputs (e.g. runoff) of hydrological models. In recent years we have investigated several Bayesian methods to infer the parameters of a mechanistic hydrological model along with those of the stochastic error component. The latter describes the uncertainties of model outputs and possibly inputs. We have adapted our framework to a variety of applications, ranging from predicting floods in small stormwater systems to nutrient loads in large agricultural watersheds. Given practical constraints, we discuss how in general the number of quantities to infer probabilistically varies inversely with the complexity of the mechanistic model. Most often, when evaluating a hydrological model of intermediate complexity, we can infer the parameters of the model as well as of the output error model. Describing the output errors as a first order autoregressive process can realistically capture the "downstream" effect of inaccurate inputs and structure. With simpler runoff models we can additionally quantify input uncertainty by using a stochastic rainfall process. For complex hydrologic transport models, instead, we show that keeping model parameters fixed and just estimating time-dependent output uncertainties could be a viable option. The common goal across all these applications is to create time-dependent prediction intervals which are both reliable (cover the nominal amount of validation data) and precise (are as narrow as possible). In conclusion, we recommend focusing both on the choice of the hydrological model and of the probabilistic error description. The latter can include output uncertainty only, if the model is computationally-expensive, or, with simpler models, it can separately account for different sources of errors like in the inputs and the structure of the model.

  16. Improved hydrological-model design by integrating nutrient and water flow

    NASA Astrophysics Data System (ADS)

    Arheimer, B.; Lindstrom, G.

    2013-12-01

    The potential of integrating hydrologic and nutrient concentration data to better understand patterns of catchment response and to better design hydrological modeling was explored using a national multi-basin model system for Sweden, called ';S-HYPE'. The model system covers more than 450 000 km2 and produce daily values of nutrient concentration and water discharge in 37 000 catchments from 1961 and onwards. It is based on the processed-based and semi-distributed HYdrological Predictions for the Environment (HYPE) code. The model is used operationally for assessments of water status or climate change impacts and for forecasts by the national warning service of floods, droughts and fire. The first model was launched in 2008, but S-HYPE is continuously improved and released in new versions every second year. Observations are available in 400 sites for daily water discharge and some 900 sites for monthly grab samples of nutrient concentrations. The latest version (2012) has an average NSE for water discharge of 0.7 and an average relative error of 5%, including both regulated and unregulated rivers with catchments from ten to several thousands of km2 and various landuse. The daily relative errors of nutrient concentrations are on average 20% for total Nitrogen and 35% for total Phosphorus. This presentation will give practical examples of how the nutrient data has been used to trace errors or inadequate parameter values in the hydrological model. Since 2008 several parts of the model structure has been reconsidered both in the source code, parameter values and input data of catchment characteristics. In this process water quality has been guiding much of the overall model design of catchment hydrological functions and routing along the river network. The model structure has thus been developed iteratively when evaluating results and checking time-series. Examples of water quality driven improvements will be given for estimation of vertical flow paths, such as separation of the hydrograph in surface flow, snow melt and baseflow, as well as horizontal flow paths in the landscape, such as mixing from various land use, impact from lakes and river channel volume. Overall, the S-HYPE model performance of water discharge increased from NSE 0.55 to 0.69 as an average for 400 gauges between the version 2010 and 2012. Most of this improvement, however, can be referred to improved regulations routines, rating curves for major lakes and parameters correcting ET and precipitation. Nevertheless, integrated water and nutrient modeling put constraints on the hydrological parameter values, which reduce equifinality for the hydrological part without reducing the model performance. The examples illustrates that the credibility of the hydrological model structure is thus improved by integrating water and nutrient flow. This lead to improved understanding of flow paths and water-nutrient process interactions in Sweden, which in turn will be very useful in further model analysis on impact of climate change or measures to reduce nutrient load from rivers to the Baltic Sea.

  17. Building Quantitative Hydrologic Storylines from Process-based Models for Managing Water Resources in the U.S. Under Climate-changed Futures

    NASA Astrophysics Data System (ADS)

    Arnold, J.; Gutmann, E. D.; Clark, M. P.; Nijssen, B.; Vano, J. A.; Addor, N.; Wood, A.; Newman, A. J.; Mizukami, N.; Brekke, L. D.; Rasmussen, R.; Mendoza, P. A.

    2016-12-01

    Climate change narratives for water-resource applications must represent the change signals contextualized by hydroclimatic process variability and uncertainty at multiple scales. Building narratives of plausible change includes assessing uncertainties across GCM structure, internal climate variability, climate downscaling methods, and hydrologic models. Work with this linked modeling chain has dealt mostly with GCM sampling directed separately to either model fidelity (does the model correctly reproduce the physical processes in the world?) or sensitivity (of different model responses to CO2 forcings) or diversity (of model type, structure, and complexity). This leaves unaddressed any interactions among those measures and with other components in the modeling chain used to identify water-resource vulnerabilities to specific climate threats. However, time-sensitive, real-world vulnerability studies typically cannot accommodate a full uncertainty ensemble across the whole modeling chain, so a gap has opened between current scientific knowledge and most routine applications for climate-changed hydrology. To close that gap, the US Army Corps of Engineers, the Bureau of Reclamation, and the National Center for Atmospheric Research are working on techniques to subsample uncertainties objectively across modeling chain components and to integrate results into quantitative hydrologic storylines of climate-changed futures. Importantly, these quantitative storylines are not drawn from a small sample of models or components. Rather, they stem from the more comprehensive characterization of the full uncertainty space for each component. Equally important from the perspective of water-resource practitioners, these quantitative hydrologic storylines are anchored in actual design and operations decisions potentially affected by climate change. This talk will describe part of our work characterizing variability and uncertainty across modeling chain components and their interactions using newly developed observational data, models and model outputs, and post-processing tools for making the resulting quantitative storylines most useful in practical hydrology applications.

  18. Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Kavetski, Dmitri

    2010-10-01

    A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.

  19. Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows

    USGS Publications Warehouse

    Drew, C. Ashton; Eddy, Michele; Kwak, Thomas J.; Cope, W. Gregory; Augspurger, Tom

    2018-01-01

    The ability to model freshwater stream habitat and species distributions is limited by the spatially sparse flow data available from long-term gauging stations. Flow data beyond the immediate vicinity of gauging stations would enhance our ability to explore and characterize hydrologic habitat suitability. The southeastern USA supports high aquatic biodiversity, but threats, such as landuse alteration, climate change, conflicting water-resource demands, and pollution, have led to the imperilment and legal protection of many species. The ability to distinguish suitable from unsuitable habitat conditions, including hydrologic suitability, is a key criterion for successful conservation and restoration of aquatic species. We used the example of the critically endangered Tar River Spinymussel (Parvaspina steinstansana) and associated species to demonstrate the value of modeled flow data (WaterFALL™) to generate novel insights into population structure and testable hypotheses regarding hydrologic suitability. With ordination models, we: 1) identified all catchments with potentially suitable hydrology, 2) identified 2 distinct hydrologic environments occupied by the Tar River Spinymussel, and 3) estimated greater hydrological habitat niche breadth of assumed surrogate species associates at the catchment scale. Our findings provide the first demonstrated application of complete, continuous, regional modeled hydrologic data to freshwater mussel distribution and management. This research highlights the utility of modeling and data-mining methods to facilitate further exploration and application of such modeled environmental conditions to inform aquatic species management. We conclude that such an approach can support landscape-scale management decisions that require spatial information at fine resolution (e.g., enhanced National Hydrology Dataset catchments) and broad extent (e.g., multiple river basins).

  20. Towards a Dynamic Digital Observatory: Synthesizing Community Data and Model Development in the Susquehanna River Basin and Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Dressler, K. A.; Piasecki, M.; Bhatt, G.; Duffy, C. J.; Reed, P. M.

    2007-12-01

    Physically-based fully-distributed hydrologic models simulate hydrologic state variables spatiotemporally using information on forcing (climate) and landscape (topography, land use, hydrogeology) heterogeneities. Incorporating physical data layers in the hydrologic model requires intensive data development. Traditionally, GIS has been used for data management, data analysis and visualization; however, proprietary data structures, platform dependence, isolated data model and non-dynamic data-interaction with pluggable software components of existing GIS frameworks, makes it restrictive to perform sophisticated numerical modeling. In this effort we present a "tightly-coupled" GIS interface to Penn State Integrated Hydrologic Model (PIHM; www.pihm.psu.edu) called PIHMgis which is open source, platform independent and extensible. The tight coupling between GIS and the model is achieved by developing a shared data-model and hydrologic-model data structure. Domain discretization is fundamental to the approach and an unstructured triangular irregular network (e.g. Delaunay triangles) is generated with both geometric and parametric constraints. A local prismatic control volume is formed by vertical projection of the Delaunay triangles forming each layer of the model. Given a set of constraints (e.g. river network support, watershed boundary, altitude zones, ecological regions, hydraulic properties, climate zones, etc), an "optimal" mesh is generated. Time variant forcing for the model is typically derived from time series data available at points that are transferred onto a grid. Therefore, the modeling environment can use the Observations Database model developed by the Hydrologic Information Systems group of the Consortium of Universities for the Advancement of Hydrologic Sciences, Inc. (CUAHSI). As part of a initial testbed series the database has been implemented in support for the Susquehanna and Chesapeake Bay watersheds and is now being populated by national (USGS-NWIS; EPA- STORET), regional (Chesapeake Information Management System, CIMS; National Air Deposition Program, NADP), and local (RTH-Net, Burd Run) datasets. The data can be searched side by side in a one-stop-querying- center, www.hydroseek.org , another application developed as part of the CUAHSI HIS effort. The ultimate goal is to populate the observations database with as many catalogues (i.e. collections of information on what data sources contain) as possible including the build out of the local data sources, i.e. the Susquehanna River Basin Hydrologic Observatory System (SRBHOS) time series server.

  1. Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands

    NASA Astrophysics Data System (ADS)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Pontes, Paulo; Crétaux, Jean-François; Bergé-Nguyen, Muriel; Biancamaria, Sylvain; Gosset, Marielle; Calmant, Stephane; Tanimoun, Bachir

    2018-06-01

    Hydrological and hydrodynamic models are core tools for simulation of large basins and complex river systems associated to wetlands. Recent studies have pointed towards the importance of online coupling strategies, representing feedbacks between floodplain inundation and vertical hydrology. Especially across semi-arid regions, soil-floodplain interactions can be strong. In this study, we included a two-way coupling scheme in a large scale hydrological-hydrodynamic model (MGB) and tested different model structures, in order to assess which processes are important to be simulated in large semi-arid wetlands and how these processes interact with water budget components. To demonstrate benefits from this coupling over a validation case, the model was applied to the Upper Niger River basin encompassing the Niger Inner Delta, a vast semi-arid wetland in the Sahel Desert. Simulation was carried out from 1999 to 2014 with daily TMPA 3B42 precipitation as forcing, using both in-situ and remotely sensed data for calibration and validation. Model outputs were in good agreement with discharge and water levels at stations both upstream and downstream of the Inner Delta (Nash-Sutcliffe Efficiency (NSE) >0.6 for most gauges), as well as for flooded areas within the Delta region (NSE = 0.6; r = 0.85). Model estimates of annual water losses across the Delta varied between 20.1 and 30.6 km3/yr, while annual evapotranspiration ranged between 760 mm/yr and 1130 mm/yr. Evaluation of model structure indicated that representation of both floodplain channels hydrodynamics (storage, bifurcations, lateral connections) and vertical hydrological processes (floodplain water infiltration into soil column; evapotranspiration from soil and vegetation and evaporation of open water) are necessary to correctly simulate flood wave attenuation and evapotranspiration along the basin. Two-way coupled models are necessary to better understand processes in large semi-arid wetlands. Finally, such coupled hydrologic and hydrodynamic modelling proves to be an important tool for integrated evaluation of hydrological processes in such poorly gauged, large scale basins. We hope that this model application provides new ways forward for large scale model development in such systems, involving semi-arid regions and complex floodplains.

  2. Pursuing realistic hydrologic model under SUPERFLEX framework in a semi-humid catchment in China

    NASA Astrophysics Data System (ADS)

    Wei, Lingna; Savenije, Hubert H. G.; Gao, Hongkai; Chen, Xi

    2016-04-01

    Model realism is pursued perpetually by hydrologists for flood and drought prediction, integrated water resources management and decision support of water security. "Physical-based" distributed hydrologic models are speedily developed but they also encounter unneglectable challenges, for instance, computational time with low efficiency and parameters uncertainty. This study step-wisely tested four conceptual hydrologic models under the framework of SUPERFLEX in a small semi-humid catchment in southern Huai River basin of China. The original lumped FLEXL has hypothesized model structure of four reservoirs to represent canopy interception, unsaturated zone, subsurface flow of fast and slow components and base flow storage. Considering the uneven rainfall in space, the second model (FLEXD) is developed with same parameter set for different rain gauge controlling units. To reveal the effect of topography, terrain descriptor of height above the nearest drainage (HAND) combined with slope is applied to classify the experimental catchment into two landscapes. Then the third one (FLEXTOPO) builds different model blocks in consideration of the dominant hydrologic process corresponding to the topographical condition. The fourth one named FLEXTOPOD integrating the parallel framework of FLEXTOPO in four controlled units is designed to interpret spatial variability of rainfall patterns and topographic features. Through pairwise comparison, our results suggest that: (1) semi-distributed models (FLEXD and FLEXTOPOD) taking precipitation spatial heterogeneity into account has improved model performance with parsimonious parameter set, and (2) hydrologic model architecture with flexibility to reflect perceived dominant hydrologic processes can include the local terrain circumstances for each landscape. Hence, the modeling actions are coincided with the catchment behaviour and close to the "reality". The presented methodology is regarding hydrologic model as a tool to test our hypothesis and deepen our understanding of hydrologic processes, which will be helpful to improve modeling realism.

  3. Benefits of incorporating spatial organisation of catchments for a semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Schumann, Andreas; Oppel, Henning

    2017-04-01

    To represent the hydrological behaviour of catchments a model should reproduce/reflect the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain spatial organisation. Since common models are mostly based on fundamental assumptions about hydrological processes, the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the catchment is desirable. We have developed a method that combines the idea of the width-function used for determination of the geomorphologic unit hydrograph with information about soil or topography. With this method we are able to assess the spatial organisation of selected catchment characteristics. An algorithm was developed that structures a watershed into sub-basins and other spatial units to minimise its heterogeneity. The outcomes of this algorithm are used for the spatial setup of a semi-distributed model. Since the spatial organisation of a catchment is not bound to a single characteristic, we have to embed information of multiple catchment properties. For this purpose we applied a fuzzy-based method to combine the spatial setup for multiple single characteristics into a union, optimal spatial differentiation. Utilizing this method, we are able to propose a spatial structure for a semi-distributed hydrological model, comprising the definition of sub-basins and a zonal classification within each sub-basin. Besides the improved spatial structuring, the performed analysis ameliorates modelling in another way. The spatial variability of catchment characteristics, which is considered by a minimum of heterogeneity in the zones, can be considered in a parameter constrained calibration scheme in a case study both options were used to explore the benefits of incorporating the spatial organisation and derived parameter constraints for the parametrisation of a HBV-96 model. We use two benchmark model setups (lumped and semi-distributed by common approaches) to address the benefits for different time and spatial scales. Moreover, the benefits for calibration effort, model performance in validation periods and process extrapolation are shown.

  4. On the utilization of hydrological modelling for road drainage design under climate and land use change.

    PubMed

    Kalantari, Zahra; Briel, Annemarie; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart

    2014-03-15

    Road drainage structures are often designed using methods that do not consider process-based representations of a landscape's hydrological response. This may create inadequately sized structures as coupled land cover and climate changes can lead to an amplified hydrological response. This study aims to quantify potential increases of runoff in response to future extreme rain events in a 61 km(2) catchment (40% forested) in southwest Sweden using a physically-based hydrological modelling approach. We simulate peak discharge and water level (stage) at two types of pipe bridges and one culvert, both of which are commonly used at Swedish road/stream intersections, under combined forest clear-cutting and future climate scenarios for 2050 and 2100. The frequency of changes in peak flow and water level varies with time (seasonality) and storm size. These changes indicate that the magnitude of peak flow and the runoff response are highly correlated to season rather than storm size. In all scenarios considered, the dimensions of the current culvert are insufficient to handle the increase in water level estimated using a physically-based modelling approach. It also appears that the water level at the pipe bridges changes differently depending on the size and timing of the storm events. The findings of the present study and the approach put forward should be considered when planning investigations on and maintenance for areas at risk of high water flows. In addition, the research highlights the utility of physically-based hydrological models to identify the appropriateness of road drainage structure dimensioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Macroscale hydrologic modeling of ecologically relevant flow metrics

    NASA Astrophysics Data System (ADS)

    Wenger, Seth J.; Luce, Charles H.; Hamlet, Alan F.; Isaak, Daniel J.; Neville, Helen M.

    2010-09-01

    Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe and forecast hydrologic changes but has been calibrated and applied mainly to large rivers. An important question is how well VIC runoff simulations serve to answer questions about hydrologic changes in smaller streams, which are important habitat for many fish species. To answer this question, we aggregated gridded VIC outputs within the drainage basins of 55 streamflow gages in the Pacific Northwest United States and compared modeled hydrographs and summary metrics to observations. For most streams, several ecologically relevant aspects of the hydrologic regime were accurately modeled, including center of flow timing, mean annual and summer flows and frequency of winter floods. Frequencies of high and low flows in the summer were not well predicted, however. Predictions were worse for sites with strong groundwater influence, and some sites showed errors that may result from limitations in the forcing climate data. Higher resolution (1/16th degree) modeling provided small improvements over lower resolution (1/8th degree). Despite some limitations, the VIC model appears capable of representing several ecologically relevant hydrologic characteristics in streams, making it a useful tool for understanding the effects of hydrology in delimiting species distributions and predicting the potential effects of climate shifts on aquatic organisms.

  6. Uncertainty analysis of hydrological modeling in a tropical area using different algorithms

    NASA Astrophysics Data System (ADS)

    Rafiei Emam, Ammar; Kappas, Martin; Fassnacht, Steven; Linh, Nguyen Hoang Khanh

    2018-01-01

    Hydrological modeling outputs are subject to uncertainty resulting from different sources of errors (e.g., error in input data, model structure, and model parameters), making quantification of uncertainty in hydrological modeling imperative and meant to improve reliability of modeling results. The uncertainty analysis must solve difficulties in calibration of hydrological models, which further increase in areas with data scarcity. The purpose of this study is to apply four uncertainty analysis algorithms to a semi-distributed hydrological model, quantifying different source of uncertainties (especially parameter uncertainty) and evaluate their performance. In this study, the Soil and Water Assessment Tools (SWAT) eco-hydrological model was implemented for the watershed in the center of Vietnam. The sensitivity of parameters was analyzed, and the model was calibrated. The uncertainty analysis for the hydrological model was conducted based on four algorithms: Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting (SUFI), Parameter Solution method (ParaSol) and Particle Swarm Optimization (PSO). The performance of the algorithms was compared using P-factor and Rfactor, coefficient of determination (R 2), the Nash Sutcliffe coefficient of efficiency (NSE) and Percent Bias (PBIAS). The results showed the high performance of SUFI and PSO with P-factor>0.83, R-factor <0.56 and R 2>0.91, NSE>0.89, and 0.18

  7. Multiple model analysis with discriminatory data collection (MMA-DDC): A new method for improving measurement selection

    NASA Astrophysics Data System (ADS)

    Kikuchi, C.; Ferre, P. A.; Vrugt, J. A.

    2011-12-01

    Hydrologic models are developed, tested, and refined based on the ability of those models to explain available hydrologic data. The optimization of model performance based upon mismatch between model outputs and real world observations has been extensively studied. However, identification of plausible models is sensitive not only to the models themselves - including model structure and model parameters - but also to the location, timing, type, and number of observations used in model calibration. Therefore, careful selection of hydrologic observations has the potential to significantly improve the performance of hydrologic models. In this research, we seek to reduce prediction uncertainty through optimization of the data collection process. A new tool - multiple model analysis with discriminatory data collection (MMA-DDC) - was developed to address this challenge. In this approach, multiple hydrologic models are developed and treated as competing hypotheses. Potential new data are then evaluated on their ability to discriminate between competing hypotheses. MMA-DDC is well-suited for use in recursive mode, in which new observations are continuously used in the optimization of subsequent observations. This new approach was applied to a synthetic solute transport experiment, in which ranges of parameter values constitute the multiple hydrologic models, and model predictions are calculated using likelihood-weighted model averaging. MMA-DDC was used to determine the optimal location, timing, number, and type of new observations. From comparison with an exhaustive search of all possible observation sequences, we find that MMA-DDC consistently selects observations which lead to the highest reduction in model prediction uncertainty. We conclude that using MMA-DDC to evaluate potential observations may significantly improve the performance of hydrologic models while reducing the cost associated with collecting new data.

  8. Five Guidelines for Selecting Hydrological Signatures

    NASA Astrophysics Data System (ADS)

    McMillan, H. K.; Westerberg, I.; Branger, F.

    2017-12-01

    Hydrological signatures are index values derived from observed or modeled series of hydrological data such as rainfall, flow or soil moisture. They are designed to extract relevant information about hydrological behavior, such as to identify dominant processes, and to determine the strength, speed and spatiotemporal variability of the rainfall-runoff response. Hydrological signatures play an important role in model evaluation. They allow us to test whether particular model structures or parameter sets accurately reproduce the runoff generation processes within the watershed of interest. Most modeling studies use a selection of different signatures to capture different aspects of the catchment response, for example evaluating overall flow distribution as well as high and low flow extremes and flow timing. Such studies often choose their own set of signatures, or may borrow subsets of signatures used in multiple other works. The link between signature values and hydrological processes is not always straightforward, leading to uncertainty and variability in hydrologists' signature choices. In this presentation, we aim to encourage a more rigorous approach to hydrological signature selection, which considers the ability of signatures to represent hydrological behavior and underlying processes for the catchment and application in question. To this end, we propose a set of guidelines for selecting hydrological signatures. We describe five criteria that any hydrological signature should conform to: Identifiability, Robustness, Consistency, Representativeness, and Discriminatory Power. We describe an example of the design process for a signature, assessing possible signature designs against the guidelines above. Due to their ubiquity, we chose a signature related to the Flow Duration Curve, selecting the FDC mid-section slope as a proposed signature to quantify catchment overall behavior and flashiness. We demonstrate how assessment against each guideline could be used to compare or choose between alternative signature definitions. We believe that reaching a consensus on selection criteria for hydrological signatures will assist modelers to choose between competing signatures, facilitate comparison between hydrological studies, and help hydrologists to fully evaluate their models.

  9. Effects of model structure and catchment discretization on discharge simulation in a small forest catchment

    NASA Astrophysics Data System (ADS)

    Spieler, Diana; Schwarze, Robert; Schütze, Niels

    2017-04-01

    In the past a variety of different modeling approaches has been developed in catchment hydrology. Even though there is no argument on the relevant processes taking place, there is no unified theory on how best to represent them computationally. Thus a vast number of models has been developed, varying from lumped models to physically based models. Most of them have a more or less fixed model structure and follow the "one fits all" paradigm. However, a more flexible approach could improve model realism by designing catchment specific model structures based on data availability. This study focuses on applying the flexible hydrological modelling framework RAVEN (Craig et al., 2013), to systematically test several conceptual model structures on the 19 km2 Große Ohe Catchment in the Bavarian Forest (Germany). By combining RAVEN with the DREAM algorithm (Vrugt et al., 2009), the relationship between catchment characteristics, model structure, parameter uncertainty and data availability are analyzed. The model structure is progressively developed based on the available data of the well observed forested catchment area. In a second step, the impact of the catchment discretization is analyzed by testing different spatial resolutions of topographic input data.

  10. Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Sankarasubramanian, A.

    2012-12-01

    Model errors are inevitable in any prediction exercise. One approach that is currently gaining attention in reducing model errors is by combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictions. A new dynamic approach (MM-1) to combine multiple hydrological models by evaluating their performance/skill contingent on the predictor state is proposed. We combine two hydrological models, "abcd" model and variable infiltration capacity (VIC) model, to develop multimodel streamflow predictions. To quantify precisely under what conditions the multimodel combination results in improved predictions, we compare multimodel scheme MM-1 with optimal model combination scheme (MM-O) by employing them in predicting the streamflow generated from a known hydrologic model (abcd model orVICmodel) with heteroscedastic error variance as well as from a hydrologic model that exhibits different structure than that of the candidate models (i.e., "abcd" model or VIC model). Results from the study show that streamflow estimated from single models performed better than multimodels under almost no measurement error. However, under increased measurement errors and model structural misspecification, both multimodel schemes (MM-1 and MM-O) consistently performed better than the single model prediction. Overall, MM-1 performs better than MM-O in predicting the monthly flow values as well as in predicting extreme monthly flows. Comparison of the weights obtained from each candidate model reveals that as measurement errors increase, MM-1 assigns weights equally for all the models, whereas MM-O assigns higher weights for always the best-performing candidate model under the calibration period. Applying the multimodel algorithms for predicting streamflows over four different sites revealed that MM-1 performs better than all single models and optimal model combination scheme, MM-O, in predicting the monthly flows as well as the flows during wetter months.

  11. SPRUCE Representing Northern Peatland Microtopography and Hydrology within the Community Land Model: Modeling Archive

    DOE Data Explorer

    Shi, X. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Thornton, P. E. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Ricciuto, D. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Mao, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Griffiths, N. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Bisht, G. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2016-09-01

    Here we provide model code, inputs, outputs and evaluation datasets for a new configuration of the Community Land Model (CLM) for SPRUCE, which includes a fully prognostic water table calculation for SPRUCE. Our structural and process changes to CLM focus on modifications needed to represent the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of SPRUCE and other peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE).

  12. Joint inversion of crosshole GPR and temporal moments of tracer data for improved estimation of hydraulic conductivity at the aquifer scale

    NASA Astrophysics Data System (ADS)

    Lochbühler, T.; Linde, N.

    2012-04-01

    Geophysical methods are widely used for aquifer characterization, but they usually fail to directly provide models of hydraulic conductivity. Here, a method is presented to jointly invert crosshole ground-penetrating radar (GPR) travel times and hydrological data to estimate the 2-D distribution of both GPR velocities and hydraulic conductivities. The hydrological data are the first temporal moments of tracer breakthrough curves measured at different depths (i.e., the mean arrival times of the tracer at the given locations). Structural resemblance between the geophysical and the hydrological model is enforced by strongly penalizing models for which the cross products of the model gradients are non-zero. The proposed method was first tested on a synthetic categorical facies model. The high resolution of the GPR velocity model markedly improves the hydraulic conductivity model by adding small-scale structures that remain unresolved by the individual inversion of the hydrological data. The method was then applied to field data acquired within a gravel aquifer located close to the Thur River, northeastern Switzerland. The hydrological data used were derived from transfer functions obtained by deconvolving groundwater electrical conductivity time series with electrical conductivity variations of the river water. These data were recorded over several years at three depth levels in three boreholes aligned along the main groundwater flow direction. The transfer functions are interpreted as breakthrough curves of a pulse injection in the river from which we retrieve the first temporal moments. These data were complemented with crosshole GPR data acquired between the three boreholes. Both the individual and joint inversion models provide a smooth hydraulic conductivity model that retrieves the same general trend as EM flowmeter data, but does not resolve small-scale variability.

  13. Results and Lessons Learned from a Coupled Social and Physical Hydrology Model: Testing Alternative Water Management Policies and Institutional Structures Using Agent-Based Modeling and Regional Hydrology

    NASA Astrophysics Data System (ADS)

    Murphy, J.; Lammers, R. B.; Prousevitch, A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Kliskey, A. D.; Alessa, L.

    2015-12-01

    Water Management in the U.S. Southwest is under increasing scrutiny as many areas endure persistent drought. The impact of these prolonged dry conditions is a product of regional climate and hydrological conditions, but also of a highly engineered water management infrastructure and a complex web of social arrangements whereby water is allocated, shared, exchanged, used, re-used, and finally consumed. We coupled an agent-based model with a regional hydrological model to understand the dynamics in one richly studied and highly populous area: southern Arizona, U.S.A., including metropolitan Phoenix and Tucson. There, multiple management entities representing an array of municipalities and other water providers and customers, including private companies and Native American tribes are enmeshed in a complex legal and economic context in which water is bought, leased, banked, and exchanged in a variety of ways and on multiple temporal and physical scales. A recurrent question in the literature of adaptive management is the impact of management structure on overall system performance. To explore this, we constructed an agent-based model to capture this social complexity, and coupled this with a physical hydrological model that we used to drive the system under a variety of water stress scenarios and to assess the regional impact of the social system's performance. We report the outcomes of ensembles of runs in which varieties of alternative policy constraints and management strategies are considered. We hope to contribute to policy discussions in this area and connected and legislatively similar areas (such as California) as current conditions change and existing legal and policy structures are revised. Additionally, we comment on the challenges of integrating models that ostensibly are in different domains (physical and social) but that independently represent a system in which physical processes and human actions are closely intertwined and difficult to disentangle.

  14. Analysis of extreme rain and flood events using a regional hydrologically enhanced hydrometeorological system

    NASA Astrophysics Data System (ADS)

    Yucel, Ismail; Onen, Alper

    2013-04-01

    Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Regional hydrometeorological system model which couples the atmosphere with physical and gridded based surface hydrology provide efficient predictions for extreme hydrological events. This modeling system can be used for flood forecasting and warning issues as they provide continuous monitoring of precipitation over large areas at high spatial resolution. This study examines the performance of the Weather Research and Forecasting (WRF-Hydro) model that performs the terrain, sub-terrain, and channel routing in producing streamflow from WRF-derived forcing of extreme precipitation events. The capability of the system with different options such as data assimilation is tested for number of flood events observed in basins of western Black Sea Region in Turkey. Rainfall event structures and associated flood responses are evaluated with gauge and satellite-derived precipitation and measured streamflow values. The modeling system shows skills in capturing the spatial and temporal structure of extreme rainfall events and resulted flood hydrographs. High-resolution routing modules activated in the model enhance the simulated discharges.

  15. A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.

    2017-12-01

    Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.

  16. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model

    NASA Astrophysics Data System (ADS)

    Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip

    2017-07-01

    A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.

  17. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  18. Correcting Inadequate Model Snow Process Descriptions Dramatically Improves Mountain Hydrology Simulations

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Fang, X.

    2014-12-01

    The vast effort in hydrology devoted to parameter calibration as a means to improve model performance assumes that the models concerned are not fundamentally wrong. By focussing on finding optimal parameter sets and ascribing poor model performance to parameter or data uncertainty, these efforts may fail to consider the need to improve models with more intelligent descriptions of hydrological processes. To test this hypothesis, a flexible physically based hydrological model including a full suite of snow hydrology processes as well as warm season, hillslope and groundwater hydrology was applied to Marmot Creek Research Basin, Canadian Rocky Mountains where excellent driving meteorology and basin biophysical descriptions exist. Model parameters were set from values found in the basin or from similar environments; no parameters were calibrated. The model was tested against snow surveys and streamflow observations. The model used algorithms that describe snow redistribution, sublimation and forest canopy effects on snowmelt and evaporative processes that are rarely implemented in hydrological models. To investigate the contribution of these processes to model predictive capability, the model was "falsified" by deleting parameterisations for forest canopy snow mass and energy, blowing snow, intercepted rain evaporation, and sublimation. Model falsification by ignoring forest canopy processes contributed to a large increase in SWE errors for forested portions of the research basin with RMSE increasing from 19 to 55 mm and mean bias (MB) increasing from 0.004 to 0.62. In the alpine tundra portion, removing blowing processes resulted in an increase in model SWE MB from 0.04 to 2.55 on north-facing slopes and -0.006 to -0.48 on south-facing slopes. Eliminating these algorithms degraded streamflow prediction with the Nash Sutcliffe efficiency dropping from 0.58 to 0.22 and MB increasing from 0.01 to 0.09. These results show dramatic model improvements by including snow redistribution and melt processes associated with wind transport and forest canopies. As most hydrological models do not currently include these processes, it is suggested that modellers first improve the realism of model structures before trying to optimise what are inherently inadequate simulations of hydrology.

  19. Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD

    NASA Astrophysics Data System (ADS)

    Kim, H. S.

    2015-02-01

    The main objective of this study was to assess the predictive uncertainty from the rainfall-runoff model structure coupling a conceptual module (non-linear module) with a metric transfer function module (linear module). The methodology was primarily based on the comparison between the outputs of the rainfall-runoff model and those from an alternative model approach. An alternative model approach was used to minimise uncertainties arising from data and the model structure. A baseflow filter was adopted to better understand deficiencies in the forms of the rainfall-runoff model by avoiding the uncertainties related to data and the model structure. The predictive uncertainty from the model structure was investigated for representative groups of catchments having similar hydrological response characteristics in the upper Murrumbidgee Catchment. In the assessment of model structure suitability, the consistency (or variability) of catchment response over time and space in model performance and parameter values has been investigated to detect problems related to the temporal and spatial variability of the model accuracy. The predictive error caused by model uncertainty was evaluated through analysis of the variability of the model performance and parameters. A graphical comparison of model residuals, effective rainfall estimates and hydrographs was used to determine a model's ability related to systematic model deviation between simulated and observed behaviours and general behavioural differences in the timing and magnitude of peak flows. The model's predictability was very sensitive to catchment response characteristics. The linear module performs reasonably well in the wetter catchments but has considerable difficulties when applied to the drier catchments where a hydrologic response is dominated by quick flow. The non-linear module has a potential limitation in its capacity to capture non-linear processes for converting observed rainfall into effective rainfall in both the wetter and drier catchments. The comparative study based on a better quantification of the accuracy and precision of hydrological modelling predictions yields a better understanding for the potential improvement of model deficiencies.

  20. Water, Carbon, and Nutrient Cycling Following Insect-induced Tree Mortality: How Well Do Plot-scale Observations Predict Ecosystem-Scale Response?

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Barnard, H. R.; Biederman, J. A.; Borkhuu, B.; Edburg, S. L.; Ewers, B. E.; Gochis, D. J.; Gutmann, E. D.; Harpold, A. A.; Hicke, J. A.; Pendall, E.; Reed, D. E.; Somor, A. J.; Troch, P. A.

    2011-12-01

    Widespread tree mortality caused by insect infestations and drought has impacted millions of hectares across western North America in recent years. Although previous work on post-disturbance responses (e.g. experimental manipulations, fire, and logging) provides insight into how water and biogeochemical cycles may respond to insect infestations and drought, we find that the unique nature of these drivers of tree mortality complicates extrapolation to larger scales. Building from previous work on forest disturbance, we present a conceptual model of how temporal changes in forest structure impact the individual components of energy balance, hydrologic partitioning, and biogeochemical cycling and the interactions among them. We evaluate and refine this model using integrated observations and process modeling on multiple scales including plot, stand, flux tower footprint, hillslope, and catchment to identify scaling relationships and emergent patterns in hydrological and biogeochemical responses. Our initial results suggest that changes in forest structure at point or plot scales largely have predictable effects on energy, water, and biogeochemical cycles that are well captured by land surface, hydrological, and biogeochemical models. However, observations from flux towers and nested catchments suggest that both the hydrological and biogeochemical effects observed at tree and plot scales may be attenuated or exacerbated at larger scales. Compensatory processes are associated with attenuation (e.g. as transpiration decreases, evaporation and sublimation increase), whereas both attenuation and exacerbation may result from nonlinear scaling behavior across transitions in topography and ecosystem structure that affect the redistribution of energy, water, and solutes. Consequently, the effects of widespread tree mortality on ecosystem services of water supply and carbon sequestration will likely depend on how spatial patterns in mortality severity across the landscape affect large-scale hydrological partitioning.

  1. Using Meteorological Analogues for Reordering Postprocessed Precipitation Ensembles in Hydrological Forecasting

    NASA Astrophysics Data System (ADS)

    Bellier, Joseph; Bontron, Guillaume; Zin, Isabella

    2017-12-01

    Meteorological ensemble forecasts are nowadays widely used as input of hydrological models for probabilistic streamflow forecasting. These forcings are frequently biased and have to be statistically postprocessed, using most of the time univariate techniques that apply independently to individual locations, lead times and weather variables. Postprocessed ensemble forecasts therefore need to be reordered so as to reconstruct suitable multivariate dependence structures. The Schaake shuffle and ensemble copula coupling are the two most popular methods for this purpose. This paper proposes two adaptations of them that make use of meteorological analogues for reconstructing spatiotemporal dependence structures of precipitation forecasts. Performances of the original and adapted techniques are compared through a multistep verification experiment using real forecasts from the European Centre for Medium-Range Weather Forecasts. This experiment evaluates not only multivariate precipitation forecasts but also the corresponding streamflow forecasts that derive from hydrological modeling. Results show that the relative performances of the different reordering methods vary depending on the verification step. In particular, the standard Schaake shuffle is found to perform poorly when evaluated on streamflow. This emphasizes the crucial role of the precipitation spatiotemporal dependence structure in hydrological ensemble forecasting.

  2. Using discharge data to reduce structural deficits in a hydrological model with a Bayesian inference approach and the implications for the prediction of critical source areas

    NASA Astrophysics Data System (ADS)

    Frey, M. P.; Stamm, C.; Schneider, M. K.; Reichert, P.

    2011-12-01

    A distributed hydrological model was used to simulate the distribution of fast runoff formation as a proxy for critical source areas for herbicide pollution in a small agricultural catchment in Switzerland. We tested to what degree predictions based on prior knowledge without local measurements could be improved upon relying on observed discharge. This learning process consisted of five steps: For the prior prediction (step 1), knowledge of the model parameters was coarse and predictions were fairly uncertain. In the second step, discharge data were used to update the prior parameter distribution. Effects of uncertainty in input data and model structure were accounted for by an autoregressive error model. This step decreased the width of the marginal distributions of parameters describing the lower boundary (percolation rates) but hardly affected soil hydraulic parameters. Residual analysis (step 3) revealed model structure deficits. We modified the model, and in the subsequent Bayesian updating (step 4) the widths of the posterior marginal distributions were reduced for most parameters compared to those of the prior. This incremental procedure led to a strong reduction in the uncertainty of the spatial prediction. Thus, despite only using spatially integrated data (discharge), the spatially distributed effect of the improved model structure can be expected to improve the spatially distributed predictions also. The fifth step consisted of a test with independent spatial data on herbicide losses and revealed ambiguous results. The comparison depended critically on the ratio of event to preevent water that was discharged. This ratio cannot be estimated from hydrological data only. The results demonstrate that the value of local data is strongly dependent on a correct model structure. An iterative procedure of Bayesian updating, model testing, and model modification is suggested.

  3. Reducing equifinality of hydrological models by integrating Functional Streamflow Disaggregation

    NASA Astrophysics Data System (ADS)

    Lüdtke, Stefan; Apel, Heiko; Nied, Manuela; Carl, Peter; Merz, Bruno

    2014-05-01

    A universal problem of the calibration of hydrological models is the equifinality of different parameter sets derived from the calibration of models against total runoff values. This is an intrinsic problem stemming from the quality of the calibration data and the simplified process representation by the model. However, discharge data contains additional information which can be extracted by signal processing methods. An analysis specifically developed for the disaggregation of runoff time series into flow components is the Functional Streamflow Disaggregation (FSD; Carl & Behrendt, 2008). This method is used in the calibration of an implementation of the hydrological model SWIM in a medium sized watershed in Thailand. FSD is applied to disaggregate the discharge time series into three flow components which are interpreted as base flow, inter-flow and surface runoff. In addition to total runoff, the model is calibrated against these three components in a modified GLUE analysis, with the aim to identify structural model deficiencies, assess the internal process representation and to tackle equifinality. We developed a model dependent (MDA) approach calibrating the model runoff components against the FSD components, and a model independent (MIA) approach comparing the FSD of the model results and the FSD of calibration data. The results indicate, that the decomposition provides valuable information for the calibration. Particularly MDA highlights and discards a number of standard GLUE behavioural models underestimating the contribution of soil water to river discharge. Both, MDA and MIA yield to a reduction of the parameter ranges by a factor up to 3 in comparison to standard GLUE. Based on these results, we conclude that the developed calibration approach is able to reduce the equifinality of hydrological model parameterizations. The effect on the uncertainty of the model predictions is strongest by applying MDA and shows only minor reductions for MIA. Besides further validation of FSD, the next steps include an extension of the study to different catchments and other hydrological models with a similar structure.

  4. User's guide for MAGIC-Meteorologic and hydrologic genscn (generate scenarios) input converter

    USGS Publications Warehouse

    Ortel, Terry W.; Martin, Angel

    2010-01-01

    Meteorologic and hydrologic data used in watershed modeling studies are collected by various agencies and organizations, and stored in various formats. Data may be in a raw, un-processed format with little or no quality control, or may be checked for validity before being made available. Flood-simulation systems require data in near real-time so that adequate flood warnings can be made. Additionally, forecasted data are needed to operate flood-control structures to potentially mitigate flood damages. Because real-time data are of a provisional nature, missing data may need to be estimated for use in floodsimulation systems. The Meteorologic and Hydrologic GenScn (Generate Scenarios) Input Converter (MAGIC) can be used to convert data from selected formats into the Hydrologic Simulation System-Fortran hourly-observations format for input to a Watershed Data Management database, for use in hydrologic modeling studies. MAGIC also can reformat the data to the Full Equations model time-series format, for use in hydraulic modeling studies. Examples of the application of MAGIC for use in the flood-simulation system for Salt Creek in northeastern Illinois are presented in this report.

  5. Model output: fact or artefact?

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke

    2015-04-01

    As a third-year PhD-student, I relatively recently entered the wonderful world of scientific Hydrology. A science that has many pillars that directly impact society, for example with the prediction of hydrological extremes (both floods and drought), climate change, applications in agriculture, nature conservation, drinking water supply, etcetera. Despite its demonstrable societal relevance, hydrology is often seen as a science between two stools. Like Klemeš (1986) stated: "By their academic background, hydrologists are foresters, geographers, electrical engineers, geologists, system analysts, physicists, mathematicians, botanists, and most often civil engineers." Sometimes it seems that the engineering genes are still present in current hydrological sciences, and this results in pragmatic rather than scientific approaches for some of the current problems and challenges we have in hydrology. Here, I refer to the uncertainty in hydrological modelling that is often neglected. For over thirty years, uncertainty in hydrological models has been extensively discussed and studied. But it is not difficult to find peer-reviewed articles in which it is implicitly assumed that model simulations represent the truth rather than a conceptualization of reality. For instance in trend studies, where data is extrapolated 100 years ahead. Of course one can use different forcing datasets to estimate the uncertainty of the input data, but how to prevent that the output is not a model artefact, caused by the model structure? Or how about impact studies, e.g. of a dam impacting river flow. Measurements are often available for the period after dam construction, so models are used to simulate river flow before dam construction. Both are compared in order to qualify the effect of the dam. But on what basis can we tell that the model tells us the truth? Model validation is common nowadays, but validation only (comparing observations with model output) is not sufficient to assume that a model reflects reality. E.g. due to nonuniqueness or so called equifinality; different model construction lead to same output (Oreskes et al., 1994, Beven, 2005). But also because validation only does not provide us information on whether we are 'right for the wrong reasons' (Kirchner, 2006; Oreskes et al., 1994). We can never know how right or wrong our models are, because we do not fully understand reality. But we can estimate the uncertainty from the model and the input data itself. Many techniques have been developed that help in estimating model uncertainty. E.g. model structural uncertainty, studied in the FUSE framework (Clark et al., 2008), parameter uncertainty with GLUE (Beven and Binley, 1992) and DREAM (Vrugt et al., 2008), input data uncertainty using BATEA (Kavetski et al., 2006). These are just some examples that pop-up in a first search. But somehow, these techniques are only used and applied in studies that focus on the model uncertainty itself, and hardly ever occur in studies that have a research question outside of the uncertainty-region. We know that models don't tell us the truth, but we have the tendency to claim they are, based on validation only. A model is always a simplification of reality, which by definition leads to uncertainty when model output and observations of reality are compared. The least we could do is estimate the uncertainty of the model and the data itself. My question therefore is: As a scientist, can we accept that we believe things of which we know they might not be true? And secondly: How to deal with this? How should model uncertainty change the way we communicate scientific results? References Beven, K., and A. Binley, The future of distributed models: Model calibration and uncertainty prediction, HP 6 (1992). Beven, K., A manifesto for the equifinality thesis, JoH 320 (2006). Clark, M.P., A.G. Slater, D.E. Rupp, R.A. Woods, J.A. Vrugt, H.V. Gupta, T. Wagener and L.E. Hay, Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, WRR 44 (2008). Kavetski, D., G. Kuczera and S.W. Franks, Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, WRR 42 (2006). Kirchner, J.W., Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology, WRR 42 (2006). Klemeš, V., Dilettantism in Hydrology: Transition or Destiny?, WRR 22-9 (1986). Oreskes, N., K. Shrader-Frechette, and K. Belitz, Verification, Validation and Confirmation of Numerical Models in Earth Sciences, SCIENCE 263 (1994). Vrugt, J.A., C.J.F. ter Braak, M.P. Clar, J.M. Hyman, and B.A. Robinson, Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, WRR 44, (2008).

  6. Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Lin; Gupta, Hoshin V.; Gao, Xiaogang; Sorooshian, Soroosh; Imam, Bisher

    2002-12-01

    Artificial neural networks (ANNs) can be useful in the prediction of hydrologic variables, such as streamflow, particularly when the underlying processes have complex nonlinear interrelationships. However, conventional ANN structures suffer from network training issues that significantly limit their widespread application. This paper presents a multivariate ANN procedure entitled self-organizing linear output map (SOLO), whose structure has been designed for rapid, precise, and inexpensive estimation of network structure/parameters and system outputs. More important, SOLO provides features that facilitate insight into the underlying processes, thereby extending its usefulness beyond forecast applications as a tool for scientific investigations. These characteristics are demonstrated using a classic rainfall-runoff forecasting problem. Various aspects of model performance are evaluated in comparison with other commonly used modeling approaches, including multilayer feedforward ANNs, linear time series modeling, and conceptual rainfall-runoff modeling.

  7. Exploration of warm-up period in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2018-01-01

    One of the important issues in hydrological modelling is to specify the initial conditions of the catchment since it has a major impact on the response of the model. Although this issue should be a high priority among modelers, it has remained unaddressed by the community. The typical suggested warm-up period for the hydrological models has ranged from one to several years, which may lead to an underuse of data. The model warm-up is an adjustment process for the model to reach an 'optimal' state, where internal stores (e.g., soil moisture) move from the estimated initial condition to an 'optimal' state. This study explores the warm-up period of two conceptual hydrological models, HYMOD and IHACRES, in a southwestern England catchment. A series of hydrologic simulations were performed for different initial soil moisture conditions and different rainfall amounts to evaluate the sensitivity of the warm-up period. Evaluation of the results indicates that both initial wetness and rainfall amount affect the time required for model warm up, although it depends on the structure of the hydrological model. Approximately one and a half months are required for the model to warm up in HYMOD for our study catchment and climatic conditions. In addition, it requires less time to warm up under wetter initial conditions (i.e., saturated initial conditions). On the other hand, approximately six months is required for warm-up in IHACRES, and the wet or dry initial conditions have little effect on the warm-up period. Instead, the initial values that are close to the optimal value result in less warm-up time. These findings have implications for hydrologic model development, specifically in determining soil moisture initial conditions and warm-up periods to make full use of the available data, which is very important for catchments with short hydrological records.

  8. Flow processes on the catchment scale - modeling of initial structural states and hydrological behavior in an artificial exemplary catchment

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Caviedes-Voullième, Daniel; Hinz, Christoph; Gerke, Horst H.

    2017-04-01

    Landscapes that are heavily disturbed or newly formed by either natural processes or human activity are in a state of disequilibrium. Their initial development is thus characterized by highly dynamic processes under all climatic conditions. The primary distribution and structure of the solid phase (i.e. mineral particles forming the pore space) is one of the decisive factors for the development of hydrological behavior of the eco-hydrological system and therefore (co-) determining for its - more or less - stable final state. The artificially constructed ‚Hühnerwasser' catchment (a 6 ha area located in the open-cast lignite mine Welzow-Süd, southern Brandenburg, Germany) is a landscape laboratory where the initial eco-hydrological development is observed since 2005. The specific formation (or construction) processes generated characteristic sediment structures and distributions, resulting in a spatially heterogeneous initial state of the catchment. We developed a structure generator that simulates the characteristic distribution of the solid phase for such constructed landscapes. The program is able to generate quasi-realistic structures and sediment compositions on multiple spatial levels (1 cm up to 100 m scale). The generated structures can be i) conditioned to actual measurement values (e.g., soil texture and bulk distribution); ii) stochastically generated, and iii) calculated deterministically according to the geology and technical processes at the excavation site. Results are visualized using the GOCAD software package and the free software Paraview. Based on the 3D-spatial sediment distributions, effective hydraulic van-Genuchten parameters are calculated using pedotransfer functions. The hydraulic behavior of different sediment distribution (i.e. versions or variations of the catchment's porous body) is calculated using a numerical model developed by one of us (Caviedes-Voullième). Observation data are available from catchment monitoring are available for i) determining the boundary conditions (e.g., precipitation), and ii) the calibration / validation of the model (catchment discharge, ground water). The analysis of multiple sediment distribution scenarios should allow to approximately determine the influx of starting conditions on initial development of hydrological behavior. We present first flow modeling results for a reference (conditioned) catchment model and variations thereof. We will also give an outlook on further methodical development of our approach.

  9. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuesong; Liang, Faming; Yu, Beibei

    2011-11-09

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework to incorporate the uncertainties associated with input, model structure, and parameter into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform the BNNs that only consider uncertainties associatedmore » with parameter and model structure. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters show that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of different uncertainty sources and including output error into the MCMC framework are expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting.« less

  10. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream measurements.

  11. Understanding The Individual Impacts Of Human Interventions And Climate Change On Hydrologic Variables In India

    NASA Astrophysics Data System (ADS)

    Sharma, T.; Chhabra, S., Jr.; Karmakar, S.; Ghosh, S.

    2015-12-01

    We have quantified the historical climate change and Land Use Land Cover (LULC) change impacts on the hydrologic variables of Indian subcontinent by using Variable Infiltration Capacity (VIC) mesoscale model at 0.5° spatial resolution and daily temporal resolution. The results indicate that the climate change in India has predominating effects on the basic water balance components such as water yield, evapotranspiration and soil moisture. This analysis is with the assumption of naturalised hydrologic cycle, i.e., the impacts of human interventions like construction of controlled (primarily dams, diversions and reservoirs) and water withdrawals structures are not taken into account. The assumption is unrealistic since there are numerous anthropogenic disturbances which result in large changes on vegetation composition and distribution patterns. These activities can directly or indirectly influence the dynamics of water cycle; subsequently affecting the hydrologic processes like plant transpiration, infiltration, evaporation, runoff and sublimation. Here, we have quantified the human interventions by using the reservoir and irrigation module of VIC model which incorporates the irrigation schemes, reservoir characteristics and water withdrawals. The impact of human interventions on hydrologic variables in many grids are found more predominant than climate change and might be detrimental to water resources at regional level. This spatial pattern of impacts will facilitate water manager and planners to design and station hydrologic structures for a sustainable water resources management.

  12. Modeling rainfall-runoff relationship using multivariate GARCH model

    NASA Astrophysics Data System (ADS)

    Modarres, R.; Ouarda, T. B. M. J.

    2013-08-01

    The traditional hydrologic time series approaches are used for modeling, simulating and forecasting conditional mean of hydrologic variables but neglect their time varying variance or the second order moment. This paper introduces the multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) modeling approach to show how the variance-covariance relationship between hydrologic variables varies in time. These approaches are also useful to estimate the dynamic conditional correlation between hydrologic variables. To illustrate the novelty and usefulness of MGARCH models in hydrology, two major types of MGARCH models, the bivariate diagonal VECH and constant conditional correlation (CCC) models are applied to show the variance-covariance structure and cdynamic correlation in a rainfall-runoff process. The bivariate diagonal VECH-GARCH(1,1) and CCC-GARCH(1,1) models indicated both short-run and long-run persistency in the conditional variance-covariance matrix of the rainfall-runoff process. The conditional variance of rainfall appears to have a stronger persistency, especially long-run persistency, than the conditional variance of streamflow which shows a short-lived drastic increasing pattern and a stronger short-run persistency. The conditional covariance and conditional correlation coefficients have different features for each bivariate rainfall-runoff process with different degrees of stationarity and dynamic nonlinearity. The spatial and temporal pattern of variance-covariance features may reflect the signature of different physical and hydrological variables such as drainage area, topography, soil moisture and ground water fluctuations on the strength, stationarity and nonlinearity of the conditional variance-covariance for a rainfall-runoff process.

  13. Developing a hydrological model in the absence of field data

    NASA Astrophysics Data System (ADS)

    Sproles, E. A.; Orrego Nelson, C.; Kerr, T.; Lopez Aspe, D.

    2014-12-01

    We present two runoff models that use remotely-sensed snow cover products from the Moderate Resolution Imaging Spectrometer (MODIS) as the first order hydrologic input. These simplistic models are the first step in developing an operational model for the Elqui River watershed located in northern Central Chile (30°S). In this semi-arid region, snow and glacier melt are the dominant hydrologic inputs where annual precipitation is limited to three or four winter events. Unfortunately winter access to the Andean Cordillera where snow accumulates is limited. While a monitoring network to measure snow where it accumulates in the upper elevations is under development, management decisions regarding water resources cannot wait. The two models we present differ in structure. The first applies a Monte Carlo approach to determine relationships between lagged changes in monthly snow cover frequency and monthly discharge. The second is a modified degree-day melt model, utilizing the MODIS snow cover product to determine where and when snow melt occurs. These models are not watershed specific and are applicable in other regions where snow dominates hydrologic inputs, but measurements are minimal.

  14. A Channel Network Evolution Model with Subsurface Saturation Mechanism and Analysis of the Chaotic Behavior of the Model

    DTIC Science & Technology

    1990-09-01

    between basin shapes and hydrologic responses is fundamental for the purpose of hydrologic predictions , especially in ungaged basins. Another goal is...47] studied this model and showed analitically how very small differences in the c field generated completely different leaf vein network structures... predictability impossible. Complexity is by no means a requirement in order for a system to exhibit SIC. A system as simple as the logistic equation x,,,,=ax,,(l

  15. A Hydrologic Routing Model Based on Geomorphological Characteristics of the River Network

    NASA Astrophysics Data System (ADS)

    Krajewski, W. F.; Quintero, F.; Ghimire, G.; Rojas, M.

    2017-12-01

    The Iowa Flood Center (IFC) provides streamflow forecasts for about 2000 locations in Iowa using a real-time distributed hydrologic model, forced with radar and raingage rainfall information. The model structure is based on ordinary differential equations that represent the flow of water from the hillslopes to the channels of the river network. The formulation of the routing of water across the rivers constitutes a fundamental aspect of the model, because this component is mostly responsible for providing estimates of the time-to-peak and peak magnitude. The routing model structure of the system is based on the scaling properties of river velocity with the discharge and drainage area of the channel, which can be written in terms of a power-law function. This study examines how this scaling relation is connected to the Horton-Strahler order of the channel network. This evaluation represents a step forward towards formulating model structures that are based on characteristics that are invariant across spatial scales. We proposed a routing model for every different Horton orders of the network, by adjusting a power-law function to available observations of velocity and discharge provided by USGS. The models were implemented into the Hillslope-Link Model (HLM) of the IFC for offline evaluation. Model simulations were compared to discharge observations to assess their performance, and compared to simulations obtained with other hydrologic routing schemes, to determine if the new formulation improves performance of the model.

  16. Some Modeling Tools Available for Adaptive Management of South Florida Hydrology

    NASA Astrophysics Data System (ADS)

    Lal, W. A.; Van Zee, R. J.

    2002-05-01

    The hydrology of South Florida is a result of (1) the hydrology of the natural system; (2) the hydrology of the man made design components such as structures and levees designed to alter the natural hydrology; (3) influence of the operations imposed on the system using the design components. Successful restoration of the South Florida ecosystem depend not only on the design of the structural components, but also on its careful operation. The current discussion is focused on a number of optimal control methods that have recently become available to optimize restoration goals in the context of modeling. Optimal operation of the system can lessen stresses on some hydrological and ecological components. Careless operation can on the other hand lead to disastrous effects. Systems engineering and control theory have been used in the past to understand and operate simple systems such as the cruise control and the thermostat. Somewhat complex ones have been used to auto-pilot planes. The simplest control methods such as proportional and integral (PI) control are already used in the South Florida Water Management Model (SFWMM) for flood control and rain driven operations. The popular proportional-integral-differential (PID) control is widely used in industry for operational control of complex engineering systems. Some uses of PID control are investigated in the study. Other methods that an be used for operational control include Baysean methods, Kalman filtering and Neural network methods. A cursory evaluation of these methods is made in the discussion, along with the traditional methods used to operate complex engineering systems.

  17. The dynamics of human-water systems: comparing observations and simulations

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, G.; Ciullo, A.; Castellarin, A.; Viglione, A.

    2016-12-01

    Real-word data of human-flood interactions are compared to the results of stylized socio-hydrological models. These models build on numerous examples from different parts of the world and consider two main prototypes of floodplain systems. Green systems, whereby societies cope with flood risk via non-structural measures, e.g. resettling out of floodplain areas ("living with floods" approach); and Technological systems, whereby societies cope with flood risk by also via structural measures, e.g. building levees ("fighting floods" approach). The floodplain systems of the Tiber River in Rome and the Ganges-Brahmaputra-Meghna Rivers in Bangladesh systems are used as case studies. The comparison of simulations and observations shows the potential of socio-hydrological models in capturing the dynamics of risk emerging from the interactions and feedbacks between social and hydrological processes, such as learning and forgetting effects. It is then discussed how the proposed approach can contribute to a better understanding of flood risk changes and therefore support the process of disaster risk reduction.

  18. HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE (HELP) MODEL - USER'S GUIDE FOR VERSION 3

    EPA Science Inventory

    This report documents the solution methods and process descriptions used in the Version 3 of the HELP model. Program documentation including program options, system and operating requirements, file structures, program structure and variable descriptions are provided in a separat...

  19. Modeling Rainfall-Runoff Dynamics in Tropical, Urban Socio-Hydrological Systems: Green Infrastructure and Variable Precipitation Interception

    NASA Astrophysics Data System (ADS)

    Nytch, C. J.; Meléndez-Ackerman, E. J.

    2014-12-01

    There is a pressing need to generate spatially-explicit models of rainfall-runoff dynamics in the urban humid tropics that can characterize flow pathways and flood magnitudes in response to erratic precipitation events. To effectively simulate stormwater runoff processes at multiple scales, complex spatio-temporal parameters such as rainfall, evapotranspiration, and antecedent soil moisture conditions must be accurately represented, in addition to uniquely urban factors including stormwater conveyance structures and connectivity between green and gray infrastructure elements. In heavily urbanized San Juan, Puerto Rico, stream flashiness and frequent flooding are major issues, yet still lacking is a hydrological analysis that models the generation and movement of fluvial and pluvial stormwater through the watershed. Our research employs a novel and multifaceted approach to dealing with this problem that integrates 1) field-based rainfall interception and infiltration methodologies to quantify the hydrologic functions of natural and built infrastructure in San Juan; 2) remote sensing analysis to produce a fine-scale typology of green and gray cover types in the city and determine patterns of spatial distribution and connectivity; 3) assessment of precipitation and streamflow variability at local and basin-wide scales using satellite and radar precipitation estimates in concert with rainfall and stream gauge point data and participatory flood mapping; 4) simulation of historical, present-day, and future stormwater runoff scenarios with a fully distributed hydrologic model that couples diverse components of urban socio-hydrological systems from formal and informal knowledge sources; and 5) bias and uncertainty analysis of parameters and model structure within a Bayesian hierarchical framework. Preliminary results from the rainfall interception study suggest that canopy structure and leaf area index of different tree species contribute to variable throughfall and stemflow responses. Additional investigations are pending. The findings from this work will help inform urban planning and design, and build adaptive capacity to reduce flood vulnerability in the context of a changing climate.

  20. Quantification of uncertainties related to the regional application of a conceptual hydrological model in Benin (West Africa)

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Diekkrüger, B.

    2003-04-01

    A conceptual model is presented to simulate the water fluxes of regional catchments in Benin (West Africa). The model is applied in the framework of the IMPETUS project (an integrated approach to the efficient management of scarce water resources in West Africa) which aims to assess the effects of environmental and anthropogenic changes on the regional hydrological processes and on the water availability in Benin. In order to assess the effects of decreasing precipitation and increasing human activities on the hydrological processes in the upper Ouémé valley, a scenario analysis is performed to predict possible changes. Therefore a regional hydrological model is proposed which reproduces the recent hydrological processes, and which is able to consider the changes of landscape properties.The study presented aims to check the validity of the conceptual and lumped model under the conditions of the subhumid tree savannah and therefore analyses the importance of possible sources of uncertainty. Main focus is set on the uncertainties caused by input data, model parameters and model structure. As the model simulates the water fluxes at the catchment outlet of the Térou river (3133 km2) in a sufficient quality, first results of a scenario analysis are presented. Changes of interest are the expected future decrease in amount and temporal structure of the precipitation (e.g. minus X percent precipitation during the whole season versus minus X percent precipitation in the end of the rainy season, alternatively), the decrease in soil water storage capacity which is caused by erosion, and the increasing consumption of ground water for drinking water and agricultural purposes. Resuming from the results obtained, the perspectives of lumped and conceptual models are discussed with special regard to available management options of this kind of models. Advantages and disadvantages compared to alternative model approaches (process based, physics based) are discussed.

  1. 30 CFR 817.47 - Hydrologic balance: Discharge structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Discharge structures. 817...-UNDERGROUND MINING ACTIVITIES § 817.47 Hydrologic balance: Discharge structures. Discharge from sedimentation... the hydrologic balance. Discharge structures shall be designed according to standard engineering...

  2. 30 CFR 817.47 - Hydrologic balance: Discharge structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Discharge structures. 817...-UNDERGROUND MINING ACTIVITIES § 817.47 Hydrologic balance: Discharge structures. Discharge from sedimentation... the hydrologic balance. Discharge structures shall be designed according to standard engineering...

  3. 30 CFR 816.47 - Hydrologic balance: Discharge structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Discharge structures. 816...-SURFACE MINING ACTIVITIES § 816.47 Hydrologic balance: Discharge structures. Discharge from sedimentation... the hydrologic balance. Discharge structures shall be designed according to standard engineering...

  4. 30 CFR 816.47 - Hydrologic balance: Discharge structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Discharge structures. 816...-SURFACE MINING ACTIVITIES § 816.47 Hydrologic balance: Discharge structures. Discharge from sedimentation... the hydrologic balance. Discharge structures shall be designed according to standard engineering...

  5. Critical zone evolution and the origins of organised complexity in watersheds

    NASA Astrophysics Data System (ADS)

    Harman, C.; Troch, P. A.; Pelletier, J.; Rasmussen, C.; Chorover, J.

    2012-04-01

    The capacity of the landscape to store and transmit water is the result of a historical trajectory of landscape, soil and vegetation development, much of which is driven by hydrology itself. Progress in geomorphology and pedology has produced models of surface and sub-surface evolution in soil-mantled uplands. These dissected, denuding modeled landscapes are emblematic of the kinds of dissipative self-organized flow structures whose hydrologic organization may also be understood by low-dimensional hydrologic models. They offer an exciting starting-point for examining the mapping between the long-term controls on landscape evolution and the high-frequency hydrologic dynamics. Here we build on recent theoretical developments in geomorphology and pedology to try to understand how the relative rates of erosion, sediment transport and soil development in a landscape determine catchment storage capacity and the relative dominance of runoff process, flow pathways and storage-discharge relationships. We do so by using a combination of landscape evolution models, hydrologic process models and data from a variety of sources, including the University of Arizona Critical Zone Observatory. A challenge to linking the landscape evolution and hydrologic model representations is the vast differences in the timescales implicit in the process representations. Furthermore the vast array of processes involved makes parameterization of such models an enormous challenge. The best data-constrained geomorphic transport and soil development laws only represent hydrologic processes implicitly, through the transport and weathering rate parameters. In this work we propose to avoid this problem by identifying the relationship between the landscape and soil evolution parameters and macroscopic climate and geological controls. These macroscopic controls (such as the aridity index) have two roles: 1) they express the water and energy constraints on the long-term evolution of the landscape system, and 2) they bound the range of plausible short-term hydroclimatic regimes that may drive a particular landscape's hydrologic dynamics. To ensure that the hydrologic dynamics implicit in the evolutionary parameters are compatible with the dynamics observed in the hydrologic modeling, a set of consistency checks based on flow process dominance are developed.

  6. Rich in life but poor in data: the known knowns and known unknowns of modelling how soil biology drives soil structure

    NASA Astrophysics Data System (ADS)

    Hallett, Paul; Ogden, Mike

    2015-04-01

    Soil biology has a fascinating capacity to manipulate pore structure by altering or overcoming hydrological and mechanical properties of soil. Many have postulated, quite rightly, that this capacity of soil biology to 'engineer' its habitat drives its diversity, improves competitiveness and increases resilience to external stresses. A large body of observational research has quantified pore structure evolution accompanied by the growth of organisms in soil. Specific compounds that are exuded by organisms or the biological structures they create have been isolated and found to correlate well with observed changes to pore structure or soil stability. This presentation will provide an overview of basic mechanical and hydrological properties of soil that are affected by biology, and consider missing data that are essential to model how they impact soil structure evolution. Major knowledge gaps that prevent progress will be identified and suggestions will be made of how research in this area should progress. We call for more research to gain a process based understanding of structure formation by biology, to complement observational studies of soil structure before and after imposed biological activity. Significant advancement has already been made in modelling soil stabilisation by plant roots, by combining data on root biomechanics, root-soil interactions and soil mechanical properties. Approaches for this work were developed from earlier materials science and geotechnical engineering research, and the same ethos should be adopted to model the impacts of other biological compounds. Fungal hyphae likely reinforce soils in a similar way to plant roots, with successful biomechanical measurements of these micron diameter structures achieved with micromechanical test frames. Extending root reinforcement models to fungi would not be a straightforward exercise, however, as interparticle bonding and changes to pore water caused by fungal exudates could have a major impact on structure formation and stability. Biological exudates from fungi, bacteria or roots have been found to decrease surface tension and increase viscosity of pore water, with observed impacts to soil strength and water retention. Modelling approaches developed in granular mechanics and geotechnical engineering could be built upon to incorporate biological transformations of hydrological and mechanical properties of soil. With new testing approaches, adapted from materials science, pore scale hydromechanical impacts from biological exudates can be quantified. The research can be complemented with model organisms with differences in biological structures (e.g. root hair mutants), exudation or other properties. Coupled with technological advances that provide 4D imaging of soil structure at relatively rapid capture rates, the potential opportunities to disentangle and model how biology drives soil structure evolution and stability are vast. By quantifying basic soil hydrological and mechanical processes that are driven by soil biology, unknown unknowns may also emerge, providing new insight into how soils function.

  7. Monitoring and modeling as a continuing learning process: the use of hydrological models in a general probabilistic framework.

    NASA Astrophysics Data System (ADS)

    Baroni, G.; Gräff, T.; Reinstorf, F.; Oswald, S. E.

    2012-04-01

    Nowadays uncertainty and sensitivity analysis are considered basic tools for the assessment of hydrological models and the evaluation of the most important sources of uncertainty. In this context, in the last decades several methods have been developed and applied in different hydrological conditions. However, in most of the cases, the studies have been done by investigating mainly the influence of the parameter uncertainty on the simulated outputs and few approaches tried to consider also other sources of uncertainty i.e. input and model structure. Moreover, several constrains arise when spatially distributed parameters are involved. To overcome these limitations a general probabilistic framework based on Monte Carlo simulations and the Sobol method has been proposed. In this study, the general probabilistic framework was applied at field scale using a 1D physical-based hydrological model (SWAP). Furthermore, the framework was extended at catchment scale in combination with a spatially distributed hydrological model (SHETRAN). The models are applied in two different experimental sites in Germany: a relatively flat cropped field close to Potsdam (Brandenburg) and a small mountainous catchment with agricultural land use (Schaefertal, Harz Mountains). For both cases, input and parameters are considered as major sources of uncertainty. Evaluation of the models was based on soil moisture detected at plot scale in different depths and, for the catchment site, also with daily discharge values. The study shows how the framework can take into account all the various sources of uncertainty i.e. input data, parameters (either in scalar or spatially distributed form) and model structures. The framework can be used in a loop in order to optimize further monitoring activities used to improve the performance of the model. In the particular applications, the results show how the sources of uncertainty are specific for each process considered. The influence of the input data as well as the presence of compensating errors become clear by the different processes simulated.

  8. Validation of a model with climatic and flow scenario analysis: case of Lake Burrumbeet in southeastern Australia.

    PubMed

    Yihdego, Yohannes; Webb, John

    2016-05-01

    Forecast evaluation is an important topic that addresses the development of reliable hydrological probabilistic forecasts, mainly through the use of climate uncertainties. Often, validation has no place in hydrology for most of the times, despite the parameters of a model are uncertain. Similarly, the structure of the model can be incorrectly chosen. A calibrated and verified dynamic hydrologic water balance spreadsheet model has been used to assess the effect of climate variability on Lake Burrumbeet, southeastern Australia. The lake level has been verified to lake level, lake volume, lake surface area, surface outflow and lake salinity. The current study aims to increase lake level confidence model prediction through historical validation for the year 2008-2013, under different climatic scenario. Based on the observed climatic condition (2008-2013), it fairly matches with a hybridization of scenarios, being the period interval (2008-2013), corresponds to both dry and wet climatic condition. Besides to the hydrologic stresses uncertainty, uncertainty in the calibrated model is among the major drawbacks involved in making scenario simulations. In line with this, the uncertainty in the calibrated model was tested using sensitivity analysis and showed that errors in the model can largely be attributed to erroneous estimates of evaporation and rainfall, and surface inflow to a lesser. The study demonstrates that several climatic scenarios should be analysed, with a combination of extreme climate, stream flow and climate change instead of one assumed climatic sequence, to improve climate variability prediction in the future. Performing such scenario analysis is a valid exercise to comprehend the uncertainty with the model structure and hydrology, in a meaningful way, without missing those, even considered as less probable, ultimately turned to be crucial for decision making and will definitely increase the confidence of model prediction for management of the water resources.

  9. A strategy to study regional hydrology and terrestrial ecosystem processes using satellite remote sensing, ground-based data and computer modeling

    NASA Technical Reports Server (NTRS)

    Vorosmarty, C.; Grace, A.; Moore, B.; Choudhury, B.; Willmott, C. J.

    1990-01-01

    A strategy is presented for integrating scanning multichannel microwave radiometer data from the Nimbus-7 satellite with meteorological station records and computer simulations of land surface hydrology, terrestrial nutrient cycling, and trace gas emission. Analysis of the observations together with radiative transfer analysis shows that in the tropics the temporal and spatial variations of the polarization difference are determined primarily by the structure and phenology of vegetation and seasonal inundations of major rivers and wetlands. It is concluded that the proposed surface hydrology model, along with climatological records, and, potentially, 37-GHz data for phenology, will provide inputs to a terrestrial ecosystem model that predicts regional net primary production and CO2 gas exchange.

  10. Variance analysis of forecasted streamflow maxima in a wet temperate climate

    NASA Astrophysics Data System (ADS)

    Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.

    2018-05-01

    Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.

  11. Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon-Hurtado, Juan; Solomatine, Dimitri

    2015-09-01

    Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing observations, within water models. Current hydrologic and hydraulic research works consider assimilation of observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile communication devices are becoming also increasingly available. The main goal and innovation of this study is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space and intermittent in time in the context of two different semi-distributed hydrological model structures. The developed method is applied to the Brue basin, where the dynamic observations are imitated by the synthetic observations of discharge. The results of this study show how model structures and sensors locations affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation of such uncertain observations from dynamic sensors can provide model improvements similar to those of streamflow observations coming from a non-optimal network of static physical sensors. This can be a potential application of recent efforts to build citizen observatories of water, which can make the citizens an active part in information capturing, evaluation and communication, helping simultaneously to improvement of model-based flood forecasting.

  12. Information-Theoretic Benchmarking of Land Surface Models

    NASA Astrophysics Data System (ADS)

    Nearing, Grey; Mocko, David; Kumar, Sujay; Peters-Lidard, Christa; Xia, Youlong

    2016-04-01

    Benchmarking is a type of model evaluation that compares model performance against a baseline metric that is derived, typically, from a different existing model. Statistical benchmarking was used to qualitatively show that land surface models do not fully utilize information in boundary conditions [1] several years before Gong et al [2] discovered the particular type of benchmark that makes it possible to *quantify* the amount of information lost by an incorrect or imperfect model structure. This theoretical development laid the foundation for a formal theory of model benchmarking [3]. We here extend that theory to separate uncertainty contributions from the three major components of dynamical systems models [4]: model structures, model parameters, and boundary conditions describe time-dependent details of each prediction scenario. The key to this new development is the use of large-sample [5] data sets that span multiple soil types, climates, and biomes, which allows us to segregate uncertainty due to parameters from the two other sources. The benefit of this approach for uncertainty quantification and segregation is that it does not rely on Bayesian priors (although it is strictly coherent with Bayes' theorem and with probability theory), and therefore the partitioning of uncertainty into different components is *not* dependent on any a priori assumptions. We apply this methodology to assess the information use efficiency of the four land surface models that comprise the North American Land Data Assimilation System (Noah, Mosaic, SAC-SMA, and VIC). Specifically, we looked at the ability of these models to estimate soil moisture and latent heat fluxes. We found that in the case of soil moisture, about 25% of net information loss was from boundary conditions, around 45% was from model parameters, and 30-40% was from the model structures. In the case of latent heat flux, boundary conditions contributed about 50% of net uncertainty, and model structures contributed about 40%. There was relatively little difference between the different models. 1. G. Abramowitz, R. Leuning, M. Clark, A. Pitman, Evaluating the performance of land surface models. Journal of Climate 21, (2008). 2. W. Gong, H. V. Gupta, D. Yang, K. Sricharan, A. O. Hero, Estimating Epistemic & Aleatory Uncertainties During Hydrologic Modeling: An Information Theoretic Approach. Water Resources Research 49, 2253-2273 (2013). 3. G. S. Nearing, H. V. Gupta, The quantity and quality of information in hydrologic models. Water Resources Research 51, 524-538 (2015). 4. H. V. Gupta, G. S. Nearing, Using models and data to learn: A systems theoretic perspective on the future of hydrological science. Water Resources Research 50(6), 5351-5359 (2014). 5. H. V. Gupta et al., Large-sample hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences Discussions 10, 9147-9189 (2013).

  13. Use of an integrated flow model to estimate ecologically relevant hydrologic characteristics at stream biomonitoring sites

    USGS Publications Warehouse

    Kennen, J.G.; Kauffman, L.J.; Ayers, M.A.; Wolock, D.M.; Colarullo, S.J.

    2008-01-01

    We developed an integrated hydroecological model to provide a comprehensive set of hydrologic variables representing five major components of the flow regime at 856 aquatic-invertebrate monitoring sites in New Jersey. The hydroecological model simulates streamflow by routing water that moves overland and through the subsurface from atmospheric delivery to the watershed outlet. Snow accumulation and melt, evapotranspiration, precipitation, withdrawals, discharges, pervious- and impervious-area runoff, and lake storage were accounted for in the water balance. We generated more than 78 flow variables, which describe the frequency, magnitude, duration, rate of change, and timing of flow events. Highly correlated variables were filtered by principal component analysis to obtain a non-redundant subset of variables that explain the majority of the variation in the complete set. This subset of variables was used to evaluate the effect of changes in the flow regime on aquatic-invertebrate assemblage structure at 856 biomonitoring sites. We used non-metric multidimensional scaling (NMS) to evaluate variation in aquatic-invertebrate assemblage structure across a disturbance gradient. We employed multiple linear regression (MLR) analysis to build a series of MLR models that identify the most important environmental and hydrologic variables driving the differences in the aquatic-invertebrate assemblages across the disturbance gradient. The first axis of NMS ordination was significantly related to many hydrologic, habitat, and land-use/land-cover variables, including the average number of annual storms producing runoff, ratio of 25-75% exceedance flow (flashiness), diversity of natural stream substrate, and the percentage of forested land near the stream channel (forest buffer). Modifications in the hydrologic regime as the result of changes in watershed land use appear to promote the retention of highly tolerant aquatic species; in contrast, species that are sensitive to hydrologic instability and other anthropogenic disturbance become much less prevalent. We also found strong relations between an index of invertebrate-assemblage impairment, its component metrics, and the primary disturbance gradient. The process-oriented watershed modeling approach used in this study provides a means to evaluate how natural landscape features interact with anthropogenic factors and assess their effects on flow characteristics and stream ecology. By combining watershed modeling and indirect ordination techniques, we were able to identify components of the hydrologic regime that have a considerable effect on aquatic-assemblage structure and help in developing short- and long-term management measures that mitigate the effects of anthropogenic disturbance in stream systems.

  14. Revising Hydrology of a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya; Butler, Adrian; McIntyre, Neil; Jackson, Christopher

    2015-04-01

    Land Surface Models (LSMs) are key elements in guiding adaptation to the changing water cycle and the starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, before this potential is realised, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. An important limitation is the simplistic or non-existent representation of the deep subsurface in LSMs; and another is the lack of connection of LSM parameterisations to relevant hydrological information. In this context, the paper uses a case study of the JULES (Joint UK Land Environmental Simulator) LSM applied to the Kennet region in Southern England. The paper explores the assumptions behind JULES hydrology, adapts the model structure and optimises the coupling with the ZOOMQ3D regional groundwater model. The analysis illustrates how three types of information can be used to improve the model's hydrology: a) observations, b) regionalized information, and c) information from an independent physics-based model. It is found that: 1) coupling to the groundwater model allows realistic simulation of streamflows; 2) a simple dynamic lower boundary improves upon JULES' stationary unit gradient condition; 3) a 1D vertical flow in the unsaturated zone is sufficient; however there is benefit in introducing a simple dual soil moisture retention curve; 4) regionalized information can be used to describe soil spatial heterogeneity. It is concluded that relatively simple refinements to the hydrology of JULES and its parameterisation method can provide a substantial step forward in realising its potential as a high-resolution multi-purpose model.

  15. Evaluation of uncertainty in capturing the spatial variability and magnitudes of extreme hydrological events for the uMngeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Kusangaya, Samuel; Warburton Toucher, Michele L.; van Garderen, Emma Archer

    2018-02-01

    Downscaled General Circulation Models (GCMs) output are used to forecast climate change and provide information used as input for hydrological modelling. Given that our understanding of climate change points towards an increasing frequency, timing and intensity of extreme hydrological events, there is therefore the need to assess the ability of downscaled GCMs to capture these extreme hydrological events. Extreme hydrological events play a significant role in regulating the structure and function of rivers and associated ecosystems. In this study, the Indicators of Hydrologic Alteration (IHA) method was adapted to assess the ability of simulated streamflow (using downscaled GCMs (dGCMs)) in capturing extreme river dynamics (high and low flows), as compared to streamflow simulated using historical climate data from 1960 to 2000. The ACRU hydrological model was used for simulating streamflow for the 13 water management units of the uMngeni Catchment, South Africa. Statistically downscaled climate models obtained from the Climate System Analysis Group at the University of Cape Town were used as input for the ACRU Model. Results indicated that, high flows and extreme high flows (one in ten year high flows/large flood events) were poorly represented both in terms of timing, frequency and magnitude. Simulated streamflow using dGCMs data also captures more low flows and extreme low flows (one in ten year lowest flows) than that captured in streamflow simulated using historical climate data. The overall conclusion was that although dGCMs output can reasonably be used to simulate overall streamflow, it performs poorly when simulating extreme high and low flows. Streamflow simulation from dGCMs must thus be used with caution in hydrological applications, particularly for design hydrology, as extreme high and low flows are still poorly represented. This, arguably calls for the further improvement of downscaling techniques in order to generate climate data more relevant and useful for hydrological applications such as in design hydrology. Nevertheless, the availability of downscaled climatic output provide the potential of exploring climate model uncertainties in different hydro climatic regions at local scales where forcing data is often less accessible but more accurate at finer spatial scales and with adequate spatial detail.

  16. Hydrologic Synthesis Across the Critical Zone Observatory Network: A Step Towards Understanding the Coevolution of Critical Zone Function and Structure

    NASA Astrophysics Data System (ADS)

    Wlostowski, A. N.; Harman, C. J.; Molotch, N. P.

    2017-12-01

    The physical and biological architecture of the Earth's Critical Zone controls hydrologic partitioning, storage, and chemical evolution of precipitated water. The Critical Zone Observatory (CZO) Network provides an ideal platform to explore linkages between catchment structure and hydrologic function across a gradient of geologic and climatic settings. A legacy of hypothesis-motivated research at each site has generated a wealth of data characterizing the architecture and hydrologic function of the critical zone. We will present a synthesis of this data that aims to elucidate and explain (in the sense of making mutually intelligible) variations in hydrologic function across the CZO network. Top-down quantitative signatures of the storage and partitioning of water at catchment scales extracted from precipitation, streamflow, and meteorological data will be compared with each other, and provide quantitative benchmarks to assess differences in perceptual models of hydrologic function at each CZO site. Annual water balance analyses show that CZO sites span a wide gradient of aridity and evaporative partitioning. The aridity index (PET/P) ranges from 0.3 at Luquillo to 4.3 at Reynolds Creek, while the evaporative index (E/P) ranges from 0.3 at Luquillo (Rio Mamayes) to 0.9 at Reynolds Creek (Reynolds Creek Outlet). Snow depth and SWE observations reveal that snowpack is an important seasonal storage reservoir at three sites: Boulder, Jemez, Reynolds Creek and Southern Sierra. Simple dynamical models are also used to infer seasonal patterns of subsurface catchment storage. A root-zone water balance model reveals unique seasonal variations in plant-available water storage. Seasonal patterns of plant-available storage are driven by the asynchronicity of seasonal precipitation and evaporation cycles. Catchment sensitivity functions are derived at each site to infer relative changes in hydraulic storage (the apparent storage reservoir responsible for modulating streamflow generation). Storage-discharge relationships vary widely across the Network, and may be associated with inter-site differences in sub-surface architecture. Moving forward, we seek to reconcile top-down analysis results against the bottom-up understanding of critical zone structure and hydrologic function at each CZO site.

  17. Comparison of complex and parsimonious model structures by means of a modular hydrological model concept

    NASA Astrophysics Data System (ADS)

    Holzmann, Hubert; Massmann, Carolina

    2015-04-01

    A plenty of hydrological model types have been developed during the past decades. Most of them used a fixed design to describe the variable hydrological processes assuming to be representative for the whole range of spatial and temporal scales. This assumption is questionable as it is evident, that the runoff formation process is driven by dominant processes which can vary among different basins. Furthermore the model application and the interpretation of results is limited by data availability to identify the particular sub-processes, since most models were calibrated and validated only with discharge data. Therefore it can be hypothesized, that simpler model designs, focusing only on the dominant processes, can achieve comparable results with the benefit of less parameters. In the current contribution a modular model concept will be introduced, which allows the integration and neglection of hydrological sub-processes depending on the catchment characteristics and data availability. Key elements of the process modules refer to (1) storage effects (interception, soil), (2) transfer processes (routing), (3) threshold processes (percolation, saturation overland flow) and (4) split processes (rainfall excess). Based on hydro-meteorological observations in an experimental catchment in the Slovak region of the Carpathian mountains a comparison of several model realizations with different degrees of complexity will be discussed. A special focus is given on model parameter sensitivity estimated by Markov Chain Monte Carlo approach. Furthermore the identification of dominant processes by means of Sobol's method is introduced. It could be shown that a flexible model design - and even the simple concept - can reach comparable and equivalent performance than the standard model type (HBV-type). The main benefit of the modular concept is the individual adaptation of the model structure with respect to data and process availability and the option for parsimonious model design.

  18. Earthworms and tree roots: A model study of the effect of preferential flow paths on runoff generation and groundwater recharge in steep, saprolitic, tropical lowland catchments

    NASA Astrophysics Data System (ADS)

    Cheng, Yanyan; Ogden, Fred L.; Zhu, Jianting

    2017-07-01

    Preferential flow paths (PFPs) affect the hydrological response of humid tropical catchments but have not received sufficient attention. We consider PFPs created by tree roots and earthworms in a near-surface soil layer in steep, humid, tropical lowland catchments and hypothesize that observed hydrological behaviors can be better captured by reasonably considering PFPs in this layer. We test this hypothesis by evaluating the performance of four different physically based distributed model structures without and with PFPs in different configurations. Model structures are tested both quantitatively and qualitatively using hydrological, geophysical, and geochemical data both from the Smithsonian Tropical Research Institute Agua Salud Project experimental catchment(s) in Central Panama and other sources in the literature. The performance of different model structures is evaluated using runoff Volume Error and three Nash-Sutcliffe efficiency measures against observed total runoff, stormflows, and base flows along with visual comparison of simulated and observed hydrographs. Two of the four proposed model structures which include both lateral and vertical PFPs are plausible, but the one with explicit simulation of PFPs performs the best. A small number of vertical PFPs that fully extend below the root zone allow the model to reasonably simulate deep groundwater recharge, which plays a crucial role in base flow generation. Results also show that the shallow lateral PFPs are the main contributor to the observed high flow characteristics. Their number and size distribution are found to be more important than the depth distribution. Our model results are corroborated by geochemical and geophysical observations.

  19. Statistical and Hydrological evaluation of precipitation forecasts from IMD MME and ECMWF numerical weather forecasts for Indian River basins

    NASA Astrophysics Data System (ADS)

    Mohite, A. R.; Beria, H.; Behera, A. K.; Chatterjee, C.; Singh, R.

    2016-12-01

    Flood forecasting using hydrological models is an important and cost-effective non-structural flood management measure. For forecasting at short lead times, empirical models using real-time precipitation estimates have proven to be reliable. However, their skill depreciates with increasing lead time. Coupling a hydrologic model with real-time rainfall forecasts issued from numerical weather prediction (NWP) systems could increase the lead time substantially. In this study, we compared 1-5 days precipitation forecasts from India Meteorological Department (IMD) Multi-Model Ensemble (MME) with European Center for Medium Weather forecast (ECMWF) NWP forecasts for over 86 major river basins in India. We then evaluated the hydrologic utility of these forecasts over Basantpur catchment (approx. 59,000 km2) of the Mahanadi River basin. Coupled MIKE 11 RR (NAM) and MIKE 11 hydrodynamic (HD) models were used for the development of flood forecast system (FFS). RR model was calibrated using IMD station rainfall data. Cross-sections extracted from SRTM 30 were used as input to the MIKE 11 HD model. IMD started issuing operational MME forecasts from the year 2008, and hence, both the statistical and hydrologic evaluation were carried out from 2008-2014. The performance of FFS was evaluated using both the NWP datasets separately for the year 2011, which was a large flood year in Mahanadi River basin. We will present figures and metrics for statistical (threshold based statistics, skill in terms of correlation and bias) and hydrologic (Nash Sutcliffe efficiency, mean and peak error statistics) evaluation. The statistical evaluation will be at pan-India scale for all the major river basins and the hydrologic evaluation will be for the Basantpur catchment of the Mahanadi River basin.

  20. Development of the Hydrological-Ecological Integrated watershed Flow Model (HEIFLOW): an application to the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zheng, Y.; Zheng, C.; Han, F., Sr.

    2017-12-01

    Physically based and fully-distributed integrated hydrological models (IHMs) can quantitatively depict hydrological processes, both surface and subsurface, with sufficient spatial and temporal details. However, the complexity involved in pre-processing data and setting up models seriously hindered the wider application of IHMs in scientific research and management practice. This study introduces our design and development of Visual HEIFLOW, hereafter referred to as VHF, a comprehensive graphical data processing and modeling system for integrated hydrological simulation. The current version of VHF has been structured to accommodate an IHM named HEIFLOW (Hydrological-Ecological Integrated watershed-scale FLOW model). HEIFLOW is a model being developed by the authors, which has all typical elements of physically based and fully-distributed IHMs. It is based on GSFLOW, a representative integrated surface water-groundwater model developed by USGS. HEIFLOW provides several ecological modules that enable to simulate growth cycle of general vegetation and special plants (maize and populus euphratica). VHF incorporates and streamlines all key steps of the integrated modeling, and accommodates all types of GIS data necessary to hydrological simulation. It provides a GIS-based data processing framework to prepare an IHM for simulations, and has functionalities to flexibly display and modify model features (e.g., model grids, streams, boundary conditions, observational sites, etc.) and their associated data. It enables visualization and various spatio-temporal analyses of all model inputs and outputs at different scales (i.e., computing unit, sub-basin, basin, or user-defined spatial extent). The above system features, as well as many others, can significantly reduce the difficulty and time cost of building and using a complex IHM. The case study in the Heihe River Basin demonstrated the applicability of VHF for large scale integrated SW-GW modeling. Visualization and spatial-temporal analysis of the modeling results by HEIFLOW greatly facilitates our understanding on the complicated hydrologic cycle and relationship among the hydrological and ecological variables in the study area, and provides insights into the regional water resources management.

  1. Development of a copula-based particle filter (CopPF) approach for hydrologic data assimilation under consideration of parameter interdependence

    NASA Astrophysics Data System (ADS)

    Fan, Y. R.; Huang, G. H.; Baetz, B. W.; Li, Y. P.; Huang, K.

    2017-06-01

    In this study, a copula-based particle filter (CopPF) approach was developed for sequential hydrological data assimilation by considering parameter correlation structures. In CopPF, multivariate copulas are proposed to reflect parameter interdependence before the resampling procedure with new particles then being sampled from the obtained copulas. Such a process can overcome both particle degeneration and sample impoverishment. The applicability of CopPF is illustrated with three case studies using a two-parameter simplified model and two conceptual hydrologic models. The results for the simplified model indicate that model parameters are highly correlated in the data assimilation process, suggesting a demand for full description of their dependence structure. Synthetic experiments on hydrologic data assimilation indicate that CopPF can rejuvenate particle evolution in large spaces and thus achieve good performances with low sample size scenarios. The applicability of CopPF is further illustrated through two real-case studies. It is shown that, compared with traditional particle filter (PF) and particle Markov chain Monte Carlo (PMCMC) approaches, the proposed method can provide more accurate results for both deterministic and probabilistic prediction with a sample size of 100. Furthermore, the sample size would not significantly influence the performance of CopPF. Also, the copula resampling approach dominates parameter evolution in CopPF, with more than 50% of particles sampled by copulas in most sample size scenarios.

  2. A new fit-for-purpose model testing framework: Decision Crash Tests

    NASA Astrophysics Data System (ADS)

    Tolson, Bryan; Craig, James

    2016-04-01

    Decision-makers in water resources are often burdened with selecting appropriate multi-million dollar strategies to mitigate the impacts of climate or land use change. Unfortunately, the suitability of existing hydrologic simulation models to accurately inform decision-making is in doubt because the testing procedures used to evaluate model utility (i.e., model validation) are insufficient. For example, many authors have identified that a good standard framework for model testing called the Klemes Crash Tests (KCTs), which are the classic model validation procedures from Klemeš (1986) that Andréassian et al. (2009) rename as KCTs, have yet to become common practice in hydrology. Furthermore, Andréassian et al. (2009) claim that the progression of hydrological science requires widespread use of KCT and the development of new crash tests. Existing simulation (not forecasting) model testing procedures such as KCTs look backwards (checking for consistency between simulations and past observations) rather than forwards (explicitly assessing if the model is likely to support future decisions). We propose a fundamentally different, forward-looking, decision-oriented hydrologic model testing framework based upon the concept of fit-for-purpose model testing that we call Decision Crash Tests or DCTs. Key DCT elements are i) the model purpose (i.e., decision the model is meant to support) must be identified so that model outputs can be mapped to management decisions ii) the framework evaluates not just the selected hydrologic model but the entire suite of model-building decisions associated with model discretization, calibration etc. The framework is constructed to directly and quantitatively evaluate model suitability. The DCT framework is applied to a model building case study on the Grand River in Ontario, Canada. A hypothetical binary decision scenario is analysed (upgrade or not upgrade the existing flood control structure) under two different sets of model building decisions. In one case, we show the set of model building decisions has a low probability to correctly support the upgrade decision. In the other case, we show evidence suggesting another set of model building decisions has a high probability to correctly support the decision. The proposed DCT framework focuses on what model users typically care about: the management decision in question. The DCT framework will often be very strict and will produce easy to interpret results enabling clear unsuitability determinations. In the past, hydrologic modelling progress has necessarily meant new models and model building methods. Continued progress in hydrologic modelling requires finding clear evidence to motivate researchers to disregard unproductive models and methods and the DCT framework is built to produce this kind of evidence. References: Andréassian, V., C. Perrin, L. Berthet, N. Le Moine, J. Lerat, C. Loumagne, L. Oudin, T. Mathevet, M.-H. Ramos, and A. Valéry (2009), Crash tests for a standardized evaluation of hydrological models. Hydrology and Earth System Sciences, 13, 1757-1764. Klemeš, V. (1986), Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31 (1), 13-24.

  3. The Inferential Structure of Actionable Science in Climatological and Hydrological Co-Productions

    NASA Astrophysics Data System (ADS)

    Brumble, K. C.

    2016-12-01

    Across the geophysical sciences, and in hydrology in particular, there is a growing emphasis on and desire to produce "actionable science" and "user-inspired" science. Fueled by the need to make research approachable, intelligible, and useful for decision-makers, policy-makers, and across disciplinary boundaries, actionable science endeavors seek to replace the traditional downward flow of information model for knowledge in the sciences. Instead the focus is on more dynamical knowledge flow between the local and contingent and the vast and complex. New methodologies which allow for the co-production of knowledge between modelers, model users, and decision-makers will be surveyed for the structure of knowledge flow present, and for innovations in communicating and handling uncertainties across traditional disciplinary boundaries. Current and possible future methods for handling sources of uncertainty and cascades of uncertainty will be addressed. Examples will be drawn from recent projects involving the interactions between climate modeling groups, hydrological modelers, and decision makers at the local and regional level in water security to try and identify key methodologies for the co-production of actionable knowledge exportable to other applications in the boundary between systems impacted by climate change.

  4. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery

    NASA Astrophysics Data System (ADS)

    Wu, Qiusheng; Lane, Charles R.

    2017-07-01

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling-spilling-merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic connectivity analysis.

  5. A Local to National Scale Catchment Model Simulation Framework for Hydrological Predictions and Impact Assessments Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Freer, Jim; Coxon, Gemma; Quinn, Niall; Dunne, Toby; Lane, Rosie; Bates, Paul; Wagener, Thorsten; Woods, Ross; Neal, Jeff; Howden, Nicholas; Musuuza, Jude

    2017-04-01

    There is a huge challenge in developing hydrological model structures that can be used for hypothesis testing, prediction, impact assessment and risk analyses over a wide range of spatial scales. There are many reasons why this is the case, from computational demands, to how we define and characterize different features and pathway connectivities in the landscape, that differ depending on the objectives of the study. However there is certainly a need more than ever to explore the trade-offs between the complexity of modelling applied (i.e. spatial discretization, levels of process representation, complexity of landscape representation) compared to the benefits realized in terms of predictive capability and robustness of these predictions during hydrological extremes and during change. Furthermore, there is a further balance, particularly associated with prediction uncertainties, in that it is not desirable to have modelling systems that are too complex compared to the observed data that would ever be available to apply them. This is particularly the case when models are applied to quantify national impact assessments, especially if these are based on validation assessments from smaller more detailed case studies. Therefore the hydrological community needs modelling tools and approaches that enable these trade-offs to be explored and to understand the level of representation needed in models to be 'fit-for-purpose' for a given application. This paper presents a catchment scale national modelling framework based on Dynamic-TOPMODEL specifically setup to fulfil these aims. A key component of the modelling framework is it's structural flexibility, as is the ability to assess model outputs using Monte Carlo simulation techniques. The model build has been automated to work at any spatial scale to the national scale, and within that to control the level of spatial discretisation and connectivity of locally accounted landscape elements in the form of hydrological response units (HRU's). This allows for the explicit consideration of spatial rainfall fields, landscape, soils and geological attributes and the spatial connectivity of hydrological flow pathways to explore what level of modelling complexity we need for different prediction problems. We shall present this framework and show how it can be used in flood and drought risk analyses as well as include attributes and features within the landscape to explore societal and climate impacts effectively within an uncertainty analyses framework.

  6. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Lall, U.; Engel, V.

    2007-12-01

    A goal of the Everglades National Park (ENP) restoration project is to ensure that the ecological health of the ENP improves as a direct result of management activities. Achieving hydrologic targets through the proper timing and amount of releases from control structures is a first step in the management process. Significant climate and weather variations in the region influence the ability to make releases and also determine the ecological outcomes. An assessment of the relative impact of climate variations and water releases to ENP in determining ecological outcomes is consequently a key to the evaluation of the success or failure of any restoration plan. Seasonal water depths in ENP depend on managed surface water releases from control structures and on direct rainfall. Here we link wading bird foraging patterns - a fundamental aspect of Everglades' ecology - to hydrologic management and climate variability in the National Park. Our objective is multifold. First, we relate the water levels at P33 and Shark Slough to the synoptic hydrologic conditions. Second, we develop a statistical model relating water levels at a station in central Shark Slough (P33) to wading birds foraging patterns throughout ENP. We attempt to apply a Hierarchical Bayesian scheme to a time series of wading bird to provide an uncertainty distribution of the population over specified time periods given hydrologic condition. Third, we develop a set of hydrologic index derived by recorded water level at P33 for a use of the statistical model of wading birds as an input. Our study will focus on great egret and white ibis that are major species among wading birds in the ENP. The great egret and white ibis prediction predicted by the model using the proposed predictors exhibits strong correlation with the observed streamflow, with an correlation 0.8.

  7. A Fresh Start for Flood Estimation in Ungauged Basins

    NASA Astrophysics Data System (ADS)

    Woods, R. A.

    2017-12-01

    The two standard methods for flood estimation in ungauged basins, regression-based statistical models and rainfall-runoff models using a design rainfall event, have survived relatively unchanged as the methods of choice for more than 40 years. Their technical implementation has developed greatly, but the models' representation of hydrological processes has not, despite a large volume of hydrological research. I suggest it is time to introduce more hydrology into flood estimation. The reliability of the current methods can be unsatisfactory. For example, despite the UK's relatively straightforward hydrology, regression estimates of the index flood are uncertain by +/- a factor of two (for a 95% confidence interval), an impractically large uncertainty for design. The standard error of rainfall-runoff model estimates is not usually known, but available assessments indicate poorer reliability than statistical methods. There is a practical need for improved reliability in flood estimation. Two promising candidates to supersede the existing methods are (i) continuous simulation by rainfall-runoff modelling and (ii) event-based derived distribution methods. The main challenge with continuous simulation methods in ungauged basins is to specify the model structure and parameter values, when calibration data are not available. This has been an active area of research for more than a decade, and this activity is likely to continue. The major challenges for the derived distribution method in ungauged catchments include not only the correct specification of model structure and parameter values, but also antecedent conditions (e.g. seasonal soil water balance). However, a much smaller community of researchers are active in developing or applying the derived distribution approach, and as a result slower progress is being made. A change in needed: surely we have learned enough about hydrology in the last 40 years that we can make a practical hydrological advance on our methods for flood estimation! A shift to new methods for flood estimation will not be taken lightly by practitioners. However, the standard for change is clear - can we develop new methods which give significant improvements in reliability over those existing methods which are demonstrably unsatisfactory?

  8. Hydrological modelling of the Mara River Basin, Kenya: Application of the Normalised Difference Infrared Index (NDII)

    NASA Astrophysics Data System (ADS)

    Hulsman, Petra; Savenije, Hubert; Bogaard, Thom

    2017-04-01

    In hydrology and water resources management, precipitation and discharge are the main time series for hydrological modelling. However, in African river catchments, the quantity and quality of the available precipitation stations and discharge measurements are unfortunately often inadequate for reliable hydrological modelling. To cope with these uncertainties, this study proposes to calibrate on water levels and to constrain the model using the Normalised Difference Infrared Index (NDII) as a proxy for root zone moisture stress. With the NDII, the leaf water content can be monitored. Previous studies related the NDII to the equivalent water thickness (EWT) of leaves, which is used to determine the vegetation water content (VWC). As the water content in the leaves is related to the water content in the root zone, the NDII can also be used as indicator of the soil moisture content in the root zone. In previous studies it was found that the root zone moisture content is exponentially correlated to the NDII during periods of moisture stress. In this study, the semi-distributed rainfall runoff model FLEX-Topo has been applied to the Mara River Basin. In this model seven sub-basins are distinguished and four hydrological response units with each a unique model structure based on the expected dominant flow processes. To calibrate the model, the water levels have been back-calculated from modelled discharges, using cross-section data and the Strickler formula calibrating parameter 'k•s1/2', and compared to measured water levels. In addition, the correlation between the NDII and root zone moisture content has been analysed for this river basin for each sub-catchment and hydrological response unit. Also, the application of the NDII as model constraint or for calibration has been analysed.

  9. The Montaguto earth flow: nine years of observation and analysis

    USGS Publications Warehouse

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  10. Can the super model (SUMO) method improve hydrological simulations? Exploratory tests with the GR hydrological models

    NASA Astrophysics Data System (ADS)

    Santos, Léonard; Thirel, Guillaume; Perrin, Charles

    2017-04-01

    Errors made by hydrological models may come from a problem in parameter estimation, uncertainty on observed measurements, numerical problems and from the model conceptualization that simplifies the reality. Here we focus on this last issue of hydrological modeling. One of the solutions to reduce structural uncertainty is to use a multimodel method, taking advantage of the great number and the variability of existing hydrological models. In particular, because different models are not similarly good in all situations, using multimodel approaches can improve the robustness of modeled outputs. Traditionally, in hydrology, multimodel methods are based on the output of the model (the simulated flow series). The aim of this poster is to introduce a different approach based on the internal variables of the models. The method is inspired by the SUper MOdel (SUMO, van den Berge et al., 2011) developed for climatology. The idea of the SUMO method is to correct the internal variables of a model taking into account the values of the internal variables of (an)other model(s). This correction is made bilaterally between the different models. The ensemble of the different models constitutes a super model in which all the models exchange information on their internal variables with each other at each time step. Due to this continuity in the exchanges, this multimodel algorithm is more dynamic than traditional multimodel methods. The method will be first tested using two GR4J models (in a state-space representation) with different parameterizations. The results will be presented and compared to traditional multimodel methods that will serve as benchmarks. In the future, other rainfall-runoff models will be used in the super model. References van den Berge, L. A., Selten, F. M., Wiegerinck, W., and Duane, G. S. (2011). A multi-model ensemble method that combines imperfect models through learning. Earth System Dynamics, 2(1) :161-177.

  11. Multi-metric calibration of hydrological model to capture overall flow regimes

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Shao, Quanxi; Zhang, Shifeng; Zhai, Xiaoyan; She, Dunxian

    2016-08-01

    Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical role in water supply and flood control, environmental processes, as well as biodiversity and life history patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological model was usually inadequate to well capture all the characteristics of observed flow regimes. In this study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization objectives, which could represent the major characteristics of flow regimes. Model performance was compared with that of the single objective calibration. Results showed that most metrics were better simulated by the multi-objective approach than those of the single objective calibration, especially the low and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating. However, the model performance of middle flow magnitude was not significantly improved because this metric was usually well captured by single objective calibration. The timing of minimum flow was poorly predicted by both the multi-metric and single calibrations due to the uncertainties in model structure and input data. The sensitive parameter values of the hydrological model changed remarkably and the simulated hydrological processes by the multi-metric calibration became more reliable, because more flow characteristics were considered. The study is expected to provide more detailed flow information by hydrological simulation for the integrated water resources management, and to improve the simulation performances of overall flow regimes.

  12. Grid vs Mesh: The case of Hyper-resolution Modeling in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Grimley, L. E.; Tijerina, D.; Khanam, M.; Tiernan, E. D.; Frazier, N.; Ogden, F. L.; Steinke, R. C.; Maxwell, R. M.; Cohen, S.

    2017-12-01

    In this study, the relative performance of ADHydro and GSSHA was analyzed for a small and large rainfall event in an urban watershed called Dead Run near Baltimore, Maryland. ADHydro is a physics-based, distributed, hydrologic model that uses an unstructured mesh and operates in a high performance computing environment. The Gridded Surface/Subsurface Hydrological Analysis (GSSHA) model, which is maintained by the US Army Corps of Engineers, is a physics-based, distributed, hydrologic model that incorporates subsurface utilities and uses a structured mesh. A large portion of the work served as alpha-testing of ADHydro, which is under development by the CI-WATER modeling team at the University of Wyoming. Triangular meshes at variable resolutions were created to assess the sensitivity of ADHydro to changes in resolution and test the model's ability to handle a complicated urban routing network with structures present. ADHydro was compared with GSSHA which does not have the flexibility of an unstructured grid but does incorporate the storm drainage network. The modelled runoff hydrographs were compared to observed United States Geological Survey (USGS) stream gage data. The objective of this study was to analyze the effects of mesh type and resolution using ADHydro and GSSHA in simulations of an urban watershed.

  13. Multi-objective calibration and uncertainty analysis of hydrologic models; A comparative study between formal and informal methods

    NASA Astrophysics Data System (ADS)

    Shafii, M.; Tolson, B.; Matott, L. S.

    2012-04-01

    Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.

  14. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model simulations reproduce the three major C-Q patterns observed in published data, offering valuable insight into coupled catchment processes. The findings have important implications for effective catchment management for water quality improvement, and stream monitoring strategies.

  15. Enhancements to the WRF-Hydro Hydrologic Model Structure for Semi-arid Environments

    NASA Astrophysics Data System (ADS)

    Lahmers, T. M.; Gupta, H.; Hazenberg, P.; Castro, C. L.; Gochis, D.; Yates, D. N.; Dugger, A. L.; Goodrich, D. C.

    2017-12-01

    The NOAA National Water Center (NWC) implemented an operational National Water Model (NWM) in August 2016 to simulate and forecast streamflow and soil moisture throughout the Contiguous US (CONUS). The NWM is based on the WRF-Hydro hydrologic model architecture, with a 1-km resolution Noah-MP LSM grid and a 250m routing grid. The operational NWM does not currently resolve infiltration of water from the beds of ephemeral channels, which is an important component of the water balance in semi-arid environments common in many portions of the western US. This work demonstrates the benefit of a conceptual channel infiltration function in the WRF-Hydro model architecture following calibration. The updated model structure and parameters for the NWM architecture, when implemented operationally, will permit its use in flow simulation and forecasting in the southwest US, particularly for flash floods in basins with smaller drainage areas. Our channel infiltration function is based on that of the KINEROS2 semi-distributed hydrologic model, which has been tested throughout the southwest CONUS for flash flood forecasts. Model calibration utilizes the Dynamically Dimensioned Search (DDS) algorithm, and the model is calibrated using NLDAS-2 atmospheric forcing and NCEP Stage-IV precipitation. Our results show that adding channel infiltration to WRF-Hydro can produce a physically consistent hydrologic response with a high-resolution gauge based precipitation forcing dataset in the USDA-ARS Walnut Gulch Experimental Watershed. NWM WRF-Hydro is also tested for the Babocomari River, Beaver Creek, and Sycamore Creek catchments in southern and central Arizona. In these basins, model skill is degraded due to uncertainties in the NCEP Stage-IV precipitation forcing dataset.

  16. How much can we trust a geological model underlying a subsurface hydrological investigation?

    NASA Astrophysics Data System (ADS)

    Wellmann, Florian; de la Varga, Miguel; Schaaf, Alexander; Burs, David

    2017-04-01

    Geological models often provide an important basis for subsequent hydrological investigations. As these models are generally built with a limited amount of information, they can contain significant uncertainties - and it is reasonable to assume that these uncertainties can potentially influence subsequent hydrological simulations. However, the investigation of uncertainties in geological models is not straightforward - and, even though recent advances have been made in the field, there is no out-of-the-box implementation to analyze uncertainties in a standard geological modeling package. We present here results of recent developments to address this problem with an efficient implementation of a geological modeling method for complex structural models, integrated in a Bayesian inference framework. The implemented geological modeling approach is based on a full 3-D implicit interpolation that directly respects interface positions and orientation measurements, as well as the influence of faults. In combination, the approach allows us to generate ensembles of geological model realizations, constrained by additional information in the form of likelihood functions to ensure consistency with additional geological aspects (e.g. sequence continuity, topology, fault network consistency), and we demonstrate the potential of the method in an exemplified case study. With this approach, we aim to contribute to a better understanding of the influence of geological uncertainties on subsurface hydrological investigations.

  17. Toward seamless hydrologic predictions across spatial scales

    NASA Astrophysics Data System (ADS)

    Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Zink, Matthias; Wanders, Niko; Eisner, Stephanie; Müller Schmied, Hannes; Sutanudjaja, Edwin H.; Warrach-Sagi, Kirsten; Attinger, Sabine

    2017-09-01

    Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1-10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR) technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

  18. A metrics for soil hydrological processes and their intrinsic dimensionality in heterogeneous systems

    NASA Astrophysics Data System (ADS)

    Lischeid, G.; Hohenbrink, T.; Schindler, U.

    2012-04-01

    Hydrology is based on the observation that catchments process input signals, e.g., precipitation, in a highly deterministic way. Thus, the Darcy or the Richards equation can be applied to model water fluxes in the saturated or vadose zone, respectively. Soils and aquifers usually exhibit substantial spatial heterogeneities at different scales that can, in principle, be represented by corresponding parameterisations of the models. In practice, however, data are hardly available at the required spatial resolution, and accounting for observed heterogeneities of soil and aquifer structure renders models very time and CPU consuming. We hypothesize that the intrinsic dimensionality of soil hydrological processes, which is induced by spatial heterogeneities, actually is very low and that soil hydrological processes in heterogeneous soils follow approximately the same trajectory. That means, the way how the soil transforms any hydrological input signals is the same for different soil textures and structures. Different soils differ only with respect to the extent of transformation of input signals. In a first step, we analysed the output of a soil hydrological model, based on the Richards equation, for homogeneous soils down to 5 m depth for different soil textures. A matrix of time series of soil matrix potential and soil water content at 10 cm depth intervals was set up. The intrinsic dimensionality of that matrix was assessed using the Correlation Dimension and a non-linear principal component approach. The latter provided a metrics for the extent of transformation ("damping") of the input signal. In a second step, model outputs for heterogeneous soils were analysed. In a last step, the same approaches were applied to 55 time series of observed soil water content from 15 sites and different depths. In all cases, the intrinsic dimensionality in fact was very close to unity, confirming our hypothesis. The metrics provided a very efficient tool to quantify the observed behaviour, depending on depth and soil heterogeneity: Different soils differed primarily with respect to the extent of damping per depth interval rather than to the kind of damping. We will show how that metrics can be used in a very efficient way for representing soil heterogeneities in simulation models.

  19. Investigating the relationship between a soils classification and the spatial parameters of a conceptual catchment-scale hydrological model

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.; Lilly, A.

    2001-10-01

    There are now many examples of hydrological models that utilise the capabilities of Geographic Information Systems to generate spatially distributed predictions of behaviour. However, the spatial variability of hydrological parameters relating to distributions of soils and vegetation can be hard to establish. In this paper, the relationship between a soil hydrological classification Hydrology of Soil Types (HOST) and the spatial parameters of a conceptual catchment-scale model is investigated. A procedure involving inverse modelling using Monte-Carlo simulations on two catchments is developed to identify relative values for soil related parameters of the DIY model. The relative values determine the internal variability of hydrological processes as a function of the soil type. For three out of the four soil parameters studied, the variability between HOST classes was found to be consistent across two catchments when tested independently. Problems in identifying values for the fourth 'fast response distance' parameter have highlighted a potential limitation with the present structure of the model. The present assumption that this parameter can be related simply to soil type rather than topography appears to be inadequate. With the exclusion of this parameter, calibrated parameter sets from one catchment can be converted into equivalent parameter sets for the alternate catchment on the basis of their HOST distributions, to give a reasonable simulation of flow. Following further testing on different catchments, and modifications to the definition of the fast response distance parameter, the technique provides a methodology whereby it is possible to directly derive spatial soil parameters for new catchments.

  20. Improved global simulation of groundwater-ecosystem interactions via tight coupling of a dynamic global ecosystem model and a global hydrological model

    NASA Astrophysics Data System (ADS)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; Smith, Benjamin; Sutanudjaja, Edwin; van Beek, Rens; van Kampenhout, Leo; Wassen, Martin

    2017-04-01

    In up to 30% of the global land surface ecosystems are potentially influenced by the presence of a shallow groundwater table. In these regions upward water flux by capillary rise increases soil moisture availability in the root zone, which has a strong effect on evapotranspiration, vegetation dynamics, and fluxes of carbon and nitrogen. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure, and biogeochemical processes and are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB, which explicitly simulates groundwater dynamics. This coupled model allows us to explicitly account for groundwater effects on terrestrial ecosystem processes at global scale. Results of global simulations indicate that groundwater strongly influences fluxes of water, carbon and nitrogen, in many regions, adding up to a considerable effect at the global scale.

  1. Evaluation of rainfall structure on hydrograph simulation: Comparison of radar and interpolated methods, a study case in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Velasquez, N.; Ochoa, A.; Castillo, S.; Hoyos Ortiz, C. D.

    2017-12-01

    The skill of river discharge simulation using hydrological models strongly depends on the quality and spatio-temporal representativeness of precipitation during storm events. All precipitation measurement strategies have their own strengths and weaknesses that translate into discharge simulation uncertainties. Distributed hydrological models are based on evolving rainfall fields in the same time scale as the hydrological simulation. In general, rainfall measurements from a dense and well maintained rain gauge network provide a very good estimation of the total volume for each rainfall event, however, the spatial structure relies on interpolation strategies introducing considerable uncertainty in the simulation process. On the other hand, rainfall retrievals from radar reflectivity achieve a better spatial structure representation but with higher uncertainty in the surface precipitation intensity and volume depending on the vertical rainfall characteristics and radar scan strategy. To assess the impact of both rainfall measurement methodologies on hydrological simulations, and in particular the effects of the rainfall spatio-temporal variability, a numerical modeling experiment is proposed including the use of a novel QPE (Quantitative Precipitation Estimation) method based on disdrometer data in order to estimate surface rainfall from radar reflectivity. The experiment is based on the simulation of 84 storms, the hydrological simulations are carried out using radar QPE and two different interpolation methods (IDW and TIN), and the assessment of simulated peak flow. Results show significant rainfall differences between radar QPE and the interpolated fields, evidencing a poor representation of storms in the interpolated fields, which tend to miss the precise location of the intense precipitation cores, and to artificially generate rainfall in some areas of the catchment. Regarding streamflow modelling, the potential improvement achieved by using radar QPE depends on the density of the rain gauge network and its distribution relative to the precipitation events. The results for the 84 storms show a better model skill using radar QPE than the interpolated fields. Results using interpolated fields are highly affected by the dominant rainfall type and the basin scale.

  2. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds

    PubMed Central

    Vaughn, Nicholas R.; Asner, Gregory P.; Smit, Izak P. J.; Riddel, Edward S.

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50–450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques. PMID:26660502

  3. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    PubMed

    Vaughn, Nicholas R; Asner, Gregory P; Smit, Izak P J; Riddel, Edward S

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  4. Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin

    NASA Astrophysics Data System (ADS)

    zhang, L.

    2011-12-01

    Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be studied through the copula theory. As to the parameter estimation, the maximum likelihood estimation (MLE) will be applied. To illustrate the method, the univariate time series model and the dependence structure will be determined and tested using the monthly discharge time series of Cuyahoga River Basin.

  5. A Cascade Approach to Uncertainty Estimation for the Hydrological Simulation of Droughts

    NASA Astrophysics Data System (ADS)

    Smith, Katie; Tanguy, Maliko; Parry, Simon; Prudhomme, Christel

    2016-04-01

    Uncertainty poses a significant challenge in environmental research and the characterisation and quantification of uncertainty has become a research priority over the past decade. Studies of extreme events are particularly affected by issues of uncertainty. This study focusses on the sources of uncertainty in the modelling of streamflow droughts in the United Kingdom. Droughts are a poorly understood natural hazard with no universally accepted definition. Meteorological, hydrological and agricultural droughts have different meanings and vary both spatially and temporally, yet each is inextricably linked. The work presented here is part of two extensive interdisciplinary projects investigating drought reconstruction and drought forecasting capabilities in the UK. Lumped catchment models are applied to simulate streamflow drought, and uncertainties from 5 different sources are investigated: climate input data, potential evapotranspiration (PET) method, hydrological model, within model structure, and model parameterisation. Latin Hypercube sampling is applied to develop large parameter ensembles for each model structure which are run using parallel computing on a high performance computer cluster. Parameterisations are assessed using a multi-objective evaluation criteria which includes both general and drought performance metrics. The effect of different climate input data and PET methods on model output is then considered using the accepted model parameterisations. The uncertainty from each of the sources creates a cascade, and when presented as such the relative importance of each aspect of uncertainty can be determined.

  6. An open source hydroeconomic model for California's water supply system: PyVIN

    NASA Astrophysics Data System (ADS)

    Dogan, M. S.; White, E.; Herman, J. D.; Hart, Q.; Merz, J.; Medellin-Azuara, J.; Lund, J. R.

    2016-12-01

    Models help operators and decision makers explore and compare different management and policy alternatives, better allocate scarce resources, and predict the future behavior of existing or proposed water systems. Hydroeconomic models are useful tools to increase benefits or decrease costs of managing water. Bringing hydrology and economics together, these models provide a framework for different disciplines that share similar objectives. This work proposes a new model to evaluate operation and adaptation strategies under existing and future hydrologic conditions for California's interconnected water system. This model combines the network structure of CALVIN, a statewide optimization model for California's water infrastructure, along with an open source solver written in the Python programming language. With the flexibilities of the model, reservoir operations, including water supply and hydropower, groundwater pumping, and the Delta water operations and requirements can now be better represented. Given time series of hydrologic inputs to the model, typical outputs include urban, agricultural and wildlife refuge water deliveries and shortage costs, conjunctive use of surface and groundwater systems, and insights into policy and management decisions, such as capacity expansion and groundwater management policies. Water market operations also represented in the model, allocating water from lower-valued users to higher-valued users. PyVIN serves as a cross-platform, extensible model to evaluate systemwide water operations. PyVIN separates data from the model structure, enabling model to be easily applied to other parts of the world where water is a scarce resource.

  7. Hydrologic connectivity of geographically isolated wetlands to surface water systems

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Ameli, A.

    2016-12-01

    Hydrologic connectivity of wetlands is poorly characterized and understood. Our inability to quantify this connectivity compromises our understanding of the potential impacts of land use (e.g., wetland drainage) and climate changes on watershed structure, function and water supplies. We develop a computationally efficient physically-based subsurface-surface hydrological model to map both the subsurface and surface hydrologic connectivity of geographically isolated wetlands (i.e., wetlands without surface outlets) and explore the time and length variations in these connections to a river within the Prairie Pothole Region of North America. Despite a high density of geographically isolated wetlands, modeled connections show that these wetlands are not hydrologically isolated. Hydrologic subsurface connectivity differs significantly from surface connectivity in terms of timing and length of connections. Slow subsurface connections between wetlands and the downstream river originate from wetlands throughout the watershed, whereas fast surface connections were limited to large events and originate from wetlands located near the river. Results also suggest that prioritization of protection of wetlands that relies on shortest distance of wetland to the river or surface connections alone can lead to unintended consequences in terms of loss of attending wetland ecosystem functions, services and their benefits to society. This modeling approach provides first ever insight on the nature of geographically isolated wetland subsurface and surface hydrological connections to rivers, and can provide guidance on the development of watershed management and conservation plans (e.g., wetlands drainage/restoration) under different climate and land management scenarios.

  8. Delineating wetland catchments and modeling hydrologic ...

    EPA Pesticide Factsheets

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling–spilling–merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that

  9. A comparative appraisal of hydrological behavior of SRTM DEM at catchment level

    NASA Astrophysics Data System (ADS)

    Sharma, Arabinda; Tiwari, K. N.

    2014-11-01

    The Shuttle Radar Topography Mission (SRTM) data has emerged as a global elevation data in the past one decade because of its free availability, homogeneity and consistent accuracy compared to other global elevation dataset. The present study explores the consistency in hydrological behavior of the SRTM digital elevation model (DEM) with reference to easily available regional 20 m contour interpolated DEM (TOPO DEM). Analysis ranging from simple vertical accuracy assessment to hydrological simulation of the studied Maithon catchment, using empirical USLE model and semidistributed, physical SWAT model, were carried out. Moreover, terrain analysis involving hydrological indices was performed for comparative assessment of the SRTM DEM with respect to TOPO DEM. Results reveal that the vertical accuracy of SRTM DEM (±27.58 m) in the region is less than the specified standard (±16 m). Statistical analysis of hydrological indices such as topographic wetness index (TWI), stream power index (SPI), slope length factor (SLF) and geometry number (GN) shows a significant differences in hydrological properties of the two studied DEMs. Estimation of soil erosion potentials of the catchment and conservation priorities of microwatersheds of the catchment using SRTM DEM and TOPO DEM produce considerably different results. Prediction of soil erosion potential using SRTM DEM is far higher than that obtained using TOPO DEM. Similarly, conservation priorities determined using the two DEMs are found to be agreed for only 34% of microwatersheds of the catchment. ArcSWAT simulation reveals that runoff predictions are less sensitive to selection of the two DEMs as compared to sediment yield prediction. The results obtained in the present study are vital to hydrological analysis as it helps understanding the hydrological behavior of the DEM without being influenced by the model structural as well as parameter uncertainty. It also reemphasized that SRTM DEM can be a valuable dataset for hydrological analysis provided any error/uncertainty therein is being properly evaluated and characterized.

  10. Parallelization of a Fully-Distributed Hydrologic Model using Sub-basin Partitioning

    NASA Astrophysics Data System (ADS)

    Vivoni, E. R.; Mniszewski, S.; Fasel, P.; Springer, E.; Ivanov, V. Y.; Bras, R. L.

    2005-12-01

    A primary obstacle towards advances in watershed simulations has been the limited computational capacity available to most models. The growing trend of model complexity, data availability and physical representation has not been matched by adequate developments in computational efficiency. This situation has created a serious bottleneck which limits existing distributed hydrologic models to small domains and short simulations. In this study, we present novel developments in the parallelization of a fully-distributed hydrologic model. Our work is based on the TIN-based Real-time Integrated Basin Simulator (tRIBS), which provides continuous hydrologic simulation using a multiple resolution representation of complex terrain based on a triangulated irregular network (TIN). While the use of TINs reduces computational demand, the sequential version of the model is currently limited over large basins (>10,000 km2) and long simulation periods (>1 year). To address this, a parallel MPI-based version of the tRIBS model has been implemented and tested using high performance computing resources at Los Alamos National Laboratory. Our approach utilizes domain decomposition based on sub-basin partitioning of the watershed. A stream reach graph based on the channel network structure is used to guide the sub-basin partitioning. Individual sub-basins or sub-graphs of sub-basins are assigned to separate processors to carry out internal hydrologic computations (e.g. rainfall-runoff transformation). Routed streamflow from each sub-basin forms the major hydrologic data exchange along the stream reach graph. Individual sub-basins also share subsurface hydrologic fluxes across adjacent boundaries. We demonstrate how the sub-basin partitioning provides computational feasibility and efficiency for a set of test watersheds in northeastern Oklahoma. We compare the performance of the sequential and parallelized versions to highlight the efficiency gained as the number of processors increases. We also discuss how the coupled use of TINs and parallel processing can lead to feasible long-term simulations in regional watersheds while preserving basin properties at high-resolution.

  11. The influence of hydrology and waterway distance on population structure of Chinook salmon Oncorhynchus tshawytscha in a large river.

    PubMed

    Olsen, J B; Beacham, T D; Wetklo, M; Seeb, L W; Smith, C T; Flannery, B G; Wenburg, J K

    2010-04-01

    Adult Chinook salmon Oncorhynchus tshawytscha navigate in river systems using olfactory cues that may be influenced by hydrologic factors such as flow and the number, size and spatial distribution of tributaries. Thus, river hydrology may influence both homing success and the level of straying (gene flow), which in turn influences population structure. In this study, two methods of multivariate analysis were used to examine the extent to which four indicators of hydrology and waterway distance explained population structure of O. tshawytscha in the Yukon River. A partial Mantel test showed that the indicators of hydrology were positively associated with broad-scale (Yukon basin) population structure, when controlling for the influence of waterway distance. Multivariate multiple regression showed that waterway distance, supplemented with the number and flow of major drainage basins, explained more variation in broad-scale population structure than any single indicator. At an intermediate spatial scale, indicators of hydrology did not appear to influence population structure after accounting for waterway distance. These results suggest that habitat changes in the Yukon River, which alter hydrology, may influence the basin-wide pattern of population structure in O. tshawytscha. Further research is warranted on the role of hydrology in concert with waterway distance in influencing population structure in Pacific salmon.

  12. Micro-topographic hydrologic variability due to vegetation acclimation under climate change

    NASA Astrophysics Data System (ADS)

    Le, P. V.; Kumar, P.

    2012-12-01

    Land surface micro-topography and vegetation cover have fundamental effects on the land-atmosphere interactions. The altered temperature and precipitation variability associated with climate change will affect the water and energy processes both directly and that mediated through vegetation. Since climate change induces vegetation acclimation that leads to shifts in evapotranspiration and heat fluxes, it further modifies microclimate and near-surface hydrological processes. In this study, we investigate the impacts of vegetation acclimation to climate change on micro-topographic hydrologic variability. The ability to accurately predict these impacts requires the simultaneous considerations of biochemical, ecophysiological and hydrological processes. A multilayer canopy-root-soil system model coupled with a conjunctive surface-subsurface flow model is used to capture the acclimatory responses and analyze the changes in dynamics of structure and connectivity of micro-topographic storage and in magnitudes of runoff. The study is performed using Light Detection and Ranging (LiDAR) topographic data in the Birds Point-New Madrid floodway in Missouri, U.S.A. The result indicates that both climate change and its associated vegetation acclimation play critical roles in altering the micro-topographic hydrological responses.

  13. Comment on "Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?" by Mazzoleni et al. (2017)

    NASA Astrophysics Data System (ADS)

    Viero, Daniele P.

    2018-01-01

    Citizen science and crowdsourcing are gaining increasing attention among hydrologists. In a recent contribution, Mazzoleni et al. (2017) investigated the integration of crowdsourced data (CSD) into hydrological models to improve the accuracy of real-time flood forecasts. The authors used synthetic CSD (i.e. not actually measured), because real CSD were not available at the time of the study. In their work, which is a proof-of-concept study, Mazzoleni et al. (2017) showed that assimilation of CSD improves the overall model performance; the impact of irregular frequency of available CSD, and that of data uncertainty, were also deeply assessed. However, the use of synthetic CSD in conjunction with (semi-)distributed hydrological models deserves further discussion. As a result of equifinality, poor model identifiability, and deficiencies in model structure, internal states of (semi-)distributed models can hardly mimic the actual states of complex systems away from calibration points. Accordingly, the use of synthetic CSD that are drawn from model internal states under best-fit conditions can lead to overestimation of the effectiveness of CSD assimilation in improving flood prediction. Operational flood forecasting, which results in decisions of high societal value, requires robust knowledge of the model behaviour and an in-depth assessment of both model structure and forcing data. Additional guidelines are given that are useful for the a priori evaluation of CSD for real-time flood forecasting and, hopefully, for planning apt design strategies for both model calibration and collection of CSD.

  14. Structural pattern of the Saïss basin and Tabular Middle Atlas in northern Morocco: Hydrological implications

    NASA Astrophysics Data System (ADS)

    Dauteuil, O.; Moreau, F.; Qarqori, K.

    2016-07-01

    The plain of Saïss is a fertile area of great agricultural production with major economic interests. Therefore, the improved knowledge about the water supply is imperative within a context of recurrent droughts and overexploitation of the groundwater. This plain is located in the Meknes-Fes basin and between two deformed domains: the Rif and Middle Atlas. The aquifers are fed by water coming from the Tabular Middle Atlas, for which the pathways are poorly constrained. This study provides new data to determine the water pathways based on a structural map produced from a novel analysis of SPOT images and a digital elevation model. This structural map reveals two fracture sets trending NE-SW and NW-SE. The first set is well known and corresponds to a main trend that controlled the tectonic and stratigraphic evolution of the study area. On the other hand, the NW-SE set was poorly described until now: it is both diffuse and widespread on the Tabular Middle Atlas. A comparison between the regional water flow trend, drainage pattern and structural map shows that the NW-SE fractures control the water flow from the Tabular Middle Atlas to the Saïss plain. A hydrological model is discussed where the water flow is confined onto Liassic carbonates and driven by NW-SE fractures. This study explains how a detailed structural mapping shows hydrology constraints.

  15. Potential Impacts of Climate Warming on Water Supply Reliability in the Tuolumne and Merced River Basins, California

    PubMed Central

    Kiparsky, Michael; Joyce, Brian; Purkey, David; Young, Charles

    2014-01-01

    We present an integrated hydrology/water operations simulation model of the Tuolumne and Merced River Basins, California, using the Water Evaluation and Planning (WEAP) platform. The model represents hydrology as well as water operations, which together influence water supplied for agricultural, urban, and environmental uses. The model is developed for impacts assessment using scenarios for climate change and other drivers of water system behavior. In this paper, we describe the model structure, its representation of historical streamflow, agricultural and urban water demands, and water operations. We describe projected impacts of climate change on hydrology and water supply to the major irrigation districts in the area, using uniform 2°C, 4°C, and 6°C increases applied to climate inputs from the calibration period. Consistent with other studies, we find that the timing of hydrology shifts earlier in the water year in response to temperature warming (5–21 days). The integrated agricultural model responds with increased water demands 2°C (1.4–2.0%), 4°C (2.8–3.9%), and 6°C (4.2–5.8%). In this sensitivity analysis, the combination of altered hydrology and increased demands results in decreased reliability of surface water supplied for agricultural purposes, with modeled quantity-based reliability metrics decreasing from a range of 0.84–0.90 under historical conditions to 0.75–0.79 under 6°C warming scenario. PMID:24465455

  16. A comparison of hydrologic models for ecological flows and water availability

    USGS Publications Warehouse

    Caldwell, Peter V; Kennen, Jonathan G.; Sun, Ge; Kiang, Julie E.; Butcher, John B; Eddy, Michelle C; Hay, Lauren E.; LaFontaine, Jacob H.; Hain, Ernie F.; Nelson, Stacy C; McNulty, Steve G

    2015-01-01

    Robust hydrologic models are needed to help manage water resources for healthy aquatic ecosystems and reliable water supplies for people, but there is a lack of comprehensive model comparison studies that quantify differences in streamflow predictions among model applications developed to answer management questions. We assessed differences in daily streamflow predictions by four fine-scale models and two regional-scale monthly time step models by comparing model fit statistics and bias in ecologically relevant flow statistics (ERFSs) at five sites in the Southeastern USA. Models were calibrated to different extents, including uncalibrated (level A), calibrated to a downstream site (level B), calibrated specifically for the site (level C) and calibrated for the site with adjusted precipitation and temperature inputs (level D). All models generally captured the magnitude and variability of observed streamflows at the five study sites, and increasing level of model calibration generally improved performance. All models had at least 1 of 14 ERFSs falling outside a +/−30% range of hydrologic uncertainty at every site, and ERFSs related to low flows were frequently over-predicted. Our results do not indicate that any specific hydrologic model is superior to the others evaluated at all sites and for all measures of model performance. Instead, we provide evidence that (1) model performance is as likely to be related to calibration strategy as it is to model structure and (2) simple, regional-scale models have comparable performance to the more complex, fine-scale models at a monthly time step.

  17. Hydrologic Model Selection using Markov chain Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Marshall, L.; Sharma, A.; Nott, D.

    2002-12-01

    Estimation of parameter uncertainty (and in turn model uncertainty) allows assessment of the risk in likely applications of hydrological models. Bayesian statistical inference provides an ideal means of assessing parameter uncertainty whereby prior knowledge about the parameter is combined with information from the available data to produce a probability distribution (the posterior distribution) that describes uncertainty about the parameter and serves as a basis for selecting appropriate values for use in modelling applications. Widespread use of Bayesian techniques in hydrology has been hindered by difficulties in summarizing and exploring the posterior distribution. These difficulties have been largely overcome by recent advances in Markov chain Monte Carlo (MCMC) methods that involve random sampling of the posterior distribution. This study presents an adaptive MCMC sampling algorithm which has characteristics that are well suited to model parameters with a high degree of correlation and interdependence, as is often evident in hydrological models. The MCMC sampling technique is used to compare six alternative configurations of a commonly used conceptual rainfall-runoff model, the Australian Water Balance Model (AWBM), using 11 years of daily rainfall runoff data from the Bass river catchment in Australia. The alternative configurations considered fall into two classes - those that consider model errors to be independent of prior values, and those that model the errors as an autoregressive process. Each such class consists of three formulations that represent increasing levels of complexity (and parameterisation) of the original model structure. The results from this study point both to the importance of using Bayesian approaches in evaluating model performance, as well as the simplicity of the MCMC sampling framework that has the ability to bring such approaches within the reach of the applied hydrological community.

  18. Full implementation of a distributed hydrological model based on check dam trapped sediment volumes

    NASA Astrophysics Data System (ADS)

    Bussi, Gianbattista; Francés, Félix

    2014-05-01

    Lack of hydrometeorological data is one of the most compelling limitations to the implementation of distributed environmental models. Mediterranean catchments, in particular, are characterised by high spatial variability of meteorological phenomena and soil characteristics, which may prevents from transferring model calibrations from a fully gauged catchment to a totally o partially ungauged one. For this reason, new sources of data are required in order to extend the use of distributed models to non-monitored or low-monitored areas. An important source of information regarding the hydrological and sediment cycle is represented by sediment deposits accumulated at the bottom of reservoirs. Since the 60s, reservoir sedimentation volumes were used as proxy data for the estimation of inter-annual total sediment yield rates, or, in more recent years, as a reference measure of the sediment transport for sediment model calibration and validation. Nevertheless, the possibility of using such data for constraining the calibration of a hydrological model has not been exhaustively investigated so far. In this study, the use of nine check dam reservoir sedimentation volumes for hydrological and sedimentological model calibration and spatio-temporal validation was examined. Check dams are common structures in Mediterranean areas, and are a potential source of spatially distributed information regarding both hydrological and sediment cycle. In this case-study, the TETIS hydrological and sediment model was implemented in a medium-size Mediterranean catchment (Rambla del Poyo, Spain) by taking advantage of sediment deposits accumulated behind the check dams located in the catchment headwaters. Reservoir trap efficiency was taken into account by coupling the TETIS model with a pond trap efficiency model. The model was calibrated by adjusting some of its parameters in order to reproduce the total sediment volume accumulated behind a check dam. Then, the model was spatially validated by obtaining the simulated sedimentation volume at the other eight check dams and comparing it to the observed sedimentation volumes. Lastly, the simulated water discharge at the catchment outlet was compared with observed water discharge records in order to check the hydrological sub-model behaviour. Model results provided highly valuable information concerning the spatial distribution of soil erosion and sediment transport. Spatial validation of the sediment sub-model provided very good results at seven check dams out of nine. This study shows that check dams can be a useful tool also for constraining hydrological model calibration, as model results agree with water discharge observations. In fact, the hydrological model validation at a downstream water flow gauge obtained a Nash-Sutcliffe efficiency of 0.8. This technique is applicable to all catchments with presence of check dams, and only requires rainfall and temperature data and soil characteristics maps.

  19. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review

    NASA Astrophysics Data System (ADS)

    Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed

    2017-05-01

    Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.

  20. On the Fidelity of Semi-distributed Hydrologic Model Simulations for Large Scale Catchment Applications

    NASA Astrophysics Data System (ADS)

    Ajami, H.; Sharma, A.; Lakshmi, V.

    2017-12-01

    Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.

  1. Definition and sensitivity of the conceptual MORDOR rainfall-runoff model parameters using different multi-criteria calibration strategies

    NASA Astrophysics Data System (ADS)

    Garavaglia, F.; Seyve, E.; Gottardi, F.; Le Lay, M.; Gailhard, J.; Garçon, R.

    2014-12-01

    MORDOR is a conceptual hydrological model extensively used in Électricité de France (EDF, French electric utility company) operational applications: (i) hydrological forecasting, (ii) flood risk assessment, (iii) water balance and (iv) climate change studies. MORDOR is a lumped, reservoir, elevation based model with hourly or daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt and routing. The model has been intensively used at EDF for more than 20 years, in particular for modeling French mountainous watersheds. In the matter of parameters calibration we propose and test alternative multi-criteria techniques based on two specific approaches: automatic calibration using single-objective functions and a priori parameter calibration founded on hydrological watershed features. The automatic calibration approach uses single-objective functions, based on Kling-Gupta efficiency, to quantify the good agreement between the simulated and observed runoff focusing on four different runoff samples: (i) time-series sample, (I) annual hydrological regime, (iii) monthly cumulative distribution functions and (iv) recession sequences.The primary purpose of this study is to analyze the definition and sensitivity of MORDOR parameters testing different calibration techniques in order to: (i) simplify the model structure, (ii) increase the calibration-validation performance of the model and (iii) reduce the equifinality problem of calibration process. We propose an alternative calibration strategy that reaches these goals. The analysis is illustrated by calibrating MORDOR model to daily data for 50 watersheds located in French mountainous regions.

  2. Consistency of internal fluxes in a hydrological model running at multiple time steps

    NASA Astrophysics Data System (ADS)

    Ficchi, Andrea; Perrin, Charles; Andréassian, Vazken

    2016-04-01

    Improving hydrological models remains a difficult task and many ways can be explored, among which one can find the improvement of spatial representation, the search for more robust parametrization, the better formulation of some processes or the modification of model structures by trial-and-error procedure. Several past works indicate that model parameters and structure can be dependent on the modelling time step, and there is thus some rationale in investigating how a model behaves across various modelling time steps, to find solutions for improvements. Here we analyse the impact of data time step on the consistency of the internal fluxes of a rainfall-runoff model run at various time steps, by using a large data set of 240 catchments. To this end, fine time step hydro-climatic information at sub-hourly resolution is used as input of a parsimonious rainfall-runoff model (GR) that is run at eight different model time steps (from 6 minutes to one day). The initial structure of the tested model (i.e. the baseline) corresponds to the daily model GR4J (Perrin et al., 2003), adapted to be run at variable sub-daily time steps. The modelled fluxes considered are interception, actual evapotranspiration and intercatchment groundwater flows. Observations of these fluxes are not available, but the comparison of modelled fluxes at multiple time steps gives additional information for model identification. The joint analysis of flow simulation performance and consistency of internal fluxes at different time steps provides guidance to the identification of the model components that should be improved. Our analysis indicates that the baseline model structure is to be modified at sub-daily time steps to warrant the consistency and realism of the modelled fluxes. For the baseline model improvement, particular attention is devoted to the interception model component, whose output flux showed the strongest sensitivity to modelling time step. The dependency of the optimal model complexity on time step is also analysed. References: Perrin, C., Michel, C., Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1-4): 275-289. DOI:10.1016/S0022-1694(03)00225-7

  3. Calibration of a distributed hydrologic model for six European catchments using remote sensing data

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.

    2017-12-01

    While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.

  4. Hydrological simulation and uncertainty analysis using the improved TOPMODEL in the arid Manas River basin, China.

    PubMed

    Xue, Lianqing; Yang, Fan; Yang, Changbing; Wei, Guanghui; Li, Wenqian; He, Xinlin

    2018-01-11

    Understanding the mechanism of complicated hydrological processes is important for sustainable management of water resources in an arid area. This paper carried out the simulations of water movement for the Manas River Basin (MRB) using the improved semi-distributed Topographic hydrologic model (TOPMODEL) with a snowmelt model and topographic index algorithm. A new algorithm is proposed to calculate the curve of topographic index using internal tangent circle on a conical surface. Based on the traditional model, the improved indicator of temperature considered solar radiation is used to calculate the amount of snowmelt. The uncertainty of parameters for the TOPMODEL model was analyzed using the generalized likelihood uncertainty estimation (GLUE) method. The proposed model shows that the distribution of the topographic index is concentrated in high mountains, and the accuracy of runoff simulation has certain enhancement by considering radiation. Our results revealed that the performance of the improved TOPMODEL is acceptable and comparable to runoff simulation in the MRB. The uncertainty of the simulations resulted from the parameters and structures of model, climatic and anthropogenic factors. This study is expected to serve as a valuable complement for widely application of TOPMODEL and identify the mechanism of hydrological processes in arid area.

  5. Multiscale control of flooding and riparian-forest composition in Lower Michigan, USA.

    PubMed

    Baker, Matthew E; Wiley, Michael J

    2009-01-01

    Despite general agreement that river-valley hydrology shapes riparian ecosystems, relevant processes are difficult to distinguish and often inadequately specified in riparian studies. We hypothesize that physical constraints imposed by broad-scale watershed characteristics and river valleys modify local site conditions in a predictable and probabilistic fashion. To test this hypothesis, we employ a series of structural equations that decompose occurrence of riparian ecotypes into regional temperature, catchment storm response, valley hydraulics, and local site wetness via a priori specification of factor structure and ask (1) Is there evidence for multiscale hydrologic control of riparian diversity across Lower Michigan? (2) Do representations of key constraints on flood dynamics distinguish regional patterns of riparian vegetation? (3) How important are these effects? Cross-correlation among geospatial predictors initially obscured much of the variation revealed through analysis of semipartial variance. Causal relationships implied by our model fit with observed variation in riparian conditions (chi-square P = 0.43) and accounted for between 84% and 99% of the occurrence probability of five riparian ecotypes at 94 locations. Results suggest strong variation in the effects of regional climate, and both the relative importance and spatial scale of hydrologic factors influencing riparian vegetation through explicit quantification of relative flood frequency, duration, intensity, and relative overall inundation. Although climate and hydrology are not the only determinants of riparian conditions, interactions of hydrologic sourcing and flood dynamics described by our spatial models drive a significant portion of the variation in riparian ecosystem character throughout Lower Michigan, USA.

  6. Large ensemble and large-domain hydrologic modeling: Insights from SUMMA applications in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Ou, G.; Nijssen, B.; Nearing, G. S.; Newman, A. J.; Mizukami, N.; Clark, M. P.

    2016-12-01

    The Structure for Unifying Multiple Modeling Alternatives (SUMMA) provides a unifying modeling framework for process-based hydrologic modeling by defining a general set of conservation equations for mass and energy, with the capability to incorporate multiple choices for spatial discretizations and flux parameterizations. In this study, we provide a first demonstration of large-scale hydrologic simulations using SUMMA through an application to the Columbia River Basin (CRB) in the northwestern United States and Canada for a multi-decadal simulation period. The CRB is discretized into 11,723 hydrologic response units (HRUs) according to the United States Geologic Service Geospatial Fabric. The soil parameters are derived from the Natural Resources Conservation Service Soil Survey Geographic (SSURGO) Database. The land cover parameters are based on the National Land Cover Database from the year 2001 created by the Multi-Resolution Land Characteristics (MRLC) Consortium. The forcing data, including hourly air pressure, temperature, specific humidity, wind speed, precipitation, shortwave and longwave radiations, are based on Phase 2 of the North American Land Data Assimilation System (NLDAS-2) and averaged for each HRU. The simulation results are compared to simulations with the Variable Infiltration Capacity (VIC) model and the Precipitation Runoff Modeling System (PRMS). We are particularly interested in SUMMA's capability to mimic model behaviors of the other two models through the selection of appropriate model parameterizations in SUMMA.

  7. How will climate change affect watershed mercury export in a representative Coastal Plain watershed?

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Knightes, C. D.; Conrads, P. A.; Feaster, T.; Davis, G. M.; Benedict, S. T.; Bradley, P. M.

    2012-12-01

    Future climate change is expected to drive variations in watershed hydrological processes and water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such shifts in climatic conditions will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern. We simulate the responses of watershed hydrological and total Hg (HgT) fluxes and concentrations to a unified set of past and future climate change projections in a Coastal Plain basin using multiple watershed models. We use two statistically downscaled global precipitation and temperature models, ECHO, a hybrid of the ECHAM4 and HOPE-G models, and the Community Climate System Model (CCSM3) across two thirty-year simulations (1980 to 2010 and 2040 to 2070). We apply three watershed models to quantify and bracket potential changes in hydrologic and HgT fluxes, including the Visualizing Ecosystems for Land Management Assessment Model for Hg (VELMA-Hg), the Grid Based Mercury Model (GBMM), and TOPLOAD, a water quality constituent model linked to TOPMODEL hydrological simulations. We estimate a decrease in average annual HgT fluxes in response to climate change using the ECHO projections and an increase with the CCSM3 projections in the study watershed. Average monthly HgT fluxes increase using both climate change projections between in the late spring (March through May), when HgT concentrations and flow are high. Results suggest that hydrological transport associated with changes in precipitation and temperature is the primary mechanism driving HgT flux response to climate change. Our multiple model/multiple projection approach allows us to bracket the relative response of HgT fluxes to climate change, thereby illustrating the uncertainty associated with the projections. In addition, our approach allows us to examine potential variations in climate change-driven water and HgT export based on different conceptualizations of watershed HgT dynamics and the representative mathematical structures underpinning existing watershed Hg models.

  8. An object-oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks

    NASA Astrophysics Data System (ADS)

    Tucker, Gregory E.; Lancaster, Stephen T.; Gasparini, Nicole M.; Bras, Rafael L.; Rybarczyk, Scott M.

    2001-10-01

    We describe a new set of data structures and algorithms for dynamic terrain modeling using a triangulated irregular network (TINs). The framework provides an efficient method for storing, accessing, and updating a Delaunay triangulation and its associated Voronoi diagram. The basic data structure consists of three interconnected data objects: triangles, nodes, and directed edges. Encapsulating each of these geometric elements within a data object makes it possible to essentially decouple the TIN representation from the modeling applications that make use of it. Both the triangulation and its corresponding Voronoi diagram can be rapidly retrieved or updated, making these methods well suited to adaptive remeshing schemes. We develop a set of algorithms for defining drainage networks and identifying closed depressions (e.g., lakes) for hydrologic and geomorphic modeling applications. We also outline simple numerical algorithms for solving network routing and 2D transport equations within the TIN framework. The methods are illustrated with two example applications, a landscape evolution model and a distributed rainfall-runoff model.

  9. Representing northern peatland microtopography and hydrology within the Community Land Model

    DOE PAGES

    Shi, Xiaoying; Thornton, Peter E.; Ricciuto, Daniel M.; ...

    2015-11-12

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. Furthermore, the new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less

  10. Representing northern peatland microtopography and hydrology within the Community Land Model

    DOE PAGES

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; ...

    2015-02-20

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. We introduce here a new configuration of the Community Land Model (CLM) which includes a fully prognostic water table calculation for a vegetated peatland. Our structural and process changes to CLM focus on modifications needed to representmore » the hydrologic cycle of bogs environment with perched water tables, as well as distinct hydrologic dynamics and vegetation communities of the raised hummock and sunken hollow microtopography characteristic of peatland bogs. The modified model was parameterized and independently evaluated against observations from an ombrotrophic raised-dome bog in northern Minnesota (S1-Bog), the site for the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE). Simulated water table levels compared well with site-level observations. The new model predicts significant hydrologic changes in response to planned warming at the SPRUCE site. At present, standing water is commonly observed in bog hollows after large rainfall events during the growing season, but simulations suggest a sharp decrease in water table levels due to increased evapotranspiration under the most extreme warming level, nearly eliminating the occurrence of standing water in the growing season. Simulated soil energy balance was strongly influenced by reduced winter snowpack under warming simulations, with the warming influence on soil temperature partly offset by the loss of insulating snowpack in early and late winter. The new model provides improved predictive capacity for seasonal hydrological dynamics in northern peatlands, and provides a useful foundation for investigation of northern peatland carbon exchange.« less

  11. A novel algorithm for delineating wetland depressions and ...

    EPA Pesticide Factsheets

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features that are seldom fully filled with water. For instance, wetland depressions in the Prairie Pothole Region (PPR) are seasonally to permanently flooded wetlands characterized by nested hierarchical structures with dynamic filling- spilling-merging surface-water hydrological processes. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution LiDAR data and aerial imagery. We proposed a novel algorithm delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost path algorithm. The resulting flow network delineated putative temporary or seasonal flow paths connecting wetland depressions to each other or to the river network at scales finer than available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow modeling and hydrologic connectivity analysis. Presentation at AWRA Spring Specialty Conference in Sn

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrugt, Jasper A; Robinson, Bruce A; Ter Braak, Cajo J F

    In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented usingmore » the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.« less

  13. A Flexible Framework Hydrological Informatic Modeling System - HIMS

    NASA Astrophysics Data System (ADS)

    WANG, L.; Wang, Z.; Changming, L.; Li, J.; Bai, P.

    2017-12-01

    Simulating water cycling process temporally and spatially fitting for the characteristics of the study area was important for floods prediction and streamflow simulation with high accuracy, as soil properties, land scape, climate, and land managements were the critical factors influencing the non-linear relationship of rainfall-runoff at watershed scales. Most existing hydrological models cannot simulate water cycle process at different places with customized mechanisms with fixed single structure and mode. This study develops Hydro-Informatic Modeling System (HIMS) model with modular of each critical hydrological process with multiple choices for various scenarios to solve this problem. HIMS has the structure accounting for two runoff generation mechanisms of infiltration excess and saturation excess and estimated runoff with different methods including Time Variance Gain Model (TVGM), LCM which has good performance at ungauged areas, besides the widely used Soil Conservation Service-Curve Number (SCS-CN) method. Channel routing model contains the most widely used Muskingum, and kinematic wave equation with new solving method. HIMS model performance with its symbolic runoff generation model LCM was evaluated through comparison with the observed streamflow datasets of Lasha river watershed at hourly, daily, and monthly time steps. Comparisons between simulational and obervational streamflows were found with NSE higher than 0.87 and WE within ±20%. Water balance analysis about precipitation, streamflow, actual evapotranspiration (ET), and soil moisture change was conducted temporally at annual time step and it has been proved that HIMS model performance was reliable through comparison with literature results at the Lhasa River watershed.

  14. A community initiative for developing data and modeling driven curriculum modules for hydrology education

    NASA Astrophysics Data System (ADS)

    Ruddell, B. L.; Merwade, V.

    2010-12-01

    Hydrology and geoscience education at the undergraduate and graduate levels may benefit greatly from a structured approach to pedagogy that utilizes modeling, authentic data, and simulation exercises to engage students in practice-like activities. Extensive evidence in the educational literature suggests that students retain more of their instruction, and attain higher levels of mastery over content, when interactive and practice-like activities are used to contextualize traditional lecture-based and theory-based instruction. However, it is also important that these activities carefully link the use of data and modeling to abstract theory, to promote transfer of knowledge to other contexts. While this type of data-based activity has been practiced in the hydrology classroom for decades, the hydrology community still lacks a set of standards and a mechanism for community-based development, publication, and review of this type of curriculum material. A community-based initiative is underway to develop a set curriculum materials to teach hydrology in the engineering and geoscience university classroom using outcomes-based, pedagogically rigorous modules that use authentic data and modeling experiences to complement traditional lecture-based instruction. A preliminary design for a community cyberinfrastructure for shared module development and publication, and for module topics and outcomes and ametadata and module interoperability standards, will be presented, along with the results of a series of community surveys and workshops informing this design.

  15. A Cyber Enabled Collaborative Environment for Creating, Sharing and Using Data and Modeling Driven Curriculum Modules for Hydrology Education

    NASA Astrophysics Data System (ADS)

    Merwade, V.; Ruddell, B. L.; Fox, S.; Iverson, E. A. R.

    2014-12-01

    With the access to emerging datasets and computational tools, there is a need to bring these capabilities into hydrology classrooms. However, developing curriculum modules using data and models to augment classroom teaching is hindered by a steep technology learning curve, rapid technology turnover, and lack of an organized community cyberinfrastructure (CI) for the dissemination, publication, and sharing of the latest tools and curriculum material for hydrology and geoscience education. The objective of this project is to overcome some of these limitations by developing a cyber enabled collaborative environment for publishing, sharing and adoption of data and modeling driven curriculum modules in hydrology and geosciences classroom. The CI is based on Carleton College's Science Education Resource Center (SERC) Content Management System. Building on its existing community authoring capabilities the system is being extended to allow assembly of new teaching activities by drawing on a collection of interchangeable building blocks; each of which represents a step in the modeling process. Currently the system hosts more than 30 modules or steps, which can be combined to create multiple learning units. Two specific units: Unit Hydrograph and Rational Method, have been used in undergraduate hydrology class-rooms at Purdue University and Arizona State University. The structure of the CI and the lessons learned from its implementation, including preliminary results from student assessments of learning will be presented.

  16. Singularity-sensitive gauge-based radar rainfall adjustment methods for urban hydrological applications

    NASA Astrophysics Data System (ADS)

    Wang, L.-P.; Ochoa-Rodríguez, S.; Onof, C.; Willems, P.

    2015-09-01

    Gauge-based radar rainfall adjustment techniques have been widely used to improve the applicability of radar rainfall estimates to large-scale hydrological modelling. However, their use for urban hydrological applications is limited as they were mostly developed based upon Gaussian approximations and therefore tend to smooth off so-called "singularities" (features of a non-Gaussian field) that can be observed in the fine-scale rainfall structure. Overlooking the singularities could be critical, given that their distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause large errors in the subsequent urban hydrological modelling. To address this limitation and improve the applicability of adjustment techniques at urban scales, a method is proposed herein which incorporates a local singularity analysis into existing adjustment techniques and allows the preservation of the singularity structures throughout the adjustment process. In this paper the proposed singularity analysis is incorporated into the Bayesian merging technique and the performance of the resulting singularity-sensitive method is compared with that of the original Bayesian (non singularity-sensitive) technique and the commonly used mean field bias adjustment. This test is conducted using as case study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense rain gauge and sewer flow records, as well as a recently calibrated urban drainage model were available. The results suggest that, in general, the proposed singularity-sensitive method can effectively preserve the non-normality in local rainfall structure, while retaining the ability of the original adjustment techniques to generate nearly unbiased estimates. Moreover, the ability of the singularity-sensitive technique to preserve the non-normality in rainfall estimates often leads to better reproduction of the urban drainage system's dynamics, particularly of peak runoff flows.

  17. HYDROSCAPE: A SCAlable and ParallelizablE Rainfall Runoff Model for Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Di Lazzaro, M.; Zarlenga, A.; Majone, B.; Bellin, A.; Fiori, A.

    2015-12-01

    In this work we present HYDROSCAPE, an innovative streamflow routing method based on the travel time approach, and modeled through a fine-scale geomorphological description of hydrological flow paths. The model is designed aimed at being easily coupled with weather forecast or climate models providing the hydrological forcing, and at the same time preserving the geomorphological dispersion of the river network, which is kept unchanged independently on the grid size of rainfall input. This makes HYDROSCAPE particularly suitable for multi-scale applications, ranging from medium size catchments up to the continental scale, and to investigate the effects of extreme rainfall events that require an accurate description of basin response timing. Key feature of the model is its computational efficiency, which allows performing a large number of simulations for sensitivity/uncertainty analyses in a Monte Carlo framework. Further, the model is highly parsimonious, involving the calibration of only three parameters: one defining the residence time of hillslope response, one for channel velocity, and a multiplicative factor accounting for uncertainties in the identification of the potential maximum soil moisture retention in the SCS-CN method. HYDROSCAPE is designed with a simple and flexible modular structure, which makes it particularly prone to massive parallelization, customization according to the specific user needs and preferences (e.g., rainfall-runoff model), and continuous development and improvement. Finally, the possibility to specify the desired computational time step and evaluate streamflow at any location in the domain, makes HYDROSCAPE an attractive tool for many hydrological applications, and a valuable alternative to more complex and highly parametrized large scale hydrological models. Together with model development and features, we present an application to the Upper Tiber River basin (Italy), providing a practical example of model performance and characteristics.

  18. Improving medium-range ensemble streamflow forecasts through statistical post-processing

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo; Wood, Andy; Clark, Elizabeth; Nijssen, Bart; Clark, Martyn; Ramos, Maria-Helena; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    Probabilistic hydrologic forecasts are a powerful source of information for decision-making in water resources operations. A common approach is the hydrologic model-based generation of streamflow forecast ensembles, which can be implemented to account for different sources of uncertainties - e.g., from initial hydrologic conditions (IHCs), weather forecasts, and hydrologic model structure and parameters. In practice, hydrologic ensemble forecasts typically have biases and spread errors stemming from errors in the aforementioned elements, resulting in a degradation of probabilistic properties. In this work, we compare several statistical post-processing techniques applied to medium-range ensemble streamflow forecasts obtained with the System for Hydromet Applications, Research and Prediction (SHARP). SHARP is a fully automated prediction system for the assessment and demonstration of short-term to seasonal streamflow forecasting applications, developed by the National Center for Atmospheric Research, University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. The suite of post-processing techniques includes linear blending, quantile mapping, extended logistic regression, quantile regression, ensemble analogs, and the generalized linear model post-processor (GLMPP). We assess and compare these techniques using multi-year hindcasts in several river basins in the western US. This presentation discusses preliminary findings about the effectiveness of the techniques for improving probabilistic skill, reliability, discrimination, sharpness and resolution.

  19. SUMMA and Model Mimicry: Understanding Differences Among Land Models

    NASA Astrophysics Data System (ADS)

    Nijssen, B.; Nearing, G. S.; Ou, G.; Clark, M. P.

    2016-12-01

    Model inter-comparison and model ensemble experiments suffer from an inability to explain the mechanisms behind differences in model outcomes. We can clearly demonstrate that the models are different, but we cannot necessarily identify the reasons why, because most models exhibit myriad differences in process representations, model parameterizations, model parameters and numerical solution methods. This inability to identify the reasons for differences in model performance hampers our understanding and limits model improvement, because we cannot easily identify the most promising paths forward. We have developed the Structure for Unifying Multiple Modeling Alternatives (SUMMA) to allow for controlled experimentation with model construction, numerical techniques, and parameter values and therefore isolate differences in model outcomes to specific choices during the model development process. In developing SUMMA, we recognized that hydrologic models can be thought of as individual instantiations of a master modeling template that is based on a common set of conservation equations for energy and water. Given this perspective, SUMMA provides a unified approach to hydrologic modeling that integrates different modeling methods into a consistent structure with the ability to instantiate alternative hydrologic models at runtime. Here we employ SUMMA to revisit a previous multi-model experiment and demonstrate its use for understanding differences in model performance. Specifically, we implement SUMMA to mimic the spread of behaviors exhibited by the land models that participated in the Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) and draw conclusions about the relative performance of specific model parameterizations for water and energy fluxes through the soil-vegetation continuum. SUMMA's ability to mimic the spread of model ensembles and the behavior of individual models can be an important tool in focusing model development and improvement efforts.

  20. An assessment of cumulative impacts of coal mining on the hydrology in part of the Powder River structural basin, Wyoming; a progress report

    USGS Publications Warehouse

    Jordan, P.R.; Bloyd, R.M.; Daddow, P.B.

    1984-01-01

    The U.S. Geological Survey and the Wyoming Department of Environmental Quality are involved in a cooperative effort to assess the probable cumulative impacts of coal mining on the hydrology of a part of the Powder River Structural Basin in Wyoming. It was assumed that the principal impacts on the ground-water system due to mining will occur in the relatively shallow aquifers which can be grouped into three homogeneous aquifers, namely, the Wyodak coal, the overburden, and the under burden. Emphasis of this report is on the results of analysis of surface-water resources in the Caballo Creek drainage. A surface-water model of the Caballo Creek drainage was developed using the Hydrological Simulation Program-Fortran model to help assess the impacts of mining activities on streamflow. The Caballo Creek drainage was divided into 10 land segments and 6 stream reaches in the modeling process. Three simulation runs show little, if any, change in streamflow between pre- and post-mining conditions and very little change between pre-mining and during-mining conditions. The principal reason for the absence of change is the high infiltration rate used in the model for all three conditions. (USGS)

  1. Multi-state succession in wetlands: a novel use of state and transition models

    USGS Publications Warehouse

    Zweig, Christa L.; Kitchens, Wiley M.

    2009-01-01

    The complexity of ecosystems and mechanisms of succession are often simplified by linear and mathematical models used to understand and predict system behavior. Such models often do not incorporate multivariate, nonlinear feedbacks in pattern and process that include multiple scales of organization inherent within real-world systems. Wetlands are ecosystems with unique, nonlinear patterns of succession due to the regular, but often inconstant, presence of water on the landscape. We develop a general, nonspatial state and transition (S and T) succession conceptual model for wetlands and apply the general framework by creating annotated succession/management models and hypotheses for use in impact analysis on a portion of an imperiled wetland. The S and T models for our study area, Water Conservation Area 3A South (WCA3), Florida, USA, included hydrologic and peat depth values from multivariate analyses and classification and regression trees. We used the freeware Vegetation Dynamics Development Tool as an exploratory application to evaluate our S and T models with different management actions (equal chance [a control condition], deeper conditions, dry conditions, and increased hydrologic range) for three communities: slough, sawgrass (Cladium jamaicense), and wet prairie. Deeper conditions and increased hydrologic range behaved similarly, with the transition of community states to deeper states, particularly for sawgrass and slough. Hydrology is the primary mechanism for multi-state transitions within our study period, and we show both an immediate and lagged effect on vegetation, depending on community state. We consider these S and T succession models as a fraction of the framework for the Everglades. They are hypotheses for use in adaptive management, represent the community response to hydrology, and illustrate which aspects of hydrologic variability are important to community structure. We intend for these models to act as a foundation for further restoration management and experimentation which will refine transition and threshold concepts. 

  2. Python package for model STructure ANalysis (pySTAN)

    NASA Astrophysics Data System (ADS)

    Van Hoey, Stijn; van der Kwast, Johannes; Nopens, Ingmar; Seuntjens, Piet

    2013-04-01

    The selection and identification of a suitable hydrological model structure is more than fitting parameters of a model structure to reproduce a measured hydrograph. The procedure is highly dependent on various criteria, i.e. the modelling objective, the characteristics and the scale of the system under investigation as well as the available data. Rigorous analysis of the candidate model structures is needed to support and objectify the selection of the most appropriate structure for a specific case (or eventually justify the use of a proposed ensemble of structures). This holds both in the situation of choosing between a limited set of different structures as well as in the framework of flexible model structures with interchangeable components. Many different methods to evaluate and analyse model structures exist. This leads to a sprawl of available methods, all characterized by different assumptions, changing conditions of application and various code implementations. Methods typically focus on optimization, sensitivity analysis or uncertainty analysis, with backgrounds from optimization, machine-learning or statistics amongst others. These methods also need an evaluation metric (objective function) to compare the model outcome with some observed data. However, for current methods described in literature, implementations are not always transparent and reproducible (if available at all). No standard procedures exist to share code and the popularity (and amount of applications) of the methods is sometimes more dependent on the availability than the merits of the method. Moreover, new implementations of existing methods are difficult to verify and the different theoretical backgrounds make it difficult for environmental scientists to decide about the usefulness of a specific method. A common and open framework with a large set of methods can support users in deciding about the most appropriate method. Hence, it enables to simultaneously apply and compare different methods on a fair basis. We developed and present pySTAN (python framework for STructure Analysis), a python package containing a set of functions for model structure evaluation to provide the analysis of (hydrological) model structures. A selected set of algorithms for optimization, uncertainty and sensitivity analysis is currently available, together with a set of evaluation (objective) functions and input distributions to sample from. The methods are implemented model-independent and the python language provides the wrapper functions to apply administer external model codes. Different objective functions can be considered simultaneously with both statistical metrics and more hydrology specific metrics. By using so-called reStructuredText (sphinx documentation generator) and Python documentation strings (docstrings), the generation of manual pages is semi-automated and a specific environment is available to enhance both the readability and transparency of the code. It thereby enables a larger group of users to apply and compare these methods and to extend the functionalities.

  3. Scale effect challenges in urban hydrology highlighted with a Fully Distributed Model and High-resolution rainfall data

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2017-04-01

    Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Therefore, an increasing interest is in parallel devoted to the development of fully distributed and grid-based models following the increase of computation capabilities, the availability of high-resolution GIS information needed for such models implementation. However, the choice of an appropriate implementation scale to integrate the catchment heterogeneity and the whole measured rainfall variability provided by High-resolution radar technologies still issues. This work proposes a two steps investigation of scale effects in urban hydrology and its effects on modeling works. In the first step fractal tools are used to highlight the scale dependency observed within distributed data used to describe the catchment heterogeneity, both the structure of the sewer network and the distribution of impervious areas are analyzed. Then an intensive multi-scale modeling work is carried out to understand scaling effects on hydrological model performance. Investigations were conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model was implemented at 17 spatial resolutions ranging from 100 m to 5 m and modeling investigations were performed using both rain gauge rainfall information as well as high resolution X band radar data in order to assess the sensitivity of the model to small scale rainfall variability. Results coming out from this work demonstrate scale effect challenges in urban hydrology modeling. In fact, fractal concept highlights the scale dependency observed within distributed data used to implement hydrological models. Patterns of geophysical data change when we change the observation pixel size. The multi-scale modeling investigation performed with Multi-Hydro model at 17 spatial resolutions confirms scaling effect on hydrological model performance. Results were analyzed at three ranges of scales identified in the fractal analysis and confirmed in the modeling work. The sensitivity of the model to small-scale rainfall variability was discussed as well.

  4. Hydrologic enforcement of lidar DEMs

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl

    2014-01-01

    Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.

  5. Emergent structures and understanding from a comparative uncertainty analysis of the FUSE rainfall-runoff modelling platform for >1,100 catchments

    NASA Astrophysics Data System (ADS)

    Freer, J. E.; Odoni, N. A.; Coxon, G.; Bloomfield, J.; Clark, M. P.; Greene, S.; Johnes, P.; Macleod, C.; Reaney, S. M.

    2013-12-01

    If we are to learn about catchments and their hydrological function then a range of analysis techniques can be proposed from analysing observations to building complex physically based models using detailed attributes of catchment characteristics. Decisions regarding which technique is fit for a specific purpose will depend on the data available, computing resources, and the underlying reasons for the study. Here we explore defining catchment function in a relatively general sense expressed via a comparison of multiple model structures within an uncertainty analysis framework. We use the FUSE (Framework for Understanding Structural Errors - Clark et al., 2008) rainfall-runoff modelling platform and the GLUE (Generalised Likelihood Uncertainty Estimation - Beven and Freer, 2001) uncertainty analysis framework. Using these techniques we assess two main outcomes: 1) Benchmarking our predictive capability using discharge performance metrics for a diverse range of catchments across the UK 2) evaluating emergent behaviour for each catchment and/or region expressed as ';best performing' model structures that may be equally plausible representations of catchment behaviour. We shall show how such comparative hydrological modelling studies show patterns of emergent behaviour linked both to seasonal responses and to different geoclimatic regions. These results have implications for the hydrological community regarding how models can help us learn about places as hypothesis testing tools. Furthermore we explore what the limits are to such an analysis when dealing with differing data quality and information content from ';pristine' to less well characterised and highly modified catchment domains. This research has been piloted in the UK as part of the Environmental Virtual Observatory programme (EVOp), funded by NERC to demonstrate the use of cyber-infrastructure and cloud computing resources to develop better methods of linking data and models and to support scenario analysis for research, policy and operational needs.

  6. Advances in the use of observed spatial patterns of catchment hydrological response

    NASA Astrophysics Data System (ADS)

    Grayson, Rodger B.; Blöschl, Günter; Western, Andrew W.; McMahon, Thomas A.

    Over the past two decades there have been repeated calls for the collection of new data for use in developing hydrological science. The last few years have begun to bear fruit from the seeds sown by these calls, through increases in the availability and utility of remote sensing data, as well as the execution of campaigns in research catchments aimed at providing new data for advancing hydrological understanding and predictive capability. In this paper we discuss some philosophical considerations related to model complexity, data availability and predictive performance, highlighting the potential of observed patterns in moving the science and practice of catchment hydrology forward. We then review advances that have arisen from recent work on spatial patterns, including in the characterisation of spatial structure and heterogeneity, and the use of patterns for developing, calibrating and testing distributed hydrological models. We illustrate progress via examples using observed patterns of snow cover, runoff occurrence and soil moisture. Methods for the comparison of patterns are presented, illustrating how they can be used to assess hydrologically important characteristics of model performance. These methods include point-to-point comparisons, spatial relationships between errors and landscape parameters, transects, and optimal local alignment. It is argued that the progress made to date augers well for future developments, but there is scope for improvements in several areas. These include better quantitative methods for pattern comparisons, better use of pattern information in data assimilation and modelling, and a call for improved archiving of data from field studies to assist in comparative studies for generalising results and developing fundamental understanding.

  7. Modeling the Hydrologic Response to Changes in Groundcover Conditions Caused by Fire Disturbances

    NASA Astrophysics Data System (ADS)

    Kikinzon, E.; Atchley, A. L.; Coon, E.; Middleton, R. S.

    2016-12-01

    Climate change and fire suppression increase wildfire activity, which alters ecosystem functions and can significantly impact hydrological response. Both wildfire and prescribed burns reduce groundcover, affect top layers of subsurface, and change the structure of overland flow pathways. To understand respective effects on surface and subsurface hydrology, it is imperative to accurately represent surface-subsurface interface pre and post-fire, and to model physical processes in groundcover components. We show mechanistic models used to describe physics in two key types of groundcover, litter and duff, in Advanced Terrestrial Simulator (ATS). Litter is considered to be a part of vegetative canopy covering the surface. It has associated water storage capacity, which allows simulating interception and drainage, and its thickness is used to evaluate surface roughness with potential effect of slowing overland flow compared to bare soil. Duff on the other hand is incorporated into the subsurface, thus requiring meshing and discretization capability to support complex geometries including pinchouts, which is necessary both for achieving desired mesh resolution and portraying bare soil patches without adversely affecting the time scale. As part of the subsurface, duff has its own hydrologic and water retention properties used to resolve infiltration and saturation limited runoff generation, run on, and infiltration processes. This enables the use of ATS for fine scale modeling of integrated hydrology with adequate representation of groundcover influence. To isolate the impact of changing groundcover, we consider a simple hill slope and study the hydrological response to varying amount and geometries of groundcover. To cover landscape characteristics produced by a wide variety of fire conditions, from high intensity to low intensity fire impacts, we simulate hydrologic response to precipitation events over a number of typical geometries and with fine control over amounts of two described types of groundcover. We then analyze hydrological sensitivity to presence or absence of particular groundcover types, their respective patchiness, and possible changes in overland flow pathways.

  8. What is the relative role of initial hydrological conditions and meteorological forcing to the seasonal hydrological forecasting skill? Analysis along Europe's hydro-climatic gradient

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; Crochemore, Louise

    2017-04-01

    Recent advances in understanding and forecasting of climate have led into skilful seasonal meteorological predictions, which can consequently increase the confidence of hydrological prognosis. The majority of seasonal impact modelling has commonly been conducted at only one or a limited number of basins limiting the potential to understand large systems. Nevertheless, there is a necessity to develop operational seasonal forecasting services at the pan-European scale, capable of addressing the end-user needs. The skill of such forecasting services is subject to a number of sources of uncertainty, i.e. model structure, parameters, and forcing input. In here, we complement the "deep" knowledge from basin based modelling by investigating the relative contributions of initial hydrological conditions (IHCs) and meteorological forcing (MF) to the skill of a seasonal pan-European hydrological forecasting system. We use the Ensemble Streamflow Prediction (ESP) and reverse ESP (revESP) procedure to show a proxy of hydrological forecasting uncertainty due to MF and IHC uncertainties respectively. We further calculate the critical lead time (CLT), as a proxy of the river memory, after which the importance of MFs surpasses the importance of IHCs. We analyze these results in the context of prevailing hydro-climatic conditions for about 35000 European basins. Both model state initialisation (level in surface water, i.e. reservoirs, lakes and wetlands, soil moisture, snow depth) and provision of climatology are based on forcing input derived from the WFDEI product for the period 1981-2010. The analysis shows that the contribution of ICs and MFs to the hydrological forecasting skill varies considerably according to location, season and lead time. This analysis allows clustering of basins in which hydrological forecasting skill may be improved by better estimation of IHCs, e.g. via data assimilation of in-situ and/or satellite observations; whereas in other basins skill improvement depends on better MFs.

  9. Precipitation-runoff modeling system; user's manual

    USGS Publications Warehouse

    Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G.

    1983-01-01

    The concepts, structure, theoretical development, and data requirements of the precipitation-runoff modeling system (PRMS) are described. The precipitation-runoff modeling system is a modular-design, deterministic, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow, sediment yields, and general basin hydrology. Basin response to normal and extreme rainfall and snowmelt can be simulated to evaluate changes in water balance relationships, flow regimes, flood peaks and volumes, soil-water relationships, sediment yields, and groundwater recharge. Parameter-optimization and sensitivity analysis capabilites are provided to fit selected model parameters and evaluate their individual and joint effects on model output. The modular design provides a flexible framework for continued model system enhancement and hydrologic modeling research and development. (Author 's abstract)

  10. StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction

    NASA Astrophysics Data System (ADS)

    Gallice, Aurélien; Bavay, Mathias; Brauchli, Tristan; Comola, Francesco; Lehning, Michael; Huwald, Hendrik

    2016-12-01

    Climate change is expected to strongly impact the hydrological and thermal regimes of Alpine rivers within the coming decades. In this context, the development of hydrological models accounting for the specific dynamics of Alpine catchments appears as one of the promising approaches to reduce our uncertainty of future mountain hydrology. This paper describes the improvements brought to StreamFlow, an existing model for hydrological and stream temperature prediction built as an external extension to the physically based snow model Alpine3D. StreamFlow's source code has been entirely written anew, taking advantage of object-oriented programming to significantly improve its structure and ease the implementation of future developments. The source code is now publicly available online, along with a complete documentation. A special emphasis has been put on modularity during the re-implementation of StreamFlow, so that many model aspects can be represented using different alternatives. For example, several options are now available to model the advection of water within the stream. This allows for an easy and fast comparison between different approaches and helps in defining more reliable uncertainty estimates of the model forecasts. In particular, a case study in a Swiss Alpine catchment reveals that the stream temperature predictions are particularly sensitive to the approach used to model the temperature of subsurface flow, a fact which has been poorly reported in the literature to date. Based on the case study, StreamFlow is shown to reproduce hourly mean discharge with a Nash-Sutcliffe efficiency (NSE) of 0.82 and hourly mean temperature with a NSE of 0.78.

  11. Hydrological and pesticide transfer modeling in a tropical volcanic watershed with the WATPPASS model

    NASA Astrophysics Data System (ADS)

    Mottes, Charles; Lesueur-Jannoyer, Magalie; Charlier, Jean-Baptiste; Carles, Céline; Guéné, Mathilde; Le Bail, Marianne; Malézieux, Eric

    2015-10-01

    Simulation of flows and pollutant transfers in heterogeneous media is widely recognized to be a remaining frontier in hydrology research. We present a new modeling approach to simulate agricultural pollutions in watersheds: WATPPASS, a model for Watershed Agricultural Techniques and Pesticide Practices ASSessment. It is designed to assess mean pesticide concentrations and loads that result from the use of pesticides in horticultural watersheds located on heterogeneous subsoil. WATPPASS is suited for small watershed with significant groundwater flows and complex aquifer systems. The model segments the watershed into fields with independent hydrological and pesticide transfers at the ground surface. Infiltrated water and pesticides are routed toward outlet using a conceptual reservoir model. We applied WATPPASS on a heterogeneous tropical volcanic watershed of Martinique in the French West Indies. We carried out and hydrological analysis that defined modeling constraints: (i) a spatial variability of runoff/infiltration partitioning according to land use, and (ii) a predominance of groundwater flow paths in two overlapping aquifers under permeable soils (50-60% of annual flows). We carried out simulations on a 550 days period at a daily time step for hydrology (Nashsqrt > 0.75). Weekly concentrations and loads of a persistent organic pesticide (chlordecone) were simulated for 67 weeks to evaluate the modeling approach. Pesticide simulations without specific calibration detected the mean long-term measured concentration, leading to a good quantification of the cumulative loads (5% error), but failed to represent the concentration peaks at the correct timing. Nevertheless, we succeed in adjusting the model structure to better represent the temporal dynamic of pesticide concentrations. This modification requires a proper evaluation on an independent dataset. Finally, WATPPASS is a compromise between complexity and easiness of use that makes it suited for cropping system assessment in complex pedological and geological environment.

  12. Quantifying the Impact of geographically isolated wetlands on the downstream hydrology of a Canadian Prairie watershed

    NASA Astrophysics Data System (ADS)

    Muhammad, A.; Evenson, G. R.; Boluwade, A.; Jha, S. K.; Rasmussen, P. F.

    2016-12-01

    Hydrological processes are highly complex and strongly nonlinear and cannot be represented through simple means. Models are built to replicate these processes. However, models due to various sources of uncertainty including their structural capability often lead to inaccurate results. The aim of this study is to setup the soil water assessment tool (SWAT) for a watershed that is dominated by potholes in the Prairie region of Canada. The potholes not connected to the stream, also known as geographically isolated wetlands (GIWs), are dynamic in nature leading to a fill and spill situation due to varying surface runoff conditions. Significant land use changes have resulted in almost 70% of wetlands being lost and have posed threat of flooding to downstream areas. While some studies were devoted to identify the presence of potholes only few have explored the impacts of wetlands on the downstream hydrology. In this study, we follow Evenson et al., (2016) approach of modifying SWAT model. The modification enhances structural capability of SWAT while depicting the dynamics of wetlands at HRUs level. Redefining the formation of HRUs in such way effectively captures the spatial presence of potholes. We then routed the potholes' fill and spill hydrology to direct the flow to the potholes immediately downstream. The model was calibrated for 2005-2008 and verified over 2009-2011 at a daily time step. We tested our model with three land use change scenarios by varying the presence of potholes and evaluated its impact on the downstream hydrograph. We foresee a significant improvement in replicating stream flow using this novel approach. We believe that it will effectively improve the predictive power of SWAT for this highly complex sub basin (Upper Assiniboine catchment at Kamsack) located in Canadian Prairie.

  13. A Hydrological Tomography Collocated with Time-varying Gravimetry for Hydrogeology -An Example in Yun-Lin Alluvial Plain and Ming-Ju Basin in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Cheng, C. C.; Hwang, C.

    2016-12-01

    A new inversion technique featured by the collocation of hydrological modeling and gravimetry observation is presented in this report. Initially this study started from a project attempting to build a sequence of hydrodynamic models of ground water system, which was applied to identify the supplement areas of alluvial plains and basins along the west coast of Taiwan. To calibrate the decent hydro-geological parameters for the modeling, geological evolution were carefully investigated and absolute gravity observations, along with other on-site hydrological monitoring data were specially introduced. It was discovered in the data processing that the time-varying gravimetrical data are highly sensitive to certain boundary conditions in the hydrodynamic model, which are correspondent with respective geological features. A new inversion technique coined by the term "hydrological tomography" is therefore developed by reversing the boundary condition into the unknowns to be solved. An example of accurate estimate for water storage and precipitation infiltration of a costal alluvial plain Yun-Lin is presented. In the mean time, the study of an anticline structure of the upstream basin Ming-Ju is also presented to demonstrate how a geological formation is outlined when the gravimetrical data and hydrodynamic model are re-directed into an inversion.

  14. Unravelling aquifer-wetland interaction using CSAMT and gravity methods: the Mollina-Camorra aquifer and the Fuente de Piedra playa-lake, southern Spain

    NASA Astrophysics Data System (ADS)

    Pedrera, A.; Martos-Rosillo, S.; Galindo-Zaldívar, J.; Rodríguez-Rodríguez, M.; Benavente, J.; Martín-Rodríguez, J. F.; Zúñiga-López, M. I.

    2016-06-01

    The hydrological regime of Fuente de Piedra playa-lake (Málaga, southern Spain) has been significantly affected by the intensive exploitation of groundwater in the area. The playa-lake is situated above clays, marls, and gypsum, and under unaltered conditions received surface-subsurface runoff within the watershed as well as groundwater discharge from two carbonate aquifers. We have analyzed the structure of the main one, the Mollina-Camorra carbonate aquifer, by combining controlled source audio magnetotellurics (CSAMT), gravity prospecting, and time-domain electromagnetic (TDEM) soundings. This geophysical information, together with new structural and hydrogeological data, was gathered to develop a new conceptual hydrogeological model. This model allows the hydrological linkage of the carbonate aquifer with the playa-lake system to be established. Moreover, the intensive exploitation in the carbonate aquifer, even outside the watershed of the playa-lake, has affected the hydrological regime of the system. This multidisciplinary work demonstrates the potential of geophysical methods for understanding wetland-aquifer interaction, having important groundwater management implications.

  15. Reducing structural uncertainty in conceptual hydrological modeling in the semi-arid Andes

    NASA Astrophysics Data System (ADS)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2014-10-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modeling of a meso-scale Andean catchment (1515 km2) over a 30 year period (1982-2011). The modeling process was decomposed into six model-building decisions related to the following aspects of the system behavior: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modeling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain 8 model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modeling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  16. Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes

    NASA Astrophysics Data System (ADS)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2015-05-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modelling of a mesoscale Andean catchment (1515 km2) over a 30-year period (1982-2011). The modelling process was decomposed into six model-building decisions related to the following aspects of the system behaviour: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modelling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional (4-D) space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain eight model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modelling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  17. Evaluation of a hydrological model based on Bidirectional Reach (BReach)

    NASA Astrophysics Data System (ADS)

    Van Eerdenbrugh, Katrien; Van Hoey, Stijn; Verhoest, Niko E. C.

    2016-04-01

    Evaluation and discrimination of model structures is crucial to ensure an appropriate use of hydrological models. When evaluating model results by aggregating their quality in (a subset of) individual observations, overall results of this analysis sometimes conceal important detailed information about model structural deficiencies. Analyzing model results within their local (time) context can uncover this detailed information. In this research, a methodology called Bidirectional Reach (BReach) is proposed to evaluate and analyze results of a hydrological model by assessing the maximum left and right reach in each observation point that is used for model evaluation. These maximum reaches express the capability of the model to describe a subset of the evaluation data both in the direction of the previous (left) and of the following data (right). This capability is evaluated on two levels. First, on the level of individual observations, the combination of a parameter set and an observation is classified as non-acceptable if the deviation between the accompanying model result and the measurement exceeds observational uncertainty. Second, the behavior in a sequence of observations is evaluated by means of a tolerance degree. This tolerance degree expresses the condition for satisfactory model behavior in a data series and is defined by the percentage of observations within this series that can have non-acceptable model results. Based on both criteria, the maximum left and right reaches of a model in an observation represent the data points in the direction of the previous respectively the following observations beyond which none of the sampled parameter sets both are satisfactory and result in an acceptable deviation. After assessing these reaches for a variety of tolerance degrees, results can be plotted in a combined BReach plot that show temporal changes in the behavior of model results. The methodology is applied on a Probability Distributed Model (PDM) of the river Grote Nete upstream of Geel-Zammel with 1 106 randomly sampled parameter sets for three separate years. Acceptable model results must fit in the 95 % uncertainty bounds of observed discharges and tolerance degrees of 0 %, 5 %, 10 %, 20 % and 40 % are applied. An evaluation of BReach results with regard to other variables, such as the magnitude and the rate of change of the observed discharges enables to detect recurring patterns in model errors. This results in an augmented understanding of the model's structural deficiencies, revealing the incapability of the PDM model to simulate both high and low flow simulations with a single parameter set for this catchment. As the methodology can be applied for different hydrological model structures, it is a useful tool to gain understanding of the difference in behavior of competing models.

  18. Developing an Online Framework for Publication of Uncertainty Information in Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Etienne, E.; Piasecki, M.

    2012-12-01

    Inaccuracies in data collection and parameters estimation, and imperfection of models structures imply uncertain predictions of the hydrological models. Finding a way to communicate the uncertainty information in a model output is important in decision-making. This work aims to publish uncertainty information (computed by project partner at Penn State) associated with hydrological predictions on catchments. To this end we have developed a DB schema (derived from the CUAHSI ODM design) which is focused on storing uncertainty information and its associated metadata. The technologies used to build the system are: OGC's Sensor Observation Service (SOS) for publication, the uncertML markup language (also developed by the OGC) to describe uncertainty information, and use of the Interoperability and Automated Mapping (INTAMAP) Web Processing Service (WPS) that handles part of the statistics computations. We develop a service to provide users with the capability to exploit all the functionality of the system (based on DRUPAL). Users will be able to request and visualize uncertainty data, and also publish their data in the system.

  19. Monte Carlo-based calibration and uncertainty analysis of a coupled plant growth and hydrological model

    NASA Astrophysics Data System (ADS)

    Houska, T.; Multsch, S.; Kraft, P.; Frede, H.-G.; Breuer, L.

    2014-04-01

    Computer simulations are widely used to support decision making and planning in the agriculture sector. On the one hand, many plant growth models use simplified hydrological processes and structures - for example, by the use of a small number of soil layers or by the application of simple water flow approaches. On the other hand, in many hydrological models plant growth processes are poorly represented. Hence, fully coupled models with a high degree of process representation would allow for a more detailed analysis of the dynamic behaviour of the soil-plant interface. We coupled two of such high-process-oriented independent models and calibrated both models simultaneously. The catchment modelling framework (CMF) simulated soil hydrology based on the Richards equation and the van Genuchten-Mualem model of the soil hydraulic properties. CMF was coupled with the plant growth modelling framework (PMF), which predicts plant growth on the basis of radiation use efficiency, degree days, water shortage and dynamic root biomass allocation. The Monte Carlo-based generalized likelihood uncertainty estimation (GLUE) method was applied to parameterize the coupled model and to investigate the related uncertainty of model predictions. Overall, 19 model parameters (4 for CMF and 15 for PMF) were analysed through 2 × 106 model runs randomly drawn from a uniform distribution. The model was applied to three sites with different management in Müncheberg (Germany) for the simulation of winter wheat (Triticum aestivum L.) in a cross-validation experiment. Field observations for model evaluation included soil water content and the dry matter of roots, storages, stems and leaves. The shape parameter of the retention curve n was highly constrained, whereas other parameters of the retention curve showed a large equifinality. We attribute this slightly poorer model performance to missing leaf senescence, which is currently not implemented in PMF. The most constrained parameters for the plant growth model were the radiation-use efficiency and the base temperature. Cross validation helped to identify deficits in the model structure, pointing out the need for including agricultural management options in the coupled model.

  20. Aspects of Hydrological Modelling In The Punjab Himalayan and Karakoram Ranges, Pakistan

    NASA Astrophysics Data System (ADS)

    Loukas, A.; Khan, M. I.; Quick, M. C.

    Various aspects of hydrologic modelling of high mountainous basins in the Punjab Hi- malayan and Karakoram ranges of Northern Pakistan were studied. The runoff from three basins in this region was simulated using the U.B.C. watershed model, which re- quires limited meteorological data of minimum and maximum daily temperature and precipitation. The structure of the model is based on the concept that the hydrolog- ical behavior is a function of elevation and thus, a watershed is conceptualized as a number of elevational zones. A simplified energy budget approach, which is based on daily maximum and minimum temperature and can account for forested and open areas, and aspect and latitude, is used in the U.B.C. model for the estimation of the snowmelt and glacier melt. The studied basins have different hydrological responses and limited data. The runoff from the first basin, the Astore basin, is mainly gener- ated by snowmelt. In the second basin, the Kunhar basin, the runoff is generated by snowmelt but significant redistribution of snow, caused by snow avalanches, affect the runoff generation. The third basin, the Hunza basin, is a highly glacierized basin and its runoff is mainly generated by glacier melt. The application of the U.B.C. watershed model to these three basins showed that the model could estimate reasonably well the runoff generated by the different components.

  1. Flexible hydrological modeling - Disaggregation from lumped catchment scale to higher spatial resolutions

    NASA Astrophysics Data System (ADS)

    Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas

    2015-04-01

    Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional validation on spatial results was done for the groundwater head values at observation wells. To ensure that the lumped model can produce results as accurate as the spatially distributed models or close regardless to the number of parameters and implemented physical processes, it was checked whether the structure of the lumped models had to be adjusted. The concept has been implemented in a PCRaster - Python platform and tested for two Belgian case studies (catchments of the rivers Dijle and Grote Nete). So far, use is made of existing model structures (NAM, PDM, VHM and HBV). Acknowledgement: These results were obtained within the scope of research activities for the Flemish Environment Agency (VMM) - division Operational Water Management on "Next Generation hydrological modeling", in cooperation with IMDC consultants, and for Flanders Hydraulics Research (Waterbouwkundig Laboratorium) on "Effect of climate change on the hydrological regime of navigable watercourses in Belgium".

  2. Hydrologic impacts of thawing permafrost—A review

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Kurylyk, Barret L.

    2016-01-01

    Where present, permafrost exerts a primary control on water fluxes, flowpaths, and distribution. Climate warming and related drivers of soil thermal change are expected to modify the distribution of permafrost, leading to changing hydrologic conditions, including alterations in soil moisture, connectivity of inland waters, streamflow seasonality, and the partitioning of water stored above and below ground. The field of permafrost hydrology is undergoing rapid advancement with respect to multiscale observations, subsurface characterization, modeling, and integration with other disciplines. However, gaining predictive capability of the many interrelated consequences of climate change is a persistent challenge due to several factors. Observations of hydrologic change have been causally linked to permafrost thaw, but applications of process-based models needed to support and enhance the transferability of empirical linkages have often been restricted to generalized representations. Limitations stem from inadequate baseline permafrost and unfrozen hydrogeologic characterization, lack of historical data, and simplifications in structure and process representation needed to counter the high computational demands of cryohydrogeologic simulations. Further, due in part to the large degree of subsurface heterogeneity of permafrost landscapes and the nonuniformity in thaw patterns and rates, associations between various modes of permafrost thaw and hydrologic change are not readily scalable; even trajectories of change can differ. This review highlights promising advances in characterization and modeling of permafrost regions and presents ongoing research challenges toward projecting hydrologic and ecologic consequences of permafrost thaw at time and spatial scales that are useful to managers and researchers.

  3. On the probabilistic structure of water age

    NASA Astrophysics Data System (ADS)

    Porporato, Amilcare; Calabrese, Salvatore

    2015-05-01

    The age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it can be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. We illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.

  4. Coupling impervious surface rate derived from satellite remote sensing with distributed hydrological model for highly urbanized watershed flood forecasting

    NASA Astrophysics Data System (ADS)

    Dong, L.

    2017-12-01

    Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin

  5. Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction

    NASA Astrophysics Data System (ADS)

    Kavetski, Dmitri; Clark, Martyn P.

    2010-10-01

    Despite the widespread use of conceptual hydrological models in environmental research and operations, they remain frequently implemented using numerically unreliable methods. This paper considers the impact of the time stepping scheme on model analysis (sensitivity analysis, parameter optimization, and Markov chain Monte Carlo-based uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski, 2010), which focused on numerical accuracy, fidelity, and computational efficiency. Empirical and theoretical analysis of eight distinct time stepping schemes for six different hydrological models in 13 diverse basins demonstrates several critical conclusions. (1) Unreliable time stepping schemes, in particular, fixed-step explicit methods, suffer from troublesome numerical artifacts that severely deform the objective function of the model. These deformations are not rare isolated instances but can arise in any model structure, in any catchment, and under common hydroclimatic conditions. (2) Sensitivity analysis can be severely contaminated by numerical errors, often to the extent that it becomes dominated by the sensitivity of truncation errors rather than the model equations. (3) Robust time stepping schemes generally produce "better behaved" objective functions, free of spurious local optima, and with sufficient numerical continuity to permit parameter optimization using efficient quasi Newton methods. When implemented within a multistart framework, modern Newton-type optimizers are robust even when started far from the optima and provide valuable diagnostic insights not directly available from evolutionary global optimizers. (4) Unreliable time stepping schemes lead to inconsistent and biased inferences of the model parameters and internal states. (5) Even when interactions between hydrological parameters and numerical errors provide "the right result for the wrong reason" and the calibrated model performance appears adequate, unreliable time stepping schemes make the model unnecessarily fragile in predictive mode, undermining validation assessments and operational use. Erroneous or misleading conclusions of model analysis and prediction arising from numerical artifacts in hydrological models are intolerable, especially given that robust numerics are accepted as mainstream in other areas of science and engineering. We hope that the vivid empirical findings will encourage the conceptual hydrological community to close its Pandora's box of numerical problems, paving the way for more meaningful model application and interpretation.

  6. Neural Networks for Hydrological Modeling Tool for Operational Purposes

    NASA Astrophysics Data System (ADS)

    Bhatt, Divya; Jain, Ashu

    2010-05-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. The ANN models developed consistently outperformed the conceptual model developed in this study. The results obtained in this study indicate that the ANNs can be extremely useful tools for modeling the complex rainfall-runoff process in real catchments. The ANNs should be adopted in real catchments for hydrological modeling and forecasting. It is hoped that more research will be carried out to compare the performance of ANN model with the conceptual models actually in use at catchment scales. It is hoped that such efforts may go a long way in making the ANNs more acceptable by the policy makers, water resources decision makers, and traditional hydrologists.

  7. Monitoring Precipitation from Space: targeting Hydrology Community?

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Turk, J.

    2005-12-01

    During the past decades, advances in space, sensor and computer technology have made it possible to estimate precipitation nearly globally from a variety of observations in a relatively direct manner. The success of Tropical Precipitation Measuring Mission (TRMM) has been a significant advance for modern precipitation estimation algorithms to move toward daily quarter degree measurements, while the need for precipitation data at temporal-spatial resolutions compatible with hydrologic modeling has been emphasized by the end user: hydrology community. Can the future deployment of Global Precipitation Measurement constellation of low-altitude orbiting satellites (covering 90% of the global with a sampling interval of less than 3-hours), in conjunction with the existing suite of geostationary satellites, results in significant improvements in scale and accuracy of precipitation estimates suitable for hydrology applications? This presentation will review the current state of satellite-derived precipitation estimation and demonstrate the early results and primary barriers to full global high-resolution precipitation coverage. An attempt to facilitate the communication between data producers and users will be discussed by developing an 'end-to-end' uncertainty propagation analysis framework to quantify both the precipitation estimation error structure and the error influence on hydrological modeling.

  8. Hydrological modelling in forested systems | Science ...

    EPA Pesticide Factsheets

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.

  9. Strategies for Large Scale Implementation of a Multiscale, Multiprocess Integrated Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Duffy, C.

    2006-05-01

    Distributed models simulate hydrologic state variables in space and time while taking into account the heterogeneities in terrain, surface, subsurface properties and meteorological forcings. Computational cost and complexity associated with these model increases with its tendency to accurately simulate the large number of interacting physical processes at fine spatio-temporal resolution in a large basin. A hydrologic model run on a coarse spatial discretization of the watershed with limited number of physical processes needs lesser computational load. But this negatively affects the accuracy of model results and restricts physical realization of the problem. So it is imperative to have an integrated modeling strategy (a) which can be universally applied at various scales in order to study the tradeoffs between computational complexity (determined by spatio- temporal resolution), accuracy and predictive uncertainty in relation to various approximations of physical processes (b) which can be applied at adaptively different spatial scales in the same domain by taking into account the local heterogeneity of topography and hydrogeologic variables c) which is flexible enough to incorporate different number and approximation of process equations depending on model purpose and computational constraint. An efficient implementation of this strategy becomes all the more important for Great Salt Lake river basin which is relatively large (~89000 sq. km) and complex in terms of hydrologic and geomorphic conditions. Also the types and the time scales of hydrologic processes which are dominant in different parts of basin are different. Part of snow melt runoff generated in the Uinta Mountains infiltrates and contributes as base flow to the Great Salt Lake over a time scale of decades to centuries. The adaptive strategy helps capture the steep topographic and climatic gradient along the Wasatch front. Here we present the aforesaid modeling strategy along with an associated hydrologic modeling framework which facilitates a seamless, computationally efficient and accurate integration of the process model with the data model. The flexibility of this framework leads to implementation of multiscale, multiresolution, adaptive refinement/de-refinement and nested modeling simulations with least computational burden. However, performing these simulations and related calibration of these models over a large basin at higher spatio- temporal resolutions is computationally intensive and requires use of increasing computing power. With the advent of parallel processing architectures, high computing performance can be achieved by parallelization of existing serial integrated-hydrologic-model code. This translates to running the same model simulation on a network of large number of processors thereby reducing the time needed to obtain solution. The paper also discusses the implementation of the integrated model on parallel processors. Also will be discussed the mapping of the problem on multi-processor environment, method to incorporate coupling between hydrologic processes using interprocessor communication models, model data structure and parallel numerical algorithms to obtain high performance.

  10. Constraining Distributed Catchment Models by Incorporating Perceptual Understanding of Spatial Hydrologic Behaviour

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei

    2016-04-01

    Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models tend to contain a large number of poorly defined and spatially varying model parameters which are therefore computationally expensive to calibrate. Insufficient data can result in model parameter and structural equifinality, particularly when calibration is reliant on catchment outlet discharge behaviour alone. Evaluating spatial patterns of internal hydrological behaviour has the potential to reveal simulations that, whilst consistent with measured outlet discharge, are qualitatively dissimilar to our perceptual understanding of how the system should behave. We argue that such understanding, which may be derived from stakeholder knowledge across different catchments for certain process dynamics, is a valuable source of information to help reject non-behavioural models, and therefore identify feasible model structures and parameters. The challenge, however, is to convert different sources of often qualitative and/or semi-qualitative information into robust quantitative constraints of model states and fluxes, and combine these sources of information together to reject models within an efficient calibration framework. Here we present the development of a framework to incorporate different sources of data to efficiently calibrate distributed catchment models. For each source of information, an interval or inequality is used to define the behaviour of the catchment system. These intervals are then combined to produce a hyper-volume in state space, which is used to identify behavioural models. We apply the methodology to calibrate the Penn State Integrated Hydrological Model (PIHM) at the Wye catchment, Plynlimon, UK. Outlet discharge behaviour is successfully simulated when perceptual understanding of relative groundwater levels between lowland peat, upland peat and valley slopes within the catchment are used to identify behavioural models. The process of converting qualitative information into quantitative constraints forces us to evaluate the assumptions behind our perceptual understanding in order to derive robust constraints, and therefore fairly reject models and avoid type II errors. Likewise, consideration needs to be given to the commensurability problem when mapping perceptual understanding to constrain model states.

  11. A Reliability Estimation in Modeling Watershed Runoff With Uncertainties

    NASA Astrophysics Data System (ADS)

    Melching, Charles S.; Yen, Ben Chie; Wenzel, Harry G., Jr.

    1990-10-01

    The reliability of simulation results produced by watershed runoff models is a function of uncertainties in nature, data, model parameters, and model structure. A framework is presented here for using a reliability analysis method (such as first-order second-moment techniques or Monte Carlo simulation) to evaluate the combined effect of the uncertainties on the reliability of output hydrographs from hydrologic models. For a given event the prediction reliability can be expressed in terms of the probability distribution of the estimated hydrologic variable. The peak discharge probability for a watershed in Illinois using the HEC-1 watershed model is given as an example. The study of the reliability of predictions from watershed models provides useful information on the stochastic nature of output from deterministic models subject to uncertainties and identifies the relative contribution of the various uncertainties to unreliability of model predictions.

  12. Reducing calibration parameters to increase insight in catchment organization and similarity

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Onof, Christian

    2013-04-01

    Ideally, hydrological models should be built from equations parameterised from observed catchment characteristics and data. This state of affairs may never be reached, but a governing principle in hydrological modelling should be to keep the number of calibration parameters to a minimum. A reduced number of parameters to be calibrated, while maintaining the accuracy and detail required by modern hydrological models, will reduce parameter and model structure uncertainty and improve model diagnostics. The dynamics of runoff for small catchments are derived from the distribution of distances from points in the catchments to the nearest stream in a catchment. This distribution is unique for each catchment and can be determined from a geographical information system (GIS). The distribution of distances, will, when a celerity of (subsurface) flow is introduced, provide a distribution of travel times, or a unit hydrograph (UH). For spatially varying levels of saturation deficit we have different celerities and, hence, different UHs. Runoff is derived from the super-positioning of the different UHs. This study shows how celerities can be estimated if we assume that recession events represent the superpositioned UH for different levels of saturation deficit. The performance of the DDD (Distance Distribution Dynamics) model is compared to that of the Swedish HBV model and is found to perform equally well for eight Norwegian catchments although the number of parameters to be calibrated in the module concerning soil moisture and runoff dynamics is reduced from 7 in the HBV model to 1 in the DDD model. It is also shown that the DDD model has a more realistic representation of the subsurface hydrology. The transparency of the DDD model makes model diagnostics more easy and experience with DDD shows that differences in model performance may be related to differences in catchment characteristics. More specifically, it appears that the hydrological dynamics of bogs have to be taken especially into account when modelling Norwegian catchments.

  13. Tools for Virtual Collaboration Designed for High Resolution Hydrologic Research with Continental-Scale Data Support

    NASA Astrophysics Data System (ADS)

    Duffy, Christopher; Leonard, Lorne; Shi, Yuning; Bhatt, Gopal; Hanson, Paul; Gil, Yolanda; Yu, Xuan

    2015-04-01

    Using a series of recent examples and papers we explore some progress and potential for virtual (cyber-) collaboration inspired by access to high resolution, harmonized public-sector data at continental scales [1]. The first example describes 7 meso-scale catchments in Pennsylvania, USA where the watershed is forced by climate reanalysis and IPCC future climate scenarios (Intergovernmental Panel on Climate Change). We show how existing public-sector data and community models are currently able to resolve fine-scale eco-hydrologic processes regarding wetland response to climate change [2]. The results reveal that regional climate change is only part of the story, with large variations in flood and drought response associated with differences in terrain, physiography, landuse and/or hydrogeology. The importance of community-driven virtual testbeds are demonstrated in the context of Critical Zone Observatories, where earth scientists from around the world are organizing hydro-geophysical data and model results to explore new processes that couple hydrologic models with land-atmosphere interaction, biogeochemical weathering, carbon-nitrogen cycle, landscape evolution and ecosystem services [3][4]. Critical Zone cyber-research demonstrates how data-driven model development requires a flexible computational structure where process modules are relatively easy to incorporate and where new data structures can be implemented [5]. From the perspective of "Big-Data" the paper points out that extrapolating results from virtual observatories to catchments at continental scales, will require centralized or cloud-based cyberinfrastructure as a necessary condition for effectively sharing petabytes of data and model results [6]. Finally we outline how innovative cyber-science is supporting earth-science learning, sharing and exploration through the use of on-line tools where hydrologists and limnologists are sharing data and models for simulating the coupled impacts of catchment hydrology on lake eco-hydrology (NSF-INSPIRE, IIS1344272). The research attempts to use a virtual environment (www.organicdatascience.org) to break down disciplinary barriers and support emergent communities of science. [1] Source: Leonard and Duffy, 2013, Environmental Modelling & Software; [2] Source: Yu et al, 2014, Computers in Geoscience; [3] Source: Duffy et al, 2014, Procedia Earth and Planetary Science; [4] Source: Shi et al, Journal of Hydrometeorology, 2014; [5] Source: Bhatt et al, 2014, Environmental Modelling & Software ; [6] Leonard and Duffy, 2014, Environmental Modelling and Software.

  14. A project optimization for small watercourses restoration in the northern part of the Volga-Akhtuba floodplain by the geoinformation and hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Voronin, Alexander; Vasilchenko, Ann; Khoperskov, Alexander

    2018-03-01

    The project of small watercourses restoration in the northern part of the Volga-Akhtuba floodplain is considered together with the aim of increasing the watering of the territory during small and medium floods. The topography irregularity, the complex structure of the floodplain valley consisting of large number of small watercourses, the presence of urbanized and agricultural areas require careful preliminary analysis of the hydrological safety and efficiency of geographically distributed project activities. Using the digital terrain and watercourses structure models of the floodplain, the hydrodynamic flood model, the analysis of the hydrological safety and efficiency of several project implementation strategies has been conducted. The objective function values have been obtained from the hydrodynamic calculations of the floodplain territory flooding for virtual digital terrain models simulating alternatives for the geographically distributed project activities. The comparative efficiency of several empirical strategies for the geographically distributed project activities, as well as a two-stage exact solution method for the optimization problem has been studied.

  15. Regionalisation of Hydrological Indices to Assess Land-Use Change Impacts in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Buytaert, W.; Ochoa Tocachi, B. F.

    2014-12-01

    Andean ecosystems are major water sources for cities and communities located in the Tropical Andes; however, there is a considerable lack of knowledge about their hydrology. Two problems are especially important: (i) the lack of monitoring to assess the impacts of historical land-use and cover change and degradation (LUCCD) at catchment scale, and (ii) the high variability in climatic and hydrological conditions that complicate the evaluation of land management practices. This study analyses how a reliable LUCCD impacts assessment can be performed in an environment of high variability combined with data-scarcity and low-quality records. We use data from participatory hydrological monitoring activities in 20 catchments distributed along the tropical Andes. A set of 46 hydrological indices is calculated and regionalized by relating them to 42 physical catchment properties. Principal Component Analysis (PCA) is performed to maximise available data while minimising redundancy in the sets of variables. Hydrological model parameters are constrained by estimated indices, and different behavioural predictions are assembled to provide a generalised response on which we assess LUCCD impacts. Results from this methodology show that the attributed effects of LUCCD in pair-wise catchment comparisons may be overstated or hidden by different sources of uncertainty, including measurement inaccuracies and model structural errors. We propose extrapolation and evaluation in ungauged catchments as a way to regionalize LUCCD predictions and to provide statistically significant conclusions in the Andean region. These estimations may deliver reliable knowledge to evaluate the hydrological impact of different watershed management practices.

  16. Increased Drought Impacts on Temperate Rainforests from Southern South America: Results of a Process-Based, Dynamic Forest Model

    PubMed Central

    Gutiérrez, Alvaro G.; Armesto, Juan J.; Díaz, M. Francisca; Huth, Andreas

    2014-01-01

    Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests. PMID:25068869

  17. Increased drought impacts on temperate rainforests from southern South America: results of a process-based, dynamic forest model.

    PubMed

    Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas

    2014-01-01

    Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.

  18. Efficient Approaches for Propagating Hydrologic Forcing Uncertainty: High-Resolution Applications Over the Western United States

    NASA Astrophysics Data System (ADS)

    Hobbs, J.; Turmon, M.; David, C. H.; Reager, J. T., II; Famiglietti, J. S.

    2017-12-01

    NASA's Western States Water Mission (WSWM) combines remote sensing of the terrestrial water cycle with hydrological models to provide high-resolution state estimates for multiple variables. The effort includes both land surface and river routing models that are subject to several sources of uncertainty, including errors in the model forcing and model structural uncertainty. Computational and storage constraints prohibit extensive ensemble simulations, so this work outlines efficient but flexible approaches for estimating and reporting uncertainty. Calibrated by remote sensing and in situ data where available, we illustrate the application of these techniques in producing state estimates with associated uncertainties at kilometer-scale resolution for key variables such as soil moisture, groundwater, and streamflow.

  19. Physically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds

    NASA Astrophysics Data System (ADS)

    England, John F.; Julien, Pierre Y.; Velleux, Mark L.

    2014-03-01

    Traditionally, deterministic flood procedures such as the Probable Maximum Flood have been used for critical infrastructure design. Some Federal agencies now use hydrologic risk analysis to assess potential impacts of extreme events on existing structures such as large dams. Extreme flood hazard estimates and distributions are needed for these efforts, with very low annual exceedance probabilities (⩽10-4) (return periods >10,000 years). An integrated data-modeling hydrologic hazard framework for physically-based extreme flood hazard estimation is presented. Key elements include: (1) a physically-based runoff model (TREX) coupled with a stochastic storm transposition technique; (2) hydrometeorological information from radar and an extreme storm catalog; and (3) streamflow and paleoflood data for independently testing and refining runoff model predictions at internal locations. This new approach requires full integration of collaborative work in hydrometeorology, flood hydrology and paleoflood hydrology. An application on the 12,000 km2 Arkansas River watershed in Colorado demonstrates that the size and location of extreme storms are critical factors in the analysis of basin-average rainfall frequency and flood peak distributions. Runoff model results are substantially improved by the availability and use of paleoflood nonexceedance data spanning the past 1000 years at critical watershed locations.

  20. Modeling human-flood interactions: Collective action and community resilience.

    NASA Astrophysics Data System (ADS)

    Yu, D. J.; Sangwan, N.; Sung, K.

    2016-12-01

    Stylized models of socio-hydrology have mainly used social memory aspects such as community awareness or sensitivity to connect hydrologic change and social response. However, social memory alone does not satisfactorily capture the details of how human behavior is translated into collective action for water resources governance. Nor is it the only mechanism by which the two-way feedbacks of socio-hydrology can be operationalized. This study contributes towards bridging of this gap by developing a stylized model of a human-flood system that includes two additional drivers of change: (1) institutions for collective action, and (2) connections to an external economic system. Motivated by the case of community-managed flood protection systems (polders) in coastal Bangladesh, we use the model to understand critical general features that affect long-term resilience of human-flood systems. Our findings suggest that occasional adversity can enhance long-term resilience. Allowing some hydrological variability to enter into the polder can increase its adaptive capacity and resilience through the preservation of social memory and institutions for collective action. Further, there are potential tradeoffs associated with optimization of flood resilience through structural measures. By reducing sensitivity to flooding, the system may become more fragile under the double impact of flooding and economic change

  1. airGR: a suite of lumped hydrological models in an R-package

    NASA Astrophysics Data System (ADS)

    Coron, Laurent; Perrin, Charles; Delaigue, Olivier; Andréassian, Vazken; Thirel, Guillaume

    2016-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2015), called airGR, to make these models widely available. It includes: - the water balance annual GR1A (Mouehli et al., 2006), - the monthly GR2M (Mouehli, 2003) models, - three versions of the daily model, namely GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al., 2011), - the hourly GR4H model (Mathevet, 2005), - a degree-day snow module CemaNeige (Valéry et al., 2014). The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithms selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is already used for educational purposes. The presentation will detail the main functionalities of the package and present a case study application. References: - Le Moine, N. (2008), Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances et du réalisme des modèles pluie-débit ?, PhD thesis (in French), UPMC, Paris, France. - Mathevet, T. (2005), Quels modèles pluie-débit globaux pour le pas de temps horaire ? Développement empirique et comparaison de modèles sur un large échantillon de bassins versants, PhD thesis (in French), ENGREF - Cemagref (Antony), Paris, France. - Mouelhi S. (2003), Vers une chaîne cohérente de modèles pluie-débit conceptuels globaux aux pas de temps pluriannuel, annuel, mensuel et journalier, PhD thesis (in French), ENGREF - Cemagref Antony, Paris, France. - Mouelhi, S., C. Michel, C. Perrin and V. Andréassian (2006), Stepwise development of a two-parameter monthly water balance model, Journal of Hydrology, 318(1-4), 200-214, doi:10.1016/j.jhydrol.2005.06.014. - Perrin, C., C. Michel and V. Andréassian (2003), Improvement of a parsimonious model for streamflow simulation, Journal of Hydrology, 279(1-4), 275-289, doi:10.1016/S0022-1694(03)00225-7. - Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet and V. Andréassian (2011), A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, Journal of Hydrology, 411(1-2), 66-76, doi:10.1016/j.jhydrol.2011.09.034. - R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ - Valéry, A., V. Andréassian and C. Perrin (2014), "As simple as possible but not simpler": What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, doi:10.1016/j.jhydrol.2014.04.058.

  2. Integrated modeling of long-term vegetation and hydrologic dynamics in Rocky Mountain watersheds

    Treesearch

    Robert Steven Ahl

    2007-01-01

    Changes in forest structure resulting from natural disturbances, or managed treatments, can have negative and long lasting impacts on water resources. To facilitate integrated management of forest and water resources, a System for Long-Term Integrated Management Modeling (SLIMM) was developed. By combining two spatially explicit, continuous time models, vegetation...

  3. Bayesian calibration of the Community Land Model using surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi

    2014-02-01

    We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditional on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural errormore » in CLM under two error models. We find that surrogate models can be created for CLM in most cases. The posterior distributions are more predictive than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters' distributions significantly. The structural error model reveals a correlation time-scale which can be used to identify the physical process that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.« less

  4. Dendritic Connectivity, Heterogeneity, and Scaling in Urban Stormwater Networks: Implications for Socio-Hydrology

    NASA Astrophysics Data System (ADS)

    Mejia, A.; Jovanovic, T.; Hale, R. L.; Gironas, J. A.

    2017-12-01

    Urban stormwater networks (USNs) are unique dendritic (tree-like) structures that combine both artificial (e.g., swales and pipes) and natural (e.g., streams and wetlands) components. They are central to stream ecosystem structure and function in urban watersheds. The emphasis of conventional stormwater management, however, has been on localized, temporal impacts (e.g., changes to hydrographs at discrete locations), and the performance of individual stormwater control measures. This is the case even though control measures are implemented to prevent impacts on the USN. We develop a modeling approach to retrospectively study hydrological fluxes and states in USNs and apply the model to an urban watershed in Scottsdale, Arizona, USA. Using outputs from the model, we analyze over space and time the network properties of dendritic connectivity, heterogeneity, and scaling. Results show that as the network growth over time, due to increasing urbanization, it tends to become more homogenous in terms of topological features but increasingly heterogeneous in terms of dynamic features. We further use the modeling results to address socio-hydrological implications for USNs. We find that the adoption over time of evolving management strategies (e.g., widespread implementation of vegetated swales and retention ponds versus pipes) may be locally beneficial to the USN but benefits may not propagate systematically through the network. The latter can be reinforced by sudden, perhaps unintended, changes to the overall dendritic connectivity.

  5. Combined use of local and global hydrometeorological data with regional and global hydrological models in the Magdalena - Cauca river basin, Colombia

    NASA Astrophysics Data System (ADS)

    Rodriguez, Erasmo; Sanchez, Ines; Duque, Nicolas; Lopez, Patricia; Kaune, Alexander; Werner, Micha; Arboleda, Pedro

    2017-04-01

    The Magdalena Cauca Macrobasin (MCMB) in Colombia, with an area of about 257,000 km2, is the largest and most important water resources system in the country. With almost 80% of the Colombian population (46 million people) settled in the basin, it is the main source of water for demands including human consumption, agriculture, hydropower generation, industrial activities and ecosystems. Despite its importance, the basin has witnessed enormous changes in land-cover and extensive deforestation during the last three decades. To make things more complicated, the MCMB currently lacks a set of tools to support planning and decision making processes at scale of the whole watershed. Considering this, the MCMB has been selected as one of the six different regional case studies in the eartH2Observe research project, in which hydrological and meteorological reanalysis products are being validated for the period 1980-2012. The combined use of the hydrological and meteorological reanalysis data, with local hydrometeorological data (precipitation, temperature and streamflow) provided by the National Hydrometeorological Agency (IDEAM), has given us the opportunity to implement and test three hydrological models (VIC, WFLOW and a Water Balance Model based on the Budyko framework) at the basin scale. Additionally, results from the global models in the eartH2Observe hydrological reanalysis have been used to evaluate their performance against the observed streamflow data. This paper discusses the comparison between streamflow observations and simulations from the global hydrological models forced with the WFDEI data, and regional models forced with a combination of observed and meteorological reanalysis data, in the whole domain of the MCMB. For the three regional models analysed results show good performances for some sub-basins and poor performances for others. This can be due to the smoothing of the precipitation fields, interpolated from point daily rainfall data, the effect of horizontal precipitation (not included in the models) and weaknesses in the models structures; for example the poor performance of the VIC model in base flow dominated basins. In order to improve these simulations a strategy based on a hydrological model ensemble is currently being developed in the case study. Results from the global models, show that these consistently tend to overestimate runoff. This may be due to the coarse resolution used (50 km), biases in the ERA-Interim precipitation forcing, and the different partitioning within the global models of the precipitation into evapotranspiration and runoff. It is expected that within the Tier II hydrological reanalysis, where the models will produce outputs at 25 km resolution, some improvements may be identified.

  6. Attributing runoff changes to climate variability and human activities: uncertainty analysis using four monthly water balance models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuai; Xiong, Lihua; Li, Hong-Yi

    2015-05-26

    Hydrological simulations to delineate the impacts of climate variability and human activities are subjected to uncertainties related to both parameter and structure of the hydrological models. To analyze the impact of these uncertainties on the model performance and to yield more reliable simulation results, a global calibration and multimodel combination method that integrates the Shuffled Complex Evolution Metropolis (SCEM) and Bayesian Model Averaging (BMA) of four monthly water balance models was proposed. The method was applied to the Weihe River Basin (WRB), the largest tributary of the Yellow River, to determine the contribution of climate variability and human activities tomore » runoff changes. The change point, which was used to determine the baseline period (1956-1990) and human-impacted period (1991-2009), was derived using both cumulative curve and Pettitt’s test. Results show that the combination method from SCEM provides more skillful deterministic predictions than the best calibrated individual model, resulting in the smallest uncertainty interval of runoff changes attributed to climate variability and human activities. This combination methodology provides a practical and flexible tool for attribution of runoff changes to climate variability and human activities by hydrological models.« less

  7. Probabilistic graphs as a conceptual and computational tool in hydrology and water management

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit

    2014-05-01

    Originally developed in the fields of machine learning and artificial intelligence, probabilistic graphs constitute a general framework for modeling complex systems in the presence of uncertainty. The framework consists of three components: 1. Representation of the model as a graph (or network), with nodes depicting random variables in the model (e.g. parameters, states, etc), which are joined together by factors. Factors are local probabilistic or deterministic relations between subsets of variables, which, when multiplied together, yield the joint distribution over all variables. 2. Consistent use of probability theory for quantifying uncertainty, relying on basic rules of probability for assimilating data into the model and expressing unknown variables as a function of observations (via the posterior distribution). 3. Efficient, distributed approximation of the posterior distribution using general-purpose algorithms that exploit model structure encoded in the graph. These attributes make probabilistic graphs potentially useful as a conceptual and computational tool in hydrology and water management (and beyond). Conceptually, they can provide a common framework for existing and new probabilistic modeling approaches (e.g. by drawing inspiration from other fields of application), while computationally they can make probabilistic inference feasible in larger hydrological models. The presentation explores, via examples, some of these benefits.

  8. Land Conversion in Amazonia and Northern South America; Influences on Regional Hydrology and Ecosystem Response

    NASA Astrophysics Data System (ADS)

    Knox, Ryan Gary

    A numerical model of the terrestrial biosphere (Ecosystem Demography Model) is compbined with an atmospheric model (Brazilian Regional Atmospheric Modeling System) to investigate how land conversion in the Amazon and Northern South America have changed the hydrology of the region, and to see if those changes are significant enough to produce an ecological response. Two numerical realizations of the structure and composition of terrestrial vegetation are used as boundary conditions in a simulation of the regional land surface and atmosphere. One realization seeks to capture the present day vegetation condition that includes human deforestation and land-conversion, the other is an estimate of the potential structure and composition of the region without human influence. Model output is assessed for consistent and significant differences in hydrometeorology. Locations that show compelling differences are taken as case studies. The seasonal biases in precipitation at these locations are then used to create perturbations to long-term climate datasets. These perturbations then drive long-term simulations of dynamic vegetation to see if the climate consistent with a potential regional vegetation could elicit a change in the vegetation equilibrium at the site. Results show that South American land conversion has had consistent impacts on the regional patterning of precipitation. At some locations, changes in precipitation are persistent and constitute a significant fraction of total precipitation. Land-conversion has decreased mean continental evaporation and increased mean moisture convergence. Case study simulations of long term vegetation dynamic indicate that a hydrologic climate consistent with regional potential vegetation can indeed have significant influence on ecosystem structure and composition, particularly in water limited growth conditions. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  9. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates

    PubMed Central

    Perez-Saez, Javier; Mande, Theophile; Ceperley, Natalie; Bertuzzo, Enrico; Mari, Lorenzo; Rinaldo, Andrea

    2016-01-01

    We report about field and theoretical studies on the ecology of the aquatic snails (Bulinus spp. and Biomphalaria pfeifferi) that serve as obligate intermediate hosts in the complex life cycle of the parasites causing human schistosomiasis. Snail abundance fosters disease transmission, and thus the dynamics of snail populations are critically important for schistosomiasis modeling and control. Here, we single out hydrological drivers and density dependence (or lack of it) of ecological growth rates of local snail populations by contrasting novel ecological and environmental data with various models of host demography. Specifically, we study various natural and man-made habitats across Burkina Faso’s highly seasonal climatic zones. Demographic models are ranked through formal model comparison and structural risk minimization. The latter allows us to evaluate the suitability of population models while clarifying the relevant covariates that explain empirical observations of snail abundance under the actual climatic forcings experienced by the various field sites. Our results link quantitatively hydrological drivers to distinct population dynamics through specific density feedbacks, and show that statistical methods based on model averaging provide reliable snail abundance projections. The consistency of our ranking results suggests the use of ad hoc models of snail demography depending on habitat type (e.g., natural vs. man-made) and hydrological characteristics (e.g., ephemeral vs. permanent). Implications for risk mapping and space-time allocation of control measures in schistosomiasis-endemic contexts are discussed. PMID:27162339

  10. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates.

    PubMed

    Perez-Saez, Javier; Mande, Theophile; Ceperley, Natalie; Bertuzzo, Enrico; Mari, Lorenzo; Gatto, Marino; Rinaldo, Andrea

    2016-06-07

    We report about field and theoretical studies on the ecology of the aquatic snails (Bulinus spp. and Biomphalaria pfeifferi) that serve as obligate intermediate hosts in the complex life cycle of the parasites causing human schistosomiasis. Snail abundance fosters disease transmission, and thus the dynamics of snail populations are critically important for schistosomiasis modeling and control. Here, we single out hydrological drivers and density dependence (or lack of it) of ecological growth rates of local snail populations by contrasting novel ecological and environmental data with various models of host demography. Specifically, we study various natural and man-made habitats across Burkina Faso's highly seasonal climatic zones. Demographic models are ranked through formal model comparison and structural risk minimization. The latter allows us to evaluate the suitability of population models while clarifying the relevant covariates that explain empirical observations of snail abundance under the actual climatic forcings experienced by the various field sites. Our results link quantitatively hydrological drivers to distinct population dynamics through specific density feedbacks, and show that statistical methods based on model averaging provide reliable snail abundance projections. The consistency of our ranking results suggests the use of ad hoc models of snail demography depending on habitat type (e.g., natural vs. man-made) and hydrological characteristics (e.g., ephemeral vs. permanent). Implications for risk mapping and space-time allocation of control measures in schistosomiasis-endemic contexts are discussed.

  11. Using combined hydrological variables for extracting functional signatures of catchments to better assess the acceptability of model structures in conceptual catchment modelling

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Hrachowitz, M.; RUIZ, L.; Gascuel-odoux, C.; Savenije, H.

    2013-12-01

    While most hydrological models reproduce the general flow dynamics of a system, they frequently fail to adequately mimic system internal processes. This is likely to make them inadequate to simulate solutes transport. For example, the hysteresis between storage and discharge, which is often observed in shallow hard-rock aquifers, is rarely well reproduced by models. One main reason is that this hysteresis has little weight in the calibration because objective functions are based on time series of individual variables. This reduces the ability of classical calibration/validation procedures to assess the relevance of the conceptual hypothesis associated with hydrological models. Calibrating models on variables derived from the combination of different individual variables (like stream discharge and groundwater levels) is a way to insure that models will be accepted based on their consistency. Here we therefore test the value of this more systems-like approach to test different hypothesis on the behaviour of a small experimental low-land catchment in French Brittany (ORE AgrHys) where a high hysteresis is observed on the stream flow vs. shallow groundwater level relationship. Several conceptual models were applied to this site, and calibrated using objective functions based on metrics of this hysteresis. The tested model structures differed with respect to the storage function in each reservoir, the storage-discharge function in each reservoir, the deep loss expressions (as constant or variable fraction), the number of reservoirs (from 1 to 4) and their organization (parallel, series). The observed hysteretic groundwater level-discharge relationship was not satisfactorily reproduced by most of the tested models except for the most complex ones. Those were thus more consistent, their underlying hypotheses are probably more realistic even though their performance for simulating observed stream flow was decreased. Selecting models based on such systems-like approach is likely to improve their efficiency for environmental application e.g. on solute transport issues. The next step would be to apply the same approach with variables combining hydrological and biogeochemical variables.

  12. airGRteaching: an R-package designed for teaching hydrology with lumped hydrological models

    NASA Astrophysics Data System (ADS)

    Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Andréassian, Vazken; Brigode, Pierre

    2017-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. Although its initial target public was hydrological modellers, the package is already used for educational purposes. Indeed, simple models allow for rapidly visualising the effects of parameterizations and model components on flows hydrographs. In order to avoid the difficulties that students may have when manipulating R and datasets, we developed (Delaigue and Coron, 2016): - Three simplified functions to prepare data, calibrate a model and run a simulation - Simplified and dynamic plot functions - A shiny (Chang et al., 2016) interface that connects this R-package to a browser-based visualisation tool. On this interface, the students can use different hydrological models (including the possibility to use a snow-accounting model), manually modify their parameters and automatically calibrate their parameters with diverse objective functions. One of the visualisation tabs of the interface includes observed precipitation and temperature, simulated snowpack (if any), observed and simulated discharges, which are updated immediately (a calibration only needs a couple of seconds or less, a simulation is almost immediate). In addition, time series of internal variables, live-visualisation of internal variables evolution and performance statistics are provided. This interface allows for hands-on exercises that can include for instance the analysis by students of: - The effects of each parameter and model components on simulated discharge - The effects of objective functions based on high flows- or low flows-focused criteria on simulated discharge - The seasonality of the model components. References Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson (2016). shiny: Web Application Framework for R. R package version 0.13.2. https://CRAN.R-project.org/package=shiny Coron L., Thirel G., Perrin C., Delaigue O., Andréassian V., airGR: a suite of lumped hydrological models in an R-package, Environmental Modelling and software, 2017, submitted. Coron, L., Perrin, C. and Michel, C. (2016). airGR: Suite of GR hydrological models for precipitation-runoff modelling. R package version 1.0.3. https://webgr.irstea.fr/airGR/?lang=en. Olivier Delaigue and Laurent Coron (2016). airGRteaching: Tools to simplify the use of the airGR hydrological package by students. R package version 0.0.1. https://webgr.irstea.fr/airGR/?lang=en R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  13. Comprehensive Representation of Hydrologic and Geomorphic Process Coupling in Numerical Models: Internal Dynamics and Basin Evolution

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, E.; Vivoni, E. R.; Ivanov, V. Y.; Bras, R. L.

    2005-12-01

    Landscape morphology has an important control on the spatial and temporal organization of basin hydrologic response to climate forcing, affecting soil moisture redistribution as well as vegetation function. On the other hand, erosion, driven by hydrology and modulated by vegetation, produces landforms over geologic time scales that reflect characteristic signatures of the dominant land forming process. Responding to extreme climate events or anthropogenic disturbances of the land surface, infrequent but rapid forms of erosion (e.g., arroyo development, landsliding) can modify topography such that basin hydrology is significantly influenced. Despite significant advances in both hydrologic and geomorphic modeling over the past two decades, the dynamic interactions between basin hydrology, geomorphology and terrestrial ecology are not adequately captured in current model frameworks. In order to investigate hydrologic-geomorphic-ecologic interactions at the basin scale we present initial efforts in integrating the CHILD landscape evolution model (Tucker et al. 2001) with the tRIBS hydrology model (Ivanov et al. 2004), both developed in a common software environment. In this talk, we present preliminary results of the numerical modeling of the coupled evolution of basin hydro-geomorphic response and resulting landscape morphology in two sets of examples. First, we discuss the long-term evolution of both the hydrologic response and the resulting basin morphology from an initially uplifted plateau. In the second set of modeling experiments, we implement changes in climate and land-use to an existing topography and compare basin hydrologic response to the model results when landscape form is fixed (e.g. no coupling between hydrology and geomorphology). Model results stress the importance of internal basin dynamics, including runoff generation mechanisms and hydrologic states, in shaping hydrologic response as well as the importance of employing comprehensive conceptualizations of hydrology in modeling landscape evolution.

  14. System dynamics model for predicting floods from snowmelt in North American prairie watersheds

    NASA Astrophysics Data System (ADS)

    Li, L.; Simonovic, S. P.

    2002-09-01

    This study uses a system dynamics approach to explore hydrological processes in the geographic locations where the main contribution to flooding is coming from the snowmelt. Temperature is identified as a critical factor that affects watershed hydrological processes. Based on the dynamic processes of the hydrologic cycle occurring in a watershed, the feedback relationships linking the watershed structure, as well as the climate factors, to the streamflow generation were identified prior to the development of a system dynamics model. The model is used to simulate flood patterns generated by snowmelt under temperature change in the spring. Model structure captures a vertical water balance using five tanks representing snow, interception, surface, subsurface and groundwater storage. Calibration and verification results show that temperature change and snowmelt play a key role in flood generation. Results indicate that simulated values match observed data very well. The goodness-of-fit between simulated and observed peak flow data is measured using coefficient of efficiency, coefficient of determination and square of the residual mass curve coefficient. For the Assiniboine River all three measures were in the interval between 0·92 and 0·96 and for the Red River between 0·89 and 0·97. The model is capable of capturing the essential dynamics of streamflow formation. Model input requires a set of initial values for all state variables and the time series of daily temperature and precipitation information. Data from the Red River Basin, shared by Canada and the USA, are used in the model development and testing.

  15. Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Borga, M.; Creutin, J. D.

    Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two issues are examined: advantages and caveats of using radar rainfall estimates in operational flash flood forecasting, methodological problems as- sociated to the use of hydrological models for distributed flash flood forecasting with rainfall input estimated from radar.

  16. Landscape structure and climate influences on hydrologic response

    NASA Astrophysics Data System (ADS)

    Nippgen, Fabian; McGlynn, Brian L.; Marshall, Lucy A.; Emanuel, Ryan E.

    2011-12-01

    Climate variability and catchment structure (topography, geology, vegetation) have a significant influence on the timing and quantity of water discharged from mountainous catchments. How these factors combine to influence runoff dynamics is poorly understood. In this study we linked differences in hydrologic response across catchments and across years to metrics of landscape structure and climate using a simple transfer function rainfall-runoff modeling approach. A transfer function represents the internal catchment properties that convert a measured input (rainfall/snowmelt) into an output (streamflow). We examined modeled mean response time, defined as the average time that it takes for a water input to leave the catchment outlet from the moment it reaches the ground surface. We combined 12 years of precipitation and streamflow data from seven catchments in the Tenderfoot Creek Experimental Forest (Little Belt Mountains, southwestern Montana) with landscape analyses to quantify the first-order controls on mean response times. Differences between responses across the seven catchments were related to the spatial variability in catchment structure (e.g., slope, flowpath lengths, tree height). Annual variability was largely a function of maximum snow water equivalent. Catchment averaged runoff ratios exhibited strong correlations with mean response time while annually averaged runoff ratios were not related to climatic metrics. These results suggest that runoff ratios in snowmelt dominated systems are mainly controlled by topography and not by climatic variability. This approach provides a simple tool for assessing differences in hydrologic response across diverse watersheds and climate conditions.

  17. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.

  18. Wolf Creek Research Basin Cold REgion Process Studies - 1992-2003

    NASA Astrophysics Data System (ADS)

    Janowicz, R.; Hedstrom, N.; Pomeroy, J.; Granger, R.; Carey, S.

    2004-12-01

    The development of hydrological models in northern regions are complicated by cold region processes. Sparse vegetation influences snowpack accumulation, redistribution and melt, frozen ground effects infiltration and runoff and cold soils in the summer effect evapotranspiration rates. Situated in the upper Yukon River watershed, the 195 km2 Wolf Creek Research Basin was instrumented in 1992 to calibrate hydrologic flow models, and has since evolved into a comprehensive study of cold region processes and linkages, contributing significantly to hydrological and climate change modelling. Studies include those of precipitation distribution, snowpack accumulation and redistribution, energy balance, snowmelt infiltration, and water balance. Studies of the spatial variability of hydrometeorological data demonstrate the importance of physical parameters on their distribution and control on runoff processes. Many studies have also identified the complex interaction of several of the physical parameters, including topography, vegetation and frozen ground (seasonal or permafrost) as important. They also show that there is a fundamental, underlying spatial structure to the watershed that must be adequately represented in parameterization schemes for scaling and watershed modelling. The specific results of numerous studies are presented.

  19. Modeling the hydrological and mechanical effect of roots on shallow landslides

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Caracciolo, D.; Noto, L. V.; Preti, F.; Bras, R. L.

    2016-11-01

    This study proposes a new methodology for estimating the additional shear strength (or cohesion) exerted by vegetation roots on slope stability analysis within a coupled hydrological-stability model. The mechanical root cohesion is estimated within a Fiber Bundle Model framework that allows for the evaluation of the root strength as a function of stress-strain relationships of populations of fibers. The use of such model requires the knowledge of the root architecture. A branching topology model based on Leonardo's rule is developed, providing an estimation of the amount of roots and the distribution of diameters with depth. The proposed methodology has been implemented into an existing distributed hydrological-stability model able to simulate the dynamics of factor of safety as a function of soil moisture dynamics. The model also accounts for the hydrological effects of vegetation, which reduces soil water content via root water uptake, thus increasing the stability. The entire methodology has been tested in a synthetic hillslope with two configurations of vegetation type, i.e., trees and shrubs, which have been compared to a configuration without vegetation. The vegetation has been characterized using roots data of two mediterranean plant species. The results demonstrate the capabilities of the topological model in accurately reproducing the observed root structure of the analyzed species. For the environmental setting modeled, the effects of root uptake might be more significant than the mechanical reinforcement; the additional resistance depends strictly on the vegetation root depth. Finally, for the simulated climatic environment, landslides are seasonal, in agreement with past observations.

  20. PBSM3D: A finite volume, scalar-transport blowing snow model for use with variable resolution meshes

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Wayand, N. E.; Pomeroy, J. W.; Wheater, H. S.; Spiteri, R. J.

    2017-12-01

    Blowing snow redistribution results in heterogeneous snowcovers that are ubiquitous in cold, windswept environments. Capturing this spatial and temporal variability is important for melt and runoff simulations. Point scale blowing snow transport models are difficult to apply in fully distributed hydrological models due to landscape heterogeneity and complex wind fields. Many existing distributed snow transport models have empirical wind flow and/or simplified wind direction algorithms that perform poorly in calculating snow redistribution where there are divergent wind flows, sharp topography, and over large spatial extents. Herein, a steady-state scalar transport model is discretized using the finite volume method (FVM), using parameterizations from the Prairie Blowing Snow Model (PBSM). PBSM has been applied in hydrological response units and grids to prairie, arctic, glacier, and alpine terrain and shows a good capability to represent snow redistribution over complex terrain. The FVM discretization takes advantage of the variable resolution mesh in the Canadian Hydrological Model (CHM) to ensure efficient calculations over small and large spatial extents. Variable resolution unstructured meshes preserve surface heterogeneity but result in fewer computational elements versus high-resolution structured (raster) grids. Snowpack, soil moisture, and streamflow observations were used to evaluate CHM-modelled outputs in a sub-arctic and an alpine basin. Newly developed remotely sensed snowcover indices allowed for validation over large basins. CHM simulations of snow hydrology were improved by inclusion of the blowing snow model. The results demonstrate the key role of snow transport processes in creating pre-melt snowcover heterogeneity and therefore governing post-melt soil moisture and runoff generation dynamics.

  1. Using High Resolution Remote Sensing Images to Investigate Hydrologic Connectivity and Degradation Thresholds along a Precipitation Gradient in Semiarid Australia

    NASA Astrophysics Data System (ADS)

    Azadi, S.; Saco, P. M.; Moreno-de las Heras, M.; Willgoose, G. R.

    2016-12-01

    Arid and semiarid landscapes are particularly sensitive to climatic and anthropogenic disturbances. Previous work has identified that these landscapes are prone to undergo critical degradation thresholds above which rehabilitation is difficult to achieve. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity associated with the climatic or anthropogenic disturbances. In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects can eventually affect ecosystem functionality (e.g. Rainfall Use Efficiency). In this study, we explore the impact of degradation processes induced by vegetation disturbances (mostly due to grazing pressure) on ecosystem functionality and connectivity along a precipitation gradient (250 mm to 490 mm annual average rainfall) using a combination of remote sensing observations and Digital Elevation Model data. The sites were carefully selected in the Mulga landscapes bioregion (New South Wales, Queensland) and in sites of the Northern Territory in Australia, which display similar vegetation characteristics and good quality rainfall information. Vegetation patterns and the percent of fractional cover were obtained from high resolution remote sensing images (IKONOS, QuickBird and Pleiades). We computed rainfall use efficiency and precipitation marginal response using local precipitation data and MODIS vegetation indices. We estimated mean Flowlength as an indicator of structural hydrologic connectivity using vegetation binary maps and digital elevation models. We compared the trends for several sites along the precipitation gradient, and found that disturbances substantially increase hydrologic connectivity following a threshold behaviour that affects landscape functionality. Though this threshold behaviour is found in all sites, the plots in higher rainfall landscapes show evidence of higher resilience.

  2. Multi-frequency electrical and electromagnetic measurements for imaging water flows: application to catchment and landslide hydrology.

    NASA Astrophysics Data System (ADS)

    Lajaunie, Myriam; Sailhac, Pascal; Malet, Jean-Philippe; Larnier, Hugo; Gance, Julien; Gautier, Stéphanie; Pierret, Marie-Claire

    2017-04-01

    Imaging water flows in mountainous watersheds is a difficult task, not only because of the topography and the dimensions of the existing structures, but also because the soils and rocks consist of unsaturated porous and heterogeneous fractured media, leading to multi-scale water-flow properties. In addition, these properties can change in time, in relation to temperature, rainfall and biological forcings. Electrical properties are relevant proxies of the subsurface hydrological properties. In order to image water flows, we consider measurements of the complex electrical conductivity (conduction and polarization/chargeability effects) which translate into a frequency dependance of the conductivity at the sample scale. We further discuss the combined use of electromagnetic (CS-AMT) and electric (DC and IP) measurements at the slope scale. The solving of processing, calibration and modelling issues allows the estimation of hydrological properties (i.e. permeability, soil humidity) giving master constraints for slope-scale hydrological modelling. We illustrate the application of these methods for the identification of the hydrological role of weathered structures of granitic catchments (e.g. Strengbach, Vosges mountains, ca. 80 km from Strasbourg, North East France) where new AMT processing has been developed in the AMT dead band to improve DC electrical imaging. We also illustrate the use of these methods to document the seasonal regime of the groundwater of the Lodève landslide (unstable slope located at Pégairolles, foot of the Cévennes mountain, ca. 80 km from Montpellier, South of France) where a new detailed time-lapse DC and IP setup (surface and borehole) is being tested. The works are supported by the research projects HYDROCRISZTO and HYDROSLIDE, and the large infrastructure project CRITEX.

  3. Advancing the Implementation of Hydrologic Models as Web-based Applications

    NASA Astrophysics Data System (ADS)

    Dahal, P.; Tarboton, D. G.; Castronova, A. M.

    2017-12-01

    Advanced computer simulations are required to understand hydrologic phenomenon such as rainfall-runoff response, groundwater hydrology, snow hydrology, etc. Building a hydrologic model instance to simulate a watershed requires investment in data (diverse geospatial datasets such as terrain, soil) and computer resources, typically demands a wide skill set from the analyst, and the workflow involved is often difficult to reproduce. This work introduces a web-based prototype infrastructure in the form of a web application that provides researchers with easy to use access to complete hydrological modeling functionality. This includes creating the necessary geospatial and forcing data, preparing input files for a model by applying complex data preprocessing, running the model for a user defined watershed, and saving the results to a web repository. The open source Tethys Platform was used to develop the web app front-end Graphical User Interface (GUI). We used HydroDS, a webservice that provides data preparation processing capability to support backend computations used by the app. Results are saved in HydroShare, a hydrologic information system that supports the sharing of hydrologic data, model and analysis tools. The TOPographic Kinematic APproximation and Integration (TOPKAPI) model served as the example for which we developed a complete hydrologic modeling service to demonstrate the approach. The final product is a complete modeling system accessible through the web to create input files, and run the TOPKAPI hydrologic model for a watershed of interest. We are investigating similar functionality for the preparation of input to Regional Hydro-Ecological Simulation System (RHESSys). Key Words: hydrologic modeling, web services, hydrologic information system, HydroShare, HydroDS, Tethys Platform

  4. Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and Bayesian inference

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Reichert, Peter; Abbaspour, Karim C.; Yang, Hong

    2007-07-01

    SummaryCalibration of hydrologic models is very difficult because of measurement errors in input and response, errors in model structure, and the large number of non-identifiable parameters of distributed models. The difficulties even increase in arid regions with high seasonal variation of precipitation, where the modelled residuals often exhibit high heteroscedasticity and autocorrelation. On the other hand, support of water management by hydrologic models is important in arid regions, particularly if there is increasing water demand due to urbanization. The use and assessment of model results for this purpose require a careful calibration and uncertainty analysis. Extending earlier work in this field, we developed a procedure to overcome (i) the problem of non-identifiability of distributed parameters by introducing aggregate parameters and using Bayesian inference, (ii) the problem of heteroscedasticity of errors by combining a Box-Cox transformation of results and data with seasonally dependent error variances, (iii) the problems of autocorrelated errors, missing data and outlier omission with a continuous-time autoregressive error model, and (iv) the problem of the seasonal variation of error correlations with seasonally dependent characteristic correlation times. The technique was tested with the calibration of the hydrologic sub-model of the Soil and Water Assessment Tool (SWAT) in the Chaohe Basin in North China. The results demonstrated the good performance of this approach to uncertainty analysis, particularly with respect to the fulfilment of statistical assumptions of the error model. A comparison with an independent error model and with error models that only considered a subset of the suggested techniques clearly showed the superiority of the approach based on all the features (i)-(iv) mentioned above.

  5. Urban-Related Environmental Variables and Their Relation with Patterns in Biological Community Structure in the Fountain Creek Basin, Colorado, 2003-2005

    USGS Publications Warehouse

    Zuellig, Robert E.; Bruce, James F.; Evans, Erin E.; Stogner, Sr., Robert W.

    2007-01-01

    In 2003, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to evaluate the influence of urbanization on stream ecosystems. To accomplish this task, invertebrate, fish, stream discharge, habitat, water-chemistry, and land-use data were collected from 13 sites in the Fountain Creek basin from 2003 to 2005. The Hydrologic Index Tool was used to calculate hydrologic indices known to be related to urbanization. Response of stream hydrology to urbanization was evident among hydrologic variables that described stormflow. These indices included one measurement of high-flow magnitude, two measurements of high-flow frequency, and one measurement of stream flashiness. Habitat and selected nonstormflow water chemistry were characterized at each site. Land-use data were converted to estimates of impervious surface cover and used as the measure of urbanization annually. Correlation analysis (Spearman?s rho) was used to identify a suite of nonredundant streamflow, habitat, and water-chemistry variables that were strongly associated (rho > 0.6) with impervious surface cover but not strongly related to elevation (rho < 0.60). An exploratory multivariate analysis (BIO-ENV, PRIMER ver 6.1, Plymouth, UK) was used to create subsets of eight urban-related environmental variables that described patterns in biological community structure. The strongest and most parsimonious subset of variables describing patterns in invertebrate community structure included high flood pulse count, lower bank capacity, and nutrients. Several other combinations of environmental variables resulted in competing subsets, but these subsets always included the three variables found in the most parsimonious list. This study found that patterns in invertebrate community structure from 2003 to 2005 in the Fountain Creek basin were associated with a variety of environmental characteristics influenced by urbanization. These patterns were explained by a combination of hydrologic, habitat, and water-chemistry variables. Fish community structure showed weaker links between urban-related environmental variables and biological patterns. A conceptual model was developed that showed the influence of urban-related environmental variables and their relation to fish and invertebrate assemblages. This model should prove helpful in guiding future studies on the impacts of urbanization on aquatic systems. Long-term monitoring efforts may be needed in other drainages along the Front Range of Colorado to link urban-related variables to aquatic communities in transition zone streams.

  6. Testing the robustness of management decisions to uncertainty: Everglades restoration scenarios.

    PubMed

    Fuller, Michael M; Gross, Louis J; Duke-Sylvester, Scott M; Palmer, Mark

    2008-04-01

    To effectively manage large natural reserves, resource managers must prepare for future contingencies while balancing the often conflicting priorities of different stakeholders. To deal with these issues, managers routinely employ models to project the response of ecosystems to different scenarios that represent alternative management plans or environmental forecasts. Scenario analysis is often used to rank such alternatives to aid the decision making process. However, model projections are subject to uncertainty in assumptions about model structure, parameter values, environmental inputs, and subcomponent interactions. We introduce an approach for testing the robustness of model-based management decisions to the uncertainty inherent in complex ecological models and their inputs. We use relative assessment to quantify the relative impacts of uncertainty on scenario ranking. To illustrate our approach we consider uncertainty in parameter values and uncertainty in input data, with specific examples drawn from the Florida Everglades restoration project. Our examples focus on two alternative 30-year hydrologic management plans that were ranked according to their overall impacts on wildlife habitat potential. We tested the assumption that varying the parameter settings and inputs of habitat index models does not change the rank order of the hydrologic plans. We compared the average projected index of habitat potential for four endemic species and two wading-bird guilds to rank the plans, accounting for variations in parameter settings and water level inputs associated with hypothetical future climates. Indices of habitat potential were based on projections from spatially explicit models that are closely tied to hydrology. For the American alligator, the rank order of the hydrologic plans was unaffected by substantial variation in model parameters. By contrast, simulated major shifts in water levels led to reversals in the ranks of the hydrologic plans in 24.1-30.6% of the projections for the wading bird guilds and several individual species. By exposing the differential effects of uncertainty, relative assessment can help resource managers assess the robustness of scenario choice in model-based policy decisions.

  7. Streamflow hindcasting in European river basins via multi-parametric ensemble of the mesoscale hydrologic model (mHM)

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; Rakovec, Oldrich; Kumar, Rohini; Samaniego, Luis

    2016-04-01

    There have been tremendous improvements in distributed hydrologic modeling (DHM) which made a process-based simulation with a high spatiotemporal resolution applicable on a large spatial scale. Despite of increasing information on heterogeneous property of a catchment, DHM is still subject to uncertainties inherently coming from model structure, parameters and input forcing. Sequential data assimilation (DA) may facilitate improved streamflow prediction via DHM using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is, however, often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. If parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by DHM may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we present a global multi-parametric ensemble approach to incorporate parametric uncertainty of DHM in DA to improve streamflow predictions. To effectively represent and control uncertainty of high-dimensional parameters with limited number of ensemble, MPR method is incorporated with DA. Lagged particle filtering is utilized to consider the response times and non-Gaussian characteristics of internal hydrologic processes. The hindcasting experiments are implemented to evaluate impacts of the proposed DA method on streamflow predictions in multiple European river basins having different climate and catchment characteristics. Because augmentation of parameters is not required within an assimilation window, the approach could be stable with limited ensemble members and viable for practical uses.

  8. Fundamental concepts and research priorities for advancing the science of urban stormwater hydrology and flood management

    NASA Astrophysics Data System (ADS)

    Nytch, C. J.; Meléndez-Ackerman, E. J.; Vivoni, E. R.; Grove, J. M.; Ortiz, J.

    2016-12-01

    In cities, hydrologic processes are drastically altered by human interventions. Modification of land cover and the enhancement of hydraulic efficiency have been documented as root causes of augmented stormwater runoff in urban watersheds, contributing to higher magnitude discharge events that pose flood risks for human communities. Climate change is expected to accelerate the hydrologic cycle, leading to more extreme events and increased flood risk. We present a synthesis of the physical and conceptual components and processes that govern urban stormwater runoff, and highlight key areas for future research. There is limited understanding about the fine-scale spatio-temporal relationships between gray, green, brown, and blue land cover features, the underlying social-ecological mechanisms responsible for their distribution, and the resulting effects on runoff dynamics. Horizontal and vertical complexity of urban morphological features and connectivity with the network of stormwater management infrastructure leads to heterogeneous and non-linear runoff responses that confound efforts for accurately predicting flood hazards. Quantitative analysis is needed to understand how urban drainage network structure varies across stream orders, and illuminate the landscape-scale patterns that potentially serve as organizing principles for generating hydrologic processes across diverse socio-bio-climatic domains and scales. Field-based and modeling studies are also needed to quantify the individual hydrologic capacities of urban structural elements and their cumulative effects at the watershed scale, particularly in developing regions. Integrated, transdisciplinary, multi-scalar approaches to framing and investigating complex socio-eco-techno-hydrologic systems are essential for advancing the science of urban stormwater hydrology, and developing resilient, multifunctional management solutions appropriate to the challenges of urban flooding in the twenty-first century.

  9. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  10. Catchment Classification: Connecting Climate, Structure and Function

    NASA Astrophysics Data System (ADS)

    Sawicz, K. A.; Wagener, T.; Sivapalan, M.; Troch, P. A.; Carrillo, G. A.

    2010-12-01

    Hydrology does not yet possess a generally accepted catchment classification framework. Such a classification framework needs to: [1] give names to things, i.e. the main classification step, [2] permit transfer of information, i.e. regionalization of information, [3] permit development of generalizations, i.e. to develop new theory, and [4] provide a first order environmental change impact assessment, i.e., the hydrologic implications of climate, land use and land cover change. One strategy is to create a catchment classification framework based on the notion of catchment functions (partitioning, storage, and release). Results of an empirical study presented here connects climate and structure to catchment function (in the form of select hydrologic signatures), based on analyzing over 300 US catchments. Initial results indicate a wide assortment of signature relationships with properties of climate, geology, and vegetation. The uncertainty in the different regionalized signatures varies widely, and therefore there is variability in the robustness of classifying ungauged basins. This research provides insight into the controls of hydrologic behavior of a catchment, and enables a classification framework applicable to gauged and ungauged across the study domain. This study sheds light on what we can expect to achieve in mapping climate, structure and function in a top-down manner. Results of this study complement work done using a bottom-up physically-based modeling framework to generalize this approach (Carrillo et al., this session).

  11. Hydrological modelling in forested systems

    EPA Science Inventory

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological p...

  12. On the probabilistic structure of water age: Probabilistic Water Age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porporato, Amilcare; Calabrese, Salvatore

    We report the age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it canmore » be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. Finally, we illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.« less

  13. On the probabilistic structure of water age: Probabilistic Water Age

    DOE PAGES

    Porporato, Amilcare; Calabrese, Salvatore

    2015-04-23

    We report the age distribution of water in hydrologic systems has received renewed interest recently, especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to draw attention to existing theories of age distributions in population dynamics, fluid mechanics and stochastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by means of time-varying stochastic processes, the age distributions must themselves be treated as random functions. Once their probabilistic structure is obtained, it canmore » be used to characterize the variability of age distributions in real systems and thus help quantify the inherent uncertainty in the field determination of water age. Finally, we illustrate these concepts with reference to a stochastic storage model, which has been used as a minimalist model of soil moisture and streamflow dynamics.« less

  14. Efficient Calibration of Distributed Catchment Models Using Perceptual Understanding and Hydrologic Signatures

    NASA Astrophysics Data System (ADS)

    Hutton, C.; Wagener, T.; Freer, J. E.; Duffy, C.; Han, D.

    2015-12-01

    Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models may contain a large number of model parameters which are computationally expensive to calibrate. Even when calibration is possible, insufficient data can result in model parameter and structural equifinality. In order to help reduce the space of feasible models and supplement traditional outlet discharge calibration data, semi-quantitative information (e.g. knowledge of relative groundwater levels), may also be used to identify behavioural models when applied to constrain spatially distributed predictions of states and fluxes. The challenge is to combine these different sources of information together to identify a behavioural region of state-space, and efficiently search a large, complex parameter space to identify behavioural parameter sets that produce predictions that fall within this behavioural region. Here we present a methodology to incorporate different sources of data to efficiently calibrate distributed catchment models. Metrics of model performance may be derived from multiple sources of data (e.g. perceptual understanding and measured or regionalised hydrologic signatures). For each metric, an interval or inequality is used to define the behaviour of the catchment system, accounting for data uncertainties. These intervals are then combined to produce a hyper-volume in state space. The state space is then recast as a multi-objective optimisation problem, and the Borg MOEA is applied to first find, and then populate the hyper-volume, thereby identifying acceptable model parameter sets. We apply the methodology to calibrate the PIHM model at Plynlimon, UK by incorporating perceptual and hydrologic data into the calibration problem. Furthermore, we explore how to improve calibration efficiency through search initialisation from shorter model runs.

  15. Improving student comprehension of the interconnectivity of the hydrologic cycle with a novel 'hydrology toolbox', integrated watershed model, and companion textbook

    NASA Astrophysics Data System (ADS)

    Huning, L. S.; Margulis, S. A.

    2013-12-01

    Concepts in introductory hydrology courses are often taught in the context of process-based modeling that ultimately is integrated into a watershed model. In an effort to reduce the learning curve associated with applying hydrologic concepts to real-world applications, we developed and incorporated a 'hydrology toolbox' that complements a new, companion textbook into introductory undergraduate hydrology courses. The hydrology toolbox contains the basic building blocks (functions coded in MATLAB) for an integrated spatially-distributed watershed model that makes hydrologic topics (e.g. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) more user-friendly and accessible for students. The toolbox functions can be used in a modular format so that students can study individual hydrologic processes and become familiar with the hydrology toolbox. This approach allows such courses to emphasize understanding and application of hydrologic concepts rather than computer coding or programming. While topics in introductory hydrology courses are often introduced and taught independently or semi-independently, they are inherently interconnected. These toolbox functions are therefore linked together at the end of the course to reinforce a holistic understanding of how these hydrologic processes are measured, interconnected, and modeled. They are integrated into a spatially-distributed watershed model or numerical laboratory where students can explore a range of topics such as rainfall-runoff modeling, urbanization, deforestation, watershed response to changes in parameters or forcings, etc. Model output can readily be visualized and analyzed by students to understand watershed response in a real river basin or a simple 'toy' basin. These tools complement the textbook, each of which has been well received by students in multiple hydrology courses with various disciplinary backgrounds. The same governing equations that students have studied in the textbook and used in the toolbox have been encapsulated in the watershed model. Therefore, the combination of the hydrology toolbox, integrated watershed model, and textbook tends to eliminate the potential disconnect between process-based modeling and an 'off-the-shelf' watershed model.

  16. Influence of bedrock topography on the runoff generation under use of ERT data

    NASA Astrophysics Data System (ADS)

    Kiese, Nina; Loritz, Ralf; Allroggen, Niklas; Zehe, Erwin

    2017-04-01

    Subsurface topography has been identified to play a major role for the runoff generation in different hydrological landscapes. Sinks and ridges in the bedrock can control how water is stored and transported to the stream. Detecting the subsurface structure is difficult and laborious and frequently done by auger measurements. Recently, the geophysical imaging of the subsurface by Electrical Resistivity Tomography (ERT) gained much interest in the field of hydrology, as it is a non-invasive method to collect information on the subsurface characteristics and particularly bedrock topography. As it is impossible to characterize the subsurface of an entire hydrological landscape using ERT, it is of key interest to identify the bedrock characteristics which dominate runoff generation to adapt and optimize the sampling design to the question of interest. For this study, we used 2D ERT images and auger measurements, collected on different sites in the Attert basin in Luxembourg, to characterize bedrock topography using geostatistics and shed light on those aspects which dominate runoff generation. Based on ERT images, we generated stochastic bedrock topographies and implemented them in a physically-based 2D hillslope model. With this approach, we were able to test the influence of different subsurface structures on the runoff generation. Our results highlight that ERT images can be useful for hydrological modelling. Especially the connection from the hillslope to the stream could be identified as important feature in the subsurface for the runoff generation whereas the microtopography of the bedrock seemed to be less relevant.

  17. Classification of reaches in the Missouri and lower Yellowstone Rivers based on flow characteristics

    USGS Publications Warehouse

    Pegg, Mark A.; Pierce, Clay L.

    2002-01-01

    Several aspects of flow have been shown to be important determinants of biological community structure and function in streams, yet direct application of this approach to large rivers has been limited. Using a multivariate approach, we grouped flow gauges into hydrologically similar units in the Missouri and lower Yellowstone Rivers and developed a model based on flow variability parameters that could be used to test hypotheses about the role of flow in determining aquatic community structure. This model could also be used for future comparisons as the hydrological regime changes. A suite of hydrological parameters for the recent, post-impoundment period (1 October 1966–30 September 1996) for each of 15 gauges along the Missouri and lower Yellowstone Rivers were initially used. Preliminary graphical exploration identified five variables for use in further multivariate analyses. Six hydrologically distinct units composed of gauges exhibiting similar flow characteristics were then identified using cluster analysis. Discriminant analyses identified the three most influential variables as flow per unit drainage area, coefficient of variation of mean annual flow, and flow constancy. One surprising result was the relative similarity of flow regimes between the two uppermost and three lowermost gauges, despite large differences in magnitude of flow and separation by roughly 3000 km. Our results synthesize, simplify and interpret the complex changes in flow occurring along the Missouri and lower Yellowstone Rivers, and provide an objective grouping for future tests of how these changes may affect biological communities. 

  18. Using SMAP to identify structural errors in hydrologic models

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Reichle, R. H.; Chen, F.; Xia, Y.; Liu, Q.

    2017-12-01

    Despite decades of effort, and the development of progressively more complex models, there continues to be underlying uncertainty regarding the representation of basic water and energy balance processes in land surface models. Soil moisture occupies a central conceptual position between atmosphere forcing of the land surface and resulting surface water fluxes. As such, direct observations of soil moisture are potentially of great value for identifying and correcting fundamental structural problems affecting these models. However, to date, this potential has not yet been realized using satellite-based retrieval products. Using soil moisture data sets produced by the NASA Soil Moisture Active/Passive mission, this presentation will explore the use of the remotely-sensed soil moisture data products as a constraint to reject certain types of surface runoff parameterizations within a land surface model. Results will demonstrate that the precision of the SMAP Level 4 Surface and Root-Zone soil moisture product allows for the robust sampling of correlation statistics describing the true strength of the relationship between pre-storm soil moisture and subsequent storm-scale runoff efficiency (i.e., total storm flow divided by total rainfall both in units of depth). For a set of 16 basins located in the South-Central United States, we will use these sampled correlations to demonstrate that so-called "infiltration-excess" runoff parameterizations under predict the importance of pre-storm soil moisture for determining storm-scale runoff efficiency. To conclude, we will discuss prospects for leveraging this insight to improve short-term hydrologic forecasting and additional avenues for SMAP soil moisture products to provide process-level insight for hydrologic modelers.

  19. SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales

    NASA Astrophysics Data System (ADS)

    Voldoire, Aurore; Decharme, Bertrand; Pianezze, Joris; Lebeaupin Brossier, Cindy; Sevault, Florence; Seyfried, Léo; Garnier, Valérie; Bielli, Soline; Valcke, Sophie; Alias, Antoinette; Accensi, Mickael; Ardhuin, Fabrice; Bouin, Marie-Noëlle; Ducrocq, Véronique; Faroux, Stéphanie; Giordani, Hervé; Léger, Fabien; Marsaleix, Patrick; Rainaud, Romain; Redelsperger, Jean-Luc; Richard, Evelyne; Riette, Sébastien

    2017-11-01

    This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications, from global and regional coupled climate systems to high-resolution numerical weather prediction systems or very fine-scale models dedicated to process studies. The objective of this development is to build and share a common structure for the atmosphere-surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models. The numerical and physical principles of SURFEX interface between the different component models are described, and the different coupled systems in which the SURFEX OASIS3-MCT-based coupling interface is already implemented are presented.

  20. Wetland Hydrology | Science Inventory | US EPA

    EPA Pesticide Factsheets

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  1. Plant community dynamics and restoring Louisiana's wetland ecosystems

    NASA Astrophysics Data System (ADS)

    Duke-Sylvester, S. M.; Visser, J.

    2017-12-01

    We have developed a computational model of plant community dynamics. Our model is designed to evaluate the effects of management actions on the structure and health of Louisiana's coastal wetland plant communities. A number of projects have been initiated or proposed to preserve and restore this ecosystem while still allowing the area to support Louisiana's economy. These projects involve both modification of the flow of freshwater as well as restoring natural wetlands. Evaluating the long term effects of these projects is complex and involves numerous moving pieces operating over an extensive and diverse landscape. The situation is further complicated by in sea level rise and climate change associated with global warming. The vegetation model is part of a larger set of linked models that include hydrology and soil morphology. Using hydrological conditions projected by the linked hydrology models, we are able to evaluate the effects of anthropogenic and climatic changes on Louisiana's wetland plant communities. Unique features of our model include replacing the division of wetlands into coarse groups defined by salinity conditions with species level responses to environmental conditions and extending the spatial scale of modeling to encompass the entirety of Louisiana's Gulf coast. Model results showing the potential impact of alternative management and climate change scenarios are presented.

  2. Predicting Low Flow Conditions from Climatic Indices - Indicator-Based Modeling for Climate Change Impact Assessment

    NASA Astrophysics Data System (ADS)

    Fangmann, Anne; Haberlandt, Uwe

    2014-05-01

    In the face of climate change, the assessment of future hydrological regimes has become indispensable in the field of water resources management. Investigation of potential change is vital for proper planning, especially with regard to hydrological extremes. Commonly, projection of future streamflow is done applying process-based hydrological models, using climate model data as input, whose complex model structures generally require excessive amounts of time and effort for set-up and computation. This study aims at identifying practical alternatives to the employment of sophisticated models by considering simpler, yet sufficiently accurate methods for modeling rainfall-runoff relations with regard to hydrological extremes. The focus is thereby put on the prediction of low flow periods, which are, in contrast to flood events, characterized by extended durations and spatial dimensions. The models to be established in this study base on indicators, which characterize both meteorological and hydrological conditions within dry periods. This approach makes direct use of the coupling between atmospheric driving forces and streamflow response with the underlying presumption that low-precipitation and high-evaporation periods result in diminished flow, implying that relationships exist between the properties of both meteorological and hydrological events (duration, volume, severity etc.). Eventually, optimal combinations of meteorological indicators are sought that are suitable to predict various low flow characteristics with satisfactory accuracy. Two approaches for model specification are tested: a) multiple linear regression, and b) Fuzzy logic. The data used for this study are daily time series of mean discharge obtained from 294 gauges with variable record length situated in the federal state of Lower Saxony, Germany, as well as interpolated climate variables available for a period from 1951 to 2011. After extraction of a variety of indicators from the available discharge and climate time series on a bi-annual basis, regression and Fuzzy models are fit. Fitting is done in two variations: locally at each of the watersheds in the study area, and regionally, yielding one specific model expression for the entire study area. Models for the individual stations perform well using only the meteorological indicators as predictor variables, while the regional models require the additional input of catchment descriptors to account for the variability of the rainfall-runoff translation processes between the catchments.

  3. Impact of a statistical bias correction on the projected simulated hydrological changes obtained from three GCMs and two hydrology models

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Chen, Cui; Haerter, Jan O.; Gerten, Dieter; Heinke, Jens; Piani, Claudio

    2010-05-01

    Future climate model scenarios depend crucially on their adequate representation of the hydrological cycle. Within the European project "Water and Global Change" (WATCH) special care is taken to couple state-of-the-art climate model output to a suite of hydrological models. This coupling is expected to lead to a better assessment of changes in the hydrological cycle. However, due to the systematic model errors of climate models, their output is often not directly applicable as input for hydrological models. Thus, the methodology of a statistical bias correction has been developed, which can be used for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. As observations, global re-analysed daily data of precipitation and temperature are used that are obtained in the WATCH project. We will apply the bias correction to global climate model data of precipitation and temperature from the GCMs ECHAM5/MPIOM, CNRM-CM3 and LMDZ-4, and intercompare the bias corrected data to the original GCM data and the observations. Then, the orginal and the bias corrected GCM data will be used to force two global hydrology models: (1) the hydrological model of the Max Planck Institute for Meteorology (MPI-HM) consisting of the Simplified Land surface (SL) scheme and the Hydrological Discharge (HD) model, and (2) the dynamic vegetation model LPJmL operated by the Potsdam Institute for Climate Impact Research. The impact of the bias correction on the projected simulated hydrological changes will be analysed, and the resulting behaviour of the two hydrology models will be compared.

  4. Dynamic Collaboration Infrastructure for Hydrologic Science

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.

    2016-12-01

    Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the results of this proof-of-concept prototype which enabled HydroShare users to readily instantiate virtual infrastructure marshaling arbitrary combinations, varieties, and quantities of distributed data and computing infrastructure in addressing big problems in hydrology.

  5. Comparison of the performance and reliability of 18 lumped hydrological models driven by ECMWF rainfall ensemble forecasts: a case study on 29 French catchments

    NASA Astrophysics Data System (ADS)

    Velázquez, Juan Alberto; Anctil, François; Ramos, Maria-Helena; Perrin, Charles

    2010-05-01

    An ensemble forecasting system seeks to assess and to communicate the uncertainty of hydrological predictions by proposing, at each time step, an ensemble of forecasts from which one can estimate the probability distribution of the predictant (the probabilistic forecast), in contrast with a single estimate of the flow, for which no distribution is obtainable (the deterministic forecast). In the past years, efforts towards the development of probabilistic hydrological prediction systems were made with the adoption of ensembles of numerical weather predictions (NWPs). The additional information provided by the different available Ensemble Prediction Systems (EPS) was evaluated in a hydrological context on various case studies (see the review by Cloke and Pappenberger, 2009). For example, the European ECMWF-EPS was explored in case studies by Roulin et al. (2005), Bartholmes et al. (2005), Jaun et al. (2008), and Renner et al. (2009). The Canadian EC-EPS was also evaluated by Velázquez et al. (2009). Most of these case studies investigate the ensemble predictions of a given hydrological model, set up over a limited number of catchments. Uncertainty from weather predictions is assessed through the use of meteorological ensembles. However, uncertainty from the tested hydrological model and statistical robustness of the forecasting system when coping with different hydro-meteorological conditions are less frequently evaluated. The aim of this study is to evaluate and compare the performance and the reliability of 18 lumped hydrological models applied to a large number of catchments in an operational ensemble forecasting context. Some of these models were evaluated in a previous study (Perrin et al. 2001) for their ability to simulate streamflow. Results demonstrated that very simple models can achieve a level of performance almost as high (sometimes higher) as models with more parameters. In the present study, we focus on the ability of the hydrological models to provide reliable probabilistic forecasts of streamflow, based on ensemble weather predictions. The models were therefore adapted to run in a forecasting mode, i.e., to update initial conditions according to the last observed discharge at the time of the forecast, and to cope with ensemble weather scenarios. All models are lumped, i.e., the hydrological behavior is integrated over the spatial scale of the catchment, and run at daily time steps. The complexity of tested models varies between 3 and 13 parameters. The models are tested on 29 French catchments. Daily streamflow time series extend over 17 months, from March 2005 to July 2006. Catchment areas range between 1470 km2 and 9390 km2, and represent a variety of hydrological and meteorological conditions. The 12 UTC 10-day ECMWF rainfall ensemble (51 members) was used, which led to daily streamflow forecasts for a 9-day lead time. In order to assess the performance and reliability of the hydrological ensemble predictions, we computed the Continuous Ranked probability Score (CRPS) (Matheson and Winkler, 1976), as well as the reliability diagram (e.g. Wilks, 1995) and the rank histogram (Talagrand et al., 1999). Since the ECMWF deterministic forecasts are also available, the performance of the hydrological forecasting systems was also evaluated by comparing the deterministic score (MAE) with the probabilistic score (CRPS). The results obtained for the 18 hydrological models and the 29 studied catchments are discussed in the perspective of improving the operational use of ensemble forecasting in hydrology. References Bartholmes, J. and Todini, E.: Coupling meteorological and hydrological models for flood forecasting, Hydrol. Earth Syst. Sci., 9, 333-346, 2005. Cloke, H. and Pappenberger, F.: Ensemble Flood Forecasting: A Review. Journal of Hydrology 375 (3-4): 613-626, 2009. Jaun, S., Ahrens, B., Walser, A., Ewen, T., and Schär, C.: A probabilistic view on the August 2005 floods in the upper Rhine catchment, Nat. Hazards Earth Syst. Sci., 8, 281-291, 2008. Matheson, J. E. and Winkler, R. L.: Scoring rules for continuous probability distributions, Manage Sci., 22, 1087-1096, 1976. Perrin, C., Michel C. and Andréassian,V. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments, J. Hydrol., 242, 275-301, 2001. Renner, M., Werner, M. G. F., Rademacher, S., and Sprokkereef, E.: Verification of ensemble flow forecast for the River Rhine, J. Hydrol., 376, 463-475, 2009. Roulin, E. and Vannitsem, S.: Skill of medium-range hydrological ensemble predictions, J. Hydrometeorol., 6, 729-744, 2005. Talagrand, O., Vautard, R., and Strauss, B.: Evaluation of the probabilistic prediction systems, in: Proceedings, ECMWF Workshop on Predictability, Shinfield Park, Reading, Berkshire, ECMWF, 1-25, 1999. Velázquez, J.A., Petit, T., Lavoie, A., Boucher M.-A., Turcotte R., Fortin V., and Anctil, F. : An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting, Hydrol. Earth Syst. Sci., 13, 2221-2231, 2009. Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, San Diego, CA, 465 pp., 1995.

  6. Multivariate postprocessing techniques for probabilistic hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2016-04-01

    Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, 96, 12-20, DOI: 10.1016/j.apenergy.2011.11.004. Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting (2013), Uncertainty quantification in complex simulation models using ensemble copula coupling, Statistical Science, 28, 616-640, DOI: 10.1214/13-STS443.

  7. Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment

    USGS Publications Warehouse

    Ebel, Brian A.; Martin, Deborah

    2017-01-01

    Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil-hydraulic properties, such as field-saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed-scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run-off and erosion, existing quantitative relations to predict Kfsrecovery with time since wildfire are lacking. Here, we conduct meta-analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3-year duration. The meta-analyses focus on fitting 2 quantitative relations (linear and non-linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil-water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth.

  8. [Advance in researches on the effect of forest on hydrological process].

    PubMed

    Zhang, Zhiqiang; Yu, Xinxiao; Zhao, Yutao; Qin, Yongsheng

    2003-01-01

    According to the effects of forest on hydrological process, forest hydrology can be divided into three related aspects: experimental research on the effects of forest changing on hydrological process quantity and water quality; mechanism study on the effects of forest changing on hydrological cycle, and establishing and exploitating physical-based distributed forest hydrological model for resource management and engineering construction. Orientation experiment research can not only support the first-hand data for forest hydrological model, but also make clear the precipitation-runoff mechanisms. Research on runoff mechanisms can be valuable for the exploitation and improvement of physical based hydrological models. Moreover, the model can also improve the experimental and runoff mechanism researches. A review of above three aspects are summarized in this paper.

  9. Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Duffy, C.

    2007-12-01

    Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions d) role of macropores on base flow during wetting and drying conditions. In addition to its use as a potential predictive and exploratory science tool, we present a test case for the application of model in water management by mapping of water table decline index for the whole watershed. Also discussed will be the efficient parallelization strategy of the model for high spatio-temporal resolution simulations.

  10. Avian community responses to variability in river hydrology.

    PubMed

    Royan, Alexander; Hannah, David M; Reynolds, S James; Noble, David G; Sadler, Jonathan P

    2013-01-01

    River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species' responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species' distributions highlights the need to include river flow data in climate change impact models of species' distributions.

  11. Hydrological controls on rate of organic matter mineralization in peats

    NASA Astrophysics Data System (ADS)

    Ghezzehei, Teamrat; Arnold, Chelsea; Asefaw Berhe, Asmeret

    2016-04-01

    The predominant factor that ties together the formation and persistence of peat soils across regions is their dependence on localized hydrology. Hydrology also plays a dominant role in the relative strength of peatlands as sinks for atmospheric carbon dioxide and sources of methane, and thus on peatland net climate impact. Drying of peat soils by climate change and/or drainage is typically followed by reduction in methane emissions. However, this may easily be offset by the increase in carbon dioxide production. Therefore, mechanistic understanding of peatland hydrology and its association with carbon cycling is a prerequisite for assessing vulnerability of peats to disturbances and for incorporating the associated feedbacks in carbon-climate models. We will present physically based model that ties together the structure of peat soils (mainly pore size distribution and mechanical stability) to rates of aerobic and anaerobic decomposition over a wide range of soil water potentials. Peats consist of hierarchical structure with clear separation of the pores into a population of micropores within clumps of organic matter and/or soil aggregates and a group of macropores between clumps and/or aggregates. This essentially partitions the carbon stock in peat soils in to multiple pools that become mineralizable at disparate water potential ranges. While the carbon in macropores can readily be decomposed by aerobic microorganisms when the soil is only slightly drained, the carbon in fine pores remains largely protected from aerobic microbes until the water potential exceeds a threshold that lets in oxygen. In this presentation we will show the mathematical development of the model and illustrative examples that compare projections with data derived from the literature.

  12. Post-processing of multi-model ensemble river discharge forecasts using censored EMOS

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2014-05-01

    When forecasting water levels and river discharge, ensemble weather forecasts are used as meteorological input to hydrologic process models. As hydrologic models are imperfect and the input ensembles tend to be biased and underdispersed, the output ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, statistical post-processing is required in order to achieve calibrated and sharp predictions. Standard post-processing methods such as Ensemble Model Output Statistics (EMOS) that have their origins in meteorological forecasting are now increasingly being used in hydrologic applications. Here we consider two sub-catchments of River Rhine, for which the forecasting system of the Federal Institute of Hydrology (BfG) uses runoff data that are censored below predefined thresholds. To address this methodological challenge, we develop a censored EMOS method that is tailored to such data. The censored EMOS forecast distribution can be understood as a mixture of a point mass at the censoring threshold and a continuous part based on a truncated normal distribution. Parameter estimates of the censored EMOS model are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over the training dataset. Model fitting on Box-Cox transformed data allows us to take account of the positive skewness of river discharge distributions. In order to achieve realistic forecast scenarios over an entire range of lead-times, there is a need for multivariate extensions. To this end, we smooth the marginal parameter estimates over lead-times. In order to obtain realistic scenarios of discharge evolution over time, the marginal distributions have to be linked with each other. To this end, the multivariate dependence structure can either be adopted from the raw ensemble like in Ensemble Copula Coupling (ECC), or be estimated from observations in a training period. The censored EMOS model has been applied to multi-model ensemble forecasts issued on a daily basis over a period of three years. For the two catchments considered, this resulted in well calibrated and sharp forecast distributions over all lead-times from 1 to 114 h. Training observations tended to be better indicators for the dependence structure than the raw ensemble.

  13. Disentangling the uncertainty of hydrologic drought characteristics in a multi-model century-long experiment in continental river basins

    NASA Astrophysics Data System (ADS)

    Samaniego, Luis; Kumar, Rohini; Pechlivanidis, Illias; Breuer, Lutz; Wortmann, Michel; Vetter, Tobias; Flörke, Martina; Chamorro, Alejandro; Schäfer, David; Shah, Harsh; Zeng, Xiaofan

    2016-04-01

    The quantification of the predictive uncertainty in hydrologic models and their attribution to its main sources is of particular interest in climate change studies. In recent years, a number of studies have been aimed at assessing the ability of hydrologic models (HMs) to reproduce extreme hydrologic events. Disentangling the overall uncertainty of streamflow -including its derived low-flow characteristics- into individual contributions, stemming from forcings and model structure, has also been studied. Based on recent literature, it can be stated that there is a controversy with respect to which source is the largest (e.g., Teng, et al. 2012, Bosshard et al. 2013, Prudhomme et al. 2014). Very little has also been done to estimate the relative impact of the parametric uncertainty of the HMs with respect to overall uncertainty of low-flow characteristics. The ISI-MIP2 project provides a unique opportunity to understand the propagation of forcing and model structure uncertainties into century-long time series of drought characteristics. This project defines a consistent framework to deal with compatible initial conditions for the HMs and a set of standardized historical and future forcings. Moreover, the ensemble of hydrologic model predictions varies across a broad range of climate scenarios and regions. To achieve this goal, we use six preconditioned hydrologic models (HYPE or HBV, mHM, SWIM, VIC, and WaterGAP3) set up in seven large continental river basins: Amazon, Blue Nile, Ganges, Niger, Mississippi, Rhine, Yellow. These models are forced with bias-corrected outputs of five CMIP5 general circulation models (GCM) under four extreme representative concentration pathway (RCP) scenarios (i.e. 2.6, 4.5, 6.0, and 8.5 Wm-2) for the period 1971-2099. Simulated streamflow is transformed into a monthly runoff index (RI) to analyze the attribution of the GCM and HM uncertainty into drought magnitude and duration over time. Uncertainty contributions are investigated during periods: 1) 2006-2035, 2) 2036-2065 and 3) 2070-2099. Results presented in Samaniego et al. 2015 (submitted) indicate that GCM uncertainty mostly dominates over HM uncertainty for predictions of runoff drought characteristics, irrespective of the selected RCP and region. For the mHM model, in particular, GCM uncertainty always dominates over parametric uncertainty. In general, the overall uncertainty increases with time. The larger the radiative forcing of the RCP, the larger the uncertainty in drought characteristics, however, the propagation of the GCM uncertainty onto a drought characteristic depends largely upon the hydro-climatic regime. While our study emphasizes the need for multi-model ensembles for the assessment of future drought projections, the agreement between GCM forcings is still weak to draw conclusive recommendations. References: L. Samaniego, R. Kumar, I. G. Pechlivanidis, L. Breuer, M. Wortmann, T. Vetter, M. Flörke, A. Chamorro, D. Schäfer, H. Shah, X. Zeng: Propagation of forcing and model uncertainty into hydrological drought characteristics in a multi-model century-long experiment in continental river basins. Submitted to Climatic Change on Dec 2015. Bosshard, et al. 2013. doi:10.1029/2011WR011533. Prudhomme et al. 2014, doi:10.1073/pnas.1222473110. Teng, et al. 2012, doi:10.1175/JHM-D-11-058.1.

  14. Coupling of the simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed

    USDA-ARS?s Scientific Manuscript database

    To represent the effects of frozen soil on hydrology in cold regions, a new physically based distributed hydrological model has been developed by coupling the simultaneous heat and water model (SHAW) with the geomorphology based distributed hydrological model (GBHM), under the framework of the water...

  15. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects ofmore » local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects at large spatial scales as to generalize the directionality of hydrologic responses.« less

  16. Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

    NASA Astrophysics Data System (ADS)

    Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.

    2012-12-01

    The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b.

  17. Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

    NASA Astrophysics Data System (ADS)

    Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.

    2013-03-01

    The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b

  18. Debates—Hypothesis testing in hydrology: Theory and practice

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; Kirchner, James W.

    2017-03-01

    The basic structure of the scientific method—at least in its idealized form—is widely championed as a recipe for scientific progress, but the day-to-day practice may be different. Here, we explore the spectrum of current practice in hypothesis formulation and testing in hydrology, based on a random sample of recent research papers. This analysis suggests that in hydrology, as in other fields, hypothesis formulation and testing rarely correspond to the idealized model of the scientific method. Practices such as "p-hacking" or "HARKing" (Hypothesizing After the Results are Known) are major obstacles to more rigorous hypothesis testing in hydrology, along with the well-known problem of confirmation bias—the tendency to value and trust confirmations more than refutations—among both researchers and reviewers. Nonetheless, as several examples illustrate, hypothesis tests have played an essential role in spurring major advances in hydrological theory. Hypothesis testing is not the only recipe for scientific progress, however. Exploratory research, driven by innovations in measurement and observation, has also underlain many key advances. Further improvements in observation and measurement will be vital to both exploratory research and hypothesis testing, and thus to advancing the science of hydrology.

  19. Socio-Hydrology: Conceptual and Methodological Challenges in the Bidirectional Coupling of Human and Water Systems

    NASA Astrophysics Data System (ADS)

    Scott, C. A.

    2014-12-01

    This presentation reviews conceptual advances in the emerging field of socio-hydrology that focuses on coupled human and water systems. An important current challenge is how to better couple the bidirectional influences between human and water systems, which lead to emergent dynamics. The interactions among (1) the structure and dynamics of systems with (2) human values and norms lead to (3) outcomes, which in turn influence subsequent interactions. Human influences on hydrological systems are relatively well understood, chiefly resulting from developments in the field of water resources. The ecosystem-service concept of cultural value has expanded understanding of decision-making beyond economic rationality criteria. Hydrological impacts on social processes are less well developed conceptually, but this is changing with growing attention to vulnerability, adaptation, and resilience, particularly in the face of climate change. Methodological limitations, especially in characterizing the range of human responses to hydrological events and drivers, still pose challenges to modeling bidirectional human-water influences. Evidence from multiple case studies, synthesized in more broadly generic syndromes, helps surmount these methodological limitations and offers the potential to improve characterization and quantification of socio-hydrological systems.

  20. Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Li, Zhanjie; Yu, Jingshan; Xu, Xinyi; Sun, Wenchao; Pang, Bo; Yue, Jiajia

    2018-06-01

    Hydrological models are important and effective tools for detecting complex hydrological processes. Different models have different strengths when capturing the various aspects of hydrological processes. Relying on a single model usually leads to simulation uncertainties. Ensemble approaches, based on multi-model hydrological simulations, can improve application performance over single models. In this study, the upper Yalongjiang River Basin was selected for a case study. Three commonly used hydrological models (SWAT, VIC, and BTOPMC) were selected and used for independent simulations with the same input and initial values. Then, the BP neural network method was employed to combine the results from the three models. The results show that the accuracy of BP ensemble simulation is better than that of the single models.

  1. Application of a water quality model in the White Cart water catchment, Glasgow, UK.

    PubMed

    Liu, S; Tucker, P; Mansell, M; Hursthouse, A

    2003-03-01

    Water quality models of urban systems have previously focused on point source (sewerage system) inputs. Little attention has been given to diffuse inputs and research into diffuse pollution has been largely confined to agriculture sources. This paper reports on new research that is aimed at integrating diffuse inputs into an urban water quality model. An integrated model is introduced that is made up of four modules: hydrology, contaminant point sources, nutrient cycling and leaching. The hydrology module, T&T consists of a TOPMODEL (a TOPography-based hydrological MODEL), which simulates runoff from pervious areas and a two-tank model, which simulates runoff from impervious urban areas. Linked into the two-tank model, the contaminant point source module simulates the overflow from the sewerage system in heavy rain. The widely known SOILN (SOIL Nitrate model) is the basis of nitrogen cycle module. Finally, the leaching module consists of two functions: the production function and the transfer function. The production function is based on SLIM (Solute Leaching Intermediate Model) while the transfer function is based on the 'flushing hypothesis' which postulates a relationship between contaminant concentrations in the receiving water course and the extent to which the catchment is saturated. This paper outlines the modelling methodology and the model structures that have been developed. An application of this model in the White Cart catchment (Glasgow) is also included.

  2. Description of the National Hydrologic Model for use with the Precipitation-Runoff Modeling System (PRMS)

    USGS Publications Warehouse

    Regan, R. Steven; Markstrom, Steven L.; Hay, Lauren E.; Viger, Roland J.; Norton, Parker A.; Driscoll, Jessica M.; LaFontaine, Jacob H.

    2018-01-08

    This report documents several components of the U.S. Geological Survey National Hydrologic Model of the conterminous United States for use with the Precipitation-Runoff Modeling System (PRMS). It provides descriptions of the (1) National Hydrologic Model, (2) Geospatial Fabric for National Hydrologic Modeling, (3) PRMS hydrologic simulation code, (4) parameters and estimation methods used to compute spatially and temporally distributed default values as required by PRMS, (5) National Hydrologic Model Parameter Database, and (6) model extraction tool named Bandit. The National Hydrologic Model Parameter Database contains values for all PRMS parameters used in the National Hydrologic Model. The methods and national datasets used to estimate all the PRMS parameters are described. Some parameter values are derived from characteristics of topography, land cover, soils, geology, and hydrography using traditional Geographic Information System methods. Other parameters are set to long-established default values and computation of initial values. Additionally, methods (statistical, sensitivity, calibration, and algebraic) were developed to compute parameter values on the basis of a variety of nationally-consistent datasets. Values in the National Hydrologic Model Parameter Database can periodically be updated on the basis of new parameter estimation methods and as additional national datasets become available. A companion ScienceBase resource provides a set of static parameter values as well as images of spatially-distributed parameters associated with PRMS states and fluxes for each Hydrologic Response Unit across the conterminuous United States.

  3. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    NASA Astrophysics Data System (ADS)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also, statistics such as the number of times certain WASSI thresholds are exceeded are calculated to show the impact of expanded irrigation during times of hydrologic drought and the coincident use of water by other sectors. Also, integrated downstream impacts of irrigation are also calculated through changes in flows through the whole river systems.

  4. Data-based information gain on the response behaviour of hydrological models at catchment scale

    NASA Astrophysics Data System (ADS)

    Willems, Patrick

    2013-04-01

    A data-based approach is presented to analyse the response behaviour of hydrological models at the catchment scale. The approach starts with a number of sequential time series processing steps, applied to available rainfall, ETo and river flow observation series. These include separation of the high frequency (e.g., hourly, daily) river flow series into subflows, split of the series in nearly independent quick and slow flow hydrograph periods, and the extraction of nearly independent peak and low flows. Quick-, inter- and slow-subflow recession behaviour, sub-responses to rainfall and soil water storage are derived from the time series data. This data-based information on the catchment response behaviour can be applied on the basis of: - Model-structure identification and case-specific construction of lumped conceptual models for gauged catchments; or diagnostic evaluation of existing model structures; - Intercomparison of runoff responses for gauged catchments in a river basin, in order to identify similarity or significant differences between stations or between time periods, and relate these differences to spatial differences or temporal changes in catchment characteristics; - (based on the evaluation of the temporal changes in previous point:) Detection of temporal changes/trends and identification of its causes: climate trends, or land use changes; - Identification of asymptotic properties of the rainfall-runoff behaviour towards extreme peak or low flow conditions (for a given catchment) or towards extreme catchment conditions (for regionalization, ungauged basin prediction purposes); hence evaluating the performance of the model in making extrapolations beyond the range of available stations' data; - (based on the evaluation in previous point:) Evaluation of the usefulness of the model for making extrapolations to more extreme climate conditions projected by for instance climate models. Examples are provided for river basins in Belgium, Ethiopia, Kenya, Ecuador, Bolivia and China. References: Van Steenbergen, N., Willems, P. (2012), 'Method for testing the accuracy of rainfall-runoff models in predicting peak flow changes due to rainfall changes, in a climate changing context', Journal of Hydrology, 414-415, 425-434, doi:10.1016/j.jhydrol.2011.11.017 Mora, D., Willems, P. (2012), 'Decadal oscillations in rainfall and air temperature in the Paute River Basin - Southern Andes of Ecuador', Theoretical and Applied Climatology, 108(1), 267-282, doi:0.1007/s00704-011-0527-4 Taye, M.T., Willems, P. (2011). 'Influence of climate variability on representative QDF predictions of the upper Blue Nile Basin', Journal of Hydrology, 411, 355-365, doi:10.1016/j.jhydrol.2011.10.019 Taye, M.T., Willems, P. (2012). 'Temporal variability of hydro-climatic extremes in the Blue Nile basin', Water Resources Research, 48, W03513, 13p. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Willems, P., De Smedt, F., Batelaan, O. (in press), 'Climate change impact on river flows and catchment hydrology: a comparison of two spatially distributed models', Hydrological Processes; doi: 10.1002/hyp.9480 [in press

  5. Modeling the effect of land use change on hydrology of a forested watershed in coastal South Carolina.

    Treesearch

    Zhaohua Dai; Devendra M. Amatya; Ge Sun; Changsheng Li; Carl C. Trettin; Harbin Li

    2009-01-01

    Since hydrology is one of main factors controlling wetland functions, hydrologic models are useful for evaluating the effects of land use change on we land ecosystems. We evaluated two process-based hydrologic models with...

  6. Development of a Hydrologic Model to Assess the Feasibility of Water Leasing in the Middle Rio Grande Basin

    NASA Astrophysics Data System (ADS)

    Garner, C. B.; Boyle, D. P.; Lamorey, G. W.; Bassett, S. D.

    2007-12-01

    The demand for water in the southwestern United States has increased in tandem with a rapid growth of population over the past 50 years. With ever increasing demands being placed on available water supplies, improving water management becomes crucial to the sustainability of the region's water resources. The National Science Foundation (NSF) Science and Technology Center (STC) for the Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) is interested in the feasibility of water leasing as a method for more efficiently distributing water among competing users. Economists working on the project will run water leasing simulations in an auction-type environment to understand the pros and cons of water leasing in a free market system. To include hydrologic processes in the water leasing simulations, an MMS-PRMS hydrologic model was developed for a portion of the Middle Rio Grande Basin (MRGB) near Albuquerque, New Mexico. This portion of the MRGB contains a detailed network of diversions, canals, and drains that transport water through the system. In order to capture the complexity of the system, the model was developed using the highest resolution information available. In the model, each Hydrologic Response Unit (HRU) is represented as a trader. To achieve the 15 trader limit desired by economists, the model structure was simplified using two basic constraints; 1) HRUs having a common source and point of return to the river were lumped; and 2) HRUs with less than 20% agricultural land use were omitted from the auction simulations. A new Evapotranspiration (ET) module was implemented in the model to better estimate ET associated with different crops. Modules were also developed so that the end user has the flexibility to manipulate water deliveries based on crop type and land use. The MMS- PRMS model for the MRGB should help economists determine if the incentive to profit by selling or buying water can make more efficient use of the available water supply.

  7. Consistency between hydrological models and field observations: Linking processes at the hillslope scale to hydrological responses at the watershed scale

    USGS Publications Warehouse

    Clark, M.P.; Rupp, D.E.; Woods, R.A.; Tromp-van, Meerveld; Peters, N.E.; Freer, J.E.

    2009-01-01

    The purpose of this paper is to identify simple connections between observations of hydrological processes at the hillslope scale and observations of the response of watersheds following rainfall, with a view to building a parsimonious model of catchment processes. The focus is on the well-studied Panola Mountain Research Watershed (PMRW), Georgia, USA. Recession analysis of discharge Q shows that while the relationship between dQ/dt and Q is approximately consistent with a linear reservoir for the hillslope, there is a deviation from linearity that becomes progressively larger with increasing spatial scale. To account for these scale differences conceptual models of streamflow recession are defined at both the hillslope scale and the watershed scale, and an assessment made as to whether models at the hillslope scale can be aggregated to be consistent with models at the watershed scale. Results from this study show that a model with parallel linear reservoirs provides the most plausible explanation (of those tested) for both the linear hillslope response to rainfall and non-linear recession behaviour observed at the watershed outlet. In this model each linear reservoir is associated with a landscape type. The parallel reservoir model is consistent with both geochemical analyses of hydrological flow paths and water balance estimates of bedrock recharge. Overall, this study demonstrates that standard approaches of using recession analysis to identify the functional form of storage-discharge relationships identify model structures that are inconsistent with field evidence, and that recession analysis at multiple spatial scales can provide useful insights into catchment behaviour. Copyright ?? 2008 John Wiley & Sons, Ltd.

  8. Planning and design of studies for river-quality assessment in the Truckee and Carson River basins, California and Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.; Brown, W.M.; Smith, L.H.; Hoffman, R.J.

    1980-01-01

    The objectives of the Geological Survey 's river-quality assessment in the Truckee and Carson River basins in California and Nevada are to identify the significant resource management problems; to develop techniques to assess the problems; and to effectively communicate results to responsible managers. Six major elements of the assessment to be completed by October 1981 are (1) a detailing of the legal, institutional, and structural development of water resources in the basins and the current problems and conflicts; (2) a compilation and synthesis of the physical hydrology of the basins; (3) development of a special workshop approach to involve local management in the direction and results of the study; (4) development of a comprehensive streamflow model emcompassing both basins to provide a quantitative hydrologic framework for water-quality analysis; (5) development of a water-quality transport model for selected constituents and characteristics on selected reaches of the Truckee River; and (6) a detailed examination of selected fish habitats for specified reaches of the Truckee River. Progress will be periodically reported in reports, maps, computer data files, mathematical models, a bibliography, and public presentations. In building a basic framework to develop techniques, the basins were viewed as a single hydrologic unit because of interconnecting diversion structures. The framework comprises 13 hydrographic subunits to facilitate modeling and sampling. Several significant issues beyond the scope of the assessment were considered as supplementary proposals; water-quality loadings in Truckee and Carson Rivers, urban runoff in Reno and management alternatives, and a model of limnological processes in Lahontan Reservoir. (USGS)

  9. Evaluating effects of potential changes in streamflow regime on fish and aquatic-invertebrate assemblages in the New Jersey Pinelands

    USGS Publications Warehouse

    Kennen, Jonathan G.; Riskin, Melissa L.

    2010-01-01

    Changes in water demand associated with population growth and changes in land-use practices in the Pinelands region of southern New Jersey will have a direct effect on stream hydrology. The most pronounced and measurable hydrologic effect is likely to be flow reductions associated with increasing water extraction. Because water-supply needs will continue to grow along with population in the Pinelands area, the goal of maintaining a sustainable balance between the availability of water to protect existing aquatic assemblages while conserving the surficial aquifer for long-term support of human water use needs to be addressed. Although many aquatic fauna have shown resilience and resistance to short-term changes in flows associated with water withdrawals, sustained effects associated with ongoing water-development processes are not well understood. In this study, the U.S. Geological Survey sampled forty-three 100-meter-long stream reaches during high- and low-flow periods across a designed hydrologic gradient ranging from small- (4.1 square kilometers (1.6 square miles)) to medium- (66.3 square kilometers (25.6 square miles)) sized Pinelands stream basins. This design, which uses basin size as a surrogate for water availability, provided an opportunity to evaluate the possible effects of potential variation in stream hydrology on fish and aquatic-invertebrate assemblage response in New Jersey Pinelands streams where future water extraction is expected based on known build-out scenarios. Multiple-regression models derived from extracted non-metric multidimensional scaling axis scores of fish and aquatic invertebrates indicate that some variability in aquatic-assemblage composition across the hydrologic gradient is associated with anthropogenic disturbance, such as urbanization, changes in stream chemistry, and concomitant changes in high-flow runoff patterns. To account for such underlying effects in the study models, any flow parameter or assemblage attribute that was found to be significantly correlated (|rho| = 0.5000) to known anthropogenic drivers (for example, the amount of urbanization in the basin) was eliminated from analysis. A reduced set of low- and annual-flow hydrologic variables, found to be unrelated to anthropogenic influences, was used to develop assemblage-response models. Many linear (monotonic) and curvilinear bivariate flow-ecology response models were developed for fish and invertebrate assemblages. For example, the duration and magnitude of low-flow events were significant predictors of invertebrate-assemblage complexity (for example, invertebrate-species richness, Plecoptera richness, and Ephemeroptera abundance); however, response models between flow attributes and fish-assemblage structure were, in all cases, more poorly fit. Annual flow variability also was important, especially variability across mean minimum monthly flows and annual mean streamflow. In general, all response models followed upward or downward trends that would be expected given hydrologic changes in Pinelands streams. This study demonstrates that the structural and functional response of aquatic assemblages of the Pinelands ecosystem resulting from changes in water-use practices associated with population growth and increased water extraction may be predictable.

  10. A "total parameter estimation" method in the varification of distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Wang, M.; Qin, D.; Wang, H.

    2011-12-01

    Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in China. The application results demonstrate that this comprehensive testing method is very useful in the development of a distributed hydrological model and it provides a new way of thinking in hydrological sciences.

  11. A Community Publication and Dissemination System for Hydrology Education Materials

    NASA Astrophysics Data System (ADS)

    Ruddell, B. L.

    2015-12-01

    Hosted by CUAHSI and the Science Education Resource Center (SERC), federated by the National Science Digital Library (NSDL), and allied with the Water Data Center (WDC), Hydrologic Information System (HIS), and HydroShare projects, a simple cyberinfrastructure has been launched for the publication and dissemination of data and model driven university hydrology education materials. This lightweight system's metadata describes learning content as a data-driven module with defined data inputs and outputs. This structure allows a user to mix and match modules to create sequences of content that teach both hydrology and computer learning outcomes. Importantly, this modular infrastructure allows an instructor to substitute a module based on updated computer methods for one based on outdated computer methods, hopefully solving the problem of rapid obsolescence that has hampered previous community efforts. The prototype system is now available from CUAHSI and SERC, with some example content. The system is designed to catalog, link to, make visible, and make accessible the existing and future contributions of the community; this system does not create content. Submissions from hydrology educators are eagerly solicited, especially for existing content.

  12. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  13. Improved Hydrology over Peatlands in a Global Land Modeling System

    NASA Technical Reports Server (NTRS)

    Bechtold, M.; Delannoy, G.; Reichle, R.; Koster, R.; Mahanama, S.; Roose, Dirk

    2018-01-01

    Peatlands of the Northern Hemisphere represent an important carbon pool that mainly accumulated since the last ice age under permanently wet conditions in specific geological and climatic settings. The carbon balance of peatlands is closely coupled to water table dynamics. Consequently, the future carbon balance over peatlands is strongly dependent on how hydrology in peatlands will react to changing boundary conditions, e.g. due to climate change or regional water level drawdown of connected aquifers or streams. Global land surface modeling over organic-rich regions can provide valuable global-scale insights on where and how peatlands are in transition due to changing boundary conditions. However, the current global land surface models are not able to reproduce typical hydrological dynamics in peatlands well. We implemented specific structural and parametric changes to account for key hydrological characteristics of peatlands into NASA's GEOS-5 Catchment Land Surface Model (CLSM, Koster et al. 2000). The main modifications pertain to the modeling of partial inundation, and the definition of peatland-specific runoff and evapotranspiration schemes. We ran a set of simulations on a high performance cluster using different CLSM configurations and validated the results with a newly compiled global in-situ dataset of water table depths in peatlands. The results demonstrate that an update of soil hydraulic properties for peat soils alone does not improve the performance of CLSM over peatlands. However, structural model changes for peatlands are able to improve the skill metrics for water table depth. The validation results for the water table depth indicate a reduction of the bias from 2.5 to 0.2 m, and an improvement of the temporal correlation coefficient from 0.5 to 0.65, and from 0.4 to 0.55 for the anomalies. Our validation data set includes both bogs (rain-fed) and fens (ground and/or surface water influence) and reveals that the metrics improved less for fens. In addition, a comparison of evapotranspiration and soil moisture estimates over peatlands will be presented, albeit only with limited ground-based validation data. We will discuss strengths and weaknesses of the new model by focusing on time series of specific validation sites.

  14. A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota

    NASA Astrophysics Data System (ADS)

    Gallart, F.; Prat, N.; García-Roger, E. M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G. G.; Brito, D.; De Girolamo, A. M.; Lo Porto, A.; Buffagni, A.; Erba, S.; Neves, R.; Nikolaidis, N. P.; Perrin, J. L.; Querner, E. P.; Quiñonero, J. M.; Tournoud, M. G.; Tzoraki, O.; Skoulikidis, N.; Gómez, R.; Sánchez-Montoya, M. M.; Froebrich, J.

    2012-09-01

    Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The structure and composition of biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. Therefore, the structural and functional characteristics of aquatic fauna to assess the ecological quality of a temporary stream reach cannot be used without taking into account the controls imposed by the hydrological regime. This paper develops methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the transient sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: Hyperrheic, Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic. When the hydrological conditions lead to a change in the aquatic state, the structure and composition of the aquatic community changes according to the new set of available habitats. We used the water discharge records from gauging stations or simulations with rainfall-runoff models to infer the temporal patterns of occurrence of these states in the Aquatic States Frequency Graph we developed. The visual analysis of this graph is complemented by the development of two metrics which describe the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of temporary streams in four aquatic regimes in terms of their influence over the development of aquatic life is updated from the existing classifications, with stream aquatic regimes defined as Permanent, Temporary-pools, Temporary-dry and Episodic. While aquatic regimes describe the long-term overall variability of the hydrological conditions of the river section and have been used for many years by hydrologists and ecologists, aquatic states describe the availability of mesohabitats in given periods that determine the presence of different biotic assemblages. This novel concept links hydrological and ecological conditions in a unique way. All these methods were implemented with data from eight temporary streams around the Mediterranean within the MIRAGE project. Their application was a precondition to assessing the ecological quality of these streams.

  15. Hydrological drivers of wetland vegetational biodiversity patterns within Everglades National Park, Florida

    NASA Astrophysics Data System (ADS)

    Todd, J.; Pumo, D.; Azaele, S.; Muneepeerakul, R.; Miralles-Wilhelm, F. R.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2009-12-01

    The influence of hydrological dynamics on vegetational biodiversity and structuring of wetland environments is of growing interest as wetlands are modified by human alteration and the increasing threat from climate change. Hydrology has long been considered a driving force in shaping wetland communities as the frequency of inundation along with the duration and depth of flooding are key determinants of wetland structure. We attempt to link hydrological dynamics with vegetational distribution and species richness across Everglades National Park (ENP) using two publicly available datasets. The first, the Everglades Depth Estimation Network (EDEN),is a water-surface model which determines the median daily measure of water level across a 400mX400m grid over seven years of measurement. The second is a vegetation map and classification system at the 1:15,000 scale which categorizes vegetation within the Everglades into 79 community types. From these data, we have studied the probabilistic structure of the frequency, duration, and depth of hydroperiods. Preliminary results indicate that the percentage of time a location is inundated is a principal structuring variable with individual communities responding differently. For example, sawgrass appears to be more of a generalist community as it is found across a wide range of time inundated percentages while spike rush has a more restricted distribution and favors wetter environments disproportionately more than predicted at random. Further, the diversity of vegetation communities (e.g. a measure of biodiversity) found across a hydrologic variable does not necessarily match the distribution function for that variable on the landscape. For instance, the number of communities does not differ across the percentage of time inundated. Different measures of vegetation biodiversity such as the local number of community types are also studied at different spatial scales with some characteristics, like the slope of the semi-logarithmic relation between rank and occupancy, found to be robust to scale changes. The ENP offers an expansive natural environment in which to study how vegetational dynamics and community composition are affected by hydrologic variables from the small scale (at the individual community level) to the large (biodiversity measures at differing spatial scales).

  16. Establishing a Framework for Community Modeling in Hydrologic Science: Recommendations from the CUAHSI CHyMP Initiative

    NASA Astrophysics Data System (ADS)

    Arrigo, J. S.; Famiglietti, J. S.; Murdoch, L. C.; Lakshmi, V.; Hooper, R. P.

    2012-12-01

    The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) continues a major effort towards supporting Community Hydrologic Modeling. From 2009 - 2011, the Community Hydrologic Modeling Platform (CHyMP) initiative held three workshops, the ultimate goal of which was to produce recommendations and an implementation plan to establish a community modeling program that enables comprehensive simulation of water anywhere on the North American continent. Such an effort would include connections to and advances in global climate models, biogeochemistry, and efforts of other disciplines that require an understanding of water patterns and processes in the environment. To achieve such a vision will require substantial investment in human and cyber-infrastructure and significant advances in the science of hydrologic modeling and spatial scaling. CHyMP concluded with a final workshop, held March 2011, and produced several recommendations. CUAHSI and the university community continue to advance community modeling and implement these recommendations through several related and follow on efforts. Key results from the final 2011 workshop included agreement among participants that the community is ready to move forward with implementation. It is recognized that initial implementation of this larger effort can begin with simulation capabilities that currently exist, or that can be easily developed. CHyMP identified four key activities in support of community modeling: benchmarking, dataset evaluation and development, platform evaluation, and developing a national water model framework. Key findings included: 1) The community supported the idea of a National Water Model framework; a community effort is needed to explore what the ultimate implementation of a National Water Model is. A true community modeling effort would support the modeling of "water anywhere" and would include all relevant scales and processes. 2) Implementation of a community modeling program could initially focus on continental scale modeling of water quantity (rather than quality). The goal of this initial model is the comprehensive description of water stores and fluxes in such a way to permit linkage to GCM's, biogeochemical, ecological, and geomorphic models. This continental scale focus allows systematic evaluation of our current state of knowledge and data, leverages existing efforts done by large scale modelers, contributes to scientific discovery that informs globally and societal relevant questions, and provides an initial framework to evaluate hydrologic information relevant to other disciplines and a structure into which to incorporate other classes of hydrologic models. 3) Dataset development will be a key aspect of any successful national water model implementation. Our current knowledge of the subsurface is limiting our ability to truly integrate soil and groundwater into large scale models, and to answering critical science questions with societal relevance (i.e. groundwater's influence on climate). 4) The CHyMP workshops and efforts to date have achieved collaboration between university scientists, government agencies and the private sector that must be maintained. Follow on efforts in community modeling should aim at leveraging and maintaining this collaboration for maximum scientific and societal benefit.

  17. An Educational Model for Hands-On Hydrology Education

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  18. Catchment hydrological change from soil degradation: A model study for assessing urbanization on the terrestrial water cycle

    NASA Astrophysics Data System (ADS)

    Shu, L.; Duffy, C.

    2015-12-01

    It is commonly held that land cover and land use changes from agriculture and urbanization impact the terrestrial water cycle primarily through changes in the land surface and canopy energy balance. Another, and in some cases more important factor is the role that landuse changes have on soil structure, compaction, and loss of carbon on hydrologic performance. The consequential change on soil properties, such as aggregation of soil particles, reduction of voids, impacts on matrix conductivity and macropore fractions, alter the hydrological processes in a watershed. Macropores promote rapid water and gas movement under wet conditions while the soil matrix preserves the water-holding capacity necessary for plant growth. The physically-based Penn State Integrated Hydrologic Model (PIHM) simulates water movement in soil with Richard's equation using an effective matrix-macropore conductivity. The model is able to capture the preferential flow and soil water storage in vertical and horizontal directions. Soil degradation leads to a reduction of the macropore fraction with dramatic changes in overall hydrologic performance under urban development and agricultural landuse practices. The effects on the terrestrial water cycle in the catchment reduce infiltration, soil water availability, recharge and subsurface baseflow to streams, while increasing heavy surface runoff and erosion. The Lancaster area and surrounding watershed in eastern Pennsylvania, USA is a benchmark watershed comprised of urban (24%), agricultural (58%) and forest lands (18%) respectively. After parameter estimation from national geospatial soils, landuse and historical climate reanalysis, three landuse scenarios were developed. 1) Pre-development forest landuse (<1700 AD), (2) deforestation for agriculture and light urban landuse (1700-1900), (3) urban-suburban development (1900-pres.). The watershed model was used to evaluate hydrologic changes due to landuse change and soil degradation. The effects of macropore reduction and compaction on hydrologic performance were found to be of the same order or greater magnitude than for changes in landuse practices alone. The research, funded by the US EPA, illustrates the complex interaction of landuse and soil changes on the terrestrial water cycle.

  19. Robustness and Uncertainty: Applications for Policy in Climate and Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Fields, A. L., III

    2015-12-01

    Policymakers must often decide how to proceed when presented with conflicting simulation data from hydrological, climatological, and geological models. While laboratory sciences often appeal to the reproducibility of results to argue for the validity of their conclusions, simulations cannot use this strategy for a number of pragmatic and methodological reasons. However, robustness of predictions and causal structures can serve the same function for simulations as reproducibility does for laboratory experiments and field observations in either adjudicating between conflicting results or showing that there is insufficient justification to externally validate the results. Additionally, an interpretation of the argument from robustness is presented that involves appealing to the convergence of many well-built and diverse models rather than the more common version which involves appealing to the probability that one of a set of models is likely to be true. This interpretation strengthens the case for taking robustness as an additional requirement for the validation of simulation results and ultimately supports the idea that computer simulations can provide information about the world that is just as trustworthy as data from more traditional laboratory studies and field observations. Understanding the importance of robust results for the validation of simulation data is especially important for policymakers making decisions on the basis of potentially conflicting models. Applications will span climate, hydrological, and hydroclimatological models.

  20. Error discrimination of an operational hydrological forecasting system at a national scale

    NASA Astrophysics Data System (ADS)

    Jordan, F.; Brauchli, T.

    2010-09-01

    The use of operational hydrological forecasting systems is recommended for hydropower production as well as flood management. However, the forecast uncertainties can be important and lead to bad decisions such as false alarms and inappropriate reservoir management of hydropower plants. In order to improve the forecasting systems, it is important to discriminate the different sources of uncertainties. To achieve this task, reanalysis of past predictions can be realized and provide information about the structure of the global uncertainty. In order to discriminate between uncertainty due to the weather numerical model and uncertainty due to the rainfall-runoff model, simulations assuming perfect weather forecast must be realized. This contribution presents the spatial analysis of the weather uncertainties and their influence on the river discharge prediction of a few different river basins where an operational forecasting system exists. The forecast is based on the RS 3.0 system [1], [2], which is also running the open Internet platform www.swissrivers.ch [3]. The uncertainty related to the hydrological model is compared to the uncertainty related to the weather prediction. A comparison between numerous weather prediction models [4] at different lead times is also presented. The results highlight an important improving potential of both forecasting components: the hydrological rainfall-runoff model and the numerical weather prediction models. The hydrological processes must be accurately represented during the model calibration procedure, while weather prediction models suffer from a systematic spatial bias. REFERENCES [1] Garcia, J., Jordan, F., Dubois, J. & Boillat, J.-L. 2007. "Routing System II, Modélisation d'écoulements dans des systèmes hydrauliques", Communication LCH n° 32, Ed. Prof. A. Schleiss, Lausanne [2] Jordan, F. 2007. Modèle de prévision et de gestion des crues - optimisation des opérations des aménagements hydroélectriques à accumulation pour la réduction des débits de crue, thèse de doctorat n° 3711, Ecole Polytechnique Fédérale, Lausanne [3] Keller, R. 2009. "Le débit des rivières au peigne fin", Revue Technique Suisse, N°7/8 2009, Swiss engineering RTS, UTS SA, Lausanne, p. 11 [4] Kaufmann, P., Schubiger, F. & Binder, P. 2003. Precipitation forecasting by a mesoscale numerical weather prediction (NWP) model : eight years of experience, Hydrology and Earth System

  1. Research on Multi Hydrological Models Applicability and Modelling Data Uncertainty Analysis for Flash Flood Simulation in Hilly Area

    NASA Astrophysics Data System (ADS)

    Ye, L.; Wu, J.; Wang, L.; Song, T.; Ji, R.

    2017-12-01

    Flooding in small-scale watershed in hilly area is characterized by short time periods and rapid rise and recession due to the complex underlying surfaces, various climate type and strong effect of human activities. It is almost impossible for a single hydrological model to describe the variation of flooding in both time and space accurately for all the catchments in hilly area because the hydrological characteristics can vary significantly among different catchments. In this study, we compare the performance of 5 hydrological models with varying degrees of complexity for simulation of flash flood for 14 small-scale watershed in China in order to find the relationship between the applicability of the hydrological models and the catchments characteristics. Meanwhile, given the fact that the hydrological data is sparse in hilly area, the effect of precipitation data, DEM resolution and their interference on the uncertainty of flood simulation is also illustrated. In general, the results showed that the distributed hydrological model (HEC-HMS in this study) performed better than the lumped hydrological models. Xinajiang and API models had good simulation for the humid catchments when long-term and continuous rainfall data is provided. Dahuofang model can simulate the flood peak well while the runoff generation module is relatively poor. In addition, the effect of diverse modelling data on the simulations is not simply superposed, and there is a complex interaction effect among different modelling data. Overall, both the catchment hydrological characteristics and modelling data situation should be taken into consideration in order to choose the suitable hydrological model for flood simulation for small-scale catchment in hilly area.

  2. Hydrologic and hydraulic flood forecasting constrained by remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2017-12-01

    Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.

  3. Model-Based Analysis of the Role of Biological, Hydrological and Geochemical Factors Affecting Uranium Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2011-01-24

    Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitancemore » of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of initial cell concentration and flow rate on U(VI) reduction.« less

  4. Pedologic influences on hillslope hydrology: The relationships between soil and hydrologic connectivity in a Californian oak-woodland

    NASA Astrophysics Data System (ADS)

    Alldritt, K.; O'Geen, A.; Dahlgren, R. A.

    2013-12-01

    Understanding what controls hydrologic connectivity and how it develops has important implications for ecosystem services. It can affect water quality, nutrient and sediment delivery to the stream, carbon and nitrogen cycling, and more. Bedrock topography and soil act in concert as primary physical controls on hydrologic connectivity. However, the important role soil can play is not well understood. A hillslope study was conducted to explore the dynamics between soil and hydrologic connectivity. The hillslope was in a zero-order watershed with a flashy ephemeral stream. It was located in an oak-woodland in the Californian northern Sierra foothills. The research objectives were to 1) identify and characterize hydrologically significant soil properties; 2) explore how soil stratigraphy and morphology influence hydrologic connectivity; and 3) examine potential causes for connection and disconnection of hydrologic flowpaths during and between rain storm events. During the 2012 wet season a 210-m hillslope transect was instrumented to collect soil moisture data every five minutes. The instruments were put at multiple locations and depths to capture the soil spatial variability. Once the soil became too dry for monitoring the transect was trenched, characterized and sampled. Texture, bulk density, saturated hydraulic conductivity and soil water retention curves were measured in the lab. Structure, color, redoximorphic features, soil horizon spatial differentiation, saprolite and bedrock characteristics, and coarse fragment percentage were recorded in the field. Prior to excavation an electromagnetic induction (EMI) and ground penetrating radar (GPR) survey in conjunction with the Natural Resource Conservation Service (NRCS) was performed along the hillslope. The goal of the survey was to explore non-invasive techniques to determine spatial variability of hydrologically significant soil horizons and bedrock. The GPR was found not to be reliable at the site. However, the EMI showed potential in showing the discontinuous distribution of the claypan, a horizon characterized by a large and abrupt increase in clay content and very low permeability. The data obtained from the transect excavation was used to create a two-dimensional hillslope model using HYDRUS-2D. Coupled with the soil moisture and local precipitation data the hillslope hydrology was modeled at individual storm event time scale. The field data showed that the hillslope was very complex and comprised of a discontinuous claypan, undulating bedrock topography and highly variable saprolite. The soil moisture data and modeling efforts showed that the surface horizons, which are highly permeable and contain numerous macropores, are the primary hydrologic flowpaths during storm events. The model showed that the presence of claypan decreased effective soil depth, increased antecedent wetness and created a perched water table. The model also showed that the undulating bedrock acted like a dam along the hillslope. The claypan network and undulating bedrock created isolated zones of wetness that only become connected and flow downhill into the stream when a storm caused the disconnected zones to rise in the highly permeable surface horizons.

  5. Development of efficient and cost-effective distributed hydrological modeling tool MWEasyDHM based on open-source MapWindow GIS

    NASA Astrophysics Data System (ADS)

    Lei, Xiaohui; Wang, Yuhui; Liao, Weihong; Jiang, Yunzhong; Tian, Yu; Wang, Hao

    2011-09-01

    Many regions are still threatened with frequent floods and water resource shortage problems in China. Consequently, the task of reproducing and predicting the hydrological process in watersheds is hard and unavoidable for reducing the risks of damage and loss. Thus, it is necessary to develop an efficient and cost-effective hydrological tool in China as many areas should be modeled. Currently, developed hydrological tools such as Mike SHE and ArcSWAT (soil and water assessment tool based on ArcGIS) show significant power in improving the precision of hydrological modeling in China by considering spatial variability both in land cover and in soil type. However, adopting developed commercial tools in such a large developing country comes at a high cost. Commercial modeling tools usually contain large numbers of formulas, complicated data formats, and many preprocessing or postprocessing steps that may make it difficult for the user to carry out simulation, thus lowering the efficiency of the modeling process. Besides, commercial hydrological models usually cannot be modified or improved to be suitable for some special hydrological conditions in China. Some other hydrological models are open source, but integrated into commercial GIS systems. Therefore, by integrating hydrological simulation code EasyDHM, a hydrological simulation tool named MWEasyDHM was developed based on open-source MapWindow GIS, the purpose of which is to establish the first open-source GIS-based distributed hydrological model tool in China by integrating modules of preprocessing, model computation, parameter estimation, result display, and analysis. MWEasyDHM provides users with a friendly manipulating MapWindow GIS interface, selectable multifunctional hydrological processing modules, and, more importantly, an efficient and cost-effective hydrological simulation tool. The general construction of MWEasyDHM consists of four major parts: (1) a general GIS module for hydrological analysis, (2) a preprocessing module for modeling inputs, (3) a model calibration module, and (4) a postprocessing module. The general GIS module for hydrological analysis is developed on the basis of totally open-source GIS software, MapWindow, which contains basic GIS functions. The preprocessing module is made up of three submodules including a DEM-based submodule for hydrological analysis, a submodule for default parameter calculation, and a submodule for the spatial interpolation of meteorological data. The calibration module contains parallel computation, real-time computation, and visualization. The postprocessing module includes model calibration and model results spatial visualization using tabular form and spatial grids. MWEasyDHM makes it possible for efficient modeling and calibration of EasyDHM, and promises further development of cost-effective applications in various watersheds.

  6. Determination of Tree and Understory Water Sources and Residence Times Using Stable Isotopes in a Southern Appalachian Forest

    NASA Astrophysics Data System (ADS)

    Stewart, A. N.; Knoepp, J.; Miniat, C.; Oishi, A. C.; Emanuel, R. E.

    2017-12-01

    The development of accurate hydrologic models is key to describing changes in hydrologic processes due to land use and climate change. Hydrologic models typically simplify biological processes associated with plant water uptake and transpiration, assuming that roots take up water from the same moisture pool that feeds the stream; however, this assumption is not valid for all systems. Novel combinations of climate and forest composition and structure, caused by ecosystem succession, management decisions, and climate variability, will require a better understanding of sources of water for transpiration in order to accurately estimate impact on forest water yield. Here we examine red maple (Acer rubrum), rhododendron (Rhododendron maximum), tulip poplar (Liriodendron tulipifera), and white oak (Quercus alba) trees at Coweeta Hydrologic Laboratory, a long-term hydrological and ecological research site in western NC, USA, and explore whether source water use differs by species and landscape position. We analyzed stable isotopes of water (18O and 2H) in tree cores, stream water, soil water, and precipitation using laser spectrometry and compare the isotopic composition of the various pools. We place these results in broader context using meteorological and ecophysiological data collected nearby. These findings have implications for plant water stress and drought vulnerability. They also contribute to process-based knowledge of plant water use that better captures the sensitivity of transpiration to physical and biological controls at the sub-catchment scale. This work aims to help establish novel ways to model transpiration and improve understanding of water balance, biogeochemical cycling, and transport of nutrients to streams.

  7. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99)

    USDA-ARS?s Scientific Manuscript database

    A distributed biosphere hydrological model, the so called water and energy budget-based distributed hydrological model (WEB-DHM), has been developed by fully coupling a biosphere scheme (SiB2) with a geomorphology-based hydrological model (GBHM). SiB2 describes the transfer of turbulent fluxes (ener...

  8. Clearing your Desk! Software and Data Services for Collaborative Web Based GIS Analysis

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Gichamo, T.; Yildirim, A. A.; Liu, Y.

    2015-12-01

    Can your desktop computer crunch the large GIS datasets that are becoming increasingly common across the geosciences? Do you have access to or the know-how to take advantage of advanced high performance computing (HPC) capability? Web based cyberinfrastructure takes work off your desk or laptop computer and onto infrastructure or "cloud" based data and processing servers. This talk will describe the HydroShare collaborative environment and web based services being developed to support the sharing and processing of hydrologic data and models. HydroShare supports the upload, storage, and sharing of a broad class of hydrologic data including time series, geographic features and raster datasets, multidimensional space-time data, and other structured collections of data. Web service tools and a Python client library provide researchers with access to HPC resources without requiring them to become HPC experts. This reduces the time and effort spent in finding and organizing the data required to prepare the inputs for hydrologic models and facilitates the management of online data and execution of models on HPC systems. This presentation will illustrate the use of web based data and computation services from both the browser and desktop client software. These web-based services implement the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation, generation of hydrology-based terrain information, and preparation of hydrologic model inputs. They allow users to develop scripts on their desktop computer that call analytical functions that are executed completely in the cloud, on HPC resources using input datasets stored in the cloud, without installing specialized software, learning how to use HPC, or transferring large datasets back to the user's desktop. These cases serve as examples for how this approach can be extended to other models to enhance the use of web and data services in the geosciences.

  9. Hydrological excitation of polar motion by different variables of the GLDAS models

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta

    Continental hydrological loading, by land water, snow, and ice, is an element that is strongly needed for a full understanding of the excitation of polar motion. In this study we compute different estimations of hydrological excitation functions of polar motion (Hydrological Angular Momentum - HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of land hydrosphere. The main aim of this study is to show the influence of different variables for example: total evapotranspiration, runoff, snowmelt, soil moisture to polar motion excitations in annual and short term scale. In our consideration we employ several realizations of the GLDAS model as: GLDAS Common Land Model (CLM), GLDAS Mosaic Model, GLDAS National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab Model (Noah), GLDAS Variable Infiltration Capacity (VIC) Model. Hydrological excitation functions of polar motion, both global and regional, are determined by using selected variables of these GLDAS realizations. First we compare a timing, spectra and phase diagrams of different regional and global HAMs with each other. Next, we estimate, the hydrological signal in geodetically observed polar motion excitation by subtracting the atmospheric -- AAM (pressure + wind) and oceanic -- OAM (bottom pressure + currents) contributions. Finally, the hydrological excitations are compared to these hydrological signal in observed polar motion excitation series. The results help us understand which variables of considered hydrological models are the most important for the polar motion excitation and how well we can close polar motion excitation budget in the seasonal and inter-annual spectral ranges.

  10. Hydrological modelling of the Mara River Basin, Kenya: Dealing with uncertain data quality and calibrating using river stage

    NASA Astrophysics Data System (ADS)

    Hulsman, P.; Bogaard, T.; Savenije, H. H. G.

    2016-12-01

    In hydrology and water resources management, discharge is the main time series for model calibration. Rating curves are needed to derive discharge from continuously measured water levels. However, assuring their quality is demanding due to dynamic changes and problems in accurately deriving discharge at high flows. This is valid everywhere, but even more in African socio-economic context. To cope with these uncertainties, this study proposes to use water levels instead of discharge data for calibration. Also uncertainties in rainfall measurements, especially the spatial heterogeneity needs to be considered. In this study, the semi-distributed rainfall runoff model FLEX-Topo was applied to the Mara River Basin. In this model seven sub-basins were distinguished and four hydrological response units with each a unique model structure based on the expected dominant flow processes. Parameter and process constrains were applied to exclude unrealistic results. To calibrate the model, the water levels were back-calculated from modelled discharges, using cross-section data and the Strickler formula calibrating parameter `k•s1/2', and compared to measured water levels. The model simulated the water depths well for the entire basin and the Nyangores sub-basin in the north. However, the calibrated and observed rating curves differed significantly at the basin outlet, probably due to uncertainties in the measured discharge, but at Nyangores they were almost identical. To assess the effect of rainfall uncertainties on the hydrological model, the representative rainfall in each sub-basin was estimated with three different methods: 1) single station, 2) average precipitation, 3) areal sub-division using Thiessen polygons. All three methods gave on average similar results, but method 1 resulted in more flashy responses, method 2 dampened the water levels due to averaging the rainfall and method 3 was a combination of both. In conclusion, in the case of unreliable rating curves, water level data can be used instead and a new rating curve can be calibrated. The effect of rainfall uncertainties on the hydrological model was insignificant.

  11. Improving the effectiveness of real-time flood forecasting through Predictive Uncertainty estimation: the multi-temporal approach

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Todini, Ezio

    2015-04-01

    The negative effects of severe flood events are usually contrasted through structural measures that, however, do not fully eliminate flood risk. Non-structural measures, such as real-time flood forecasting and warning, are also required. Accurate stage/discharge future predictions with appropriate forecast lead-time are sought by decision-makers for implementing strategies to mitigate the adverse effects of floods. Traditionally, flood forecasting has been approached by using rainfall-runoff and/or flood routing modelling. Indeed, both types of forecasts, cannot be considered perfectly representing future outcomes because of lacking of a complete knowledge of involved processes (Todini, 2004). Nonetheless, although aware that model forecasts are not perfectly representing future outcomes, decision makers are de facto implicitly assuming the forecast of water level/discharge/volume, etc. as "deterministic" and coinciding with what is going to occur. Recently the concept of Predictive Uncertainty (PU) was introduced in hydrology (Krzysztofowicz, 1999), and several uncertainty processors were developed (Todini, 2008). PU is defined as the probability of occurrence of the future realization of a predictand (water level/discharge/volume) conditional on: i) prior observations and knowledge, ii) the available information obtained on the future value, typically provided by one or more forecast models. Unfortunately, PU has been frequently interpreted as a measure of lack of accuracy rather than the appropriate tool allowing to take the most appropriate decisions, given a model or several models' forecasts. With the aim to shed light on the benefits for appropriately using PU, a multi-temporal approach based on the MCP approach (Todini, 2008; Coccia and Todini, 2011) is here applied to stage forecasts at sites along the Upper Tiber River. Specifically, the STAge Forecasting-Rating Curve Model Muskingum-based (STAFOM-RCM) (Barbetta et al., 2014) along with the Rating-Curve Model in Real Time (RCM-RT) (Barbetta and Moramarco, 2014) are used to this end. Both models without considering rainfall information explicitly considers, at each time of forecast, the estimate of lateral contribution along the river reach for which the stage forecast is performed at downstream end. The analysis is performed for several reaches using different lead times according to the channel length. Barbetta, S., Moramarco, T., Brocca, L., Franchini, M. and Melone, F. 2014. Confidence interval of real-time forecast stages provided by the STAFOM-RCM model: the case study of the Tiber River (Italy). Hydrological Processes, 28(3),729-743. Barbetta, S. and Moramarco, T. 2014. Real-time flood forecasting by relating local stage and remote discharge. Hydrological Sciences Journal, 59(9 ), 1656-1674. Coccia, G. and Todini, E. 2011. Recent developments in predictive uncertainty assessment based on the Model Conditional Processor approach. Hydrology and Earth System Sciences, 15, 3253-3274. doi:10.5194/hess-15-3253-2011. Krzysztofowicz, R. 1999. Bayesian theory of probabilistic forecasting via deterministic hydrologic model, Water Resour. Res., 35, 2739-2750. Todini, E. 2004. Role and treatment of uncertainty in real-time flood forecasting. Hydrological Processes 18(14), 2743_2746. Todini, E. 2008. A model conditional processor to assess predictive uncertainty in flood forecasting. Intl. J. River Basin Management, 6(2): 123-137.

  12. Distributed simulation of long-term hydrological processes in a medium-sized periurban catchment under changing land use and rainwater management.

    NASA Astrophysics Data System (ADS)

    Labbas, Mériem; Braud, Isabelle; Branger, Flora; Kralisch, Sven

    2013-04-01

    Growing urbanization and related anthropogenic processes have a high potential to influence hydrological process dynamics. Typical consequences are an increase of surface imperviousness and modifications of water flow paths due to artificial channels and barriers (combined and separated system, sewer overflow device, roads, ditches, etc.). Periurban catchments, at the edge of large cities, are especially affected by fast anthropogenic modifications. They usually consist of a combination of natural areas, rural areas with dispersed settlements and urban areas mostly covered by built zones and spots of natural surfaces. In the context of the European Water Framework Directive (2000) and the Floods Directive (2007), integrated and sustainable solutions are needed to reduce flooding risks and river pollution at the scale of urban conglomerations or whole catchments. Their thorough management requires models able to assess the vulnerability of the territory and to compare the impact of different rainwater management options and planning issues. To address this question, we propose a methodology based on a multi-scale distributed hydrological modelling approach. It aims at quantifying the impact of ongoing urbanization and stormwater management on the long-term hydrological cycle in medium-sized periurban watershed. This method focuses on the understanding and formalization of dominant periurban hydrological processes from small scales (few ha to few km2) to larger scales (few hundred km2). The main objectives are to 1) simulate both urban and rural hydrological processes and 2) test the effects of different long-term land use and water management scenarios. The method relies on several tools and data: a distributed hydrological model adapted to the characteristics of periurban areas, land use and land cover maps from different dates (past, present, future) and information about rainwater management collected from local authorities. For the application of the method, the medium-scaled catchment of Yzeron (France) is chosen. It is subjected to a fast progression of urbanization since the eighties and has been monitored for a long time period. The fully-distributed hydrological model J2000, available through the JAMS modelling framework, was found appropriate to simulate the water balance of the Yzeron catchment at a daily time step. However, it was not designed especially for periurban areas, so its structure and parameters are under adaptation. Firstly, as hydrological responses in urban areas are quicker than in rural areas, a sub-daily time step is necessary to improve the simulation of periurban hydrological processes. Therefore, J2000 was adapted to be run at a hourly time step. Secondly, in order to better take into account rainwater management, an explicit representation of sewer networks is implemented in the J2000 model whose periurban version is called J2000P. It receives urban rainwater coming from impervious surfaces connected to a combined sewer system and delivers this water to the treatment plant or directly to the river in case of sewer overflow device outflows. We will present the impact of these modifications on the simulated hydrological regime.

  13. Better models are more effectively connected models

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Bielders, Charles; Darboux, Frederic; Fiener, Peter; Finger, David; Turnbull-Lloyd, Laura; Wainwright, John

    2016-04-01

    The concept of hydrologic and geomorphologic connectivity describes the processes and pathways which link sources (e.g. rainfall, snow and ice melt, springs, eroded areas and barren lands) to accumulation areas (e.g. foot slopes, streams, aquifers, reservoirs), and the spatial variations thereof. There are many examples of hydrological and sediment connectivity on a watershed scale; in consequence, a process-based understanding of connectivity is crucial to help managers understand their systems and adopt adequate measures for flood prevention, pollution mitigation and soil protection, among others. Modelling is often used as a tool to understand and predict fluxes within a catchment by complementing observations with model results. Catchment models should therefore be able to reproduce the linkages, and thus the connectivity of water and sediment fluxes within the systems under simulation. In modelling, a high level of spatial and temporal detail is desirable to ensure taking into account a maximum number of components, which then enables connectivity to emerge from the simulated structures and functions. However, computational constraints and, in many cases, lack of data prevent the representation of all relevant processes and spatial/temporal variability in most models. In most cases, therefore, the level of detail selected for modelling is too coarse to represent the system in a way in which connectivity can emerge; a problem which can be circumvented by representing fine-scale structures and processes within coarser scale models using a variety of approaches. This poster focuses on the results of ongoing discussions on modelling connectivity held during several workshops within COST Action Connecteur. It assesses the current state of the art of incorporating the concept of connectivity in hydrological and sediment models, as well as the attitudes of modellers towards this issue. The discussion will focus on the different approaches through which connectivity can be represented in models: either by allowing it to emerge from model behaviour or by parameterizing it inside model structures; and on the appropriate scale at which processes should be represented explicitly or implicitly. It will also explore how modellers themselves approach connectivity through the results of a community survey. Finally, it will present the outline of an international modelling exercise aimed at assessing how different modelling concepts can capture connectivity in real catchments.

  14. Towards improved hydrologic predictions using data assimilation techniques for water resource management at the continental scale

    NASA Astrophysics Data System (ADS)

    Naz, Bibi; Kurtz, Wolfgang; Kollet, Stefan; Hendricks Franssen, Harrie-Jan; Sharples, Wendy; Görgen, Klaus; Keune, Jessica; Kulkarni, Ketan

    2017-04-01

    More accurate and reliable hydrologic simulations are important for many applications such as water resource management, future water availability projections and predictions of extreme events. However, simulation of spatial and temporal variations in the critical water budget components such as precipitation, snow, evaporation and runoff is highly uncertain, due to errors in e.g. model structure and inputs (hydrologic parameters and forcings). In this study, we use data assimilation techniques to improve the predictability of continental-scale water fluxes using in-situ measurements along with remotely sensed information to improve hydrologic predications for water resource systems. The Community Land Model, version 3.5 (CLM) integrated with the Parallel Data Assimilation Framework (PDAF) was implemented at spatial resolution of 1/36 degree (3 km) over the European CORDEX domain. The modeling system was forced with a high-resolution reanalysis system COSMO-REA6 from Hans-Ertel Centre for Weather Research (HErZ) and ERA-Interim datasets for time period of 1994-2014. A series of data assimilation experiments were conducted to assess the efficiency of assimilation of various observations, such as river discharge data, remotely sensed soil moisture, terrestrial water storage and snow measurements into the CLM-PDAF at regional to continental scales. This setup not only allows to quantify uncertainties, but also improves streamflow predictions by updating simultaneously model states and parameters utilizing observational information. The results from different regions, watershed sizes, spatial resolutions and timescales are compared and discussed in this study.

  15. Hydrologic modeling of detention pond

    USDA-ARS?s Scientific Manuscript database

    Urban watersheds produce an instantaneous response to rainfall. That results in stormwater runoff in excess of the capacity of drainage systems. The excess stormwater must be managed to prevent flooding and erosion of streams. Management can be achieved with the help of structural stormwater Best...

  16. Evaluation of Hydrologic Simulations Developed Using Multi-Model Synthesis and Remotely-Sensed Data within a Portfolio of Calibration Strategies

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Markstrom, S. L.

    2016-12-01

    The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. Hydrologic models for 1,576 gaged watersheds across the CONUS were developed to test the feasibility of improving streamflow simulations linking physically-based hydrologic models with remotely-sensed data products (i.e. snow water equivalent). Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison across multiple calibration strategy tests. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve hydrologic simulations for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of modeled and measured information for hydrologic model development and calibration. In addition, these calibration strategies have been developed to be flexible so that new data products can be assimilated. This analysis provides a foundation to understand how well models work when sufficient streamflow data are not available and could be used to further inform hydrologic model parameter development for ungaged areas.

  17. A 3-D Approach for Teaching and Learning about Surface Water Systems through Computational Thinking, Data Visualization and Physical Models

    NASA Astrophysics Data System (ADS)

    Caplan, B.; Morrison, A.; Moore, J. C.; Berkowitz, A. R.

    2017-12-01

    Understanding water is central to understanding environmental challenges. Scientists use `big data' and computational models to develop knowledge about the structure and function of complex systems, and to make predictions about changes in climate, weather, hydrology, and ecology. Large environmental systems-related data sets and simulation models are difficult for high school teachers and students to access and make sense of. Comp Hydro, a collaboration across four states and multiple school districts, integrates computational thinking and data-related science practices into water systems instruction to enhance development of scientific model-based reasoning, through curriculum, assessment and teacher professional development. Comp Hydro addresses the need for 1) teaching materials for using data and physical models of hydrological phenomena, 2) building teachers' and students' comfort or familiarity with data analysis and modeling, and 3) infusing the computational knowledge and practices necessary to model and visualize hydrologic processes into instruction. Comp Hydro teams in Baltimore, MD and Fort Collins, CO are integrating teaching about surface water systems into high school courses focusing on flooding (MD) and surface water reservoirs (CO). This interactive session will highlight the successes and challenges of our physical and simulation models in helping teachers and students develop proficiency with computational thinking about surface water. We also will share insights from comparing teacher-led vs. project-led development of curriculum and our simulations.

  18. Hydrology: The interdisciplinary science of water

    NASA Astrophysics Data System (ADS)

    Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.

    2015-06-01

    We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth's hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.

  19. Hydrology: The interdisciplinary science of water

    USGS Publications Warehouse

    Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.

    2015-01-01

    We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth’s hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.

  20. Development and comparison of Bayesian modularization method in uncertainty assessment of hydrological models

    NASA Astrophysics Data System (ADS)

    Li, L.; Xu, C.-Y.; Engeland, K.

    2012-04-01

    With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD

  1. The development of an hourly gridded rainfall product for hydrological applications in England and Wales

    NASA Astrophysics Data System (ADS)

    Liguori, Sara; O'Loughlin, Fiachra; Souvignet, Maxime; Coxon, Gemma; Freer, Jim; Woods, Ross

    2014-05-01

    This research presents a newly developed observed sub-daily gridded precipitation product for England and Wales. Importantly our analysis specifically allows a quantification of rainfall errors from grid to the catchment scale, useful for hydrological model simulation and the evaluation of prediction uncertainties. Our methodology involves the disaggregation of the current one kilometre daily gridded precipitation records available for the United Kingdom[1]. The hourly product is created using information from: 1) 2000 tipping-bucket rain gauges; and 2) the United Kingdom Met-Office weather radar network. These two independent datasets provide rainfall estimates at temporal resolutions much smaller than the current daily gridded rainfall product; thus allowing the disaggregation of the daily rainfall records to an hourly timestep. Our analysis is conducted for the period 2004 to 2008, limited by the current availability of the datasets. We analyse the uncertainty components affecting the accuracy of this product. Specifically we explore how these uncertainties vary spatially, temporally and with climatic regimes. Preliminary results indicate scope for improvement of hydrological model performance by the utilisation of this new hourly gridded rainfall product. Such product will improve our ability to diagnose and identify structural errors in hydrological modelling by including the quantification of input errors. References [1] Keller V, Young AR, Morris D, Davies H (2006) Continuous Estimation of River Flows. Technical Report: Estimation of Precipitation Inputs. in Agency E (ed.). Environmental Agency.

  2. Impacts of future climate change on river discharge based on hydrological inference: A case study of the Grand River Watershed in Ontario, Canada.

    PubMed

    Li, Zhong; Huang, Guohe; Wang, Xiuquan; Han, Jingcheng; Fan, Yurui

    2016-04-01

    Over the recent years, climate change impacts have been increasingly studied at the watershed scale. However, the impact assessment is strongly dependent upon the performance of the climatic and hydrological models. This study developed a two-step method to assess climate change impacts on water resources based on the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and a Hydrological Inference Model (HIM). PRECIS runs provided future temperature and precipitation projections for the watershed under the Intergovernmental Panel on Climate Change SRES A2 and B2 emission scenarios. The HIM based on stepwise cluster analysis is developed to imitate the complex nonlinear relationships between climate input variables and targeted hydrological variables. Its robust mathematical structure and flexibility in predictor selection makes it a desirable tool for fully utilizing various climate modeling outputs. Although PRECIS and HIM cannot fully cover the uncertainties in hydro-climate modeling, they could provide efficient decision support for investigating the impacts of climate change on water resources. The proposed method is applied to the Grand River Watershed in Ontario, Canada. The model performance is demonstrated with comparison to observation data from the watershed during the period 1972-2006. Future river discharge intervals that accommodate uncertainties in hydro-climatic modeling are presented and future river discharge variations are analyzed. The results indicate that even though the total annual precipitation would not change significantly in the future, the inter-annual distribution is very likely to be altered. The water availability is expected to increase in Winter while it is very likely to decrease in Summer over the Grand River Watershed, and adaptation strategies would be necessary. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Catchments as non-linear filters: evaluating data-driven approaches for spatio-temporal predictions in ungauged basins

    NASA Astrophysics Data System (ADS)

    Bellugi, D. G.; Tennant, C.; Larsen, L.

    2016-12-01

    Catchment and climate heterogeneity complicate prediction of runoff across time and space, and resulting parameter uncertainty can lead to large accumulated errors in hydrologic models, particularly in ungauged basins. Recently, data-driven modeling approaches have been shown to avoid the accumulated uncertainty associated with many physically-based models, providing an appealing alternative for hydrologic prediction. However, the effectiveness of different methods in hydrologically and geomorphically distinct catchments, and the robustness of these methods to changing climate and changing hydrologic processes remain to be tested. Here, we evaluate the use of machine learning techniques to predict daily runoff across time and space using only essential climatic forcing (e.g. precipitation, temperature, and potential evapotranspiration) time series as model input. Model training and testing was done using a high quality dataset of daily runoff and climate forcing data for 25+ years for 600+ minimally-disturbed catchments (drainage area range 5-25,000 km2, median size 336 km2) that cover a wide range of climatic and physical characteristics. Preliminary results using Support Vector Regression (SVR) suggest that in some catchments this nonlinear-based regression technique can accurately predict daily runoff, while the same approach fails in other catchments, indicating that the representation of climate inputs and/or catchment filter characteristics in the model structure need further refinement to increase performance. We bolster this analysis by using Sparse Identification of Nonlinear Dynamics (a sparse symbolic regression technique) to uncover the governing equations that describe runoff processes in catchments where SVR performed well and for ones where it performed poorly, thereby enabling inference about governing processes. This provides a robust means of examining how catchment complexity influences runoff prediction skill, and represents a contribution towards the integration of data-driven inference and physically-based models.

  4. A probabilistic method for streamflow projection and associated uncertainty analysis in a data sparse alpine region

    NASA Astrophysics Data System (ADS)

    Ren, Weiwei; Yang, Tao; Shi, Pengfei; Xu, Chong-yu; Zhang, Ke; Zhou, Xudong; Shao, Quanxi; Ciais, Philippe

    2018-06-01

    Climate change imposes profound influence on regional hydrological cycle and water security in many alpine regions worldwide. Investigating regional climate impacts using watershed scale hydrological models requires a large number of input data such as topography, meteorological and hydrological data. However, data scarcity in alpine regions seriously restricts evaluation of climate change impacts on water cycle using conventional approaches based on global or regional climate models, statistical downscaling methods and hydrological models. Therefore, this study is dedicated to development of a probabilistic model to replace the conventional approaches for streamflow projection. The probabilistic model was built upon an advanced Bayesian Neural Network (BNN) approach directly fed by the large-scale climate predictor variables and tested in a typical data sparse alpine region, the Kaidu River basin in Central Asia. Results show that BNN model performs better than the general methods across a number of statistical measures. The BNN method with flexible model structures by active indicator functions, which reduce the dependence on the initial specification for the input variables and the number of hidden units, can work well in a data limited region. Moreover, it can provide more reliable streamflow projections with a robust generalization ability. Forced by the latest bias-corrected GCM scenarios, streamflow projections for the 21st century under three RCP emission pathways were constructed and analyzed. Briefly, the proposed probabilistic projection approach could improve runoff predictive ability over conventional methods and provide better support to water resources planning and management under data limited conditions as well as enable a facilitated climate change impact analysis on runoff and water resources in alpine regions worldwide.

  5. On the Hydrologic Adjustment of Climate-Model Projections: The Potential Pitfall of Potential Evapotranspiration

    USGS Publications Warehouse

    Milly, Paul C.D.; Dunne, Krista A.

    2011-01-01

    Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median -11%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate-change impacts on water.

  6. Hydrological models as web services: Experiences from the Environmental Virtual Observatory project

    NASA Astrophysics Data System (ADS)

    Buytaert, W.; Vitolo, C.; Reaney, S. M.; Beven, K.

    2012-12-01

    Data availability in environmental sciences is expanding at a rapid pace. From the constant stream of high-resolution satellite images to the local efforts of citizen scientists, there is an increasing need to process the growing stream of heterogeneous data and turn it into useful information for decision-making. Environmental models, ranging from simple rainfall - runoff relations to complex climate models, can be very useful tools to process data, identify patterns, and help predict the potential impact of management scenarios. Recent technological innovations in networking, computing and standardization may bring a new generation of interactive models plugged into virtual environments closer to the end-user. They are the driver of major funding initiatives such as the UK's Virtual Observatory program, and the U.S. National Science Foundation's Earth Cube. In this study we explore how hydrological models, being an important subset of environmental models, have to be adapted in order to function within a broader environment of web-services and user interactions. Historically, hydrological models have been developed for very different purposes. Typically they have a rigid model structure, requiring a very specific set of input data and parameters. As such, the process of implementing a model for a specific catchment requires careful collection and preparation of the input data, extensive calibration and subsequent validation. This procedure seems incompatible with a web-environment, where data availability is highly variable, heterogeneous and constantly changing in time, and where the requirements of end-users may be not necessarily align with the original intention of the model developer. We present prototypes of models that are web-enabled using the web standards of the Open Geospatial Consortium, and implemented in online decision-support systems. We identify issues related to (1) optimal use of available data; (2) the need for flexible and adaptive structures; (3) quantification and communication of uncertainties. Lastly, we present some road maps to address these issues and discuss them in the broader context of web-based data processing and "big data" science.

  7. Design and Implementation of Hydrologic Process Knowledge-base Ontology: A case study for the Infiltration Process

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2013-12-01

    Hydrologic modeling often requires the re-use and integration of models from different disciplines to simulate complex environmental systems. Component-based modeling introduces a flexible approach for integrating physical-based processes across disciplinary boundaries. Several hydrologic-related modeling communities have adopted the component-based approach for simulating complex physical systems by integrating model components across disciplinary boundaries in a workflow. However, it is not always straightforward to create these interdisciplinary models due to the lack of sufficient knowledge about a hydrologic process. This shortcoming is a result of using informal methods for organizing and sharing information about a hydrologic process. A knowledge-based ontology provides such standards and is considered the ideal approach for overcoming this challenge. The aims of this research are to present the methodology used in analyzing the basic hydrologic domain in order to identify hydrologic processes, the ontology itself, and how the proposed ontology is integrated with the Water Resources Component (WRC) ontology. The proposed ontology standardizes the definitions of a hydrologic process, the relationships between hydrologic processes, and their associated scientific equations. The objective of the proposed Hydrologic Process (HP) Ontology is to advance the idea of creating a unified knowledge framework for components' metadata by introducing a domain-level ontology for hydrologic processes. The HP ontology is a step toward an explicit and robust domain knowledge framework that can be evolved through the contribution of domain users. Analysis of the hydrologic domain is accomplished using the Formal Concept Approach (FCA), in which the infiltration process, an important hydrologic process, is examined. Two infiltration methods, the Green-Ampt and Philip's methods, were used to demonstrate the implementation of information in the HP ontology. Furthermore, a SPARQL service is provided for semantic-based querying of the ontology.

  8. Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae.

    PubMed

    Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola

    2018-03-01

    There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.

  9. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    NASA Astrophysics Data System (ADS)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  10. Adaptation to hydrological extremes through insurance: a financial fund simulation model under changing scenarios

    NASA Astrophysics Data System (ADS)

    Guzman, Diego; Mohor, Guilherme; Câmara, Clarissa; Mendiondo, Eduardo

    2017-04-01

    Researches from around the world relate global environmental changes with the increase of vulnerability to extreme events, such as heavy and scarce precipitations - floods and droughts. Hydrological disasters have caused increasing losses in recent years. Thus, risk transfer mechanisms, such as insurance, are being implemented to mitigate impacts, finance the recovery of the affected population, and promote the reduction of hydrological risks. However, among the main problems in implementing these strategies, there are: First, the partial knowledge of natural and anthropogenic climate change in terms of intensity and frequency; Second, the efficient risk reduction policies require accurate risk assessment, with careful consideration of costs; Third, the uncertainty associated with numerical models and input data used. The objective of this document is to introduce and discuss the feasibility of the application of Hydrological Risk Transfer Models (HRTMs) as a strategy of adaptation to global climate change. The article shows the development of a methodology for the collective and multi-sectoral vulnerability management, facing the hydrological risk in the long term, under an insurance funds simulator. The methodology estimates the optimized premium as a function of willingness to pay (WTP) and the potential direct loss derived from hydrological risk. The proposed methodology structures the watershed insurance scheme in three analysis modules. First, the hazard module, which characterizes the hydrologic threat from the recorded series input or modelled series under IPCC / RCM's generated scenarios. Second, the vulnerability module calculates the potential economic loss for each sector1 evaluated as a function of the return period "TR". Finally, the finance module determines the value of the optimal aggregate premium by evaluating equiprobable scenarios of water vulnerability; taking into account variables such as the maximum limit of coverage, deductible, reinsurance schemes, and incentives for risk reduction. The methodology tested by members of the Integrated Nucleus of River Basins (NIBH) (University of Sao Paulo (USP) School of Engineering of São Carlos (EESC) - Brazil) presents an alternative to the analysis and planning of insurance funds, aiming to mitigate the impacts of hydrological droughts and stream flash floods. The presented procedure is especially important when information relevant to studies and the development and implementation of insurance funds are difficult to access and of complex evaluation. A sequence of academic applications has been made in Brazil under the South American context, where the market of hydrological insurance has a low penetration compared to developed economies and insurance markets more established as the United States and Europe, producing relevant information and demonstrating the potential of the methodology in development.

  11. Simulating hydrological processes of a typical small mountainous catchment in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Y. P.; Bai, Z.; Fu, Q.; Pan, S.; Zhu, C.

    2017-12-01

    Water cycle of small watersheds with seasonal/permanent frozen soil and snow pack in Tibetan Plateau is seriously affected by climate change. The objective of this study is to find out how much and in what way the frozen soil and snow pack will influence the hydrology of small mountainous catchments in cold regions and how can the performance of simulation by a distributed hydrological model be improved. The Dong catchment, a small catchment located in Tibetan Plateau, is used as a case study. Two measurement stations are set up to collect basic meteorological and hydrological data for the modeling purpose. Annual and interannual variations of runoff indices are first analyzed based on historic data series. The sources of runoff in dry periods and wet periods are analyzed respectively. Then, a distributed hydrology soil vegetation model (DHSVM) is adopted to simulate the hydrological process of Dong catchment based on limited data set. Global sensitivity analysis is applied to help determine the important processes of the catchment. Based on sensitivity analysis results, the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) is finally added into the hydrological model to calibrate the hydrological model in a multi-objective way and analyze the performance of DHSVM model. The performance of simulation is evaluated with several evaluation indices. The final results show that frozen soil and snow pack do play an important role in hydrological processes in cold mountainous region, in particular in dry periods without precipitation, while in wet periods precipitation is often the main source of runoff. The results also show that although the DHSVM hydrological model has the potential to model the hydrology well in small mountainous catchments with very limited data in Tibetan Plateau, the simulation of hydrology in dry periods is not very satisfactory due to the model's insufficiency in simulating seasonal frozen soil.

  12. Improving National Water Modeling: An Intercomparison of two High-Resolution, Continental Scale Models, CONUS-ParFlow and the National Water Model

    NASA Astrophysics Data System (ADS)

    Tijerina, D.; Gochis, D.; Condon, L. E.; Maxwell, R. M.

    2017-12-01

    Development of integrated hydrology modeling systems that couple atmospheric, land surface, and subsurface flow is growing trend in hydrologic modeling. Using an integrated modeling framework, subsurface hydrologic processes, such as lateral flow and soil moisture redistribution, are represented in a single cohesive framework with surface processes like overland flow and evapotranspiration. There is a need for these more intricate models in comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). Currently, two high-resolution, coupled hydrologic modeling applications have been developed for this domain: CONUS-ParFlow built using the integrated hydrologic model ParFlow and the National Water Model that uses the NCAR Weather Research and Forecasting hydrological extension package (WRF-Hydro). Both ParFlow and WRF-Hydro include land surface models, overland flow, and take advantage of parallelization and high-performance computing (HPC) capabilities; however, they have different approaches to overland subsurface flow and groundwater-surface water interactions. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs; both models have accomplished this, but have differences in approach and continue to be difficult to validate. A further exploration of effective methodology to accurately represent large-scale hydrology with integrated models is needed to advance this growing field. Here we compare the outputs of CONUS-ParFlow and the National Water Model to each other and with observations to study the performance of hyper-resolution models over large domains. Models were compared over a range of scales for major watersheds within the CONUS with a specific focus on the Mississippi, Ohio, and Colorado River basins. We use a novel set of approaches and analysis for this comparison to better understand differences in process and bias. This intercomparison is a step toward better understanding how much water we have and interactions between surface and subsurface. Our goal is to advance our understanding and simulation of the hydrologic system and ultimately improve hydrologic forecasts.

  13. Sharing hydrological knowledge: an international comparison of hydrological models in the Meuse River Basin

    NASA Astrophysics Data System (ADS)

    Bouaziz, Laurène; Sperna Weiland, Frederiek; Drogue, Gilles; Brauer, Claudia; Weerts, Albrecht

    2015-04-01

    International collaboration between institutes and universities working and studying the same transboundary basin is needed for consensus building around possible effects of climate change and climate adaptation measures. Education, experience and expert knowledge of the hydrological community have resulted in the development of a great variety of model concepts, calibration and analysis techniques. Intercomparison could be a first step into consensus modeling or an ensemble based modeling strategy. Besides these practical objectives, such an intercomparison offers the opportunity to explore different ranges of models and learn from each other, hopefully increasing the insight into the hydrological processes that play a role in the transboundary basin. In this experiment, different international research groups applied their rainfall-runoff model in the Ourthe, a Belgium sub-catchment of the Meuse. Data preparation involved the interpolation of hourly precipitation station data collected and owned by the Service Public de Wallonie1 and the freely available E-OBS dataset for daily temperature (Haylock et al., 2008). Daily temperature was disaggregated to hourly values and potential evaporation was derived with the Hargreaves formula. The data was made available to the researchers through an FTP server. The protocol for the modeling involved a split-sample calibration and validation for pre-defined periods. Objective functions for calibration were fixed but the calibration algorithm was a free choice of the research groups. The selection of calibration algorithm was considered model dependent because lumped as well as computationally less efficient distributed models were used. For each model, an ensemble of best performing parameter sets was selected and several performance metrics enabled to assess the models' abilities to simulate discharge. The aim of this experiment is to identify those model components and structures that increase model performance and may best represent the catchment's hydrological behavior. Further steps in the collaboration may include (1) repeating the experiment for other sub-catchments of the Meuse River Basin where different hydrological processes may be relevant and where other models may perform better; and (2) the comparison of hydrological model results obtained by forcing the model with daily local measured precipitation and lower resolution gridded precipitation from the E-OBS (Haylock et at., 2008) dataset to estimate the value of high-resolution data versus lower resolution gridded products. 1 Service Publique de Wallonie, Direction générale opérationnelle de la Mobilité et des Voies hydrauliques, Département des Etudes et de l'Appui à la Gestion, Direction de la Gestion hydrologique intégrée, Boulevard du Nord 8 - 5000 Namur "Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119, doi:10.1029/2008JD10201"

  14. A journey of a thousand miles begins with one small step - human agency, hydrological processes and time in socio-hydrology

    NASA Astrophysics Data System (ADS)

    Ertsen, M. W.; Murphy, J. T.; Purdue, L. E.; Zhu, T.

    2014-04-01

    When simulating social action in modeling efforts, as in socio-hydrology, an issue of obvious importance is how to ensure that social action by human agents is well-represented in the analysis and the model. Generally, human decision-making is either modeled on a yearly basis or lumped together as collective social structures. Both responses are problematic, as human decision-making is more complex and organizations are the result of human agency and cannot be used as explanatory forces. A way out of the dilemma of how to include human agency is to go to the largest societal and environmental clustering possible: society itself and climate, with time steps of years or decades. In the paper, another way out is developed: to face human agency squarely, and direct the modeling approach to the agency of individuals and couple this with the lowest appropriate hydrological level and time step. This approach is supported theoretically by the work of Bruno Latour, the French sociologist and philosopher. We discuss irrigation archaeology, as it is in this discipline that the issues of scale and explanatory force are well discussed. The issue is not just what scale to use: it is what scale matters. We argue that understanding the arrangements that permitted the management of irrigation over centuries requires modeling and understanding the small-scale, day-to-day operations and personal interactions upon which they were built. This effort, however, must be informed by the longer-term dynamics, as these provide the context within which human agency is acted out.

  15. A journey of a thousand miles begins with one small step - human agency, hydrological processes and time in socio-hydrology

    NASA Astrophysics Data System (ADS)

    Ertsen, M. W.; Murphy, J. T.; Purdue, L. E.; Zhu, T.

    2013-11-01

    When simulating social action in modeling efforts, as in socio-hydrology, an issue of obvious importance is how to ensure that social action by human agents is well-represented in the analysis and the model. Generally, human decision-making is either modeled on a yearly basis or lumped together as collective social structures. Both responses are problematic, as human decision making is more complex and organizations are the result of human agency and cannot be used as explanatory forces. A way out of the dilemma how to include human agency is to go to the largest societal and environmental clustering possible: society itself and climate, with time steps of years or decades. In the paper, the other way out is developed: to face human agency squarely, and direct the modeling approach to the human agency of individuals and couple this with the lowest appropriate hydrological level and time step. This approach is supported theoretically by the work of Bruno Latour, the French sociologist and philosopher. We discuss irrigation archaeology, as it is in this discipline that the issues of scale and explanatory force are well discussed. The issue is not just what scale to use: it is what scale matters. We argue that understanding the arrangements that permitted the management of irrigation over centuries, requires modeling and understanding the small-scale, day-to-day operations and personal interactions upon which they were built. This effort, however, must be informed by the longer-term dynamics as these provide the context within which human agency, is acted out.

  16. A New Approach in Generating Meteorological Forecasts for Ensemble Streamflow Forecasting using Multivariate Functions

    NASA Astrophysics Data System (ADS)

    Khajehei, S.; Madadgar, S.; Moradkhani, H.

    2014-12-01

    The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).

  17. Uncertainty in Arctic hydrology projections and the permafrost-carbon feedback

    NASA Astrophysics Data System (ADS)

    Andresen, C. G.; Lawrence, D. M.; Wilson, C. J.; McGuire, D.

    2017-12-01

    Projected warming is expected to thaw permafrost soils and deepen the permafrost active layer. These changes will affect surface hydrological conditions. Since the soil hydrologic state exerts a strong influence on the rate and pathway of soil organic matter decomposition into CO2 or CH4, there is a strong need to examine and better understand model projections of hydrologic change and how differences in process representation affect projections of wetting and/or drying of changing permafrost landscapes. This study aims to advance understanding of where, when and why arctic will become wetter or drier. We assessed simulations from 8 "permafrost enabled" land models that were run in offline mode from 1960 to 2299 forced with the same projected climate for a high-emissions scenario. Climate models project increased precipitation (P) across most of the Arctic domain and the land models indicate that runoff and evapotranspiration (ET) will also both increase. In general, the water input to the soil (P-ET) also increases, but the models project a contradicting long-term drying of the surface soil. The surface drying in the models can generally be explained by filtration of moisture to deeper soil layers as the active layer deepens or by increased sub-surface drainage where permafrost in a grid cell thaws completely. Though, there is a qualitative agreement in this type of response across the models, the projections vary dramatically in magnitude. Variability among simulations is largely attributed to parameterization and structural differences across the participating models, particularly the diverse representations of evapotranspiration, water table and soil water storage and transmission. A limited set of results from single forcing experiments suggests that the warming effect in the sensitivity analysis was the principal driver of soil drying while CO2 and precipitation effects had a small wetting influence. When compared to observational data, simulations tend to underestimate discharge by a factor of 2 for the major arctic river basins. This analysis serves as a baseline to identify key process representation gaps and opportunities to improve representation of permafrost hydrology and associated projections of carbon and energy feedbacks in land models.

  18. Stochastic modeling of hourly rainfall times series in Campania (Italy)

    NASA Astrophysics Data System (ADS)

    Giorgio, M.; Greco, R.

    2009-04-01

    Occurrence of flowslides and floods in small catchments is uneasy to predict, since it is affected by a number of variables, such as mechanical and hydraulic soil properties, slope morphology, vegetation coverage, rainfall spatial and temporal variability. Consequently, landslide risk assessment procedures and early warning systems still rely on simple empirical models based on correlation between recorded rainfall data and observed landslides and/or river discharges. Effectiveness of such systems could be improved by reliable quantitative rainfall prediction, which can allow gaining larger lead-times. Analysis of on-site recorded rainfall height time series represents the most effective approach for a reliable prediction of local temporal evolution of rainfall. Hydrological time series analysis is a widely studied field in hydrology, often carried out by means of autoregressive models, such as AR, ARMA, ARX, ARMAX (e.g. Salas [1992]). Such models gave the best results when applied to the analysis of autocorrelated hydrological time series, like river flow or level time series. Conversely, they are not able to model the behaviour of intermittent time series, like point rainfall height series usually are, especially when recorded with short sampling time intervals. More useful for this issue are the so-called DRIP (Disaggregated Rectangular Intensity Pulse) and NSRP (Neymann-Scott Rectangular Pulse) model [Heneker et al., 2001; Cowpertwait et al., 2002], usually adopted to generate synthetic point rainfall series. In this paper, the DRIP model approach is adopted, in which the sequence of rain storms and dry intervals constituting the structure of rainfall time series is modeled as an alternating renewal process. Final aim of the study is to provide a useful tool to implement an early warning system for hydrogeological risk management. Model calibration has been carried out with hourly rainfall hieght data provided by the rain gauges of Campania Region civil protection agency meteorological warning network. ACKNOWLEDGEMENTS The research was co-financed by the Italian Ministry of University, by means of the PRIN 2006 PRIN program, within the research project entitled ‘Definition of critical rainfall thresholds for destructive landslides for civil protection purposes'. REFERENCES Cowpertwait, P.S.P., Kilsby, C.G. and O'Connell, P.E., 2002. A space-time Neyman-Scott model of rainfall: Empirical analysis of extremes, Water Resources Research, 38(8):1-14. Salas, J.D., 1992. Analysis and modeling of hydrological time series, in D.R. Maidment, ed., Handbook of Hydrology, McGraw-Hill, New York. Heneker, T.M., Lambert, M.F. and Kuczera G., 2001. A point rainfall model for risk-based design, Journal of Hydrology, 247(1-2):54-71.

  19. Soil Structure - A Neglected Component of Land-Surface Models

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity are less significant but they can reach up to 10% in specific locations. Significance for land-surface and hydrological modeling and implications for distributed domains are discussed.

  20. Simulating hydrologic response to climate change scenarios in four selected watersheds of New Hampshire

    USGS Publications Warehouse

    Bjerklie, David M.; Ayotte, Joseph D.; Cahillane, Matthew J.

    2015-01-01

    The effects of hydrologic change on human health and well-being could be most readily apparent with respect to changes in streamflow and the subsequent increase in the frequency of minor flooding and the frequency of summer and fall low streamflows. These changes could require the development of plans to adapt, protect, and upgrade infrastructure, such as bridges, culverts, roads, and other structures. The precipitation runoff modeling shows that rivers and watersheds in New Hampshire will likely change in response to climate change, and that this response varies with season and latitude. Although four representative areas were simulated in this study, additional models could be used to predict the response over the entire State.

  1. Experimental analysis of green roof substrate detention characteristics.

    PubMed

    Yio, Marcus H N; Stovin, Virginia; Werdin, Jörg; Vesuviano, Gianni

    2013-01-01

    Green roofs may make an important contribution to urban stormwater management. Rainfall-runoff models are required to evaluate green roof responses to specific rainfall inputs. The roof's hydrological response is a function of its configuration, with the substrate - or growing media - providing both retention and detention of rainfall. The objective of the research described here is to quantify the detention effects due to green roof substrates, and to propose a suitable hydrological modelling approach. Laboratory results from experimental detention tests on green roof substrates are presented. It is shown that detention increases with substrate depth and as a result of increasing substrate organic content. Model structures based on reservoir routing are evaluated, and it is found that a one-parameter reservoir routing model coupled with a parameter that describes the delay to start of runoff best fits the observed data. Preliminary findings support the hypothesis that the reservoir routing parameter values can be defined from the substrate's physical characteristics.

  2. On the hydrologic adjustment of climate-model projections: The potential pitfall of potential evapotranspiration

    USGS Publications Warehouse

    Milly, P.C.D.; Dunne, K.A.

    2011-01-01

    Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median 211%) caused by the hydrologic model's apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen-Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors' findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climatechange impacts on water. Copyright ?? 2011, Paper 15-001; 35,952 words, 3 Figures, 0 Animations, 1 Tables.

  3. Modeling effectiveness of management practices for flood mitigation using GIS spatial analysis functions in Upper Cilliwung watershed

    NASA Astrophysics Data System (ADS)

    Darma Tarigan, Suria

    2016-01-01

    Flooding is caused by excessive rainfall flowing downstream as cumulative surface runoff. Flooding event is a result of complex interaction of natural system components such as rainfall events, land use, soil, topography and channel characteristics. Modeling flooding event as a result of interaction of those components is a central theme in watershed management. The model is usually used to test performance of various management practices in flood mitigation. There are various types of management practices for flood mitigation including vegetative and structural management practices. Existing hydrological model such as SWAT and HEC-HMS models have limitation to accommodate discrete management practices such as infiltration well, small farm reservoir, silt pits in its analysis due to the lumped structure of these models. Aim of this research is to use raster spatial analysis functions of Geo-Information System (RGIS-HM) to model flooding event in Ciliwung watershed and to simulate impact of discrete management practices on surface runoff reduction. The model was validated using flooding data event of Ciliwung watershed on 29 January 2004. The hourly hydrograph data and rainfall data were available during period of model validation. The model validation provided good result with Nash-Suthcliff efficiency of 0.8. We also compared the RGIS-HM with Netlogo Hydrological Model (NL-HM). The RGIS-HM has similar capability with NL-HM in simulating discrete management practices in watershed scale.

  4. Modeling Pre- and Post- Wildfire Hydrologic Response to Vegetation Change in the Valles Caldera National Preserve, NM

    NASA Astrophysics Data System (ADS)

    Gregory, A. E.; Benedict, K. K.; Zhang, S.; Savickas, J.

    2017-12-01

    Large scale, high severity wildfires in forests have become increasingly prevalent in the western United States due to fire exclusion. Although past work has focused on the immediate consequences of wildfire (ie. runoff magnitude and debris flow), little has been done to understand the post wildfire hydrologic consequences of vegetation regrowth. Furthermore, vegetation is often characterized by static parameterizations within hydrological models. In order to understand the temporal relationship between hydrologic processes and revegetation, we modularized and partially automated the hydrologic modeling process to increase connectivity between remotely sensed data, the Virtual Watershed Platform (a data management resource, called the VWP), input meteorological data, and the Precipitation-Runoff Modeling System (PRMS). This process was used to run simulations in the Valles Caldera of NM, an area impacted by the 2011 Las Conchas Fire, in PRMS before and after the Las Conchas to evaluate hydrologic process changes. The modeling environment addressed some of the existing challenges faced by hydrological modelers. At present, modelers are somewhat limited in their ability to push the boundaries of hydrologic understanding. Specific issues faced by modelers include limited computational resources to model processes at large spatial and temporal scales, data storage capacity and accessibility from the modeling platform, computational and time contraints for experimental modeling, and the skills to integrate modeling software in ways that have not been explored. By taking an interdisciplinary approach, we were able to address some of these challenges by leveraging the skills of hydrologic, data, and computer scientists; and the technical capabilities provided by a combination of on-demand/high-performance computing, distributed data, and cloud services. The hydrologic modeling process was modularized to include options for distributing meteorological data, parameter space experimentation, data format transformation, looping, validation of models and containerization for enabling new analytic scenarios. The user interacts with the modules through Jupyter Notebooks which can be connected to an on-demand computing and HPC environment, and data services built as part of the VWP.

  5. Seasonal change of topology and resilience of ecological networks in wetlandscapes

    NASA Astrophysics Data System (ADS)

    Bin, Kim; Park, Jeryang

    2017-04-01

    Wetlands distributed in a landscape provide various ecosystem services including habitat for flora and fauna, hydrologic controls, and biogeochemical processes. Hydrologic regime of each wetland at a given landscape varies by hydro-climatic and geological conditions as well as the bathymetry, forming a certain pattern in the wetland area distribution and spatial organization. However, its large-scale pattern also changes over time as this wetland complex is subject to stochastic hydro-climatic forcing in various temporal scales. Consequently, temporal variation in the spatial structure of wetlands inevitably affects the dispersal ability of species depending on those wetlands as habitat. Here, we numerically show (1) the spatiotemporal variation of wetlandscapes by forcing seasonally changing stochastic rainfall and (2) the corresponding ecological networks which either deterministically or stochastically forming the dispersal ranges. We selected four vernal pool regions with distinct climate conditions in California. The results indicate that the spatial structure of wetlands in a landscape by measuring the wetland area frequency distribution changes by seasonal hydro-climatic condition but eventually recovers to the initial state. However, the corresponding ecological networks, which the structure and function change by the change of distances between wetlands, and measured by degree distribution and network efficiency, may not recover to the initial state especially in the regions with high seasonal dryness index. Moreover, we observed that the changes in both the spatial structure of wetlands in a landscape and the corresponding ecological networks exhibit hysteresis over seasons. Our analysis indicates that the hydrologic and ecological resilience of a wetlandcape may be low in a dry region with seasonal hydro-climatic forcing. Implications of these results for modelling ecological networks depending on hydrologic systems especially for conservation purposes are discussed.

  6. Acting, predicting and intervening in a socio-hydrological world

    NASA Astrophysics Data System (ADS)

    Lane, S. N.

    2014-03-01

    This paper asks a simple question: if humans and their actions co-evolve with hydrological systems (Sivapalan et al., 2012), what is the role of hydrological scientists, who are also humans, within this system? To put it more directly, as traditionally there is a supposed separation of scientists and society, can we maintain this separation as socio-hydrologists studying a socio-hydrological world? This paper argues that we cannot, using four linked sections. The first section draws directly upon the concern of science-technology studies to make a case to the (socio-hydrological) community that we need to be sensitive to constructivist accounts of science in general and socio-hydrology in particular. I review three positions taken by such accounts and apply them to hydrological science, supported with specific examples: (a) the ways in which scientific activities frame socio-hydrological research, such that at least some of the knowledge that we obtain is constructed by precisely what we do; (b) the need to attend to how socio-hydrological knowledge is used in decision-making, as evidence suggests that hydrological knowledge does not flow simply from science into policy; and (c) the observation that those who do not normally label themselves as socio-hydrologists may actually have a profound knowledge of socio-hydrology. The second section provides an empirical basis for considering these three issues by detailing the history of the practice of roughness parameterisation, using parameters like Manning's n, in hydrological and hydraulic models for flood inundation mapping. This history sustains the third section that is a more general consideration of one type of socio-hydrological practice: predictive modelling. I show that as part of a socio-hydrological analysis, hydrological prediction needs to be thought through much more carefully: not only because hydrological prediction exists to help inform decisions that are made about water management; but also because those predictions contain assumptions, the predictions are only correct in so far as those assumptions hold, and for those assumptions to hold, the socio-hydrological system (i.e. the world) has to be shaped so as to include them. Here, I add to the "normal" view that ideally our models should represent the world around us, to argue that for our models (and hence our predictions) to be valid, we have to make the world look like our models. Decisions over how the world is modelled may transform the world as much as they represent the world. Thus, socio-hydrological modelling has to become a socially accountable process such that the world is transformed, through the implications of modelling, in a fair and just manner. This leads into the final section of the paper where I consider how socio-hydrological research may be made more socially accountable, in a way that is both sensitive to the constructivist critique (Sect. 1), but which retains the contribution that hydrologists might make to socio-hydrological studies. This includes (1) working with conflict and controversy in hydrological science, rather than trying to eliminate them; (2) using hydrological events to avoid becoming locked into our own frames of explanation and prediction; (3) being empirical and experimental but in a socio-hydrological sense; and (4) co-producing socio-hydrological predictions. I will show how this might be done through a project that specifically developed predictive models for making interventions in river catchments to increase high river flow attenuation. Therein, I found myself becoming detached from my normal disciplinary networks and attached to the co-production of a predictive hydrological model with communities normally excluded from the practice of hydrological science.

  7. The application of remote sensing to the development and formulation of hydrologic planning models

    NASA Technical Reports Server (NTRS)

    Fowler, T. R.; Castruccio, P. A.; Loats, H. L., Jr.

    1977-01-01

    The development of a remote sensing model and its efficiency in determining parameters of hydrologic models are reviewed. Procedures for extracting hydrologic data from LANDSAT imagery, and the visual analysis of composite imagery are presented. A hydrologic planning model is developed and applied to determine seasonal variations in watershed conditions. The transfer of this technology to a user community and contract arrangements are discussed.

  8. Hydrology Analysis and Modelling for Klang River Basin Flood Hazard Map

    NASA Astrophysics Data System (ADS)

    Sidek, L. M.; Rostam, N. E.; Hidayah, B.; Roseli, ZA; Majid, W. H. A. W. A.; Zahari, N. Z.; Salleh, S. H. M.; Ahmad, R. D. R.; Ahmad, M. N.

    2016-03-01

    Flooding, a common environmental hazard worldwide has in recent times, increased as a result of climate change and urbanization with the effects felt more in developing countries. As a result, the explosive of flooding to Tenaga Nasional Berhad (TNB) substation is increased rapidly due to existing substations are located in flood prone area. By understanding the impact of flood to their substation, TNB has provided the non-structure mitigation with the integration of Flood Hazard Map with their substation. Hydrology analysis is the important part in providing runoff as the input for the hydraulic part.

  9. Designing hydrologic monitoring networks to maximize predictability of hydrologic conditions in a data assimilation system: a case study from South Florida, U.S.A

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Pathak, C. S.; Senarath, S. U.; Bras, R. L.

    2009-12-01

    Robust hydrologic monitoring networks represent a critical element of decision support systems for effective water resource planning and management. Moreover, process representation within hydrologic simulation models is steadily improving, while at the same time computational costs are decreasing due to, for instance, readily available high performance computing resources. The ability to leverage these increasingly complex models together with the data from these monitoring networks to provide accurate and timely estimates of relevant hydrologic variables within a multiple-use, managed water resources system would substantially enhance the information available to resource decision makers. Numerical data assimilation techniques provide mathematical frameworks through which uncertain model predictions can be constrained to observational data to compensate for uncertainties in the model forcings and parameters. In ensemble-based data assimilation techniques such as the ensemble Kalman Filter (EnKF), information in observed variables such as canal, marsh and groundwater stages are propagated back to the model states in a manner related to: (1) the degree of certainty in the model state estimates and observations, and (2) the cross-correlation between the model states and the observable outputs of the model. However, the ultimate degree to which hydrologic conditions can be accurately predicted in an area of interest is controlled, in part, by the configuration of the monitoring network itself. In this proof-of-concept study we developed an approach by which the design of an existing hydrologic monitoring network is adapted to iteratively improve the predictions of hydrologic conditions within an area of the South Florida Water Management District (SFWMD). The objective of the network design is to minimize prediction errors of key hydrologic states and fluxes produced by the spatially distributed Regional Simulation Model (RSM), developed specifically to simulate the hydrologic conditions in several intensively managed and hydrologically complex watersheds within the SFWMD system. In a series of synthetic experiments RSM is used to generate the notionally true hydrologic state and the relevant observational data. The EnKF is then used as the mechanism to fuse RSM hydrologic estimates with data from the candidate network. The performance of the candidate network is measured by the prediction errors of the EnKF estimates of hydrologic states, relative to the notionally true scenario. The candidate network is then adapted by relocating existing observational sites to unobserved areas where predictions of local hydrologic conditions are most uncertain and the EnKF procedure repeated. Iteration of the monitoring network continues until further improvements in EnKF-based predictions of hydrologic conditions are negligible.

  10. Emergent Hydrological Regimes in Amazonia Determine Vegetation Productivity and Structure.

    NASA Astrophysics Data System (ADS)

    Ahlström, A.; Canadell, J.; Schurgers, G.; Berry, J. A.; Guan, K.; Jackson, R. B.

    2016-12-01

    The Amazon rain forest has a disproportionate significance for global CO2 storage and biodiversity. Earth system models (ESMs) that estimate future climate and vegetation show little agreement in simulations in Amazonia. Here we show that evapotranspiration (ET), gross primary productivity (GPP) and above ground biomass in both models and empirical data align on an emergent hydrologically determined relationship that describes a functional relationship with annual precipitation (P). The physical relationship describes the potential for plant productivity and has a breakpoint at 2000 mm annual precipitation, where the system transitions between water and radiation limitation of annual ET. While ESM GPP is generally underestimated due to a low-bias in their internally generated P, their response to annual precipitation generally matches empirical data. It is different for biomass: ESMs show some ability in capturing biomass levels in the energy-limited wet hydrological regime above 2000 mm annual precipitation but they do not fully capture the biomass structure tipping point found in empirical data at the hydrological regime breakpoint that coincide with the forest-savanna transition. This discrepancy is likely due to the relatively simple representation of disturbances, primarily fires, and vegetation dynamics found in ESMs, and implies that ESMs likely overestimate the resilience to a potential future drying of the Amazon. Future elevated CO2 may increase plant water use efficiency and shift GPP upwards, but it will not affect the breakpoint between the regimes or the susceptibility of the forest which are both determined by precipitation and its role in determining the hydrological regime. This analysis reconciles and explains the findings of many studies on the Amazon. Our results suggests that future Amazonian biomass is governed by changes in precipitation, vegetation dynamics and disturbances, none of which are well predicted and represented by ESMs. Improvements of these processes are the most pressing challenges for more accurate future predictions on the fate of the Amazon and the global tropics.

  11. Probabilistic flood inundation prediction within a coupled hydrodynamic, distributed hydrologic modeling framework

    NASA Astrophysics Data System (ADS)

    Adams, T. E.

    2016-12-01

    Accurate and timely predictions of the lateral exent of floodwaters and water level depth in floodplain areas are critical globally. This paper demonstrates the coupling of hydrologic ensembles, derived from the use of numerical weather prediction (NWP) model forcings as input to a fully distributed hydrologic model. Resulting ensemble output from the distributed hydrologic model are used as upstream flow boundaries and lateral inflows to a 1-D hydrodynamic model. An example is presented for the Potomac River in the vicinity of Washington, DC (USA). The approach taken falls within the broader goals of the Hydrologic Ensemble Prediction EXperiment (HEPEX).

  12. Observational breakthroughs lead the way to improved hydrological predictions

    NASA Astrophysics Data System (ADS)

    Lettenmaier, Dennis P.

    2017-04-01

    New data sources are revolutionizing the hydrological sciences. The capabilities of hydrological models have advanced greatly over the last several decades, but until recently model capabilities have outstripped the spatial resolution and accuracy of model forcings (atmospheric variables at the land surface) and the hydrologic state variables (e.g., soil moisture; snow water equivalent) that the models predict. This has begun to change, as shown in two examples here: soil moisture and drought evolution over Africa as predicted by a hydrology model forced with satellite-derived precipitation, and observations of snow water equivalent at very high resolution over a river basin in California's Sierra Nevada.

  13. Exploring the Variability of Short-term Precipitation and Hydrological Response of Small Czech Watersheds

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Strouhal, Ludek; Weyskrabova, Lenka; Müller, Miloslav; Kozant, Petr

    2017-04-01

    The short-term rainfall temporal distribution is known to have a significant effect on the small watersheds' hydrological response. In Czech Republic there are limited publicly available data on rainfall patterns of short-term precipitation. On one side there are catalogues of very short-term synthetic rainfalls used in urban drainage planning and on the other side hourly distribution of daily totals of rainfalls with long return period for larger catchments analyses. This contribution introduces the preliminary outcomes of a running three years' project, which should bridge this gap and provide such data and methodology to the community of scientists, state administration as well as design planners. Six generalized 6-hours hyetographs with 1 minute resolution were derived from 10 years of radar and gauging stations data. These hyetographs are accompanied with information concerning the region of occurrence as well as their frequency related to the rainfall amount. In the next step these hyetographs are used in a complex sensitivity analysis focused on a rainfall-runoff response of small watersheds. This analysis takes into account the uncertainty related to type of the hydrological model, watershed characteristics and main model routines parameterization. Five models with different methods and structure are considered and each model is applied on 5 characteristic watersheds selected from a classification of 7700 small Czech watersheds. For each combination of model and watershed 30, rainfall scenarios were simulated and other scenarios will be used to address the parameters uncertainty. In the last step the variability of outputs will be assessed in the context of economic impacts on design of landscape water structures or mitigation measures. The research is supported by the grant QJ1520265 of the Czech Ministry of Agriculture, rainfall data were provided by the Czech Hydrometeorological Institute.

  14. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE PAGES

    Shi, Yuning; Eissenstat, David M.; He, Yuting; ...

    2018-05-12

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  15. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yuning; Eissenstat, David M.; He, Yuting

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  16. Significance of hydrological model choice and land use changes when doing climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Bjørnholt Karlsson, Ida; Obel Sonnenborg, Torben; Refsgaard, Jens Christian; Høgh Jensen, Karsten

    2014-05-01

    Uncertainty in impact studies arises both from Global Climate Models (GCM), emission projections, statistical downscaling, Regional Climate Models (RCM), hydrological models and calibration techniques (Refsgaard et al. 2013). Some of these uncertainties have been evaluated several times in the literature; however few studies have investigated the effect of hydrological model choice on the assessment results (Boorman & Sefton 1997; Jiang et al. 2007; Bastola et al. 2011). These studies have found that model choice results in large differences, up to 70%, in the predicted discharge changes depending on the climate input. The objective of the study is to investigate the impact of climate change on hydrology of the Odense catchment, Denmark both in response to (a) different climate projections (GCM-RCM combinations); (b) different hydrological models and (c) different land use scenarios. This includes: 1. Separation of the climate model signal; the hydrological model signal and the land use signal 2. How do the different hydrological components react under different climate and land use conditions for the different models 3. What land use scenario seems to provide the best adaptation for the challenges of the different future climate change scenarios from a hydrological perspective? Four climate models from the ENSEMBLES project (Hewitt & Griggs 2004): ECHAM5 - HIRHAM5, ECHAM5 - RCA3, ARPEGE - RM5.1 and HadCM3 - HadRM3 are used, assessing the climate change impact in three periods: 1991-2010 (present), 2041-2060 (near future) and 2081-2100 (far future). The four climate models are used in combination with three hydrological models with different conceptual layout: NAM, SWAT and MIKE SHE. Bastola, S., C. Murphy and J. Sweeney (2011). "The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments." Advances in Water Resources 34: 562-576. Boorman, D. B. and C. E. M. Sefton (1997). "Recognising the uncertainty in the quantification of the effects of climate change on hydrological response." Climate Change 35: 415-434. Hewitt, C. D. and D. J. Griggs (2004). "Ensembles-based predictions of climate changes and their impacts." Eos, Transactions American Geophysical Union 85: 1-566. Jiang, T., Y. D. Chen, C. Xu, X. Chen, X. Chen and V. P. Singh (2007). "Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China." Journal of hydrology 336: 316-333. Refsgaard, J. C., K. Arnbjerg-Nielsen, M. Drews, K. Halsnæs, E. Jeppesen, H. Madsen, A. Markandya, J. E. Olesen, J. R. Porter and J. H. Christensen (2013). "The role of uncertainty in climate change adaptation strategies - A Danish water management example." Mitigation and Adaptation Strategies for Global Change 18: 337-359.

  17. Feedback Loop of Data Infilling Using Model Result of Actual Evapotranspiration from Satellites and Hydrological Model

    NASA Astrophysics Data System (ADS)

    Murdi Hartanto, Isnaeni; Alexandridis, Thomas K.; van Andel, Schalk Jan; Solomatine, Dimitri

    2014-05-01

    Using satellite data in a hydrological model has long been occurring in modelling of hydrological processes, as a source of low cost regular data. The methods range from using satellite products as direct input, model validation, and data assimilation. However, the satellite data frequently face the missing value problem, whether due to the cloud cover or the limited temporal coverage. The problem could seriously affect its usefulness in hydrological model, especially if the model uses it as direct input, so data infilling becomes one of the important parts in the whole modelling exercise. In this research, actual evapotranspiration product from satellite is directly used as input into a spatially distributed hydrological model, and validated by comparing the catchment's end discharge with measured data. The instantaneous actual evapotranspiration is estimated from MODIS satellite images using a variation of the energy balance model for land (SEBAL). The eight-day cumulative actual evapotranspiration is then obtained by a temporal integration that uses the reference evapotranspiration calculated from meteorological data [1]. However, the above method cannot fill in a cell if the cell is constantly having no-data value during the eight-day periods. The hydrological model requires full set of data without no-data cells, hence, the no-data cells in the satellite's evapotranspiration map need to be filled in. In order to fills the no-data cells, an output of hydrological model is used. The hydrological model is firstly run with reference evapotranspiration as input to calculate discharge and actual evapotranspiration. The no-data cells in the eight-day cumulative map from the satellite are then filled in with the output of the first run of hydrological model. The final data is then used as input in a hydrological model to calculate discharge, thus creating a loop. The method is applied in the case study of Rijnland, the Netherlands where in the winter, cloud cover is persistent and leads to many no-data cells in the satellite products. The Rijnland area is a low-lying area with tight water system control. The satellite data is used as input in a SIMGRO model, a spatially distributed hydrological model that is able to handle the controlled water system and that is suitable for the low-lying areas in the Netherlands. The application in the Rijnland area gives overall a good result of total discharge. By using the method, the hydrological model is improved in term of spatial hydrological state, where the original model is only calibrated to discharge in one location. [1] Alexandridis, T.K., Cherif, I., Chemin, Y., Silleos, G.N., Stavrinos, E. & Zalidis, G.C. (2009). Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas. Remote Sensing. 1

  18. Influences of Coupled Hydrologic and Microbial Processes on River Corridor Biogeochemistry and Ecology

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.

    2017-12-01

    The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving predictions of environmental and human impacts on water quality and riverine ecosystems, and supporting environmentally responsible management of linked energy-water systems.

  19. Integrated Site Investigation Methods and Modeling: Recent Developments at the BHRS (Invited)

    NASA Astrophysics Data System (ADS)

    Barrash, W.; Bradford, J. H.; Cardiff, M. A.; Dafflon, B.; Johnson, B. A.; Malama, B.; Thoma, M. J.

    2010-12-01

    The Boise Hydrogeophysical Research Site (BHRS) is a field-scale test facility in an unconfined aquifer with the goals of: developing cost-effective, non-invasive methods for quantitative characterization of heterogeneous aquifers using hydrologic and geophysical techniques; understanding fundamental relations and processes at multiple scales; and testing theories and models for groundwater flow and solute transport. The design of the BHRS supports a wide range of single-well, cross-hole, multiwell and multilevel hydrologic, geophysical, and combined hydrogeophysical experiments. New installations support direct and geophysical monitoring of hydrologic fluxes and states from the aquifer through the vadose zone to the atmosphere, including ET and river boundary behavior. Efforts to date have largely focused on establishing the 1D, 2D, and 3D distributions of geologic, hydrologic, and geophysical parameters which can then be used as the basis for testing methods to integrate direct and indirect data and invert for “known” parameter distributions, material boundaries, and tracer test or other system state behavior. Aquifer structure at the BHRS is hierarchical and includes layers and lenses that are recognized with geologic, hydrologic, radar, electrical, and seismic methods. Recent advances extend findings and method developments, but also highlight the need to examine assumptions and understand secular influences when designing and modeling field tests. Examples of advances and caveats include: New high-resolution 1D K profiles obtained from multi-level slug tests (inversion improves with priors for aquifer K, wellbore skin, and local presence of roots) show variable correlation with porosity and bring into question a Kozeny-Carman-type relation for much of the system. Modeling of 2D conservative tracer transport through a synthetic BHRS-like heterogeneous system shows the importance of including porosity heterogeneity (rather than assuming constant porosity for an aquifer) in addition to K heterogeneity. Similarly, 3D transient modeling of a conservative tracer test at the BHRS improves significantly with the use of prior geophysical information for layering and parameter structure and with use of both variable porosity and K. Joint inversion of multiple intersecting 2D radar tomograms gives well-resolved and consistent 3D distributions of porosity and unit boundaries that are largely correlated with neutron-porosity log and other site data, but the classic porosity-dielectric relation does not hold for one stratigraphic unit that also is recognized as anomalous with capacitive resistivity logs (i.e., cannot assume one petrophysical relation holds through a given aquifer system). Advances are being made in the new method of hydraulic tomography (2D with coincident electrical geophysics; 3D will be supplemented with priors); caveats here include the importance of boundary conditions and even ET effects. Also integrated data collection and modeling with multiple geophysical and hydrologic methods show promise for high-resolution quantification of vadose zone moisture and parameter distributions to improve variably saturated process models.

  20. A New Multivariate Approach in Generating Ensemble Meteorological Forcings for Hydrological Forecasting

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2015-04-01

    Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.

  1. Incorporating groundwater flow into the WEPP model

    Treesearch

    William Elliot; Erin Brooks; Tim Link; Sue Miller

    2010-01-01

    The water erosion prediction project (WEPP) model is a physically-based hydrology and erosion model. In recent years, the hydrology prediction within the model has been improved for forest watershed modeling by incorporating shallow lateral flow into watershed runoff prediction. This has greatly improved WEPP's hydrologic performance on small watersheds with...

  2. Calibration process of highly parameterized semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Vidmar, Andrej; Brilly, Mitja

    2017-04-01

    Hydrological phenomena take place in the hydrological system, which is governed by nature, and are essentially stochastic. These phenomena are unique, non-recurring, and changeable across space and time. Since any river basin with its own natural characteristics and any hydrological event therein, are unique, this is a complex process that is not researched enough. Calibration is a procedure of determining the parameters of a model that are not known well enough. Input and output variables and mathematical model expressions are known, while only some parameters are unknown, which are determined by calibrating the model. The software used for hydrological modelling nowadays is equipped with sophisticated algorithms for calibration purposes without possibility to manage process by modeler. The results are not the best. We develop procedure for expert driven process of calibration. We use HBV-light-CLI hydrological model which has command line interface and coupling it with PEST. PEST is parameter estimation tool which is used widely in ground water modeling and can be used also on surface waters. Process of calibration managed by expert directly, and proportionally to the expert knowledge, affects the outcome of the inversion procedure and achieves better results than if the procedure had been left to the selected optimization algorithm. First step is to properly define spatial characteristic and structural design of semi-distributed model including all morphological and hydrological phenomena, like karstic area, alluvial area and forest area. This step includes and requires geological, meteorological, hydraulic and hydrological knowledge of modeler. Second step is to set initial parameter values at their preferred values based on expert knowledge. In this step we also define all parameter and observation groups. Peak data are essential in process of calibration if we are mainly interested in flood events. Each Sub Catchment in the model has own observations group. Third step is to set appropriate bounds to parameters in their range of realistic values. Fourth step is to use of singular value decomposition (SVD) ensures that PEST maintains numerical stability, regardless of how ill-posed is the inverse problem Fifth step is to run PWTADJ1. This creates a new PEST control file in which weights are adjusted such that the contribution made to the total objective function by each observation group is the same. This prevents the information content of any group from being invisible to the inversion process. Sixth step is to add Tikhonov regularization to the PEST control file by running the ADDREG1 utility (Doherty, J, 2013). In adding regularization to the PEST control file ADDREG1 automatically provides a prior information equation for each parameter in which the preferred value of that parameter is equated to its initial value. Last step is to run PEST. We run BeoPEST which a parallel version of PEST and can be run on multiple computers in parallel in same time on TCP communications and this speedup process of calibrations. The case study with results of calibration and validation of the model will be presented.

  3. A 3D radiative transfer model based on lidar data and its application on hydrological and ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Li, W.; Su, Y.; Harmon, T. C.; Guo, Q.

    2013-12-01

    Light Detection and Ranging (lidar) is an optical remote sensing technology that measures properties of scattered light to find range and/or other information of a distant object. Due to its ability to generate 3-dimensional data with high spatial resolution and accuracy, lidar technology is being increasingly used in ecology, geography, geology, geomorphology, seismology, remote sensing, and atmospheric physics. In this study we construct a 3-dimentional (3D) radiative transfer model (RTM) using lidar data to simulate the spatial distribution of solar radiation (direct and diffuse) on the surface of water and mountain forests. The model includes three sub-models: a light model simulating the light source, a sensor model simulating the camera, and a scene model simulating the landscape. We use ground-based and airborne lidar data to characterize the 3D structure of the study area, and generate a detailed 3D scene model. The interactions between light and object are simulated using the Monte Carlo Ray Tracing (MCRT) method. A large number of rays are generated from the light source. For each individual ray, the full traveling path is traced until it is absorbed or escapes from the scene boundary. By locating the sensor at different positions and directions, we can simulate the spatial distribution of solar energy at the ground, vegetation and water surfaces. These outputs can then be incorporated into meteorological drivers for hydrologic and energy balance models to improve our understanding of hydrologic processes and ecosystem functions.

  4. Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations

    NASA Astrophysics Data System (ADS)

    Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.

    2016-11-01

    Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.

  5. Improving Hydrological Simulations by Incorporating GRACE Data for Parameter Calibration

    NASA Astrophysics Data System (ADS)

    Bai, P.

    2017-12-01

    Hydrological model parameters are commonly calibrated by observed streamflow data. This calibration strategy is questioned when the modeled hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE) satellite-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. We constructed a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations, with the aim of improving the parameterizations of hydrological models. The multi-objective calibration scheme was compared with the traditional single-objective calibration scheme, which is based only on streamflow observations. Two monthly hydrological models were employed on 22 Chinese catchments with different hydroclimatic conditions. The model evaluation was performed using observed streamflows, GRACE-derived TWSC, and evapotranspiraiton (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. In addition, the improvements of TWSC and ET simulations were more significant in relatively dry catchments than in relatively wet catchments. This study highlights the importance of including additional constraints besides streamflow observations in the parameter estimation to improve the performances of hydrological models.

  6. An Integrated Model for a Water Leasing System on the Middle Rio Grand, New Mexico

    NASA Astrophysics Data System (ADS)

    Brookshire, D. S.; Coursey, D. L.; Tidwell, V. C.; Broadbent, C. D.

    2006-12-01

    Since 1950 demand for water has more than doubled in the United States. Virtually all water supplies are allocated, leading to the question, where will water come from? The concept of water leasing has gained considerable attention as a volunteer, market-mediated system for transferring water between competing uses. For a water leasing system to be truly effective, detailed knowledge of the available water supply and the factors that affect water demand is critical. Improving understating of the factors that determine residential, industrial, and agricultural demand for water using experimental economics and then integrating with a hydrological model will allow for better understanding of market-based mechanisms potential to allocate water resources effectively. Currently we have three case studies underway, a generalized water leasing system on the Middle Rio Grande, a sophisticated farmer decision process and a study in the Mimbres basin in southern New Mexico. The developed market model utilizes an open market trading system known as a double auction, where buyers and sellers declare their bids and offers to the market. The developed hydrological model utilizes the Upper Rio Grande Water Operations Model (URGWOM) system structure and data for the generalized water leasing system and the farmer decision process, with a different hydrological model being developed for the Mimbres basin. A key coupling between the hydrologic and market models involves tracking the difference in river losses for trades that move water up or down the river. In the experiments the hydrological model runs before the market-trading period to establish water rights, the trading period occurs and the hydrological model then runs a second time to report flows to each reach of the river. Participants in the experiment represent the interests of specific users, including farmers, Native American interests, urban interests and environmental interests. Participants in the experiments are motivated by a utility function specific to each water users needs. Currently twelve experiments have been run in four different climatic scenarios (decreasing, increasing, normal and dry water scenarios) for the generalized water leasing system, and the sophisticated farmer decision process. The results have shown the market to be robust, with multiple trades occurring in each trading year. The trading process is efficient with positive gains being realized from participation in the marketplace. This material is based upon work supported in part by SAHRA (Sustainability of semi-Arid Hydrology and Riparian Areas) under the STC Program of the National Science Foundation, Agreement No. EAR-9876800 and through Sandia National Laboratory Research and Development Program. Special thanks go to Kyle Carpenter, Ramon Vasquez, Ann Demint, for programming of various software components and to Jake Grandy and Frannie Miller for help in running the experiments.

  7. Urban Flood Risk Insurance Models as a Strategy for Proactive Water Management Policies

    NASA Astrophysics Data System (ADS)

    Graciosa, M. C.; Mendiondo, E. M.

    2006-12-01

    To improve the water management through hydrological sciences, novel integration strategies could be underpinned to bridge up both engineering and economics. This is especially significant in developing nations where hydrologic extremes are expressive while the financial resources to mitigate that variability are scarce. One example of this problem is related to floods and their global and regional consequences. Floods mainly cause disasters in terms of human and material losses. In 2002, more than 30% of extreme climatic events occurred worldwide were floods, representing 42% of fatalities and 66% of material losses, mostly related to reactive policies. Throughout the last century, hydrological variability and rapidly growing of urban areas have developed new environmental problems in Brazilian cities, such as inundation occurrences on non-planned river basins. One of the causes of flood impacts is that public funds (national, state or municipal) have barely introduced wise proactive polices to follow up rapidly growing urban areas. Inexistent flood-risk-transfer mechanisms have caused the so-called `flood poverty cycle' due to reactive polices that have been increasing flood losses and, sometimes, became flood disasters. Flood risk management (FRM) is part of pro-active policies to mitigate inundation losses, in order to sustain environmental, social and economic aspects. Concepts and principles of FRM are part of a process that encompasses three phases: (1) preparedness stage, that consists in structural and non-structural actions to prevent and protect potential risk areas, such as early warning systems and scenarios development; (2) control stage, that refers to help actions and protection facilities during the event, and (3) restoration stage, that is related to rebuild affected areas, restore the river dynamics and transfer the socio-economic risks through flood insurances. Flood risk insurances agree to the goals of losses mitigation programs. Their use is more common in basins affected by alluvial floods. However, most of losses occur in urban areas, as a consequence of flash floods. Quantification of losses is an important basis of flood mitigation programs. It is also a complex task, which involves setting values on not easily quantifiable goods and determining risk and damage curves. This work proposes a flood insurance risk model coupled with a hydrological model as an incentive-based mechanism for achieving economically efficient flood management to be applied in Brazilian urban basins. It consists of integrating an insurance model and hydrological modeling of peak discharge warnings. It sets up curves, such as: water level versus discharge, water level versus inundation areas, and inundation area versus damage. It considers the prediction of future scenarios in order to evaluate the behavior of the insurance fund under climate variability. By using different probability distribution is compared the solvency and efficiency of the flood insurance fund for each premium-covered situation. The methodology is outlined to provide resources for the FRM restoration phase. Results are depicted from an experimental river basin sited on a rapid growing urban area, with some lessons learned valid to approach in other urban basins. This example is envisaged to foster resilience in the integration of hydrological science with policy and economic approaches. KEY WORDS: Flood risks management; flood insurance; hydrological modeling.

  8. A synopsis of climate change effects on groundwater recharge

    NASA Astrophysics Data System (ADS)

    Smerdon, Brian D.

    2017-12-01

    Six review articles published between 2011 and 2016 on groundwater and climate change are briefly summarized. This synopsis focuses on aspects related to predicting changes to groundwater recharge conditions, with several common conclusions between the review articles being noted. The uncertainty of distribution and trend in future precipitation from General Circulation Models (GCMs) results in varying predictions of recharge, so much so that modelling studies are often not able to predict the magnitude and direction (increase or decrease) of future recharge conditions. Evolution of modelling approaches has led to the use of multiple GCMs and hydrologic models to create an envelope of future conditions that reflects the probability distribution. The choice of hydrologic model structure and complexity, and the choice of emissions scenario, has been investigated and somewhat resolved; however, recharge results remain sensitive to downscaling methods. To overcome uncertainty and provide practical use in water management, the research community indicates that modelling at a mesoscale, somewhere between watersheds and continents, is likely ideal. Improvements are also suggested for incorporating groundwater processes within GCMs.

  9. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III: Scenario analysis

    USGS Publications Warehouse

    Huisman, J.A.; Breuer, L.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.; Willems, P.

    2009-01-01

    An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There was general agreement about the direction of changes in the mean annual discharge and 90% discharge percentile predicted by the ensemble members, although a considerable range in the magnitude of predictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude of the increase were attributed to the different mean annual actual evapotranspiration rates for each land use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensemble methods. The deterministic ensemble method based on a trimmed mean resulted in a single somewhat more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded that the use of a model ensemble has greatly increased our confidence in the reliability of the model predictions. ?? 2008 Elsevier Ltd.

  10. Spatial calibration and temporal validation of flow for regional scale hydrologic modeling

    USDA-ARS?s Scientific Manuscript database

    Physically based regional scale hydrologic modeling is gaining importance for planning and management of water resources. Calibration and validation of such regional scale model is necessary before applying it for scenario assessment. However, in most regional scale hydrologic modeling, flow validat...

  11. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Andrew W; Leung, Lai R; Sridhar, V

    Six approaches for downscaling climate model outputs for use in hydrologic simulation were evaluated, with particular emphasis on each method's ability to produce precipitation and other variables used to drive a macroscale hydrology model applied at much higher spatial resolution than the climate model. Comparisons were made on the basis of a twenty-year retrospective (1975–1995) climate simulation produced by the NCAR-DOE Parallel Climate Model (PCM), and the implications of the comparison for a future (2040–2060) PCM climate scenario were also explored. The six approaches were made up of three relatively simple statistical downscaling methods – linear interpolation (LI), spatial disaggregationmore » (SD), and bias-correction and spatial disaggregation (BCSD) – each applied to both PCM output directly (at T42 spatial resolution), and after dynamical downscaling via a Regional Climate Model (RCM – at ½-degree spatial resolution), for downscaling the climate model outputs to the 1/8-degree spatial resolution of the hydrological model. For the retrospective climate simulation, results were compared to an observed gridded climatology of temperature and precipitation, and gridded hydrologic variables resulting from forcing the hydrologic model with observations. The most significant findings are that the BCSD method was successful in reproducing the main features of the observed hydrometeorology from the retrospective climate simulation, when applied to both PCM and RCM outputs. Linear interpolation produced better results using RCM output than PCM output, but both methods (PCM-LI and RCM-LI) lead to unacceptably biased hydrologic simulations. Spatial disaggregation of the PCM output produced results similar to those achieved with the RCM interpolated output; nonetheless, neither PCM nor RCM output was useful for hydrologic simulation purposes without a bias-correction step. For the future climate scenario, only the BCSD-method (using PCM or RCM) was able to produce hydrologically plausible results. With the BCSD method, the RCM-derived hydrology was more sensitive to climate change than the PCM-derived hydrology.« less

  12. Using Wavelets to Evaluate Persistence of High Frequency Hydrologic and Hydrochemistry Signals

    NASA Astrophysics Data System (ADS)

    Koirala, S. R.; Gentry, R. W.

    2009-12-01

    In the area of sustainability science, it is becoming increasingly important to understand the basal condition of a natural system, and its long-term behavior. Research is needed to better understand the temporal scaling of hydrochemistry in streams and watersheds and its relationship to the hydrologic factors that influence its behavior. Persistence of dissolved chemicals in streams has been demonstrated to be linked to certain hydrologic processes, such as interactions between hydrologic units and storage in surface or sub-surface systems. In this study, wavelet analyses provided a novel theoretical basis for insights into long-term hydrochemistry behavior in an east Tennessee watershed. Temporal analyses were conducted on weekly time series data of hydrochemistry (nitrate, chloride, sulfate and calcium concentrations) collected from November 1995 to December 2005 at the West Fork of Walker Branch in Oak Ridge, Tennessee. Hydrochemistry plays an important role in ecosystem services, particularly nitrate, and in general the signal responses can be complex. The signals in this study were modeled using a wavelet approach as a mechanism for evaluating short-and long term temporal effects. The Walker Branch conceptual hydrology model is augmented by these results that show characteristic periodicities or structures for flowpath lengths in the vadose zone (< 20 week period), saturated zone (20 to 50 week period) and bedrock zone (> 50 week period) with implications for hydrochemistry within the watershed. In general, time series signals of watershed hydrochemistry may provide clues as to broad environmental, ecological and economic impacts at the basin scale.

  13. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    USGS Publications Warehouse

    Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.

    2009-01-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model performance are considered and that all models are suitable to participate in further multi-model ensemble set-ups and land use change scenario investigations. ?? 2008 Elsevier Ltd. All rights reserved.

  14. A Community Data Model for Hydrologic Observations

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Horsburgh, J. S.; Zaslavsky, I.; Maidment, D. R.; Valentine, D.; Jennings, B.

    2006-12-01

    The CUAHSI Hydrologic Information System project is developing information technology infrastructure to support hydrologic science. Hydrologic information science involves the description of hydrologic environments in a consistent way, using data models for information integration. This includes a hydrologic observations data model for the storage and retrieval of hydrologic observations in a relational database designed to facilitate data retrieval for integrated analysis of information collected by multiple investigators. It is intended to provide a standard format to facilitate the effective sharing of information between investigators and to facilitate analysis of information within a single study area or hydrologic observatory, or across hydrologic observatories and regions. The observations data model is designed to store hydrologic observations and sufficient ancillary information (metadata) about the observations to allow them to be unambiguously interpreted and used and provide traceable heritage from raw measurements to usable information. The design is based on the premise that a relational database at the single observation level is most effective for providing querying capability and cross dimension data retrieval and analysis. This premise is being tested through the implementation of a prototype hydrologic observations database, and the development of web services for the retrieval of data from and ingestion of data into the database. These web services hosted by the San Diego Supercomputer center make data in the database accessible both through a Hydrologic Data Access System portal and directly from applications software such as Excel, Matlab and ArcGIS that have Standard Object Access Protocol (SOAP) capability. This paper will (1) describe the data model; (2) demonstrate the capability for representing diverse data in the same database; (3) demonstrate the use of the database from applications software for the performance of hydrologic analysis across different observation types.

  15. Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments.

    PubMed

    Foulquier, Arnaud; Volat, Bernadette; Neyra, Marc; Bornette, Gudrun; Montuelle, Bernard

    2013-08-01

    In a context of global change, alterations in the water cycle may impact the structure and function of terrestrial and aquatic ecosystems. Wetlands are particularly at risk because hydrological regime has a major influence on microbially mediated biogeochemical processes in sediments. While the influence of water availability on wetland biogeochemical processes has been comprehensively studied, the influence of hydrological regime on microbial community structure has been overlooked. We tested for the effect of hydrological regime on the structure and functions of microbial communities by comparing sediments collected at multiple sites in the Ain département (Eastern France). Each site consisted of two plots, one permanently and one seasonally inundated. At the time of sampling, all plots were continuously inundated for more than 6 months but still harboured distinct bacterial communities. This change in community structure was not associated with marked modifications in the rates of microbial activities involved in the C and N cycles. These results suggest that the observed structural change could be related to bacterial taxa responding to the environmental variations associated with different hydrological regimes, but not strongly associated with the biogeochemical processes monitored here. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. On the use of three hydrological models as hypotheses to investigate the behaviour of a small Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ruiz Pérez, Guiomar; Latron, Jérôme; Llorens, Pilar; Gallart, Francesc; Francés, Félix

    2017-04-01

    Selecting an adequate hydrological model is the first step to carry out a rainfall-runoff modelling exercise. A hydrological model is a hypothesis of catchment functioning, encompassing a description of dominant hydrological processes and predicting how these processes interact to produce the catchment's response to external forcing. Current research lines emphasize the importance of multiple working hypotheses for hydrological modelling instead of only using a single model. In line with this philosophy, here different hypotheses were considered and analysed to simulate the nonlinear response of a small Mediterranean catchment and to progress in the analysis of its hydrological behaviour. In particular, three hydrological models were considered representing different potential hypotheses: two lumped models called LU3 and LU4, and one distributed model called TETIS. To determine how well each specific model performed and to assess whether a model was more adequate than another, we raised three complementary tests: one based on the analysis of residual errors series, another based on a sensitivity analysis and the last one based on using multiple evaluation criteria associated to the concept of Pareto frontier. This modelling approach, based on multiple working hypotheses, helped to improve our perceptual model of the catchment behaviour and, furthermore, could be used as a guidance to improve the performance of other environmental models.

  17. Impact of water use efficiency on eddy covariance flux partitioning using correlation structure analysis

    USDA-ARS?s Scientific Manuscript database

    Partitioned land surfaces fluxes (e.g. evaporation, transpiration, photosynthesis, and ecosystem respiration) are needed as input, calibration, and validation data for numerous hydrological and land surface models. However, one of the most commonly used techniques for measuring land surface fluxes,...

  18. Shrink-swell behavior of soil across a vertisol catena

    USDA-ARS?s Scientific Manuscript database

    Shrinking and swelling of soils and the associated formation and closing of cracks can vary spatially within the smallest hydrologic unit subdivision utilized in surface hydrology models. Usually in the application of surface hydrology models, cracking is not considered to vary within a hydrologic u...

  19. Merging Hydrologic, Geochemical, and Geophysical Approaches to Understand the Regolith Architecture of a Deeply Weathered Piedmont Critical Zone

    NASA Astrophysics Data System (ADS)

    Cosans, C.; Moore, J.; Harman, C. J.

    2017-12-01

    Located in the deeply weathered Piedmont in Maryland, Pond Branch has a rich legacy of hydrological and geochemical research dating back to the first geochemical mass balance study published in 1970. More recently, geophysical investigations including seismic and electrical resistivity tomography have characterized the subsurface at Pond Branch and contributed to new hypotheses about critical zone evolution. Heterogeneity in electrical resistivity in the shallow subsurface may suggest disparate flow paths for recharge, with some regions with low hydraulic conductivity generating perched flow, while other hillslope sections recharge to the much deeper regolith boundary. These shallow and deep flow paths are hypothesized to be somewhat hydrologically and chemically connected, with the spatially and temporally discontinuous connections resulting in different hydraulic responses to recharge and different concentrations of weathering solutes. To test this hypothesis, we combined modeling and field approaches. We modeled weathering solutes along the hypothesized flow paths using PFLOTRAN. We measured hydrologic gradients in the hillslopes and riparian zone using piezometer water levels. We collected geochemical data including major ions and silica. Weathering solute concentrations were measured directly in the precipitation, hillslope springs, and the riparian zone for comparison to modeled concentration values. End member mixing methods were used to determine contributions of precipitation, hillslopes, and riparian zone to the stream. Combining geophysical, geochemical, and hydrological methods may offer insights into the source of stream water and controls on chemical weathering. Previous hypotheses that Piedmont critical zone architecture results from a balance of erosion, soil, and weathering front advance rates cannot account for the inverted regolith structure observed through seismic investigations at Pond Branch. Recent alternative hypotheses including weathering along tectonically-induced fractures and weathering front advance have been proposed, but additional data are needed to test them. Developing a thorough, nuanced understanding of the geochemical and hydrological behavior of Pond Branch may help test and refine hypotheses for Piedmont critical zone evolution.

  20. Assessing Uncertainties in Surface Water Security: A Probabilistic Multi-model Resampling approach

    NASA Astrophysics Data System (ADS)

    Rodrigues, D. B. B.

    2015-12-01

    Various uncertainties are involved in the representation of processes that characterize interactions between societal needs, ecosystem functioning, and hydrological conditions. Here, we develop an empirical uncertainty assessment of water security indicators that characterize scarcity and vulnerability, based on a multi-model and resampling framework. We consider several uncertainty sources including those related to: i) observed streamflow data; ii) hydrological model structure; iii) residual analysis; iv) the definition of Environmental Flow Requirement method; v) the definition of critical conditions for water provision; and vi) the critical demand imposed by human activities. We estimate the overall uncertainty coming from the hydrological model by means of a residual bootstrap resampling approach, and by uncertainty propagation through different methodological arrangements applied to a 291 km² agricultural basin within the Cantareira water supply system in Brazil. Together, the two-component hydrograph residual analysis and the block bootstrap resampling approach result in a more accurate and precise estimate of the uncertainty (95% confidence intervals) in the simulated time series. We then compare the uncertainty estimates associated with water security indicators using a multi-model framework and provided by each model uncertainty estimation approach. The method is general and can be easily extended forming the basis for meaningful support to end-users facing water resource challenges by enabling them to incorporate a viable uncertainty analysis into a robust decision making process.

  1. Subdivision of Texas watersheds for hydrologic modeling.

    DOT National Transportation Integrated Search

    2009-06-01

    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  2. Identifying influential data points in hydrological model calibration and their impact on streamflow predictions

    NASA Astrophysics Data System (ADS)

    Wright, David; Thyer, Mark; Westra, Seth

    2015-04-01

    Highly influential data points are those that have a disproportionately large impact on model performance, parameters and predictions. However, in current hydrological modelling practice the relative influence of individual data points on hydrological model calibration is not commonly evaluated. This presentation illustrates and evaluates several influence diagnostics tools that hydrological modellers can use to assess the relative influence of data. The feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration is discussed. Two classes of influence diagnostics are evaluated: (1) computationally demanding numerical "case deletion" diagnostics; and (2) computationally efficient analytical diagnostics, based on Cook's distance. These diagnostics are compared against hydrologically orientated diagnostics that describe changes in the model parameters (measured through the Mahalanobis distance), performance (objective function displacement) and predictions (mean and maximum streamflow). These influence diagnostics are applied to two case studies: a stage/discharge rating curve model, and a conceptual rainfall-runoff model (GR4J). Removing a single data point from the calibration resulted in differences to mean flow predictions of up to 6% for the rating curve model, and differences to mean and maximum flow predictions of up to 10% and 17%, respectively, for the hydrological model. When using the Nash-Sutcliffe efficiency in calibration, the computationally cheaper Cook's distance metrics produce similar results to the case-deletion metrics at a fraction of the computational cost. However, Cooks distance is adapted from linear regression with inherit assumptions on the data and is therefore less flexible than case deletion. Influential point detection diagnostics show great potential to improve current hydrological modelling practices by identifying highly influential data points. The findings of this study establish the feasibility and importance of including influential point detection diagnostics as a standard tool in hydrological model calibration. They provide the hydrologist with important information on whether model calibration is susceptible to a small number of highly influent data points. This enables the hydrologist to make a more informed decision of whether to (1) remove/retain the calibration data; (2) adjust the calibration strategy and/or hydrological model to reduce the susceptibility of model predictions to a small number of influential observations.

  3. Misrepresentation and amendment of soil moisture in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Although many conceptual models are very effective in simulating river runoff, their soil moisture schemes are generally not realistic in comparison with the reality (i.e., getting the right answers for the wrong reasons). This study reveals two significant misrepresentations in those models through a case study using the Xinanjiang model which is representative of many well-known conceptual hydrological models. The first is the setting of the upper limit of its soil moisture at the field capacity, due to the 'holding excess runoff' concept (i.e., runoff begins on repletion of its storage to the field capacity). The second is neglect of capillary rise of water movement. A new scheme is therefore proposed to overcome those two issues. The amended model is as effective as its original form in flow modelling, but represents more logically realistic soil water processes. The purpose of the study is to enable the hydrological model to get the right answers for the right reasons. Therefore, the new model structure has a better capability in potentially assimilating soil moisture observations to enhance its real-time flood forecasting accuracy. The new scheme is evaluated in the Pontiac catchment of the USA through a comparison with satellite observed soil moisture. The correlation between the XAJ and the observed soil moisture is enhanced significantly from 0.64 to 0.70. In addition, a new soil moisture term called SMDS (Soil Moisture Deficit to Saturation) is proposed to complement the conventional SMD (Soil Moisture Deficit).

  4. WEB-DHM: A distributed biosphere hydrological model developed by coupling a simple biosphere scheme with a hillslope hydrological model

    USDA-ARS?s Scientific Manuscript database

    The coupling of land surface models and hydrological models potentially improves the land surface representation, benefiting both the streamflow prediction capabilities as well as providing improved estimates of water and energy fluxes into the atmosphere. In this study, the simple biosphere model 2...

  5. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Treesearch

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  6. iTree-Hydro: Snow hydrology update for the urban forest hydrology model

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2011-01-01

    This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...

  7. Modeling non-linear growth responses to temperature and hydrology in wetland trees

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2016-12-01

    Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.

  8. Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology

    NASA Astrophysics Data System (ADS)

    Kirchner, James W.

    2006-03-01

    The science of hydrology is on the threshold of major advances, driven by new hydrologic measurements, new methods for analyzing hydrologic data, and new approaches to modeling hydrologic systems. Here I suggest several promising directions forward, including (1) designing new data networks, field observations, and field experiments, with explicit recognition of the spatial and temporal heterogeneity of hydrologic processes, (2) replacing linear, additive "black box" models with "gray box" approaches that better capture the nonlinear and non-additive character of hydrologic systems, (3) developing physically based governing equations for hydrologic behavior at the catchment or hillslope scale, recognizing that they may look different from the equations that describe the small-scale physics, (4) developing models that are minimally parameterized and therefore stand some chance of failing the tests that they are subjected to, and (5) developing ways to test models more comprehensively and incisively. I argue that scientific progress will mostly be achieved through the collision of theory and data, rather than through increasingly elaborate and parameter-rich models that may succeed as mathematical marionettes, dancing to match the calibration data even if their underlying premises are unrealistic. Thus advancing the science of hydrology will require not only developing theories that get the right answers but also testing whether they get the right answers for the right reasons.

  9. Evolving soils and hydrologic connectivity in semiarid hillslopes

    NASA Astrophysics Data System (ADS)

    Saco, Patricia M.

    2015-04-01

    Soil moisture availability is essential for the stability and resilience of semiarid ecosystems. In these ecosystems the amount of soil moisture available for vegetation growth and survival is intrinsically related to the way water is redistributed, that is from source to sink areas, and therefore prescribed by the hydrologic connectivity of the landscape. Recent studies have shown that hydrologic connectivity is highly dynamic and linked to the coevolution of geomorphic, soil and vegetation structures at a variety of spatial and temporal scales. This study investigates the effect of evolving soil depths on hydrologic connectivity using a modelling framework. The focus is on Australian semiarid hillslopes with patterned vegetation that result from coevolving landforms, soils, water redistribution, and vegetation patterns. We present and analyse results from simulations using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module and accounts for soil production and sediment erosion and deposition processes. We analyse the effect of soils depths on surface connectivity for a range of biotic (plant functional type strategies) and abiotic (slope and erodibility) conditions. The analysis shows that different plant functional types, through their varying facilitation strategies, have a profound effect on soils depths and therefore affect hydrologic connectivity and soil moisture patterns. This interplay becomes particularly important for systems that coevolve to have very shallow soils. In this case soil depth becomes the key factor prescribing surface connectivity and available soil moisture for plants, which affect the recovery of the system after disturbance. Conditions for the existence of threshold behaviour for which small perturbations can trigger a sudden increase in hydrologic connectivity, reduced soil moisture availability and decrease in productivity leading to degraded states are investigated. Critical implications for effective restoration efforts are discussed.

  10. Attaining insight into interactions between hydrologic model parameters and geophysical attributes for national-scale model parameter estimation

    NASA Astrophysics Data System (ADS)

    Mizukami, N.; Clark, M. P.; Newman, A. J.; Wood, A.; Gutmann, E. D.

    2017-12-01

    Estimating spatially distributed model parameters is a grand challenge for large domain hydrologic modeling, especially in the context of hydrologic model applications such as streamflow forecasting. Multi-scale Parameter Regionalization (MPR) is a promising technique that accounts for the effects of fine-scale geophysical attributes (e.g., soil texture, land cover, topography, climate) on model parameters and nonlinear scaling effects on model parameters. MPR computes model parameters with transfer functions (TFs) that relate geophysical attributes to model parameters at the native input data resolution and then scales them using scaling functions to the spatial resolution of the model implementation. One of the biggest challenges in the use of MPR is identification of TFs for each model parameter: both functional forms and geophysical predictors. TFs used to estimate the parameters of hydrologic models typically rely on previous studies or were derived in an ad-hoc, heuristic manner, potentially not utilizing maximum information content contained in the geophysical attributes for optimal parameter identification. Thus, it is necessary to first uncover relationships among geophysical attributes, model parameters, and hydrologic processes (i.e., hydrologic signatures) to obtain insight into which and to what extent geophysical attributes are related to model parameters. We perform multivariate statistical analysis on a large-sample catchment data set including various geophysical attributes as well as constrained VIC model parameters at 671 unimpaired basins over the CONUS. We first calibrate VIC model at each catchment to obtain constrained parameter sets. Additionally, parameter sets sampled during the calibration process are used for sensitivity analysis using various hydrologic signatures as objectives to understand the relationships among geophysical attributes, parameters, and hydrologic processes.

  11. RainyDay: An Online, Open-Source Tool for Physically-based Rainfall and Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Wright, D.; Yu, G.; Holman, K. D.

    2017-12-01

    Flood frequency analysis in ungaged or changing watersheds typically requires rainfall intensity-duration-frequency (IDF) curves combined with hydrologic models. IDF curves only depict point-scale rainfall depth, while true rainstorms exhibit complex spatial and temporal structures. Floods result from these rainfall structures interacting with watershed features such as land cover, soils, and variable antecedent conditions as well as river channel processes. Thus, IDF curves are traditionally combined with a variety of "design storm" assumptions such as area reduction factors and idealized rainfall space-time distributions to translate rainfall depths into inputs that are suitable for flood hydrologic modeling. The impacts of such assumptions are relatively poorly understood. Meanwhile, modern precipitation estimates from gridded weather radar, grid-interpolated rain gages, satellites, and numerical weather models provide more realistic depictions of rainfall space-time structure. Usage of such datasets for rainfall and flood frequency analysis, however, are hindered by relatively short record lengths. We present RainyDay, an open-source stochastic storm transposition (SST) framework for generating large numbers of realistic rainfall "scenarios." SST "lengthens" the rainfall record by temporal resampling and geospatial transposition of observed storms to extract space-time information from regional gridded rainfall data. Relatively short (10-15 year) records of bias-corrected radar rainfall data are sufficient to estimate rainfall and flood events with much longer recurrence intervals including 100-year and 500-year events. We describe the SST methodology as implemented in RainyDay and compare rainfall IDF results from RainyDay to conventional estimates from NOAA Atlas 14. Then, we demonstrate some of the flood frequency analysis properties that are possible when RainyDay is integrated with a distributed hydrologic model, including robust estimation of flood hazards in a changing watershed. The U.S. Bureau of Reclamation is supporting the development of a web-based variant of RainyDay, a "beta" version of which is available at http://her.cee.wisc.edu/projects/rainyday/.

  12. Brugga basin's TACD Model Adaptation to current GIS PCRaster 4.1

    NASA Astrophysics Data System (ADS)

    Lopez Rozo, Nicolas Antonio; Corzo Perez, Gerald Augusto; Santos Granados, Germán Ricardo

    2017-04-01

    The process-oriented catchment model TACD (Tracer-Aided Catchment model - Distributed) was developed in the Brugga Basin (Dark Forest, Germany) with a modular structure in the Geographic Information System PCRaster Version 2, in order to dynamically model the natural processes of a complex Basin, such as rainfall, air temperature, solar radiation, evapotranspiration and flow routing among others. Further research and application on this model has been done, such as adapting other meso-scaled basins and adding erosion processes in the hydrological model. However, TACD model is computationally intensive. This has made it not efficient on large and well discretized river basins. Aswell, the current version is not compatible with latest PCRaster Version 4.1, which offers new capabilities on 64-bit hardware architecture, hydraulic calculation improvements, in maps creation, some error and bug fixes. The current work studied and adapted TACD model into the latest GIS PCRaster Version 4.1. This was done by editing the original scripts, replacing deprecated functionalities without losing correctness of the TACD model. The correctness of the adapted TACD model was verified by using the original study case of the Brugga Basin and comparing the adapted model results with the original model results by Stefan Roser in 2001. Small differences were found due to the fact that some hydraulic and hydrological routines were optimized since version 2 of GIS PCRaster. Therefore, the hydraulic and hydrological processes are well represented. With this new working model, further research and development on current topics like uncertainty analysis, GCM downscaling techniques and spatio-temporal modelling are encouraged.

  13. A framework for human-hydrologic system model development integrating hydrology and water management: application to the Cutzamala water system in Mexico

    NASA Astrophysics Data System (ADS)

    Wi, S.; Freeman, S.; Brown, C.

    2017-12-01

    This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.

  14. Diagnosing the impact of alternative calibration strategies on coupled hydrologic models

    NASA Astrophysics Data System (ADS)

    Smith, T. J.; Perera, C.; Corrigan, C.

    2017-12-01

    Hydrologic models represent a significant tool for understanding, predicting, and responding to the impacts of water on society and society on water resources and, as such, are used extensively in water resources planning and management. Given this important role, the validity and fidelity of hydrologic models is imperative. While extensive focus has been paid to improving hydrologic models through better process representation, better parameter estimation, and better uncertainty quantification, significant challenges remain. In this study, we explore a number of competing model calibration scenarios for simple, coupled snowmelt-runoff models to better understand the sensitivity / variability of parameterizations and its impact on model performance, robustness, fidelity, and transferability. Our analysis highlights the sensitivity of coupled snowmelt-runoff model parameterizations to alterations in calibration approach, underscores the concept of information content in hydrologic modeling, and provides insight into potential strategies for improving model robustness / fidelity.

  15. On the information content of hydrological signatures and their relationship to catchment attributes

    NASA Astrophysics Data System (ADS)

    Addor, Nans; Clark, Martyn P.; Prieto, Cristina; Newman, Andrew J.; Mizukami, Naoki; Nearing, Grey; Le Vine, Nataliya

    2017-04-01

    Hydrological signatures, which are indices characterizing hydrologic behavior, are increasingly used for the evaluation, calibration and selection of hydrological models. Their key advantage is to provide more direct insights into specific hydrological processes than aggregated metrics (e.g., the Nash-Sutcliffe efficiency). A plethora of signatures now exists, which enable characterizing a variety of hydrograph features, but also makes the selection of signatures for new studies challenging. Here we propose that the selection of signatures should be based on their information content, which we estimated using several approaches, all leading to similar conclusions. To explore the relationship between hydrological signatures and the landscape, we extended a previously published data set of hydrometeorological time series for 671 catchments in the contiguous United States, by characterizing the climatic conditions, topography, soil, vegetation and stream network of each catchment. This new catchment attributes data set will soon be in open access, and we are looking forward to introducing it to the community. We used this data set in a data-learning algorithm (random forests) to explore whether hydrological signatures could be inferred from catchment attributes alone. We find that some signatures can be predicted remarkably well by random forests and, interestingly, the same signatures are well captured when simulating discharge using a conceptual hydrological model. We discuss what this result reveals about our understanding of hydrological processes shaping hydrological signatures. We also identify which catchment attributes exert the strongest control on catchment behavior, in particular during extreme hydrological events. Overall, climatic attributes have the most significant influence, and strongly condition how well hydrological signatures can be predicted by random forests and simulated by the hydrological model. In contrast, soil characteristics at the catchment scale are not found to be significant predictors by random forests, which raises questions on how to best use soil data for hydrological modeling, for instance for parameter estimation. We finally demonstrate that signatures with high spatial variability are poorly captured by random forests and model simulations, which makes their regionalization delicate. We conclude with a ranking of signatures based on their information content, and propose that the signatures with high information content are best suited for model calibration, model selection and understanding hydrologic similarity.

  16. Assessment of Flood Mitigation Solutions Using a Hydrological Model and Refined 2D Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Khuat Duy, B.; Archambeau, P.; Dewals, B. J.; Erpicum, S.; Pirotton, M.

    2009-04-01

    Following recurrent inundation problems on the Berwinne catchment, in Belgium, a combined hydrologic and hydrodynamic study has been carried out in order to find adequate solutions for the floods mitigation. Thanks to detailed 2D simulations, the effectiveness of the solutions can be assessed not only in terms of discharge and height reductions in the river, but also with other aspects such as the inundated surfaces reduction and the decrease of inundated buildings and roads. The study is carried out in successive phases. First, the hydrological runoffs are generated using a physically based and spatially distributed multi-layer model solving depth-integrated equations for overland flow, subsurface flow and baseflow. Real floods events are simulated using rainfall series collected at 8 stations (over 20 years of available data). The hydrological inputs are routed through the river network (and through the sewage network if relevant) with the 1D component of the modelling system, which solves the Saint-Venant equations for both free-surface and pressurized flows in a unified way. On the main part of the river, the measured river cross-sections are included in the modelling, and existing structures along the river (such as bridges, sluices or pipes) are modelled explicitely with specific cross sections. Two gauging stations with over 15 years of continuous measurements allow the calibration of both the hydrologic and hydrodynamic models. Second, the flood mitigation solutions are tested in the simulations in the case of an extreme flooding event, and their effects are assessed using detailed 2D simulations on a few selected sensitive areas. The digital elevation model comes from an airborne laser survey with a spatial resolution of 1 point per square metre and is completed in the river bed with a bathymetry interpolated from cross-section data. The upstream discharge is extracted from the 1D simulation for the selected rainfall event. The study carried out with this methodology allowed to assess the suggested solutions with multiple effectiveness criteria and therefore constitutes a very useful support for decision makers.

  17. One-day offset in daily hydrologic modeling: An exploration of the issue in automatic model calibration

    USDA-ARS?s Scientific Manuscript database

    The literature of daily hydrologic modelling illustrates that daily simulation models are incapable of accurately representing hydrograph timing due to relationships between precipitation and watershed hydrologic response. For watersheds with a time of concentration less than 24 hrs and a late day p...

  18. Linking climate change and karst hydrology to evaluate species vulnerability: The Edwards and Madison aquifers (Invited)

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Long, A. J.; Stamm, J. F.; Poteet, M.; Symstad, A.

    2013-12-01

    Karst aquifers present an extreme case of flow along structurally variable pathways, making them highly dynamic systems and therefore likely to respond rapidly to climate change. In turn, many biological communities and ecosystems associated with karst are sensitive to hydrologic changes. We explored how three sites in the Edwards aquifer (Texas) and two sites in the Madison aquifer (South Dakota) might respond to projected climate change from 2011 to 2050. Ecosystems associated with these karst aquifers support federally listed endangered and threatened species and state-listed species of concern, including amphibians, birds, insects, and plants. The vulnerability of selected species associated with projected climate change was assessed. The Advanced Research Weather and Research Forecasting (WRF) model was used to simulate projected climate at a 36-km grid spacing for three weather stations near the study sites, using boundary and initial conditions from the global climate model Community Climate System Model (CCSM3) and an A2 emissions scenario. Daily temperature and precipitation projections from the WRF model were used as input for the hydrologic Rainfall-Response Aquifer and Watershed Flow (RRAWFLOW) model and the Climate Change Vulnerability Index (CCVI) model. RRAWFLOW is a lumped-parameter model that simulates hydrologic response at a single site, combining the responses of quick and slow flow that commonly characterize karst aquifers. CCVI uses historical and projected climate and hydrologic metrics to determine the vulnerability of selected species on the basis of species exposure to climate change, sensitivity to factors associated with climate change, and capacity to adapt to climate change. An upward trend in temperature was projected for 2011-2050 at all three weather stations; there was a trend (downward) in annual precipitation only for the weather station in Texas. A downward trend in mean annual spring flow or groundwater level was projected for all of the Edwards sites, but there was no significant trend for the Madison sites. Of 16 Edwards aquifer species evaluated (four amphibians, six arthropods, one fish, one mollusk, and four plants), 12 were scored as highly or moderately vulnerable under the projected climate change scenario. In contrast, all of the 8 Madison aquifer species evaluated (two mammals, one bird, one mollusk, and four plants) were scored as moderately vulnerable, stable, or intermediate between the two. The inclusion of hydrologic projections in the vulnerability assessment was essential for interpreting the effects of climate change on aquatic species of conservations concern, such as endemic salamanders. The linkage of climate, hydrologic, and vulnerability models provided a bridge to project the effects of global climate change on local karst aquifer and stream systems and selected species.

  19. Does model structure limit the use of satellite data as hydrologic forcing for distributed operational models?

    NASA Astrophysics Data System (ADS)

    Bowman, A. L.; Franz, K.; Hogue, T. S.

    2015-12-01

    We are investigating the implications for use of satellite data in operational streamflow prediction. Specifically, the consequence of potential hydrologic model structure deficiencies on the ability to achieve improved forecast accuracy through the use of satellite data. We want to understand why advanced data do not lead to improved streamflow simulations by exploring how various fluxes and states differ among models of increasing complexity. In a series of prior studies, we investigated the use of a daily satellite-derived potential evapotranspiration (PET) estimate as input to the National Weather Service (NWS) streamflow forecast models for watersheds in the Upper Mississippi and Red river basins. Although the spatial PET product appears to represent the day-to-day variability in PET more realistically than current climatological methods used by the NWS, the impact of the satellite data on streamflow simulations results in slightly poorer model efficiency overall. Analysis of the model states indicates the model progresses differently between simulations with baseline PET and the satellite-derived PET input, though variation in streamflow simulations overall is negligible. For instance, the upper zone states, responsible for the high flows of a hydrograph, show a profound difference, while simulation of the peak flows tend to show little variation in the timing and magnitude. Using the spatial PET input, the lower zone states show improvement with simulating the recession limb and baseflow portion of the hydrograph. We anticipate that through a better understanding of the relationship between model structure, model states, and simulated streamflow we will be able to diagnose why simulations of discharge from the forecast model have failed to improve when provided seemingly more representative input data. Identifying model limitations are critical to demonstrating the full benefit of a satellite data for operational use.

  20. Autocorrelated residuals in inverse modelling of soil hydrological processes: a reason for concern or something that can safely be ignored?

    NASA Astrophysics Data System (ADS)

    Scharnagl, Benedikt; Durner, Wolfgang

    2013-04-01

    Models are inherently imperfect because they simplify processes that are themselves imperfectly known and understood. Moreover, the input variables and parameters needed to run a model are typically subject to various sources of error. As a consequence of these imperfections, model predictions will always deviate from corresponding observations. In most applications in soil hydrology, these deviations are clearly not random but rather show a systematic structure. From a statistical point of view, this systematic mismatch may be a reason for concern because it violates one of the basic assumptions made in inverse parameter estimation: the assumption of independence of the residuals. But what are the consequences of simply ignoring the autocorrelation in the residuals, as it is current practice in soil hydrology? Are the parameter estimates still valid even though the statistical foundation they are based on is partially collapsed? Theory and practical experience from other fields of science have shown that violation of the independence assumption will result in overconfident uncertainty bounds and that in some cases it may lead to significantly different optimal parameter values. In our contribution, we present three soil hydrological case studies, in which the effect of autocorrelated residuals on the estimated parameters was investigated in detail. We explicitly accounted for autocorrelated residuals using a formal likelihood function that incorporates an autoregressive model. The inverse problem was posed in a Bayesian framework, and the posterior probability density function of the parameters was estimated using Markov chain Monte Carlo simulation. In contrast to many other studies in related fields of science, and quite surprisingly, we found that the first-order autoregressive model, often abbreviated as AR(1), did not work well in the soil hydrological setting. We showed that a second-order autoregressive, or AR(2), model performs much better in these applications, leading to parameter and uncertainty estimates that satisfy all the underlying statistical assumptions. For theoretical reasons, these estimates are deemed more reliable than those estimates based on the neglect of autocorrelation in the residuals. In compliance with theory and results reported in the literature, our results showed that parameter uncertainty bounds were substantially wider if autocorrelation in the residuals was explicitly accounted for, and also the optimal parameter vales were slightly different in this case. We argue that the autoregressive model presented here should be used as a matter of routine in inverse modeling of soil hydrological processes.

  1. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Sivapalan, M.; Harman, C. J.; Srinivasan, V.; Hipsey, M. R.; Reed, P.; Montanari, A.; Blöschl, G.

    2013-12-01

    Globally, many different kinds of water resources management issues call for policy- and infrastructure-based responses. Yet responsible decision-making about water resources management raises a fundamental challenge for hydrologists: making predictions about water resources on decadal- to century-long timescales. Obtaining insight into hydrologic futures over 100 yr timescales forces researchers to address internal and exogenous changes in the properties of hydrologic systems. To do this, new hydrologic research must identify, describe and model feedbacks between water and other changing, coupled environmental subsystems. These models must be constrained to yield useful insights, despite the many likely sources of uncertainty in their predictions. Chief among these uncertainties are the impacts of the increasing role of human intervention in the global water cycle - a defining challenge for hydrology in the Anthropocene. Here we present a research agenda that proposes a suite of strategies to address these challenges from the perspectives of hydrologic science research. The research agenda focuses on the development of co-evolutionary hydrologic modeling to explore coupling across systems, and to address the implications of this coupling on the long-time behavior of the coupled systems. Three research directions support the development of these models: hydrologic reconstruction, comparative hydrology and model-data learning. These strategies focus on understanding hydrologic processes and feedbacks over long timescales, across many locations, and through strategic coupling of observational and model data in specific systems. We highlight the value of use-inspired and team-based science that is motivated by real-world hydrologic problems but targets improvements in fundamental understanding to support decision-making and management. Fully realizing the potential of this approach will ultimately require detailed integration of social science and physical science understanding of water systems, and is a priority for the developing field of sociohydrology.

  2. Climate change: evaluating your local and regional water resources

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Thorne, James H.

    2015-01-01

    The BCM is a fine-scale hydrologic model that uses detailed maps of soils, geology, topography, and transient monthly or daily maps of potential evapotranspiration, air temperature, and precipitation to generate maps of recharge, runoff, snow pack, actual evapotranspiration, and climatic water deficit. With these comprehensive environmental inputs and experienced scientific analysis, the BCM provides resource managers with important hydrologic and ecologic understanding of a landscape or basin at hillslope to regional scales. The model is calibrated using historical climate and streamflow data over the range of geologic materials specific to an area. Once calibrated, the model is used to translate climate-change data into hydrologic responses for a defined landscape, to provide managers an understanding of potential ecological risks and threats to water supplies and managed hydrologic systems. Although limited to estimates of unimpaired hydrologic conditions, estimates of impaired conditions, such as agricultural demand, diversions, or reservoir outflows can be incorporated into the calibration of the model to expand its utility. Additionally, the model can be linked to other models, such as groundwater-flow models (that is, MODFLOW) or the integrated hydrologic model (MF-FMP), to provide information about subsurface hydrologic processes. The model can be applied at a relatively small scale, but also can be applied to large-scale national and international river basins.

  3. Evaluating the importance of characterizing soil structure and horizons in parameterizing a hydrologic process model

    USGS Publications Warehouse

    Mirus, Benjamin B.

    2015-01-01

    Incorporating the influence of soil structure and horizons into parameterizations of distributed surface water/groundwater models remains a challenge. Often, only a single soil unit is employed, and soil-hydraulic properties are assigned based on textural classification, without evaluating the potential impact of these simplifications. This study uses a distributed physics-based model to assess the influence of soil horizons and structure on effective parameterization. This paper tests the viability of two established and widely used hydrogeologic methods for simulating runoff and variably saturated flow through layered soils: (1) accounting for vertical heterogeneity by combining hydrostratigraphic units with contrasting hydraulic properties into homogeneous, anisotropic units and (2) use of established pedotransfer functions based on soil texture alone to estimate water retention and conductivity, without accounting for the influence of pedon structures and hysteresis. The viability of this latter method for capturing the seasonal transition from runoff-dominated to evapotranspiration-dominated regimes is also tested here. For cases tested here, event-based simulations using simplified vertical heterogeneity did not capture the state-dependent anisotropy and complex combinations of runoff generation mechanisms resulting from permeability contrasts in layered hillslopes with complex topography. Continuous simulations using pedotransfer functions that do not account for the influence of soil structure and hysteresis generally over-predicted runoff, leading to propagation of substantial water balance errors. Analysis suggests that identifying a dominant hydropedological unit provides the most acceptable simplification of subsurface layering and that modified pedotransfer functions with steeper soil-water retention curves might adequately capture the influence of soil structure and hysteresis on hydrologic response in headwater catchments.

  4. Subsurface Hydrologic Processes Revealed by Time-lapse GPR in Two Contrasting Soils in the Shale Hills CZO

    NASA Astrophysics Data System (ADS)

    Guo, L.; Lin, H.; Nyquist, J.; Toran, L.; Mount, G.

    2017-12-01

    Linking subsurface structures to their functions in determining hydrologic processes, such as soil moisture dynamics, subsurface flow patterns, and discharge behaviours, is a key to understanding and modelling hydrological systems. Geophysical techniques provide a non-invasive approach to investigate this form-function dualism of subsurface hydrology at the field scale, because they are effective in visualizing subsurface structure and monitoring the distribution of water. In this study, we used time-lapse ground-penetrating radar (GPR) to compare the hydrologic responses of two contrasting soils in the Shale Hills Critical Zone Observatory. By integrating time-lapse GPR with artificial water injection, we observed distinct flow patterns in the two soils: 1) in the deep Rushtown soil (over 1.5 m depth to bedrock) located in a concave hillslope, a lateral preferential flow network extending as far as 2 m downslope was identified above a less permeable layer and via a series of connected macropores; whereas 2) in the shallow Weikert soil ( 0.3 m depth to saprock) located in a planar hillslope, vertical infiltration into the permeable fractured shale dominated the flow field, while the development of lateral preferential flow along the hillslope was restrained. At the Weikert soil site, the addition of brilliant blue dye to the water injection followed by in situ excavation supported GPR interpretation that only limited lateral preferential flow formed along the soil-saprock interface. Moreover, seasonally repeated GPR surveys indicated different patterns of profile moisture distribution in the two soils that in comparison with the dry season, a dense layer within the BC horizon in the deep Rushtown soil prevented vertical infiltration in the wet season, leading to the accumulation of soil moisture above this layer; whereas, in the shallow Weikert soil, water infiltrated into saprock in wet seasons, building up water storage within the fractured bedrock (i.e., the rock moisture). Results of this study demonstrated the strong interplay between soil structures and subsurface hydrologic behaviors, and time-lapse GPR is an effective method to establish such a relationship under the field conditions.

  5. Mapping (dis)agreement in hydrologic projections

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke A.; Addor, Nans; Mizukami, Naoki; Newman, Andrew J.; Torfs, Paul J. J. F.; Clark, Martyn P.; Uijlenhoet, Remko; Teuling, Adriaan J.

    2018-03-01

    Hydrologic projections are of vital socio-economic importance. However, they are also prone to uncertainty. In order to establish a meaningful range of storylines to support water managers in decision making, we need to reveal the relevant sources of uncertainty. Here, we systematically and extensively investigate uncertainty in hydrologic projections for 605 basins throughout the contiguous US. We show that in the majority of the basins, the sign of change in average annual runoff and discharge timing for the period 2070-2100 compared to 1985-2008 differs among combinations of climate models, hydrologic models, and parameters. Mapping the results revealed that different sources of uncertainty dominate in different regions. Hydrologic model induced uncertainty in the sign of change in mean runoff was related to snow processes and aridity, whereas uncertainty in both mean runoff and discharge timing induced by the climate models was related to disagreement among the models regarding the change in precipitation. Overall, disagreement on the sign of change was more widespread for the mean runoff than for the discharge timing. The results demonstrate the need to define a wide range of quantitative hydrologic storylines, including parameter, hydrologic model, and climate model forcing uncertainty, to support water resource planning.

  6. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China

    Treesearch

    S. Wang; Z. Zhang; G. Sun; P. Strauss; J. Guo; Y. Tang; A. Yao

    2012-01-01

    Model calibration is essential for hydrologic modeling of large watersheds in a heterogeneous mountain environment. Little guidance is available for model calibration protocols for distributed models that aim at capturing the spatial variability of hydrologic processes. This study used the physically-based distributed hydrologic model, MIKE SHE, to contrast a lumped...

  7. Simulation of runoff and water quality for 1990 and 2008 land use conditions in the Reedy Creek watershed, East-Central Florida

    USGS Publications Warehouse

    Wicklein, Shaun M.; Schiffer, Donna M.

    2002-01-01

    Hydrologic and water-quality data have been collected within the 177-square-mile Reedy Creek, Florida, watershed, beginning as early as 1939, but the data have not been used to evaluate relations among land use, hydrology, and water quality. A model of the Reedy Creek watershed was developed and applied to the period January 1990 to December 1995 to provide a computational foundation for evaluating the effects of future land-use changes on hydrology and water quality in the watershed. The Hydrological Simulation Program-Fortran (HSPF) model was used to simulate hydrology and water quality of runoff for pervious land areas, impervious land areas, and stream reaches. Six land-use types were used to characterize the hydrology and water quality of pervious and impervious land areas in the Reedy Creek watershed: agriculture, rangeland, forest, wetlands, rapid infiltration basins, and urban areas. Hydrologic routing and water-quality reactions were simulated to characterize hydrologic and water-quality processes and the movement of runoff and its constituents through the main stream channels and their tributaries. Because of the complexity of the stream system within the Reedy Creek Improvement District (RCID) (hydraulic structures, retention ponds) and the anticipated difficulty of modeling the system, an approach of calibrating the model parameters for a subset of the gaged watersheds and confirming the usefulness of the parameters by simulating the remainder of the gaged sites was selected for this study. Two sub-watersheds (Whittenhorse Creek and Davenport Creek) were selected for calibration because both have similar land use to watersheds within the RCID (with the exception of urban areas). Given the lack of available rainfall data, the hydrologic calibration of the Whittenhorse Creek and Davenport Creek sub-watersheds was considered acceptable (for monthly data, correlation coefficients, 0.86 and 0.88, and coefficients of model-fit efficiency, 0.72 and 0.74, respectively). The hydrologic model was tested by applying the parameter sets developed for Whittenhorse Creek and Davenport Creek to other land areas within the Reedy Creek watershed, and by comparing the simulated results to observed data sets for Reedy Creek near Vineland, Bonnet Creek near Vineland, and Reedy Creek near Loughman. The hydrologic model confirmation for Reedy Creek near Vineland (correlation coefficient, 0.91, and coefficient of model fit efficiency, 0.78, for monthly flows) was acceptable. Flows for Bonnet Creek near Vineland were substantially under simulated. Consideration of the ground-water contribution to Bonnet Creek could improve the water balance simulation for Bonnet Creek near Vineland. On longer time scales (monthly or over the 72-month simulation period), simulated discharges for Reedy Creek near Loughman agreed well with observed data (correlation coefficient, 0.88). For monthly flows the coefficient of model-fit efficiency was 0.77. On a shorter time scale (less than a month), however, storm volumes were greatly over simulated and low flows (less than 8 cubic feet per second) were greatly under simulated. A primary reason for the poor results at low flows is the diversion of an unknown amount of water from the RCID at the Bonnet Creek near Kissimmee site. Selection of water-quality constituents for simulation was based primarily on the availability of water-quality data. Dissolved oxygen, nitrogen, and phosphorus species were simulated. Representation of nutrient cycling in HSPF also required simulation of biochemical oxygen demand and phytoplankton populations. The correlation coefficient for simulated and observed daily mean dissolved oxygen concentration values at Reedy Creek near Vineland was 0.633. Simulated time series of total phosphorus, phosphate, ammonia nitrogen, and nitrate nitrogen generally agreed well with periodically observed values for the Whittenhorse Creek and Davenport Creek sites. Simulated water-quality c

  8. Effects of drought on forest soil structure and hydrological soil functions

    NASA Astrophysics Data System (ADS)

    Gimbel, K.; Puhlmann, H.; Weiler, M.

    2012-04-01

    Climate change is predicted to severely affect precipitation patterns across central Europe. Soil structure is closely linked to the activity of soil microbiota and plant roots, which modify flow pathways along roots, organic matter and water repellence of soils. Through shrinkage and fracturing of soil aggregates, soil structure is also responding to changing climate (in particular drought) conditions. We investigate the possible effects on biogeochemical and hydropedological processes in response to predicted future reduced precipitation, and the interaction of these processes with the biodiversity of the forest understorey and soil biota. The hypotheses of this study are: (i) drought causes a change in soil structure, which affects hydrological soil functions (water infiltration, uptake and redistribution); (ii) changes in rooting patterns and microbial community composition, in response to drought, influence the hydrological soil functions. To test our hypotheses, we built adaptive roofing systems on nine sites in Germany, which allow a flexible reduction of precipitation in order to achieve the long-term minimum precipitation of a site. Here we present first measurements of our repeated measuring/sampling campaign, which will be conducted over a period of three years. The aim of our experiments is to analyze soil pore architecture and related flow and transport behaviour with dye tracer sprinkling experiments, soil column experiments with stable isotope (deuterium, oxygen-18) enriched water, computed tomography at soil monoliths (~70 l) and multi-step outflow experiments with 100 ml soil cores. Finally, we sketch our idea how to relate the observed temporal changes of soil structure and hydrological soil functions to the observed dynamics of hydrometeorological site conditions, soil moisture and desiccation as well as changes in rooting patterns, herb layer and soil microbiotic communities. The results of this study may help to assess future behavior of the plant-soil-water-microbiology-system and may help to adjust models to predict future response to different precipitation patterns as well as help coping with existing and future emerging challenges in forest management.

  9. Hydrological Modelling using HEC-HMS for Flood Risk Assessment of Segamat Town, Malaysia

    NASA Astrophysics Data System (ADS)

    Romali, N. S.; Yusop, Z.; Ismail, A. Z.

    2018-03-01

    This paper presents an assessment of the applicability of using Hydrologic Modelling System developed by the Hydrologic Engineering Center (HEC-HMS) for hydrological modelling of Segamat River. The objective of the model application is to assist in the assessment of flood risk by providing the peak flows of 2011 Segamat flood for the generation of flood mapping of Segamat town. The capability of the model was evaluated by comparing the historical observed data with the simulation results of the selected flood events. The model calibration and validation efficiency was verified using Nash-Sutcliffe model efficiency coefficient. The results demonstrate the interest to implement the hydrological model for assessing flood risk where the simulated peak flow result is in agreement with historical observed data. The model efficiency of the calibrated and validated exercises is 0.90 and 0.76 respectively, which is acceptable.

  10. Is there a `universal' dynamic zero-parameter hydrological model? Evaluation of a dynamic Budyko model in US and India

    NASA Astrophysics Data System (ADS)

    Patnaik, S.; Biswal, B.; Sharma, V. C.

    2017-12-01

    River flow varies greatly in space and time, and the single biggest challenge for hydrologists and ecologists around the world is the fact that most rivers are either ungauged or poorly gauged. Although it is relatively easier to predict long-term average flow of a river using the `universal' zero-parameter Budyko model, lack of data hinders short-term flow prediction at ungauged locations using traditional hydrological models as they require observed flow data for model calibration. Flow prediction in ungauged basins thus requires a dynamic 'zero-parameter' hydrological model. One way to achieve this is to regionalize a dynamic hydrological model's parameters. However, a regionalization method based zero-parameter dynamic hydrological model is not `universal'. An alternative attempt was made recently to develop a zero-parameter dynamic model by defining an instantaneous dryness index as a function of antecedent rainfall and solar energy inputs with the help of a decay function and using the original Budyko function. The model was tested first in 63 US catchments and later in 50 Indian catchments. The median Nash-Sutcliffe efficiency (NSE) was found to be close to 0.4 in both the cases. Although improvements need to be incorporated in order to use the model for reliable prediction, the main aim of this study was to rather understand hydrological processes. The overall results here seem to suggest that the dynamic zero-parameter Budyko model is `universal.' In other words natural catchments around the world are strikingly similar to each other in the way they respond to hydrologic inputs; we thus need to focus more on utilizing catchment similarities in hydrological modelling instead of over parameterizing our models.

  11. Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: A comparison of HSPF and SMR

    USGS Publications Warehouse

    Johnson, M.S.; Coon, W.F.; Mehta, V.K.; Steenhuis, T.S.; Brooks, E.S.; Boll, J.

    2003-01-01

    Differences in the simulation of hydrologic processes by watershed models directly affect the accuracy of results. Surface runoff generation can be simulated as either: (1) infiltration-excess (or Hortonian) overland flow, or (2) saturation-excess overland flow. This study compared the Hydrological Simulation Program - FORTRAN (HSPF) and the Soil Moisture Routing (SMR) models, each representing one of these mechanisms. These two models were applied to a 102 km2 watershed in the upper part of the Irondequoit Creek basin in central New York State over a seven-year simulation period. The models differed in both the complexity of simulating snowmelt and baseflow processes as well as the detail in which the geographic information was preserved by each model. Despite their differences in structure and representation of hydrologic processes, the two models simulated streamflow with almost equal accuracy. Since streamflow is an integral response and depends mainly on the watershed water balance, this was not unexpected. Model efficiency values for the seven-year simulation period were 0.67 and 0.65 for SMR and HSPF, respectively. HSPF simulated winter streamflow slightly better than SMR as a result of its complex snowmelt routine, whereas SMR simulated summer flows better than HSPF as a result of its runoff and baseflow processes. An important difference between model results was the ability to predict the spatial distribution of soil moisture content. HSPF aggregates soil moisture content, which is generally related to a specific pervious land unit across the entire watershed, whereas SMR predictions of moisture content distribution are geographically specific and matched field observations reasonably well. Important is that the saturated area was predicted well by SMR and confirmed the validity of using saturation-excess mechanisms for this hillslope dominated watershed. ?? 2003 Elsevier B.V. All rights reserved.

  12. A RETROSPECTIVE ANALYSIS OF MODEL UNCERTAINTY FOR FORECASTING HYDROLOGIC CHANGE

    EPA Science Inventory

    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...

  13. A vegetation mapping strategy for conifer forests by combining airborne LiDAR data and aerial imagery

    Treesearch

    Yanjun Su; Qinghua Guo; Danny L. Fry; Brandon M. Collins; Maggi Kelly; Jacob P. Flanagan; John J. Battles

    2016-01-01

    Abstract. Accurate vegetation mapping is critical for natural resources management, ecological analysis, and hydrological modeling, among other tasks. Remotely sensed multispectral and hyperspectral imageries have proved to be valuable inputs to the vegetation mapping process, but they can provide only limited vegetation structure...

  14. Quantifying extreme precipitation events and their hydrologic response in Southeastern Arizona

    USDA-ARS?s Scientific Manuscript database

    Design criteria such as rainfall intensities and runoff rates for small watersheds (<200km2) are needed for modeling, sizing and design of drainage and flood control structures. In the Southwest US the need for accurate information about these rates is increasingly important as development of range...

  15. The Impact of Microwave-Derived Surface Soil Moisture on Watershed Hydrological Modeling

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Hsu, A. Y.; Jackson, T. J.; Wood, E. F.; Zion, M.

    1997-01-01

    The usefulness of incorporating microwave-derived soil moisture information in a semi-distributed hydrological model was demonstrated for the Washita '92 experiment in the Little Washita River watershed in Oklahoma. Initializing the hydrological model with surface soil moisture fields from the ESTAR airborne L-band microwave radiometer on a single wet day at the start of the study period produced more accurate model predictions of soil moisture than a standard hydrological initialization with streamflow data over an eight-day soil moisture drydown.

  16. Understanding the Hydrodynamics of a Coastal Wetland with an Integrated Distributed Model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, W.; Sun, G.

    2017-12-01

    Coastal wetlands linking ocean and terrestrial landscape provide important ecosystem services including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitats. Wetland hydrology is the major driving force for wetland formation, structure, function, and ecosystem services. The dynamics of wetland hydrology and energy budget are strongly affected by frequent inundation and drying of wetland soil and vegetation due to tide, sea level rise (SLR) and climatic variability (change). However, the quantitative representation of how the energy budget and groundwater variation of coastal wetlands respond to frequent water level fluctuation is limited, especially at regional scales. This study developed a physically based distributed wetland hydrological model by integrating coastal processes and considering the inundation influence on energy budget and ET. Analysis using in situ measurements and satellite data for a coastal wetland in North Carolina confirm that the model sufficiently captures the wetland hydrologic behaviors. The validated model was then applied to examine the wetland hydrodynamics under a 30-year historical climate forcing (1985-2014) for the wetland region. The simulation reveals that 43% of the study area has inundation events, 63% of which has a frequency higher than 50% each year. The canopy evaporation and transpiration decline dramatically when the inundation level exceeds the canopy height. Additionally, inundation causes about 10% increase of the net shortwave radiation. This study also demonstrates that the critical wetland zones highly influenced by the coastal processes spans 300-800 m from the coastline. The model developed in the study offers a new tool for understanding the complex wetland hydrodynamics in response to natural and human-induced disturbances at landscape to regional scales.

  17. Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations

    NASA Astrophysics Data System (ADS)

    Qi, W.; Zhang, C.; Fu, G.; Sweetapple, C.; Zhou, H.

    2016-02-01

    The applicability of six fine-resolution precipitation products, including precipitation radar, infrared, microwave and gauge-based products, using different precipitation computation recipes, is evaluated using statistical and hydrological methods in northeastern China. In addition, a framework quantifying uncertainty contributions of precipitation products, hydrological models, and their interactions to uncertainties in ensemble discharges is proposed. The investigated precipitation products are Tropical Rainfall Measuring Mission (TRMM) products (TRMM3B42 and TRMM3B42RT), Global Land Data Assimilation System (GLDAS)/Noah, Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and a Global Satellite Mapping of Precipitation (GSMAP-MVK+) product. Two hydrological models of different complexities, i.e. a water and energy budget-based distributed hydrological model and a physically based semi-distributed hydrological model, are employed to investigate the influence of hydrological models on simulated discharges. Results show APHRODITE has high accuracy at a monthly scale compared with other products, and GSMAP-MVK+ shows huge advantage and is better than TRMM3B42 in relative bias (RB), Nash-Sutcliffe coefficient of efficiency (NSE), root mean square error (RMSE), correlation coefficient (CC), false alarm ratio, and critical success index. These findings could be very useful for validation, refinement, and future development of satellite-based products (e.g. NASA Global Precipitation Measurement). Although large uncertainty exists in heavy precipitation, hydrological models contribute most of the uncertainty in extreme discharges. Interactions between precipitation products and hydrological models can have the similar magnitude of contribution to discharge uncertainty as the hydrological models. A better precipitation product does not guarantee a better discharge simulation because of interactions. It is also found that a good discharge simulation depends on a good coalition of a hydrological model and a precipitation product, suggesting that, although the satellite-based precipitation products are not as accurate as the gauge-based products, they could have better performance in discharge simulations when appropriately combined with hydrological models. This information is revealed for the first time and very beneficial for precipitation product applications.

  18. Building Community Around Hydrologic Data Models Within CUAHSI

    NASA Astrophysics Data System (ADS)

    Maidment, D.

    2007-12-01

    The Consortium of Universities for the Advancement of Hydrologic Science, Inc (CUAHSI) has a Hydrologic Information Systems project which aims to provide better data access and capacity for data synthesis for the nation's water information, both that collected by academic investigators and that collected by water agencies. These data include observations of streamflow, water quality, groundwater levels, weather and climate and aquatic biology. Each water agency or research investigator has a unique method of formatting their data (syntactic heterogeneity) and describing their variables (semantic heterogeneity). The result is a large agglomeration of data in many formats and descriptions whose full content is hard to interpret and analyze. CUAHSI is helping to resolve syntactic heterogeneity through the development of WaterML, a standard XML markup language for communicating water observations data through web services, and a standard relational database structure for archiving data called the Observations Data Model. Variables in these data archiving and communicating systems are indexed against a controlled vocabulary of descriptive terms to provide the capacity to synthesize common data types from disparate data sources.

  19. Inter-sectoral comparison of model uncertainty of climate change impacts in Africa

    NASA Astrophysics Data System (ADS)

    van Griensven, Ann; Vetter, Tobias; Piontek, Franzisca; Gosling, Simon N.; Kamali, Bahareh; Reinhardt, Julia; Dinkneh, Aklilu; Yang, Hong; Alemayehu, Tadesse

    2016-04-01

    We present the model results and their uncertainties of an inter-sectoral impact model inter-comparison initiative (ISI-MIP) for climate change impacts in Africa. The study includes results on hydrological, crop and health aspects. The impact models used ensemble inputs consisting of 20 time series of daily rainfall and temperature data obtained from 5 Global Circulation Models (GCMs) and 4 Representative concentration pathway (RCP). In this study, we analysed model uncertainty for the Regional Hydrological Models, Global Hydrological Models, Malaria models and Crop models. For the regional hydrological models, we used 2 African test cases: the Blue Nile in Eastern Africa and the Niger in Western Africa. For both basins, the main sources of uncertainty are originating from the GCM and RCPs, while the uncertainty of the regional hydrological models is relatively low. The hydrological model uncertainty becomes more important when predicting changes on low flows compared to mean or high flows. For the other sectors, the impact models have the largest share of uncertainty compared to GCM and RCP, especially for Malaria and crop modelling. The overall conclusion of the ISI-MIP is that it is strongly advised to use ensemble modeling approach for climate change impact studies throughout the whole modelling chain.

  20. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Sivapalan, M.; Harman, C. J.; Srinivasan, V.; Hipsey, M. R.; Reed, P.; Montanari, A.; Blöschl, G.

    2013-06-01

    Globally, many different kinds of water resources management issues call for policy and infrastructure based responses. Yet responsible decision making about water resources management raises a fundamental challenge for hydrologists: making predictions about water resources on decadal-to-century long timescales. Obtaining insight into hydrologic futures over 100 yr timescales forces researchers to address internal and exogenous changes in the properties of hydrologic systems. To do this, new hydrologic research must identify, describe and model feedbacks between water and other changing, coupled environmental subsystems. These models must be constrained to yield useful insights, despite the many likely sources of uncertainty in their predictions. Chief among these uncertainties are the impacts of the increasing role of human intervention in the global water cycle - a defining challenge for hydrology in the Anthropocene. Here we present a research agenda that proposes a suite of strategies to address these challenges. The research agenda focuses on the development of co-evolutionary hydrologic modeling to explore coupling across systems, and to address the implications of this coupling on the long-time behavior of the coupled systems. Three research directions support the development of these models: hydrologic reconstruction, comparative hydrology and model-data learning. These strategies focus on understanding hydrologic processes and feedbacks over long timescales, across many locations, and through strategic coupling of observational and model data in specific systems. We highlight the value of use-inspired and team-based science that is motivated by real-world hydrologic problems but targets improvements in fundamental understanding to support decision-making and management.

  1. Implications of the methodological choices for hydrologic portrayals of climate change over the contiguous United States: Statistically downscaled forcing data and hydrologic models

    USGS Publications Warehouse

    Mizukami, Naoki; Clark, Martyn P.; Gutmann, Ethan D.; Mendoza, Pablo A.; Newman, Andrew J.; Nijssen, Bart; Livneh, Ben; Hay, Lauren E.; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.

  2. Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration.

    NASA Astrophysics Data System (ADS)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-09-01

    A physically based ground hydrology model is developed to improve the land-surface sensible and latent heat calculations in global climate models (GCMs). The processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff are explicitly included in the model. The amount of detail in the hydrologic calculations is restricted to a level appropriate for use in a GCM, but each of the aforementioned processes is modeled on the basis of the underlying physical principles. Data from the Goddard Institute for Space Studies (GISS) GCM are used as inputs for off-line tests of the ground hydrology model in four 8° × 10° regions (Brazil, Sahel, Sahara, and India). Soil and vegetation input parameters are calculated as area-weighted means over the 8° × 10° gridhox. This compositing procedure is tested by comparing resulting hydrological quantities to ground hydrology model calculations performed on the 1° × 1° cells which comprise the 8° × 10° gridbox. Results show that the compositing procedure works well except in the Sahel where lower soil water levels and a heterogeneous land surface produce more variability in hydrological quantities, indicating that a resolution better than 8° × 10° is needed for that region. Modeled annual and diurnal hydrological cycles compare well with observations for Brazil, where real world data are available. The sensitivity of the ground hydrology model to several of its input parameters was tested; it was found to be most sensitive to the fraction of land covered by vegetation and least sensitive to the soil hydraulic conductivity and matric potential.

  3. Combining experimentalist knowledge with modelling approaches to evaluate a controlled herbicide application experiment in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Ammann, Lorenz; Fenicia, Fabrizio; Doppler, Tobias; Reichert, Peter; Stamm, Christian

    2017-04-01

    Although only a small fraction of the herbicide mass sprayed on agricultural fields reaches the stream in usual conditions, concentrations in streams may reach levels proven to affect organisms. Therefore, diffuse pollution of water bodies by herbicides in catchments dominated by agricultural land-use is a major concern. The process of herbicide wash off has been studied through experiments at lab and field scales. Fewer studies are available at the scales of small catchments and larger watersheds, as the lack of spatial measurements at these scales hinders model parameterization and evaluation. Even fewer studies make explicit use of the combined knowledge of experimentalists and modellers. As a result, the dynamics and interactions of processes responsible for herbicide mobilization and transport at the catchment scale are insufficiently understood. In this work, we integrate preexisting experimentalist knowledge aquired in a large controlled herbicide application experiment into the model development process. The experimental site was a small (1.2 km2) agricultural catchment with subdued topography (423 to 473 m a.s.l.), typical for the Swiss Plateau. The experiment consisted of an application of multiple herbicides, distributed in-stream concentration measurements at high temporal resolution as well as soil and ponding water samples. The measurements revealed considerable spatio-temporal variation in herbicide loss rates. The objective of our study is to better understand the processes that caused this variation. In an iterative dialogue between modellers and experimentalists, we constructed a simple hydrological model structure with multiple reservoirs, considering degradation and sorption of herbicides. Spatial heterogeneity was accounted for through Hydrological Response Units (HRUs). Different model structures were used for dinstinct HRUs to account for spatial variability in the perceived dominant processes. Some parameters were linked between HRUs to constrain the parameter space and facilitate inference. The Superflex hydrological modelling framework provided the flexibility needed for the distributed iterative approach. The model was jointly calibrated to streamflow data and time series of herbicide concentrations. Our preliminary results indicate that herbicide loss rates are generally higher for soils which are prone to saturation or when maximum rainfall intensity is high. While a very simple model is sufficient to characterize the hydrological response of the catchment, considerable extensions are needed to include the major conceptual herbicide transport paths in a physically reasonable way. With the current model we are able to reproduce streamflow dynamics, whereas identifying generalizable mechanisms that drive the wash off dynamics of different herbicides from different fields is challenging.

  4. The Mica Creek Experimental Watershed: An Outdoor Laboratory for the Investigation of Hydrologic Processes in a Continental/Maritime Mountainous Environment

    NASA Astrophysics Data System (ADS)

    Link, T. E.; Gravelle, J.; Hubbart, J.; Warnsing, A.; Du, E.; Boll, J.; Brooks, E.; Cundy, T.

    2004-12-01

    Experimental catchments have proven to be extremely useful for investigations focused on fundamental hydrologic processes and on the impacts of land cover change on hydrologic regimes and water quality. Recent studies have illustrated how watershed responses to experimental treatments vary greatly between watersheds with differing physical, ecological and hydroclimatic characteristics. Meteorological and hydrological data within catchments are needed to help identify how hydrologic mechanisms may be altered by land cover alterations, and to both constrain and develop spatially-distributed physically based models. Existing instrumentation at the Mica Creek Experimental Watershed (MCEW) in northern Idaho is a fourth-order catchment that is undergoing expansion to produce a comprehensive dataset for model development and testing. The experimental catchments encompass a 28 km2 area spanning elevations from 975 to 1725 m msl. Snow processes dominate the hydrology of the catchment and climate conditions in the winter alternate between cold, dry continental and warm, moist maritime weather systems. Landcover is dominated by 80 year old second growth conifer forests, with partially cut (thinned) and clear-cut sub-catchments. Climate and precipitation data are collected at a SNOTEL site, three primary, and seven supplemental meteorological stations stratified by elevation and canopy cover. Manual snow depth measurements are recorded every 1-2 weeks during snowmelt, stratified by aspect, elevation and canopy cover. An air temperature transect spans three second-order sub-catchments to track air temperature lapse rate dynamics. Precipitation gauge arrays are installed within thinned and closed-canopy stands to track throughfall and interception loss. Nine paired and nested sub-catchments are monitored for flow, temperature, sediment, and nutrients. Hydroclimatic data are augmented by LiDAR and hyperspectral imagery for determination of canopy and topographic structure. Results will serve as a key dataset to assess how canopy conditions affect surface hydrology in complex snow-dominated catchments in the intermountain western U.S.

  5. Comparisons of regional Hydrological Angular Momentum (HAM) of the different models

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Kolaczek, B.; Popinski, W.

    2006-10-01

    In the paper hydrological excitations of the polar motion (HAM) were computed from various hydrological data series (NCEP, ECMWF, CPC water storage and LaD World Simulations of global continental water). HAM series obtained from these four models and the geodetic excitation function GEOD computed from the polar motion COMB03 data were compared in the seasonal spectral band. The results show big differences of these hydrological excitation functions as well as of their spectra in the seasonal spectra band. Seasonal oscillations of the global geophysical excitation functions (AAM + OAM + HAM) in all cases besides the NCEP/NCAR model are smaller than the geodetic excitation function. It means that these models need further improvement and perhaps not only hydrological models need improvements.

  6. Accelerating advances in continental domain hydrologic modeling

    USGS Publications Warehouse

    Archfield, Stacey A.; Clark, Martyn; Arheimer, Berit; Hay, Lauren E.; McMillan, Hilary; Kiang, Julie E.; Seibert, Jan; Hakala, Kirsti; Bock, Andrew R.; Wagener, Thorsten; Farmer, William H.; Andreassian, Vazken; Attinger, Sabine; Viglione, Alberto; Knight, Rodney; Markstrom, Steven; Over, Thomas M.

    2015-01-01

    In the past, hydrologic modeling of surface water resources has mainly focused on simulating the hydrologic cycle at local to regional catchment modeling domains. There now exists a level of maturity among the catchment, global water security, and land surface modeling communities such that these communities are converging toward continental domain hydrologic models. This commentary, written from a catchment hydrology community perspective, provides a review of progress in each community toward this achievement, identifies common challenges the communities face, and details immediate and specific areas in which these communities can mutually benefit one another from the convergence of their research perspectives. Those include: (1) creating new incentives and infrastructure to report and share model inputs, outputs, and parameters in data services and open access, machine-independent formats for model replication or reanalysis; (2) ensuring that hydrologic models have: sufficient complexity to represent the dominant physical processes and adequate representation of anthropogenic impacts on the terrestrial water cycle, a process-based approach to model parameter estimation, and appropriate parameterizations to represent large-scale fluxes and scaling behavior; (3) maintaining a balance between model complexity and data availability as well as uncertainties; and (4) quantifying and communicating significant advancements toward these modeling goals.

  7. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    NASA Astrophysics Data System (ADS)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff contributed about 40%, 20% in subsurface while there is about 13% in the base flow. For better understanding and interpretation of the area there is still need of further coherent research and analysis for land use change and future climate change impact in the glaciered alpine catchment of Himalayan region.

  8. Monte Carlo Based Calibration and Uncertainty Analysis of a Coupled Plant Growth and Hydrological Model

    NASA Astrophysics Data System (ADS)

    Houska, Tobias; Multsch, Sebastian; Kraft, Philipp; Frede, Hans-Georg; Breuer, Lutz

    2014-05-01

    Computer simulations are widely used to support decision making and planning in the agriculture sector. On the one hand, many plant growth models use simplified hydrological processes and structures, e.g. by the use of a small number of soil layers or by the application of simple water flow approaches. On the other hand, in many hydrological models plant growth processes are poorly represented. Hence, fully coupled models with a high degree of process representation would allow a more detailed analysis of the dynamic behaviour of the soil-plant interface. We used the Python programming language to couple two of such high process oriented independent models and to calibrate both models simultaneously. The Catchment Modelling Framework (CMF) simulated soil hydrology based on the Richards equation and the Van-Genuchten-Mualem retention curve. CMF was coupled with the Plant growth Modelling Framework (PMF), which predicts plant growth on the basis of radiation use efficiency, degree days, water shortage and dynamic root biomass allocation. The Monte Carlo based Generalised Likelihood Uncertainty Estimation (GLUE) method was applied to parameterize the coupled model and to investigate the related uncertainty of model predictions to it. Overall, 19 model parameters (4 for CMF and 15 for PMF) were analysed through 2 x 106 model runs randomly drawn from an equally distributed parameter space. Three objective functions were used to evaluate the model performance, i.e. coefficient of determination (R2), bias and model efficiency according to Nash Sutcliffe (NSE). The model was applied to three sites with different management in Muencheberg (Germany) for the simulation of winter wheat (Triticum aestivum L.) in a cross-validation experiment. Field observations for model evaluation included soil water content and the dry matters of roots, storages, stems and leaves. Best parameter sets resulted in NSE of 0.57 for the simulation of soil moisture across all three sites. The shape parameter of the retention curve n was highly constrained whilst other parameters of the retention curve showed a large equifinality. The root and storage dry matter observations were predicted with a NSE of 0.94, a low bias of 58.2 kg ha-1 and a high R2 of 0.98. Dry matters of stem and leaves were predicted with less, but still high accuracy (NSE=0.79, bias=221.7 kg ha-1, R2=0.87). We attribute this slightly poorer model performance to missing leaf senescence which is currently not implemented in PMF. The most constrained parameters for the plant growth model were the radiation-use-efficiency and the base temperature. Cross validation helped to identify deficits in the model structure, pointing out the need of including agricultural management options in the coupled model.

  9. Monte Carlo based calibration and uncertainty analysis of a coupled plant growth and hydrological model

    NASA Astrophysics Data System (ADS)

    Houska, T.; Multsch, S.; Kraft, P.; Frede, H.-G.; Breuer, L.

    2013-12-01

    Computer simulations are widely used to support decision making and planning in the agriculture sector. On the one hand, many plant growth models use simplified hydrological processes and structures, e.g. by the use of a small number of soil layers or by the application of simple water flow approaches. On the other hand, in many hydrological models plant growth processes are poorly represented. Hence, fully coupled models with a high degree of process representation would allow a more detailed analysis of the dynamic behaviour of the soil-plant interface. We used the Python programming language to couple two of such high process oriented independent models and to calibrate both models simultaneously. The Catchment Modelling Framework (CMF) simulated soil hydrology based on the Richards equation and the van-Genuchten-Mualem retention curve. CMF was coupled with the Plant growth Modelling Framework (PMF), which predicts plant growth on the basis of radiation use efficiency, degree days, water shortage and dynamic root biomass allocation. The Monte Carlo based Generalised Likelihood Uncertainty Estimation (GLUE) method was applied to parameterize the coupled model and to investigate the related uncertainty of model predictions to it. Overall, 19 model parameters (4 for CMF and 15 for PMF) were analysed through 2 × 106 model runs randomly drawn from an equally distributed parameter space. Three objective functions were used to evaluate the model performance, i.e. coefficient of determination (R2), bias and model efficiency according to Nash Sutcliffe (NSE). The model was applied to three sites with different management in Muencheberg (Germany) for the simulation of winter wheat (Triticum aestivum L.) in a cross-validation experiment. Field observations for model evaluation included soil water content and the dry matters of roots, storages, stems and leaves. Best parameter sets resulted in NSE of 0.57 for the simulation of soil moisture across all three sites. The shape parameter of the retention curve n was highly constrained whilst other parameters of the retention curve showed a large equifinality. The root and storage dry matter observations were predicted with a NSE of 0.94, a low bias of -58.2 kg ha-1 and a high R2 of 0.98. Dry matters of stem and leaves were predicted with less, but still high accuracy (NSE = 0.79, bias = 221.7 kg ha-1, R2 = 0.87). We attribute this slightly poorer model performance to missing leaf senescence which is currently not implemented in PMF. The most constrained parameters for the plant growth model were the radiation-use-efficiency and the base temperature. Cross validation helped to identify deficits in the model structure, pointing out the need of including agricultural management options in the coupled model.

  10. Developing a Virtual Network of Research Observatories

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Kirschtl, D.

    2008-12-01

    The hydrologic community has been discussing the concept of a network of observatories for the advancement of hydrologic science in areas of scaling processes, in testing generality of hypotheses, and in examining non-linear couplings between hydrologic, biotic, and human systems. The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is exploring the formation of a virtual network of observatories, formed from existing field studies without regard to funding source. Such a network would encourage sharing of data, metadata, field methods, and data analysis techniques to enable multidisciplinary synthesis, meta-analysis, and scientific collaboration in hydrologic and environmental science and engineering. The virtual network would strive to provide both the data and the environmental context of the data through advanced cyberinfrastructure support. The foundation for this virtual network is Water Data Services that enable the publication of time-series data collected at fixed points using a services-oriented architecture. These publication services, developed in the CUAHSI Hydrologic Information Systems project, permit the discovery of data from both academic and government sources through a single portal. Additional services under consideration are publication of geospatial data sets, immersive environments based upon site digital elevation models, and a common web portal to member sites populated with structured data about the site (such as land use history and geologic setting) to permit understanding the environmental context of the data being shared.

  11. Hydrological modeling in forested systems

    Treesearch

    H.E. Golden; G.R. Evenson; S. Tian; Devendra Amatya; Ge Sun

    2015-01-01

    Characterizing and quantifying interactions among components of the forest hydrological cycle is complex and usually requires a combination of field monitoring and modelling approaches (Weiler and McDonnell, 2004; National Research Council, 2008). Models are important tools for testing hypotheses, understanding hydrological processes and synthesizing experimental data...

  12. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  13. Advances in Parameter and Uncertainty Quantification Using Bayesian Hierarchical Techniques with a Spatially Referenced Watershed Model (Invited)

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.

    2013-12-01

    Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.

  14. On the importance of methods in hydrological modelling. Perspectives from a case study

    NASA Astrophysics Data System (ADS)

    Fenicia, Fabrizio; Kavetski, Dmitri

    2017-04-01

    The hydrological community generally appreciates that developing any non-trivial hydrological model requires a multitude of modelling choices. These choices may range from a (seemingly) straightforward application of mass conservation, to the (often) guesswork-like selection of constitutive functions, parameter values, etc. The application of a model itself requires a myriad of methodological choices - the selection of numerical solvers, objective functions for model calibration, validation approaches, performance metrics, etc. Not unreasonably, hydrologists embarking on ever ambitious projects prioritize hydrological insight over the morass of methodological choices. Perhaps to emphasize "ideas" over "methods", some journals have even reduced the fontsize of the methodology sections of its articles. However, the very nature of modelling is that seemingly routine methodological choices can significantly affect the conclusions of case studies and investigations - making it dangerous to skimp over methodological details in an enthusiastic rush towards the next great hydrological idea. This talk shares modelling insights from a hydrological study of a 300 km2 catchment in Luxembourg, where the diversity of hydrograph dynamics observed at 10 locations begs the question of whether external forcings or internal catchment properties act as dominant controls on streamflow generation. The hydrological insights are fascinating (at least to us), but in this talk we emphasize the impact of modelling methodology on case study conclusions and recommendations. How did we construct our prior set of hydrological model hypotheses? What numerical solver was implemented and why was an objective function based on Bayesian theory deployed? And what would have happened had we omitted model cross-validation, or not used a systematic hypothesis testing approach?

  15. Developing the snow component of a distributed hydrological model: a step-wise approach based on multi-objective analysis

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.; Colohan, R. J. E.

    1999-09-01

    A snow component has been developed for the distributed hydrological model, DIY, using an approach that sequentially evaluates the behaviour of different functions as they are implemented in the model. The evaluation is performed using multi-objective functions to ensure that the internal structure of the model is correct. The development of the model, using a sub-catchment in the Cairngorm Mountains in Scotland, demonstrated that the degree-day model can be enhanced for hydroclimatic conditions typical of those found in Scotland, without increasing meteorological data requirements. An important element of the snow model is a function to account for wind re-distribution. This causes large accumulations of snow in small pockets, which are shown to be important in sustaining baseflows in the rivers during the late spring and early summer, long after the snowpack has melted from the bulk of the catchment. The importance of the wind function would not have been identified using a single objective function of total streamflow to evaluate the model behaviour.

  16. A framework for modelling the complexities of food and water security under globalisation

    NASA Astrophysics Data System (ADS)

    Dermody, Brian J.; Sivapalan, Murugesu; Stehfest, Elke; van Vuuren, Detlef P.; Wassen, Martin J.; Bierkens, Marc F. P.; Dekker, Stefan C.

    2018-01-01

    We present a new framework for modelling the complexities of food and water security under globalisation. The framework sets out a method to capture regional and sectoral interdependencies and cross-scale feedbacks within the global food system that contribute to emergent water use patterns. The framework integrates aspects of existing models and approaches in the fields of hydrology and integrated assessment modelling. The core of the framework is a multi-agent network of city agents connected by infrastructural trade networks. Agents receive socio-economic and environmental constraint information from integrated assessment models and hydrological models respectively and simulate complex, socio-environmental dynamics that operate within those constraints. The emergent changes in food and water resources are aggregated and fed back to the original models with minimal modification of the structure of those models. It is our conviction that the framework presented can form the basis for a new wave of decision tools that capture complex socio-environmental change within our globalised world. In doing so they will contribute to illuminating pathways towards a sustainable future for humans, ecosystems and the water they share.

  17. Some thoughts on building, evaluating and constraining hydrologic models from catchment to continental scales

    NASA Astrophysics Data System (ADS)

    Wagener, Thorsten

    2017-04-01

    We increasingly build and apply hydrologic models that simulate systems beyond the catchment scale. Such models run at regional, national or even continental scales. They therefore offer opportunities for new scientific insights, for example by enabling comparative hydrology or connectivity studies, and for water management, where we might better understand changes to water resources from larger scale activities like agriculture or from hazards such as droughts. However, these models also require us to rethink how we build and evaluate them given that some of the unsolved problems from the catchment scale have not gone away. So what role should such models play in scientific advancement in hydrology? What problems do we still have to resolve before they can fulfill their role? What opportunities for solving these problems are there, but have not yet been utilized? I will provide some thoughts on these issues in the context of the IAHS Panta Rhei initiative and the scientific challenges it has set out for hydrology (Montanari et al., 2013, Hydrological Sciences Journal; McMillan et al., 2016, Hydrological Sciences Journal).

  18. Revealing, Reducing, and Representing Uncertainties in New Hydrologic Projections for Climate-changed Futures

    NASA Astrophysics Data System (ADS)

    Arnold, Jeffrey; Clark, Martyn; Gutmann, Ethan; Wood, Andy; Nijssen, Bart; Rasmussen, Roy

    2016-04-01

    The United States Army Corps of Engineers (USACE) has had primary responsibility for multi-purpose water resource operations on most of the major river systems in the U.S. for more than 200 years. In that time, the USACE projects and programs making up those operations have proved mostly robust against the range of natural climate variability encountered over their operating life spans. However, in some watersheds and for some variables, climate change now is known to be shifting the hydroclimatic baseline around which that natural variability occurs and changing the range of that variability as well. This makes historical stationarity an inappropriate basis for assessing continued project operations under climate-changed futures. That means new hydroclimatic projections are required at multiple scales to inform decisions about specific threats and impacts, and for possible adaptation responses to limit water-resource vulnerabilities and enhance operational resilience. However, projections of possible future hydroclimatologies have myriad complex uncertainties that require explicit guidance for interpreting and using them to inform those decisions about climate vulnerabilities and resilience. Moreover, many of these uncertainties overlap and interact. Recent work, for example, has shown the importance of assessing the uncertainties from multiple sources including: global model structure [Meehl et al., 2005; Knutti and Sedlacek, 2013]; internal climate variability [Deser et al., 2012; Kay et al., 2014]; climate downscaling methods [Gutmann et al., 2012; Mearns et al., 2013]; and hydrologic models [Addor et al., 2014; Vano et al., 2014; Mendoza et al., 2015]. Revealing, reducing, and representing these uncertainties is essential for defining the plausible quantitative climate change narratives required to inform water-resource decision-making. And to be useful, such quantitative narratives, or storylines, of climate change threats and hydrologic impacts must sample from the full range of uncertainties associated with all parts of the simulation chain, from global climate models with simulations of natural climate variability, through regional climate downscaling, and on to modeling of affected hydrologic processes and downstream water resources impacts. This talk will present part of the work underway now both to reveal and reduce some important uncertainties and to develop explicit guidance for future generation of quantitative hydroclimatic storylines. Topics will include: 1- model structural and parameter-set limitations of some methods widely used to quantify climate impacts to hydrologic processes [Gutmann et al., 2014; Newman et al., 2015]; 2- development and evaluation of new, spatially consistent, U.S. national-scale climate downscaling and hydrologic simulation capabilities directly relevant at the multiple scales of water-resource decision-making [Newman et al., 2015; Mizukami et al., 2015; Gutmann et al., 2016]; and 3- development and evaluation of advanced streamflow forecasting methods to reduce and represent integrated uncertainties in a tractable way [Wood et al., 2014; Wood et al., 2015]. A key focus will be areas where climatologic and hydrologic science is currently under-developed to inform decisions - or is perhaps wrongly scaled or misapplied in practice - indicating the need for additional fundamental science and interpretation.

  19. Choices Matter, but How Do We Model Them?

    NASA Astrophysics Data System (ADS)

    Brelsford, C.; Dumas, M.

    2017-12-01

    Quantifying interactions between social systems and the physical environment we live within has long been a major scientific challenge. Humans have had such a large influence on our environment that it is no longer reasonable to consider the behavior of an ecological or hydrological system from a purely `physical' perspective: imagining a system that excludes the influence of human choices and behavior. Understanding the role that human social choices play in the energy water nexus is crucial for developing accurate models in that space. The relatively new field of socio-hydrology is making progress towards understanding the role humans play in hydrological systems. While this fact is now widely recognized across the many academic fields that study water systems, we have yet to develop a coherent set of theories for how to model the behavior of these complex and highly interdependent socio-hydrological systems. How should we conceptualize hydrological systems as socio-ecological systems (i.e. system with variables, states, parameters, actors who can control certain variables and a sense of the desirability of states) within which the rigorous study of feedbacks becomes possible? This talk reviews the state of knowledge of how social decisions around water consumption, allocation, and transport influence and are influenced by the physical hydrology that water also moves within. We cover recent papers in socio-hydrology, engineering, water law, and institutional analysis. There have been several calls within socio-hydrology to model human social behavior endogenously along with the hydrology. These improvements are needed across a range of spatial and temporal scales. We suggest two potential strategies for coupled models that allow endogenous water consumption behavior: a social first model which looks for empirical relationships between water consumption and allocation choices and the hydrological state, and a hydrology first model in which we look for regularities in how water regimes influence behavior, regional economies, or allocation institutions.

  20. Spatial structure and scaling of macropores in hydrological process at small catchment scale

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter

    2013-04-01

    During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.

  1. Internal Catchment Process Simulation in a Snow-Dominated Basin: Performance Evaluation with Spatiotemporally Variable Runoff Generation and Groundwater Dynamics

    NASA Astrophysics Data System (ADS)

    Kuras, P. K.; Weiler, M.; Alila, Y.; Spittlehouse, D.; Winkler, R.

    2006-12-01

    Hydrologic models have been increasingly used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models, however, are also plagued by uncertainty stemming from a limited understanding of hydrological processes in forested catchments and parameter equifinality is a common concern. This has created the necessity to improve our understanding of how hydrological systems work, through the development of hydrological measures, analyses and models that address the question: are we getting the right answers for the right reasons? Hence, physically-based, spatially-distributed hydrologic models should be validated with high-quality experimental data describing multiple concurrent internal catchment processes under a range of hydrologic regimes. The distributed hydrology soil vegetation model (DHSVM) frequently used in forest management applications is an example of a process-based model used to address the aforementioned circumstances, and this study takes a novel approach at collectively examining the ability of a pre-calibrated model application to realistically simulate outlet flows along with the spatial-temporal variation of internal catchment processes including: continuous groundwater dynamics at 9 locations, stream and road network flow at 67 locations for six individual days throughout the freshet, and pre-melt season snow distribution. Model efficiency was improved over prior evaluations due to continuous efforts in improving the quality of meteorological data in the watershed. Road and stream network flows were very well simulated for a range of hydrological conditions, and the spatial distribution of the pre-melt season snowpack was in general agreement with observed values. The model was effective in simulating the spatial variability of subsurface flow generation, except at locations where strong stream-groundwater interactions existed, as the model is not capable of simulating such processes and subsurface flows always drain to the stream network. The model has proven overall to be quite capable in realistically simulating internal catchment processes in the watershed, which creates more confidence in future model applications exploring the effects of various forest management scenarios on the watershed's hydrological processes.

  2. Hydrologic dynamics and ecosystem structure.

    PubMed

    Rodríguez-Iturbe, I

    2003-01-01

    Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.

  3. Simulated discharge trends indicate robustness of hydrological models in a changing climate

    NASA Astrophysics Data System (ADS)

    Addor, Nans; Nikolova, Silviya; Seibert, Jan

    2016-04-01

    Assessing the robustness of hydrological models under contrasted climatic conditions should be part any hydrological model evaluation. Robust models are particularly important for climate impact studies, as models performing well under current conditions are not necessarily capable of correctly simulating hydrological perturbations caused by climate change. A pressing issue is the usually assumed stationarity of parameter values over time. Modeling experiments using conceptual hydrological models revealed that assuming transposability of parameters values in changing climatic conditions can lead to significant biases in discharge simulations. This raises the question whether parameter values should to be modified over time to reflect changes in hydrological processes induced by climate change. Such a question denotes a focus on the contribution of internal processes (i.e., catchment processes) to discharge generation. Here we adopt a different perspective and explore the contribution of external forcing (i.e., changes in precipitation and temperature) to changes in discharge. We argue that in a robust hydrological model, discharge variability should be induced by changes in the boundary conditions, and not by changes in parameter values. In this study, we explore how well the conceptual hydrological model HBV captures transient changes in hydrological signatures over the period 1970-2009. Our analysis focuses on research catchments in Switzerland undisturbed by human activities. The precipitation and temperature forcing are extracted from recently released 2km gridded data sets. We use a genetic algorithm to calibrate HBV for the whole 40-year period and for the eight successive 5-year periods to assess eventual trends in parameter values. Model calibration is run multiple times to account for parameter uncertainty. We find that in alpine catchments showing a significant increase of winter discharge, this trend can be captured reasonably well with constant parameter values over the whole reference period. Further, preliminary results suggest that some trends in parameter values do not reflect changes in hydrological processes, as reported by others previously, but instead might stem from a modeling artifact related to the parameterization of evapotranspiration, which is overly sensitive to temperature increase. We adopt a trading-space-for-time approach to better understand whether robust relationships between parameter values and forcing can be established, and to critically explore the rationale behind time-dependent parameter values in conceptual hydrological models.

  4. Publishing and sharing of hydrologic models through WaterHUB

    NASA Astrophysics Data System (ADS)

    Merwade, V.; Ruddell, B. L.; Song, C.; Zhao, L.; Kim, J.; Assi, A.

    2011-12-01

    Most hydrologists use hydrologic models to simulate the hydrologic processes to understand hydrologic pathways and fluxes for research, decision making and engineering design. Once these tasks are complete including publication of results, the models generally are not published or made available to the public for further use and improvement. Although publication or sharing of models is not required for journal publications, sharing of models may open doors for new collaborations, and avoids duplication of efforts if other researchers are interested in simulating a particular watershed for which a model already exists. For researchers, who are interested in sharing models, there are limited avenues to publishing their models to the wider community. Towards filling this gap, a prototype cyberinfrastructure (CI), called WaterHUB, is developed for sharing hydrologic data and modeling tools in an interactive environment. To test the utility of WaterHUB for sharing hydrologic models, a system to publish and share SWAT (Soil Water Assessment Tool) is developed. Users can utilize WaterHUB to search and download existing SWAT models, and also upload new SWAT models. Metadata such as the name of the watershed, name of the person or agency who developed the model, simulation period, time step, and list of calibrated parameters also published with individual model.

  5. Event-based hydrological modeling for detecting dominant hydrological process and suitable model strategy for semi-arid catchments

    NASA Astrophysics Data System (ADS)

    Huang, Pengnian; Li, Zhijia; Chen, Ji; Li, Qiaoling; Yao, Cheng

    2016-11-01

    To simulate the hydrological processes in semi-arid areas properly is still challenging. This study assesses the impact of different modeling strategies on simulating flood processes in semi-arid catchments. Four classic hydrological models, TOPMODEL, XINANJIANG (XAJ), SAC-SMA and TANK, were selected and applied to three semi-arid catchments in North China. Based on analysis and comparison of the simulation results of these classic models, four new flexible models were constructed and used to further investigate the suitability of various modeling strategies for semi-arid environments. Numerical experiments were also designed to examine the performances of the models. The results show that in semi-arid catchments a suitable model needs to include at least one nonlinear component to simulate the main process of surface runoff generation. If there are more than two nonlinear components in the hydrological model, they should be arranged in parallel, rather than in series. In addition, the results show that the parallel nonlinear components should be combined by multiplication rather than addition. Moreover, this study reveals that the key hydrological process over semi-arid catchments is the infiltration excess surface runoff, a non-linear component.

  6. Comparison of the Various Methodologies Used in Studying Runoff and Sediment Load in the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Xu, M., III; Liu, X.

    2017-12-01

    In the past 60 years, both the runoff and sediment load in the Yellow River Basin showed significant decreasing trends owing to the influences of human activities and climate change. Quantifying the impact of each factor (e.g. precipitation, sediment trapping dams, pasture, terrace, etc.) on the runoff and sediment load is among the key issues to guide the implement of water and soil conservation measures, and to predict the variation trends in the future. Hundreds of methods have been developed for studying the runoff and sediment load in the Yellow River Basin. Generally, these methods can be classified into empirical methods and physical-based models. The empirical methods, including hydrological method, soil and water conservation method, etc., are widely used in the Yellow River management engineering. These methods generally apply the statistical analyses like the regression analysis to build the empirical relationships between the main characteristic variables in a river basin. The elasticity method extensively used in the hydrological research can be classified into empirical method as it is mathematically deduced to be equivalent with the hydrological method. Physical-based models mainly include conceptual models and distributed models. The conceptual models are usually lumped models (e.g. SYMHD model, etc.) and can be regarded as transition of empirical models and distributed models. Seen from the publications that less studies have been conducted applying distributed models than empirical models as the simulation results of runoff and sediment load based on distributed models (e.g. the Digital Yellow Integrated Model, the Geomorphology-Based Hydrological Model, etc.) were usually not so satisfied owing to the intensive human activities in the Yellow River Basin. Therefore, this study primarily summarizes the empirical models applied in the Yellow River Basin and theoretically analyzes the main causes for the significantly different results using different empirical researching methods. Besides, we put forward an assessment frame for the researching methods of the runoff and sediment load variations in the Yellow River Basin from the point of view of inputting data, model structure and result output. And the assessment frame was then applied in the Huangfuchuan River.

  7. USERS MANUAL FOR HYDROLOGICAL SIMULATION PROGRAM - FORTRAN (HSPF)

    EPA Science Inventory

    The Hydrological Simulation Program--Fortran (HSPF) is a set of computer codes that can simulate the hydrologic, and associated water quality, processes on pervious and impervious land surfaces and in streams and well-mixed impoundments. The manual discusses the modular structure...

  8. HYDROLOGIC MODEL UNCERTAINTY ASSOCIATED WITH SIMULATING FUTURE LAND-COVER/USE SCENARIOS: A RETROSPECTIVE ANALYSIS

    EPA Science Inventory

    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...

  9. Integration of remote sensing and hydrologic modeling through multi-disciplinary semiarid field campaigns: Moonsoon 1990, Walnut Gulch 1992, and SALSA-MEX

    NASA Technical Reports Server (NTRS)

    Moran, M. S.; Goodrich, D. C.; Kustas, W. P.

    1994-01-01

    A research and modeling strategy is presented for development of distributed hydrologic models given by a combination of remotely sensed and ground based data. In support of this strategy, two experiments Moonsoon'90 and Walnut Gulch'92 were conducted in a semiarid rangeland southeast of Tucson, Arizona, (U.S.) and a third experiment, the SALSA-MEX (Semi Arid Land Surface Atmospheric Mountain Experiment) was proposed. Results from the Moonsoon'90 experiment substantially advanced the understanding of the hydrologic and atmospheric fluxes in an arid environment and provided insight into the use of remote sensing data for hydrologic modeling. The Walnut Gulch'92 experiment addressed the seasonal hydrologic dynamics of the region and the potential of combined optical microwave remote sensing for hydrologic applications. SALSA-MEX will combine measurements and modeling to study hydrologic processes influenced by surrounding mountains, such as enhanced precipitation, snowmelt and recharge to ground water aquifers. The results from these experiments, along with the extensive experimental data bases, should aid the research community in large scale modeling of mass and energy exchanges across the soil-plant-atmosphere interface.

  10. Variability of basin scale water resources indicators derived from global hydrological and land surface models

    NASA Astrophysics Data System (ADS)

    Werner, Micha; Blyth, Eleanor; Schellekens, Jaap

    2016-04-01

    Global hydrological and land-surface models are becoming increasingly available, and as the resolution of these improves, as well how hydrological processes are represented, so does their potential. These offer consistent datasets at the global scale, which can be used to establish water balances and derive policy relevant indicators in medium to large basins, including those that are poorly gauged. However, differences in model structure, model parameterisation, and model forcing may result in quite different indicator values being derived, depending on the model used. In this paper we explore indicators developed using four land surface models (LSM) and five global hydrological models (GHM). Results from these models have been made available through the Earth2Observe project, a recent research initiative funded by the European Union 7th Research Framework. All models have a resolution of 0.5 arc degrees, and are forced using the same WATCH-ERA-Interim (WFDEI) meteorological re-analysis data at a daily time step for the 32 year period from 1979 to 2012. We explore three water resources indicators; an aridity index, a simplified water exploitation index; and an indicator that calculates the frequency of occurrence of root zone stress. We compare indicators derived over selected areas/basins in Europe, Colombia, Southern Africa, the Indian Subcontinent and Australia/New Zealand. The hydrological fluxes calculated show quite significant differences between the nine models, despite the common forcing dataset, with these differences reflected in the indicators subsequently derived. The results show that the variability between models is related to the different climates types, with that variability quite logically depending largely on the availability of water. Patterns are also found in the type of models that dominate different parts of the distribution of the indicator values, with LSM models providing lower values, and GHM models providing higher values in some climates, and vice versa in others. How important this variability is in supporting a policy decision, depends largely on how a decision thresholds are set. For example in the case of the aridity index, with areas being denoted as arid with an index of 0.6 or above, we show that the variability is primarily of interest in transitional climates, such as the Mediterranean The analysis shows that while both LSM's and GHM's provide useful data, indices derived to support water resources management planning may differ substantially, depending on the model used. The analysis also identifies in which climates improvements to the models are particularly relevant to support the confidence with which decisions can be taken based on derived indicators.

  11. A Bayesian Uncertainty Framework for Conceptual Snowmelt and Hydrologic Models Applied to the Tenderfoot Creek Experimental Forest

    NASA Astrophysics Data System (ADS)

    Smith, T.; Marshall, L.

    2007-12-01

    In many mountainous regions, the single most important parameter in forecasting the controls on regional water resources is snowpack (Williams et al., 1999). In an effort to bridge the gap between theoretical understanding and functional modeling of snow-driven watersheds, a flexible hydrologic modeling framework is being developed. The aim is to create a suite of models that move from parsimonious structures, concentrated on aggregated watershed response, to those focused on representing finer scale processes and distributed response. This framework will operate as a tool to investigate the link between hydrologic model predictive performance, uncertainty, model complexity, and observable hydrologic processes. Bayesian methods, and particularly Markov chain Monte Carlo (MCMC) techniques, are extremely useful in uncertainty assessment and parameter estimation of hydrologic models. However, these methods have some difficulties in implementation. In a traditional Bayesian setting, it can be difficult to reconcile multiple data types, particularly those offering different spatial and temporal coverage, depending on the model type. These difficulties are also exacerbated by sensitivity of MCMC algorithms to model initialization and complex parameter interdependencies. As a way of circumnavigating some of the computational complications, adaptive MCMC algorithms have been developed to take advantage of the information gained from each successive iteration. Two adaptive algorithms are compared is this study, the Adaptive Metropolis (AM) algorithm, developed by Haario et al (2001), and the Delayed Rejection Adaptive Metropolis (DRAM) algorithm, developed by Haario et al (2006). While neither algorithm is truly Markovian, it has been proven that each satisfies the desired ergodicity and stationarity properties of Markov chains. Both algorithms were implemented as the uncertainty and parameter estimation framework for a conceptual rainfall-runoff model based on the Probability Distributed Model (PDM), developed by Moore (1985). We implement the modeling framework in Stringer Creek watershed in the Tenderfoot Creek Experimental Forest (TCEF), Montana. The snowmelt-driven watershed offers that additional challenge of modeling snow accumulation and melt and current efforts are aimed at developing a temperature- and radiation-index snowmelt model. Auxiliary data available from within TCEF's watersheds are used to support in the understanding of information value as it relates to predictive performance. Because the model is based on lumped parameters, auxiliary data are hard to incorporate directly. However, these additional data offer benefits through the ability to inform prior distributions of the lumped, model parameters. By incorporating data offering different information into the uncertainty assessment process, a cross-validation technique is engaged to better ensure that modeled results reflect real process complexity.

  12. Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.

    2016-12-01

    Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.

  13. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing

    2017-08-01

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of eco-hydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965-1969) from -0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010-2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  14. A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US

    Treesearch

    G. Sun; S.G. McNulty; D.M. Amatya; R.W. Skaggs; L.W. Swift; J.P. Shepard; H. Riekerk

    2002-01-01

    Hydrology plays a critical roie in wetland development and ecosystem structure and functions. Hydrologic responses to forest management and climate change are diverse in the Southern United States due to topographic and climatic differences. This paper presents a comparison study on long-term hydrologic characteristics (long-term seasonal runoff patterns, water...

  15. A Model-Model and Data-Model Comparison for the Early Eocene Hydrological Cycle

    NASA Technical Reports Server (NTRS)

    Carmichael, Matthew J.; Lunt, Daniel J.; Huber, Matthew; Heinemann, Malte; Kiehl, Jeffrey; LeGrande, Allegra; Loptson, Claire A.; Roberts, Chris D.; Sagoo, Navjit; Shields, Christine

    2016-01-01

    A range of proxy observations have recently provided constraints on how Earth's hydrological cycle responded to early Eocene climatic changes. However, comparisons of proxy data to general circulation model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised. In this work, we undertake an intercomparison of GCM-derived precipitation and P - E distributions within the extended EoMIP ensemble (Eocene Modelling Intercomparison Project; Lunt et al., 2012), which includes previously published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure, and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to the preindustrial conditions. This is primarily due to elevated atmospheric paleo-CO2, resulting in elevated temperatures, although the effects of differences in paleogeography and ice sheets are also important in some models. For a given CO2 level, globally averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP=dT ) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa, and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that GCMs generally underestimate precipitation rates at high latitudes, although a possible seasonal bias of the proxies cannot be excluded. Models which warm these regions, either via elevated CO2 or by varying poorly constrained model parameter values, are most successful in simulating a match with geologic data. Further data from low-latitude regions and better constraints on early Eocene CO2 are now required to discriminate between these model simulations given the large error bars on paleoprecipitation estimates. Given the clear differences between simulated precipitation distributions within the ensemble, our results suggest that paleohydrological data offer an independent means by which to evaluate model skill for warm climates.

  16. Diagnosing hydrological limitations of a Land Surface Model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2015-08-01

    Land Surface Models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution and spatial water redistribution over the catchment's groundwater and surface water systems. Three types of information are utilised to improve the model's hydrology: (a) observations, (b) information about expected response from regionalised data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  17. Diagnosing hydrological limitations of a land surface model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2016-01-01

    Land surface models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy, and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation and improvement is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution, and spatial water redistribution over the catchment's groundwater and surface-water systems. Three types of information are utilized to improve the model's hydrology: (a) observations, (b) information about expected response from regionalized data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  18. Stream Discharge and Evapotranspiration Responses to Climate Change and Their Associated Uncertainties in a Large Semi-Arid Basin

    NASA Astrophysics Data System (ADS)

    Bassam, S.; Ren, J.

    2017-12-01

    Predicting future water availability in watersheds is very important for proper water resources management, especially in semi-arid regions with scarce water resources. Hydrological models have been considered as powerful tools in predicting future hydrological conditions in watershed systems in the past two decades. Streamflow and evapotranspiration are the two important components in watershed water balance estimation as the former is the most commonly-used indicator of the overall water budget estimation, and the latter is the second biggest component of water budget (biggest outflow from the system). One of the main concerns in watershed scale hydrological modeling is the uncertainties associated with model prediction, which could arise from errors in model parameters and input meteorological data, or errors in model representation of the physics of hydrological processes. Understanding and quantifying these uncertainties are vital to water resources managers for proper decision making based on model predictions. In this study, we evaluated the impacts of different climate change scenarios on the future stream discharge and evapotranspiration, and their associated uncertainties, throughout a large semi-arid basin using a stochastically-calibrated, physically-based, semi-distributed hydrological model. The results of this study could provide valuable insights in applying hydrological models in large scale watersheds, understanding the associated sensitivity and uncertainties in model parameters, and estimating the corresponding impacts on interested hydrological process variables under different climate change scenarios.

  19. Development and testing of watershed-scale models for poorly drained soils

    Treesearch

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2005-01-01

    Watershed-scale hydrology and water quality models were used to evaluate the crrmulative impacts of land use and management practices on dowrzstream hydrology and nitrogen loading of poorly drained watersheds. Field-scale hydrology and nutrient dyyrutmics are predicted by DRAINMOD in both models. In the first model (DRAINMOD-DUFLOW), field-scale predictions are coupled...

  20. The application of remote sensing to the development and formulation of hydrologic planning models

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.

    1976-01-01

    A hydrologic planning model is developed based on remotely sensed inputs. Data from LANDSAT 1 are used to supply the model's quantitative parameters and coefficients. The use of LANDSAT data as information input to all categories of hydrologic models requiring quantitative surface parameters for their effects functioning is also investigated.

  1. Adequacy of satellite derived rainfall data for stream flow modeling

    USGS Publications Warehouse

    Artan, G.; Gadain, Hussein; Smith, Jodie; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.

    2007-01-01

    Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.

  2. Three-dimensional hydrogeologic framework model of the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico

    USGS Publications Warehouse

    Sweetkind, Donald S.

    2017-09-08

    As part of a U.S. Geological Survey study in cooperation with the Bureau of Reclamation, a digital three-dimensional hydrogeologic framework model was constructed for the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico. This model was constructed to define the aquifer system geometry and subsurface lithologic characteristics and distribution for use in a regional numerical hydrologic model. The model includes five hydrostratigraphic units: river channel alluvium, three informal subdivisions of Santa Fe Group basin fill, and an undivided pre-Santa Fe Group bedrock unit. Model input data were compiled from published cross sections, well data, structure contour maps, selected geophysical data, and contiguous compilations of surficial geology and structural features in the study area. These data were used to construct faulted surfaces that represent the upper and lower subsurface hydrostratigraphic unit boundaries. The digital three-dimensional hydrogeologic framework model is constructed through combining faults, the elevation of the tops of each hydrostratigraphic unit, and boundary lines depicting the subsurface extent of each hydrostratigraphic unit. The framework also compiles a digital representation of the distribution of sedimentary facies within each hydrostratigraphic unit. The digital three-dimensional hydrogeologic model reproduces with reasonable accuracy the previously published subsurface hydrogeologic conceptualization of the aquifer system and represents the large-scale geometry of the subsurface aquifers. The model is at a scale and resolution appropriate for use as the foundation for a numerical hydrologic model of the study area.

  3. The benefits of daily data and scale up issues in hydrologic models-SWAT and CRAFT

    NASA Astrophysics Data System (ADS)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    When modelling the flow pathways for nutrient transport, the lack of good data and limitation of data resolution become the key cause of low quality output in various hydrologic models. The scale of catchment being studied would present the main issues of the sensitivity and uncertainty expected on the hydrologic modelling. Equally, the time step chosen is also important to nutrient dynamics. This study aims to evaluate the benefits of using both monthly and daily data in hydrologic models, and to address the issues of catchment scale when using the two hydrologic models, the Soil and Water Assessment Tool (SWAT), and Catchment Runoff Attenuation Flux Tool (CRAFT), by comparing the difference between SWAT and CRAFT in flow pathways and sediment transport. The models are different in terms of complexity, therefore the poster will discuss the strengths and weakness of the models. Also we can show the problems of calibration and how the models can be used to support catchment modelling.

  4. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. 2; Aggregation

    NASA Technical Reports Server (NTRS)

    Schamschula, Marius; Crosson, William L.; Inguva, Ramarao; Yates, Thomas; Laymen, Charles A.; Caulfield, John

    1998-01-01

    This is a follow up on the preceding presentation by Crosson. The grid size for remote microwave measurements is much coarser than the hydrological model computational grids. To validate the hydrological models with measurements we propose mechanisms to aggregate the hydrological model outputs for soil moisture to allow comparison with measurements. Weighted neighborhood averaging methods are proposed to facilitate the comparison. We will also discuss such complications as misalignment, rotation and other distortions introduced by a generalized sensor image.

  5. Comparison of Conventional and ANN Models for River Flow Forecasting

    NASA Astrophysics Data System (ADS)

    Jain, A.; Ganti, R.

    2011-12-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  6. Ordinary kriging as a tool to estimate historical daily streamflow records

    USGS Publications Warehouse

    Farmer, William H.

    2016-01-01

    Efficient and responsible management of water resources relies on accurate streamflow records. However, many watersheds are ungaged, limiting the ability to assess and understand local hydrology. Several tools have been developed to alleviate this data scarcity, but few provide continuous daily streamflow records at individual streamgages within an entire region. Building on the history of hydrologic mapping, ordinary kriging was extended to predict daily streamflow time series on a regional basis. Pooling parameters to estimate a single, time-invariant characterization of spatial semivariance structure is shown to produce accurate reproduction of streamflow. This approach is contrasted with a time-varying series of variograms, representing the temporal evolution and behavior of the spatial semivariance structure. Furthermore, the ordinary kriging approach is shown to produce more accurate time series than more common, single-index hydrologic transfers. A comparison between topological kriging and ordinary kriging is less definitive, showing the ordinary kriging approach to be significantly inferior in terms of Nash–Sutcliffe model efficiencies while maintaining significantly superior performance measured by root mean squared errors. Given the similarity of performance and the computational efficiency of ordinary kriging, it is concluded that ordinary kriging is useful for first-order approximation of daily streamflow time series in ungaged watersheds.

  7. Signs of critical transition in the Everglades wetlands in response to climate and anthropogenic changes.

    PubMed

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2013-04-16

    The increasing pressure of climatic change and anthropogenic activities is predicted to have major effects on ecosystems around the world. With their fragility and sensitivity to hydrologic shifts and land-use changes, wetlands are among the most vulnerable of such ecosystems. Focusing on the Everglades National Park, we here assess the impact of changes in the hydrologic regime, as well as habitat loss, on the spatial configuration of vegetation species. Because the current structuring of vegetation clusters in the Everglades exhibits power-law behavior and such behavior is often associated with self-organization and dynamics occurring near critical transition points, the quantification and prediction of the impact of those changes on the ecosystem is deemed of paramount importance. We implement a robust model able to identify the main hydrologic and local drivers of the vegetation species spatial structuring and apply it for quantitative assessment. We find that shifts in the hydropatterns will mostly affect the relative abundance of species that currently colonize specific hydroperiod niches. Habitat loss or disruption, however, would have a massive impact on all plant communities, which are found to exhibit clear threshold behaviors when a given percentage of habitable habitat is lost.

  8. Signs of critical transition in the Everglades wetlands in response to climate and anthropogenic changes

    PubMed Central

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2013-01-01

    The increasing pressure of climatic change and anthropogenic activities is predicted to have major effects on ecosystems around the world. With their fragility and sensitivity to hydrologic shifts and land-use changes, wetlands are among the most vulnerable of such ecosystems. Focusing on the Everglades National Park, we here assess the impact of changes in the hydrologic regime, as well as habitat loss, on the spatial configuration of vegetation species. Because the current structuring of vegetation clusters in the Everglades exhibits power-law behavior and such behavior is often associated with self-organization and dynamics occurring near critical transition points, the quantification and prediction of the impact of those changes on the ecosystem is deemed of paramount importance. We implement a robust model able to identify the main hydrologic and local drivers of the vegetation species spatial structuring and apply it for quantitative assessment. We find that shifts in the hydropatterns will mostly affect the relative abundance of species that currently colonize specific hydroperiod niches. Habitat loss or disruption, however, would have a massive impact on all plant communities, which are found to exhibit clear threshold behaviors when a given percentage of habitable habitat is lost. PMID:23576751

  9. Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: The case of Wet Walnut Creek Watershed, Kansas, USA

    USGS Publications Warehouse

    Ramireddygari, S.R.; Sophocleous, M.A.; Koelliker, J.K.; Perkins, S.P.; Govindaraju, R.S.

    2000-01-01

    This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard 'base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed. (C) 2000 Elsevier Science B.V.This paper presents the results of a comprehensive modeling study of surface and groundwater systems, including stream-aquifer interactions, for the Wet Walnut Creek Watershed in west-central Kansas. The main objective of this study was to assess the impacts of watershed structures and irrigation water use on streamflow and groundwater levels, which in turn affect availability of water for the Cheyenne Bottoms Wildlife Refuge Management area. The surface-water flow model, POTYLDR, and the groundwater flow model, MODFLOW, were combined into an integrated, watershed-scale, continuous simulation model. Major revisions and enhancements were made to the POTYLDR and MODFLOW models for simulating the detailed hydrologic budget for the Wet Walnut Creek Watershed. The computer simulation model was calibrated and verified using historical streamflow records (at Albert and Nekoma gaging stations), reported irrigation water use, observed water-level elevations in watershed structure pools, and groundwater levels in the alluvial aquifer system. To assess the impact of watershed structures and irrigation water use on streamflow and groundwater levels, a number of hypothetical management scenarios were simulated under various operational criteria for watershed structures and different annual limits on water use for irrigation. A standard `base case' was defined to allow comparative analysis of the results of different scenarios. The simulated streamflows showed that watershed structures decrease both streamflows and groundwater levels in the watershed. The amount of water used for irrigation has a substantial effect on the total simulated streamflow and groundwater levels, indicating that irrigation is a major budget item for managing water resources in the watershed.A comprehensive simulation model that combines the surface water flow model POTYLDR and the groundwater flow model MODFLOW was used to study the impacts of watershed structures (e.g., dams) and irrigation water use (including stream-aquifer interactions) on streamflow and groundwater. The model was revised, enhanced, calibrated, and verified, then applied to evaluate the hydrologic budget for Wet Wal

  10. Simultaneous Semi-Distributed Model Calibration Guided by ...

    EPA Pesticide Factsheets

    Modelling approaches to transfer hydrologically-relevant information from locations with streamflow measurements to locations without such measurements continues to be an active field of research for hydrologists. The Pacific Northwest Hydrologic Landscapes (PNW HL) provide a solid conceptual classification framework based on our understanding of dominant processes. A Hydrologic Landscape code (5 letter descriptor based on physical and climatic properties) describes each assessment unit area, and these units average area 60km2. The core function of these HL codes is to relate and transfer hydrologically meaningful information between watersheds without the need for streamflow time series. We present a novel approach based on the HL framework to answer the question “How can we calibrate models across separate watersheds simultaneously, guided by our understanding of dominant processes?“. We should be able to apply the same parameterizations to assessment units of common HL codes if 1) the Hydrologic Landscapes contain hydrologic information transferable between watersheds at a sub-watershed-scale and 2) we use a conceptual hydrologic model and parameters that reflect the hydrologic behavior of a watershed. In this study, This work specifically tests the ability or inability to use HL-codes to inform and share model parameters across watersheds in the Pacific Northwest. EPA’s Western Ecology Division has published and is refining a framework for defining la

  11. DRAINMOD-FOREST: Integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests

    Treesearch

    Shiying Tian; Mohamed A. Youssef; R. Wayne Skaggs; Devendra M. Amatya; G.M. Chescheir

    2012-01-01

    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model,...

  12. Network analysis applications in hydrology

    NASA Astrophysics Data System (ADS)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  13. A 3D visualization of spatial relationship between geological structure and groundwater chemical profile around Iwate volcano, Japan: based on the ARCGIS 3D Analyst

    NASA Astrophysics Data System (ADS)

    Shibahara, A.; Ohwada, M.; Itoh, J.; Kazahaya, K.; Tsukamoto, H.; Takahashi, M.; Morikawa, N.; Takahashi, H.; Yasuhara, M.; Inamura, A.; Oyama, Y.

    2009-12-01

    We established 3D geological and hydrological model around Iwate volcano to visualize 3D relationships between subsurface structure and groundwater profile. Iwate volcano is a typical polygenetic volcano located in NE Japan, and its body is composed of two stratovolcanoes which have experienced sector collapses several times. Because of this complex structure, groundwater flow around Iwate volcano is strongly restricted by subsurface construction. For example, Kazahaya and Yasuhara (1999) clarified that shallow groundwater in north and east flanks of Iwate volcano are recharged at the mountaintop, and these flow systems are restricted in north and east area because of the structure of younger volcanic body collapse. In addition, Ohwada et al. (2006) found that these shallow groundwater in north and east flanks have relatively high concentration of major chemical components and high 3He/4He ratios. In this study, we succeeded to visualize the spatial relationship between subsurface structure and chemical profile of shallow and deep groundwater system using 3D model on the GIS. In the study region, a number of geological and hydrological datasets, such as boring log data and groundwater chemical profile, were reported. All these paper data are digitized and converted to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. We also inputted digital elevation model (DEM) around Iwate volcano issued by the Geographical Survey Institute of Japan, and digital geological maps issued by Geological Survey of Japan, AIST. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer.

  14. Teaching geographical hydrology in a non-stationary world

    NASA Astrophysics Data System (ADS)

    Hendriks, Martin R.; Karssenberg, Derek

    2010-05-01

    Understanding hydrological processes in a non-stationary world requires knowledge of hydrological processes and their interactions. Also, one needs to understand the (non-linear) relations between the hydrological system and other parts of our Earth system, such as the climate system, the socio-economic system, and the ecosystem. To provide this knowledge and understanding we think that three components are essential when teaching geographical hydrology. First of all, a student needs to acquire a thorough understanding of classical hydrology. For this, knowledge of the basic hydrological equations, such as the energy equation (Bernoulli), flow equation (Darcy), continuity (or water balance) equation is needed. This, however, is not sufficient to make a student fully understand the interactions between hydrological compartments, or between hydrological subsystems and other parts of the Earth system. Therefore, secondly, a student also needs to be knowledgeable of methods by which the different subsystems can be coupled; in general, numerical models are used for this. A major disadvantage of numerical models is their complexity. A solution may be to use simpler models, provided that a student really understands how hydrological processes function in our real, non-stationary world. The challenge for a student then lies in understanding the interactions between the subsystems, and to be able to answer questions such as: what is the effect of a change in vegetation or land use on runoff? Thirdly, knowledge of field hydrology is of utmost importance. For this a student needs to be trained in the field. Fieldwork is very important as a student is confronted in the field with spatial and temporal variability, as well as with real life uncertainties, rather than being lured into believing the world as presented in hydrological textbooks and models, e.g. the world under study is homogeneous, isotropic, or lumped (averaged). Also, students in the field learn to plan and cooperate. Besides fieldwork, a student should also learn to make use of the many available data sets, such as google earth, or as provided by remote sensing, or automatic data loggers. In our opinion the following sequence of activities should be applied for a student to attain a desirable working knowledge level. As mentioned earlier, a student first of all needs to have sufficient classical hydrological knowledge. After this a student should be educated in using simple models, in which field knowledge is incorporated. After this, a student should learn how to build models for solving typical hydrological problems. Modelling is especially worthwhile when the model is applied to a known area, as this certifies integration of fieldwork and modelling activities. To learn how to model, tailored courses with software that provides a set of easily learned functions to match the student's conceptual thought processes are needed. It is not easy to bring theoretical, field, and modelling knowledge together, and a pitfall may be the lack of knowledge of one or more of the above. Also, a student must learn to be able to deal with uncertainties in data and models, and must be trained to deal with unpredictability. Therefore, in our opinion a modern student should strive to become an integrating specialist in all of the above mentioned fields if we are to take geographical hydrology to a higher level and if we want to come to grips with it in a non-stationary world. A student must learn to think and act in an integrative way, and for this combining classical hydrology, field hydrology and modelling at a high education level in our hydrology curricula, in our opinion, is the way to proceed.

  15. Preliminary three-dimensional geohydrologic framework of the San Antonio Creek Groundwater Basin, Santa Barbara County, California

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Sweetkind, D. S.; O'leary, D. R.

    2017-12-01

    The San Antonio Creek Groundwater Basin is a rural agricultural area that is heavily dependent on groundwater to meet local water demands. The U.S. Geological Survey (USGS) is working cooperatively with Santa Barbara County and Vandenberg Air Force Base to assess the quantity and quality of the groundwater resources within the basin. As part of this assessment, an integrated hydrologic model that will help stakeholders to effectively manage the water resources in the basin is being developed. The integrated hydrologic model includes a conceptual model of the subsurface geology consisting of stratigraphy and variations in lithology throughout the basin. The San Antonio Creek Groundwater Basin is a relatively narrow, east-west oriented valley that is structurally controlled by an eastward-plunging syncline. Basin-fill material beneath the valley floor consists of relatively coarse-grained, permeable, marine and non-marine sedimentary deposits, which are underlain by fine-grained, low-permeability, marine sedimentary rocks. To characterize the system, surficial and subsurface geohydrologic data were compiled from geologic maps, existing regional geologic models, and lithology and geophysical logs from boreholes, including two USGS multiple-well sites drilled as part of this study. Geohydrologic unit picks and lithologic variations are incorporated into a three-dimensional framework model of the basin. This basin (model) includes six geohydrologic units that follow the structure and stratigraphy of the area: 1) Bedrock - low-permeability marine sedimentary rocks; 2) Careaga Formation - fine to coarse grained near-shore sandstone; 3) Paso Robles Formation, lower portion - sandy-gravely deposits with clay and limestone; 4) Paso Robles Formation, middle portion - clayey-silty deposits; 5) Paso Robles Formation, upper portion - sandy-gravely deposits; and 6) recent Quaternary deposits. Hydrologic data show that the upper and lower portions of the Paso Robles Formation are the primary grou­ndwater-bearing units within the basin, and that the fine-grained layer within this Formation locally restricts vertical groundwater flow.

  16. Watershed Modeling Applications with the Open-Access Modular Distributed Watershed Educational Toolbox (MOD-WET) and Introductory Hydrology Textbook

    NASA Astrophysics Data System (ADS)

    Huning, L. S.; Margulis, S. A.

    2014-12-01

    Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated "off-the-shelf" watershed model in an introductory hydrology course, and 4) reduce the learning curve associated with analyzing meaningful real-world problems. The open-access MOD-WET and e-textbook have already been successfully incorporated within our undergraduate curriculum.

  17. Hydrological Modeling in Alaska with WRF-Hydro

    NASA Astrophysics Data System (ADS)

    Elmer, N. J.; Zavodsky, B.; Molthan, A.

    2017-12-01

    The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.

  18. Teaching hydrological modelling as a subsidiary subject

    NASA Astrophysics Data System (ADS)

    Hörmann, G.; Schmalz, B.; Fohrer, N.

    2009-04-01

    The department of hydrology and water resources management is part of the Ecology Center of Kiel University, an interdisciplinary research organization. We teach hydrology for geographers, biologists, agricultural engineers and ecologists. Hydrological modeling is part of the curriculum since 1988. It has moved from the subject for specialists to a basic component of all hydrological courses. During the first year, we focussed on in-depth teaching of theory and practice of one big model, but the students found it hard to follow and beyond practical problems. During the last years we switched to a broader, but more shallow policy. Modeling is now part of nearly all courses, but remains limited to mostly 2-4 days of teaching. We now present only very basic theory and leave it to the students to discover the details during the practical work with pre-installed data sets. The poster shows how the models SWAT, Hydrus, Coupmodel, SIMPEL and PC-Raster are embedded in the hydrological curriculum and what kind of problems we experienced in teaching.

  19. Improving predictions of the effects of extreme events, land use, and climate change on the hydrology of watersheds in the Philippines

    NASA Astrophysics Data System (ADS)

    Benavidez, Rubianca; Jackson, Bethanna; Maxwell, Deborah; Paringit, Enrico

    2016-05-01

    Due to its location within the typhoon belt, the Philippines is vulnerable to tropical cyclones that can cause destructive floods. Climate change is likely to exacerbate these risks through increases in tropical cyclone frequency and intensity. To protect populations and infrastructure, disaster risk management in the Philippines focuses on real-time flood forecasting and structural measures such as dikes and retaining walls. Real-time flood forecasting in the Philippines mostly utilises two models from the Hydrologic Engineering Center (HEC): the Hydrologic Modeling System (HMS) for watershed modelling, and the River Analysis System (RAS) for inundation modelling. This research focuses on using non-structural measures for flood mitigation, such as changing land use management or watershed rehabilitation. This is being done by parameterising and applying the Land Utilisation and Capability Indicator (LUCI) model to the Cagayan de Oro watershed (1400 km2) in southern Philippines. The LUCI model is capable of identifying areas providing ecosystem services such as flood mitigation and agricultural productivity, and analysing trade-offs between services. It can also assess whether management interventions could enhance or degrade ecosystem services at fine spatial scales. The LUCI model was used to identify areas within the watershed that are providing flood mitigating services and areas that would benefit from management interventions. For the preliminary comparison, LUCI and HEC-HMS were run under the same scenario: baseline land use and the extreme rainfall event of Typhoon Bopha. The hydrographs from both models were then input to HEC-RAS to produce inundation maps. The novelty of this research is two-fold: (1) this type of ecosystem service modelling has not been carried out in the Cagayan de Oro watershed; and (2) this is the first application of the LUCI model in the Philippines. Since this research is still ongoing, the results presented in this paper are preliminary. As the land use and soil parameterisation for this watershed are refined and more scenarios are run through the model, more robust comparisons can be made between the hydrographs produced by LUCI and HEC-HMS and how those differences affect the inundation map produced by HEC-RAS.

  20. Findings and Challenges in Fine-Resolution Large-Scale Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Her, Y. G.

    2017-12-01

    Fine-resolution large-scale (FL) modeling can provide the overall picture of the hydrological cycle and transport while taking into account unique local conditions in the simulation. It can also help develop water resources management plans consistent across spatial scales by describing the spatial consequences of decisions and hydrological events extensively. FL modeling is expected to be common in the near future as global-scale remotely sensed data are emerging, and computing resources have been advanced rapidly. There are several spatially distributed models available for hydrological analyses. Some of them rely on numerical methods such as finite difference/element methods (FDM/FEM), which require excessive computing resources (implicit scheme) to manipulate large matrices or small simulation time intervals (explicit scheme) to maintain the stability of the solution, to describe two-dimensional overland processes. Others make unrealistic assumptions such as constant overland flow velocity to reduce the computational loads of the simulation. Thus, simulation efficiency often comes at the expense of precision and reliability in FL modeling. Here, we introduce a new FL continuous hydrological model and its application to four watersheds in different landscapes and sizes from 3.5 km2 to 2,800 km2 at the spatial resolution of 30 m on an hourly basis. The model provided acceptable accuracy statistics in reproducing hydrological observations made in the watersheds. The modeling outputs including the maps of simulated travel time, runoff depth, soil water content, and groundwater recharge, were animated, visualizing the dynamics of hydrological processes occurring in the watersheds during and between storm events. Findings and challenges were discussed in the context of modeling efficiency, accuracy, and reproducibility, which we found can be improved by employing advanced computing techniques and hydrological understandings, by using remotely sensed hydrological observations such as soil moisture and radar rainfall depth and by sharing the model and its codes in public domain, respectively.

  1. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Laiolo, P.; Gabellani, S.; Campo, L.; Silvestro, F.; Delogu, F.; Rudari, R.; Pulvirenti, L.; Boni, G.; Fascetti, F.; Pierdicca, N.; Crapolicchio, R.; Hasenauer, S.; Puca, S.

    2016-06-01

    The reliable estimation of hydrological variables in space and time is of fundamental importance in operational hydrology to improve the flood predictions and hydrological cycle description. Nowadays remotely sensed data can offer a chance to improve hydrological models especially in environments with scarce ground based data. The aim of this work is to update the state variables of a physically based, distributed and continuous hydrological model using four different satellite-derived data (three soil moisture products and a land surface temperature measurement) and one soil moisture analysis to evaluate, even with a non optimal technique, the impact on the hydrological cycle. The experiments were carried out for a small catchment, in the northern part of Italy, for the period July 2012-June 2013. The products were pre-processed according to their own characteristics and then they were assimilated into the model using a simple nudging technique. The benefits on the model predictions of discharge were tested against observations. The analysis showed a general improvement of the model discharge predictions, even with a simple assimilation technique, for all the assimilation experiments; the Nash-Sutcliffe model efficiency coefficient was increased from 0.6 (relative to the model without assimilation) to 0.7, moreover, errors on discharge were reduced up to the 10%. An added value to the model was found in the rainfall season (autumn): all the assimilation experiments reduced the errors up to the 20%. This demonstrated that discharge prediction of a distributed hydrological model, which works at fine scale resolution in a small basin, can be improved with the assimilation of coarse-scale satellite-derived data.

  2. Physical Model Study of Cross Vanes and Ice

    DTIC Science & Technology

    2009-08-01

    spacing since, in the pre-scour state, experiments and the HEC - RAS hydraulic model (USACE 2002b) found that water surface ele- vation merged with the...docs/eng-manuals/em1110- 2-1612/toc.htm. USACE (2002b) HEC - RAS , Hydraulic Reference Manual. US Army Corps of Engineers Hydrologic Engineering Center...Currently little design guidance is available for constructing these structures on ice-affected rivers . This study used physical and numerical

  3. A method for coupling a parameterization of the planetary boundary layer with a hydrologic model

    NASA Technical Reports Server (NTRS)

    Lin, J. D.; Sun, Shu Fen

    1986-01-01

    Deardorff's parameterization of the planetary boundary layer is adapted to drive a hydrologic model. The method converts the atmospheric conditions measured at the anemometer height at one site to the mean values in the planetary boundary layer; it then uses the planetary boundary layer parameterization and the hydrologic variables to calculate the fluxes of momentum, heat and moisture at the atmosphere-land interface for a different site. A simplified hydrologic model is used for a simulation study of soil moisture and ground temperature on three different land surface covers. The results indicate that this method can be used to drive a spatially distributed hydrologic model by using observed data available at a meteorological station located on or nearby the site.

  4. Sensitivity of effective rainfall amount to land use description using GIS tool. Case of a small mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Payraudeau, S.; Tournoud, M. G.; Cernesson, F.

    Distributed modelling in hydrology assess catchment subdivision to take into account physic characteristics. In this paper, we test the effect of land use aggregation scheme on catchment hydrological response. Evolution of intra-subcatchment land use is studied using statistic and entropy methods. The SCS-CN method is used to calculate effective rainfall which is here assimilated to hydrological response. Our purpose is to determine the existence of a critical threshold-area appropriate for the application of hydrological modelling. Land use aggregation effects on effective rainfall is assessed on small mediterranean catchment. The results show that land use aggregation and land use classification type have significant effects on hydrological modelling and in particular on effective rainfall modelling.

  5. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    PubMed

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  6. Data Services in Support of High Performance Computing-Based Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Horsburgh, J. S.; Dash, P. K.; Gichamo, T.; Yildirim, A. A.; Jones, N.

    2014-12-01

    We have developed web-based data services to support the application of hydrologic models on High Performance Computing (HPC) systems. The purposes of these services are to provide hydrologic researchers, modelers, water managers, and users access to HPC resources without requiring them to become HPC experts and understanding the intrinsic complexities of the data services, so as to reduce the amount of time and effort spent in finding and organizing the data required to execute hydrologic models and data preprocessing tools on HPC systems. These services address some of the data challenges faced by hydrologic models that strive to take advantage of HPC. Needed data is often not in the form needed by such models, requiring researchers to spend time and effort on data preparation and preprocessing that inhibits or limits the application of these models. Another limitation is the difficult to use batch job control and queuing systems used by HPC systems. We have developed a REST-based gateway application programming interface (API) for authenticated access to HPC systems that abstracts away many of the details that are barriers to HPC use and enhances accessibility from desktop programming and scripting languages such as Python and R. We have used this gateway API to establish software services that support the delineation of watersheds to define a modeling domain, then extract terrain and land use information to automatically configure the inputs required for hydrologic models. These services support the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation and generation of hydrology-based terrain information such as wetness index and stream networks. These services also support the derivation of inputs for the Utah Energy Balance snowmelt model used to address questions such as how climate, land cover and land use change may affect snowmelt inputs to runoff generation. To enhance access to the time varying climate data used to drive hydrologic models, we have developed services to downscale and re-grid nationally available climate analysis data from systems such as NLDAS and MERRA. These cases serve as examples for how this approach can be extended to other models to enhance the use of HPC for hydrologic modeling.

  7. Insights on the impact of systematic model errors on data assimilation performance in changing catchments

    NASA Astrophysics Data System (ADS)

    Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.

    2018-03-01

    The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.

  8. Real-time hydrological early warning system at national scale for surface water and groundwater with stakeholder involvement

    NASA Astrophysics Data System (ADS)

    He, X.; Stisen, S.; Henriksen, H. J.

    2015-12-01

    Hydrological models are important tools to support decision making in water resource management in the past few decades. Nowadays, frequent occurrence of extreme hydrological events has put focus on development of real-time hydrological modeling and forecasting systems. Among the various types of hydrological models, it is only the rainfall-runoff models for surface water that are commonly used in the online real-time fashion; and there is never a tradition to use integrated hydrological models for both surface water and groundwater with large scale perspective. At the Geological Survey of Denmark and Greenland (GEUS), we have setup and calibrated an integrated hydrological model that covers the entire nation, namely the DK-model. So far, the DK-model has only been used in offline mode for historical and future scenario simulations. Therefore, challenges arise when operating the DK-model in real-time mode due to lack of technical experiences and stakeholder awareness. In the present study, we try to demonstrate the process of bringing the DK-model online while actively involving the opinions of the stakeholders. Although the system is not yet fully operational, a prototype has been finished and presented to the stakeholders which can simulate groundwater levels, streamflow and water content in the root zone with a lead time of 48 hours and refreshed every 6 hours. The active involvement of stakeholders has provided very valuable insights and feedbacks for future improvements.

  9. A blueprint for using climate change predictions in an eco-hydrological study

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2009-12-01

    There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for uncertainties in projections of future climate is discussed and a methodology for propagating these uncertainties into the probability density functions of changes in eco-hydrological variables is presented.

  10. Sensitivity of river fishes to climate change: The role of hydrological stressors on habitat range shifts.

    PubMed

    Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa

    2016-08-15

    Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative effects on fish populations and assemblages. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Determination of field-effective soil properties in the tidewater region of North Carolina

    Treesearch

    J. McFero Grace; R.W. Skaggs

    2013-01-01

    Soils vary spatially in texture, structure, depth of horizons, and macropores, which can lead to a large variation in soil physical properties. In particular, saturated hydraulic conductivity (Ksat) and drainable porosity are critical properties required to model field hydrology in poorly drained lands. These soil-property values can be measured...

  12. Open source data assimilation framework for hydrological modeling

    NASA Astrophysics Data System (ADS)

    Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik

    2013-04-01

    An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent processes from a different domain or have different spatial and temporal resolutions. An open source framework that bridges OpenMI and OpenDA is presented. The framework provides a generic and easy means for any OpenMI compliant model to assimilate observation measurements. An example test case will be presented using MikeSHE, and OpenMI compliant fully coupled integrated hydrological model that can accurately simulate the feedback dynamics of overland flow, unsaturated zone and saturated zone.

  13. Fallon, Nevada FORGE Thermal-Hydrological-Mechanical Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, Doug; Sonnenthal, Eric

    Archive contains thermal-mechanical simulation input/output files. Included are files which fall into the following categories: ( 1 ) Spreadsheets with various input parameter calculations ( 2 ) Final Simulation Inputs ( 3 ) Native-State Thermal-Hydrological Model Input File Folders ( 4 ) Native-State Thermal-Hydrological-Mechanical Model Input Files ( 5 ) THM Model Stimulation Cases See 'File Descriptions.xlsx' resource below for additional information on individual files.

  14. HYDROLOGICAL SIMULATION PROGRAM-FORTRAN (HSPF): USERS MANUAL FOR RELEASE 8.0

    EPA Science Inventory

    The Hydrological Simulation Program--FORTRAN (HSPF) is a set of computer codes that can simulate the hydrologic, and associated water quality, processes on pervious and impervious land surfaces and in streams and well mixed impoundments. The manual discusses the modular structure...

  15. Analyzing post-wildfire erosional processes and topographic change using hydrologic monitoring and Structure-from-Motion photogrammetry at the storm event scale

    NASA Astrophysics Data System (ADS)

    Leeper, R. J.; Barth, N. C.; Gray, A. B.

    2017-12-01

    Hydro-geomorphic response in recently burned watersheds is highly dependent on the timing and magnitude of subsequent rainstorms. Recent advancements in surveying and monitoring techniques using Unmanned Aerial Vehicles (UAV) and Structure-from-Motion (SfM) photogrammetry can support the rapid estimation of near cm-scale topographic response of headwater catchments (ha to km2). However, surface change due to shallow erosional processes such as sheetwash and rilling remain challenging to measure at this spatial extent and the storm event scale. To address this issue, we combined repeat UAV-SfM surveys with hydrologic monitoring techniques and field investigations to characterize post-wildfire erosional processes and topographic change on a storm-by-storm basis. The Las Lomas watershed ( 15 ha) burned in the 2016 San Gabriel Complex Fire along the front range of the San Gabriel Mountains, southern California. Surveys were conducted with a consumer grade UAV; twenty-six SfM control markers; two rain gages, and two pressure transducers were installed in the watershed. The initial SfM-derived point cloud generated from 422 photos contains 258 million points; the DEM has a resolution of 2.42 cm/pixel and a point density of 17.1 pts/cm2. Rills began forming on hillslopes and minor erosion occurred within the channel network during the first low intensity storms of the rainy season. Later more intense storms resulted in substantial geomorphic change. Hydrologic data indicate that during one of the intense storms total cumulative rainfall was 58.20 mm and peak 5-min intensity was 38.4 mm/hr. Poststorm field surveys revealed evidence of debris flows, flash flooding, erosion, and fluvial aggradation in the channel network, and rill growth and gully formation on hillslopes. Analyses of the SfM models indicate erosion dominated topographic change in steep channels and on hillslopes; aggradation dominated change in low gradient channels. A contrast of 5 cm exists between field measurements and change detected by differencing the SfM models. The quantitative and qualitative data sets obtained indicate that low-cost hydrologic monitoring techniques can be combined with SfM-derived high-resolution models to rapidly characterize post-wildfire hydrologic response and erosional processes on a storm event basis.

  16. Prediction of soil stability and erosion in semiarid regions using numerical hydrological model (MCAT) and airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Wittenberg, Lea

    2015-04-01

    Long-term environmental monitoring is addressed to identify physical and biological changes and progresses taking place in the ecosystem. This basic action of landscape monitoring is an essential part of the systematic long-term surveillance, aiming to evaluate, assess and predict the spatial change and progresses. Indeed, it provides a context for wide range of diverse studies and research frameworks from regional or global scale. Spatial-temporal trends and changes at various scales (massive to less certain) require establishing consistent baseline data over time. One of the spatial cases of landscape monitoring is dedicated to soil formation and pedological progresses. It is previously acknowledged that changes in soil affect the functionality of the environment, so monitoring changes recently become important cause considerable resources in areas such as environmental management, sustainability services, and protecting the environment healthy. Given the above, it can be concluded that monitoring changes in the base for sustainable development. The hydrological response of bare soils and watersheds in semiarid regions to intense rainfall events is known to be complex due to multiply physical and structural impacts and feedbacks. As a result, the comprehensive evaluations of mathematical models including detailed consideration of uncertainties in the modeling of hydrological and environmental systems are of increasing importance. The presented method incorporates means of remote sensing data, hydrological and climate data and implementing dedicated and integrative Monte Carlo Analysis Toolbox (MCAT) model for semiarid region. Complexity of practical models to represent spatial systems requires an extensive understanding of the spatial phenomena, while providing realistic balance of sensitivity and corresponding uncertainty levels. Nowadays a large number of dedicated mathematical models applied to assess environmental hydrological process. Among the most promising models is the MCAT, which is a MATLAB library of visual and numerical analysis tools for the evaluation of hydrological and environmental models. The model applied in this paper presents an innovative infrastructural system for predicting soil stability and erosion impacts. This integrated model is applicable to mixed areas with spatially varying soil properties, landscape, and land-cover characteristics. Data from a semiarid site in southern Israel was used to evaluate the model and analyze fundamental erosion mechanisms. The findings estimate the sensitivity of the suggested model to the physical parameters and encourage the use of hyperspectral remote sensing imagery (HSI). The proposed model is integrated according to the following stages: 1. The soil texture, aggregation, soil moisture estimated via airborne HSI data, including soil surface clay and calcium carbonate erosions; 2. The mechanical stability of soil assessed via pedo-transfer function corresponding to load dependent changes in soil physical properties due to pre-compression stress (set of equations study shear strength parameters take into account soil texture, aggregation, soil moisture and ecological soil variables); 3. The precipitation-related runoff model program (RMP) satisfactorily reproduces the observed seasonal mean and variation of surface runoff for the current climate simulation; 4. The Monte Carlo Analysis Toolbox (MCAT), a library of visual and numerical analysis tools for the evaluation of hydrological and environmental models, is proposed as a tool for integrate all the approaches to an applicable model. The presented model overcomes the limitations of existing modeling methods by integrating physical data produced via HSI and yet stays generic in terms of space and time independency.

  17. Critical Zone structure inferred from multiscale near surface geophysical and hydrological data across hillslopes at the Eel River CZO

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Rempe, D. M.; Holbrook, W. S.; Schmidt, L.; Hahm, W. J.; Dietrich, W. E.

    2017-12-01

    Except for boreholes and road cut, landslide, and quarry exposures, the subsurface structure of the critical zone (CZ) of weathered bedrock is relatively invisible and unmapped, yet this structure controls the short and long term fluxes of water and solutes. Non-invasive geophysical methods such as seismic refraction are widely applied to image the structure of the CZ at the hillslope scale. However, interpretations of such data are often limited due to heterogeneity and anisotropy contributed from fracturing, moisture content, and mineralogy on the seismic signal. We develop a quantitative framework for using seismic refraction tomography from intersecting geophysical surveys and hydrologic data obtained at the Eel River Critical Zone Observatory (ERCZO) in Northern California to help quantify the nature of subsurface structure across multiple hillslopes of varying topography in the area. To enhance our understanding of modeled velocity gradients and boundaries in relation to lithological properties, we compare refraction tomography results with borehole logs of nuclear magnetic resonance (NMR), gamma and neutron density, standard penetration testing, and observation drilling logs. We also incorporate laboratory scale rock characterization including mineralogical and elemental analyses as well as porosity and density measurements made via pycnometry, helium and mercury porosimetry, and laboratory scale NMR. We evaluate the sensitivity of seismically inferred saprolite-weathered bedrock and weathered-unweathered bedrock boundaries to various velocity and inversion parameters in relation with other macro scale processes such as gravitational and tectonic forces in influencing weathered bedrock velocities. Together, our sensitivity analyses and multi-method data comparison provide insight into the interpretation of seismic refraction tomography for the quantification of CZ structure and hydrologic dynamics.

  18. Human impact parameterization in global hydrological models improves estimates of monthly discharges and hydrological extremes: a multi-model validation study

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted; Ward, Philip; de Moel, Hans; Aerts, Jeroen; Muller Schmied, Hannes; Portmann, Felix; Zhao, Fang; Gerten, Dieter; Masaki, Yoshimitsu; Pokhrel, Yadu; Satoh, Yusuke; Gosling, Simon; Zaherpour, Jamal; Wada, Yoshihide

    2017-04-01

    Human impacts on freshwater resources and hydrological features form the core of present-day water related hazards, like flooding, droughts, water scarcity, and water quality issues. Driven by the societal and scientific needs to correctly model such water related hazards a fair amount of resources has been invested over the past decades to represent human activities and their interactions with the hydrological cycle in global hydrological models (GHMs). Use of these GHMs - including the human dimension - is widespread, especially in water resources research. Evaluation or comparative assessments of the ability of such GHMs to represent real-world hydrological conditions are, unfortunately, however often limited to (near-)natural river basins. Such studies are, therefore, not able to test the model representation of human activities and its associated impact on estimates of freshwater resources or assessments of hydrological extremes. Studies that did perform a validation exercise - including the human dimension and looking into managed catchments - either focused only on one hydrological model, and/or incorporated only a few data points (i.e. river basins) for validation. To date, a comprehensive comparative analysis that evaluates whether and where incorporating the human dimension actually improves the performance of different GHMs with respect to their representation of real-world hydrological conditions and extremes is missing. The absence of such study limits the potential benchmarking of GHMs and their outcomes in hydrological hazard and risk assessments significantly, potentially hampering incorporation of GHMs and their modelling results in actual policy making and decision support with respect to water resources management. To address this issue, we evaluate in this study the performance of five state-of-the-art GHMs that include anthropogenic activities in their modelling scheme, with respect to their representation of monthly discharges and hydrological extremes. To this end, we compared their monthly discharge simulations under a naturalized and a time-dependent human impact simulation, with monthly GRDC river discharge observations of 2,412 stations over the period 1971-2010. Evaluation metrics that were used to assess the performance of the GHMs included the modified Kling-Gupta Efficiency index, and its individual parameters describing the linear correlation coefficient, the bias ratio, and the variability ratio, as well as indicators for hydrological extremes (Q90, Q10). Our results show that inclusion of anthropogenic activities in the modelling framework generally enhances the overall performance of the GHMs studied, mainly driven by bias-improvements, and to a lesser extent due to changes in modelled hydrological variability. Whilst the inclusion of anthropogenic activities takes mainly effect in the managed catchments, a significant share of the (near-)natural catchments is influenced as well. To get estimates of hydrological extremes right, especially when looking at low-flows, inclusion of human activities is paramount. Whilst high-flow estimates are mainly decreased, impact of human activities on low-flows is ambiguous, i.e. due to the relative importance of the timing of return flows and reservoir operations. Even with inclusion of the human dimension we find, nevertheless, a persistent overestimation of hydrological extremes across all models, which should be accounted for in future assessments.

  19. Modeling the hydrologic impacts of forest harvesting on Florida flatwoods

    Treesearch

    Ge Sun; Hans Rierkerk; Nicholas B. Comerford

    1998-01-01

    The great temporal and spatial variability of pine flatwoods hydrology suggests traditional short-term field methods may not be effective in evaluating the hydrologic effects of forest management. The flatwoods model was developed, calibrated and validated specifically for the cypress wetland-pine upland landscape. The model was applied to two typical flatwoods sites...

  20. Hydrologic modeling strategy for the Islamic Republic of Mauritania, Africa

    USGS Publications Warehouse

    Friedel, Michael J.

    2008-01-01

    The government of Mauritania is interested in how to maintain hydrologic balance to ensure a long-term stable water supply for minerals-related, domestic, and other purposes. Because of the many complicating and competing natural and anthropogenic factors, hydrologists will perform quantitative analysis with specific objectives and relevant computer models in mind. Whereas various computer models are available for studying water-resource priorities, the success of these models to provide reliable predictions largely depends on adequacy of the model-calibration process. Predictive analysis helps us evaluate the accuracy and uncertainty associated with simulated dependent variables of our calibrated model. In this report, the hydrologic modeling process is reviewed and a strategy summarized for future Mauritanian hydrologic modeling studies.

Top