Quantitative determination of atmospheric hydroperoxyl radical
Springston, Stephen R.; Lloyd, Judith; Zheng, Jun
2007-10-23
A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.
NASA Technical Reports Server (NTRS)
Jackels, C. F.
1985-01-01
Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.
Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B
2016-03-01
Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.
2011-01-01
Dopamine is known to be an efficient antioxidant and to protect neurocytes from oxidative stress by scavenging free radicals. In this work, we have carried out a systematic quantum chemistry and computational kinetics study on the reactivity of dopamine toward hydroxyl (•OH) and hydroperoxyl (•OOH) free radicals in aqueous and lipidic simulated biological environments, within the density functional theory framework. Rate constants and branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the reactivity of dopamine toward hydroxyl radicals, in water at physiological pH, the main mechanism of the reaction is proposed to be the sequential electron proton transfer (SEPT), whereas in the lipidic environment, hydrogen atom transfer (HAT) and radical adduct formation (RAF) pathways contribute almost equally to the total reaction rate. In both environments, dopamine reacts with hydroxyl radicals at a rate that is diffusion-controlled. Reaction with the hydroperoxyl radical is much slower and occurs only by abstraction of any of the phenolic hydrogens. The overall rate coefficients are predicted to be 2.23 × 105 and 8.16 × 105 M–1 s–1, in aqueous and lipidic environment, respectively, which makes dopamine a very good •OOH, and presumably •OOR, radical scavenger. PMID:21919526
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Arnold, James O. (Technical Monitor)
1994-01-01
A new analytic global potential energy surface describing the hydroperoxyl radical system H((sup 2)S) + O2(X (sup 3)Sigma((sup -)(sub g))) (reversible reaction) HO2 ((X-tilde) (sup 2)A'') (reversible reaction) O((sup 3)P) + O H (X (sup 2)Pi) has been fitted using the ab initio complete active space SCF (self-consistent-field)/externally contracted configuration interaction (CASSCF/CCI) energy calculations of Walch and Duchovic. Results of quasiclassical trajectory studies to determine the rate coefficients of the forward and reverse reactions at combustion temperatures will be presented. In addition, vibrational energy levels were calculated using the quantum DVR-DGB (discrete variable representation-distributed Gaussian basis) method and the splitting due to H atom migration is investigated. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.
Isoprene photochemistry over the Amazon rainforest.
Liu, Yingjun; Brito, Joel; Dorris, Matthew R; Rivera-Rios, Jean C; Seco, Roger; Bates, Kelvin H; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N; Kim, Saewung; Goldstein, Allen H; Guenther, Alex B; Manzi, Antonio O; Souza, Rodrigo A F; Springston, Stephen R; Watson, Thomas B; McKinney, Karena A; Martin, Scot T
2016-05-31
Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.
Isoprene photochemistry over the Amazon rainforest
NASA Astrophysics Data System (ADS)
Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; Rivera-Rios, Jean C.; Seco, Roger; Bates, Kelvin H.; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N.; Kim, Saewung; Goldstein, Allen H.; Guenther, Alex B.; Manzi, Antonio O.; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; McKinney, Karena A.; Martin, Scot T.
2016-05-01
Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.
Microhydration and the Enhanced Acidity of Free Radicals.
Walton, John C
2018-02-14
Recent theoretical research employing a continuum solvent model predicted that radical centers would enhance the acidity (RED-shift) of certain proton-donor molecules. Microhydration studies employing a DFT method are reported here with the aim of establishing the effect of the solvent micro-structure on the acidity of radicals with and without RED-shifts. Microhydration cluster structures were obtained for carboxyl, carboxy-ethynyl, carboxy-methyl, and hydroperoxyl radicals. The numbers of water molecules needed to induce spontaneous ionization were determined. The hydration clusters formed primarily round the CO₂ units of the carboxylate-containing radicals. Only 4 or 5 water molecules were needed to induce ionization of carboxyl and carboxy-ethynyl radicals, thus corroborating their large RED-shifts.
NASA Technical Reports Server (NTRS)
Wennberg, P. O.; Cohen, R. C.; Hazen, N. L.; Lapson, L. B.; Allen, N. T.; Hanisco, T. F.; Oliver, J. F.; Lanham, N. W.; Demusz, J. N.; Anderson, J. G.
1994-01-01
The odd-hydrogen radicals OH and HO2 are central to most of the gas-phase chemical transformations that occur in the atmosphere. Of particular interest is the role that these species play in controlling the concentration of stratospheric ozone. This paper describes an instrument that measures both of these species at volume mixing ratios below one part in 10(exp 14) in the upper troposphere and lower stratosphere. The hydroxyl radical (OH) is measured by laser induced fluorescence at 309 nm. Tunable UV light is used to pump OH to the first electric state near 282 nm. the laser light is produced by a high-repetition rate pulsed dye-laser powered with all solid-state pump lasers. HO2 is measured as OH after gas-phase titration with nitric oxide. Measurements aboard a NASA ER-2 aircraft demonstrate the capability of this instrument to perform reliably with very high signal-to-noise ratios (greater than 30) achieved in short integration times (less than 20 sec).
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2005-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
McCully, Kilmer S
2015-01-01
The active site of oxidative phosphorylation and adenosine triphosphate (ATP) synthesis in mitochondria is proposed to consist of two molecules of thioretinamide bound to cobalamin, forming thioretinaco, complexed with ozone, oxygen, nicotinamide adenine dinucleotide. and inorganic phosphate, TR2CoO3O2NAD(+)H2PO4(-). Reduction of the pyridinium nitrogen of the nicotinamide group by an electron from electron transport complexes initiates polymerization of phosphate with adenosine diphosphate, yielding nicotinamide riboside and ATP bound to thioretinaco ozonide oxygen. A second electron reduces oxygen to hydroperoxyl radical, releasing ATP from the active site. A proton gradient is created within F1F0 ATPase complexes of mitochondria by reaction of protons with reduced nicotinamide riboside and with hydroperoxyl radical, yielding reduced nicotinamide riboside and hydroperoxide. The hyperhomocysteinemia of aging and dementia is attributed to decreased synthesis of adenosyl methionine by thioretinaco ozonide and ATP, causing decreased allosteric activation of cystathionine synthase and decreased allosteric inhibition of methylenetetrahydrofolate reductase and resulting in dysregulation of methionine metabolism. © 2015 by the Association of Clinical Scientists, Inc.
Isoprene photochemistry over the Amazon rainforest
Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; ...
2016-05-31
Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO 2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK +more » MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. Also, a value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). In conclusion, this abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.« less
Isoprene photochemistry over the Amazon rainforest
Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; Rivera-Rios, Jean C.; Seco, Roger; Bates, Kelvin H.; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N.; Kim, Saewung; Goldstein, Allen H.; Guenther, Alex B.; Manzi, Antonio O.; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; McKinney, Karena A.
2016-01-01
Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest. PMID:27185928
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yingjun; Brito, Joel; Dorris, Matthew R.
Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO 2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK +more » MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. Also, a value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). In conclusion, this abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.« less
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2004-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2011-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
Mechanism of Air Oxidation of the Fragrance Terpene Geraniol.
Bäcktorp, Carina; Hagvall, Lina; Börje, Anna; Karlberg, Ann-Therese; Norrby, Per-Ola; Nyman, Gunnar
2008-01-01
The fragrance terpene geraniol autoxidizes upon air exposure and forms a mixture of oxidation products, some of which are skin sensitizers. Reactions of geraniol with O2 have been studied with DFT (B3LYP) and the computational results compared to experimentally observed product ratios. The oxidation is initiated by hydrogen abstraction, forming an allylic radical which combines with an O2 molecule to yield an intermediate peroxyl radical. In the subsequent step, geraniol differs from previously studied cases, in which the radical chain reaction is propagated through intermolecular hydrogen abstraction. The hydroxy-substituted allylic peroxyl radical prefers an intramolecular rearrangement, producing observable aldehydes and the hydroperoxyl radical, which in turn can propagate the radical reaction. Secondary oxidation products like epoxides and formates were also considered, and plausible reaction pathways for formation are proposed.
Catalytic Hydroxylation of Benzene to Phenol by Dioxygen with an NADH Analogue.
Hirose, Kensaku; Ohkubo, Kei; Fukuzumi, Shunichi
2016-08-26
Hydroxylation of benzene by molecular oxygen (O2 ) occurs efficiently with 10-methyl-9,10-dihydroacridine (AcrH2 ) as an NADH analogue in the presence of a catalytic amount of Fe(ClO4 )3 or Fe(ClO4 )2 with excess trifluoroacetic acid in a solvent mixture of benzene and acetonitrile (1:1 v/v) to produce phenol, 10-methylacridinium ion and hydrogen peroxide (H2 O2 ) at 298 K. The catalytic oxidation of benzene by O2 with AcrH2 in the presence of a catalytic amount of Fe(ClO4 )3 is started by the formation of H2 O2 from AcrH2 , O2 , and H(+) . Hydroperoxyl radical (HO2 (.) ) is produced from H2 O2 with the redox pair of Fe(3+) /Fe(2+) by a Fenton type reaction. The rate-determining step in the initiation is the proton-coupled electron transfer from Fe(2+) to H2 O2 to produce HO(.) and H2 O. HO(.) abstracts hydrogen rapidly from H2 O2 to produce HO2 (.) and H2 O. The Fe(3+) produced was reduced back to Fe(2+) by H2 O2 . HO2 (.) reacts with benzene to produce the radical adduct, which abstracts hydrogen from AcrH2 to give the corresponding hydroperoxide, accompanied by generation of acridinyl radical (AcrH(.) ) to constitute the radical chain reaction. Hydroperoxyl radical (HO2 (.) ), which was detected by using the spin trap method with EPR analysis, acts as a chain carrier for the two radical chain pathways: one is the benzene hydroxylation with O2 and the second is oxidation of an NADH analogue with O2 to produce H2 O2 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alecu, I M; Zheng, Jingjing; Papajak, Ewa; Yu, Tao; Truhlar, Donald G
2012-12-20
Multistructural canonical variational transition-state theory with small-curvature multidimensional tunneling (MS-CVT/SCT) is employed to calculate thermal rate constants for hydrogen-atom abstraction from carbon-1 of n-butanol by the hydroperoxyl radical over the temperature range 250-2000 K. The M08-SO hybrid meta-GGA density functional was validated against CCSD(T)-F12a explicitly correlated wave function calculations with the jul-cc-pVTZ basis set. It was then used to compute the properties of all stationary points and the energies and Hessians of a few nonstationary points along the reaction path, which were then used to generate a potential energy surface by the multiconfiguration Shepard interpolation (MCSI) method. The internal rotations in the transition state for this reaction (like those in the reactant alcohol) are strongly coupled to each other and generate multiple stable conformations, which make important contributions to the partition functions. It is shown that neglecting to account for the multiple-structure effects and torsional potential anharmonicity effects that arise from the torsional modes would lead to order-of-magnitude errors in the calculated rate constants at temperatures of interest in combustion.
Detailed mechanism of toluene oxidation and comparison with benzene
NASA Technical Reports Server (NTRS)
Bittker, David A.
1988-01-01
A detailed mechanism for the oxidation of toluene in both argon and nitrogen dilutents is presented. The mechanism was used to compute experimentally ignition delay times for shock-heated toluene-oxygen-argon mixtures with resonably good success over a wide range of initial temperatures and pressures. Attempts to compute experimentally measured concentration profiles for toluene oxidation in a turbulent reactor were partially successful. An extensive sensitivity analysis was performed to determine the reactions which control the ignition process and the rates of formation and destruction of various species. The most important step was found to be the reaction of toluene with molecular oxygen, followed by the reactions of hydroperoxyl and atomic oxygen with benzyl radicals. These findings contrast with the benzene oxidation, where the benzene-molecular oxygen reaction is quite unimportant and the reaction of phenyl with molecular oxygen dominates. In the toluene mechanism the corresponding reaction of benzyl radicals with oxygen is unimportant. Two reactions which are important in the oxidation of benzene also influence the oxidation of toluene for several conditions. These are the oxidations of phenyl and cyclopentadienyl radicals by molecular oxygen. The mechanism presented successfully computes the decrease of toluene concentration with time in the nitrogen diluted turbulent reactor. This fact, in addition to the good prediction of ignition delay times, shows that this mechanism can be used for modeling the ignition and combustion process in practical, well-mixed combustion systems.
NASA Astrophysics Data System (ADS)
Abdullah, N. H.; Selamat, M. K. A.; Nasuha, N.; Hassan, H.; Zubir, N. A.
2018-06-01
Iron–immobilized montmorillonite KSF (Fe-MKSF) has been recognized as promising catalyst in degrading persistence organic contaminants. However, detailed mechanistic insight during the catalysis which involving the formation and identification of radical species were remained indeterminate due to complex reaction. Inspiring by this gap, iron-immobilized clay (Fe-MKSF) was synthesized and used as heterogeneous catalyst in the oxidative degradation of methyl orange (MO) solution. Identification of radical species were determined through the inclusion of different types of radical scavenging agent during the Fenton-like reaction at optimum condition. Interestingly, dominant radical species were found to be hydroperoxyl radicals (•OOH) which subsequently followed by hydroxyl radicals (•OH) during the catalysis. Based on the percentage of MO removal, it was suggested that approximately 88% of the •OOH radicals existed at the interface of catalyst while 39% presence in bulk solution. Meanwhile, the interface •OH radicals promoted 38% of MO removal, whilst 4% by the bulk •OH radicals. Hence, these findings have conveyed novel insight on detailed radicals’ identification as well as its’ interaction during the catalysis.
Merouani, Slimane; Hamdaoui, Oualid; Saoudi, Fethi; Chiha, Mahdi
2010-06-15
Central events of the ultrasonic action are the cavitation bubbles that can be considered as microreactors. Adiabatic collapse of cavitation bubbles leads to the formation of reactive species such as hydroxyl radicals (*OH), hydrogen peroxide (H(2)O(2)) and hydroperoxyl radicals (HOO*). Several chemical methods were used to detect the production of these reactive moieties in sonochemistry. In this work, the influence of several operational parameters on the sonochemistry dosimetries namely KI oxidation, Fricke reaction and H(2)O(2) production using 300 kHz ultrasound was investigated. The main experimental parameters showing significant effect in KI oxidation dosimetry were initial KI concentration, acoustic power and pH. The solution temperature showed restricted influence on KI oxidation. The acoustic power and liquid temperature highly affected Fricke reaction dosimetry. Operational conditions having important influence on H(2)O(2) formation were acoustic power, solution temperature and pH. For the three tested dosimetries, the sonochemical efficiency was independent of liquid volume. Copyright 2010 Elsevier B.V. All rights reserved.
Optimization of pharmaceutical wastewater treatment by solar/ferrioxalate photo-catalysis.
Monteagudo, J M; Durán, A; Culebradas, R; San Martín, I; Carnicer, A
2013-10-15
The degradation of a pharmaceutical wastewater using a ferrioxalate-assisted solar/photo-Fenton system has been studied. The photochemical reaction was carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and Neuronal Networks that included the following variables: initial concentrations of H2O2, catalyst Fe (II) and oxalic acid (H2C2O4), temperature and solar power. Under optimal conditions, 84% TOC (Total Organic Carbon) removal was achieved in 115 min. Oxalic acid had a positive effect on mineralization when solar power was above 30 W m(-2). The minimum amount of H2O2 to degrade 1 mol of TOC was found to be 3.57 mol. Both the H2O2 conversion efficiency and the degree of mineralization were highest when the oxalic/Fe(II) initial molar relation was close to 3. HO radicals were the main oxidative intermediate species in the process, although hydroperoxyl radicals (HO(2)(·)) also played a role. Copyright © 2013 Elsevier Ltd. All rights reserved.
Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols
NASA Astrophysics Data System (ADS)
Mao, J.; Fan, S.; Jacob, D. J.; Travis, K.; Naik, V.; Horowitz, L. W.
2012-12-01
The hydroperoxyl radical (HO2) is a major precursor of OH and tropospheric ozone. OH is the main atmospheric oxidant, while tropospheric ozone is an important surface pollutant and greenhouse gas. Standard gas-phase models for atmospheric chemistry tend to overestimate observed HO2 concentrations, and this has been tentatively attributed to heterogeneous uptake by aerosol particles. It is generally assumed that HO2 uptake by aerosol involves conversion to H2O2, but this is of limited efficacy as an HO2 sink because H2O2 can photolyze to regenerate OH and from there HO2. Joint atmospheric observations of HO2 and H2O2 suggest that HO2 uptake by aerosols may in fact not produce H2O2. Here we propose a catalytic mechanism involving coupling of the transition metal ions (TMI) Cu(I)/Cu(II) and Fe(II)/Fe(III) to rapidly convert HO2 to H2O in aerosols. The implied HO2 uptake significantly affects global model predictions of tropospheric OH, ozone, and other species, improving comparisons to observations, and may have a major and previously unrecognized impact on atmospheric oxidant chemistry.
Detection of atomic oxygen and further line assignments in the far-infrared stratospheric spectrum
NASA Technical Reports Server (NTRS)
Carli, B.; Mencaraglia, F.; Bonetti, A.; Carlotti, M.; Nolt, I.
1985-01-01
Recent progress in high-resolution measurement of sub-millimeter and far-infrared emission in the stratosphere is reviewed. Attention is given to the results of recent balloon measurements of the minor stratospheric constituents in the spectral range 40-190 per cm. Emission spectra are presented for HCl; HF; and OH. Emission spectra were also obtained for atomic oxygen; hydrobromic acid; and hydroperoxyl radical. The possibility of detecting HO2 and H2O2 in the far-infrared is also briefly discussed.
Singh, Nakul; O'Malley, Patrick J; Popelier, Paul L A
2005-02-21
Density functional calculations using the B3LYP functional are used to provide insight into the hydrogen abstraction mechanism of phenolic antioxidants. The energy profiles for 13 ortho, meta, para and di-methyl substituted phenols with hydroperoxyl radical have been determined. An excellent correlation between the enthalpy (DeltaH) and activation energy (DeltaEa) was found, obeying the Evans-Polanyi rule. The effects of hydrogen bonding on DeltaEa are also discussed. Electron donating groups at the ortho and para positions are able to lower the activation energy for hydrogen abstraction. The highly electron withdrawing fluoro substituent increases the activation energies relative to phenol at the meta position but not at the para position. The electron density is studied using the atoms in molecules (AIM) approach. Atomic and bond properties are extracted to describe the hydrogen atom abstraction mechanism. It is found that on going from reactants to transition state, the hydrogen atom experiences a loss in volume, electronic population and dipole moment. These features suggest that the phenol hydroperoxyl reactions proceed according to a proton coupled electron transfer (PCET) as opposed to a hydrogen atom transfer (HAT) mechanism.
Modeling the chemical evolution of nitrogen oxides near roadways
NASA Astrophysics Data System (ADS)
Wang, Yan Jason; DenBleyker, Allison; McDonald-Buller, Elena; Allen, David; Zhang, K. Max
2011-01-01
The chemical evolution of nitrogen dioxide (NO 2) and nitrogen monoxide (NO) in the vicinity of roadways is numerically investigated using a computational fluid dynamics model, CFD-VIT-RIT and a Gaussian-based model, CALINE4. CFD-VIT-RIT couples a standard k- ɛ turbulence model for turbulent mixing and the Finite-Rate model for chemical reactions. CALINE4 employs a discrete parcel method, assuming that chemical reactions are independent of the dilution process. The modeling results are compared to the field measurement data collected near two roadways in Austin, Texas, State Highway 71 (SH-71) and Farm to Market Road 973 (FM-973), under parallel and perpendicular wind conditions during the summer of 2007. In addition to ozone (O 3), other oxidants and reactive species including hydroperoxyl radical (HO 2), organic peroxyl radical (RO 2), formaldehyde (HCHO) and acetaldehyde (CH 3CHO) are considered in the transformation from NO to NO 2. CFD-VIT-RIT is shown to be capable of predicting both NO x and NO 2 profiles downwind. CALINE4 is able to capture the NO x profiles, but underpredicts NO 2 concentrations under high wind velocity. Our study suggests that the initial NO 2/NO x ratios have to be carefully selected based on traffic conditions in order to assess NO 2 concentrations near roadways. The commonly assumed NO 2/NO x ratio by volume of 5% may not be suitable for most roadways, especially those with a high fraction of heavy-duty truck traffic. In addition, high O 3 concentrations and high traffic volumes would lead to the peak NO 2 concentration occurring near roadways with elevated concentrations persistent over a long distance downwind.
Ahmad, Feroz; Leake, David S
2018-03-05
Oxidised low density lipoprotein (LDL) was considered to be important in the pathogenesis of atherosclerosis, but the large clinical trials of antioxidants, including the first one using probucol (the PQRST Trial), failed to show benefit and have cast doubt on the importance of oxidised LDL. We have shown previously that LDL oxidation can be catalysed by iron in the lysosomes of macrophages. The aim of this study was therefore to investigate the effectiveness of antioxidants in preventing LDL oxidation at lysosomal pH and also establish the possible mechanism of oxidation. Probucol did not effectively inhibit the oxidation of LDL at lysosomal pH, as measured by conjugated dienes or oxidised cholesteryl esters or tryptophan residues in isolated LDL or by ceroid formation in the lysosomes of macrophage-like cells, in marked contrast to its highly effective inhibition of LDL oxidation at pH 7.4. LDL oxidation at lysosomal pH was inhibited very effectively for long periods by N,N'-diphenyl-1,4-phenylenediamine, which is more hydrophobic than probucol and has been shown by others to inhibit atherosclerosis in rabbits, and by cysteamine, which is a hydrophilic antioxidant that accumulates in lysosomes. Iron-induced LDL oxidation might be due to the formation of the superoxide radical, which protonates at lysosomal pH to form the much more reactive, hydrophobic hydroperoxyl radical, which can enter LDL and reach its core. Probucol resides mainly in the surface monolayer of LDL and would not effectively scavenge hydroperoxyl radicals in the core of LDL. This might explain why probucol failed to protect against atherosclerosis in various clinical trials. The oxidised LDL hypothesis of atherosclerosis now needs to be re-evaluated using different and more effective antioxidants that protect against the lysosomal oxidation of LDL. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
VUV photoionization cross sections of HO2, H2O2, and H2CO.
Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio
2015-02-26
The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.
Oxidation of Fe(II) in rainwater.
Willey, J D; Whitehead, R F; Kieber, R J; Hardison, D R
2005-04-15
Photochemically produced Fe(II) is oxidized within hours under environmentally realistic conditions in rainwater. The diurnal variation between photochemical production and reoxidation of Fe(II) observed in our laboratory accurately mimics the behavior of ferrous iron observed in field studies where the highest concentrations of dissolved Fe(ll) occur in afternoon rain during the period of maximum sunlight intensity followed by gradually decreasing concentrations eventually returning to early morning pre-light values. The experimental work presented here, along with the results of kinetics studies done by others, suggests thatthe primary process responsible for the decline in photochemically produced Fe(II) concentrations is oxidation by hydrogen peroxide. This reaction is first order with respect to both the concentrations of Fe(II) and H2O2. The second-order rate constant determined for six different authentic rain samples varied over an order of magnitude and was always less than or equal to the rate constant determined for this reaction in simple acidic solutions. Oxidation of photochemically produced ferrous iron by other oxidants including molecular oxygen, ozone, hydroxyl radical, hydroperoxyl/superoxide radical, and hexavalent chromium were found to be insignificant under the conditions present in rainwater. This study shows that Fe(II) occurs as at least two different chemical species in rain; photochemically produced Fe(II) that is oxidized over time periods of hours, and a background Fe(II) that is protected against oxidation, perhaps by organic complexation, and is stable against oxidation for days. Because the rate of oxidation of photochemically produced Fe(II) does not increase with increasing rainwater pH, the speciation of this more labile form of Fe(II) is also not controlled by simple hydrolysis reactions.
Alecu, I M; Truhlar, Donald G
2011-12-29
Multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is employed to calculate thermal rate constants for the abstraction of hydrogen atoms from both positions of methanol by the hydroperoxyl and methyl radicals over the temperature range 100-3000 K. The M08-HX hybrid meta-generalized gradient approximation density functional and M08-HX with specific reaction parameters, both with the maug-cc-pVTZ basis set, were validated in part 1 of this study (Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A2011, 115, 2811) against highly accurate CCSDT(2)(Q)/CBS calculations for the energetics of these reactions, and they are used here to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along each considered reaction path. The internal rotations in some of the transition states are found to be highly anharmonic and strongly coupled to each other, and they generate multiple structures (conformations) whose contributions are included in the partition function. It is shown that the previous estimates for these rate constants used to build kinetic models for the combustion of methanol, some of which were based on transition state theory calculations with one-dimensional tunneling corrections and harmonic-oscillator approximations or separable one-dimensional hindered rotor treatments of torsions, are appreciably different than the ones presently calculated using MS-CVT/MT. The rate constants obtained from the best MS-CVT/MT calculations carried out in this study, in which the important effects of corner cutting due to small and large reaction path curvature are captured via a microcanonical optimized multidimensional tunneling (μOMT) treatment, are recommended for future refinement of the kinetic model for methanol combustion. © 2011 American Chemical Society
Observation of OH radicals produced by pulsed discharges on the surface of a liquid
NASA Astrophysics Data System (ADS)
Kanazawa, Seiji; Kawano, Hirokazu; Watanabe, Satoshi; Furuki, Takashi; Akamine, Shuichi; Ichiki, Ryuta; Ohkubo, Toshikazu; Kocik, Marek; Mizeraczyk, Jerzy
2011-06-01
The hydroxyl radical (OH) plays an important role in plasma chemistry at atmospheric pressure. OH radicals have a higher oxidation potential compared with other oxidative species such as free radical O, atomic oxygen, hydroperoxyl radical (HO2), hydrogen peroxide(H2O2) and ozone. In this study, surface discharges on liquids (water and its solutions) were investigated experimentally. A pulsed streamer discharge was generated on the liquid surface using a point-to-plane electrode geometry. The primary generation process of OH radicals is closely related to the streamer propagation, and the subsequent secondary process after the discharge has an influence on the chemical reaction. Taking into account the timescale of these processes, we investigated the behavior of OH radicals using two different diagnostic methods. Time evolution of the ground-state OH radicals above the liquid surface after the discharge was observed by a laser-induced fluorescence (LIF) technique. In order to observe the ground-state OH, an OH [A 2∑+(v' = 1) <-- X 2Π(v'' = 0)] system at 282 nm was used. As the secondary process, a portion of OH radicals diffused from gas phase to the liquid surface and dissolved in the liquid. These dissolved OH radicals were measured by a chemical probe method. Terephthalic acid was used as an OH radical trap and fluorescence of the resulting 2-hydroxyterephthalic acid was measured. This paper directly presents visualization of OH radicals over the liquid surface by means of LIF, and indirectly describes OH radicals dissolved in water by means of a chemical method.
Reactivity of chemiluminescence reagents toward oxidants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khevelev, M.; Weinstein-Loyd, J.B.
Hydroperoxyl radical (HO{sub 2}) and its conjugate base, superoxide radical (O{sub 2}{sup -}) are important chemical intermediates. O{sub 2}{sup -} is ubiquitous in aerobic cells and has been implicated in arthritis, cancer, and aging, among other biological processes. HO{sub 2} plays a central role in atmospheric photochemistry. Because of their short lifetime, there are few reliable analytical methods for the detection of HO{sub 2}/O{sub 2}{sup -}. In a number of recent publications, the chemiluminescence reagent CLA has been exploited as a specific marker for these species. Using UV/visible spectroscopy, we have investigated the stability of CLA and several of itsmore » analogs in the presence of oxidants, including O{sub 2}, H{sub 2}O{sub 2}, OH and HO{sub 2}/O{sub 2}{sup -}. The spectral changes observed suggest that the reaction with HO{sub 2}/O{sub 2}{sup -} is rather nonspecific.« less
Alecu, I M; Truhlar, Donald G
2011-04-07
The reactions of CH(3)OH with the HO(2) and CH(3) radicals are important in the combustion of methanol and are prototypes for reactions of heavier alcohols in biofuels. The reaction energies and barrier heights for these reaction systems are computed with CCSD(T) theory extrapolated to the complete basis set limit using correlation-consistent basis sets, both augmented and unaugmented, and further refined by including a fully coupled treatment of the connected triple excitations, a second-order perturbative treatment of quadruple excitations (by CCSDT(2)(Q)), core-valence corrections, and scalar relativistic effects. It is shown that the M08-HX and M08-SO hybrid meta-GGA density functionals can achieve sub-kcal mol(-1) agreement with the high-level ab initio results, identifying these functionals as important potential candidates for direct dynamics studies on the rates of these and homologous reaction systems.
Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F
2015-03-17
Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in the environment, but they can also originate endogenously, initiated by electron reduction of molecular oxygen. These molecules have important biological signaling activities, but they cause oxidative stress when dysfunction within the antioxidant system occurs. Excess ROS in living organisms can lead to problems, such as protein oxidation-through either cleavage of the polypeptide chain or modification of amino acid side chains-and lipid oxidation.
NASA Technical Reports Server (NTRS)
Anderson, James G.
1994-01-01
This three-year project supported the construction, calibration, and deployment of a new instrument to measure the OH and HO2 radicals on the NASA ER-2 aircraft. The instrument has met and exceeded all of its design goals. The instrumentation represents a true quantum leap in performance over that achieved in previous HO(x) instruments built in our group. Sensitivity for OH was enhanced by over two orders of magnitude as the weight fell from approximately 1500 to less than 200 Kg. Reliability has been very high: HO(x) data are available for all flights during the first operational mission, the Stratospheric Photochemistry, Aerosols, and Dynamics Expedition (SPADE). The results of that experiment have been reported in the scientific literature and at conferences. Additionally, measurements of H2O and O3 were made and have been reported in the scientific literature. The measurements demonstrate the important role that OH and HO2 play in determining the concentration of ozone in the lower stratosphere. During the SPADE campaign, the measurements demonstrate that the catalytic removal is dominated by processes involving the odd-hydrogen and halogen radical extremely important constraint for photochemical models that are being used to assess the potential deleterious effects of super-sonic aircraft effluent on the burden of stratospheric ozone. A list of the papers that came from this research are included, along with a copy of the paper, 'Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alecu, I. M.; Truhlar, D. G.
2011-04-07
The reactions of CH 3OH with the HO 2 and CH 3 radicals are important in the combustion of methanol and are prototypes for reactions of heavier alcohols in biofuels. The reaction energies and barrier heights for these reaction systems are computed with CCSD(T) theory extrapolated to the complete basis set limit using correlation-consistent basis sets, both augmented and unaugmented, and further refined by including a fully coupled treatment of the connected triple excitations, a second-order perturbative treatment of quadruple excitations (by CCSDT(2) Q), core–valence corrections, and scalar relativistic effects. It is shown that the M08-HX and M08-SO hybrid meta-GGAmore » density functionals can achieve sub-kcal mol -1 agreement with the high-level ab initio results, identifying these functionals as important potential candidates for direct dynamics studies on the rates of these and homologous reaction systems.« less
Shechner, M; Tas, E
2017-12-19
Reactive iodine and bromine species (RIS and RBS, respectively) are known for altering atmospheric chemistry and causing sharp tropospheric ozone (O 3 ) depletion in polar regions and significant O 3 reduction in the marine boundary layer (MBL). Here we use measurement-based modeling to show that, unexpectedly, both RIS and RBS can lead to enhanced O 3 formation in a polluted marine environment under volatile organic compound (VOC)-limited conditions associated with high nitrogen oxide (NO X = [NO] + [NO 2 ]) concentrations. Under these conditions, the daily average O 3 mixing ratio increased to ∼44 and ∼28% for BrO and IO mixing ratios of up to ∼6.8 and 4.7 ppt, respectively. The increase in the level of O 3 was partially induced by enhanced ClNO 3 formation for higher Br 2 and I 2 emission flux. The increase in the level of O 3 was associated with an increased mixing ratio of hydroperoxyl radical to hydroxyl radical ([HO 2 ]/[OH]) and increased [NO 2 ]/[NO] with higher levels of RBS and/or RIS. NO X -rich conditions are typical of the polluted MBL, near coastlines and ship plumes. Considering that O 3 is toxic to humans, plants, and animals and is a greenhouse gas, our findings call for adequate updating of local and regional air-quality models with the effects of activities of RBS and RIS on O 3 mixing ratios in the polluted MBL.
Gonzalez, Javier; Torrent-Sucarrat, Miquel; Anglada, Josep M
2010-03-07
The influence of a single water molecule on the gas-phase reactivity of the HO(2) radical has been investigated by studying the reactions of SO(3) with the HO(2) radical and with the H(2)O...HO(2) radical complex. The naked reaction leads to the formation of the HSO(5) radical, with a computed binding energy of 13.81 kcal mol(-1). The reaction with the H(2)O...HO(2) radical complex can give two different products, namely (a) HSO(5) + H(2)O, which has a binding energy that is computed to be 4.76 kcal mol(-1) more stable than the SO(3) + H(2)O...HO(2) reactants (Delta(E + ZPE) at 0K) and an estimated branching ratio of about 34% at 298K and (b) sulfuric acid and the hydroperoxyl radical, which is computed to be 10.51 kcal mol(-1) below the energy of the reactants (Delta(E + ZPE) at 0K), with an estimated branching ratio of about 66% at 298K. The fact that one of the products is H(2)SO(4) may have relevance in the chemistry of the atmosphere. Interestingly, the water molecule acts as a catalyst, [as it occurs in (a)] or as a reactant [as it occurs in (b)]. For a sake of completeness we have also calculated the anharmonic vibrational frequencies for HO(2), HSO(5), the HSO(5)...H(2)O hydrogen bonded complex, H(2)SO(4), and two H(2)SO(4)...H(2)O complexes, in order to help with the possible experimental identification of some of these species.
A modified potential for HO2 with spectroscopic accuracy
NASA Astrophysics Data System (ADS)
Brandão, João; Rio, Carolina M. A.; Tennyson, Jonathan
2009-04-01
Seven ground state potential energy surfaces for the hydroperoxyl radical are compared. The potentials were determined from either high-quality ab initio calculations, fits to spectroscopic data, or a combination of the two approaches. Vibration-rotation calculations are performed on each potential and the results compared with experiment. None of the available potentials is entirely satisfactory although the best spectroscopic results are obtained using the Morse oscillator rigid bender internal dynamics potential [Bunker et al., J. Mol. Spectrosc. 155, 44 (1992)]. We present modifications of the double many-body expansion IV potential of Pastrana et al. [J. Chem. Phys. 94, 8093 (1990)]. These new potentials reproduce the observed vibrational levels and observed vibrational levels and rotational constants, respectively, while preserving the good global properties of the original potential.
Bentz, Erika N; Lobayan, Rosana M; Martínez, Henar; Redondo, Pilar; Largo, Antonio
2018-06-21
A computational kinetics study of the antioxidant activity of tryptamine toward HO • and HOO • radicals in water at 298 K has been carried out. Density functional methods have been employed for the quantum chemical calculations, and the conventional transition state theory was used for rate constant evaluation. Different mechanisms have been considered: radical adduct formation (RAF), single electron transfer (SET), and hydrogen atom transfer (HAT). For the reaction of tryptamine with the hydroxyl radical, nearly all channels are diffusion-controlled, and the overall rate constant is very high, 6.29 × 10 10 M -1 s -1 . The RAF mechanism has a branching ratio of 55%, followed by the HAT mechanism (31%), whereas the SET mechanism accounts just for 13% of the products. The less hindered carbon atom neighboring to the nitrogen of the indole ring seems to be the preferred site for the RAF mechanism, with a branching ratio of 16%. The overall rate constant for the reaction of tryptamine with the HOO • radical is 3.71 × 10 4 M -1 s -1 , suggesting that it could be a competitive process with other reactions of hydroperoxyl radicals in biological environments. For this reaction only the HAT mechanism seems viable. Furthermore, only two centers may contribute to the HAT mechanism, the nitrogen atom of the indole ring and a carbon atom of the aminoethyl chain, the former accounting for more than 91% of the total products. Our results suggest that tryptamine could have a noticeable scavenging activity toward radicals, and that this activity is mainly related to the nitrogen atom of the indole ring, thus showing the relevance of their behavior in the study of aminoindoles.
Durand, Grégory; Choteau, Fanny; Pucci, Bernard; Villamena, Frederick A
2008-12-04
Nitrones have exhibited pharmacological activity against radical-mediated pathophysiological conditions and as analytical reagents for the identification of transient radical species by electron paramagnetic resonance (EPR) spectroscopy. In this work, competitive spin trapping, stopped-flow kinetics, and density functional theory (DFT) were employed to assess and predict the reactivity of O(2)(*-) and HO(2)(*) with various para-substituted alpha-phenyl-N-tert-butylnitrone (PBN) spin traps. Rate constants of O(2)(*-) trapping by nitrones were determined using competitive UV-vis stopped-flow method with phenol red (PR) as probe, while HO(2)(*) trapping rate constants were calculated using competition kinetics with 5,5-dimethylpyrroline N-oxide (DMPO) by employing EPR spectroscopy. The effects of the para substitution on the charge density of the nitronyl-carbon and on the free energies of nitrone reactivity with O(2)(*-) and HO(2)(*) were computationally rationalized at the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level of theory. Theoretical and experimental data show that the rate of O(2)(*-) addition to PBN derivatives is not affected by the polar effect of the substituents. However, the reactivity of HO(2)(*) follows the Hammett equation and is increased as the substituent becomes more electron withdrawing. This supports the conclusion that the nature of HO(2)(*) addition to PBN derivatives is electrophilic, while the addition of O(2)(*-) to PBN-type compounds is only weakly electrophilic.
NASA Astrophysics Data System (ADS)
Wei, Zhigang; Zhang, Shaowen; Pan, Zhanchang; Liu, Yue
2011-11-01
There are many areas in the world where the ground water has been contaminated by arsenic. TiO2 is one of the most promising materials that can remove arsenic from groundwater supplies by the adsorption-based processes. The TiO2 surface is capable of photo-catalytic oxidation (PCO) changing the arsenite [As(III)] to arsenate [As(V)] which is more easily absorbed by the surface, increasing the efficiency of the process. In this paper, a density functional theory calculation has been performed to investigate the adsorption of As(III) on a perfect TiO2 anatase (1 0 1) surface. All the As(III) solution species such as H3AsO3, H2AsO3-, HAsO32- and AsO33- are put onto the surface with many different possible attitudes to obtain the adsorption energy. Based on the adsorption energy and the concentration of H3AsO3, H2AsO3-, HAsO32- and AsO33- in an aqueous solution, the bidentate binuclear (BB) adsorption configurations of H2AsO3- on the surface are more favorable at low As(III) concentrations, whereas BB form and monodentate mononuclear (MM) form may coexist at higher concentrations. By calculating H2AsO3- co-adsorption with water and oxygen, we can confirm the deep acceptor character of an adsorbed O2 molecule which implies that surface superoxide (or hydroperoxyl radical) plays an important role during the PCO process of As(III) on TiO2 surface.
Xia, Chun; Fernandes, Russel; Cho, Franklin H; Sudhakar, Niranjan; Buonacorsi, Brandon; Walker, Sean; Xu, Meng; Baugh, Jonathan; Nazar, Linda F
2016-09-07
Advanced large-scale electrochemical energy storage requires cost-effective battery systems with high energy densities. Aprotic sodium-oxygen (Na-O2) batteries offer advantages, being comprised of low-cost elements and possessing much lower charge overpotential and higher reversibility compared to their lithium-oxygen battery cousins. Although such differences have been explained by solution-mediated superoxide transport, the underlying nature of this mechanism is not fully understood. Water has been suggested to solubilize superoxide via formation of hydroperoxyl (HO2), but direct evidence of these HO2 radical species in cells has proven elusive. Here, we use ESR spectroscopy at 210 K to identify and quantify soluble HO2 radicals in the electrolyte-cold-trapped in situ to prolong their lifetime-in a Na-O2 cell. These investigations are coupled to parallel SEM studies that image crystalline sodium superoxide (NaO2) on the carbon cathode. The superoxide radicals were spin-trapped via reaction with 5,5-dimethyl-pyrroline N-oxide at different electrochemical stages, allowing monitoring of their production and consumption during cycling. Our results conclusively demonstrate that transport of superoxide from cathode to electrolyte leads to the nucleation and growth of NaO2, which follows classical mechanisms based on the variation of superoxide content in the electrolyte and its correlation with the crystallization of cubic NaO2. The changes in superoxide content upon charge show that charge proceeds through the reverse solution process. Furthermore, we identify the carbon-centered/oxygen-centered alkyl radicals arising from attack of these solubilized HO2 species on the diglyme solvent. This is the first direct evidence of such species, which are likely responsible for electrolyte degradation.
Li, Ping; Ma, Zhiying; Wang, Weihua; Zhai, Yazhou; Sun, Haitao; Bi, Siwei; Bu, Yuxiang
2011-01-21
A detailed knowledge of coupling interactions among sulfuric acid (H(2)SO(4)), the hydroperoxyl radical (HOO˙), and water molecules (H(2)O) is crucial for the better understanding of the uptake of HOO˙ radicals by sulfuric acid aerosols at different atmospheric humidities. In the present study, the equilibrium structures, binding energies, equilibrium distributions, and the nature of the coupling interactions in H(2)SO(4)···HOO˙···(H(2)O)(n) (n = 0-2) clusters have been systematically investigated at the B3LYP/6-311++G(3df,3pd) level of theory in combination with the atoms in molecules (AIM) theory, natural bond orbital (NBO) method, energy decomposition analyses, and ab initio molecular dynamics. Two binary, five ternary, and twelve tetramer clusters possessing multiple intermolecular H-bonds have been located on their potential energy surfaces. Two different modes for water molecules have been observed to influence the coupling interactions between H(2)SO(4) and HOO˙ through the formations of intermolecular H-bonds with or without breaking the original intermolecular H-bonds in the binary H(2)SO(4)···HOO˙ cluster. It was found that the introduction of one or two water molecules can efficiently enhance the interactions between H(2)SO(4) and HOO˙, implying the positive role of water molecules in the uptake of the HOO˙ radical by sulfuric acid aerosols. Additionally, the coupling interaction modes of the most stable clusters under study have been verified by the ab initio molecular dynamics.
Observational insights into aerosol formation from isoprene.
Worton, David R; Surratt, Jason D; Lafranchi, Brian W; Chan, Arthur W H; Zhao, Yunliang; Weber, Robin J; Park, Jeong-Hoo; Gilman, Jessica B; de Gouw, Joost; Park, Changhyoun; Schade, Gunnar; Beaver, Melinda; Clair, Jason M St; Crounse, John; Wennberg, Paul; Wolfe, Glenn M; Harrold, Sara; Thornton, Joel A; Farmer, Delphine K; Docherty, Kenneth S; Cubison, Michael J; Jimenez, Jose-Luis; Frossard, Amanda A; Russell, Lynn M; Kristensen, Kasper; Glasius, Marianne; Mao, Jingqiu; Ren, Xinrong; Brune, William; Browne, Eleanor C; Pusede, Sally E; Cohen, Ronald C; Seinfeld, John H; Goldstein, Allen H
2013-10-15
Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO2) and hydroperoxyl (HO2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F(MAE formation)). The strong temperature dependence of F(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS; ~1 ng m(-3)) and MAE-derived organosulfates (MAE-OS; ~1 ng m(-3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m(-3)) relative to MAE-OS (<0.0005 ng m(-3)) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10-100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NOx, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source.
He, Jie; Yang, Xiaofang; Men, Bin; Wang, Dongsheng
2016-01-01
The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies. Iron-based materials usually possess high catalytic activity, low cost, negligible toxicity and easy recovery, and are a superior type of heterogeneous Fenton catalysts. Therefore, this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. OH, hydroperoxyl radicals/superoxide anions (HO2/O2(-)) and high-valent iron are the three main types of reactive oxygen species (ROS), with different oxidation reactivity and selectivity. Based on the mechanisms of ROS generation, the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron, the heterogeneous catalysis mechanism, and the heterogeneous reaction-induced homogeneous mechanism. Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed. Finally, related future research directions are also suggested. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Christian, Kenneth E.; Brune, William H.; Mao, Jingqiu; Ren, Xinrong
2018-02-01
Making sense of modeled atmospheric composition requires not only comparison to in situ measurements but also knowing and quantifying the sensitivity of the model to its input factors. Using a global sensitivity method involving the simultaneous perturbation of many chemical transport model input factors, we find the model uncertainty for ozone (O3), hydroxyl radical (OH), and hydroperoxyl radical (HO2) mixing ratios, and apportion this uncertainty to specific model inputs for the DC-8 flight tracks corresponding to the NASA Intercontinental Chemical Transport Experiment (INTEX) campaigns of 2004 and 2006. In general, when uncertainties in modeled and measured quantities are accounted for, we find agreement between modeled and measured oxidant mixing ratios with the exception of ozone during the Houston flights of the INTEX-B campaign and HO2 for the flights over the northernmost Pacific Ocean during INTEX-B. For ozone and OH, modeled mixing ratios were most sensitive to a bevy of emissions, notably lightning NOx, various surface NOx sources, and isoprene. HO2 mixing ratios were most sensitive to CO and isoprene emissions as well as the aerosol uptake of HO2. With ozone and OH being generally overpredicted by the model, we find better agreement between modeled and measured vertical profiles when reducing NOx emissions from surface as well as lightning sources.
Mendes, Jorge; Zhou, Chong-Wen; Curran, Henry J
2013-12-27
This work details an ab initio and chemical kinetic study of the hydrogen atom abstraction reactions by the hydroperoxyl radical (HȮ2) on the following esters: methyl ethanoate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl isobutyrate, ethyl ethanoate, propyl ethanoate, and isopropyl ethanoate. Geometry optimizations and frequency calculations of all of the species involved, as well as the hindrance potential descriptions for reactants and transition states, have been performed with the Møller-Plesset (MP2) method using the 6-311G(d,p) basis set. A validation of all of the connections between transition states and local minima was performed by intrinsic reaction coordinate calculations. Electronic energies for all of the species are reported at the CCSD(T)/cc-pVTZ level of theory in kcal mol(-1) with the zero-point energy corrections. The CCSD(T)/CBS (extrapolated from CCSD(T)/cc-pVXZ, in which X = D, T, Q) was used for the reactions of methyl ethanoate + HȮ2 radicals as a benchmark in the electronic energy calculations. High-pressure limit rate constants, in the temperature range 500-2000 K, have been calculated for all of the reaction channels using conventional transition state theory with asymmetric Eckart tunneling corrections. The 1-D hindered rotor approximation has been used for the low frequency torsional modes in both reactants and transition states. The calculated individual and total rate constants are reported for all of the reaction channels in each reaction system. A branching ratio analysis for each reaction site has also been investigated for all of the esters studied in this work.
Apanasenko, Irina E; Selyutina, Olga Yu; Polyakov, Nikolay E; Suntsova, Lyubov P; Meteleva, Elizaveta S; Dushkin, Alexander V; Vachali, Preejith; Bernstein, Paul S
2015-04-15
Xanthophyll carotenoids zeaxanthin and lutein play a special role in the prevention and treatment of visual diseases. These carotenoids are not produced by the human body and must be consumed in the diet. On the other hand, extremely low water solubility of these carotenoids and their instability restrict their practical application as components of food or medicinal formulations. Preparation of supramolecular complexes of zeaxanthin and lutein with glycyrrhizic acid, its disodium salt and the natural polysaccharide arabinogalactan allows one to minimize the aforementioned disadvantages when carotenoids are used in food processing as well as for production of therapeutic formulations with enhanced solubility and stability. In the present study, the formation of supramolecular complexes was investigated by NMR relaxation, surface plasmon resonance (SPR) and optical absorption techniques. The complexes increase carotenoid solubility more than 1000-fold. The kinetics of carotenoid decay in reactions with ozone molecules, hydroperoxyl radicals and metal ions were measured in water and organic solutions, and significant increases in oxidation stability of lutein and zeaxanthin in arabinogalactan and glycyrrhizin complexes were detected. Copyright © 2014 Elsevier Inc. All rights reserved.
Mexico City's active photochemistry: conclusions from the MCMA-2003 study
NASA Astrophysics Data System (ADS)
Brune, W.; Shirley, T.; Lesher, R.; Mao, J.; Volkamer, R.; Molina, L.; Molina, M.; Velasco, E.; Westberg, H.; Lamb, B.; Jobson, T.; Alexander, M.; Gonzalez, B. C.
2004-12-01
Mexico City Metropolitan Area's active photochemistry was studied using an extensive suite of measurements on the CENICA environmental laboratory's roof, as part of the MCMA-2003 field study. Intense morning sunlight photolyzed HONO and HCHO, producing hydrogen oxides (OH and HO2) at high rates. The HOx interacted with rush-hour volatile organic compounds (VOCs) and nitrogen oxides (NOx), amplifying the production rate of ozone and nitric acid. With typically 100 ppbv of NOx and 1 ppmC of VOCs, ozone production rates exceeded 30 ppbv/hour, routinely creating in excess of 150 ppbv of ozone, even though the midday mixed layer was more than 3 km deep. Analyses of glyoxal, a product of VOC oxidation, and the hydroperoxyl radical (HO2) indicate that MCMA's ozone production was VOC-limited during morning rush hour, when typically 1/2 of the ozone is produced, and for a significant number of days during midday and afternoon at the site. Aspects of Mexico City's active photochemistry will be compared to the observed photochemistry in U.S. urban areas.
Biogenic VOC Oxidation is Modulated by Anthropogenic Pollution in the South East US
NASA Astrophysics Data System (ADS)
Misztal, P. K.; Romer, P.; Duffey, K.; Cohen, R. C.; Kaser, L.; Seco, R.; Park, J.; Kim, S.; Guenther, A. B.; Goldstein, A. H.
2013-12-01
Biogenic volatile organic compounds (VOC) are known to play important roles for atmospheric chemistry, formation of secondary organic aerosol (SOA), and thus climate. However, the impacts of anthropogenic emissions on the BVOC oxidation mechanisms and SOA formation processes are not yet well understood. The SOAS summer 2013 campaign goals include looking holistically at physicochemical processes of BVOC emission, oxidation, and subsequent SOA formation and the role of anthropogenic emissions in those processes. Gas-phase composition changes of the broad range of VOCs were measured by PTR-ToF-MS at the Centreville SEARCH site located in a mixed deciduous forest near Brent, Alabama. The instrument sampled from the top of the tower at a high acquisition rate (10 Hz) using an inlet collocated with other measurements (wind, radicals, nitrogen oxides, etc.). Isoprene concentrations were extremely high, peaking at up to approximately 10 ppb during the hottest and sunniest days. Isoprene oxidation chemistry was clearly affected by anthropogenic influences. The rate of isoprene oxidation and the abundance of the first (MVK, MAC, etc.) and second (hydroxyacetone, etc.) order products were significantly different under cleaner conditions than under more polluted conditions. Isoprene oxidation likely is more dominated by the hydroperoxyl pathway under clean conditions while the NO pathway is more important under pollution conditions. Observations of the full range of detected isoprene oxidation products will be discussed and examined under relatively clean and polluted conditions. Both daytime and nighttime oxidation pathways will be examined, and comparison with airborne measurements will be shown to relate our ground based observations to more regional photochemical VOC processing.
Djehiche, Mokhtar; Le Tan, Ngoc Linh; Jain, Chaithanya D; Dayma, Guillaume; Dagaut, Philippe; Chauveau, Christian; Pillier, Laure; Tomas, Alexandre
2014-11-26
For the first time quantitative measurements of the hydroperoxyl radical (HO2) in a jet-stirred reactor were performed thanks to a new experimental setup involving fast sampling and near-infrared cavity ring-down spectroscopy at low pressure. The experiments were performed at atmospheric pressure and over a range of temperatures (550-900 K) with n-butane, the simplest hydrocarbon fuel exhibiting cool flame oxidation chemistry which represents a key process for the auto-ignition in internal combustion engines. The same technique was also used to measure H2O2, H2O, CH2O, and C2H4 under the same conditions. This new setup brings new scientific horizons for characterizing complex reactive systems at elevated temperatures. Measuring HO2 formation from hydrocarbon oxidation is extremely important in determining the propensity of a fuel to follow chain-termination pathways from R + O2 compared to chain branching (leading to OH), helping to constrain and better validate detailed chemical kinetics models.
Measured and Modeled Hydroxyl (OH) and Hydroperoxyl (HO2) During KORUS-AQ
NASA Astrophysics Data System (ADS)
Brosius, A. L.; Brune, W. H.; Thames, A. B.; Miller, D. O.
2017-12-01
In the troposphere, hydroxyl (OH) reacts with most atmospheric pollutants, initiating their removal from the atmosphere and in some cases creating other atmospheric pollutants, such as ozone and small particles. Hydroperoxyl (HO2) also plays a role in oxidation chemistry by producing tropospheric ozone (O3). Air pollution in Korea is a combination of locally generated pollution, aged pollution from China, and the interaction of local pollution with forest emissions. Thus, OH and HO2 interact with a complex soup of chemical species over Korea, providing a stringent test for the understanding of atmospheric oxidation chemistry. During KORUS-AQ, we measured OH and HO2 using the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) as part of a large instrument suite installed on the NASA DC-8 aircraft. We use the Master Chemical Mechanism (MCM), constrained by the simultaneous measurement of many of chemical species to calculate OH and HO2. While the measured and modeled OH and HO2 generally agree within combined uncertainties, there are substantial discrepancies. We will discuss possible reasons for the discrepancies and the implications for air quality regulatory policy.
The vibrational spectrum of H2O3: An ab initio investigation
NASA Technical Reports Server (NTRS)
Jackels, Charles F.
1991-01-01
Theoretically determined frequencies and absorption intensities are reported for the vibrational spectrum of the covalent HOOOH and hydrogen bonded HO---HOO intermediates that may form in the reaction of the hydroxyl and hydroperoxyl radicals. Basis sets of DZP quality, augmented by diffuse and second sets of polarization functions have been used with CASSCF wave functions. The calculated harmonic vibrational frequencies of HOOOH have been corrected with empirical factors and presented in the form of a 'stick' spectrum. The oxygen backbone vibrations, predicted to occur at 519, 760, and 870 cm(exp -1), are well separated from most interferences, and may be the most useful for the species' identification. In the case of the hydrogen bonded isomer, emphasis has been placed upon prediction of the shifts in the intramolecular vibrational frequencies that take place upon formation of the complex. In particular, the HO stretch and HOO bend of HO2 are predicted to have shifts of -59 and 53 cm(exp -1), respectively, which should facilitate their identification. It is also noted that the antisymmetric stretching frequency of the oxygen backbone in HOOOH exhibits a strong sensitivity to the degree of electron correlation, such as has been previously observed for the same mode in ozone.
Toporkova, Yana Y; Gorina, Svetlana S; Mukhitova, Fakhima K; Hamberg, Mats; Ilyina, Tatyana M; Mukhtarova, Lucia S; Grechkin, Alexander N
2017-10-01
The CYP74 clan enzymes are responsible for the biosynthesis of numerous bioactive oxylipins in higher plants, some Proteobacteria, brown and green algae, and Metazoa. A novel putative CYP74 clan gene CYP443D1 of the starlet sea anemone (Nematostella vectensis, Cnidaria) has been cloned, and the properties of the corresponding recombinant protein have been studied in the present work. The recombinant CYP443D1 was incubated with the 9- and 13-hydroperoxides of linoleic and α-linolenic acids (9-HPOD, 13-HPOD, 9-HPOT, and 13-HPOT, respectively), as well as with the 9-hydroperoxide of γ-linolenic acid (γ-9-HPOT) and 15-hydroperoxide of eicosapentaenoic acid (15-HPEPE). The enzyme was active towards all C 18 -hydroperoxides with some preference to 9-HPOD. In contrast, 15-HPEPE was a poor substrate. The CYP443D1 specifically converted 9-HPOD into the oxiranyl carbinol 1, (9S,10R,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both 18 O atoms from [ 18 O 2 -hydroperoxy]9-HPOD were virtually quantitatively incorporated into product 1. Thus, the CYP443D1 exhibited epoxyalcohol synthase (EAS) activity. The 18 O labelling data demonstrated that the reaction mechanism included three sequential steps: (1) hydroperoxyl homolysis, (2) oxy radical rearrangement into epoxyallylic radical, (3) hydroxyl rebound, resulting in oxiranyl carbinol formation. The 9-HPOT and γ-9-HPOT were also specifically converted into the oxiranyl carbinols, 15,16- and 6,7-dehydro analogues of compound 1, respectively. The 13-HPOD was converted into erythro- and threo-isomers of oxiranyl carbinol, as well as oxiranyl vinyl carbinols. The obtained results allow assignment of the name "N. vectensis EAS" (NvEAS) to CYP443D1. The NvEAS is a first EAS detected in Cnidaria. Copyright © 2017 Elsevier B.V. All rights reserved.
Free radicals in tetanic activity of isolated skeletal muscle.
Koren, A; Sauber, C; Sentjurc, M; Schara, M
1983-01-01
1. The concentration of the free radicals in muscle tissue mitochondria changes with the phase of muscle contraction. 2. Potassium cyanide (KCN) influences the shape of the isotonic tetani mechanograms; the contraction is still strong and qualitatively comparable in amplitude to untreated controls. 3. On the other hand, the correlation between the free radical concentration and muscle contraction is lost. 4. The free radical concentration in isolated mitochondria is influenced by KCN and potassium ferricyanide. 5. The free radical concentration changes due to the electron flow in the respiratory chain. 6. Inhibition of the respiratory phosphorylation by KCN could affect the free radical level.
Jurzak, Magdalena; Ramos, Paweł; Pilawa, Barbara
2017-01-01
Normal and keloid fibroblasts were examined using X-band (9.3 GHz) electron paramagnetic resonance spectroscopy. The effect of genistein on the concentration of free radicals in both normal dermal and keloid fibroblasts after ultraviolet irradiation was investigated. The highest concentration of free radicals was seen in keloid fibroblasts, with normal fibroblasts containing a lower concentration. The concentration of free radicals in both normal and keloid fibroblasts was altered in a concentration-dependent manner by the presence of genistein. The change in intra-cellular free radical concentration after the ultraviolet irradiation of both normal and keloid fibroblasts is also discussed. The antioxidant properties of genistein, using its 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging activity as a model, were tested, and the effect of ultraviolet irradiation on its interaction with free radicals was examined. The electron paramagnetic resonance spectra of DPPH showed quenching by genistein. The interaction of genistein with DPPH free radicals in the absence of ultraviolet irradiation was shown to be slow, but this interaction was much faster under ultraviolet irradiation. Ultraviolet irradiation enhanced the free radical-scavenging activity of genistein.
Kim, Kwang Ho; Bai, Xianglan; Cady, Sarah; Gable, Preston; Brown, Robert C
2015-03-01
We report on the quantitative analysis of free radicals in bio-oils produced from pyrolysis of cellulose, organosolv lignin, and corn stover by EPR spectroscopy. Also, we investigated their potential role in condensed-phase polymerization. Bio-oils produced from lignin and cellulose show clear evidence of homolytic cleavage reactions during pyrolysis that produce free radicals. The concentration of free radicals in lignin bio-oil was 7.5×10(20) spin g(-1), which was 375 and 138 times higher than free-radical concentrations in bio-oil from cellulose and corn stover. Pyrolytic lignin had the highest concentration in free radicals, which could be a combination of carbon-centered (benzyl radicals) and oxygen-centered (phenoxy radicals) organic species because they are delocalized in a π system. Free-radical concentrations did not change during accelerated aging tests despite increases in molecular weight of bio-oils, suggesting that free radicals in condensed bio-oils are stable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tan, Z.; Lu, K.; Ma, X.; Bohn, B.; Hofzumahaus, A.; Broch, S.; Fuchs, H.; Holland, F.; Liu, Y.; Li, X.; Novelli, A.; Rohrer, F.; Wang, H.; Wu, Y.; Shao, M.; Zeng, L.; Kiendler-Scharr, A.; Wahner, A.; Zhang, Y.
2017-12-01
A comprehensive field campaign was carried out in winter 2016 in the campus of UCAS (University of Chinese Academy of Science), located in a small town 60 km northeast of urban Beijing. Concentrations of OH, HO2 and RO2 radicals as well as the total OH reactivity were measured by a laser induced fluorescence instrument. Maximum hourly averaged OH, HO2 and RO2 radical concentrations were (3±2)×106cm-3, (8±6)×107 cm-3 and (7±5)×107 cm-3, respectively. These radical concentrations were smaller than those observed during summer because of the reduced solar radiation. A chemical modulation device to separate atmospheric OH radicals from any interfering species was applied for few days showing negligible interference for both clean and polluted air masses.HONO and HCHO photolysis were found to be the most important primary sources of ROx radicals. CO and NOx were the important OH reactants which contributed more than half of the total OH reactivity. The relative high OH concentrations in polluted episode enabled a fast oxidation of fresh emitted pollutants and the formation of secondary air products. The observed radical concentrations were compared with the results from a chemical box model. The model is capable of reproducing radical concentrations for moderate NOx conditions but larger discrepancies are observed for both low and high NOx regimes for the peroxy radical concentrations. The underestimation of RO2 radical concentrations for high NOx conditions is discussed in the context of recent campaigns.
Jiang, Jian-ping; Luo, Zhong-yang; Xuan, Jian-yong; Zhao, Lei; Fang, Meng-xiang; Gao, Xiang
2015-10-01
Pulsed corona discharge in atmosphere has been widely regarded as an efficient flue gas treatment technology for the generation of active radical species, such as the OH radicals. The spatial distribution of OH radicals generated by pulsed corona discharge plays an important role in decomposing pollutants. The two-dimensional (2-D) distribution of OH radicals of positive wire--plate pulsed corona discharge was detected using laser-induced fluorescence (LIF). The influence of relative humidity (RH) and oxygen concentration on the 2-D distribution of OH radicals were investigated. The results indicated that the 2-D distribution of OH radicals was characterized by a fan-shaped distribution from the wire electrode to plate electrode, and both the maximum values of vertical length and horizontal width of the fan area was less than 1 cm. The 2-D distribution area of OH radicals increased significantly with increasing the RH and the optimum condition was 65% RH. The optimal level of the oxygen concentration for the 2-D distribution area of OH radicals was 2%. The process of OH radical generation and 2-D distribution area of OH radicals were significantly interfered when the oxygen concentration was larger than 15%. The total quenching rate coefficients for different RH values and oxygen concentration in this study were used to calculate the fluorescence yield of OH radical. The fluorescence yield, which is the ratio between the emission rate (Einstein coefficient) and the sum of the emission rate and quenching rate, was used to normalize the 2-D distribution area of OH radicals. The fluorescence yield of OH radical decreased with increasing the RH and oxygen concentration linearly and rapidly. It was also found that compared with the RH, the influence of the oxygen concentration had more notable effect on the fluorescence yield of OH radical and 2-D distribution area of OH radicals.
NASA Astrophysics Data System (ADS)
Tan, Zhaofeng; Lu, Keding; Ma, Xuefei; Birger, Bohn; Broch, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andreas; Holland, Frank; Li, Xin; Liu, Yuhan; Novelli, Anna; Rohrer, Franz; Shao, Min; Wang, Haichao; Wu, Yusheng; Zeng, Limin; Kiendler-Scharr, Astrid; Wahner, Andreas; Zhang, Yuanhang
2017-04-01
A comprehensive field campaign was carried out in winter 2016 in Huairou, a small town located 60 km northeast of Beijing downtown. Concentrations of OH, HO2and RO2 radicals were measured by a laser induced fluorescence instrument. Radical concentrations were smaller than during summer because of reduced solar radiation. Maximum hourly averaged OH, HO2 and RO2 radical concentrations were (3±2)×106cm-3, (8±6)×107 cm-3 and (7±5)×107 cm-3, respectively. Chemical modulation measurements were applied on a few days showing no significant OH interference for different chemical conditions. HONO and HCHO photolysis were found to be the most important primary source of ROx radicals. OH reactivity, the inverse of the OH radical lifetime, was also measured by a laser-photolysis and laser induced fluorescence instrument. In general, CO and NOx were the dominated OH reactants which contributed more than half of the total OH reactivity. The relative high OH concentrations in polluted episode enabled a fast oxidation of fresh emitted pollutants and the formation of secondary products. The observed radical concentrations were compared with the results from a chemical box model. The model is capable of reproducing radical concentrations in the moderate NOx conditions but has difficulty in both the low and high NOx regimes. The underestimation of RO2 radical concentrations in the high NOx conditions indicate a missing RO2 source.
The HO2 + (H2O)n + O3 reaction: an overview and recent developments*
NASA Astrophysics Data System (ADS)
Viegas, Luís P.; Varandas, António J. C.
2016-03-01
The present work is concerned with the reaction of the hydroperoxyl radical with ozone, which is key in the atmosphere. We first give a brief overview which emphasizes theoretical work developed at the authors' Group, considering not only the naked reaction (n = 0) but also the reaction with one water molecule added to the reactants (n = 1). Aiming at a broad and contextual understanding of the role of water, we have also very recently published the results of the investigation considering the addition of water dimers (n = 2) and trimers (n = 3) to the reactants. Such results are also succinctly addressed before we present our latest and unpublished research endeavors. These consist of two items: the first one addresses a new mechanistic pathway for hydrogen-abstraction in n = 2-4 cases, in which we observe a Grotthuss-like hydrogen shuttling mechanism that interconverts covalent and hydrogen bonds (water molecules are no longer spectators); the second addresses our exploratory calculations of the HO2 + O3 reaction inside a (H2O)20 water cage, where we strive to give a detailed insight of the molecular processes behind the uptake of gas-phase molecules by a water droplet. Supplementary material in the form of one zip file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-60733-5Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.
Merunka, Dalibor; Peric, Miroslav
2017-05-25
Electron paramagnetic resonance (EPR) spectra of radicals in solution depend on their relative motion, which modulates the Heisenberg spin exchange and dipole-dipole interactions between them. To gain information on radical diffusion from EPR spectra demands both reliable spectral fitting to find the concentration coefficients of EPR parameters and valid expressions between the concentration and diffusion coefficients. Here, we measured EPR spectra of the 14 N- and 15 N-labeled perdeuterated TEMPONE radicals in normal and supercooled water at various concentrations. By fitting the EPR spectra to the functions based on the modified Bloch equations, we obtained the concentration coefficients for the spin dephasing, coherence transfer, and hyperfine splitting parameters. Assuming the continuous diffusion model for radical motion, the diffusion coefficients of radicals were calculated from the concentration coefficients using the standard relations and the relations derived from the kinetic equations for the spin evolution of a radical pair. The latter relations give better agreement between the diffusion coefficients calculated from different concentration coefficients. The diffusion coefficients are similar for both radicals, which supports the presented method. They decrease with lowering temperature slower than is predicted by the Stokes-Einstein relation and slower than the rotational diffusion coefficients, which is similar to the diffusion of water molecules in supercooled water.
Nauser, Thomas; Gebicki, Janusz M
2017-09-18
The principal initial biological targets of free radicals formed under conditions of oxidative stress are the proteins. The most common products of the interaction are carbon-centered alkyl radicals which react rapidly with oxygen to form peroxyl radicals and hydroperoxides. All these species are reactive, capable of propagating the free radical damage to enzymes, nucleic acids, lipids, and endogenous antioxidants, leading finally to the pathologies associated with oxidative stress. The best chance of preventing this chain of damage is in early repair of the protein radicals by antioxidants. Estimate of the effectiveness of the physiologically significant antioxidants requires knowledge of the antioxidant tissue concentrations and rate constants of their reaction with protein radicals. Previous studies by pulse radiolysis have shown that only ascorbate can repair the Trp and Tyr protein radicals before they form peroxyl radicals under physiological concentrations of oxygen. We have now extended this work to other protein C-centered radicals generated by hydroxyl radicals because these and many other free radicals formed under oxidative stress can produce secondary radicals on virtually any amino acid residue. Pulse radiolysis identified two classes of rate constants for reactions of protein radicals with ascorbate, a faster one in the range (9-60) × 10 7 M -1 s -1 and a slow one with a range of (0.5-2) × 10 7 M -1 s -1 . These results show that ascorbate can prevent further reactions of protein radicals only in the few human tissues where its concentration exceeds about 2.5 mM.
Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption
NASA Astrophysics Data System (ADS)
Renbaum, L. H.; Smith, G. D.
2011-03-01
In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid organic aerosols (squalane, brassidic acid and 2-octyldodecanoic acid) are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.
Free radical interactions between raw materials in dry soup powder.
Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H
2011-12-01
Interactions at the free radical level were observed between dry ingredients in cauliflower soup powder, prepared by dry mixing of ingredients and rapeseed oil, which may be of importance for quality deterioration of such dry food products. The free radical concentrations of cauliflower soup powder, obtained by electron spin resonance (ESR) spectroscopy, rapidly become smaller during storage (40°C and relative humidity of 75%) than the calculated concentrations of free radicals based on the free radical concentrations of the powder ingredients used to make the soup powder and stored separately under similar conditions. Similarly, free radical concentrations decreased faster when any combination of two powder ingredients (of the three major ingredients of the soup powder) were mixed together and stored at 50°C for 1week than when each powder component was stored separately. Furthermore, yeast extract powder was found to play a key role when free radical interactions between powder ingredients occurred. The incubation of rapeseed oil with powder ingredients at 45°C for 24h, indicated the ability of cauliflower powder to increase the concentration of hydroperoxides in rapeseed oil, while yeast extract powder was found to prevent this hydroperoxide formation. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Grewe, Volker; Tsati, Eleni; Mertens, Mariano; Frömming, Christine; Jöckel, Patrick
2017-07-01
Questions such as what is the contribution of road traffic emissions to climate change?
or what is the impact of shipping emissions on local air quality?
require a quantification of the contribution of specific emissions sectors to the concentration of radiatively active species and air-quality-related species, respectively. Here, we present a diagnostics package, implemented in the Modular Earth Submodel System (MESSy), which keeps track of the contribution of source categories (mainly emission sectors) to various concentrations. The diagnostics package is implemented as a submodel (TAGGING) of EMAC (European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/MESSy Atmospheric Chemistry). It determines the contributions of 10 different source categories to the concentration of ozone, nitrogen oxides, peroxyacytyl nitrate, carbon monoxide, non-methane hydrocarbons, hydroxyl, and hydroperoxyl radicals ( = tagged tracers). The source categories are mainly emission sectors and some other sources for completeness. As emission sectors, road traffic, shipping, air traffic, anthropogenic non-traffic, biogenic, biomass burning, and lightning are considered. The submodel obtains information on the chemical reaction rates, online emissions, such as lightning, and wash-out rates. It then solves differential equations for the contribution of a source category to each of the seven tracers. This diagnostics package does not feed back to any other part of the model. For the first time, it takes into account chemically competing effects: for example, the competition between NOx, CO, and non-methane hydrocarbons (NMHCs) in the production and destruction of ozone. We show that the results are in-line with results from other tagging schemes and provide plausibility checks for concentrations of trace gases, such as OH and HO2, which have not previously been tagged. The budgets of the tagged tracers, i.e. the contribution from individual source categories (mainly emission sectors) to, e.g., ozone, are only marginally sensitive to changes in model resolution, though the level of detail increases. A reduction in road traffic emissions by 5 % shows that road traffic global tropospheric ozone is reduced by 4 % only, because the net ozone productivity increases. This 4 % reduction in road traffic tropospheric ozone corresponds to a reduction in total tropospheric ozone by ≈ 0.3 %, which is compensated by an increase in tropospheric ozone from other sources by 0.1 %, resulting in a reduction in total tropospheric ozone of ≈ 0.2 %. This compensating effect compares well with previous findings. The computational costs of the TAGGING submodel are low with respect to computing time, but a large number of additional tracers are required. The advantage of the tagging scheme is that in one simulation and at every time step and grid point, information is available on the contribution of different emission sectors to the ozone budget, which then can be further used in upcoming studies to calculate the respective radiative forcing simultaneously.
Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption
NASA Astrophysics Data System (ADS)
Renbaum, L. H.; Smith, G. D.
2011-07-01
In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane) and supercooled (brassidic acid and 2-octyldodecanoic acid) organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.
Kiruri, Lucy W; Khachatryan, Lavrent; Dellinger, Barry; Lomnicki, Slawo
2014-02-18
Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼ 2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75-1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed--from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively.
Ewelina, Grzywna; Krzysztof, Stachura; Marek, Moskala; Krzysztof, Kruczala
2017-12-01
Pathophysiology of delayed cerebral ischemia and cerebral vasospasm following aneurysmal subarachnoid hemorrhage is still poorly recognized, however free radicals are postulated as one of the crucial players. This study was designed to scrutinize whether the concentration of free radicals in the peripheral venous blood is related to the occurrence of delayed cerebral ischemia associated with cerebral vasospasm. Twenty-four aneurysmal subarachnoid hemorrhage patients and seven patients with unruptured intracranial aneurysm (control group) have been studied. Free radicals in patients' blood have been detected by the electron paramagnetic resonance (CMH.HCl spin probe, 150 K, ELEXSYS E500 spectrometer) on admission and at least 72 h from disease onset. Delayed cerebral ischemia monitoring was performed by daily neurological follow-up and transcranial color coded Doppler. Delayed cerebral ischemia observed in six aneurysmal subarachnoid hemorrhage patients was accompanied by cerebral vasospasm in all six cases. No statistically significant difference in average free radicals concentration between controls and study subgroups was noticed on admission (p = .3; Kruskal-Wallis test). After 72 h free radicals concentration in delayed cerebral ischemia patients (3.19 ± 1.52 mmol/l) differed significantly from the concentration in aneurysmal subarachnoid hemorrhage patients without delayed cerebral ischemia (0.65 ± 0.37 mmol/l) (p = .012; Mann-Whitney test). These findings are consistent with our assumptions and seem to confirm the role of free radicals in delayed cerebral ischemia development. Preliminary results presented above are promising and we need perform further investigation to establish whether blood free radicals concentration may serve as the biomarker of delayed cerebral ischemia associated with cerebral vasospasm.
EFFECT OF CADMIUM(II) ON FREE RADICALS IN DOPA-MELANIN TESTED BY EPR SPECTROSCOPY.
Zdybel, Magdalena; Pilawa, Barbara; Chodurek, Ewa
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy may be applied to examine interactions of melanin with metal ions and drugs. In this work EPR method was used to examination of changes in free radical system of DOPA-melanin--the model eumelanin after complexing with diamagnetic cadmium(II) ions. Cadmium(II) may affect free radicals in melanin and drugs binding by this polymer, so the knowledge of modification of properties and free radical concentration in melanin is important to pharmacy. The effect of cadmium(II) in different concentrations on free radicals in DOPA-melanin was determined. EPR spectra of DOPA-melanin, and DOPA-melanin complexes with cadmium(II) were measured by an X-band (9.3 GHz) EPR spectrometer produced by Radiopan (Poznań, Poland) and the Rapid Scan Unit from Jagmar (Krak6w, Poland). The DOPA (3,4-dihydroxyphenylalanine) to metal ions molar ratios in the reaction mixtures were 2:1, 1:1, and 1: 2. High concentrations of o-semiquinone (g ~2.0040) free radicals (~10(21)-10(22) spin/g) characterize DOPA-melanin and its complexes with cadmium(II). Formation of melanin complexes with cadmium(II) increase free radical concentration in DOPA-melanin. The highest free radical concentration was obtained for DOPA-melanin-cadmium(II) (1:1) complexes. Broad EPR lines with linewidths: 0.37-0.73 mT, were measured. Linewidths increase after binding of cadmium(II) to melanin. Changes of integral intensities and linewidths with increasing microwave power indicate the homogeneous broadening of EPR lines, independently on the metal ion concentration. Slow spin-lattice relaxation processes existed in all the tested samples, their EPR lines saturated at low microwave powers. Cadmium(II) causes fastening of spin-lattice relaxation processes in DOPA-melanin. The EPR results bring to light the effect of cadmium(II) on free radicals in melanin, and probably as the consequence on drug binding to eumelanin.
Consumption of peptide-included and free tryptophan induced by peroxyl radicals: A kinetic study.
Fuentes, E; López-Alarcón, C
2014-10-01
It is well-known that tryptophan residues are efficiently oxidized by peroxyl radicals, generating kynurenine, and N-formyl kynurenine as well as hydroperoxide derivatives as products. In the present work we studied the kinetic of such reaction employing free and peptide-included tryptophan. Two azocompounds were used to produce peroxyl radicals: AAPH (2,2'-Azobis(2-methylpropionamidine) dihydrochloride) and ABCVA (4,4'-Azobis(4-cyanovaleric acid)), which generate cationic and anionic peroxyl radicals, respectively. Tryptophan consumption was assessed by fluorescence spectroscopy and the reactions were carried out in phosphate buffer (75mM, pH 7.4) at 45°C. Only a slight effect of the peroxyl radical charge was evidenced on the consumption of free tryptophan and the dipeptide Gly-Trp. Employing AAPH as peroxyl radical source, at low free tryptophan concentrations (1-10µM) near 0.3 mol of tryptophan were consumed per each mol of peroxyl radicals introduced into the system. However, at high free tryptophan concentrations (100µM-1mM) such stoichiometry increased in a tryptophan concentration-way. At 1mM three moles of tryptophan were consumed per mol of AAPH-derived peroxyl radicals, evidencing the presence of chain reactions. A similar behavior was observed when di and tri-peptides (Gly-Trp, Trp-Gly, Gly-Trp-Gly, Trp-Ala, Ala-Trp-Ala) were studied. Nonetheless, at low initial concentration (5µM), the initial consumption rate of tryptophan included in the peptides was two times higher than free tryptophan. In contrast, at high concentration (1mM) free and peptide-included tryptophan showed similar initial consumption rates. These results could be explained considering a disproportionation process of tryptophanyl radicals at low free tryptophan concentrations, a process that would be inhibited when tryptophan is included in peptides. Copyright © 2014. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Griffith, S. M.; Hansen, R. F.; Dusanter, S.; Michoud, V.; Gilman, J. B.; Kuster, W. C.; Veres, P. R.; Graus, M.; de Gouw, J. A.; Roberts, J.; Young, C.; Washenfelder, R.; Brown, S. S.; Thalman, R.; Waxman, E.; Volkamer, R.; Tsai, C.; Stutz, J.; Flynn, J. H.; Grossberg, N.; Lefer, B.; Alvarez, S. L.; Rappenglueck, B.; Mielke, L. H.; Osthoff, H. D.; Stevens, P. S.
2016-04-01
Measurements of hydroxyl (OH) and hydroperoxy (HO2*) radical concentrations were made at the Pasadena ground site during the CalNex-LA 2010 campaign using the laser-induced fluorescence-fluorescence assay by gas expansion technique. The measured concentrations of OH and HO2* exhibited a distinct weekend effect, with higher radical concentrations observed on the weekends corresponding to lower levels of nitrogen oxides (NOx). The radical measurements were compared to results from a zero-dimensional model using the Regional Atmospheric Chemical Mechanism-2 constrained by NOx and other measured trace gases. The chemical model overpredicted measured OH concentrations during the weekends by a factor of approximately 1.4 ± 0.3 (1σ), but the agreement was better during the weekdays (ratio of 1.0 ± 0.2). Model predicted HO2* concentrations underpredicted by a factor of 1.3 ± 0.2 on the weekends, while measured weekday concentrations were underpredicted by a factor of 3.0 ± 0.5. However, increasing the modeled OH reactivity to match the measured total OH reactivity improved the overall agreement for both OH and HO2* on all days. A radical budget analysis suggests that photolysis of carbonyls and formaldehyde together accounted for approximately 40% of radical initiation with photolysis of nitrous acid accounting for 30% at the measurement height and ozone photolysis contributing less than 20%. An analysis of the ozone production sensitivity reveals that during the week, ozone production was limited by volatile organic compounds throughout the day during the campaign but NOx limited during the afternoon on the weekends.
Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia
2012-01-01
Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.
Influence of Free Radicals on the Intrinsic MRI Relaxation Properties.
Tain, Rong-Wen; Scotti, Alessandro M; Li, Weiguo; Zhou, Xiaohong Joe; Cai, Kejia
2017-01-01
Free radicals are critical contributors in various conditions including normal aging, Alzheimer's disease, cancer, and diabetes. Currently there is no non-invasive approach to image tissue free radicals based on endogenous contrast due to their extremely short lifetimes and low in vivo concentrations. In this study we aim at characterizing the influence of free radicals on the MRI relaxation properties. Phantoms containing free radicals were created by treating egg white with various H 2 O 2 concentrations and scanned on a 9.4 T MRI scanner at room temperature. T 1 and T 2 relaxation maps were generated from data acquired with an inversion recovery sequence with varied inversion times and a multi-echo spin echo sequence with varied echo times (TEs), respectively. Results demonstrated that free radicals express a strong shortening effect on T 1 , which was proportional to the H 2 O 2 concentration, and a relatively small reduction in T 2 (<10%). Furthermore, the sensitivity of this approach in the detection of free radicals was estimated to be in the pM range that is within the physiological range of in vivo free radical expression. In conclusion, the free radicals show a strong paramagnetic effect that may be utilized as an endogenous MRI contrast for its non-invasive in vivo imaging.
Li, Huili; Xu, Qing; Chen, Yun; Wan, Ajun
2014-03-01
Chitosan is a biodegradable and biocompatible natural scaffold material, which has numerous applications in biomedical sciences. In this study, the in vitro antioxidant activity of chitosan scaffold material was investigated by the chemiluminescence signal generated from the hydroxyl radical (•OH) scavenging assay. The scavenging mechanism was also discussed. The results indicated that the free radical scavenging ability of chitosan scaffold material significantly depends on the chitosan concentration and shows interesting kinetic change. Within the experimental concentration range, the optimal concentration of chitosan was 0.2 mg/mL. The molecular weight of chitosan also attributed to the free radical scavenging ability. Comparison between chitosan and its derivative found that carboxymethyl chitosan possessed higher scavenging ability. Copyright © 2013 Society of Plastics Engineers.
2015-01-01
Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75–1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed—from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively. PMID:24437381
NASA Astrophysics Data System (ADS)
Stoesser, Reinhard; Klein, Jeannette; Peschke, Simone; Zehl, Andrea; Cämmerer, Bettina; Kroh, Lothar W.
2007-08-01
During the early stage of the Maillard reaction pyrazinium radical cations were detected by ESR within the reaction system D-glucose/glycine. The spectra were characterized by completely resolved hyperfine structure. The partial pressure of oxygen and the radical concentrations were measured directly in the reaction mixture by ESR using solutions of the spin probe TEMPOL and of DPPH, respectively. There are quantitative and qualitative relations of the actual concentration of the radical ions to the partial pressure of oxygen, the temperature-time regime and the mechanical mixing of the reaction system. These macroscopic parameters significantly affect both the induction period and the velocity of the time-dependent formation of free radicals. From in situ variations of p(O 2) and p(Ar) including the connected mixing effects caused by the passing the gases through the reaction mixture, steric and chemical effects of the stabilization of the radical ions were established. The determination of suitable and relevant conditions for stabilization and subsequent radical reactions contributes to the elucidation of the macroscopically known antioxidant activity of Maillard products.
Wilczyński, Sławomir; Pilawa, Barbara; Koprowski, Robert; Wróbel, Zygmunt; Ptaszkiewicz, Marta; Swakoń, Jan; Olko, Paweł
2012-02-14
Radiation sterilization technology is more actively used now that any time because of its many advantages. Gamma radiation has high penetrating power, relatively low chemical reactivity and causes small temperature rise. But on the other hand radiosterilization can lead to radiolytic products appearing, in example free radicals. Free radicals in radiative sterilized sisomicin, tobramycin and paromomycin were studied by electron paramagnetic resonance (EPR) spectroscopy. Dose of gamma irradiation of 25kGy was used. Concentrations and properties of free radicals in irradiated antibiotics were studied. EPR spectra were recorded for samples stored in air and argon. For gamma irradiated antibiotics strong EPR lines were recorded. One- and two-exponential functions were fitted to experimental points during testing and researching of time influence of the antibiotics storage to studied parameters of EPR lines. Our study of free radicals in radiosterilized antibiotics indicates the need for characterization of medicinal substances prior to sterilization process using EPR values. We propose the concentration of free radicals and other spectroscopic parameters as useful factors to select the optimal type of sterilization for the individual drug. The important parameters are i.a. the τ time constants and K constants of exponential functions. Time constants τ give us information about the speed of free radicals concentration decrease in radiated medicinal substances. The constant K(0) shows the free radicals concentration in irradiated medicament after long time of storage. Copyright © 2011 Elsevier B.V. All rights reserved.
Analysis of electrophoresis performance
NASA Technical Reports Server (NTRS)
Roberts, G. O.
1984-01-01
The SAMPLE computer code models electrophoresis separation in a wide range of conditions. Results are included for steady three dimensional continuous flow electrophoresis (CFE), time dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. The code evolves N two dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations. The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is, therefore, also invalid.
Wang, Guoying; Jia, Shiming; Niu, Xiuli; Liu, Yanrong; Tian, Haoqi; Chen, Xuefu; Shi, Gaofeng
2018-01-22
Free radicals play an important role in the oxidizing power of polluted air, the development of aging-related diseases, the formation of ozone, and the production of secondary particulate matter. The high variability of peroxyl radical concentration has prevented the detection of possible trends or distributions in the concentration of free radicals. We present a new method, free radical reaction combined with liquid chromatography photodiode array detection, for identifying and quantifying peroxyl radicals in polluted air. Functionalized graphene was used for loading peroxyl radicals and reactive molecules in air sampling system, which can facilitate reaction kinetics (charge transfers) between peroxyl radicals and reaction molecules. Separation was performed with and without a preliminary exposure of the polluted air sample to reactive molecule(s) system. The integral chromatographic peak areas before and after air sampling are used to quantify the atmospheric peroxyl radicals in polluted air. The utility of the new technique was tested with measurements carried out in the field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramos, Paweł; Pilawa, Barbara
2016-06-24
Free radicals formed during thermal sterilization of the Ungentum ophthalmicum were examined by an X-band EPR spectroscopy. The influence of storage time (15 min; 1, 2 and 3 days after heating) on free radical properties and concentrations in this sample was determined. Thermal sterilization was done according to the pharmaceutical norms. The first-derivative EPR spectra with g-values about 2 were measured with magnetic modulation of 100 kHz in the range of microwave power 2.2-70 mW. The changes of amplitudes (A) and linewidths (ΔB pp ) with microwave powers were evaluated. Free radicals in concentration ∼10 17 spin/g were formed during heating of the tested Ungentum. Free radical concentration decreased with increase in storage time, and reached values ∼10 17 spin/g after 3 days from sterilization. The tested U. ophthalmicum should not be sterilized at a temperature of 160 °C because of the free radicals formation, or it should be used 3 days after heating, when free radicals were considerably quenched. Free radical properties remain unchanged during storage of the Ungentum. The EPR lines of the U. ophthalmicum were homogeneously broadened and their linewidths (ΔB pp ) increased with increase in microwave power. EPR spectroscopy is useful to examine free radicals to optimize sterilization process and storage conditions of ophthalmologic samples.
Light - Instead of UV Protection: New Requirements for Skin Cancer Prevention.
Zastrow, Leonhard; Lademann, Jürgen
2016-03-01
The requirements on sunscreens have essentially changed, since some years ago it was demonstrated that approximately 50% of free radicals, that are formed in the skin by solar radiation, originate from the visible and infrared regions of the solar spectrum. In addition, a critical radical concentration threshold could be found. If this concentration, the free radical threshold value (FRTV), is exceeded, sunburn, immunosuppression and skin cancer may develop. Application of sunscreens and lotions protects against sunburn in the UV region of the solar spectrum and therefore is frequently used to extend people's stay in the sun. However, this behaviour can enhance the concentration of free radicals formed in the visible and infrared regions of the solar spectrum, so that the critical radical threshold is exceeded and the skin may be damaged. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Wilczyński, Sławomir; Pilawa, Barbara; Koprowski, Robert; Wróbel, Zygmunt; Ptaszkiewicz, Marta; Swakoń, Jan; Olko, Paweł
2014-03-01
The aim of this work was to determine the concentrations and properties of free radicals in piperacillin, ampicillin, and crystalline penicillin after gamma irradiation. The radicals were studied by electron paramagnetic resonance (EPR) spectroscopy using an X-band spectrometer (9.3 GHz). Gamma irradiation was performed at a dose of 25 kGy. One- and two-exponential functions were fitted to the experimental data, in order to assess the influence of the antibiotics' storage time on the measured EPR lines. After gamma irradiation, complex EPR lines were recorded confirming the presence of a large number of free radicals formed during the irradiation. For all tested antibiotics, concentrations of free radicals and parameters of EPR spectra changed with storage time. The results obtained demonstrate that concentration of free radicals and other spectroscopic parameters can be used to select the optimal parameters of radiation sterilization of β-lactam antibiotics. The most important parameters are the constants τ (τ (1(A),(I)) and τ (2(A),(I))) and K (K (0(A),(I)), K (1(A),(I)), K (2(A),(I))) of the exponential functions that describe free radicals decay during samples storage.
Optimal sample formulations for DNP SENS: The importance of radical-surface interactions
Perras, Frederic A.; Wang, Lin-Lin; Manzano, J. Sebastian; ...
2017-11-15
The efficacy of dynamic nuclear polarization (DNP) surface-enhanced NMR spectroscopy (SENS) is reviewed for alumina, silica, and ordered mesoporous carbon (OMC) materials, with vastly different surface areas, as a function of the biradical concentration. Importantly, our studies show that the use of a “one-size-fits-all” biradical concentration should be avoided when performing DNP SENS experiments and instead an optimal concentration should be selected as appropriate for the type of material studied as well as its surface area. In general, materials with greater surface areas require higher radical concentrations for best possible DNP performance. This result is explained with the use ofmore » a thermodynamic model wherein radical-surface interactions are expected to lead to an increase in the local concentration of the polarizing agent at the surface. We also show, using plane-wave density functional theory calculations, that weak radical-surface interactions are the cause of the poor performance of DNP SENS for carbonaceous materials.« less
The role of hydrogels in the radical production of the Fricke-gel-dosimeter
NASA Astrophysics Data System (ADS)
Lazzaroni, S.; Liosi, G. M.; D'Agostino, G.; Marconi, R. P.; Mariani, M.; Buttafava, A.; Dondi, D.
2018-01-01
The radiolysis mechanism of the Fricke-gel-dosimeters has been investigated in order to evaluate the role of hydrogels in the radical production. For this purpose, electron paramagnetic resonance (EPR) spectra were acquired for samples frozen and irradiated at 77 K. The analysis was performed by increasing stepwise the temperature and acquiring the EPR spectra at 120 K in order to follow the radical reaction mechanism. The comparison between aqueous- and gel- dosimeters were performed. Both gelatin from porcine skin and PVA (polyvinyl alcohol) were investigated as gel matrix. Different radical species were identified and qualitatively compared. For gel matrix, peroxyl radicals, stemming from the hydrogel, play an important role in the survival of radicals at higher temperature. Moreover, the Fe3+ EPR signal has been studied and compared with the radicals concentration. From this comparison, it is evident the increase of Fe3+ concentration is shifted toward higher temperatures with respect to the radical decay. To explain this phenomenon, the intervention of EPR silent species like peroxides is supposed.
NASA Astrophysics Data System (ADS)
Hu, N.; Green, S. A.
2012-12-01
Smoke near the source of biomass burning contains high concentrations of reactive compounds, with NO and CH3CHO concentrations four to six orders of magnitude higher than those in the ambient atmosphere. Tobacco smoke represents a special case of biomass burning that is quite reproducible in the lab and may elucidate early processes in smoke from other sources. The origins, identities, and reactions of radical species in tobacco smoke are not well understood, despite decades of study on the concentrations and toxicities of the relatively stable compounds in smoke. We propose that reactions of NO2 and aldehydes are a primary source for transient free radicals in tobacco smoke, which contrasts with the long-surmised mechanism of reaction between NO2 and dienes. The objective of this study was to investigate the sources, sinks and cycling of acetyl radical in tobacco smoke. Experimentally, the production of acetyl radical was demonstrated both in tobacco smoke and in a simplified mixture of air combined with NO and acetaldehyde, both of which are significant components of smoke. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). The dynamic nature of radical cycling in smoke makes it impossible to define a fixed concentration of radical species; 2.15×e13-3.18×e14 molecules/cm3 of acetyl radicals were measured from different cigarette samples and smoking conditions. Matlab was employed to simulate reactions of NO, NO2, O2, and a simplified set of organic compounds known to be present in smoke, with a special emphasis on acetaldehyde and the acetyl radical. The NO2/acetaldehyde mechanism initiates a cascade of chain reactions, which accounts for the most prevalent known carbon-centered radicals found in tobacco smoke, and pathways for formation of OH and peroxyl species. Tobacco smoke provides a new perspective of radical generation in a relatively well-defined biomass burning process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenakumari, V.; Premkumar, S.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com
The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of {sup 14}N- labeled nitroxyl radicals in 1 mM concentration ofmore » ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.« less
NASA Astrophysics Data System (ADS)
Meenakumari, V.; Jawahar, A.; Premkumar, S.; Benial, A. Milton Franklin
2016-05-01
The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of 14N- labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.
Radical scavenging ability of some compounds isolated from Piper cubeba towards free radicals.
Aboul-Enein, Hassan Y; Kładna, Aleksandra; Kruk, Irena
2011-01-01
The purpose of this study was to identify the antioxidant activity of 16 compounds isolated from Piper cubeba (CNCs) through the extent of their capacities to scavenge free radicals, hydroxyl radical (HO(•)), superoxide anion radical O•(2)(-) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)), in different systems. Electron paramagnetic resonance (EPR) and 5,5-dimethyl-1-pyrroline-N-oxide, DMPO, as the spin trap, and chemiluminescence techniques were applied. Using the Fenton-like reaction [Fe(II) + H(2)O(2)], CNCs were found to inhibit DMPO-OH radical formation ranging from 5 to 57% at 1.25 mmol L(-1) concentration. The examined CNCs also showed a high DPPH antiradical activity (ranging from 15 to 99% at 5 mmol L(-1) concentration). Furthermore, the results indicated that seven of the 16 tested compounds may catalyse the conversion of superoxide radicals generated in the potassium superoxide/18-crown-6 ether system, thus showing superoxide dismutase-like activity. The data obtained suggest that radical scavenging properties of CNCs might have potential application in many plant medicines. Copyright © 2010 John Wiley & Sons, Ltd.
Fate of the CHBrsub2O radical in air
NASA Technical Reports Server (NTRS)
Bayes, K. D.; Friedl, R. F.
2003-01-01
Trace amounts of bromoform in air have been photolyzed at 266 and 303 nm to form Br atoms and CHBr2 radicals. The Br concentration as a funtion of time is followed by resonance fluorescence. The CHBr2 radicals react with O2 in the air to form peroxy radicals.
Environmentally Persistent Free Radicals and Their Lifetimes in PM2.5
Gehling, William; Dellinger, Barry
2015-01-01
For the first time, an expansive study into the concentration and extended decay behavior of environmentally persistent free radicals in PM2.5 was performed. Results from this study revealed three types of radical decay—a fast decay, slow decay, and no decay—following one of four decay patterns: a relatively fast decay exhibiting a 1/e lifetime of 1–21 days accompanied by a slow decay with a 1/e lifetime of 21–5028 days (47% of samples); a single slow decay including a 1/e lifetime of 4–2083 days (24% of samples); no decay (18% of samples); and a relatively fast decay displaying an average 1/e lifetime of 0.25–21 days followed by no decay (11% of samples). Phenol correlated well with the initial radical concentration and fast decay rate. Other correlations for common atmospheric pollutants (ozone, NOx, SO2, etc.) as well as meteorological conditions suggested photochemical processes impact the initial radical concentration and fast decay rate. The radical signal in PM2.5 was remarkably similar to semiquinones in cigarette smoke. Accordingly, radicals inhaled from PM2.5 were related to the radicals inhaled from smoking cigarettes, expressed as the number of equivalent cigarettes smoked. This calculated to 0.4–0.9 cigarettes per day for nonextreme air quality in the United States. PMID:23844657
Electron spin resonance of gamma-irradiated poly/ethylene 2,6-naphthalene dicarboxylate/.
NASA Technical Reports Server (NTRS)
Rogowski, R. S.; Pezdirtz, G. F.
1971-01-01
The two types of radicals trapped in gamma-irradiated PEN 2,6 are identified by ESR as - O - CH - CH2 - O - (radical I) and a radical located on the naphthalene ring (radical II). The concentrations of the radicals in the gross polyer are 10 to 20% of I and 80 to 90% of II. Similar trapped radicals are established in beta-irradiated PET, a structurally related polymer.
Radiocarbon tracer measurements of atmospheric hydroxyl radical concentrations
NASA Technical Reports Server (NTRS)
Campbell, M. J.; Farmer, J. C.; Fitzner, C. A.; Henry, M. N.; Sheppard, J. C.
1986-01-01
The usefulness of the C-14 tracer in measurements of atmospheric hydroxyl radical concentration is discussed. The apparatus and the experimental conditions of three variations of a radiochemical method of atmosphere analysis are described and analyzed: the Teflon bag static reactor, the flow reactor (used in the Wallops Island tests), and the aircraft OH titration reactor. The procedure for reduction of the aircraft reactor instrument data is outlined. The problems connected with the measurement of hydroxyl radicals are discussed. It is suggested that the gas-phase radioisotope methods have considerable potential in measuring tropospheric impurities present in very low concentrations.
Oxidative capacity of the Mexico City atmosphere - Part 1: A radical source perspective
NASA Astrophysics Data System (ADS)
Volkamer, R.; Sheehy, P.; Molina, L. T.; Molina, M. J.
2010-07-01
A detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA). During spring of 2003 (MCMA-2003 field campaign) an extensive set of measurements was collected to quantify time-resolved ROx (sum of OH, HO2, RO2) radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1) was constrained by measurements of (1) concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO), formaldehyde (HCHO), ozone (O3), glyoxal (CHOCHO), and other oxygenated volatile organic compounds (OVOCs); (2) respective photolysis-frequencies (J-values); (3) concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated) and oxidants, i.e., OH- and NO3 radicals, O3; and (4) NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; the MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals). Daytime radical production is found to be about 10-25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: Oxygenated VOC other than HCHO about 33%; HCHO and O3 photolysis each about 20%; O3/alkene reactions and HONO photolysis each about 12%, other sources <3%. Nitryl chloride photolysis could potentially contribute ~15% additional radicals, while NO2* + water makes - if any - a very small contribution (~2%). The peak radical production of ~7.5 107 molec cm-3 s-1 is found already at 10:00 a.m., i.e., more than 2.5 h before solar noon. O3/alkene reactions are indirectly responsible for ~33% of these radicals. Our measurements and analysis comprise a database that enables testing of the representation of radical sources and radical chain reactions in photochemical models. Since the photochemical processing of pollutants in the MCMA is radical limited, our analysis identifies the drivers for ozone and SOA formation. We conclude that reductions in VOC emissions provide an efficient opportunity to reduce peak concentrations of these secondary pollutants, because (1) about 70% of radical production is linked to VOC precursors; (2) lowering the VOC/NOx ratio has the further benefit of reducing the radical re-cycling efficiency from radical chain reactions (chemical amplification of radical sources); (3) a positive feedback is identified: lowering the rate of radical production from organic precursors also reduces that from inorganic precursors, like ozone, as pollution export from the MCMA caps the amount of ozone that accumulates at a lower rate inside the MCMA. Continued VOC reductions will in the future result in decreasing peak concentrations of ozone and SOA in the MCMA.
[Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].
Wang, Tian-jiao; Chen, Tong; Zhan, Ming-xiu; Guo, Ying; Li, Xiao-dong
2016-03-15
Environmentally persistent free radicals (EPFRs) are relatively highly stable and found in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Recent studies have concentrated on model dioxin formation reactions and there are few studies on actual waste incineration fly ash. In order to study EPFRs and the correlation with dioxins and heavy metals in waste incineration fly ash, the spins of EPFRs, concentration of PCDD/Fs and metals in samples from 6 different waste incinerators were detected. The medical waste incineration fly ash from Tianjin, municipal solid waste incineration fly ash from Jiangxi Province, black carbon and slag from municipal solid waste incinerator in Lanxi, Zhejiang Province, all contained EPFRs. Above all the signal in Tianjin sample was the strongest. Hydroxyl radicals, carbon-center radicals and semiquinone radicals were detected. Compared with other samples, Jiangxi fly ash had the highest toxic equivalent quantity (TEQ) of dioxins, up to 7.229 4 ng · g⁻¹. However, the dioxin concentration in the Tianjin sample containing the strongest EPFR signals was only 0.092 8 ng · g⁻¹. There was perhaps little direct numeric link between EPFRs and PCDD/Fs. But the spins of EPFRs in samples presented an increasing trend as the metal contents increased, especially with Al, Fe, Zn. The signal strength of radicals was purposed to be related to the metal contents. The concentration of Zn (0.813 7% ) in the Tianjin sample was the highest and this sample contained much more spins of oxygen-center radicals. We could presume the metal Zn had a greater effect on the formation of EPFRs, and was easier to induce the formation of radicals with a longer half-life period.
Understanding the stability of pyrolysis tars from biomass in a view point of free radicals.
He, Wenjing; Liu, Qingya; Shi, Lei; Liu, Zhenyu; Ci, Donghui; Lievens, Caroline; Guo, Xiaofen; Liu, Muxin
2014-03-01
Fast pyrolysis of biomass has attracted increasing attention worldwide to produce bio-tars that can be upgraded into liquid fuels and chemicals. However, the bio-tars are usually poor in quality and stability and are difficult to be upgraded. To better understand the nature of the bio-tars, this work reveals radical concentration of tars derived from pyrolysis of two kinds of biomass. The tars were obtained by condensing the pyrolysis volatiles in 3s. It shows that the tars contain large amounts of radicals, at a level of 10(16)spins/g, and are able to generate more radicals at temperatures of 573K or higher, reaching a level of 10(19)spins/g at 673K in less than 30min. The radical generation in the tar samples is attributed to the formation of THF insoluble matters (coke), which also contain radicals. The radical concentrations of the aqueous liquids obtained in pyrolysis are also studied. Copyright © 2014 Elsevier Ltd. All rights reserved.
ELECTRON SPIN RESONANCE STUDIES ON PEROXIDE RADICALS IN IRRADIATED POLYPROPYLENE (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, H.; Hellwege, K.-H.; Neudoerfl, P.
1963-06-01
Peroxide radicals are formed by oxidation of carbon radicals in irradiated isotactic polypropylene. An interpretation of their ESR spectra is given. The recombination of the peroxide radicals follows a chain reaction mechanism, which is derived from the reversibility of formation of peroxide radicals, the time dependence of their concentration, and from the oxygen consumption of samples containing peroxide radicals. The reactions are discussed in view of the radiation induced oxidative degradation of polypropylene. (auth)
Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.
Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G
2018-05-10
A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Salawitch, R. J.; Wofsy, S. C.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Gao, R. S.; Keim, E. R.; Woodbridge, E. L.; Stimpfle, R. M.;
1994-01-01
In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained in the lower stratosphere during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) are compared to results from a photochemical model that assimilates measurements of radical precursors and environmental conditions. Models allowing for heterogeneous hydrolysis of N2O5 agree well with measured concentrations of NO and ClO, but concentrations of HO2 and OH are underestimated by 10 to 25%, concentrations of NO2 are overestimated by 10 to 30%, and concentrations of HCl are overestimated by a factor of 2. Discrepancies for [OH] and [HO2] are reduced if we allow for higher yields of O(sup 1)D) from 03 photolysis and for heterogeneous production of HNO2. The data suggest more efficient catalytic removal of O3 by hydrogen and halogen radicals relative to nitrogen oxide radicals than predicted by models using recommended rates and cross sections. Increases in [O3] in the lower stratosphere may be larger in response to inputs of NO(sub y) from supersonic aircraft than estimated by current assessment models.
NASA Technical Reports Server (NTRS)
Salawitch, R. J.; Wofsy, S. C.; We-Nnberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Gao, R. S.; Keim, E. R.; Woodbridge, E. L.; Stimpfle, R. M.
1994-01-01
In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained in the lower statosphere during SPADE are compared to results from a photochemical model that assimilates measurements of radical precursors and environmental conditions. Models allowing for heterogeneous hydrolysis of N2O5 agree well with measured concentrations of NO and ClO, but concentrations of HO2 and OH are underestimated by 10 to 25%, concentrations of NO2 are overestimated by 10 to 30%, and concentrations of HCl are overestimated by a factor of 2. Discrepancies for (OH) and (HO2) are reduced if we allow for higher yields of O((1)D) from O2 photolysis and for heterogeneous production of HNO2. The data suggest more efficent catalytic removal of O3 by hydrogen and halogen radicals relative to nitrogen oxide radicals than predicted by models using recommendend rates and cross sections. Increased in (O3) in the lower stratosphere may be larger in response to inputs of NO(y) from supersonic aircraft than estimated by current assessment models.
Role of ascorbic acid in stratum corneum lipid models exposed to UV irradiation.
Trommer, Hagen; Böttcher, Roif; Pöppl, Andreas; Hoentsch, Joachim; Wartewig, Siegfried; Neubert, Reinhard H H
2002-07-01
The effects of ascorbic acid on Stratum corneum lipid models following ultraviolet irradiation were studied adding iron ions as transition metal catalysts. Lipid peroxidation was quantified by the thiobarbituric acid assay. The qualitative changes were studied on a molecular level by mass spectrometry. To elucidate the nature of free radical involvement we carried out electron paramagnetic resonance studies. The influence of ascorbic acid on the concentration of hydroxyl radicals was examined using the spin trapping technique. Moreover, we checked the vitamin's ability to react with stable radicals. Ascorbic acid was found to have prooxidative effects in all lipid systems in a concentration dependent manner. The degradation products of ascorbic acid after its prooxidative action were detected. The concentration of the hydroxyl radicals in the Fenton assay was decreased by ascorbic acid. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate showed reduced concentration levels of the stable radical caused by ascorbic acid. Considering human skin and its constant exposure to UV light and oxygen, an increased pool of iron ions in irradiated skin and the depletion of co-antioxidants, the administration of ascorbic acid in cosmetic formulations or in sunscreens could unfold adverse effects among the Stratum corneum lipids.
Hydrogen peroxide kinetics in water radiolysis
NASA Astrophysics Data System (ADS)
Iwamatsu, Kazuhiro; Sundin, Sara; LaVerne, Jay A.
2018-04-01
The kinetics of the formation and reaction of hydrogen peroxide in the long time γ- radiolysis of water is examined using a combination of experiment with model calculations. Escape yields of hydrogen peroxide on the microsecond time scale are easily measured with added radical scavengers even with substantial amounts of initial added hydrogen peroxide. The γ-radiolysis of aqueous hydrogen peroxide solutions without added radical scavengers reach a steady state limiting concentration of hydrogen peroxide with increasing dose, and that limit is directly proportional to the initial concentration of added hydrogen peroxide. The dose necessary to reach that limiting hydrogen peroxide concentration is also proportional to the initial concentration, but dose rate has a very small effect. The addition of molecular hydrogen to aqueous solutions of hydrogen peroxide leads to a decrease in the high dose limiting hydrogen peroxide concentration that is linear with the initial hydrogen concentration, but the amount of decrease is not stoichiometric. Proton irradiations of solutions with added hydrogen peroxide and hydrogen are more difficult to predict because of the decreased yields of radicals; however, with a substantial increase in dose rate there is a sufficient decrease in radical yields that hydrogen addition has little effect on hydrogen peroxide decay.
Niu, Ben; Zhang, Hao; Giblin, Daryl; Rempel, Don L; Gross, Michael L
2015-05-01
Fast photochemical oxidation of proteins (FPOP) employs laser photolysis of hydrogen peroxide to give OH radicals that label amino acid side-chains of proteins on the microsecond time scale. A method for quantitation of hydroxyl radicals after laser photolysis is of importance to FPOP because it establishes a means to adjust the yield of •OH, offers the opportunity of tunable modifications, and provides a basis for kinetic measurements. The initial concentration of OH radicals has yet to be measured experimentally. We report here an approach using isotope dilution gas chromatography/mass spectrometry (GC/MS) to determine quantitatively the initial •OH concentration (we found ~0.95 mM from 15 mM H2O2) from laser photolysis and to investigate the quenching efficiencies for various •OH scavengers.
Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review
Truscott, T. George
2018-01-01
We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration. PMID:29301252
Vašková, J; Fejerčáková, A; Mojžišová, G; Vaško, L; Patlevič, P
2015-01-01
Antioxidant, anti-inflammatory and venoconstrictor properties have been attributed to extracts from Aesculus hippocastanum. These unusual and diverse properties may be possibly basically linked with ability to scavenge free radicals. The scavenging capacity of dry horse chestnut extract of and escin have been investigated in vitro against superoxide anion radicals, hydroxyl radicals, nitrites and peroxynitrite. In general, the activity of the whole extract against superoxide radicals did not exceed 15% at pH 7.4, but the highest inhibition (46.11%) was recorded against hydroxyl radicals at a concentration of 100 µg.ml-1; however, the activity against other radicals was lower. Escin demonstrated a better ability to counteract nitric oxide oxidation products, nitrites. However, the efficiency of the whole extract completely disappeared as the concentration increased. Both extracts showed very low activity towards peroxynitrite. Escin was even able to induce peroxynitrite formation at the lower concentrations used. Whole extract showed better antiradical properties compared to its main active ingredient, escin, probably due to potential synergistic interaction with a mixture of compounds present in the plant extract. These findings can be the basis of both the presentation of side-effects and the persistence of disease in spite of ongoing treatment.
Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid
Gómez Alvarez, Elena; Amedro, Damien; Afif, Charbel; Gligorovski, Sasho; Schoemaecker, Coralie; Fittschen, Christa; Doussin, Jean-Francois; Wortham, Henri
2013-01-01
The hydroxyl (OH) radical is the most important oxidant in the atmosphere since it controls its self-oxidizing capacity. The main sources of OH radicals are the photolysis of ozone and the photolysis of nitrous acid (HONO). Due to the attenuation of solar radiation in the indoor environment, the possibility of OH formation through photolytic pathways indoors has been ignored up to now. In the indoor air, the ozonolysis of alkenes has been suggested as an alternative route of OH formation. Models and indirect measurements performed up to now according to this hypothesis suggest concentrations of OH radicals on the order of 104–105 molecules per cubic centimeter. Here, we present direct measurements of significant amounts of OH radicals of up to 1.8⋅106 molecules per cubic centimeter during an experimental campaign carried out in a school classroom in Marseille. This concentration is on the same order of magnitude of outdoor OH levels in the urban scenario. We also show that photolysis of HONO is an important source of OH radicals indoors under certain conditions (i.e., direct solar irradiation inside the room). Additionally, the OH concentrations were found to follow a linear dependence with the product J(HONO)⋅[HONO]. This was also supported by using a simple quasiphotostationary state model on the OH radical budget. These findings force a change in our understanding of indoor air quality because the reactivity linked to OH would involve formation of secondary species through chemical reactions that are potentially more hazardous than the primary pollutants in the indoor air. PMID:23898188
NASA Astrophysics Data System (ADS)
Whalley, Lisa; Stone, Daniel; Sharp, Thomas; Garraway, Shani; Bannan, Thomas; Percival, Carl; Hopkins, James; Holmes, Rachel; Hamilton, Jacqui; Lee, James; Laufs, Sebastian; Kleffmann, Jörg; Heard, Dwayne
2014-05-01
With greater than 50 % of the global population residing in urban conurbations, poor urban air quality has a demonstrable effect on human health. OH and HO2 radicals, (collectively termed HOx) together with RO2 radicals, mediate virtually all of the oxidative chemistry in the atmosphere, being responsible for the transformation of primary emissions into secondary pollutants such as NO2, O3 and particulates. Here we present measurements of OH, HO2, partially speciated RO2 (distinguishing smaller alkane related RO2 from larger alkane/alkene/aromatic related RO2), ClNO2 and OH reactivity measurements taken during the ClearfLo campaign in central London in the summer of 2012. Comparison with calculations from a detailed box model utilising the Master Chemical Mechanism v3.2 tested our ability to reproduce radical levels, and enabled detailed radical budgets to be determined, highlighting for example the important role of the photolysis of nitrous acid (HONO) and carbonyl species as radical sources. Speciation of RO2 enabled the break-down of ozone production from different classes of VOCs to be calculated directly and compared with model calculations. Summertime observations of radicals have helped to identify that increases in photolytic sources of radicals on warm, sunny days can significantly increase local ozone concentrations leading to exceedances of EU air quality recommendations of 60 ppbV. The photolytic breakdown of ClNO2 to Cl atoms can more than double radical concentrations in the early morning; although the integrated increase in radical concentrations over a 24 hr period in model runs when ClNO2 photolysis is included is more modest. On average we calculate just under a 1 ppb increase in ozone due to the presence of ClNO2 in London air. OH reactivity was found to be greatest during morning and evening rush hours. Good agreement between the modelled OH reactivity and observations could be achieved when reactivity associated with model generated photo-oxidation products was considered in addition to the measured primary OH reactants. Carbonyl species such as formaldehyde, acetaldehyde and acetone have been identified as the VOC class dominating organic OH reactivity. As such, together with the direct radical source contribution by photolysis, these species dominate local ozone production in London. Modelling studies comparing the observed carbonyl concentrations with model predictions suggest that over 50% of the total concentration may be directly emitted and, hence, London's in-situ chemistry may be considered to contribute significantly to the ozone levels observed.
Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M
2011-12-20
The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amer, G.I.; Drew, S.W.
1981-01-01
During a 9 day fermentation of lignin by C. versicolor, the concentration of superoxide radical in the extracellular medium of the submerged culture rose and fell, reaching a maximum after 2 and 6 days of incubation, and a minimum at 3 and 8 days. The results indicate that the extracellular superoxide radical is involved in lignin degradation, but there was no evidence that it is an initial attacking agent. (Refs. 9).
Chikvaidze, Eduard; Topeshashvili, Maia
2015-12-01
Increased incidence of melanoma in the population with red hair is conditioned by synthesis of pheomelanin pigments in the skin and their phototoxic properties. The recent research has shown that free radicals of pheomelanin are produced not only by the influence of UV irradiation, but also in UV-independent pathways of oxidative stress. It has been ascertained, that the color of the hair is not always determinant of the amount of pheolemanin radicals in red hair. Therefore, in order to evaluate the risk of melanoma in different individuals, it is necessary to define the amount of free radicals of pheomelanin in red hair using ESR spectroscopy method. Besides, it is very important to find effective antioxidant, capable of neutralizing free radicals of pheomelanin. It was proved that ascorbic acid neutralizes free radicals of pheomelanin very effectively. The main goal of our research was to define the presumably optimal concentration of ascorbic acid as an antioxidant and study the kinetics of the influence of this concentration on red and black hair. It has been found out, that ascorbic acid influences the free radicals of red and black hair, and its appropriate optimal concentration is 10 mM. The obtained results can be considered in dermatology and cosmetology. Copyright © 2015 John Wiley & Sons, Ltd.
Influence of Temperature on Free Radical Generation in Propolis-Containing Ointments
Ramos, Pawel; Pilawa, Barbara
2016-01-01
Free radicals thermally generated in the ointments containing propolis were studied by electron paramagnetic resonance (EPR) spectroscopy. The influence of temperature on the free radical concentration in the propolis ointments was examined. Two ointment samples with different contents of propolis (5 and 7%, resp.) heated at temperatures of 30°C, 40°C, 50°C, and 60°C, for 30 min., were tested. Homogeneously broadened EPR lines and fast spin-lattice interactions characterized all the tested samples. Free radicals concentrations in the propolis samples ranged from 1018 to 1020 spin/g and were found to grow in both propolis-containing ointments along with the increasing heating temperature. Free radical concentrations in the ointments containing 5% and 7% of propolis, respectively, heated at temperatures of 30°C, 40°C, and 50°C were only slightly different. Thermal treatment at the temperature of 60°C resulted in a considerably higher free radical formation in the sample containing 7% of propolis when related to the sample with 5% of that compound. The EPR examination indicated that the propolis ointments should not be stored at temperatures of 40°C, 50°C, and 60°C. Low free radical formation at the lowest tested temperatures pointed out that both examined propolis ointments may be safely stored up to the temperature of 30°C. PMID:27563336
Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere
NASA Technical Reports Server (NTRS)
Wennberg, P. O.; Hanisco, T. F.; Jaegle, L.; Jacob, D. J.; Hintsa, E. J.; Lanzendorf, E. J.; Anderson, J. G.; Gao, R.-S.; Keim, E. R.; Donnelly, S. G.;
1998-01-01
The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3, in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO(x) required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of 03 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day.This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more 03 than expected.
Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere
NASA Technical Reports Server (NTRS)
Wennberg, P. O.; Hanisco, T. F.; Jaegle, L.; Jacob, D. J.; Hintsa, E. J.; Lanzendorf, E. J.; Anderson, J. G.; Gao, R.-S.; Keim, E. R.; Donnelly, S. G.;
1998-01-01
The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3 in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO, required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production Of O3 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about I part per billion by volume each day. This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more 03 than expected.
HO2 measurements at atmospheric concentrations using a chemical ionization mass spectrometry
NASA Astrophysics Data System (ADS)
Albrecht, S.; Novelli, A.; Hofzumahaus, A.; Kang, S.; Baker, Y.; Mentel, T. F.; Fuchs, H.
2017-12-01
Correct and precise measurements of atmospheric radical species are necessary for a better understanding of the oxidative capacity of the atmosphere. Due to the reactivity of radicals, and their consequent low concentrations, direct measurements of these species are particularly challenging and have been proven in the past to be affected by interfering species. Here we present a chemical ionization source coupled to an APi-HR-TOF-MS (Aerodyne Research Inc.), which has a limit of detection for HO2 radicals well below its atmospheric concentrations ( 1 x 108 molecules cm-3). The instrument was calibrated with a well-established and characterized HO2 calibration source in use for the laser induced fluorescence instrument in the Forschungszentrum Jülich. Within the source, a well characterized amount of HO2 radicals is produced after photolysis of water by a mercury lamp. In addition, several experiments were performed in the atmosphere simulation chamber SAPHIR at the Forschungszentrum Jülich to test for potential interferences. Measurements of HO2 radicals were concurrently detected by a laser induced fluorescence instrument allowing for the comparison of measurements within the two different and independent techniques for various atmospheric conditions regarding concentrations of O3, NOx and VOCs. Results from the intercomparison together with the calibration procedure of the instrument and laboratory characterization will be presented.
NASA Astrophysics Data System (ADS)
Arakaki, T.; Kinjo, M.; Shiroma, K.; Shibata, M.; Miyake, T.; Hirakawa, T.; Sakugawa, H.
2003-12-01
Hydroxyl radical formation was studied by detecting concentration of formate in solutions of hydrated formaldehyde, HOOH, and Fe(III) or Cu(II). Oxidation of hydrated formaldehyde by OH radical is known to form formate. Formate formation increased by about 4 times when the solution underwent freezing and thawing. Although the reaction mechanisms are not clearly understood, we believe that the concentration effect of freezing enhanced the catalytic reactions between HOOH and Fe(III) or Cu(II) and the reduction of transition metals, i.e., Fe(III) to Fe(II) and Cu(II) to Cu(I). The concentration effect also enhanced reactions between Fe(II) and HOOH or Cu(I) and HOOH, which generated OH radical (freeze-Fenton reaction). Study of the effects of pH showed that formate formation was the highest at pH = 4.0, indicating that the speciation of Fe(III) affected the formation of formate. Concentration-dependent experiments demonstrated that Fe is probably the limiting agent under typical atmospheric conditions. Our results suggested that the freezing process could be an important source of hydroxyl radical in high cloud, winter fog, rime ice and freezing acidic rain, and more importantly, a potentially additional oxidation mechanism in the atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Wang, Lin-Lin; Manzano, J. Sebastian
The efficacy of dynamic nuclear polarization (DNP) surface-enhanced NMR spectroscopy (SENS) is reviewed for alumina, silica, and ordered mesoporous carbon (OMC) materials, with vastly different surface areas, as a function of the biradical concentration. Importantly, our studies show that the use of a “one-size-fits-all” biradical concentration should be avoided when performing DNP SENS experiments and instead an optimal concentration should be selected as appropriate for the type of material studied as well as its surface area. In general, materials with greater surface areas require higher radical concentrations for best possible DNP performance. This result is explained with the use ofmore » a thermodynamic model wherein radical-surface interactions are expected to lead to an increase in the local concentration of the polarizing agent at the surface. We also show, using plane-wave density functional theory calculations, that weak radical-surface interactions are the cause of the poor performance of DNP SENS for carbonaceous materials.« less
Hippophae leaf extract concentration regulates antioxidant and prooxidant effects on DNA.
Saini, Manu; Tiwari, Sandhya; Prasad, Jagdish; Singh, Surender; Kumar, M S Yogendra; Bala, Madhu
2010-03-01
Extracts from Hippophae leaves constitute some commonly consumed beverages such as tea and wine. We had developed an extract of Hippophae leaves (SBL-1), which was rich in quercetin, had antimutagenic effects, radioprotective effects, and countered radiation-induced gene conversion in Saccharomyces cerevisiae. This study was designed to investigate the action of SBL-1 on guanine cytosine (GC)-rich nascent and mouse genomic DNA in vitro. The human and mouse liver DNA have about 43% GC content. Our results showed that at small concentration SBL-1 protected nascent as well as genomic DNA, while at large concentration SBL-1 damaged both types of DNA. The concentration of SBL-1 that protected DNA also demonstrated higher free radical scavenging activity. The reducing power of SBL-1 was greater than its free radical scavenging activity. The greater reducing power may have reduced the trace metals present in the SBL-1, leading to generation of hydroxyl radicals via Fenton reaction. The increased proportion of unscavenged hydroxyl radicals with increase in SBL-1 concentration may have been responsible for DNA damage or prooxidant effect of SBL-1 in vitro. This study suggests that the dietary supplements prepared from Hippophae should have low metal content.
Khachatryan, Lavrent; Dellinger, Barry
2011-11-01
A chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed to measure the production of hydroxyl radical (·OH) in aqueous suspensions of 5% Cu(II)O/silica (3.9% Cu) particles containing environmentally persistent free radicals (EPFRs) of 2-monochlorophenol (2-MCP). The results indicate: (1) a significant differences in accumulated DMPO-OH adducts between EPFR containing particles and non-EPFR control samples, (2) a strong correlation between the concentration of DMPO-OH adducts and EPFRs per gram of particles, and (3) a slow, constant growth of DMPO-OH concentration over a period of days in solution containing 50 μg/mL EPFRs particles + DMPO (150 mM) + reagent balanced by 200 μL phosphate buffered (pH = 7.4) saline. However, failure to form secondary radicals using standard scavengers, such as ethanol, dimethylsulfoxide, sodium formate, and sodium azide, suggests free hydroxyl radicals may not have been generated in solution. This suggests surface-bound, rather than free, hydroxyl radicals were generated by a surface catalyzed-redox cycle involving both the EPFRs and Cu(II)O. Toxicological studies clearly indicate these bound free radicals promote various types of cardiovascular and pulmonary disease normally attributed to unbound free radicals; however, the exact chemical mechanism deserves further study in light of the implication of formation of bound, rather than free, hydroxyl radicals.
Positive Effect of Propolis on Free Radicals in Burn Wounds
Olczyk, Pawel; Ramos, Pawel; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Pilawa, Barbara
2013-01-01
Concentration and properties of free radicals in the burn wounds treated with propolis were examined by the use of electron paramagnetic resonance spectroscopy. Magnetic spin-spin interactions and complex free radicals structures in wound beds were studied. The results were compared to those obtained for silver sulphadiazine used as a standard pharmaceutical agent. The changes of free radicals in the matrix of injury with time of exposition on these substances were tested. The aim of this study was to check the hypothesis about the best influence of propolis on the burn wounds healing. It was confirmed that a relatively lower concentration of free radicals exists in the burn wounds treated with propolis. The homogeneously broadened spectra and a complex free radical system characterize the tested tissue samples. The fastening of spin-lattice relaxation processes in the matrix of injury after treatment with propolis and silver sulphadiazine was observed. Practical usefulness of electron paramagnetic resonance spectroscopy in alternative medicine was proved. PMID:23762125
Ismailoglu, U B; Saracoglu, I; Harput, U S; Sahin-Erdemli, I
2002-02-01
The protective effect of phenylpropanoid glycosides, forsythoside B and alyssonoside, and the iridoid glycoside lamiide, isolated from the aerial parts of Phlomis pungens var. pungens, against free radical-induced impairment of endothelium-dependent relaxation in isolated rat aorta was investigated. Aortic rings were exposed to free radicals by the electrolysis of the physiological bathing solution. Free radical-induced inhibition of the endothelium-dependent relaxation in response to acetylcholine was countered by incubation of the aortic rings before electrolysis with the aqueous extract (200 microg/ml), phenylpropanoid fraction (100 microg/ml) and iridoid fraction (150 microg/ml) of P. pungens var. pungens. Major components of the phenylpropanoid fraction forsythoside B and alyssonoside also prevented the inhibition of the acetylcholine response, at 10(-4) M concentration. However, the major component of iridoid fraction lamiide was found ineffective at the same concentration. The protective activity of phenylpropanoid glycosides against the free radical-induced impairment of endothelium-dependent relaxation may be related to their free radical scavenging property.
Measurement of myocardial free radical production during exercise using EPR spectroscopy.
Traverse, Jay H; Nesmelov, Yuri E; Crampton, Melanie; Lindstrom, Paul; Thomas, David D; Bache, Robert J
2006-06-01
Exercise is associated with an increase in oxygen flux through the mitochondrial electron transport chain that has recently been demonstrated to increase the production of reactive oxygen species (ROS) in skeletal muscle. This study examined whether exercise also causes free radical production in the heart. We measured ROS production in seven chronically instrumented dogs during rest and treadmill exercise (6.4 km/h at 10 degrees grade; and heart rate, 204 +/- 3 beats/min) using electron paramagnetic resonance spectroscopy in conjunction with the spin trap alpha-phenyl-tert-butylnitrone (PBN) (0.14 mol/l) in blood collected from the aorta and coronary sinus (CS). To improve signal detection, the free radical adducts were deoxygenated over a nitrogen stream for 15 min and extracted with toluene. The hyperfine splitting constants of the radicals were alpha(N) = 13.7 G and alpha(H) = 1.0 G, consistent with an alkoxyl or carbon-centered radical. Resting aortic and CS PBN adduct concentrations were 6.7 and 6.3 x 10(8) arbitrary units (P = not significant). Both aortic and CS adduct concentrations increased during exercise, but there was no significant difference between the aortic and CS concentrations. Thus, in contrast to skeletal muscle, submaximal treadmill exercise did not result in detectable free radical production by the heart.
Roles of Segmental and Oligomeric Diffusion on the Gel Effect in Free Radical Polymerization
NASA Astrophysics Data System (ADS)
Wisnudel, M. B.; Torkelson, J. M.
1996-03-01
Termination between radicals has been simulated by phosphorescence quenching, showing strong roles for segmental and oligomeric radical self-diffusion in the origin of the gel effect. Quenching rate constants (k_q) were measured between benzil-terminated polymer as a function of anthracene-terminated polymer in polymer solutions. In dilute solution, interactions between 10k or 73k MW benzil-terminated polystyrene (PS- B) and anthracence-terminated polystyrene (PS-A) of varying MW, the MW effect is weaker than the Smoluchowski eq. prediction (kq MW^- 0.5). At higher concentration, interactions of PS-B and PS-A of like MW show only weak dependence of kq on MW and a concentration dependence similar to that of segmental mobility, indicating that segmental diffusion is important in termination. Finally, with interactions between 73k MW PS-B and PS-A of varying MW at 35 wt% PS, kq decreases by a factor of 10 in going from MW's of 100 to 1000 g/mol; beyond 1000 g/mol, kq is MW independent. Such effects cannot be explained by polymer-radical self-diffusion. However, they support the notion that the gel effect onset is associated with the concentration dependence of oligomeric radical self-diffusion and polymer radical chain-end segmental mobility.
SU-F-T-164: Investigation of PRESAGE Formulation On Signal Quenching in a Proton Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, M; Alqathami, M; Ibbott, G
2016-06-15
Purpose: The radiochromic polyurethane PRESAGE by Heuris Pharma has had limited applications with protons because of a dose response dependence on LET resulting in signal quenching in the Bragg peak. This is due to the radical initiator, a halocarbon, radically recombining in high-LET irradiations. This study investigated the use of alternative halocarbons at various chemical concentrations to determine their significance in signal quenching. Methods: PRESAGE was manufactured in-house and cast in small volume cuvettes (1×1×4cm^3). Several compositions were evaluated to determine the influence of the radical initiator component. Mixtures contained one of two halocarbons, chloroform or bromoform, at concentrations ofmore » 5%/10%/15%(w/w). A large volume, cylindrical PRESAGE dosimeter made following the mixture described by Heuris Pharma, 4cm(D)×8.5cm(H), was irradiated with 200-MeV protons to study regions of low- and high-LET along a 10cm spread out Bragg peak isodose profile. Depths corresponding to regions of low quenching (<3%) and high quenching (>20%) were determined. These depths were used for cuvette placement in a solid water phantom. Samples of each formulation were placed at each depth and irradiated to doses between 0 and 10Gy. Results: The cuvettes indicated different levels of quenching for different radical initiator types, concentrations, and total doses. Chloroform formulations showed reduced quenching from 29%(5%-w/w) to 21%(15%-w/w) while bromoform reduced quenching from 27%(5%-w/w) to 17%(15%-w/w). The reduction in quenching was found to be non-linear with concentration of radical initiator. A quenching dose-dependency was also found that changed with formulation. In all cases, quenching was relatively consistent from 0–5Gy but increased at 10Gy. The quenching decreased as concentrations of radical initiator increased. Conclusion: The radical initiator component in PRESAGE is correlated with the signal quenching observed in proton irradiations and formulation adjustments show promise as a method of reducing this quenching. Future work will further investigate concentration limits and optimize the formulation. Grant number 5RO1CA100835.« less
NASA Astrophysics Data System (ADS)
Dusanter, S.; Vimal, D.; Stevens, P. S.; Volkamer, R.; Molina, L. T.
2007-12-01
The Mexico City Metropolitan Area (MCMA) field campaign, held in March 2006, was a unique opportunity to collect data in one of the most polluted megacities in the world. Such environments exhibit a complex oxidation chemistry involving a strong coupling between odd hydrogen radicals (HOX=OH+HO2) and nitrogen oxides species (NOX=NO+NO2). High levels of volatile organic compounds (VOCs) and NOX control the HOX budget and lead to elevated tropospheric ozone formation. The HOX-NOX coupling can be investigated by comparing measured and model-predicted HOx concentrations. Atmospheric HOX concentrations were measured by the Indiana University laser-induced fluorescence instrument and data were collected at the Instituto Mexicano del Petroleo between 14 and 31 March. Measured hydroxyl radical (OH) concentrations are comparable to that measured in less polluted urban environments and suggest that the OH concentrations are highly buffered under high NOX conditions. In contrast, hydroperoxy radical (HO2) concentrations are more sensitive to the NOX levels and are highly variable between different urban sites. Enhanced levels of OH and HO2 radicals were observed on several days between 9h30-11h00 AM and suggest an additional HOX source for the morning hours and/or a fast HOX cycling under the high NOX conditions of the MCMA. A preliminary investigation of the HOX chemistry occurring in the MCMA urban atmosphere was performed using a photochemical box model based on the Regional Atmospheric Chemistry Mechanism (RACM). Model comparisons will be presented and the agreement between measured and predicted HOX concentrations will be discussed.
NASA Technical Reports Server (NTRS)
Bui, T. P.
1997-01-01
The concentrations of hydrogen radicals, OH and HO2, in the middle and upper troposphere were measured simultaneously with those of NO, O3,CO, H20, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field.
Suppression of new particle formation from monoterpene oxidation by NOx
NASA Astrophysics Data System (ADS)
Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.
2013-10-01
The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory set up. At high NOx conditions (BVOC/NOx < 7, NOx > 23 ppb) no new particles were formed. Instead photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. As soon as [NO] was reduced to below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF orders of magnitude slower than in analogous experiments at low NOx conditions (NOx ~ 300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF suggesting that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent of approximately -2. This exponent indicated that the overall peroxy radical concentration must have been the same whenever NPF appeared. Thus permutation reactions of first generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy radical like molecules limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was less sensitive to NOx concentrations, if at all. Only at very high NOx concentrations yields were reduced by about an order of magnitude.
Suppression of new particle formation from monoterpene oxidation by NOx
NASA Astrophysics Data System (ADS)
Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.
2014-03-01
The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] < 7, [NOx] > 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching -2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.
Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.
Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Elias, Ryan J; Silakov, Alexey; Foulds, Jonathan; Muscat, Joshua; Richie, John P
2018-05-20
Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes. Copyright © 2018 Elsevier Inc. All rights reserved.
RAPID MEASUREMENT OF AQUEOUS HYDROXYL RADICAL CONCENTRATIONS IN STEADY-STATE HO· FLUX SYSTEMS
The spin-trap compound a-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone (4-POBN) is utilized for the detection and quantitation of the hydroxyl radical (HO·) in aqueous solution. Capillary electrophoresis enables rapid analysis of the probe compound. The thermally unstable HO· radical ...
NASA Astrophysics Data System (ADS)
Adhikari, S.; Joshi, R.; Gopinathan, C.
1997-01-01
The pulse radiolytic and spectrophotometric study of uric acid in presence of bovine serum albumin (BSA) has been carried out. In the spectrophotometric study there is no evidence for ground state interaction between BSA and uric acid. The oxidation reactions of uric acid in presence and absence of BSA employing CCl 3OO and Br radicals have been carried out. In a composition of equal concentration of uric acid and BSA, the CCl 3OO and Br radicals produce a transient absorption spectrum which show two peaks at 330 and 360 nm. The peak at 360 nm is ascribed due to weak complex formation between semioxidised BSA and uric acid radicals. The rate constant of CCl 3OO . radical with uric acid increases with the increase in BSA concentration which is explained as protection of BSA by uric acid from radical attack. The Br radical attacks uric acid and BSA in a manner similar to CCl 3OO radical. The bimolecular rate constants for the reaction of Br radical with BSA and uric acid have been found as 2.9 × 10 10 dm 3 mol -1 s -1 and 6.33 × 10 9 dm 3 mol -1 s -, respectively.
Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere
NASA Technical Reports Server (NTRS)
Wennberg, P. O.; Hanisco, T. F.; Jaegle, L.; Jacob, D. J.; Hintsa, E. J.; Lanzendorf, E. J.; Anderson, J. G.; Gao, R.-S.; Keim, E. R.; Donnelly, S. G.;
1998-01-01
The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3 in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO(sub x) required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of O3 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day. This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more O3 than expected.
NASA Astrophysics Data System (ADS)
Bartolomei, V.; Gomez Alvarez, E.; Glor, M.; Gligorovski, S.; Temime-Roussel, B.; Quivet, E.; Strekowski, R.; Zetzsch, C.; Held, A. B.; Wortham, H.
2013-12-01
Hydroxyl radical (OH) is one of the most important oxidant species in the atmosphere controlling its self-oxidizing capacity. The main sources of OH radicals are photolysis of ozone and photolysis of nitrous acid (HONO), among the others. In the indoor air, the ozonolysis of alkenes has been suggested as the main OH formation pathway. The possibility for OH formation through photolytic pathways in the indoor environment has been, up to now, ignored (Gómez Alvarez et al., 2012). Models and indirect measurements to the present time predicted concentrations of OH radicals in the order of 104 -105 cm-3. Recently, by direct measurements we have detected high OH radical concentrations of 1.8 106 cm-3 in a classroom in Marseille and we demonstrated that its main source is the photolysis of HONO (Gómez Alvarez et al., 2013). The concentrations of HONO are quite high indoors, reaching levels in the order of a few tens of ppbV (Gómez Alvarez et al., 2013). This is mainly due to 1) direct combustion sources and 2) heterogeneous reactions of NO2 on the numerous surfaces present in the indoor environment. HONO levels of 30 ppb were measured in a previous campaign carried out in Bayreuth in July 2012 as direct emissions from the combustion of a candle. The combination between so high concentrations of HONO and higher than expected light transmissions indoors (or indoor artificial lighting) could have a significant impact on the OH concentrations indoors which could feasibly become considerably higher than we measured in our school campaign (Gomez Alvarez et al., 2013). In order to evaluate these upper limits under combustion conditions in the indoor environment, we have carried out a campaign in the LOTASC chamber (Bayreuth, Germany). For this aim, the exhaust fumes from the burning of a commonly used domestic candle have been introduced in the chamber. The chamber was irradiated under well research indoor lighting conditions. A thorough characterization of light intensities and span (wavelength distribution) indoors have been performed, which had been identified as a clear flaw in our knowledge restricting the advancement of indoor air quality models. OH concentration levels have been determined using d9-butanol as tracer, using the OH clock determination procedure by PTR-MS-TOF. The OH radical concentration was investigated using different light intensities representative from indoor conditions, both natural and artificial and also different levels of RH. The PSS model has been performed in order to evaluate the contribution of different sources to the OH radical concentrations indoors under these conditions. The obtained results from the PSS model clearly indicate that the main source of OH radical indoors under combustion conditions is the photolysis of HONO under typical indoor irradiation conditions. REFERENCES Gómez Alvarez E, Wortham H, Strekowski R, Zetzsch C, Gligorovski S (2012) Atmospheric photo-sensitized heterogeneous and multiphase reactions: From outdoors to indoors, Environ. Sci. Technol. 46, 1955-1963. Gómez Alvarez, E.; Amedro, D.; Afif, C. ; Gligorovski, S.; Schoemacker , C.; Fittschen, C. ; Doussin, J. F.; Wortham, H. (2013) Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid. Proc. Natl. Acad. Sci. USA Accepted.
Moorhouse, C P; Halliwell, B; Grootveld, M; Gutteridge, J M
1985-12-13
Co(II) ions react with hydrogen peroxide under physiological conditions to form a 'reactive species' that can hydroxylate aromatic compounds (phenol and salicylate) and degrade deoxyribose to thiobarbituric-acid-reactive material. Catalase decreases the formation of this species but superoxide dismutase or low concentrations of ascorbic acid have little effect. EDTA, present in excess over the Co(II), can accelerate deoxyribose degradation and aromatic hydroxylation. In the presence of EDTA, deoxyribose degradation by the reactive species is inhibited competitively by scavengers of the hydroxyl radical (.OH), their effectiveness being related to their second-order rate constants for reaction with .OH. In the absence of EDTA the scavengers inhibit only at much higher concentrations and their order of effectiveness is changed. It is suggested that, in the presence of EDTA, hydroxyl radical is formed 'in free solution' and attacks deoxyribose or an aromatic molecule. In the absence of EDTA, .OH radical is formed in a 'site-specific' manner and is difficult to intercept by .OH scavengers. The relationship of these results to the proposed 'crypto .OH' radical is discussed.
Oxidative capacity of the Mexico City atmosphere - Part 1: A radical source perspective
NASA Astrophysics Data System (ADS)
Volkamer, R.; Sheehy, P. M.; Molina, L. T.; Molina, M. J.
2007-04-01
A detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA). During spring of 2003 (MCMA-2003 field campaign) an extensive set of measurements was collected to quantify time resolved ROx (sum of OH, HO2, RO2) radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1) was constrained by measurements of (1) concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO), formaldehyde (HCHO), ozone (O3), glyoxal (CHOCHO), and other oxygenated volatile organic compounds (OVOCs); (2) respective photolysis-frequencies (J-values); (3) concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated) and oxidants, i.e., OH- and NO3 radicals, O3; and (4) NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals). Daytime radical production is found to be about 10-25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: HCHO and O3 photolysis, each about 20%; O3/alkene reactions and HONO photolysis, each about 15%; unmeasured sources about 30%. While the direct contribution of O3/alkene reactions appears to be moderately small, source-apportionment of ambient HCHO and HONO identifies O3/alkene reactions as being largely responsible for jump-starting photochemistry about one hour after sunrise. The peak radical production is found to be higher than in any other urban influenced environment studied to date; further, differences exist in the timing of radical production. Our measurements and analysis comprise a database that enables testing of the representation of radical sources in photochemical models. Since the photochemical processing of pollutants is radical-limited in the MCMA, our analysis identifies the drivers for such processing. Three pathways are identified by which reductions in VOC emissions induce reductions in peak concentrations of secondary pollutants, such as O3 and secondary organic aerosol (SOA).
NASA Astrophysics Data System (ADS)
Lew, Michelle M.; Dusanter, Sebastien; Stevens, Philip S.
2018-01-01
One technique used to measure concentrations of the hydroperoxy radical (HO2) in the atmosphere involves chemically converting it to OH by addition of NO and subsequent detection of OH. However, some organic peroxy radicals (RO2) can also be rapidly converted to HO2 (and subsequently OH) in the presence of NO, interfering with measurements of ambient HO2 radical concentrations. This interference must be characterized for each instrument to determine to what extent various RO2 radicals interfere with measurements of HO2 and to assess the impact of this interference on past measurements. The efficiency of RO2-to-HO2 conversion for the Indiana University laser-induced fluorescence-fluorescence assay by gas expansion (IU-FAGE) instrument was measured for a variety of RO2 radicals. Known quantities of OH and HO2 radicals were produced from the photolysis of water vapor at 184.9 nm, and RO2 radicals were produced by the reaction of several volatile organic compounds (VOCs) with OH. The conversion efficiency of RO2 radicals to HO2 was measured when NO was added to the sampling cell for conditions employed during several previous field campaigns. For these conditions, approximately 80 % of alkene-derived RO2 radicals and 20 % of alkane-derived RO2 radicals were converted to HO2. Based on these measurements, interferences from various RO2 radicals contributed to approximately 35 % of the measured HO2 signal during the Mexico City Metropolitan Area (MCMA) 2006 campaign (MCMA-2006), where the measured VOCs consisted of a mixture of saturated and unsaturated species. However, this interference can contribute more significantly to the measured HO2 signal in forested environments dominated by unsaturated biogenic emissions such as isoprene.
Antioxidant Activities of Functional Beverage Concentrates Containing Herbal Medicine Extracts.
Park, Seon-Joo; Kim, Mi-Ok; Kim, Jung Hoan; Jeong, Sehyun; Kim, Min Hee; Yang, Su-Jin; Lee, Jongsung; Lee, Hae-Jeung
2017-03-01
This study investigated the antioxidant activity of functional beverage concentrates containing herbal medicine extracts (FBCH) using various antioxidant assays, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and reducing power assay. The total polyphenolic content of FBCH (81.45 mg/100 g) was higher than Ssanghwa tea (SHT, 37.56 mg/100 g). The antioxidant activities of FBCH showed 52.92% DPPH and 55.18% ABTS radical scavenging activities at 100 mg/mL, respectively. FBCH showed significantly higher antioxidant activities compared to the SHT (DPPH, 23.43%; ABTS, 22.21%; reducing power optical density; 0.23, P <0.05). In addition, intracellular reactive oxygen species generation significantly decreased in a concentration-dependent manner following FBCH treatment. These results suggest that the addition of herbal medicine extract contributes to the improved functionality of beverage concentrates.
Fluorophore-based sensor for oxygen radicals in processing plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu; Sabat, Grzegorz
2015-11-15
A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye thatmore » is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.« less
Łabanowska, Maria; Filek, Maria; Kurdziel, Magdalena; Bednarska, Elżbieta; Dłubacz, Aleksandra; Hartikainen, Helina
2012-09-01
Grains of five genotypes of wheat (four Polish and one Finnish), differing in their tolerance to drought stress were chosen for this investigation. Electron paramagnetic resonance spectroscopy allowed observation of transition metal ions (Mn, Fe, Cu) and different types of stable radicals, including semiquinone centers, present in seed coats, as well as several types of carbohydrate radicals found mainly in the inner parts of grains. The content of paramagnetic metal centers was higher in sensitive genotypes (Radunia, Raweta) than in tolerant ones (Parabola, Nawra), whereas the Finnish genotype (Manu) exhibited intermediate amounts. Similarly, the concentrations of both types of radicals, carbohydrates and semiquinone were significantly higher in the grains originating from more sensitive wheat genotypes. The nature of carbohydrate radicals and their concentrations were confronted with the kinds and amounts of sugars found by the biochemical analyses and microscopy observations. It is suggested that some long lived radicals (semiquinone and starch radicals) occurring in grains could be indicators of stress resistance of wheat plants. Copyright © 2012 Elsevier GmbH. All rights reserved.
Redox Properties of Free Radicals.
ERIC Educational Resources Information Center
Neta, P.
1981-01-01
Describes pulse radiolysis as a useful means in studing one-electron redox potentials. This method allows the production of radicals and the determination of their concentration and rates of reaction. (CS)
Electron spin dynamics and spin–lattice relaxation of trityl radicals in frozen solutions†
Chen, Hanjiao; Maryasov, Alexander G.; Rogozhnikova, Olga Yu.; Trukhin, Dmitry V.; Tormyshev, Victor M.
2017-01-01
Electron spin–lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, were studied under conditions relevant to their use in dissolution dynamic nuclear polarization (DNP). The dependence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM was obtained at X- and W-bands (0.35 and 3.5 Tesla, respectively). The relaxation is quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers identified as triads of trityl radicals that spontaneously form in the frozen samples. These centers relax by an Orbach–Aminov mechanism and determine the relaxation, saturation and electron spin dynamics during DNP. PMID:27560644
Chain decomposition of aqueous triethanolamine. [Gamma Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, H.A.
A radiation-induced chain decomposition of aqueous triethanolamine into acetaldehyde and diethanolamine is reported. Chain lengths over 1000 have been observed, depending on pH, concentration, and radiation intensity. The chain propagation steps include OH group migration in the 2-hydroxy-1-(diethanolamino)ethyl radical and NR/sub 2/ migration in 1-hydroxy-2(diethanolamine)ethyl radical, each producing a 2-hydroxy-2-(diethanolamine)ethyl radical. Free-radical spectra and rate constants are given. Studies of diethanolamine and diethylethanolamine solutions gave similar free-radical spectra but much shorter chains.
Effects of different levels of vitamin C on UV radiation-induced DNA damage
NASA Astrophysics Data System (ADS)
Zhou, Dianfeng; Heng, Hang; Ji, Kang; Ke, Weizhong
2005-05-01
The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.
Application of EPR spectroscopy to the examination of pro-oxidant activity of coffee.
Krakowian, Daniel; Skiba, Dominik; Kudelski, Adam; Pilawa, Barbara; Ramos, Paweł; Adamczyk, Jakub; Pawłowska-Góral, Katarzyna
2014-05-15
Free radicals present in coffee may be responsible for exerting toxic effects on an organism. The objectives of this work were to compare free radicals properties and concentrations in different commercially available coffees, in solid and liquid states, and to determine the effect of roasting on the formation of free radicals in coffee beans of various origins. The free radicals content of 15 commercially available coffees (solid and liquid) was compared and the impact of processing examined using electron paramagnetic resonance (EPR) spectroscopy at X-band (9.3 GHz). First derivative EPR spectra were measured at microwave power in the range of 0.7-70 mW. The following parameters were calculated for EPR spectra: amplitude (A), integral intensity (I), and line-width (ΔBpp); g-Factor was obtained from resonance condition. Our study showed that free radicals exist in green coffee beans (10(16) spin/g), roasted coffee beans (10(18) spin/g), and in commercially available coffee (10(17)-10(18) spin/g). Free radical concentrations were higher in solid ground coffee than in instant or lyophilised coffee. Continuous microwave saturation indicated homogeneous broadening of EPR lines from solid and liquid commercial coffee samples as well as green and roasted coffee beans. Slow spin-lattice relaxation processes were found to be present in all coffee samples tested, solid and liquid commercial coffees as well as green and roasted coffee beans. Higher free radicals concentrations were obtained for both the green and roasted at 240 °C coffee beans from Peru compared with those originating from Ethiopia, Brazil, India, or Colombia. Moreover, more free radicals occurred in Arabica coffee beans roasted at 240 °C than Robusta. EPR spectroscopy is a useful method of examining free radicals in different types of coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.
The role of surface generated radicals in catalytic combustion
NASA Technical Reports Server (NTRS)
Santavicca, D. A.; Stein, Y.; Royce, B. S. H.
1985-01-01
Experiments were conducted to better understand the role of catalytic surface reactions in determining the ignition characteristics of practical catalytic combustors. Hydrocarbon concentrations, carbon monoxide and carbon dioxide concentrations, hydroxyl radical concentrations, and gas temperature were measured at the exit of a platinum coated, stacked plate, catalytic combustor during the ignition of lean propane-air mixtures. The substrate temperature profile was also measured during the ignition transient. Ignition was initiated by suddenly turning on the fuel and the time to reach steady state was of the order of 10 minutes. The gas phase reaction, showed no pronounced effect due to the catalytic surface reactions, except the absence of a hydroxyl radical overshoot. It is found that the transient ignition measurements are valuable in understanding the steady state performance characteristics.
Riabikin, Iu A; Nikitina, E T; Balgimbatva, A S; Zashkvara, O V; Shakiev, S Sh
2007-01-01
The fungus Fusarium bulbigenum var. blasticola in which secondary tumor-like formations appear under certain conditions in aging was used as a new test system to examine the action of antitumor preparations. Free radicals in the primary mycelium and tumor-like formations without introduction of preparations (control samples) and after the introduction of preparation into the cultivation medium of the fungus have been studied by EPR spectroscopy. The EPR spectra of the fungus represent single, somewhat asymmetrical lines with a width of deltaH = 0.4 divided by 0.6 mT and g = 2.0036 +/- 0.006, which enabled one to assign the paramagnetic centers observed to melanine radicals. It was found that the concentration of free radicals in tumor-like formations is always higher than in the primary mycelium, which may be related to intensive metabolism in tumor-like formations. It has been established that several antitumor preparations (fluorouracil, hydrea, methotrexat, and vepezide) completely inhibit the growth of tumor-like formations. Another group of preparations (cyclophosphanum, dacarbazin, adriablastin, and vinblastin), on the contrary, stimulate their growth, which is accompanied by an increase in the concentration of free radicals in cells of the primary mycelium and tumor-like formations. The preparations of the third group (mercaptopurine, lanvis, and farmorubicin), despite the increased level of free radicals in cells, have a weak inhibitory effect. It has been shown that, in the concentration range studied, vitamins B2, B12, C, and PP stimulate the growth of tumor-like formations, and, when used in combination with antitumor preparations, enhance or reduce the inhibitory properties of these preparations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqi, M.A.; Bothe, E.
The yields of single- and double-strand breaks (SSB and DSB) in calf thymus DNA, after /sup 60/Co gamma irradiation in dilute aqueous solution, have been determined via molecular weight measurements using a low-angle laser light scattering technique. The irradiations were administered to N/sub 2/O-containing solutions of DNA in the absence and presence of oxygen and with different concentrations of the OH radical scavengers phenol, tertiary butanol, and methanol. OH radicals were found to produce SSB linearly with dose with a G value of 55 nmol J-1 and 54 nmol J-1 in deoxygenated and oxygenated solutions, respectively. DSB were formed accordingmore » to a linear-quadratic dose relationship and the G value of linearly formed DSB were GDSB alpha(r.t.) = 3.5 nmol J-1 in deoxygenated and 3.2 nmol J-1 in oxygenated solution. The ratio of GSSB/GDSB alpha(r.t.) = gamma of 19 +/- 6 was independent of the scavenger concentration in the case of tertiary butanol and methanol-containing solutions. GDSB alpha(r.t.) is interpreted to result from a radical site transferred from a sugar moiety of the cleaved strand to the complementary intact strand. This process of radical transfer and subsequent cleavage of the second strand occurs with a probability of about 6 +/- 2% in the presence of oxygen at all scavenger concentrations studied. These data on scavenging capacity on GDSB alpha(r.t.) suggest that the double-strand breakage produced via radical transfer remains higher than that resulting from direct effect, up to scavenging capacities of about 10(9) s-1.« less
Han, Y H; Ichikawa, K; Utsumi, H
2004-01-01
Ozone decomposition in aqueous solution proceeds through a radical type chain mechanism. These reactions involve the very reactive and catalytic intermediates O2- radical, OH radical, HO2 radical, OH-, H2O2, etc. OH radical is proposed as an important factor in the ozonation of water among them. In the present study, the enhancing effects of several phenolic compounds; phenol, 2-, 3-, 4-monochloro, 2,4-dichloro, 2,4,6-trichlorophenol on OH radical generation were mathematically evaluated using the electron spin resonance (ESR)/spin-trapping technique. OH radical was trapped with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a stable adduct, DMPO-OH. The initial velocities of DMPO-OH generation in ozonated water containing phenolic compounds were quantitatively measured using a combined system of ESR spectroscopy with stopped-flow apparatus, which was controlled by homemade software. The initial velocities of DMPO-OH generation increased as a function of the ozone concentration. The relation among ozone concentration, amount of phenolic compounds and the initial velocity (v0) of DMPO-OH generation was mathematically analyzed and the following equation was obtained, v0 (10(-6) M/s) = (A' x [PhOHs (10(-9) M)] + 0.0005) exp (60 x [ozone (10(-9) M)]). The equation fitted very well with the experimental results, and the correlation coefficient was larger than 0.98.
Michail, Karim; Baghdasarian, Argishti; Narwaley, Malyaj; Aljuhani, Naif; Siraki, Arno G
2013-12-16
We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction is proposed between aminocarboxylates and arylamine free radicals via the carboxylic group-linked tertiary nitrogen of the deprotonated amino acid derivatives. These findings may have significant implications for the biological fate of arylamine xenobiotic and drug free-radical metabolites.
NASA Astrophysics Data System (ADS)
Procházka, V.; Tučeková, Z.; Dvořák, P.; Kováčik, D.; Slavíček, P.; Zahoranová, A.; Voráč, J.
2018-01-01
Coplanar dielectric barrier discharge (DBD) was ignited in pure water vapor at atmospheric pressure in order to generate highly oxidizing plasma with one specific type of reactive radicals. In order to prevent water condensation the used plasma reactor was heated to 120 {}\\circ C. The composition of the radical species in the discharge was studied by methods based on laser-induced fluorescence (LIF) and compared with analogous measurements realized in the same coplanar DBD ignited in air. Fast collisional processes and laser-surface interaction were taken into account during LIF data processing. It was found that coplanar DBD ignited in water vapor produces hydroxyl (OH) radicals with concentration in the order of 1020 m-3, which is 10× higher than the value measured in discharge in humid air (40% relative humidity at 21 {}\\circ C). The concentration of atomic hydrogen radicals in the DBD ignited in water vapor was below the detection limit, which proves that the generation of oxidizing plasma with dominance of one specific type of reactive radicals was achieved. The temporal evolution, spatial distribution, power dependence and rotational temperature of the OH radicals was determined in the DBD ignited in both water vapor and air.
Sun, Y-E; Wang, W-D
2016-06-30
It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium sativum. The extracted SAC was reacted with 1-pyrenemethanol to obtain pyrene-labelled SAC (Py-SAC) to give SAC fluorescence properties. Molecular detection of Py-SAC was conducted by steady-state fluorescence spectroscopy and time-resolved fluorescence method to quantitatively measure concentrations of Py-SAC solutions. The ability of removing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical using Py-SAC was determined through oxygen radical absorbance capacity (ORAC). Results showed the activity of Py-SAC and Vitamin C (VC) with ORAC as index, the concentrations of Py-SAC and VC were 58.43 mg/L and 5.72 mg/L respectively to scavenge DPPH, and 8.16 mg/L and 1.67 mg/L to scavenge •OH respectively. Compared with VC, the clearance rates of Py-SAC to scavenge DPPH were much higher, Py-SAC could inhibit hydroxyl radical. The ability of removing radical showed a dose-dependent relationship within the scope of the drug concentration.
Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene
Kondyurin, Alexey V.; Naseri, Pourandokht; Tilley, Jennifer M. R.; Nosworthy, Neil J.; Bilek, Marcela M. M.; McKenzie, David R.
2012-01-01
The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers. PMID:24278665
NASA Astrophysics Data System (ADS)
Takai, Eisuke; Ikawa, Satoshi; Kitano, Katsuhisa; Kuwabara, Junpei; Shiraki, Kentaro
2013-07-01
Sterilization of certain infected areas of the human body surface is necessary for dental and surgical therapies. Because the blood is filled with body fluid, sterilization in solution is essential. In vitro solution sterilization has been successively carried out using a combination of low-temperature atmospheric-pressure plasma and the reduced pH method, where the solution is sufficiently acidic. Here, we show the molecular mechanism of such plasma sterilization in solution based on microbiology. Three kinds of bacteria were inactivated by plasma treatment under various pH conditions. The theoretical and experimental models revealed that the sterilization was characterized by the concentration of hydroperoxy radicals (HOO·), which were dependent on the pH value. Bacterial inactivation rates were proportional to the HOO· concentrations calculated by the theoretical model. To evaluate the penetration of radicals into the cell membrane, a bacterial model using dye-included micelles was used. Decolouration rates of the model were also in proportion with the calculated HOO· concentrations. These results indicate that the key species for plasma sterilization were hydroperoxy radicals. More importantly, the high permeation of hydroperoxy radicals into the cell membrane plays a key role for efficient bactericidal inactivation using the reduced pH method.
NASA Astrophysics Data System (ADS)
Matasović, Brunislav; Bonifačić, Marija
2011-06-01
Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.
NASA Astrophysics Data System (ADS)
El-Zanan, Hazem S.
Models are the tools that integrate our understanding of the atmospheric processes. Box models are utilized frequently and used to simulate the fates and transformation of atmospheric pollutants. The results from models are usually used to produce one integrated system and further help the policy makers to develop control strategies. We have investigated the atmospheric chemistry of the SOx and HOx systems. The results of 15 laboratory experiments that involved the studies of the HO-SO2, reaction have been analyzed. Mixtures of HONO, NO, NO2, H2O, SO2 and CO were photolyzed in synthetic air or in nitrogen containing approximately 50 ppm oxygen. Upon analyzing the data we have found that a very large amount of the observed SO2 oxidation (70.0 +/- 9.1%) can not be explained through the gas phase reaction of HO + SO2 reaction alone. The Regional Atmospheric Chemistry Mechanism, Version 2 (RACM2) was used to investigate additional chemical pathways for the oxidation of SO2. The results indicate that a mechanism(s) involving photochemical heterogeneous reactions could account for the observed additional sulfur dioxide oxidation not accounted for by gas phase oxidation alone. We have also investigated the distribution of the hydroxyl radical in different urban and rural areas. Photolysis of ozone and its reactions with nitrogen oxides and organic compounds, including both anthropogenic and biogenic volatile organic compounds (VOCs), control the mixing ratios of the hydroxyl radical (HO). Measurements of ozone, nitrogen oxides and volatile hydrocarbons from a deciduous forest in July 1999 and six sites located in the San Joaquin Valley obtained during the Central California Ozone Study (CCOS) measured in July 2000 and September 2000 were used to estimate the hydroxyl radical concentrations. Two methods were employed to determine the concentrations: (1) box model simulations and (2) steady state approximation of the species concentrations (Production-Loss Method). The results indicate that the concentrations observed here in this study are comparable with the HO concentrations measured and/or modeled from other studies. HO concentrations produced from ozone, formaldehyde and isoprene were by far the most important sources for HO production but the HO removal processes greatly differs between the urban and rural areas. Hydroxyl radical concentrations vary by location, time of the day, season and meteorological conditions. Comparing the HO concentrations from our study with other studies from different urban, rural and marine environments shows that hydroxyl radical concentrations in the urban areas can be lower than some pristine environments.
Effect of Heating on DPPH Radical Scavenging Activity of Meat Substitute
Song, Hyeun Sung; Bae, Jun Kyu; Park, Inshik
2013-01-01
This study was conducted to evaluate the increase of DPPH radical scavenging activity of meat substitute by heating. The meat substitute showed higher DPPH radical scavenging activity than those of other foods rich in protein such as beef, pork, chicken, and soybean curd. The DPPH radical scavenging activity of meat substitute was dependent upon concentration, heating temperature and heating time of meat substitute. The DPPH radical scavenging activity of meat substitute was enhanced with increasing heating temperature and time. The increase of DPPH radical scavenging activity was only applied to meat substitute without showing any activation in other foods rich in protein such as beef, pork, chicken, and soybean curd. PMID:24471114
Effect of Heating on DPPH Radical Scavenging Activity of Meat Substitute.
Song, Hyeun Sung; Bae, Jun Kyu; Park, Inshik
2013-03-01
This study was conducted to evaluate the increase of DPPH radical scavenging activity of meat substitute by heating. The meat substitute showed higher DPPH radical scavenging activity than those of other foods rich in protein such as beef, pork, chicken, and soybean curd. The DPPH radical scavenging activity of meat substitute was dependent upon concentration, heating temperature and heating time of meat substitute. The DPPH radical scavenging activity of meat substitute was enhanced with increasing heating temperature and time. The increase of DPPH radical scavenging activity was only applied to meat substitute without showing any activation in other foods rich in protein such as beef, pork, chicken, and soybean curd.
KPFM/AFM imaging on TiO2(110) surface in O2 gas
NASA Astrophysics Data System (ADS)
Arima, Eiji; Wen, Huan Fei; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro
2018-03-01
We have carried out high-speed imaging of the topography and local contact potential difference (LCPD) on rutile TiO2(110) in O2 gas by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We succeeded in KPFM/AFM imaging with atomic resolution at 1 frame min-1 and observed the adsorbate on a hydroxylated TiO2(110) surface. The observed adsorbate is considered to be oxygen adatoms (Oa), hydroperoxyls (HO2), or terminal hydroxyls (OHt). After adsorption, changes in the topography and the LCPD of the adsorbate were observed. This phenomenon is thought to be caused by the charge transfer of the adsorbate. This technique has the potential to observe catalytic behavior with atomic resolution.
2009-01-01
Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30−3000 μM) and the presence of acidic sulfate (0−840 μM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 μM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930
Yoon, So-Ra; Yang, Seung-Hwan; Suh, Joo-Won; Shim, Soon-Mi
2014-07-01
Smilax china root, which is rich in resveratrol and oxyresveratrol, has been used as emergency foods as well as folk medicine. This study investigated changes in concentration of bioactive components and the free-radical scavenging capacity of Smilax china root during fermentation by Aspergillus usami and Saccharomyces cerevisiae. Resveratrol, oxyresveratrol and piceid were quantified as major constituents in Smilax china root by using UPLC-ESI-MS. The concentration of oxyresveratrol and resveratrol remarkably increased through fermentation and the transformation of piceid to resveratrol. Its concentration in 4% Smilax china root was 1.16-2.95 times higher than that of a 2% preparation throughout fermentation. The vitamin C equivalent antioxidant capacity of 2% Smilax china root was 1.51-1.91 times higher than that of 4% Smilax china root during fermentation. Meanwhile, ABTS free-radical scavenging capacity was enhanced up to 95.07 and 99.35% for 2% and 4% Smilax china root, respectively. Results from our study propose that bioactive components in Smilax China root were highly extracted by fermentation followed by saccharification and ethanol production, resulting in enhanced free-radical scavenging capacity. © 2013 Society of Chemical Industry. © 2013 Society of Chemical Industry.
Sánchez-Polo, M; von Gunten, U; Rivera-Utrilla, J
2005-09-01
Based on previous findings (Jans, U., Hoigné, J., 1998. Ozone Sci. Eng. 20, 67-87), the activity of activated carbon for the transformation of ozone into *OH radicals including the influence of operational parameters (carbon dose, ozone dose, carbon-type and carbon treatment time) was quantified. The ozone decomposition constant (k(D)) was increased by the presence of activated carbon in the system and depending on the type of activated carbon added, the ratio of the concentrations of *OH radicals and ozone, the R(ct) value ([*OH]/[O3]), was increased by a factor 3-5. The results obtained show that the surface chemical and textural characteristics of the activated carbon determines its activity for the transformation of ozone into *OH radicals. The most efficient carbons in this process are those with high basicity and large surface area. The obtained results show that the interaction between ozone and pyrrol groups present on the surface of activated carbon increase the concentration of O2*- radicals in the system, enhancing ozone transformation into *OH radicals. The activity of activated carbon decreases for extended ozone exposures. This may indicate that activated carbon does not really act as a catalyst but rather as a conventional initiator or promoter for the ozone transformation into *OH radicals. Ozonation of Lake Zurich water ([O3] = 1 mg/L) in presence of activated carbon (0.5 g/L) lead to an increase in the k(D) and R(ct) value by a factor of 10 and 39, respectively, thereby favouring the removal of ozone-resistant contaminants. Moreover, the presence of activated carbon during ozonation of Lake Zurich water led to a 40% reduction in the content of dissolved organic carbon during the first 60 min of treatment. The adsorption of low concentrations of dissolved organic matter (DOM) on activated carbon surfaces did not modify its capacity to initiate/promote ozone transformation into *OH radicals.
Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation.
Barilla, Jiří; Lokajíček, Miloš; Pisaková, Hana; Simr, Pavel
2013-03-01
Mathematical analytical model of the processes running in individual radical clusters during the chemical phase (under the presence of radiomodifiers) proposed by us earlier has been further developed and improved. It has been applied to the data presented by Blok and Loman characterizing the oxygen effect in SSB and DSB formation (in water solution and at low-LET radiation) also in the region of very small oxygen concentrations, which cannot be studied with the help of experiments done with living cells. In this new analysis the values of all reaction rates and diffusion parameters known from literature have been made use of. The great increase of SSB and DSB at zero oxygen concentration may follow from the fact that at small oxygen concentrations the oxygen absorbs other radicals while at higher concentrations the formation of oxygen radicals prevails. It explains the double oxygen effect found already earlier by Ewing. The model may be easily extended to include also the effects of other radiomodifiers present in medium during irradiation.
Ganini, Douglas; Mason, Ronald P.
2014-01-01
LDL oxidation is the primary event in atherosclerosis, where LDL lipoperoxidation leads to modifications in the apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno spin-trapping, we detected the formation of protein free radicals on LDL incubated with Cu2+ or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1 mM), Cu2+ dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu2+ showed maximum yields after 30 minutes. In contrast, the yields of apo B-100-radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50 mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate and Trolox dose-dependently reduced apo B-100-free radical formation in LDL exposed to Cu2+. In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu2+ or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu2+, when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans. PMID:25091900
Radical observations during the Clean air for London project
NASA Astrophysics Data System (ADS)
Whalley, L. K.; Stone, D.; Clancy, N.; Lee, J. D.; Laufs, S.; Kleffmann, J.; Heard, D. E.
2012-12-01
With greater than 50 % of the global population residing in urban conurbations, poor urban air quality has a demonstrable effect on human health. OH and HO2 radicals, (collectively termed HOx) together with RO2 radicals, mediate virtually all of the oxidative chemistry in the atmosphere, being responsible for the transformation of primary emissions into secondary pollutants such as NO2, O3 and particulates. Understanding the chemistry of free-radicals in the atmosphere is essential in improving predictions of the lifetimes of pollutants and spatial scales of their transport within urban areas. Results from earlier field campaigns in urban and polluted regions have demonstrated the significance of HONO photolysis and alkene ozonolysis in the production of HOx radicals. In many cases, however, measurements of HONO have not been made, reducing the ability to evaluate model successes for OH in these environments. Here we present measurements of OH, HO2, RO2 and OH reactivity taken during the wintertime (January - February, 2012) and summertime (July - August, 2012) as part of the Clean air for London (ClearfLo) project in London. RO2 was detected using a newly developed flow-reactor laser-induced fluorescence technique which is able to discriminate between HO2 and organic peroxy radicals [1]. Low concentrations of radicals were observed during the wintertime, midday [OH], [HO2] and [RO2] were ~ 0.04, 0.8 and 1.5 pptv respectively, comparable to observations of radicals at other urban locations in winter [2,3,4], and which displayed a negative correlation with NO concentrations. OH reactivity was high and largely tracked the diurnal profiles of NOx and CO, with the highest reactivity ~100 s-1 observed during the morning rush hour. Analysis of factors controlling OH concentrations during the wintertime suggests that the formation of OH from the photolysis of O3 and subsequent reaction of O(1D) with H2O is a minor contribution both under high and low NOx conditions owing to the low rate of photolysis experienced and instead OH from photolysis of HONO (measured during ClearfLo using the LOPAP technique) [5], ozonolysis of alkenes and the reaction of HO2 with NO dominated the oxidative capacity of this urban location. Summertime observations coincided with the London 2012 Olympics. During this observational period, a number of high pollution events were observed where meteorological conditions favoured sustained, elevated ozone production (peaking at 100 ppbv). Radical concentrations were elevated during these episodes, with [OH], [HO2] and [RO2] peaking at ~ 0.16, 14 and 10 pptv respectively. The influence of HO2 and RO2 radicals on ozone production during these episodes will be presented along with a comparison of factors influencing modelled radical concentrations during the summer and wintertime. [1] Fuchs, H. et al., Review of Scientific Instruments, 79, 084104, 2008 [2] Heard, D.E. et al., Geophysical Research Letters, 13, L18112, 2004 [3] Ren, X. et al., Atmospheric Environment, 40, S252-S263, 2006 [4] Kanaya, Y. et al., Journal of Geophysical Research - Atmospheres, 112, D21312, 2007 [5] Kleffmann, J. et al., Atmospheric Environment, 40, 3640-3652, 2006
Halogen radicals contribute to photooxidation in coastal and estuarine waters
Parker, Kimberly M.; Mitch, William A.
2016-01-01
Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335
Hu, Yingmei; Bai, Yanhong; Yu, Hu; Zhang, Chunhong; Chen, Jierong
2013-09-01
In this paper, degradation of selected organophosphate pesticides (dichlorvos and dimethoate) in wastewater by dielectric barrier discharge plasma (DBD) was studied. DBD parameters, i.e. discharge powers and air-gap distances, differently affect their degradation efficiency. The results show that better degradation efficiency is obtained with a higher discharge power and a shorter air-gap distance. The effect of radical intervention degradation was also investigated by adding radical scavenger (tert-butyl alcohol) to the pesticide solution during the experiments. The result shows that the degradation efficiency is restrained in the presence of radical scavenger. It clearly demonstrates that hydroxyl radicals are most likely the main driver for degradation process. Moreover, the kinetics indicate that the disappearance rate of pesticides follows the first-order rate law when the initial concentration of the solution is low, but shifts to zero-order at a higher initial concentration.
Pentan isomers compound flame front structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.
1995-08-13
The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to themore » side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.« less
Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric; Lawrence, Chad; Vijayakumar, M; Henderson, Wesley A; Liu, Tianbiao; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent; Wang, Wei
2015-07-20
Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.
Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian
2016-04-01
Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.
Degradation of n-butylparaben and 4- tert-octylphenol in H 2O 2/UV system
NASA Astrophysics Data System (ADS)
BŁędzka, Dorota; Gryglik, Dorota; Olak, Magdalena; Gębicki, Jerzy L.; Miller, Jacek S.
2010-04-01
The degradation of two endocrine disrupting compounds: n-butylparaben (BP) and 4- tert-octylphenol (OP) in the H 2O 2/UV system was studied. The effect of operating variables: initial hydrogen peroxide concentration, initial substrate concentration, pH of the reaction solution and photon fluency rate of radiation at 254 nm on reaction rate was investigated. The influence of hydroxyl radical scavengers, humic acid and nitrate anion on reaction course was also studied. A very weak scavenging effect during BP degradation was observed indicating reactions different from hydroxyl radical oxidation. The second-order rate constants of BP and OP with OH radicals were estimated to be 4.8×10 9 and 4.2×10 9 M -1 s -1, respectively. For BP the rate constant equal to 2.0×10 10 M -1 s -1was also determined using water radiolysis as a source of hydroxyl radicals.
Oxidative stress, free radicals and protein peroxides.
Gebicki, Janusz M
2016-04-01
Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Whalley, Lisa K.; Stone, Daniel; Dunmore, Rachel; Hamilton, Jacqueline; Hopkins, James R.; Lee, James D.; Lewis, Alastair C.; Williams, Paul; Kleffmann, Jörg; Laufs, Sebastian; Woodward-Massey, Robert; Heard, Dwayne E.
2018-02-01
Measurements of OH, HO2, RO2i (alkene and aromatic-related RO2) and total RO2 radicals taken during the ClearfLo campaign in central London in the summer of 2012 are presented. A photostationary steady-state calculation of OH which considered measured OH reactivity as the OH sink term and the measured OH sources (of which HO2+ NO reaction and HONO photolysis dominated) compared well with the observed levels of OH. Comparison with calculations from a detailed box model utilising the Master Chemical Mechanism v3.2, however, highlighted a substantial discrepancy between radical observations under lower NOx conditions ([NO] < 1 ppbv), typically experienced during the afternoon hours, and indicated that the model was missing a significant peroxy radical sink; the model overpredicted HO2 by up to a factor of 10 at these times. Known radical termination steps, such as HO2 uptake on aerosols, were not sufficient to reconcile the model-measurement discrepancies alone, suggesting other missing termination processes. This missing sink was most evident when the air reaching the site had previously passed over central London to the east and when elevated temperatures were experienced and, hence, contained higher concentrations of VOCs. Uncertainties in the degradation mechanism at low NOx of complex biogenic and diesel related VOC species, which were particularly elevated and dominated OH reactivity under these easterly flows, may account for some of the model-measurement disagreement. Under higher [NO] (> 3 ppbv) the box model increasingly underpredicted total [RO2]. The modelled and observed HO2 were in agreement, however, under elevated NO concentrations ranging from 7 to 15 ppbv. The model uncertainty under low NO conditions leads to more ozone production predicted using modelled peroxy radical concentrations ( ˜ 3 ppbv h-1) versus ozone production from peroxy radicals measured ( ˜ 1 ppbv h-1). Conversely, ozone production derived from the predicted peroxy radicals is up to an order of magnitude lower than from the observed peroxy radicals as [NO] increases beyond 7 ppbv due to the model underprediction of RO2 under these conditions.
Okoh, Sunday O; Iweriebor, Benson C; Okoh, Omobola O; Okoh, Anthony I
2017-10-01
Peperomia pellucida is an annual herbaceous ethnomedicinal plant used in the treatment of a variety of communicable and noncommunicable diseases in the Amazon region. The study aimed at profiling the bioactive constituents of the leaves and stem essential oils (LEO and SEO) of P. pellucida , their in vitro antibacterial and radical scavenging properties as probable lead constituents in the management of oxidative stress and infectious diseases. Materials and. The EOs were obtained from the leaves and stem P. pellucida using modified Clevenger apparatus and characterized by a high-resolution gas chromatography-mass spectrometry, while the radicals scavenging and antibacterial effects on four oxidants and six reference bacteria strains were examined by spectrophotometric and agar diffusion techniques, respectively. The EOs exhibited strong antibacterial activities against six bacteria ( Escherichia coli [180], Enterobacter cloacae, Mycobacterium smegmatis, Listeria ivanovii , Staphylococcus aureus, Streptococcus uberis , and Vibrio paraheamolyticus ) strains. The SEO antibacterial activities were not significantly different ( P < 0.05) from the LEO against most of the test bacteria with minimum inhibitory concentration ranging between 0.15 and 0.20 mg/mL for both EOs. The two oils were bactericidal at 0.20 mg/mL against S. aureus while the minimum bactericidal concentration (0.15 mg/mL) of LEO against L. ivanovii was lower than of SEO (0.20 mg/mL) after 24 h. The LEO IC 50 value (1.67 mg/mL) revealed more radical scavenging activity than the SEO (2.83 mg/mL) and reference compounds against 2,2-diphenyl-1-picrylhydrazyl radical. The EOs also scavenged three other different radicals (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical, lipid peroxyl radical, and nitric oxide radical) in concentration-dependent manner. Our results suggest that apart from the indigenous uses of the plant extracts, the EO contains strong bioactive compounds with antibacterial and radicals scavenging properties and may be good alternative candidates in the search for novel potent antibiotics in this present era of increasing multidrug-resistant bacterial strains as well as effective antioxidants agents. Established gas chromatography-mass spectrometry technique was applied to quantitatively and qualitatively analyze the volatile constituents in Peperomia pellucida essential oil (EO)The Clinical and Laboratory Standards Institute (2014) guidelines were employed to evaluate the antibacterial effects of the EOsAmong the known prominent bioactive terpenoids, linalool 17.09%, limonene 14.25%, β-caryophyllene 12.52%, and linalyl acetate 10.15% were the main constituents of the EOs in this current studyThe leaf and stem EOs were bactericidal at a concentration below 0.23 mg/mL against three multidrug-resistant bacteria and significantly scavenged known free radicals reported to be associated with contagious and oxidative stress-related disorders. Abbreviations used: GC-MS: Gas chromatography-mass spectrometry, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, DMSO: Dimethyl sulfoxide, LP • : Lipid peroxide radical, NO • : Nitric oxide radical, LEO: Leaf essential oil, SEO: Stem essential oil, RC: Reference compound, TBARS: Thiobarbituric acid.
Okoh, Sunday O.; Iweriebor, Benson C.; Okoh, Omobola O.; Okoh, Anthony I.
2017-01-01
Background: Peperomia pellucida is an annual herbaceous ethnomedicinal plant used in the treatment of a variety of communicable and noncommunicable diseases in the Amazon region. Objective: The study aimed at profiling the bioactive constituents of the leaves and stem essential oils (LEO and SEO) of P. pellucida, their in vitro antibacterial and radical scavenging properties as probable lead constituents in the management of oxidative stress and infectious diseases. Materials and Methods: The EOs were obtained from the leaves and stem P. pellucida using modified Clevenger apparatus and characterized by a high-resolution gas chromatography-mass spectrometry, while the radicals scavenging and antibacterial effects on four oxidants and six reference bacteria strains were examined by spectrophotometric and agar diffusion techniques, respectively. Results: The EOs exhibited strong antibacterial activities against six bacteria (Escherichia coli [180], Enterobacter cloacae, Mycobacterium smegmatis, Listeria ivanovii, Staphylococcus aureus, Streptococcus uberis, and Vibrio paraheamolyticus) strains. The SEO antibacterial activities were not significantly different (P < 0.05) from the LEO against most of the test bacteria with minimum inhibitory concentration ranging between 0.15 and 0.20 mg/mL for both EOs. The two oils were bactericidal at 0.20 mg/mL against S. aureus while the minimum bactericidal concentration (0.15 mg/mL) of LEO against L. ivanovii was lower than of SEO (0.20 mg/mL) after 24 h. The LEO IC50 value (1.67 mg/mL) revealed more radical scavenging activity than the SEO (2.83 mg/mL) and reference compounds against 2,2-diphenyl-1-picrylhydrazyl radical. The EOs also scavenged three other different radicals (2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical, lipid peroxyl radical, and nitric oxide radical) in concentration-dependent manner. Conclusion: Our results suggest that apart from the indigenous uses of the plant extracts, the EO contains strong bioactive compounds with antibacterial and radicals scavenging properties and may be good alternative candidates in the search for novel potent antibiotics in this present era of increasing multidrug-resistant bacterial strains as well as effective antioxidants agents. SUMMARY Established gas chromatography-mass spectrometry technique was applied to quantitatively and qualitatively analyze the volatile constituents in Peperomia pellucida essential oil (EO)The Clinical and Laboratory Standards Institute (2014) guidelines were employed to evaluate the antibacterial effects of the EOsAmong the known prominent bioactive terpenoids, linalool 17.09%, limonene 14.25%, β-caryophyllene 12.52%, and linalyl acetate 10.15% were the main constituents of the EOs in this current studyThe leaf and stem EOs were bactericidal at a concentration below 0.23 mg/mL against three multidrug-resistant bacteria and significantly scavenged known free radicals reported to be associated with contagious and oxidative stress-related disorders. Abbreviations used: GC-MS: Gas chromatography-mass spectrometry, DPPH: 2,2-diphenyl-1-picrylhydrazyl, ABTS: 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, DMSO: Dimethyl sulfoxide, LP•: Lipid peroxide radical, NO•: Nitric oxide radical, LEO: Leaf essential oil, SEO: Stem essential oil, RC: Reference compound, TBARS: Thiobarbituric acid PMID:29142389
Carnivorous pitcher plant uses free radicals in the digestion of prey.
Chia, Tet Fatt; Aung, Hnin Hnin; Osipov, Anatoly N; Goh, Ngoh Khang; Chia, Lian Sai
2004-01-01
A study of the involvement of free oxygen radicals in trapping and digestion of insects by carnivorous plants was the main goal of the present investigation. We showed that the generation of oxygen free radicals by pitcher fluid of Nepenthes is the first step of the digestion process, as seen by EPR spin trapping assay and gel-electrophoresis. The EPR spectrum of N. gracilis fluid in the presence of DMPO spin trap showed the superposition of the hydroxyl radical spin adduct signal and of the ascorbyl radical signal. Catalase addition decreased the generation of hydroxyl radicals showing that hydroxyl radicals are generated from hydrogen peroxide, which can be derived from superoxide radicals. Gel-electrophoresis data showed that myosin, an abundant protein component of insects, can be rapidly broken down by free radicals and protease inhibitors do not inhibit this process. Addition of myoglobin to the pitcher plant fluid decreased the concentration of detectable radicals. Based on these observations, we conclude that oxygen free radicals produced by the pitcher plant aid in the digestion of the insect prey.
Prónai, L; Yukinobu, I; Láng, I; Fehér, J
1992-01-01
Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.
Antioxidant effects of water- and lipid-soluble nitroxide radicals in liposomes.
Cimato, Alejandra N; Piehl, Lidia L; Facorro, Graciela B; Torti, Horacio B; Hager, Alfredo A
2004-12-15
Liposomes are today useful tools in different fields of science and technology. A lack of stability due to lipid peroxidation is the main problem in the extension of the use of these formulations. Recent investigative works have reported the protective effects of stable nitroxide radicals against oxidative processes in different media and under different stress conditions. Our group has focused its attention on the natural aging of liposomes and the protection provided by the water- and lipid-soluble nitroxide radicals 2,2,6,6-tetramethylpiperdine-1-oxyl (TEMPO) and doxylstearic acids (5-DSA, 12-DSA, and 16-DSA), respectively. Unilamellar liposomes were incubated under air atmosphere at 37 degrees C, both in the absence and in the presence of these radicals. Conjugated dienes, lipid hydroperoxides, TBARS, membrane fluidity, and nitroxide ESR signal intensity were followed as a function of time. Our results demonstrated that doxylstearic acids were more efficient than TEMPO in retarding lipid peroxidation at all the concentrations tested. The inhibition percentages, depending on the total nitroxide concentration, were not proportional to the lipid-water partition coefficient. Furthermore, time-course ESR signals showed a slower decrease for doxylstearic acids than for TEMPO. No significant differences were found among 5-DSA, 12-DSA, and 16-DSA. We concluded that the nitroxide radical efficiency as antioxidant directly depends on both nitroxide concentration and lipophilicity.
NASA Technical Reports Server (NTRS)
Salawitch, R. J.; Wofsy, S. C.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Gao, R. S.; Keim, E. R.; Woodbridge, E. L.; Stimpfle, R. M.;
1994-01-01
In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained through sunrise and sunset in the lower stratosphere during SPADE are compared to results from a photochemical model constrained by observed concentrations of radical precursors and environmental conditions. Models allowing for heterogeneous hydrolysis of N205 on sulfate aerosols agree with measured concentrations of NO, NO2, and ClO throughout the day, but fail to account for high concentrations of OH and H02 observed near sunrise and sunset. The morning burst of [OH] and [HO2] coincides with the rise of [NO] from photolysis of N02, suggesting a new source of HO, that photolyzes in the near UV (350 to 400 nm) spectral region. A model that allows for the heterogeneous production of HN02 results in an excellent simulation of the diurnal variations of [OH] and [HO2].
NASA Technical Reports Server (NTRS)
Salawitch, R. J.; Wofsy, S. C.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Gao, R. S.; Keim, E. R.; Woodbridge, E. L.; Stimpfle, R. M.
1994-01-01
In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained through sunrise and sunset in the lower statosphere during SPADE are compared to results from a photochemical model constrained by observed concentrations of radical precursors and environmental conditions. Models allowing for heteogeneous hydrolysis of N2O5 on sulfate aerosols agree with measured concentrations of NO, NO2, and ClO throughout the day, but fail to account for high concentrations of OH and HO2 observed near sunrise and sunset. The morning burst of (OH) and (HO2) coincides with the rise of (NO) from photolysis of NO2, suggesting a new source of HO(x) that photolyzes in the near UV (350 to 400 nm) spectral region. A model that allow for the heterogeneous production of HNO2 results in an excellent simulation of the diurnal variations of (OH) and (HO2).
Aliaga, Carolina; Rezende, Marcos Caroli; Mena, Geraldine
2016-11-01
A series of 4-alkanoyloxy-2,2,6,6-tetramethylpiperidinoxyl radicals was prepared, and their reactivity in water vis-à-vis antioxidant Trolox was compared. Spectral (electron paramagnetic resonance) and dynamic-light-scattering measurements suggested the formation of micelles for the more hydrophobic members of the series. The observed increase in reactivity for the micelle-forming radicals reflected the increased local concentration of the radical fragment on the micellar interface. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Edwards, P. M.; Young, C. J.; Aikin, K.; deGouw, J.; Dubé, W. P.; Geiger, F.; Gilman, J.; Helmig, D.; Holloway, J. S.; Kercher, J.; Lerner, B.; Martin, R.; McLaren, R.; Parrish, D. D.; Peischl, J.; Roberts, J. M.; Ryerson, T. B.; Thornton, J.; Warneke, C.; Williams, E. J.; Brown, S. S.
2013-09-01
The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) concentrations above levels harmful to human health for multiple days during the winters of 2009-2010 and 2010-2011. These wintertime O3 pollution episodes occur during cold, stable periods when the ground is snow-covered, and have been linked to emissions from the oil and gas extraction process. The Uintah Basin Winter Ozone Study (UBWOS) was a field intensive in early 2012, whose goal was to address current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. Although elevated O3 concentrations were not observed during the winter of 2011-2012, the comprehensive set of observations tests our understanding of O3 photochemistry in this unusual emissions environment. A box model, constrained to the observations and using the near-explicit Master Chemical Mechanism (MCM) v3.2 chemistry scheme, has been used to investigate the sensitivities of O3 production during UBWOS 2012. Simulations identify the O3 production photochemistry to be highly radical limited (with a radical production rate significantly smaller than the NOx emission rate). Production of OH from O3 photolysis (through reaction of O(1D) with water vapor) contributed only 170 pptv day-1, 8% of the total primary radical source on average (primary radicals being those produced from non-radical precursors). Other radical sources, including the photolysis of formaldehyde (HCHO, 52%), nitrous acid (HONO, 26%), and nitryl chloride (ClNO2, 13%) were larger. O3 production was also found to be highly sensitive to aromatic volatile organic compound (VOC) concentrations, due to radical amplification reactions in the oxidation scheme of these species. Radical production was shown to be small in comparison to the emissions of nitrogen oxides (NOx), such that NOx acted as the primary radical sink. Consequently, the system was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons (230 ppbv (2080 ppbC), 6 week average) relative to NOx (5.6 ppbv average). However, the importance of radical sources which are themselves derived from NOx emissions and chemistry, such as ClNO2 and HONO, make the response of the system to changes in NOx emissions uncertain. Model simulations attempting to reproduce conditions expected during snow-covered cold-pool conditions show a significant increase in O3 production, although calculated concentrations do not achieve the highest seen during the 2010-2011 O3 pollution events in the Uintah Basin. These box model simulations provide useful insight into the chemistry controlling winter O3 production in regions of oil and gas extraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, M; Alqathami, M; Blencowe, A
Purpose Previous studies have reported an under-response of PRESAGE in a proton beam as a Result of the extremely high LET in the distal end of the spread out Bragg peak (SOBP). This work is a preliminary investigation to quantify the effect of the formulation, specifically the concentration of halocarbon radical initiator relative to leuco dye, on radical recombination resulting in LET dependence. Methods The traditional PRESAGE formulation developed by Heuris Pharma was altered to constitute radical initiator concentrations of 5, 15, and 30% (low, medium, and high) by weight with all other components balanced to maintain proportionality. Chloroform wasmore » specifically examined in this study and all dosimeters were made in-house. Cylindrical PRESAGE dosimeters (3.5cm diameter and 6cm length) were made for each formulation and irradiated by a 200-MeV proton beam to 500 cGy across a 2cm SOBP. Dosimeters were read out using the DMOS optical-CT scanner. The dose distributions were analyzed and dose profiles were used to compare the relative dose response to find the stability across the high-LET region of the SOBP. LET dependence was measured by the variation to ion chamber measurements for the final 25% of the SOBP (∼0.5cm) prior to the distal-90 of each profile. Results Relative to ion chamber data, all PRESAGE dosimeters showed an under-response at the distal end of the SOBP. The medium concentration formulation matched most closely with an average 8.3% under-response closely followed by the low concentration at 12.2% and then the high concentration at 22.8%. In all three cases, the highest points of discrepancy were in the distal most regions. Conclusion The radical initiator concentration in PRESAGE can be tailored to reduce the LET dependence in a proton beam. This warrants further study to quantify comprehensively the effect of concentration of different halocarbon radical initiators on LET dependency. Grant number 5RO1CA100835.« less
Pryor, W A
1992-12-01
This review compares and contrasts the chemistry of cigarette smoke, wood smoke, and the smoke from plastics and building materials that is inhaled by persons trapped in fires. Cigarette smoke produces cancer, emphysema, and other diseases after a delay of years. Acute exposure to smoke in a fire can produce a loss of lung function and death after a delay of days or weeks. Tobacco smoke and the smoke inhaled in a burning building have some similarities from a chemical viewpoint. For example, both contain high concentrations of CO and other combustion products. In addition, both contain high concentrations of free radicals, and our laboratory has studied these free radicals, largely by electron spin resonance (ESR) methods, for about 15 years. This article reviews what is known about the radicals present in these different types of smokes and soots and tars and summarizes the evidence that suggests these radicals could be involved in cigarette-induced pathology and smoke-inhalation deaths. The combustion of all organic materials produces radicals, but (with the exception of the smoke from perfluoropolymers) the radicals that are detected by ESR methods (and thus the radicals that would reach the lungs) are not those that arise in the combustion process. Rather they arise from chemical reactions that occur in the smoke itself. Thus, a knowledge of the chemistry of the smoke is necessary to understand the nature of the radicals formed. Even materials as similar as cigarettes and wood (cellulose) produce smoke that contains radicals with very different lifetimes and chemical characteristics, and mechanistic rationales for this are discussed. Cigarette tar contains a semiquinone radical that is infinitely stable and can be directly observed by ESR. Aqueous extracts of cigarette tar, which contain this radical, reduce oxygen to superoxide and thus produce both hydrogen peroxide and the hydroxyl radical. These solutions both oxidize alpha-1-proteinase inhibitor (a1PI) and nick DNA. Because of the potential role of radicals in smoke-inhalation injury, we suggest that antioxidant therapy (such as use of an inhaler for persons brought out of a burning building) might prove efficacious.
In vitro antioxidant activity of pet ether extract of black pepper
Singh, Ramnik; Singh, Narinder; Saini, B.S.; Rao, Harwinder Singh
2008-01-01
Objective: To investigate the in vitro antioxidant activity of different fractions (R1, R2 and R3) obtained from pet ether extract of black pepper fruits (Piper nigrum Linn.) Materials and Methods: The fractions R1, R2 and R3 were eluted from pet ether and ethyl acetate in the ratio of 6:4, 5:5 and 4:6, respectively. 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, superoxide anion radical, nitric oxide radical, and hydroxyl radical scavenging assays were carried out to evaluate the antioxidant potential of the extract. Results: The free radical scavenging activity of the different fractions of pet ether extract of P. nigrum (PEPN) increased in a concentration dependent manner. The R3 and R2 fraction of PEPN in 500 µg/ml inhibited the peroxidation of a linoleic acid emulsion by 60.48±3.33% and 58.89±2.51%, respectively. In DPPH free radical scavenging assay, the activity of R3 and R2 were found to be almost similar. The R3 (100µg/ml) fraction of PEPN inhibited 55.68±4.48% nitric oxide radicals generated from sodium nitroprusside, whereas curcumin in the same concentration inhibited 84.27±4.12%. Moreover, PEPN scavenged the superoxide radical generated by the Xanthine/Xanthine oxidase system. The fraction R2 and R3 in the doses of 1000µg/ml inhibited 61.04±5.11% and 63.56±4.17%, respectively. The hydroxyl radical was generated by Fenton's reaction. The amounts of total phenolic compounds were determined and 56.98 µg pyrocatechol phenol equivalents were detected in one mg of R3. Conclusions: P. nigrum could be considered as a potential source of natural antioxidant. PMID:20040947
Reaction kinetics of resveratrol with tert-butoxyl radicals
NASA Astrophysics Data System (ADS)
Džeba, Iva; Pedzinski, Tomasz; Mihaljević, Branka
2012-09-01
The rate constant for the reaction of t-butoxyl radicals with resveratrol was studied under pseudo-first order conditions. The rate constant was determined by measuring the phenoxyl radical formation rate at 390 nm as function of resveratrol concentration in acetonitrile. The rate constant was determined to be 6.5×108 M-1s-1. This high value indicates the high reactivity consistent with the strong antioxidant activity of resveratrol.
Laser-induced oxidation of cholesterol observed during MALDI-TOF mass spectrometry.
McAvey, Kevin M; Guan, Bing; Fortier, Chanel A; Tarr, Matthew A; Cole, Richard B
2011-04-01
Conditions for the detection of three odd-electron cholesterol oxidation peaks were determined and these peaks were shown to be artifacts of the matrix-assisted laser desorption time of flight (MALDI-TOF) process. Matrix choice, solvent, laser intensity and cholesterol concentration were systematically varied to characterize the conditions leading to the highest signals of the radical cation peaks, and it was found that initial cholesterol solution concentration and resultant density of solid cholesterol on the MALDI target were important parameters in determining signal intensities. It is proposed that hydroxyl radicals, generated as a result of laser irradiation of the employed 2,5-dihydroxybenzoic acid (DHB) matrix, initiate cholesterol oxidation on the MALDI target. An attempt to induce the odd-electron oxidation peaks by means of adding an oxidizing agent succeeded using an acetonitrile solution of DHB, cholesterol, and cumene hydroperoxide. Moreover, addition of free radical scavengers reduced the abundances of some oxidation products under certain conditions. These results are consistent with the mechanism of oxidation proposed herein involving laser-induced hydroxyl radical production followed by attack on neutral cholesterol. Hydroxyl radical production upon irradiation of dithranol matrix may also be responsible for generation of the same radical peaks observed from cholesterol in dithranol by an analogous mechanism. © American Society for Mass Spectrometry, 2011
Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution.
Monteagudo, J M; Carmona, M; Durán, A
2005-08-01
The degradation of p-Coumaric acid present in olive oil mill wastewater was investigated as a pretreatment stage to obtain more easily biodegradable molecules, with lower toxicity that facilitates subsequent anaerobic digestion. Thus, photo-Fenton-assisted ozonation has been studied and compared with ozonation at alkaline pH and conventional single ultraviolet (UV) and acid ozonation treatments. In the combined process, the overall kinetic rate constant was split into various components: direct oxidation by UV light, direct oxidation by ozone and oxidation by hydroxyl radicals. Molecular and/or radical ozone reaction was studied by conducting the reaction in the presence and absence of tert-butylalcohol at pHs 2, 7 and 9. Ozone oxidation rate increases with pH or by the addition of Fenton reagent and/or UV radiation due to generation of hydroxyl radicals, *OH. Hydrogen peroxide and ferrous ion play a double role during oxidation since at low concentrations they act as initiators of hydroxyl radicals but at high concentrations they act as radical scavengers. Finally, the additional levels of degradation by formation of hydroxyl radicals have been quantified in comparison to the conventional single processes and an equation is proposed for the reaction rate as a function of studied operating variables.
NASA Astrophysics Data System (ADS)
Fuchs, Hendrik; Albrecht, Sascha; Acir, Ismail-Hakki; Bohn, Birger; Breitenlechner, Martin; Dorn, Hans-Peter; Gkatzelis, Georgios I.; Hofzumahaus, Andreas; Holland, Frank; Kaminski, Martin; Keutsch, Frank N.; Novelli, Anna; Reimer, David; Rohrer, Franz; Tillmann, Ralf; Vereecken, Luc; Wegener, Robert; Zaytsev, Alexander; Kiendler-Scharr, Astrid; Wahner, Andreas
2018-06-01
The photooxidation of methyl vinyl ketone (MVK) was investigated in the atmospheric simulation chamber SAPHIR for conditions at which organic peroxy radicals (RO2) mainly reacted with NO (high NO
case) and for conditions at which other reaction channels could compete (low NO
case). Measurements of trace gas concentrations were compared to calculated concentration time series applying the Master Chemical Mechanism (MCM version 3.3.1). Product yields of methylglyoxal and glycolaldehyde were determined from measurements. For the high NO case, the methylglyoxal yield was (19 ± 3) % and the glycolaldehyde yield was (65 ± 14) %, consistent with recent literature studies. For the low NO case, the methylglyoxal yield reduced to (5 ± 2) % because other RO2 reaction channels that do not form methylglyoxal became important. Consistent with literature data, the glycolaldehyde yield of (37 ± 9) % determined in the experiment was not reduced as much as implemented in the MCM, suggesting additional reaction channels producing glycolaldehyde. At the same time, direct quantification of OH radicals in the experiments shows the need for an enhanced OH radical production at low NO conditions similar to previous studies investigating the oxidation of the parent VOC isoprene and methacrolein, the second major oxidation product of isoprene. For MVK the model-measurement discrepancy was up to a factor of 2. Product yields and OH observations were consistent with assumptions of additional RO2 plus HO2 reaction channels as proposed in literature for the major RO2 species formed from the reaction of MVK with OH. However, this study shows that also HO2 radical concentrations are underestimated by the model, suggesting that additional OH is not directly produced from RO2 radical reactions, but indirectly via increased HO2. Quantum chemical calculations show that HO2 could be produced from a fast 1,4-H shift of the second most important MVK derived RO2 species (reaction rate constant 0.003 s-1). However, additional HO2 from this reaction was not sufficiently large to bring modelled HO2 radical concentrations into agreement with measurements due to the small yield of this RO2 species. An additional reaction channel of the major RO2 species with a reaction rate constant of (0.006 ± 0.004) s-1 would be required that produces concurrently HO2 radicals and glycolaldehyde to achieve model-measurement agreement. A unimolecular reaction similar to the 1,5-H shift reaction that was proposed in literature for RO2 radicals from MVK would not explain product yields for conditions of experiments in this study. A set of H-migration reactions for the main RO2 radicals were investigated by quantum chemical and theoretical kinetic methodologies, but did not reveal a contributing route to HO2 radicals or glycolaldehyde.
Biochemistry of free radicals: from electrons to tissues.
Boveris, A
1998-01-01
Free radicals are chemical species with an unpaired electron in the outer valence orbitals. The unpaired electron makes them paramagnetic (physics) and relatively reactive (chemistry). The free radicals that are normal metabolites in aerobic biological systems have varied reactivities, ranging from the high reactivity of hydroxyl radical (t1/2 = 10(-9) s) to the low reactivity of melanins (t1/2 = days). The univalent reduction of oxygen that takes place in mammalian organs produces superoxide radicals at a rate of about 2% of the total oxygen uptake. The primary production of superoxide radicals sustains a free radical chain reaction involving a series of reactive oxygen species (hydrogen peroxide, hydroxyl and peroxyl radical and singlet oxygen). Nitric oxide is almost unreactive as free radical except for its termination reaction with superoxide radical to yield the strong oxidant peroxynitrite. Nitric oxide also reacts with ubiquinol in a redox reaction, with cytochrome oxidase competitively with oxygen, and oxymyoglobin and oxyhemoglobin displacing oxygen. Septic shock and endotoxemia produce muscle dysfunction and oxidative stress due to increased steady state concentrations of reactive oxygen and nitrogen species.
Banaschik, Robert; Jablonowski, Helena; Bednarski, Patrick J; Kolb, Juergen F
2018-01-15
Seven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps. By spin trap enhanced electron paramagnetic resonance spectroscopy (EPR), OH-adducts and superoxide anion radical adducts were detected and could be distinguished applying BMPO as a spin trap. The increase of concentrations of adducts follows qualitatively the increase of hydrogen peroxide concentrations. Hydrogen peroxide is eventually consumed in Fenton-like processes but the concentration is continuously increasing to about 2mM for a plasma treatment of 70min. Degradation of diclofenac is inversely following hydrogen peroxide concentrations. No qualitative differences between byproducts formed during plasma treatment or due to degradation via Fenton-induced processes were observed. Findings on degradation kinetics of diclofenac provide an instructive understanding of decomposition rates for recalcitrant pharmaceuticals with respect to their chemical structure. Accordingly, conclusions can be drawn for further development and a first risk assessment of the method which can also be applied towards other AOPs that rely on the generation of hydroxyl radicals. Copyright © 2017 Elsevier B.V. All rights reserved.
Suseem, S R; Saral, Mary
2015-07-01
To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.
Evaluation of In Vitro Antioxidant Potential of Cordia retusa.
Amudha, Murugesan; Rani, Shanmugam
2016-01-01
The present study was carried out to investigate the antioxidant potential, total flavonoid and phenolic content in extracts of aerial parts of Cordia retua (Vahl.) Masam. The samples such as ethyl acetate and ethanol extracts were tested using six in vitro models such as 2,2-diphenyl-1-picrylhydrazyl, nitric oxide radical, iron chelating, hydroxyl radical, superoxide radical scavenging activity and total antioxidant activity to evaluate the in vitro antioxidant potential of C. retusa by spectrophotometrically. Total flavonoid and phenolic content in samples were estimated using aluminum chloride colorimetric and Folin-Ciocalteu method. The results were analyzed statistically by the regression method. Half maximal inhibitory concentration (IC50) of the ethanol extract was found to be 596 μg/ml for DPPH, 597 μg/ml for nitric oxide radical, 554 μg/ml for iron chelating, 580 μg/ml for hydroxyl radical, 562 μg/ml for superoxide radical and 566 μg/ml for total antioxidant capacity. Furthermore, the total flavonoid content and total phenolic content of the ethanol extract were found to be 2.71 mg gallic acid equivalent per gram of extract and 1.86 mg quercetin equivalent per gram of extract, respectively. In all the testing, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. The results of the present comprehensive analysis demonstrated that C. retusa possess potent antioxidant activity, high flavonoid and phenolic content. The antioxidant property may be related to the polyphenols and flavonoids present in the extract. These results clearly indicated that C. retusa is effective against free radical mediated diseases as a natural antioxidant.
NASA Astrophysics Data System (ADS)
Yang, Miao; Soroka, Inna; Jonsson, Mats
2017-01-01
In the presence of Tris or methanol, hydroxyl radicals in systems of relevance for interfacial radiation chemistry can be quantified indirectly via the Hantzsch method by determining the amount of the scavenging product formaldehyde formed. In this work, the influence of the presence of H2O2 on the Hantzsch method using acetoacetanilide (AAA) as derivatization reagent is studied. The experiments show that the measured CH2O concentration deviates from the actual concentration in the presence of H2O2 and the deviation increases with increasing [H2O2]0/[CH2O]0. The deviation is negative, i.e., the measured formaldehyde concentration is lower than the actual concentration. This leads to an underestimation of the hydroxyl radical production in systems containing significant amount of H2O2. The main reason for the deviation is found to be three coupled equilibria involving H2O2, CH2O and the derivative produced in the Hantzsch method.
Olugbami, J O; Gbadegesin, M A; Odunola, O A
2014-09-01
Plant-derived antioxidants with free radical scavenging activities can be relevant as chemopreventive agents against the numerous diseases associated with free radicals and reactive oxygen species. Some phytoconstituents possess antioxidant activities in biological systems. On this basis, we evaluated the antioxidant potential, and determined the total phenolic and flavonoid contents of the e thanol e xtract of the s tem bark of A nogeissus l eiocarpus [ EESAL ]. Antioxidant assays carried out include: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, phosphomolybdate, β-carotene bleaching, ferric reducing, and hydroxyl radical scavenging activities. Results of DPPH assay showed no significant difference ( p < 0.001) between EESAL and butylated hydroxyanisole [BHA], while EESAL exhibited a significantly ( p < 0.001) higher activity than BHT [butylated hydroxytoluene]. Phosphomolybdate method recorded a total antioxidant capacity of 190.00 ± 70.53 µg butylated hydroxytoluene equivalents [BHTE]/mg dry extract, while β-carotene bleaching assay gave percent antioxidant activities of both EESAL and BHT as 81.46±1.62 and 80.90±1.39 respectively. Ferric reducing abilities of both EESAL and ascorbic acid increased in a concentration-dependent manner with EESAL displaying a significantly ( p < 0.001) higher reductive activity than vitamin C. EESAL displayed a significantly higher hydroxyl radical scavenging activity as compared with BHT at the lowest concentration with no significant difference at the highest concentration. Total phenolic and flavonoid contents of EESAL were obtained as 608.10 ± 2.12 µg GAE/mg and 78.96 ± 3.37 µg QE/mg respectively. Taken together, the free radical scavenging and antioxidant activity of EESAL is likely due to its high phenolic content with complementary effects of the flavonoid components.
Self-exchange reactions of radical anions in n-hexane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werst, D. W.; Chemistry
The formation and reactions of radical anions in n-hexane at 190 K were investigated by pulse radiolysis and time-resolved fluorescence-detected magnetic resonance (FDMR). Electron attachment was found to occur for compounds with gas-phase electron affinities (EA) more positive than -1.1 {+-} 0.1 eV. The FDMR concentration and time dependence are interpreted as evidence for self-exchange electron-transfer reactions, indicating that formation of dimer radical anions is not prevalent for the range of molecules studied. FDMR detection of radical anions is mainly restricted to electron acceptors with EA less than approximately 0.5 eV.
[Photometric micro-titration model of DPPH radicals scavenging activity and its application].
Gao, Yun-tao; Wei, Wei; Ye, Li-qing; Li, Xiao-fen; Liu, Ping; Zhang, Hong-jiao; Yang, Lu; Yu, Jiao-jiao; Cha, Jia-wei
2015-02-01
In the present paper, the stoichiometric ratio (R) for the interreaction of DPPH radicals with the antoxidant was employed as a evaluation index for DPPH radicals scavenging activity of antioxidants. This evaluation index was related only with the stoichiometric relationship between DPPH radicals and the antioxidant, not the relationship with the initial DPPH amount and the volume of sample, which could offer a solution for the problem of poor comparability of EC50 under different conditions. A novel photometric micro-titration method was proposed for the determination of the stoichiometric ratio (R) for the interreaction of DPPH radicals with the antoxidant. The titration equation was established based on the absorbance difference (deltaA) of DPPH radicals in the titration process and the added amount of antoxidant. The stoichiometric ratio (R) for the reaction of DPPH radicals with the addition amount of antoxidant was determined by the titration equation obtained, while, the DPPH median elimination concentration (EC50) of antoxidant can be calculated by the stoichiometric ratio (R). The above photometric micro-titration model was verified using rutin as DPPH radicals scavenger. As experiment results, the stoichiometric ratio (R) of DPPH radicals to rutin was determined to be in the range of 1.817-1.846. The calculated value of EC50 was 1.196 x 10(-3), 2.392 x 10(-3), 4.819 x 10(-3) and 7.292 x 10(-3) mg x mL(-1) for 1.12 x 10(-7), 2.24 x 10(-7), 4.48 x 10(-7) and 6.72 x 10(-7) mol of the additon amount of DPPH radicals, respectively. The proposed method has better precision and reliability with smaller amount of sample than conventional method. While, the obtained stoichiometric ratio value (R) of rutin was employed to calculate the rutin median elimination concentration for DPPH EC50) according to the conditions as reported in the literatures, and the calculated results were consistent with that reported in the literatures.
Kinetic Model for the Radical Degradation of Tri-Halonitromethane Disinfection Byproducts in Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen P. Mezyk; Bruce J. Mincher; William J. Cooper
The halonitromethanes (HNMs) are byproducts of the ozonation and chlorine/chloramine treatment of drinking waters. Although typically occurring at low concentrations HNMs have high cytotoxicity and mutagenicity, and may therefore represent a significant human health hazard. In this study, we have investigated the radical based mineralization of fully-halogenated HNMs in water using the congeners bromodichloronitromethane and chlorodibromonitromethane. We have combined absolute reaction rate constants for their reactions with the hydroxyl radical and the hydrated electron as measured by electron pulse radiolysis and analytical measurements of stable product concentrations obtained by 60Co steady-state radiolysis with a kinetic computer model that includes watermore » radiolysis reactions and halide/nitrogen oxide radical chemistry to fully elucidate the reaction pathways of these HNMs. These results are compared to our previous similar study of the fully chlorinated HNM chloropicrin. The full optimized computer model, suitable for predicting the behavior of this class of compounds in irradiated drinking water is provided.« less
Effects of Kombucha on oxidative stress induced nephrotoxicity in rats
2009-01-01
Background Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. Results TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment. PMID:19943946
Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.
Gharib, Ola Ali
2009-11-27
Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.
Study of Damage and Recovery of Electron Irradiated Polyimide using EPR and NMR Spectroscopy
NASA Astrophysics Data System (ADS)
Humagain, Sunita; Jhonson, Jessica; Stallworth, Phillip; Engelhart, Daniel; Plis, Elena; Ferguson, Dale; Cooper, Russell; Hoffmann, Ryan; Greenbaum, Steve
The main objective of this research is to probe radical concentrations in electron irradiated polyimide (PI, Kapton®) and to examine the impact on the electrical properties using EPR and NMR spectroscopy. PI is an electrical insulator used in space missions as a thermal management blanketing material, it is therefore critical for spacecraft designers to understand the nature of electron transport (electrical conductivity) within the bulk of the material. The recovery mechanism (radical evolution) of PI in vacuum, argon and air after having been subjected to 90 KeV electron irradiation, was studied. The formation and subsequent exponential decay of the radical concentrations was recorded using EPR. This signal decay agrees well with the recovery mechanism being probed by electrical conductivity measurements and implies a strong relation between the two. To investigate the distribution of radicals in the polymer, 1H NMR relaxation time (T1) were measured at 300MHz. Additional NMR experiments, in particular 13C, were performed to search for direct evidence of structural defects.
Role of oxygen free radicals in patients with acute pancreatitis
Park, Byung Kyu; Chung, Jae Bock; Lee, Jin Heon; Suh, Jeong Hun; Park, Seung Woo; Song, Si Young; Kim, Hyeyoung; Kim, Kyung Hwan; Kang, Jin Kyung
2003-01-01
AIM: The generation of oxygen free radicals has been implicated in the pathogenesis of experimental pancreatitis. The aim of this study was to determine the role of oxygen free radicals in patients with acute pancreatitis. METHODS: The plasma levels of C-reactive protein (CRP), lipid peroxide (LPO), myeloperoxidase (MPO) and superoxide dismutase (SOD) were measured in 13 patients with acute pancreatitis and 14 healthy volunteers. RESULTS: Among the patients with acute pancreatitis, there were higher plasma levels of LPO and MPO and lower SOD activity in patients with severe pancreatitis than in those with mild pancreatitis. However, there was no significant difference in the serum marker of oxidative stress no matter what the etiology was. The LPO level was especially correlated with the concentration of serum CRP and CT severity index. CONCLUSION: The oxygen free radicals may be closely associated with inflammatory process and the severity of acute pancreatitis. Especially, the concentration of plasma LPO is a meaningful index for determining the severity of the disease. PMID:14562390
Liu, Bochuan; Qiao, Meng; Wang, Yanbin; Wang, Lijuan; Gong, Yan; Guo, Tao; Zhao, Xu
2017-12-01
The enhancement of g-C 3 N 4 photocatalytic degradation of bisphenol A (BPA) via persulfate (PS) addition was investigated under visible light irradiation. The effects of various parameters on the BPA degradation were investigated, such as catalysts dosage, PS concentrations, initial pH value and BPA concentration. The results showed that g-C 3 N 4 nanosheets exhibited superior photocatalytic activity toward BPA degradation as compared with bulk g-C 3 N 4 . The addition of PS can further improve the g-C 3 N 4 photocatalytic performance for BPA degradation. With 5 mM PS, the degradation rate of BPA was increased from 72.5% to 100% at 90 min, and the corresponding first-order kinetic constants were increased from 0.0028 to 0.0140 min -1 . The removal efficiency of BPA increased with the decrease of solution pH value. The active radicals in the reaction system were tested by electron spin resonance (ESR) and radicals quenching experiments. Instead of persulfate radicals' oxidation, it was proposed that the main active radicals for BPA degradation were superoxide radicals and the photogenerated holes. Copyright © 2017. Published by Elsevier Ltd.
CF2 Detection in Radio-Frequency Ar/CHF3 Plasmas by Fourier Transform Infrared Spectroscopy
NASA Technical Reports Server (NTRS)
Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.
1999-01-01
CFx radicals, in particular CF2, are instrumental in anisotropic etching of SiO2. In order to optimize the CFx radical population in a given process environment, it is imperative that we understand their production mechanism. Towards this goal, we have conducted a series of quantitative measurements of CF2 radicals in low pressure RF plasmas similar to those used in SiO2 etching. In this study, we present preliminary results for Ar/CHF3 plasmas operating at pressures ranging from 10-50 mTorr and powers ranging from 100-500 W in the GEC reference cell, modified for inductive (transformer) coupling. Fourier transform infrared (FTIR) spectroscop) is used to observe the absorption features of the CF2 radical in the 1114 cm-1 and 1096 cm-1 spectral regions. The FTIR spectrometer is equipped with a high-sensitivity mercury cadmium telluride (MCT) detector and has afixed resolution of 0.125 cm- 1. The CF2 concentrations are measured for a range of operating pressures and discharge power levels, and are compared to measurements of the relative CF2 concentrations made by mass spectrometry using the method of appearance potential for radical selectivity.
Tropospheric OH and HO2 radicals: field measurements and model comparisons.
Stone, Daniel; Whalley, Lisa K; Heard, Dwayne E
2012-10-07
The hydroxyl radical, OH, initiates the removal of the majority of trace gases in the atmosphere, and together with the closely coupled species, the hydroperoxy radical, HO(2), is intimately involved in the oxidation chemistry of the atmosphere. This critical review discusses field measurements of local concentrations of OH and HO(2) radicals in the troposphere, and in particular the comparisons that have been made with numerical model calculations containing a detailed chemical mechanism. The level of agreement between field measurements of OH and HO(2) concentrations and model calculations for a given location provides an indication of the degree of understanding of the underlying oxidation chemistry. We review the measurement-model comparisons for a range of different environments sampled from the ground and from aircraft, including the marine boundary layer, continental low-NO(x) regions influenced by biogenic emissions, the polluted urban boundary layer, and polar regions. Although good agreement is found for some environments, there are significant discrepancies which remain unexplained, a notable example being unpolluted, forested regions. OH and HO(2) radicals are difficult species to measure in the troposphere, and we also review changes in detection methodology, quality assurance procedures such as instrument intercomparisons, and potential interferences.
Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin.
Dose, Janina; Matsugo, Seiichi; Yokokawa, Haruka; Koshida, Yutaro; Okazaki, Shigetoshi; Seidel, Ulrike; Eggersdorfer, Manfred; Rimbach, Gerald; Esatbeyoglu, Tuba
2016-01-14
Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health.
Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin
Dose, Janina; Matsugo, Seiichi; Yokokawa, Haruka; Koshida, Yutaro; Okazaki, Shigetoshi; Seidel, Ulrike; Eggersdorfer, Manfred; Rimbach, Gerald; Esatbeyoglu, Tuba
2016-01-01
Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health. PMID:26784174
Multiple free-radical scavenging capacity in serum
Oowada, Shigeru; Endo, Nobuyuki; Kameya, Hiromi; Shimmei, Masashi; Kotake, Yashige
2012-01-01
We have developed a method to determine serum scavenging-capacity profile against multiple free radical species, namely hydroxyl radical, superoxide radical, alkoxyl radical, alkylperoxyl radical, alkyl radical, and singlet oxygen. This method was applied to a cohort of chronic kidney disease patients. Each free radical species was produced with a common experimental procedure; i.e., uv/visible-light photolysis of free-radical precursor/sensitizer. The decrease in free-radical concentration by the presence of serum was quantified with electron spin resonance spin trapping method, from which the scavenging capacity was calculated. There was a significant capacity change in the disease group (n = 45) as compared with the healthy control group (n = 30). The percent values of disease’s scavenging capacity with respect to control group indicated statistically significant differences in all free-radical species except alkylperoxyl radical, i.e., hydroxyl radical, 73 ± 12% (p = 0.001); superoxide radical, 158 ± 50% (p = 0.001); alkoxyl radical, 121 ± 30% (p = 0.005); alkylperoxyl radical, 123 ± 32% (p>0.1); alkyl radical, 26 ± 14% (p = 0.001); and singlet oxygen, 57 ± 18% (p = 0.001). The scavenging capacity profile was illustrated using a radar chart, clearly demonstrating the characteristic change in the disease group. Although the cause of the scavenging capacity change by the disease state is not completely understood, the profile of multiple radical scavenging capacities may become a useful diagnostic tool. PMID:22962529
Indirect Estimation of Tropospheric and Stratospheric Hydroxyl Radical Concentration
NASA Astrophysics Data System (ADS)
Li, M.; Williams, J.
2017-12-01
Hydroxyl radical (OH) react with many gasous compounds in the atmosphere and is regarded as the cleanser of our atmosphere and affect human health, air quality and climate. Mean age of air, which means the average transit time since an air parcel is emitted from earth surface until sampled, is derived from SF6 based on aircraft observations in mid-latitude UTLS region. The domain loss of methyl chloride and methane is the removal by OH, thus using pseudo first order reaction the OH concentration is calculated against mean age. A tropospheric mean OH concentration is calculated in the range of (4 8)*10^5 molecules cm-3 and a stratospheric mean OH concentration is around (3 5)*10^5 molecules cm-3.
Intercomparison of field measurements of nitrous acid (HONO) during the SHARP Campaign
Because of the importance of HONO as a radical reservoir, consistent and accurate measurements of its concentration are needed. As part of the SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by five different measurement techniques on th...
HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. I. THE RCT CONCEPT
The ozonation of model systems and several natural waters was examined in bench-scale batch experiments. In addition to measuring the concentration of ozone (03), the rate of depletion of an in situ hydroxyl radical probe compound was monitored, thus providing information on the ...
Michael, J Savarimuthu; Kalirajan, A; Padmalatha, C; Singh, A J A Ranjit
2013-09-01
To investigate the in vitro antioxidant activity and total phenolic content of the methanolic leaf extract of Nyctanthes arbor-tristis L. (NA). The sample was tested using five in vitro antioxidant methods (1, 1-diphenyl-2-picryl hydrazine radical scavenging activity (DPPH), hydroxyl radical-scavenging activity (-OH), nitric oxide scavenging activity (NO), superoxide radical-scavenging activity, and total antioxidant activity) to evaluate the in vitro antioxidant potential of NA and the total phenolic content (Folin-Ciocalteu method). The extract showed good free radical scavenging property which was calculated as an IC50 value. IC50 (Half maximal inhibitory concentration) of the methanolic extract was found to be 57.93 μg·mL(-1) for DPPH, 98.61 μg·mL(-1) for -OH, 91.74 μg·mL(-1) for NO, and 196.07 μg·mL(-1) for superoxide radical scavenging activity. Total antioxidant capacity of the extract was found to be (1198 ± 24.05) mg ascorbic acid for the methanolic extract. Free radical scavenging activity observed in the extracts of NA showed a concentration-dependent reaction. The in vitro scavenging tested for free radicals was reported to be due to high phenolic content in the leaf extract. The leaf extract of NA showed the highest total phenolic content with a value of 78.48 ± 4.2 equivalent mg TAE/g (tannic acid equivalent). N. arbor-tristis leaf extract exhibited potent free radical scavenging activity. The finding suggests that N. arbor-tristis leaves could be a potential source of natural antioxidant. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Bastiaansen, Jessica A. M.; Yoshihara, Hikari A. I.; Capozzi, Andrea; Schwitter, Juerg; Gruetter, Rolf; Merritt, Matthew E.; Comment, Arnaud
2018-01-01
Purpose To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13C-labeled substrate mixture prepared using photo-induced non-persistent radicals. Methods Droplets of mixed [1-13C]pyruvic and [1-13C]butyric acids were frozen into glassy beads in liquid nitrogen. Ethanol addition was investigated as a means to increase the polarization level. The beads were irradiated with ultraviolet (UV) light and the radical concentration was measured by ESR spectroscopy. Following dynamic nuclear polarization (DNP) in a 7T polarizer, the beads were dissolved, and the radical-free hyperpolarized solution was rapidly transferred into an injection pump located inside a 9.4T scanner. The hyperpolarized solution was injected in healthy rats to measure cardiac metabolism in vivo. Results UV-irradiation created non-persistent radicals in a mixture containing 13C-labeled pyruvic and butyric acids and enabled the hyperpolarization of both substrates by DNP. Ethanol addition increased the radical concentration from 16 to 26 mM. Liquid-state 13C polarization was 3% inside the pump at the time of injection, and increased to 5% by addition of ethanol to the substrate mixture prior to UV irradiation. In the rat heart, the in vivo13C signals from lactate, alanine, bicarbonate and acetylcarnitine were detected following the metabolism of the injected substrate mixture. Conclusion Co-polarization of two 13C-labeled substrates and the detection of their myocardial metabolism in vivo was achieved without using persistent radicals. The absence of radicals in the solution containing the hyperpolarized 13C-substrates may simplify the translation to clinical use because no filtration is required prior to injection. PMID:29411415
Evaluation of In Vitro Antioxidant Potential of Cordia retusa
Amudha, Murugesan; Rani, Shanmugam
2016-01-01
The present study was carried out to investigate the antioxidant potential, total flavonoid and phenolic content in extracts of aerial parts of Cordia retua (Vahl.) Masam. The samples such as ethyl acetate and ethanol extracts were tested using six in vitro models such as 2,2-diphenyl-1-picrylhydrazyl, nitric oxide radical, iron chelating, hydroxyl radical, superoxide radical scavenging activity and total antioxidant activity to evaluate the in vitro antioxidant potential of C. retusa by spectrophotometrically. Total flavonoid and phenolic content in samples were estimated using aluminum chloride colorimetric and Folin-Ciocalteu method. The results were analyzed statistically by the regression method. Half maximal inhibitory concentration (IC50) of the ethanol extract was found to be 596 μg/ml for DPPH, 597 μg/ml for nitric oxide radical, 554 μg/ml for iron chelating, 580 μg/ml for hydroxyl radical, 562 μg/ml for superoxide radical and 566 μg/ml for total antioxidant capacity. Furthermore, the total flavonoid content and total phenolic content of the ethanol extract were found to be 2.71 mg gallic acid equivalent per gram of extract and 1.86 mg quercetin equivalent per gram of extract, respectively. In all the testing, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. The results of the present comprehensive analysis demonstrated that C. retusa possess potent antioxidant activity, high flavonoid and phenolic content. The antioxidant property may be related to the polyphenols and flavonoids present in the extract. These results clearly indicated that C. retusa is effective against free radical mediated diseases as a natural antioxidant. PMID:27168685
Gülçin, Ilhami; Büyükokuroglu, M Emin; Oktay, Münir; Küfrevioglu, O Irfan
2003-05-01
The aim of this study is to examine possible antioxidant and analgesic activities of turpentine exudes from Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe (TPN). Total antioxidant activity, reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities were studied. The total antioxidant activity increased with the increasing amount of extracts (100, 300, and 500 microg) added to linoleic acid emulsion. All of the doses of TPN showed higher antioxidant activity than alpha-tocopherol. The samples showed 49, 70, and 91% inhibition on peroxidation of linoleic acid emulsion, respectively. On the other hand, the 300 microg of alpha-tocopherol showed 40% inhibition on peroxidation of linoleic acid emulsion. There is correlation between antioxidant activity and the reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities. Like antioxidant activity, the reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities of TPN depending on concentration and increasing with increased concentration of TPN. These properties may be the major reasons for the inhibition of lipid peroxidation. The results obtained in the present study indicate that the TPN has a potential source of natural antioxidant. In addition, analgesic effect of TPN was investigated in present study and TPN had strong analgesic effect. The analgesic effect of TPN compared with metamizol as a standard analgesic compound.
Rancan, F; Nazemi, B; Rautenberg, S; Ryll, M; Hadam, S; Gao, Q; Hackbarth, S; Haag, S F; Graf, C; Rühl, E; Blume-Peytavi, U; Lademann, J; Vogt, A; Meinke, M C
2014-05-01
Several nanoparticle-based formulations used in cosmetics and dermatology are exposed to sunlight once applied to the skin. Therefore, it is important to study possible synergistic effects of nanoparticles and ultraviolet radiation. Electron paramagnetic resonance spectroscopy (EPR) was used to detect intracellular free radicals induced by ultraviolet B (UVB) radiation and amorphous silica nanoparticle and to evaluate the influence of nanoparticle surface chemistry on particle cytotoxicity toward HaCaT cells. Uncoated titanium dioxide nanoparticles served as positive control. In addition, particle intracellular uptake, viability, and induction of interleukin-6 were measured. We found that photo-activated titanium dioxide particles induced a significant amount of intracellular free radicals. On the contrary, no intracellular free radicals were generated by the investigated silica nanoparticles in the dark as well as under UVB radiation. However, under UVB exposure, the non-functionalized silica nanoparticles altered the release of IL-6. At the same concentrations, the amino-functionalized silica nanoparticles had no influence on UVB-induced IL-6 release. EPR spectroscopy is a useful technique to measure nanoparticle-induced intracellular free radicals. Non-toxic concentrations of silica particles enhanced the toxicity of UVB radiation. This synergistic effect was not mediated by particle-generated free radicals and correlated with particle surface charge and intracellular distribution. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yang, Bo; Zhang, Haixu; Wang, Youfeng; Zhang, Peng; Shu, Jinian; Sun, Wanqi; Ma, Pengkun
2016-01-01
Methoxyphenols, lignin pyrolysis products, are major biomass combustion components and are considered potential tracers for wood smoke emissions. Their atmospheric reactivity, however, has not been well characterized. Guaiacol, creosol, and syringol are three typical methoxyphenols generated in relatively high concentrations in fresh wood smoke. In this study, the gas-phase reactions of NO3 radicals with these methoxyphenols were investigated using a laboratory-built vacuum ultraviolet photoionization gas time-of-flight mass spectrometer (VUV-GTOFMS) and off-line GC-MS. By combining experimental and theoretical methods, 4-nitroguaiacol, 6-nitroguaiacol, and 4,6-dinitroguaiacol were determined as the primary degradation products for guaiacol; similarly, 6-nitrocreosol and 3-nitrosyringol were identified for creosol and syringol, respectively. Using the relative rate method, rate constants at 298 K and 1 atm for the gas-phase reactions of guaiacol, creosol, and syringol with NO3 radicals were measured to be 3.2 × 10-12, 2.4 × 10-13, and 4.0 × 10-13 cm3 molecule-1 s-1, respectively. At a typical tropospheric concentration of NO3 radicals (5 × 108 molecule cm-3), atmospheric lifetimes for guaiacol, creosol, and syringol toward NO3 radicals were 0.2, 2.3, and 1.4 h, respectively. These results indicate that the reaction with NO3 radicals can be a major sink for methoxyphenols at night.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobrowski, K.; Das, P.K.
1986-02-27
At relatively high concentrations (1-10 mM) in O/sub 2/-saturated acetone, pulse radiolysis of all-trans-retinal, -retinoic acid, and -methyl retinoate gives rise to fast transient absorption processes that are best explained in terms of association of radical cations with parent polyenes to form dimers. From the concentration dependence of initial decay/formation kinetics, equilibrium constants (K) for monomer/dimer interconversion are measured to be 220-440 M/sup -1/ (in acetone). On going from acetone to 1,2-dichloroethane, K values for retinal and retinoic acid increase almost by an order of magnitude. For all trans-retinol and retinyl acetate, radical cation dimer formation appears to be negligiblemore » in the concentration range 1-10 mM of the polyene substrates (based on the lack of transient absorption changes seen with retinal and retinoic acid/ester). 24 references, 6 figures, 1 table.« less
Polis, B. David; Wyeth, John; Goldstein, Leonide; Graedon, Joe
1969-01-01
Stable free radicals have been prepared from purified plasma proteins, pituitary peptides, and simpler related structures like 5-OH tryptophan and melatonin by oxidation with the free-radical nitrosyl disulfonate in alkaline solution under controlled conditions. The presence of tyrosine or trytophan amino acid residues in the protein was found essential for free-radical formation. These red-colored, stable free radicals showed electron spin resonance spectra in aqueous solutions at room temperature and maintained this characteristic for weeks when stored at 5°C. Illumination, by visible light, of the free-radical proteins and peptides separated from excess nitrosyl disulfonate by salt fractionation or chromatography enhanced the free-radical concentration in the light. The increased signal decayed in the dark. Intravenous administration of the free-radical proteins or peptides into rabbits equipped with chronic cranial electrodes and sedated with a small dose of pentobarbital caused a sudden EEG arousal accompanied by behavioral changes indicative of brain excitation. Illumination of the free-radical compounds prior to administration enhanced the effects. Untreated control proteins or peptides had no effects. The observations are interpreted to suggest the involvement of free-radical structures in the transfer of energy in nervous tissue. PMID:4311379
Measurements of free radicals in a megacity during the Clean Air for London Project
NASA Astrophysics Data System (ADS)
Heard, Dwayne; Whalley, Lisa; Stone, Daniel; Clancy, Noel; Lee, James; Kleffman, Jorg; Laufs, Sebastian; Bandy, Brian
2013-04-01
Free radicals control the photo-oxidative chemistry of the atmosphere, being responsible for the transformation of primary emissions into secondary pollutants such as NO2, O3, multifunctional species and particulates. Here we present measurements of OH, HO2 and RO2 radicals and OH reactivity recorded at North Kensington, Central London, during two Intensive Operational Periods (IOPs) of the Clear Air for London (Clearflo) project in the summer and winter of 2012. OH and HO2 were measured using laser-induced fluorescence (LIF) spectroscopy at low pressure (the FAGE technique), and RO2 was measured using the recently developed ROXLIF technique, which utilises an external flow-reactor interfaced to FAGE, and which is able to discriminate between HO2 and organic peroxy radicals. Through control of reagent gases we are further able to provide a separate measurement of those RO2 species which are known to give an interference for HO2 measurements (namely alkene, aromatic and large-chain alkane derived RO2). OH reactivity was measured using laser-flash photolysis combined with FAGE. Low concentrations of radicals were observed during the winter IOP, with mixing ratios of [OH] ~ 0.04 pptv, [HO2] ~ 0.4 pptv, and [RO2] ~ 1.6 pptv at noon, all displaying a negative correlation with NO. The photolysis of O3 and subsequent reaction of O(1D) with H2O vapour was only a minor contribution to radical production in winter, with photolysis of HONO a major radical source. The summer IOP coincided with the London Olympic Games, with a number of pollution events, with ozone peaking at 100 ppbv (exceeding EU air quality directives) and elevated radical concentrations (peak [OH] ~ 0.14 pptv, [HO2] ~ 4 pptv, [RO2] ~ 6.4 pptv) being observed. The net rate of ozone production was calculated from radical observations and agreed well with measured ozone production, suggesting that advection/dilution by continental air-masses was not playing a significant role in determining ozone concentrations in London at that time. The ability to partially speciate RO2 enabled the contribution towards ozone production from different types of parent VOCs to be assessed. Steady-state analyses, using OH reactivity measurements to constrain the rate of loss of OH, gave reasonable agreement for [OH] but an additional HO2 sink was required to match [HO2]. The photolysis of HONO and carbonyl species and the decomposition of PAN were the dominant sources of radicals in London in summer.
EPR STUDIES OF THERMALLY STERILIZED VASELINUM ALBUM.
Ramos, Paweł; Pilawa, Barbara
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy was used for examination of free radicals in thermally treated vaselinum album (VA). Thermal treatment in hot air as sterilization process was tested. Conditions of thermal sterilization were chosen according to the pharmaceutical norms. Vaselinum album was heated at the following conditions (T--temperature, t--time): T = 160°C and t = 120 min, T = 170°C and t = 60 min and T = 180°C and t = 30 min. The aim of this work was to determine concentration and free radical properties of thermally sterilized VA. EPR analysis for VA was done 15 min after sterilization. EPR measurements were done at room temperature. EPR spectra were recorded in the range of microwave power of 2.2-70 mW. g-Factor, amplitudes (A) and line width (ΔBpp) of the spectra were determined. The shape of the EPR spectra was analyzed. Free radical concentration (N) in the heated samples was determined. EPR spectra were not obtained for the non heated VA. EPR spectra were detected for all thermally sterilized samples. The spectra revealed complex character, their asymmetry depends on microwave power. The lowest free radicals concentration was found for the VA sterilized at 180°C during 30 min. EPR spectroscopy is proposed as the method useful for optimization of sterilization process of drugs.
A kinetic study of 3-chlorophenol enhanced hydroxyl radical generation during ozonation.
Utsumi, Hideo; Han, Youn-Hee; Ichikawa, Kazuhiro
2003-12-01
Hydroxyl (OH) radical is proposed as an important factor in the ozonation of water. In the present study, the enhancing effect of 3-chlorophenol on OH radical generation was mathematically evaluated using electron spin resonance (ESR)/spin-trapping technique. OH radical was trapped with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a stable adduct, DMPO-OH. The initial velocity of DMPO-OH generation in ozonated water containing 3-chlorophenol was quantitatively measured using a combined system of ESR spectroscopy with stopped-flow apparatus which was controlled by home-made software. The initial velocity of DMPO-OH generation increased as a function of the concentration of ozone and the more effectively of 3-chlorophenol concentration. The relation among ozone concentration, amount of 3-chlorophenol and the initial velocity (nu(0)) of DMPO-OH generation was mathematically analyzed and the following equation was obtained, nu(0) (10(-6)M/s)=[9.7 x [3-chlorophenol (10(-9)M)] + 0.0005]exp(57 x [ozone (10(-9)M)]). The equation fitted very well with the experimental results, and the correlation coefficient was larger than 0.99. The equation for the enhancing effect by 3-chlorophenol should provide useful information to optimize the condition in ozone treatment process of water containing phenolic pollutants.
The effects of hyaluronan and its fragments on lipid models exposed to UV irradiation.
Trommer, Hagen; Wartewig, Siegfried; Böttcher, Rolf; Pöppl, Andreas; Hoentsch, Joachim; Ozegowski, Jörg H; Neubert, Reinhard H H
2003-03-26
The effects of hyaluronan and its degradation products on irradiation-induced lipid peroxidation were investigated. Liposomal skin lipid models with increasing complexity were used. Hyaluronan and its fragments were able to reduce the amount of lipid peroxidation secondary products quantified by the thiobarbituric acid (TBA) assay. The qualitative changes were studied by mass spectrometry. To elucidate the nature of free radical involvement electron paramagnetic resonance (EPR) studies were carried out. The influence of hyaluronan and its fragments on the concentration of hydroxyl radicals generated by the Fenton system was examined using the spin trapping technique. Moreover, the mucopolysaccharide's ability to react with stable radicals was checked. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) showed no concentration changes of the stable radical caused by hyaluronan. Hyaluronan was found to exhibit prooxidative effects in the Fenton assay in a concentration dependent manner. A transition metal chelation was proposed as a mechanism of this behavior. Considering human skin and its constant exposure to UV light and oxygen and an increased pool of iron in irradiated skin the administration of hyaluronan or its fragments in cosmetic formulations or sunscreens could be helpful for the protection of the human skin. Copyright 2003 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hübner, M.; Lang, N.; Röpcke, J.
2015-01-19
Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less
Kumar, Muthusamy Senthil; Chaudhury, Shibani; Balachandran, Srinivasan
2014-12-01
The total phenolic and flavonoid content and percentage of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of callus and in vivo plant parts of Heliotropium indicum Linn. were estimated. Murashige and Skoog (MS) basal medium supplemented with α-naphthaleneacetic acid (NAA) 2.0 mg/l with benzyladenine (BA) 0.5 mg/l showed the highest amount of callus biomass (1.87 g/tube). The morphology of callus was significantly different according to the plant growth regulators and their concentrations used in the medium. The highest amount of total phenolic (21.70 mg gallic acid equivalent per gram (GAE/g)) and flavonoid (4.90 mg quercetin equivalent per gram (QE/g)) content and the maximum percentage (77.78 %) of radical scavenging activity were estimated in the extract of inflorescence. The synergistic effect of NAA (2.0 mg/l) and BA (0.5 mg/l) enhances the synthesis of total phenolic (9.20 mg GAE/g) and flavonoid (1.25 mg QE/g) content in the callus tissue. The callus produced by the same concentration shows 45.24 % of free radical scavenging activity. While comparing the various concentrations of NAA with 2,4-dichlorophenoxyacetic acid (2,4-D) for the production of callus biomass, total phenolic and flavonoid content and free radical scavenging activity, all the concentrations of NAA were found to be superior than those of 2,4-D.
Chen, Wei; Zhu, Hong; Jia, Zhenquan; Li, Jianrong; Misra, Hara P.; Zhou, Kequan; Li, Yunbo
2009-01-01
Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in φX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25 -2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 µM SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25 - 2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin. PMID:19785994
Ioannone, Francesca; Sacchetti, Giampiero; Serafini, Mauro
2017-01-01
Oxidative and inflammatory stress represents a major risk factor for cardiovascular disease (CVD) in overweight and obese subjects. Between the different plant foods, chocolate has been shown to decrease CVD risk due to its antioxidant and anti-inflammatory properties. However, as we recently showed in epidemiological studies, meta-analyses, and human trials, dietary antioxidants resulted more effective in subjects characterized by an ongoing oxidative stress, than in healthy people. Aim of this work was to investigate the effect of different concentrations of chocolate phenolic extract (CPE) on in vitro free radical production, stimulated by phorbol 12-myristate 13-acetate (PMA), in leukocytes extracted from blood of normo-weight and overweight/obese subjects. Neutrophils from overweight/obese group had a significantly higher free radical production compared to the normo-weight group. In neutrophils, the lowest CPE concentration significantly reduced free radical production in overweight/obese group only, and higher CPE concentrations were effective in both groups. In monocytes, the CPE concentration that was significantly effective in reducing free radical production was lower in overweight/obese subjects than in normo-weight subjects. Chocolate polyphenol extracts inhibit oxidative burst in human neutrophils and monocytes with a higher efficiency in subjects characterized by an unphysiological oxidative/inflammatory stress, such as overweight and obese. Results of this study provide further evidence about a differential role of dietary antioxidant strictly related to the “stress” condition of the subjects. PMID:28649567
Ioannone, Francesca; Sacchetti, Giampiero; Serafini, Mauro
2017-01-01
Oxidative and inflammatory stress represents a major risk factor for cardiovascular disease (CVD) in overweight and obese subjects. Between the different plant foods, chocolate has been shown to decrease CVD risk due to its antioxidant and anti-inflammatory properties. However, as we recently showed in epidemiological studies, meta-analyses, and human trials, dietary antioxidants resulted more effective in subjects characterized by an ongoing oxidative stress, than in healthy people. Aim of this work was to investigate the effect of different concentrations of chocolate phenolic extract (CPE) on in vitro free radical production, stimulated by phorbol 12-myristate 13-acetate (PMA), in leukocytes extracted from blood of normo-weight and overweight/obese subjects. Neutrophils from overweight/obese group had a significantly higher free radical production compared to the normo-weight group. In neutrophils, the lowest CPE concentration significantly reduced free radical production in overweight/obese group only, and higher CPE concentrations were effective in both groups. In monocytes, the CPE concentration that was significantly effective in reducing free radical production was lower in overweight/obese subjects than in normo-weight subjects. Chocolate polyphenol extracts inhibit oxidative burst in human neutrophils and monocytes with a higher efficiency in subjects characterized by an unphysiological oxidative/inflammatory stress, such as overweight and obese. Results of this study provide further evidence about a differential role of dietary antioxidant strictly related to the "stress" condition of the subjects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei; College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035; Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in {phi}X-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1.more » Moreover, the consumption of oxygen caused by 250 {mu}M SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.« less
Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress.
Domazou, Anastasia S; Zelenay, Viviane; Koppenol, Willem H; Gebicki, Janusz M
2012-10-15
Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O₂ and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O₂ and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O₂ and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Stimpfle, R. M.; Koplow, J. P.; Cohen, R. C.; Kohn, D. W.; Wennberg, P. O.; Judah, D. M.; Toohey, D. W.; Avallone, L. M.; Anderson, J. G.; Salawitch, R. J.
1994-01-01
The response of ClO concentrations to changes in NO2 concentrations has been inferred from simultaneous observations of [ClO], [NO], [NO2] and [O3] in the mid-latitude lower stratosphere. This analysis demonstrates that [ClO] is inversely correlated with [NO2], consistent with formation and photolysis of [ClONO2]. A factor of ten range in the concentration of NO2 was sampled (0.1 to 1 x 10(exp 9) mol/cc), with a comparable range in the ratio of [ClO] to total available inorganic chlorine (1% <= [ClO]/[Cl(sub y)] <= 5%). This analysis leads to an estimate of [ClONO2]/[Cl(sub y)] = 0.12 (x/divided by 2), in the mid-latitude, lower-stratospheric air masses sampled.
Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin
2013-01-01
Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985
FREE RADICALS IN THERMALLY STERILIZED ACIDUM BORICUM AND OPTIMIZATION OF THIS PROCESS.
Ramos, Paweł; Pilawa, Barbara
2015-01-01
Free radicals formation in the acidum boricum (AB) during thermal sterilization process was examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. Acidum boricum was sterilized according to the pharmacopea norms at temperatures 160°C (120 min), 170°C (60 min), and 180°C (30 min). Free radicals (~10(17) spin/g) were thermally formed in these drug. The free radicals system revealed complex character, and the asymmetrical EPR spectra were measured. Mainly oxygen free radicals exist in the tested heated AB. Slower spin-lattice relaxation processes exist in AB sterilized at 160, 170 and 180°C. AB may be sterilized at temperatures 160, 170 and 180°C. For AB thermal sterilization at temperature 170°C is recommended. Free radicals concentrations changes during storage of the examined AB, and probably interactions with oxygen molecules may be responsible for this effect.
Formation of methemoglobin and phenoxyl radicals from p-hydroxyanisole and oxyhemoglobin.
Stolze, K; Nohl, H
1991-01-01
The reaction of p-hydroxyanisole with oxyhemoglobin was investigated using electron spin resonance spectroscopy (ESR) and visible spectroscopy. As a reactive reaction intermediate we found the p-methoxyphenoxyl radical, the one-electron oxidation product of p-hydroxyanisole. Detection of this species required the rapid flow device elucidating the instability of this radical intermediate. The second reaction product formed is methemoglobin. Catalase or SOD had no effect upon the reaction kinetics. Accordingly, reactive oxygen species such as hydroxyl radicals or superoxide could not be observed although the spin trapping agent DMPO was used to make these short-lived species detectable. When the sulfhydryl blocking agents N-ethylmaleimide or mersalyl acid were used, an increase of the methemoglobin formation rate and of the phenoxyl radical concentration were observed. We have interpreted this observation in terms of a side reaction of free radical intermediates with thiol groups.
Evidence of high *OH radical quenching efficiency by vitamin B6.
Matxain, Jon M; Padro, Daniel; Ristilä, Mikael; Strid, Ake; Eriksson, Leif A
2009-07-23
Molecules acting as antioxidants capable of scavenging reactive oxygen species (ROS) are of the utmost importance in the living cell. The antioxidative properties of pyridoxine (vitamin B6) have recently been discovered. Previous theoretical calculations have shown a high reactivity of pyridoxine toward hydroxyl radicals, where the latter preferably abstract H from either carbon of the two methanol substituents (C8 or C9). In this study, we have explored the reactivity of pyridoxine toward further hydroxyl radicals, considering as the first step the H abstraction from either C8 or C9, also including addition reactions and cyclization. Many of the reactions display similar DeltaG, and hence, the quenching of hydroxyl radicals by pyridoxine may undergo different pathways leading to a mix of products. In addition, we observe that pyridoxine, under high hydroxyl radical concentrations, may scavenge up to eight radicals, supporting its observed high antioxidant activity.
Valcheva-Kuzmanova, Stefka; Blagović, Branka; Valić, Srećko
2012-04-01
The fruits of Aronia melanocarpa (Michx.) Elliot contain large amounts of phenolic substances, mainly procyanidins, anthocyanins and other flavonoids, and phenolic acids. The ability of phenolic substances to act as antioxidants has been well established. In this study, we investigated the radical scavenging activity of A. melanocarpa fruit juice (AMFJ). The method used was electron spin resonance (ESR) spectroscopy. The galvinoxyl free radical was used as a scavenging object. AMFJ was added to the galvinoxyl free radical solution. The measure of the radical scavenging activity was the decrease of signal intensity. AMFJ showed a potent antiradical activity causing a strong and rapid decrease of signal intensity as a function of time and juice concentration. This effect of AMFJ was probably due to the activity of its phenolic constituents. The ESR measurements in this study showed a pronounced radical scavenging effect of AMFJ, an important mechanism of its antioxidant activity.
Free-radical concentrations and other properties of pile-irradiated coals
Friedel, R.A.; Breger, I.A.
1959-01-01
Five coals reacted quite differently when they were exposed to pile-irradiation. Little or no change was found in free-radical content for the three coals of lowest carbon content, whereas the two coals of highest carbon content were found to have a considerable increase in free-radical content. The infrared spectra and the apparent hardness of the irradiated coals of higher carbon content indicate that polymerization occurred. Radiation of these coals in chemical reagents may promote reactivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qian; Walter, Eric D.; Cosimbescu, Lelia
2016-02-29
Organic radical batteries (ORBs) bearing robust radical polymers as energy storage species, are emerging promisingly with durable high energy and power characteristics by unique tunable redox properties. Here we report the development and application of in situ electrochemical-electron spin resonance (ESR) methodologies to identify the charge transfer mechanism of Poly(2,2,6,6- tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) based organic radical composite cathodes in the charge-discharge process of lithium half cells. The in situ experiments allow each electrochemical state to be associated with the chemical state (or environment) of the radical species upon the cell cycling. In situ ESR spectra of the composite cathode demonstratemore » a two-electron redox reaction of PTMA. Moreover, two different local environments of radical species are found in the composite electrode that includes both concentrated and isolated radicals. These two types of radicals show similarities during the redox reaction process while behave quite differently in the non-faradic reaction of ion sorption/desorption on the electrode surface.« less
Fang, Guodong; Gao, Juan; Liu, Cun; Dionysiou, Dionysios D; Wang, Yu; Zhou, Dongmei
2014-01-01
We investigated the activation of hydrogen peroxide (H2O2) by biochars (produced from pine needles, wheat, and maize straw) for 2-chlorobiphenyl (2-CB) degradation in the present study. It was found that H2O2 can be effectively activated by biochar, which produces hydroxyl radical ((•)OH) to degrade 2-CB. Furthermore, the activation mechanism was elucidated by electron paramagnetic resonance (EPR) and salicylic acid (SA) trapping techniques. The results showed that biochar contains persistent free radicals (PFRs), typically ∼ 10(18) unpaired spins/gram. Higher trapped [(•)OH] concentrations were observed with larger decreases in PFRs concentration, when H2O2 was added to biochar, indicating that PFRs were the main contributor to the formation of (•)OH. This hypothesis was supported by the linear correlations between PFRs concentration and trapped [(•)OH], as well as kobs of 2-CB degradation. The correlation coefficients (R(2)) were 0.723 and 0.668 for PFRs concentration vs trapped [(•)OH], and PFRs concentration vs kobs, respectively, when all biochars pyrolyzed at different temperatures were included. For the same biochar washed by different organic solvents (methanol, hexane, dichloromethane, and toluene), the correlation coefficients markedly increased to 0.818-0.907. Single-electron transfer from PFRs to H2O2 was a possible mechanism for H2O2 activation by biochars, which was supported by free radical quenching studies. The findings of this study provide a new pathway for biochar implication and insight into the mechanism of H2O2 activation by carbonaceous materials (e.g., activated carbon and graphite).
In vitro evaluation of free radical scavenging activity of Codariocalyx motorius root extract.
Chidambaram, Uma; Pachamuthu, Vanitha; Natarajan, Suganya; Elango, Bhakkiyalakshmi; Suriyanarayanan; Ramkumar, Kunga Mohan
2013-03-01
To determine the phenolic content in Codariocalyx motorius root extract and to evaluate its antioxidant properties using various in vitro assay systems. The antioxidant activity was evaluated based on scavenging of 1,1-diphenyl-2-picrylhydrazyl, hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, reducing power and by inhibition of lipid peroxidation which was estimated in terms of thiobarbituric acid reactive substances. The root extract of the Codariocalyx motorius (C. motorius) exhibited potent total antioxidant activity that increased with increasing amount of extract concentration, which was compared with standard drug such as quercetin, butylated hydroxytoluene, tocopherol at different concentrations. The different concentrations of the extracts showed inhibition on lipid peroxidation. In addition, the extracts had effective reducing power, free radical scavenging, super oxide anion scavenging, nitric oxide scavenging, lipid peroxidation, and total phenolic content depending on concentration. High correlation between total phenolic contents and scavenging potential of different reactive oxygen species (r(2)=0.831-0.978) indicated the polyphenols as the main antioxidants. Codariocalyx motorius (C. motorius) root possess the highly active antioxidant substance which can be used for the treatment of oxidative stress-related diseases. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Popov, S S; Pashkov, A N; Popova, T N; Zoloedov, V I; Semenikhina, A V; Rakhmanova, T I
2007-08-01
Biochemiluminescence increased, while aconitate hydratase activity and citrate accumulation in tissues of the liver and heart and blood decreased in rats with experimental hyperthyroidism. These changes reflect activation of free radical oxidation, damage to enzyme molecules with reactive oxygen species, and impaired utilization of citrate under pathological conditions. Melatonin treatment during hyperthyroidism normalized aconitate hydratase activity and citrate concentration. Biochemiluminescence study showed that the effect of melatonin is related to antioxidant activity of this hormone, inhibition of free radical oxidation, and suppression of reactive oxygen species generation.
Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source
Endo, Nobuyuki; Oowada, Shigeru; Sueishi, Yoshimi; Shimmei, Masashi; Makino, Keisuke; Fujii, Hirotada; Kotake, Yashige
2009-01-01
We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system. PMID:19794928
Radiolysis of poly(acrylic acid) in aqueous solution
NASA Astrophysics Data System (ADS)
Ulanski, Piotr; Bothe, Eberhard; Hildenbrand, Knut; Rosiak, Janusz M.; von Sonntag, Clemens
1995-02-01
Poly(acrylic acid), PAA, reacts with OH-radicals yielding -CHCH(CO 2H)- (β-radicals) and -CH 2C(CO 2H)- (α-radicals) in a ratio of approximately 2:1. This estimate is based on pulse radiolysis data where the absorption spectrum of the PAA-radicals was compared with the spectra of α-radicals from model systems. The β-radicals convert slowly into α-radicals ( k = 0.7 s -1 at pH 10). This process has also been observed by ESR. At PAA-concentrations of 10 -2 mol dm -3 chain scission dominates over other competing reactions except at low pH. The rate of chain scission was followed by pulse conductometry and in the pH range 7-9 k = 4 × 10 -2s -1 was observed. Oxygen reacts with PAA-radicals with k = 3.1 × 10 8 dm 3 mol -1 s -1 at pH 3.5 and k = 1.0 × 10 8 dm 3 mol -1 s -1 at pH 10. The corresponding peroxyl radicals undergo slow intramolecular H-transfer yielding a UV-absorbing product whose properties are that of 1,3-diketones.
Shaikh, Shaukat Ali M; Barik, Atanu; Singh, Beena G; Modukuri, Ramani V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Priyadarsini, K Indira
2016-12-01
Hispolon (HS), a natural polyphenol found in medicinal mushrooms, and its isoxazole (HI) and pyrazole (HP) derivatives have been examined for free radical reactions and in vitro antioxidant activity. Reaction of these compounds with one-electron oxidant, azide radicals ([Formula: see text]) and trichloromethyl peroxyl radicals ([Formula: see text]), model peroxyl radicals, studied by nanosecond pulse radiolysis technique, indicated formation of phenoxyl radicals absorbing at 420 nm with half life of few hundred microseconds (μs). The formation of phenoxyl radicals confirmed that the phenolic OH is the active centre for free radical reactions. Rate constant for the reaction of these radicals with these compounds were in the order k HI ≅ k HP > k HS . Further the compounds were examined for their ability to inhibit lipid peroxidation in model membranes and also for the scavenging of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide ([Formula: see text]) radicals. The results suggested that HP and HI are less efficient than HS towards these radical reactions. Quantum chemical calculations were performed on these compounds to understand the mechanism of reaction with different radicals. Lower values of adiabatic ionization potential (AIP) and elevated highest occupied molecular orbital (HOMO) for HI and HP compared with HS controlled their activity towards [Formula: see text] and [Formula: see text] radicals, whereas the contribution of overall anion concentration was responsible for higher activity of HS for DPPH, [Formula: see text], and lipid peroxyl radical. The results confirm the role of different structural moieties on the antioxidant activity of hispolon derivatives.
IN VITRO MEASUREMENT OF TOTAL ANTIOXIDANT CAPACITY OF CRATAEGUS MACRACANTHA LODD LEAVES.
Miftode, Alina Monica; Stefanache, Alina; Spac, A F; Miftode, R F; Miron, Anca; Dorneanu, V
2016-01-01
Crataegus macracantha Lodd, family Rosaceae, is a very rare species in Europe, and unlike Crataegus monogyna is less investigated for pharmacologic activity. To analyze the ability of the lyophilisate of extract obtained from leaves of Crataegus macracantha Lodd (single plant at the Iaşi Botanical Garden) to capture free radicals in vitro. The lyophilisate obtained in Department of Pharmacognosy, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy Iaşi. The decreased absorbance of chromophore chlorpromazine radical cation in the presence of the lyophilized solutions was studied spectrophotometrically. The indicator radical cation, obtained by oxidation of chlorpromazine by potassium persulfate, has the maximum absorbance at 525 nm. Ascorbic acid was used as a standard antioxidant. The absorbance of radical solution was determined after the addition of a certain amount of lyophilisate at different time intervals. The antioxidant activity was calculated using the calibration curve obtained by plotting the variation in radical solution absorbance depending on ascorbic acid concentration. For each ascorbic acid concentration the area under the curve was calculated from plotting the percentage inhibition of the absorbance at two pre-established time intervals. The results confirm the antioxidant activity of the leaves of Crataegus Macracantha Lodd and by optimizing the proposed analytical methods the antiradical activity can be quickly evaluated with minimal reagent consumption.
Alvarez-Suarez, José M; Giampieri, Francesca; Damiani, Elisabetta; Astolfi, Paola; Fattorini, Daniele; Regoli, Francesco; Quiles, José L; Battino, Maurizio
2012-03-01
Several monofloral Cuban honeys were analyzed to determine their free radical-scavenging activity and from this the total antioxidant content was estimated. The protective effect against lipid peroxidation in an in vitro model of rat liver homogenates was evaluated and, lastly, the mineral content of the honeys, which can be related to the maintenance of intracellular oxidative balance, was determined. The scavenging capacities against hydroxyl and superoxide radicals were determined using the spin-trapping technique and the hypoxanthine/xanthine oxidase assay, respectively. Lipid peroxidation was evaluated through the production of TBARS and hydroperoxides. All honeys tested showed potential antioxidant activity with Linen vine displaying the highest scavenging capacity towards the DPPH, hydroxyl and superoxide radicals, while the least efficient was Christmas vine honey. Honeys also inhibited, in a concentration-dependent mode, lipid peroxidation in rat liver homogenates, with Linen vine resulting the best while the least effective was Christmas vine honey. The ability to scavenge free radicals and protect against lipid peroxidation may contribute to the ability of certain Cuban honeys to help in preventing/reducing some inflammatory diseases in which oxidative stress is involved. A total of eight minerals were identified and quantified as follows: cadmium, chromium, copper, nickel, iron, manganese, lead, and zinc. Minerals found in higher concentrations were iron, zinc and manganese.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiaoliang; Xu, Wu; Huang, Jinhua
Nonaqueous redox flow batteries hold the promise to achieve higher energy density ascribed to the broader voltage window than their aqueous counterparts, but their current performance is limited by low redox material concentration, poor cell efficiency, and inferior cycling stability. We report a new nonaqueous total-organic flow battery based on high concentrations of 9-fluorenone as negative and 2,5-di-tert-butyl-1-methoxy-4-[2’-methoxyethoxy]benzene as positive redox materials. The supporting electrolytes are found to greatly affect the cycling stability of flow cells through varying chemical stabilities of the charged radical species, especially the 9-fluorenone radical anions, as confirmed by electron spin resonance. Such an electrolyte optimizationmore » sheds light on mechanistic understandings of capacity fading in flow batteries employing organic radical-based redox materials and demonstrates that rational design of supporting electrolyte is vital for stable cyclability.« less
NASA Astrophysics Data System (ADS)
Tan, Zhaofeng; Fuchs, Hendrik; Lu, Keding; Hofzumahaus, Andreas; Bohn, Birger; Broch, Sebastian; Dong, Huabin; Gomm, Sebastian; Häseler, Rolf; He, Lingyan; Holland, Frank; Li, Xin; Liu, Ying; Lu, Sihua; Rohrer, Franz; Shao, Min; Wang, Baolin; Wang, Ming; Wu, Yusheng; Zeng, Limin; Zhang, Yinsong; Wahner, Andreas; Zhang, Yuanhang
2017-01-01
A comprehensive field campaign was carried out in summer 2014 in Wangdu, located in the North China Plain. A month of continuous OH, HO2 and RO2 measurements was achieved. Observations of radicals by the laser-induced fluorescence (LIF) technique revealed daily maximum concentrations between (5-15) × 106 cm-3, (3-14) × 108 cm-3 and (3-15) × 108 cm-3 for OH, HO2 and RO2, respectively. Measured OH reactivities (inverse OH lifetime) were 10 to 20 s-1 during daytime. The chemical box model RACM 2, including the Leuven isoprene mechanism (LIM), was used to interpret the observed radical concentrations. As in previous field campaigns in China, modeled and measured OH concentrations agree for NO mixing ratios higher than 1 ppbv, but systematic discrepancies are observed in the afternoon for NO mixing ratios of less than 300 pptv (the model-measurement ratio is between 1.4 and 2 in this case). If additional OH recycling equivalent to 100 pptv NO is assumed, the model is capable of reproducing the observed OH, HO2 and RO2 concentrations for conditions of high volatile organic compound (VOC) and low NOx concentrations. For HO2, good agreement is found between modeled and observed concentrations during day and night. In the case of RO2, the agreement between model calculations and measurements is good in the late afternoon when NO concentrations are below 0.3 ppbv. A significant model underprediction of RO2 by a factor of 3 to 5 is found in the morning at NO concentrations higher than 1 ppbv, which can be explained by a missing RO2 source of 2 ppbv h-1. As a consequence, the model underpredicts the photochemical net ozone production by 20 ppbv per day, which is a significant portion of the daily integrated ozone production (110 ppbv) derived from the measured HO2 and RO2. The additional RO2 production from the photolysis of ClNO2 and missing reactivity can explain about 10 % and 20 % of the discrepancy, respectively. The underprediction of the photochemical ozone production at high NOx found in this study is consistent with the results from other field campaigns in urban environments, which underlines the need for better understanding of the peroxy radical chemistry for high NOx conditions.
Krylov, Igor B; Kompanets, Mykhailo O; Novikova, Katerina V; Opeida, Iosip O; Kushch, Olga V; Shelimov, Boris N; Nikishin, Gennady I; Levitsky, Dmitri O; Terent'ev, Alexander O
2016-01-14
Nitroxyl radicals are widely used in chemistry, materials sciences, and biology. Imide-N-oxyl radicals are subclass of unique nitroxyl radicals that proved to be useful catalysts and mediators of selective oxidation and CH-functionalization. An efficient metal-free method was developed for the generation of imide-N-oxyl radicals from N-hydroxyimides at room temperature by the reaction with (diacetoxyiodo)benzene. The method allows for the production of high concentrations of free radicals and provides high resolution of their EPR spectra exhibiting the superhyperfine structure from benzene ring protons distant from the radical center. An analysis of the spectra shows that, regardless of the electronic effects of the substituents in the benzene ring, the superhyperfine coupling constant of an unpaired electron with the distant protons at positions 4 and 5 of the aromatic system is substantially greater than that with the protons at positions 3 and 6 that are closer to the N-oxyl radical center. This is indicative of an unusual character of the spin density distribution of the unpaired electron in substituted phthalimide-N-oxyl radicals. Understanding of the nature of the electron density distribution in imide-N-oxyl radicals may be useful for the development of commercial mediators of oxidation based on N-hydroxyimides.
ERIC Educational Resources Information Center
Wamser, Carl C.; Scott, Lawrence T.
1985-01-01
Examines mechanisms related to use of N-bromosuccinimide (NBS) for bromination at an allylic position. Also presents derived rate laws for three possible reactions of molecular bromine with an alkene: (1) free radical substitution; (2) free radical addition; and (3) electrophilic addition. (JN)
Payet, Bertrand; Shum Cheong Sing, Alain; Smadja, Jacqueline
2005-12-28
Seven cane brown sugars (four from La Réunion, two from Mauritius, and one from France) were investigated for their polyphenol content and volatile composition in relation to their free radical scavenging capacity determined by ABTS and DPPH assays. The thin layer coated on the sugar crystal was extracted by Soxhlet extractor with dichloromethane. The volatile compounds of brown sugars were studied by GC-MS, and 43 compounds were identified. The total phenolic content of brown sugars was determined according to the Folin-Ciocalteu method. Phenolic compounds were quantified in the brown sugar extracts by LC-UV-ESI-MS. Brown sugar aqueous solutions exhibited weak free radical scavenging activity in the DPPH assay and higher antioxidant activity in the ABTS assay at relatively high concentration. The brown sugar extracts showed interesting free radical scavenging properties despite the low concentration of phenolic and volatile compounds. Sugar is a common foodstuff traditionally used for its sweetening properties, which might be accompanied by antioxidant properties arising from molecules (polyphenols, Maillard products) other than sucrose of the cane brown sugars.
The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds.
Gülçin, Ilhami
2005-11-01
Water and ethanol crude extracts from black pepper (Piper nigrum) were investigated for their antioxidant and radical scavenging activities in six different assay, namely, total antioxidant activity, reducing power, 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, and metal chelating activities. Both water extract (WEBP) and ethanol extract (EEBP) of black pepper exhibited strong total antioxidant activity. The 75 microg/ml concentration of WEBP and EEBP showed 95.5% and 93.3% inhibition on peroxidation of linoleic acid emulsion, respectively. On the other hand, at the same concentration, standard antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and alpha-tocopherol exhibited 92.1%, 95.0%, and 70.4% inhibition on peroxidation of linoleic acid emulsion, respectively. Also, total phenolic content in both WEBP and EEBP were determined as gallic acid equivalents. The total phenolics content of water and ethanol extracts were determined by the Folin-Ciocalteu procedure and 54.3 and 42.8 microg gallic acid equivalent of phenols was detected in 1 mg WEBP and EEBP.
Kanaya, Yugo; Akimoto, Hajime
2002-01-01
OH and HO(2) radicals, atmospheric detergents, and the reservoir thereof, play central roles in tropospheric chemistry. In spite of their importance, we had no choice but to trust their concentrations predicted by modeling studies based on known chemical processes. However, recent direct measurements of these radicals have enabled us to test and revise our knowledge of the processes by comparing the predicted and observed values of the radical concentrations. We developed a laser-induced fluorescence (LIF) instrument and successfully observed OH and HO(2) at three remote islands of Japan (Oki Island, Okinawa Island, and Rishiri Island). At Okinawa Island, the observed daytime level of HO(2) agreed closely with the model estimates, suggesting that the photochemistry at Okinawa is well described by the current chemistry mechanism. At Rishiri Island, in contrast, the observed daytime level of HO(2) was consistently much lower than the calculated values. We proposed that iodine chemistry, usually not incorporated into the mechanism, is at least partly responsible for the discrepancy in the results. At night, HO(2) was detected at levels greater than 1 pptv at all three islands, suggesting the presence of processes in the dark that produce radicals. We showed that ozone reactions with unsaturated hydrocarbons, including monoterpenes, could significantly contribute to radical production. Copyright 2002 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 2: 199-211, 2002: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.10019
Radical production from photosensitization of imidazoles
NASA Astrophysics Data System (ADS)
Corral Arroyo, P.; Gonzalez, L.; Steimer, S.; Aellig, R.; Volkamer, R. M.; George, C.; Bartels-Rausch, T.; Ammann, M.
2015-12-01
Reactions promoted by light are key in atmospheric chemistry. Some of them occur in the condensed phase of aerosols containing light absorbing organic compounds (George et al., 2015). This work explores the radical reactions initiated by near-UV light in mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC) using NO as a probe molecule for HO2, by means of coated wall flow tube experiments. Citric acid may act as H atom or electron donor in condensed phase radical cycles. IC may act as a photosensitizer. The loss of NO was measured by a chemiluminescence detector. The dependence of the NO loss on the NO concentration, the IC/CA ratio in the film, relative humidity, light intensity, oxygen molar fraction were investigated as well as the HONO and NO2 yields. We also added halide salts to investigate the effect of a competing electron donor in the system and the output of halogens to the gas phase. We found a correlation between the loss of NO above the film and the molar ratio of IC/CA and the light intensity. The variation of the NO loss with oxygen corroborates a mechanism, in which the triplet excited state of IC is reduced by citric acid, to a reduced ketyl radical that transfers an electron to molecular oxygen, which in turn leads to production of HO2 radicals. Therefore, the NO loss in the gas phase is related to the production of HO2 radicals. Relative humidity had a strong impact on the HO2 output, which shows a maximum production rate at around 30%. The addition of halide ions (X- = Cl-, Br-, I-) increases the HO2 output at low concentration and decrease it at higher concentration when X2- radical ions likely scavenge HO2. We could preliminarily quantify for the first time the contribution of these processes to the oxidative capacity in the atmosphere and conclude that their role is significant for aerosol aging and potentially a significant source of halogen compounds to the gas phase.
NASA Astrophysics Data System (ADS)
Fuchs, H.; Tan, Z.; Hofzumahaus, A.; Broch, S.; Dorn, H.-P.; Holland, F.; Künstler, C.; Gomm, S.; Rohrer, F.; Schrade, S.; Tillmann, R.; Wahner, A.
2015-11-01
Direct detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was overflown by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, α-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm-3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants during ozonolysis experiments. Only for α-pinene, limonene, and isoprene at reactant concentrations which are orders of magnitude higher than in the atmosphere artificial OH could be detected. The value of the interference depends on the turnover rate of the ozonolysis reaction. For example, an apparent OH concentration of approximately 1 × 106 cm-3 is observed, if 5.8 ppbv limonene reacts with 600 ppbv ozone. Experiments with the nitrate radical NO3 reveal a small interference signal in the OH, HO2 and RO2 detection. Dependencies on experimental parameters point to artificial OH formation by surface reactions at the chamber walls or in molecular clusters in the gas expansion. The signal scales with the presence of NO3 giving equivalent radical concentrations of 1.1 × 105 cm-3 OH, 1 × 107 cm-3 HO2, and 1.7 × 107 cm-3 RO2 per 10 pptv NO3.
NASA Technical Reports Server (NTRS)
Stimfle, R. M.; Koplow, J. P.; Cohen, R. C.; Kohn, D. W.; Wennberg, P. O.; Judah, D. M.; Toohey, D. W.; Avallone, L. M.; Anderson, J. G.; Salawitch, R. J.
1994-01-01
The respose of ClO concentrations to changes in NO2 concentrations has been inferred from simultaneous observations of (ClO), (NO), (NO2) and (O3) in the midlatitude lower stratosphere. This analysis demonstrates that (ClO) is inversely correlated with (NO2), consistent with formation and photolysis of (ClONO2). A factor of ten range in the concentration if NO2 was sampled (0.1 to 1 x 10(exp 9) mol/cu cm), with a comparable range in the ratio of (ClO) to total available inorganic chlorine (1% less than or equal to (ClO)/(Cl(sub y)) less than or equal to 5%. This analysis leads to an estimate of (ClONO2)/(Cl(sub y)) = 0.12 (x/2), in the mid-latitude, lower-stratospheric air masses sampled.
Antioxidant activity and antibacterial activity of peach gum derived oligosaccharides.
Yao, Xing-Cun; Cao, Yan; Wu, Sheng-Jun
2013-11-01
In this study, peach gum derived oligosaccharides (PGDO) were prepared from peach gum polysaccharides by hydrolysis using hydrogen peroxide (H2O2) under following conditions: time, 8h; temperature, 55 °C; H2O2 concentration, 4% (v/v); and NaOH concentration, 2.0 M. The antioxidant activity and antibacterial activity of PGDO were estimated. There were no significant chemical changes in the backbones of the peach gum polysaccharides treated with H2O2. The PGDO showed high hydroxyl radical scavenging activity (86.12%) and 2, 2-diphenyl-β-picrylhydrazyl radical scavenging activity (91.70%) at the concentration of 100 μg/mL as well as high reducing capacity at the concentration of 50 μg/mL. In addition the PGDO had high antibacterial activity against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli at the concentration of 100 μg/mL. Copyright © 2013 Elsevier B.V. All rights reserved.
Aliyu, Abubakar B; Ibrahim, Mohammed A; Musa, Aliyu M; Musa, Aisha O; Kiplimo, Joyce J; Oyewale, Adebayo O
2013-01-01
Antioxidants activities from plants sources have attracted a wide range of interest across the world in recent times. This is due to growing concern for safe and alternative sources of antioxidants. The free radical scavenging activity using 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), reducing power assay, total antioxidant capacity of the phosphomolybdenum method and the total phenolics content using the Folin-Ciocalteu reagent were carried out on the acetone, n-butanol and methanol root extracts of Anchomanes difformis. The results of the total phenolics content expressed in mg/100 g of gallic acid equivalent (GAE) showed that the n-butanol extract has significantly (p < 0.05) higher phenolics content (381 +/- 1.13) than the methanol and acetone extracts. All the extracts displayed strong concentration dependent radical scavenging activity. It was also observed that the n-butanol extract showed higher activity of 70.87% and 78.59% at low concentrations of 31.25 microg/mL and 62.5 microg/mL, respectively, than methanol and acetone extracts. The results also showed that the n-butanol extract has strongest reducing ability which is comparable to that of gallic acid at all the concentrations tested. Phytochemical screening on the extracts revealed the presence of flavonoids, saponins, and tannins. The results suggest that n-butanol extract of the plant is very rich in antioxidant compounds worthy of further investigations.
Vacuum ultraviolet photoionization cross section of the hydroxyl radical.
Dodson, Leah G; Savee, John D; Gozem, Samer; Shen, Linhan; Krylov, Anna I; Taatjes, Craig A; Osborn, David L; Okumura, Mitchio
2018-05-14
The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O( 1 D) + H 2 O in a flow reactor in He at 8 Torr. The initial O( 1 D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O( 3 P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O( 3 P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O( 3 P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.
Vacuum ultraviolet photoionization cross section of the hydroxyl radical
NASA Astrophysics Data System (ADS)
Dodson, Leah G.; Savee, John D.; Gozem, Samer; Shen, Linhan; Krylov, Anna I.; Taatjes, Craig A.; Osborn, David L.; Okumura, Mitchio
2018-05-01
The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O(1D) + H2O in a flow reactor in He at 8 Torr. The initial O(1D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O(3P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O(3P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O(3P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.
The preparation and antioxidant activity of glucosamine sulfate
NASA Astrophysics Data System (ADS)
Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng
2009-05-01
Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.
Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua
2017-03-07
Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.
Yadav, Suman; Jan, Rohi; Roy, Ritwika; Satsangi, P Gursumeeran
2016-12-01
In the present study, metal-facilitated free radical generation in particulate matter (PM) and its association with deoxyribonucleic acid (DNA) damage were studied. The examined data showed that the concentration of fine PM in Pune exhibited seasonal variations. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to examine the metal composition, which showed the presence of metals such as Cu, Zn, Mn, Fe, Co, Cr, Pb, Cd, and Ni. Fe metal was present in the highest concentrations in both the seasons, followed by Zn. The scanning electron microscopy-energy-dispersive spectrometer (SEM-EDS) results also demonstrated that the fine PM particles deposited in summer samples were less than those of winter samples, suggesting that the PM load in winter was higher as compared to that in summer. Elemental mapping of these particles substantiates deposition of metals as Fe, Zn, etc. on particles. The electron paramagnetic species (EPR) technique was utilized for free radical detection, and plasmid DNA assay was utilized to study the genotoxicity of ambient fine PM. Obtained g values show the presence of radicals in PM samples of Pune. PM contains the C-centered radical with a vicinal oxygen atom (g = 2.003). In addition to this, the g value for Fe was also observed. Therefore, we intend that the radicals related with fine PM comprise metal-mediated radicals and produce DNA damage. The plasmid DNA assay results indicated that the TM 50 values (toxic mass of PM causing 50 % of plasmid DNA damage) of PM exhibited seasonal variations with higher TM 50 values for summer and lower TM 50 values during winter.
Barbehenn, Raymond V; Jaros, Adam; Lee, Grace; Mozola, Cara; Weir, Quentin; Salminen, Juha-Pekka
2009-04-01
The high levels of tannins in many tree leaves are believed to cause decreased insect performance, but few controlled studies have been done. This study tested the hypothesis that higher foliar tannin levels produce higher concentrations of semiquinone radicals (from tannin oxidation) in caterpillar midguts, and that elevated levels of radicals are associated with increased oxidative stress in midgut tissues and decreased larval performance. The tannin-free leaves of hybrid poplar (Populus tremulaxP. alba) were treated with hydrolyzable tannins, producing concentrations of 0%, 7.5% or 15% dry weight, and fed to Lymantria dispar caterpillars. As expected, larvae that ingested control leaves contained no measurable semiquinone radicals in the midgut, those that ingested 7.5% hydrolyzable tannin contained low levels of semiquinone radicals, and those that ingested 15% tannin contained greatly increased levels of semiquinone radicals. Ingested hydrolyzable tannins were also partially hydrolyzed in the midgut. However, increased levels of semiquinone radicals in the midgut were not associated with oxidative stress in midgut tissues. Instead, it appears that tannin consumption was associated with increased metabolic costs, as measured by the decreased efficiency of conversion of digested matter to body mass (ECD). Decreased ECD, in turn, decreased the overall efficiency of conversion of ingested matter to body mass (ECI). Contrary to our hypothesis, L. dispar larvae were able to maintain similar growth rates across all tannin treatment levels, in part, because of compensatory feeding. We conclude that hydrolyzable tannins act as "quantitative defenses" in the sense that high levels appear to be necessary to increase levels of semiquinone radicals in the midguts of caterpillars. However, these putative resistance factors are not sufficient to decrease the performance of tannin-tolerant caterpillars such as L. dispar.
The reactivity of 1,3-butadiene with butadiene-derived popcorn polymer.
Levin, M E; Hill, A D; Zimmerman, L W; Paxson, T E
2004-11-11
Adiabatic calorimetry performed on butadiene-derived popcorn polymer samples from industrial facilities has revealed exothermic behavior accompanied by non-condensible gas production, indicative of possible decomposition, at elevated temperatures. In the presence of low concentrations of 1,3-butadiene, reactivity is observed at temperatures of 60-70 degrees C; that is, 20-30 degrees C below those usually seen for butadiene alone. Once the butadiene is consumed, the reaction behavior reverts to that of the popcorn polymer alone. At higher butadiene concentrations, the low temperature reaction persists, eventually merging with typical butadiene behavior. The butadiene reactivity with popcorn polymer is attributed to polymerization reaction at free radical sites in the popcorn polymer. Different popcorn polymer samples exhibit distinct extents of reactivity, presumably depending on the nature and concentration of the free radical sites and the structure of the material. Uninhibited butadiene exposed to 100 psia air, which may act to generate peroxide species, shows a small, additional exotherm around 50-80 degrees C. Contact of butadiene with lauroyl peroxide, providing free radicals upon decomposition, generates an exotherm at temperatures as low as 60 degrees C.
Protein Corona Prevents TiO2 Phototoxicity.
Garvas, Maja; Testen, Anze; Umek, Polona; Gloter, Alexandre; Koklic, Tilen; Strancar, Janez
2015-01-01
TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations. Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles' surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes' surface. These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired - as for efficient photodynamic cancer therapy.
NASA Technical Reports Server (NTRS)
Osborn, D. E.; Lynch, D. C.; Fazzolari, R.
1990-01-01
The Department of Materials Science and Engineering (MSE) is investigating the use of monatomic chlorine produced in a cold plasma to recover oxygen and metallurgically significant metals from lunar materials. Development of techniques for the production of the chlorine radical (and other energetic radicals for these processes) using local planetary resources is a key step for a successful approach. It was demonstrated terrestrially that the use of UV light to energize the photogeneration of OH radicals from ozone or hydrogen peroxide in aqueous solutions can lead to rapid reaction rates for the breakdown of toxic organic compounds in water. A key question is how to use the expanded solar resource at the lunar surface to generate process-useful radicals. This project is aimed at investigating that question.
Synthesis and antioxidant properties of a new lipophilic ascorbic acid analogue.
Cotelle, Philippe; Cotelle, Nicole; Teissier, Elisabeth; Vezin, Hervé
2003-03-20
4-(4-Hydroxyphenyl)-5-(4-hydroxyphenylmethyl)-2-hydroxyfurane-2-one 1 was prepared by an acidic dimerisation of 4-hydroxyphenylpyruvic acid and some of its antioxidant and spectroscopic properties have been measured and compared to that of ascorbic acid. 1 is as good an antioxidant as ascorbic acid in the DPPH (2,2-diphenyl-1-picryl hydrazyl radical) test and the inhibition of hydroxyl radical and a powerful inhibitor of the Cu(2+) or AAPH (2,2'-azobis-(2-amidinopropane) dihydrochloride) induced oxidation of human LDL. 1 gives a stable radical characterised by its ESR spectrum similarly to ascorbic acid but in lower concentration and with a different reactivity towards nitroxides. Theoretical calculations allow us to propose the structure for the radical formed from 1, to explain its lower stability than ascorbyl radical and to evaluate the lipophilicity of 1.
Total free radical species and oxidation equivalent in polluted air.
Wang, Guoying; Jia, Shiming; Niu, Xiuli; Tian, Haoqi; Liu, Yanrong; Chen, Xuefu; Li, Lan; Zhang, Yuanhang; Shi, Gaofeng
2017-12-31
Free radicals are the most important chemical intermediate or agent of the atmosphere and influenced by thousands of reactants. The free radicals determine the oxidizing power of the polluted air. Various gases present in smog or haze are oxidants and induce organ and cellular damage via generation of free radical species. At present, however, the high variability of total free radicals in polluted air has prevented the detection of possible trends or distributions in the concentration of those species. The total free radicals are a kind of contaminants with colorless, tasteless characteristics, and almost imperceptible by human body. Here we present total free radical detection and distribution characteristics, and analyze the effects of total free radicals in polluted air on human health. We find that the total free radical values can be described by not only a linear dependence on ozone at higher temperature period, but also a linear delay dependence on particulate matter at lower temperature period throughout the measurement period. The total free radical species distribution is decrease from west to east in Lanzhou, which closely related to the distribution of the air pollutants. The total free radical oxidation capacity in polluted air roughly matches the effects of tobacco smoke produced by the incomplete combustion of a controlled amount of tobacco in a smoke chamber. A relatively unsophisticated chromatographic fingerprint similarity is used for indicating preliminarily the effect of total free radicals in polluted air on human health. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Ziying; Shao, Yisheng; Gao, Naiyun; Lu, Xian; An, Na
2018-02-01
Degradation of diethyl phthalate (DEP) by ultraviolet/persulfate (UV/PS) process at different reaction conditions was evaluated. DEP can be degraded effectively via this process. Both tert-butyl (TBA) and methanol (MeOH) inhibited the degradation of DEP with MeOH having a stronger impact than TBA, suggesting sulfate radical () and hydroxyl radical (HO) both existed in the reaction systems studied. The second-order rate constants of DEP reacting with and HO were calculated to be (6.4±0.3)×10 7 M -1 s -1 and (3.7±0.1)×10 9 M -1 s -1 , respectively. To further access the potential degradation mechanism in this system, the pseudo-first-order rate constants (k o ) and the radical contributions were modeled using a simple steady-state kinetic model involving and HO. Generally, HO had a greater contribution to DEP degradation than . The k o of DEP increased as PS dosages increased when PS dosages were below 1.9 mM. However, it decreased with increasing initial DEP concentrations, which might be due to the radical scavenging effect of DEP. The k o values in acidic conditions were higher than those in alkaline solutions, which was probably caused by the increasing concentration of hydrogen phosphate (with higher scavenging effects than dihydrogen phosphate) from the phosphate buffer as pH values rose. Natural organic matter and bicarbonate dramatically suppressed the degradation of DEP by scavenging and HO. Additionally, the presence of chloride ion (Cl - ) promoted the degradation of DEP at low Cl - concentrations (0.25-1 mM). Finally, the proposed degradation pathways were illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neocarzinostatin as a probe for DNA protection activity--molecular interaction with caffeine.
Chin, Der-Hang; Li, Huang-Hsien; Kuo, Hsiu-Maan; Chao, Pei-Dawn Lee; Liu, Chia-Wen
2012-04-01
Neocarzinostatin (NCS), a potent mutagen and carcinogen, consists of an enediyne prodrug and a protein carrier. It has a unique double role in that it intercalates into DNA and imposes radical-mediated damage after thiol activation. Here we employed NCS as a probe to examine the DNA-protection capability of caffeine, one of common dietary phytochemicals with potential cancer-chemopreventive activity. NCS at the nanomolar concentration range could induce significant single- and double-strand lesions in DNA, but up to 75 ± 5% of such lesions were found to be efficiently inhibited by caffeine. The percentage of inhibition was caffeine-concentration dependent, but was not sensitive to the DNA-lesion types. The well-characterized activation reactions of NCS allowed us to explore the effect of caffeine on the enediyne-generated radicals. Postactivation analyses by chromatographic and mass spectroscopic methods identified a caffeine-quenched enediyne-radical adduct, but the yield was too small to fully account for the large inhibition effect on DNA lesions. The affinity between NCS chromophore and DNA was characterized by a fluorescence-based kinetic method. The drug-DNA intercalation was hampered by caffeine, and the caffeine-induced increases in DNA-drug dissociation constant was caffeine-concentration dependent, suggesting importance of binding affinity in the protection mechanism. Caffeine has been shown to be both an effective free radical scavenger and an intercalation inhibitor. Our results demonstrated that caffeine ingeniously protected DNA against the enediyne-induced damages mainly by inhibiting DNA intercalation beforehand. The direct scavenging of the DNA-bound NCS free radicals by caffeine played only a minor role. Copyright © 2011 Wiley Periodicals, Inc.
dela Cruz, Albert Leo N.; Cook, Robert L.; Lomnicki, Slawomir M.; Dellinger, Barry
2012-01-01
The effect of low temperature thermal treatment on soils from a former Superfund wood-treating site contaminated with pentachlorophenol (PCP) and the environmentally persistent free radical (EPFR), pentachlorophenoxyl, was determined. The pentachlorophenoxyl EPFRs’ and the PCP molecules’ chemical behavior were simultaneously monitored at temperatures ranging from 25 °C to 300 °C via electron paramagnetic resonance (EPR) spectroscopy and GC-MS analysis, respectively. Two types of thermal treatment were employed: a closed heating (oxygen-starved condition) where the soil was heated under vacuum and an open heating system (oxygen-rich conditions), where the soil was heated in ambient air. EPR analyses for closed heating indicated the EPFR concentration was 2–12 × 1018 spins/g of soil, with a g-factor and linewidth (ΔHp-p) of 2.00311 – 2.00323 and 4.190 – 5.472 Gauss, respectively. EPR analyses for the open heating soils revealed a slightly broader and weaker radical signal, with a concentration of 1–10 × 1018 spins/g of soil, g-factor of 2.00327 – 2.00341, and ΔHp-p of 5.209 – 6.721 Gauss. This suggested the open heating resulted in the formation of a more oxygen-centered structure of the pentachlorophenoxyl radical or additional, similar radicals. The EPFR concentration peaked at 10 × 1018 spins/g of soil at 100 °C for open heating and 12 × 1018 spins/g at 75 °C for closed heating. The half-lives of the EPFRs were 2 – 24 days at room temperature in ambient air. These results suggest low temperature treatment of soils contaminated with PCP can convert the PCP to potentially more toxic pentachlorophenoxyl EPFRs, which may persist in the environment long enough for human exposure. PMID:22548284
Bedrov, Dmitry; Smith, Grant D; van Duin, Adri C T
2012-03-22
We have conducted quantum chemistry calculations and gas- and solution-phase reactive molecular dynamics simulation studies of reactions involving the ethylene carbonate (EC) radical anion EC(-) using the reactive force field ReaxFF. Our studies reveal that the substantial barrier for transition from the closed (cyclic) form, denoted c-EC(-), of the radical anion to the linear (open) form, denoted o-EC(-), results in a relatively long lifetime of the c-EC(-) allowing this compound to react with other singly reduced alkyl carbonates. Using ReaxFF, we systematically investigate the fate of both c-EC(-) and o-EC(-) in the gas phase and EC solution. In the gas phase and EC solutions with a relatively low concentration of Li(+)/x-EC(-) (where x = o or c), radical termination reactions between radical pairs to form either dilithium butylene dicarbonate (CH(2)CH(2)OCO(2)Li)(2) (by reacting two Li(+)/o-EC(-)) or ester-carbonate compound (by reacting Li(+)/o-EC(-) with Li(+)/c-EC(-)) are observed. At higher concentrations of Li(+)/x-EC(-) in solution, we observe the formation of diradicals which subsequently lead to formation of longer alkyl carbonates oligomers through reaction with other radicals or, in some cases, formation of (CH(2)OCO(2)Li)(2) through elimination of C(2)H(4). We conclude that the local ionic concentration is important in determining the fate of x-EC(-) and that the reaction of c-EC(-) with o-EC(-) may compete with the formation of various alkyl carbonates from o-EC(-)/o-EC(-) reactions. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Edwards, P. M.; Aikin, K.; De Gouw, J. A.; Dube, W. P.; Geiger, F.; Gilman, J.; Helmig, D.; Holloway, J.; Kercher, J. P.; Koss, A.; Lerner, B. M.; Martin, R. S.; McLaren, R.; Min, K.; Parrish, D. D.; Peischl, J.; Roberts, J. M.; Ryerson, T. B.; Thornton, J. A.; Veres, P. R.; Warneke, C.; Wild, R. J.; Williams, E. J.; Young, C.; Yuan, B.; Brown, S. S.
2013-12-01
The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) mixing ratios well above limits set by air quality standards for multiple days during three of the last four winters. The Uintah Basin Winter Ozone Study (UBWOS) consisted of two field intensives, in early 2012 and 2013, with the goal of addressing current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. The data from these two study periods provide an excellent comparison of high and low O3 production years, as meteorological conditions during the winter of 2011-2012 resulted in no elevated O3 mixing ratios, in contrast to the winter of 2012-2013 when observed O3 mixing ratios were the highest yet recorded in the Uintah Basin. Box modeling studies, using the Master Chemical Mechanism (MCM v3.2) chemistry scheme, have been used to investigate our understanding of O3 photochemistry in this unusual emissions environment. Simulations identify O3 production in 2012 to be highly radical limited, with less conventional radical sources, such as HCHO, HONO, and ClNO2 photolysis, playing a central role. Consequently, O3 production during 2012 was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons relative to NO¬x. Conditions during UBWOS 2013 resulted in significantly higher O3 precursor species concentrations than during 2012, including the concentrations of the radical precursors HCHO and HONO. Simulations constrained to the 2013 data show the effects of these changes in pre-cursor concentrations on the radical budget, and thus on local O3 photochemistry and its sensitivities during a wintertime O3 pollution episode.
Ridley, M D; Jahan, M S
2009-03-15
Ultra-high molecular weight polyethylene (UHMWPE) powder (GUR 1020) was blended with high concentration (20%) of vitamin E (alpha-Tocopherol (alpha-T)) for direct detection of alpha-T radicals in presence of PE radicals. Samples were gamma-irradiated in sealed packages filled with N(2), or in open air. Free radicals were measured in open air environment for 71 days using electron spin resonance (ESR) technique. When irradiated in air, both alpha-T and alpha-T-resin produced identical ESR signals characteristics of tochopheroxyl radicals (alpha-T-O(*)), suggesting that PE radicals are quenched by alpha-T. There was no indication of growth of oxygen-induced radicals (OIR) either. However, when alpha-T-resin was irradiated in N(2), presence of both PE and alpha-T radicals were evident in the ESR spectra. And, OIR were produced by the same samples when they were subsequently exposed to air (for 71 days). Oxidation data recorded 85 days after postirradiation aging in air using Fourier transform infra-red (FTIR) spectroscopy, however, did not show any measurable difference between samples irradiated in N(2) and air.
Development of a PERCA Instrument for Ambient Peroxy Radical Measurements
NASA Astrophysics Data System (ADS)
Dusanter, S.; Duncianu, M.; Lahib, A.; Tomas, A.; Stevens, P. S.
2017-12-01
Peroxy radicals (HO2 and RO2) are key species in atmospheric chemistry, which together with the hydroxyl radical (OH), lead to the oxidation of volatile organic compounds and the formation of secondary pollutants such as ozone and secondary organic aerosols. Monitoring these short-lived species during intensive field campaigns and comparing the measured concentrations to model outputs allows assessing the reliability of chemical mechanisms implemented in atmospheric models. However, ambient measurements of peroxy radicals are still considered challenging and only a few techniques have been used for field measurements. The PEroxy Radical Chemical Amplifier (PERCA) approach, whose principle is based on amplification and a conversion of ambient peroxy radicals into nitrogen dioxide (NO2), has recently seen renewed interests due to the availability of sensitive NO2 monitors. We will present (i) the construction of a PERCA instrument, (ii) experiments conducted to quantify the radical chain length for HO2 and several RO2 radicals, including those produced during the OH-oxidation of isoprene, and (iii) a comparison of the conventional CO/NO and recently proposed ethane/NO amplification chemistries. In this context, box modelling of the PERCA chemistry will be discussed.
NASA Astrophysics Data System (ADS)
Ponnusamy, S.; Sandhiya, L.; Senthilkumar, K.
2018-02-01
The reaction of terbacil with OH radical is studied by using electronic structure calculations. The reaction of terbacil with OH radical is found to proceed by H-atom abstraction, Cl-atom abstraction and OH addition reactions. The initially formed alkyl radical will undergo atmospheric transformation in the presence of molecular oxygen leading to the formation of peroxy radical. The reaction of peroxy radical with other atmospheric oxidants, such as HO2 and NO radicals is studied. The rate constant is calculated for the H-atom abstraction reactions over the temperature range of 200-1000 K. The results obtained from electronic structure calculations and kinetic study show that the H-atom abstraction reaction is more favorable. The calculated lifetime of terbacil is 24 h in normal atmospheric OH concentration. The rate constant calculated for H-atom abstraction reactions is 6 × 10-12, 4.4 × 10-12 and 3.2 × 10-12 cm3molecule-1s-1, respectively which is in agreement with the previous literature value of 1.9 × 10-12 cm3molecule-1s-1.
Colon, M; Nerin, C
2012-10-03
The oxygen radical absorbance capacity (ORAC) method was used to characterize the antioxidant capacity of natural extracts of green tea, green coffee, and grapefruit. These natural extracts were incorporated into a plastic film layer, which was subsequently subjected to a free radical gas stream in order to determine the antioxidant capacity directly in the active film. The green tea extract (GTE) afforded the strongest antioxidant activity. To identify the active compounds in the extract, concentration of the diverse catechins in samples were determined by HPLC-UV analysis. The results showed that the content of catechins in the GTE is around 77% (w/w), the major components being (-)-epigallocatechin gallate, (-)-epicatechin gallate, and (-)-epicatechin. A variation in the concentration profile of catechins was detected during the oxidation process. The chromatographic study demonstrated that (-)-gallocatechin, (-)- epigallocatechin, (+)-catechin, and (-)-catechin gallate exhibited the most radical scavenging.
Antioxidant properties of Aller-7, a novel polyherbal formulation for allergic rhinitis.
D'Souza, P; Amit, A; Saxena, V S; Bagchi, D; Bagchi, M; Stohs, S J
2004-01-01
Allergic rhinitis, a frequently occurring immunological disorder affecting men, women and children worldwide, is a state of hypersensitivity that occurs when the body overreacts to a substance such as pollen, mold, mites or dust. Allergic rhinitis exerts inflammatory response and irritation of the nasal mucosal membranes leading to sneezing; stuffy/runny nose; nasal congestion; and itchy, watery and swollen eyes. A novel, safe polyherbal formulation (Aller-7/NR-A2) has been developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and Piper longum. In this study, the antioxidant efficacy of Aller-7 was investigated by various assays including hydroxyl radical scavenging assay, superoxide anion scavenging assay, 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical scavenging assays. The protective effect of Aller-7 on free radical-induced lysis of red blood cells and inhibition of nitric oxide release by Aller-7 in lipopolysaccharide-stimulated murine macrophages were determined. Aller-7 exhibited concentration-dependent scavenging activities toward biochemically generated hydroxyl radicals (IC50 741.73 microg/ml); superoxide anion (IC50 24.65 microg/ml by phenazine methosulfate-nicotinamide adenine dinucleotide [PMS-NADH] assay and IC50 4.27 microg/ml by riboflavin/nitroblue tetrazolium [NBT] light assay), nitric oxide (IC50 16.34 microg/ml); 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical (IC50 5.62 microg/ml); and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical (IC50 7.35 microg/ml). Aller-7 inhibited free radical-induced hemolysis in the concentration range of 20-80 microg/ml. Aller-7 also significantly inhibited nitric oxide release from lipopolysaccharide-stimulated murine macrophages. These results demonstrate that Aller-7 is a potent scavenger of free radicals and that it may serve.
Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin
2015-01-01
In this study, we demonstrated an oxidative method with free radical to generate 3,5,4′-trihydroxy-trans-stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI–MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI–MS/MS can be utilized to evaluate different metabolites in various conditions. PMID:27594817
Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin
2015-10-01
In this study, we demonstrated an oxidative method with free radical to generate 3,5,4'-trihydroxy- trans -stilbene ( trans -resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4'-dihydroxy- trans -stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI-MS/MS can be utilized to evaluate different metabolites in various conditions.
NASA Astrophysics Data System (ADS)
Mendoza-Wilson, Ana María; Sotelo-Mundo, Rogerio R.; Balandrán-Quintana, René R.; Glossman-Mitnik, Daniel; Sántiz-gómez, Marco a.; García-orozco, karina D.
2010-09-01
Quercetin has a great antioxidant potential due to its large capacity for free radical scavenging. Although it has been found that conformational changes have a profound effect on its chemical properties, there are few studies where conformation is associated with the antioxidant activity. The aim of this investigation was to explore the kinetic and the thermochemical abilities of two quercetin conformers for the free radical scavenging. Quercetin unhydrate (QUH) and quercetin dihydrate (QDH) conformers were studied employing 2,2-diphenyl-1-picrylhydrazyl (DPPH rad ) as in vitro radical model, and catechol and 4-hexyl-resorcinol as reference systems, for identifying the oxidation products. QDH showed to be most effective under conditions of free radical excess, while QUH was most effective when the flavonoid far exceeds the concentration of free radical. It was found, by means of experimental and computational methods, that 4'-OH, 3-OH and 3'-OH are the main reactive sites of both conformers.
Influence of oxygen on the chemical stage of radiobiological mechanism
NASA Astrophysics Data System (ADS)
Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel
2016-07-01
The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too.
Rathod, M A; Patel, D; Das, A; Tipparaju, S R; Shinde, S S; Anderson, R F
2013-07-01
Epidemiological studies have associated coffee consumption with an inverse risk of developing Parkinson's disease, hepatocellular carcinoma and cirrhosis. The molecular mechanisms by which low concentrations of the constituents of coffee measured in human plasma can reduce the incidence of such diseases are not clear. Using an in vitro plasmid DNA system and radiolytically generated reactive oxygen species under constant radical scavenging conditions, we have shown that coffee chlorogenic acid, its derivatives and certain metabolites of caffeine reduce some of the free radical damage sustained to the DNA. A reduction in the amount of prompt DNA single-strand breaks (SSBs) was observed for all compounds whose radical one-electron reduction potential is < 1.0 V. However, except for chlorogenic acid, the compounds were found to be inactive in reducing the amount of radical damage to the DNA bases. These results support a limited antioxidant role for such compounds in their interaction with DNA radicals.
Electron spin resonance measurement of radical scavenging activity of Aronia melanocarpa fruit juice
Valcheva-Kuzmanova, Stefka; Blagović, Branka; Valić, Srećko
2012-01-01
Background: The fruits of Aronia melanocarpa (Michx.) Elliot contain large amounts of phenolic substances, mainly procyanidins, anthocyanins and other flavonoids, and phenolic acids. The ability of phenolic substances to act as antioxidants has been well established. Objective: In this study, we investigated the radical scavenging activity of A. melanocarpa fruit juice (AMFJ). Materials and Methods: The method used was electron spin resonance (ESR) spectroscopy. The galvinoxyl free radical was used as a scavenging object. AMFJ was added to the galvinoxyl free radical solution. The measure of the radical scavenging activity was the decrease of signal intensity. Results: AMFJ showed a potent antiradical activity causing a strong and rapid decrease of signal intensity as a function of time and juice concentration. This effect of AMFJ was probably due to the activity of its phenolic constituents. Conclusion: The ESR measurements in this study showed a pronounced radical scavenging effect of AMFJ, an important mechanism of its antioxidant activity. PMID:22701293
Physicochemical mechanisms of plasma-liquid interactions within plasma channels in liquid
NASA Astrophysics Data System (ADS)
Franclemont, Joshua; Fan, Xiangru; Mededovic Thagard, Selma
2015-10-01
The goal of this study is to advance the fundamental understanding of the physical and chemical mechanisms by which excited radical species produced by electrical plasmas directly in water, OH radicals especially, induce chemical changes in aqueous organic compounds and to exploit this for the development and optimization of drinking and wastewater plasma-based treatment systems. To achieve this goal, this study measured and correlated the production rate of hydrogen peroxide (H2O2) with physicochemical properties of 11 organic compounds. The observed individual correlations between the investigated physicochemical properties and the resulting H2O2 concentrations were used to develop an equation that would allow predicting the measured H2O2 concentration from physicochemical properties of a compound. Results reveal that the production rate of H2O2 directly depends on the surface tension of the solution and compounds’ bulk liquid concentration, hydrophobicity (K ow value), and molecular volume. Other properties such as vapor pressure, Henry’s constant, enthalpy of vaporization, ionization energy, electron affinity, and molecular dipole moment do not affect the H2O2 chemistry. K ow value and surface tension of the solution determine the compound’s concentration at the plasma interface. Once at the interface, the molecular volume determines the rate at which the molecule will react with OH radicals.
Kinetics and Near-Infrared Spectroscopy of Organic Peroxy Radicals
NASA Astrophysics Data System (ADS)
Smarte, M. D.; Okumura, M.
2016-12-01
Organic peroxy radicals are important intermediates in atmospheric chemistry with fates that control the rate of radical propagation in an oxidation mechanism. Laboratory methods for detecting peroxy radicals are essential to measuring precise rate constants that constrain these fates. In this work, we discuss the use of near-infrared cavity ringdown spectroscopy to detect organic peroxy radicals for the purpose of laboratory kinetics measurements. We focus on chlorine-substituted peroxy radicals generated in the oxidation of alkenes by chlorine, a minor tropospheric oxidant found in marine and coastal regions. Previous kinetics experiments on peroxy radicals have largely used UV absorption spectroscopy via the dissociative B-X transition. However, the spectra produced are featureless and exhibit substantial overlap; determining the concentration profile of an individual peroxy radical can be an arduous task. In our work, we probe the forbidden peroxy radical A-X transition in the near-infrared. While this approach requires overcoming small cross sections ( 10-21 cm2), the A state is bound and leads to structured absorption spectra that may be useful in constraining the kinetics of mixtures of organic peroxy radicals formed in the oxidation of complex hydrocarbons. Only a few kinetics studies utilizing the A-X transition exist in the literature and they are focused on small, unsubstituted species. This presentation explores the ability of the A-X transition to unravel the kinetics of more complex peroxy radicals in laboratory experiments using several example systems: (1) Determining rate constants for the self and cross reactions of β-chloroethylperoxy and HO2. (2) Detecting the second generation of peroxy radicals formed from alkoxy radical decomposition in the chlorine-initiated oxidation of 2-butene. (3) Observing different rates of reactivity with NO across the pool of peroxy radical isomers formed in the chlorine-initiated oxidation of isoprene.
Fan, Jiang Ping; Fan, Chong; Dong, Wen Min; Gao, Bin; Yuan, Wei; Gong, Jia Shun
2013-09-01
An ethanol-soluble pigment extract was separated from fermented Zijuan Pu-erh tea. The compositions of the ethanol soluble pigment extract were analyzed by high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS). The extract was prepared into a series of ethanol solutions and analyzed for free radical-scavenging activities (against two free radicals: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)) and in vitro anti-oxidative properties. Electron spin resonance spectroscopy showed that the peaks of DPPH and TEMPO decreased with increasing extract concentration, suggesting that the extract had excellent free radical-scavenging activities. In vitro cell culture suggested that, at 50-200 mg/L, the extract had no measurable effect on the viability of vascular endothelial cells (ECV340) but produced significant protective effects for cells that underwent oxidative injuries due to hydrogen peroxide (H₂O₂) treatment. Compared with the H₂O₂ treatment alone cells group, 200 mg/L of the extract increased the activity of superoxide dismutase (SOD) in cells by 397.3%, and decreased the concentration of malondialdehyde (MDA) and the activity of lactate acid dehydrogenase (LDH) by 47.8% and 69.6%, respectively. These results suggest that the extract has excellent free radical scavenging and anti-oxidative properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spectroscopic studies on the antioxidant activity of ellagic acid
NASA Astrophysics Data System (ADS)
Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel
2014-09-01
Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.
Spectroscopic studies on the antioxidant activity of p-coumaric acid
NASA Astrophysics Data System (ADS)
Kiliç, Ismail; Yeşiloğlu, Yeşim
2013-11-01
p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.
Jet Morphology and Coma Analysis of Comet 103P/Hartley 2
NASA Astrophysics Data System (ADS)
Vaughan, Charles M.; Pierce, Donna M.; Cochran, Anita L.
2017-12-01
Spectral data for the coma of Hartley 2 were acquired across four nights in late 2010 using an integral field spectrometer at McDonald Observatory. For the 30 observations during these four nights, we detected five radical species in the coma: C2, C3, CH, CN, and NH2. Using division by azimuthal mean and division by radial profile, we enhanced 150 images of the coma to reveal subtle coma structure. These images revealed noticeable temporal evolution and spatial variations between species. To quantify the observed variation between species, we partitioned the coma and used analysis of variance (ANOVA) techniques to provide a statistical basis for heterogeneity. Nearly every ANOVA test indicated a spatially diverse distribution in the coma when considering all species collectively. To examine the temporal behavior, we used the works by Belton et al., Thomas et al., and Bruck Syal et al. to predict nucleus orientation and active jet directions at our observation times. Several of these reported jet sites correlated to high radical concentrations, and the sites on the smaller lobe are more closely associated with high radical concentrations. Lastly, we provide constraints for the suspect parent molecules of the detected radicals, and we propose that photolysis reactions occurring at or near extended icy grains are a source for the more enigmatic radicals, such as C3.
Bajpai, Vivek K; Sharma, Ajay; Kang, Sun Chul; Baek, Kwang-Hyun
2014-01-01
To investigate the antioxidant efficacy of a biologically active diterpenoid compound sugiol isolated from Metasequoia glyptostroboides (M. glyptostroboides) in various antioxidant models. An abietane type diterpenoid sugiol, isolated from ethyl acetate extract of M. glyptostroboides cones, was analyzed for its antioxidant efficacy as reducing power ability and lipid peroxidation inhibition as well as its ability to scavenge free radicals such as 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl radicals. The sugiol showed significant and concentration-dependent antioxidant and free radical scavenging activities. Consequently, the sugiol exerted lipid peroxidation inhibitory effect by 76.5% as compared to α-tocopherol (80.13%) and butylated hydroxyanisole (76.59%). In addition, the sugiol had significant scavenging activities of 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl free radicals in a concentration-dependent manner by 78.83%, 72.42%, 72.99% and 85.04%, when compared to the standard compound ascorbic acid (81.69%, 74.62%, 73.00% and 73.79%) and α-tocopherol/butylated hydroxyanisole (84.09%, 78.61%, 74.45% and 70.02%), respectively. These findings justify the biological and traditional uses of M. glyptostroboides or its secondary metabolites as confirmed by its promising antioxidant efficacy. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Brault, D
1985-01-01
Haloalkane toxicity originates from attack on biological targets by reactive intermediates derived from haloalkane metabolism by a hemoprotein, cytochrome P-450. Carbon-centered radicals and their peroxyl derivatives are most likely involved. The reactions of iron porphyrin--a model for cytochrome P-450--with various carbon-centered and peroxyl radicals generated by pulse radiolysis are examined. Competition between iron porphyrin and unsaturated fatty acids for attack by peroxyl radicals is pointed out. These kinetic data are used to derive a model for toxicity of haloalkanes with particular attention to carbon tetrachloride and halothane. The importance of local oxygen concentration and structural arrangement of fatty acids around cytochrome P-450 is emphasized. PMID:3007100
Resveratrol products resulting by free radical attack
NASA Astrophysics Data System (ADS)
Bader, Yvonne; Quint, R. M.; Getoff, Nikola
2008-06-01
Trans-resveratrol ( trans-3,4',5-trihydroxystilbene; RES), which is contained in red wine and many plants, is one of the most relevant and extensively investigated stilbenes with a broad spectrum of biological activities. Among other duties, RES has been reported to have anti-carcinogenetic activities, which could be attributed to its antioxidant properties. The degradation of RES was studied under various conditions. The products (aldehydes, carboxylic acids, etc.) generated from RES by the attack of free radicals were registered as a function of the radical concentration (absorbed radiation dose). Based on the obtained data it appears that the OH radicals are initiating the rather complicated process, which involves of the numerous consecutive reactions. A possible starting reaction mechanism is presented.
NASA Astrophysics Data System (ADS)
Choudhury, Faraz Anwar
A high concentration of free radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Measuring the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups and often modifications to the plasma reactor. In this work, we present a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and non-immobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. Using radical-sensitive dyes and free-standing films, the transmission of oxygen radicals through silicon nitride and silicon dioxide dielectric films is measured and their absorption lengths are determined. The absorption lengths were found to be 33, 37 and 40 nm for 15, 30 and 45-minute oxygen plasma exposures respectively. FTIR and XRR measurements show that a silicon oxynitride-like layer forms on the surface of the film which has a lower density than silicon nitride. The increase in absorption length with plasma-exposure time is attributed to the formation of the surface layer. In silicon dioxide films, the absorption length of oxygen radicals was found to be 70 nm after 20 minutes of plasma exposure. After 30 minutes of plasma exposure under the same conditions, the absorption length was reduced to 66 nm. XRR and FTIR measurements both reveal that the oxygen plasma exposure leads to surface oxidation of the silicon dioxide film and the formation of a denser surface layer which restricts the transmission of the radicals through the film. It was found that the extent of modification of the film partially depends on the radical dose. The calculated enthalpies of the reactions show that they are all exothermic reactions, however, the radicals need enough energy to overcome the activation energy for the reaction to take place.
Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masunov, Artëm E.; Wait, Elizabeth E.; Atlanov, Arseniy A.
In oxy-fuel combustion, the pure oxygen (O 2), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2O) are free from pollution by nitrogen oxides. Moreover, high pressures results in the near-liquid density of CO 2 at supercritical state (sCO 2). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. In order to assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of carbon dioxide melocule. All transitionmore » states, reactant and product complexes are reported for three reactions: H 2CO+HO 2→HCO+H 2O 2 (R1), 2HO 2→H 2O 2+O 2 (R2), and CO+OH→CO 2+H (R3). In the reaction R3, covalent binding of CO 2 to OH radical and then CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to bimolecular OH+CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol, and is expected to accelerate the reaction. This is the first report of autocatalytic effect in combustion. In case of hydroperoxyl self-reaction 2HO 2→H 2O 2+O 2 the intermediates, containing covalent bonds to CO 2 were found not to be competitive. However, the spectator CO 2 molecule is able to stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates was also discovered in H 2CO+HO 2→HCO+H 2O 2 reaction, but these specie lead to substantially higher activation barriers which makes them unlikely to play role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilized transition state and reduces reaction barrier. Lastly, these results indicate that CO 2 environment is likely to have catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2.« less
Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics
Masunov, Artëm E.; Wait, Elizabeth E.; Atlanov, Arseniy A.; ...
2017-05-03
In oxy-fuel combustion, the pure oxygen (O 2), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2O) are free from pollution by nitrogen oxides. Moreover, high pressures results in the near-liquid density of CO 2 at supercritical state (sCO 2). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. In order to assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of carbon dioxide melocule. All transitionmore » states, reactant and product complexes are reported for three reactions: H 2CO+HO 2→HCO+H 2O 2 (R1), 2HO 2→H 2O 2+O 2 (R2), and CO+OH→CO 2+H (R3). In the reaction R3, covalent binding of CO 2 to OH radical and then CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to bimolecular OH+CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol, and is expected to accelerate the reaction. This is the first report of autocatalytic effect in combustion. In case of hydroperoxyl self-reaction 2HO 2→H 2O 2+O 2 the intermediates, containing covalent bonds to CO 2 were found not to be competitive. However, the spectator CO 2 molecule is able to stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates was also discovered in H 2CO+HO 2→HCO+H 2O 2 reaction, but these specie lead to substantially higher activation barriers which makes them unlikely to play role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilized transition state and reduces reaction barrier. Lastly, these results indicate that CO 2 environment is likely to have catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2.« less
Shul'pin, Georgiy B
2013-09-28
This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2 fragment. This provokes the O-O bond rupture in the hydrogen peroxide molecule as is assumed for the role of Fe(2+) ions in the Fenton system.
How Well Can Modern Density Functionals Predict Internuclear Distances at Transition States?
Xu, Xuefei; Alecu, I M; Truhlar, Donald G
2011-06-14
We introduce a new database called TSG48 containing 48 transition state geometrical data (in particular, internuclear distances in transition state structures) for 16 main group reactions. The 16 reactions are the 12 reactions in the previously published DBH24 database (which includes hydrogen transfer reactions, heavy-atom transfer reactions, nucleophilic substitution reactions, and association reactions plus one unimolecular isomerization) plus four H-transfer reactions in which a hydrogen atom is abstracted by the methyl or hydroperoxyl radical from the two different positions in methanol. The data in TSG48 include data for four reactions that have previously been treated at a very high level in the literature. These data are used to test and validate methods that are affordable for the entire test suite, and the most accurate of these methods is found to be the multilevel BMC-CCSD method. The data that constitute the TSG48 database are therefore taken to consist of these very high level calculations for the four reactions where they are available and BMC-CCSD calculations for the other 12 reactions. The TSG48 database is used to assess the performance of the eight Minnesota density functionals from the M05-M08 families and 26 other high-performance and popular density functionals for locating transition state geometries. For comparison, the MP2 and QCISD wave function methods have also been tested for transition state geometries. The MC3BB and MC3MPW doubly hybrid functionals and the M08-HX and M06-2X hybrid meta-GGAs are found to have the best performance of all of the density functionals tested. M08-HX is the most highly recommended functional due to the excellent performance for all five subsets of TSG48, as well as having a lower cost when compared to doubly hybrid functionals. The mean absolute errors in transition state internuclear distances associated with breaking and forming bonds as calculated by the B2PLYP, MP2, and B3LYP methods are respectively about 2, 3, and 5 times larger than those calculated by MC3BB and M08-HX.
Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics.
Masunov, Artëm E; Wait, Elizabeth E; Atlanov, Arseniy A; Vasu, Subith S
2017-05-18
In oxy-fuel combustion, the pure oxygen (O 2 ), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2 O) are free from pollution by nitrogen oxides. Moreover, high pressures result in the near-liquid density of CO 2 at supercritical state (sCO 2 ). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. To assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of the carbon dioxide molecule. All transition states and reactant and product complexes are reported for three reactions: H 2 CO + HO 2 → HCO + H 2 O 2 (R1), 2HO 2 → H 2 O 2 + O 2 (R2), and CO + OH → CO 2 + H (R3). In reaction R3, covalent binding of CO 2 to the OH radical and then the CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to the bimolecular OH + CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol and is expected to accelerate the reaction. In the case of hydroperoxyl self-reaction 2HO 2 → H 2 O 2 + O 2 the intermediates, containing covalent bonds to CO 2 are found not to be competitive. However, the spectator CO 2 molecule can stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates is also discovered in the H 2 CO + HO 2 → HCO + H 2 O 2 reaction, but these species lead to substantially higher activation barriers, which makes them unlikely to play a role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilizes the transition state and reduces the reaction barrier. These results indicate that the CO 2 environment is likely to have a catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2 .
Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.
Borra, Sai Krishna; Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little
2014-10-01
Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals.
Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa
2015-12-29
Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical currentmore » throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.« less
Lassmanm, G; Liermann, B; Arnold, W; Schwabe, K
1991-01-01
The characteristic EPR doublet of tyrosine radicals of the growth-regulating enzyme ribonucleotide reductase was detected in human melanoma tissue grown in nude mice. This was possible through the use of an amelanotic melanoma that does not exhibit disturbing EPR signals from melanin. The content of tyrosine radicals is higher in young tumor tissues than in older ones. The clinically applied antimelanotic drug, 4-hydroxyanisole, inhibits ribonucleotide reductase in Ehrlich ascites tumor cells as demonstrated by a pronounced quenching of tyrosine radicals (IC50 = 5 microM). In amelanotic melanoma tissue tyrosine radicals of the enzyme are also quenched by 4-hydroxyanisole in concentrations down to 50 microM. Thus, the inactivation of ribonucleotide reductase, which provides deoxyribonucleotides for DNA synthesis, may be a hitherto unexpected mechanism for the antitumor action of 4-hydroxyanisole.
NASA Astrophysics Data System (ADS)
Bunkan, Arne; Amédro, Damien; Crowley, John
2017-04-01
The reaction of formaldehyde with HO2 radicals constitutes a minor, but significant sink of formaldehyde in the troposphere as well as a possible interference in other formaldehyde photooxidation experiments. HCHO + HO2 ⇌ HOCH2OO (1) Due to the difficulty of simultaneously monitoring the reactant and product concentrations while preventing interfering secondary chemistry, there is a considerable uncertainty in the literature values for the reaction rate coefficients. We have used two photon, excited fragment spectroscopy (TPEFS), originally developed for monitoring HNO3 formation in kinetic experiments, to monitor the formation of the HOCH2OO radical. Dispersed and single wavelength fluorescence emission following the 193 nm photolysis of HOCH2OO have been recorded and analysed. Characterisation of the method is presented along with rate coefficients for the reaction of HCHO with HO2 radicals at tropospheric temperatures.
Sipahi, Hande; Becker, Kathrin; Gostner, Johanna M; Charehsaz, Mohammad; Kirmizibekmez, Hasan; Schennach, Harald; Aydin, Ahmet; Fuchs, Dietmar
2014-01-01
The potential effects of globularifolin, an acylated iridoid glucoside, on cell survival, inflammation markers and free radicals scavenging were investigated. Viability assay on human myelomomonocytic cell line THP-1 and human peripheral blood mononuclear cells (PBMC) using the Cell-Titer Blue assay proved that globularifolin had no toxic effect at the tested concentrations. Conversely, it is proportional to the dose globularifolin increased growth of THP-1 cells (p <0.01). On human PBMC, globularifolin at 6.25 and 12.5 μM concentrations showed a stimulatory effect, while at 12.5-200 μM it suppressed response of PBMC to stimulation with phytohemagglutinin (PHA). Globularifolin (50-200 μM) enhanced neopterin formation dose-dependently, whereas tryptophan breakdown was not influenced. At 50-200 μM in unstimulated PBMC in THP-1 cells, globularifolin induced a significant expression of nuclear factor-κB (NF-κB) as was quantified by Quanti-Blue assay. By contrast, in lipopolysaccharide (LPS)-stimulated cells, the higher concentrations of globularifolin suppressed NF-κB expression dose-dependently and a significant decrease was observed at 200 μM concentration. A positive correlation was found between increased neopterin and NF-κB activity (p <0.01). Similarly, a positive correlation was observed between neopterin levels in mitogen-induced cells and NF-κB activity in LPS-stimulated cells after treatment with globularifolin (p=0.001). The free radical scavenging capacity of globularifolin evaluated by Oxygen Radical Absorbance Capacity (ORAC) assay showed relative ORAC values of 0.36±0.05 μmol Trolox equivalent/μmol. All together, results show that natural antioxidant globularifolin might represent a potential immunomodulatory as well as proliferative agent, which deserves further in vitro and in vivo studies. © 2013.
Magureanu, M; Dobrin, D; Bradu, C; Gherendi, F; Mandache, N B; Parvulescu, V I
2016-12-01
The objective of these investigations is to understand in more detail how organic compounds in water are degraded during plasma treatment. The formation of oxidizing species (ozone (O 3 ), hydrogen peroxide (H 2 O 2 ) and hydroxyl radicals (OH)) in a pulsed corona discharge in contact with liquid is investigated. The degradation of a target organic compound (methylparaben) in aqueous solution was increased when combining plasma treatment with ozonation, using the O 3 generated in the discharge. Enhanced mass transfer of O 3 obtained in this plasma+O 3 configuration leads to a six fold increase of MeP oxidation rate. The evolution of oxidants concentration during treatment of MeP solutions provides information on their consumption in reactions with MeP and its oxidation products. The correlation of MeP degradation results (MeP removal and mineralization) with O 3 consumption and the identified reaction products confirms that although O 3 plays an important role in the degradation, for the mineralization OH radicals have an essential contribution. The concentration of OH radicals is diminished in the solutions containing MeP as compared to plasma-treated water, indicating OH consumption in reactions with the target compound and its degradation products. The concentration of H 2 O 2 in the liquid can be either increased or reduced in the presence of MeP, depending on its initial concentration. On the one hand, decomposition of H 2 O 2 by OH or O 3 is suppressed in the presence of MeP, but on the other hand less OH radicals are available for its formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, K.; Das, P.K.
In the course of benzophenone triplet quenching by triethylamine (TEA) at high concentrations in alkaline aqueous acetonitrile, two temporally distinct processes are observed for ketyl radical anion formation. The fast component occurs on a nanosecond time scale, has kinetics sensitive to basicity and water content of the medium, and is ascribed to the deprotonation of the diphenylhydroxymethyl radical initially produced as a result of subnanosecond intra-ion-pair proton transfer. The slow process occurs on a microsecond time scale and is characterized by pseudo-first-order rate constants linearly dependent on ketone ground-state concentration; this is assigned to the one-electron reduction of the ketonemore » by the methyl(diethylamino)methyl radical (derived from TEA). Substituent effects on the kinetics of the two processes follow trends expected from those of the acidity of diarylhydroxymethyl radicals and of the behavior of diaryl ketones as oxidants. Neither of the two processes is observed with N,N-dimethylaniline (DMA) and 1,4-diazabicyclo(2.2.2)octane (DABCO) as quenchers. The electron or hydrogen transfer yields in the course of diaryl ketone triplet quenching by the three amines are all close to unity, suggesting that the back electron transfer in the triplet ion pairs is relatively unimportant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanovic, Ivana; Kent, Paul; Garzon, Fernando
2013-03-14
We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, inducedmore » by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less
NASA Astrophysics Data System (ADS)
Whalley, L. K.; Edwards, P.; Furneaux, K. L.; Goddard, A.; George, I. J.; Evans, M. J.; Heard, D. E.; Team Op-3
2010-12-01
The self cleansing capacity of the troposphere and the lifetime of key greenhouse gases are controlled to a large extent by the OH radical. In environments where biogenic VOC emissions are high and NOx concentrations are low, for example in tropical rainforests, the current understanding of tropospheric chemistry suggests that OH radical concentrations should be suppressed. OH measurements made in such regions, however, have highlighted higher than expected OH radical concentrations that cannot be replicated by chemical models constrained with the currently known OH formation pathways [1]. Here we report OH and OH reactivity measurements made during the OP-3 project that took place in the Borneo rainforest in 2008. Concentrations of OH displayed a clear diurnal cycle, peaking at solar noon, with significant concentrations observed: up to 8.7×106 molecule cm-3 (60 min average). Although j(O1D) levels and humidity were high, low O3 concentrations limited the rate of primary OH production from ozone photolysis. OH reactivity measurements were made using a sliding injector flow-tube reactor technique, with OH detection by LIF. Mean OH reactivities of 15.5 s-1 were observed with daily maximum OH reactivity of 24.7 ± 11.1 s-1 shortly after local solar noon, coinciding with peak isoprene concentrations. Minimum values of 7.2 ± 2.2 s-1 were observed just before sun rise. Using the measured OH and OH reactivity in a constrained box model containing detailed MCM chemistry we are able to fully resolve the magnitude of the missing OH source. We find that significant OH sources must be present - in addition to primary production - in order to maintain the elevated levels of OH levels recorded. Inclusion of an additional OH source formed as a recycled product of isoprene oxidation [2] improves the modelled OH agreement but reduces the modelled to measured HO2 agreement. To replicate both OH and HO2, a process that recycles HO2 to OH is required; equivalent to the OH recycling effect of 0.74 ppbv of NO. The model is unable to account for all of the OH reactivity; to simulate the OH reactivity a range of unmeasured sinks must be invoked. In general we believe that the simultaneous measurement of OH reactivity and OH concentration enables the separation of OH sources and sinks, allowing a more comprehensive test of our understanding of the radical chemistry occurring in this chemically complex environment. [1] J. Lelieveld, T. M. Butler, J. N. Crowley et al.: Nature, 2008, 452, p.737 - 740 [2] J. Peeters, T. L. Nguyen & L. Vereecken, PCCP, 2009, 11, p.5935 - 5939
Saeki, Akinori; Kozawa, Takahiro; Ohnishi, Yuko; Tagawa, Seiichi
2007-02-22
The initial decrease of solvated electrons in tetrahydrofuran (THF) upon addition of biphenyl was investigated by picosecond pulse radiolysis. Transient absorption spectra derived from the biphenyl radical anion (centered at 408 and 655 nm) and solvated electrons of THF (infrared) were successfully measured in the wavelength region from 400 to 900 nm by the extension of a femtosecond continuum probe light to near-ultraviolet using a second harmonic generation of Ti:sapphire laser and a CaF2 plate. From the analysis of kinetic traces at 1300 nm considering the overlap of primary solvated electrons and partial biphenyl radical anion, C37, which is defined by the solute concentration to reduce the initial yield of solvated electrons to 1/e, was found to be 87 +/- 3 mM. The rate constant of solvated electrons with biphenyl was determined as 5.8 +/- 0.3 x 10(10) M(-1) s(-1). We demonstrate that the kinetic traces at both 408 nm mainly due to biphenyl radical anion and 1300 nm mainly due to solvated electrons are reproduced with high accuracy and consistency by a simple kinetic analysis. Much higher concentrations of biphenyl (up to 2 M) were examined, showing further increase of the initial yield of biphenyl radical anion accompanying a fast decay component. This observation is discussed in terms of geminate ion recombination, scavenging, delayed geminate ion recombination, and direct ionization of biphenyl at high concentration.
Heymann, Thomas; Heinz, Philipp; Glomb, Marcus A
2015-04-01
The present study aimed to investigate the influence of singlet oxygen and radical species on the isomerization of carotenoids. On the one hand, lycopene and β-carotene standards were incubated with 1,4-dimethylnaphthalene-1,4-endoperoxide that produced singlet oxygen in situ. (13Z)- and (15Z)-β-carotene were preferentially generated at low concentrations of singlet oxygen, while high concentrations resulted in formation of (9Z)-β-carotene. The addition of different concentrations of lycopene led to the same isomerization progress of β-carotene, but resulted in a decreased formation of (9Z)-β-carotene and retarded degradation of (all-E)-β-carotene. On the other hand, isomerization of β-carotene and lycopene was induced by ABTS-radicals, too. As expected from the literature, chemical quenching was observed especially for lycopene, while physical quenching was preferred for β-carotene. Mixtures of β-carotene and lycopene resulted in a different isomerization progress compared to the separate β-carotene model. As long as lycopene was present, almost no isomerization of β-carotene was triggered; after that, strong formation of (13Z)-, (9Z)-, and (15Z)-β-carotene was initiated. In summary, lycopene protected β-carotene against isomerization during reactions with singlet oxygen and radicals. These findings can explain the pattern of carotenoid isomers analyzed in fruits and vegetables, where lycopene containing samples showed higher (all-E)/(9Z)-β-carotene ratios, and also in in vivo samples such as human blood plasma.
Iodine-enhanced ultrasound degradation of sulfamethazine in water.
Yang, Xiao-Yu; Wei, Hong; Li, Ke-Bin; He, Qiang; Xie, Jian-Cang; Zhang, Jia-Tong
2018-04-01
This study investigated sulfamethazine (SMT) ultrasound degradation, enhanced by iodine radicals, generated by potassium iodide (KI) and hydrogen peroxide (H 2 O 2 ) in situ. The results showed that the ultrasound/H 2 O 2 /KI (US/H 2 O 2 /KI) combination treatment achieved an 85.10 ± 0.45% SMT removal (%) in 60 min under the following conditions: pH = 3.2, ultrasound power of 195 W, initial SMT concentration of 0.04 mmol·L -1 , H 2 O 2 concentration of 120 mmol·L -1 , and KI concentration of 2.4 mmol·L -1 . UV-Vis spectrophotometric monitoring of molecular iodine (I 2 ) and triiodide (I 3 - ) revealed a correlation between the SMT degradation and the iodine change in the solution. Quenching experiments using methanol, t-butanol and thiamazole as radical scavengers indicated that iodine radicals, such as I and I 2 - , were more important than hydroxyl radicals (HO) for SMT degradation. SMT degradation under the US/H 2 O 2 /KI treatment followed pseudo-first order reaction kinetics. The activation energy (E a ) of SMT degradation was 7.75 ± 0.61 kJ·mol -1 , which suggested the reaction was controlled by the diffusion step. Moreover, TOC removal was monitored, and the obtained results revealed that it was not as effective as SMT degradation under the US/H 2 O 2 /KI system. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames
NASA Astrophysics Data System (ADS)
Richardson, E. S.; Granet, V. E.; Eyssartier, A.; Chen, J. H.
2010-11-01
The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane-air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. 'Back supported' lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.
NASA Astrophysics Data System (ADS)
Fuchs, Hendrik; Tan, Zhaofeng; Hofzumahaus, Andreas; Broch, Sebastian; Dorn, Hans-Peter; Holland, Frank; Künstler, Christopher; Gomm, Sebastian; Rohrer, Franz; Schrade, Stephanie; Tillmann, Ralf; Wahner, Andreas
2016-04-01
Direct detection of highly reactive, atmospheric hydroxyl radicals (OH) is widely accomplished by laser-induced fluorescence (LIF) instruments. The technique is also suitable for the indirect measurement of HO2 and RO2 peroxy radicals by chemical conversion to OH. It requires sampling of ambient air into a low-pressure cell, where OH fluorescence is detected after excitation by 308 nm laser radiation. Although the residence time of air inside the fluorescence cell is typically only on the order of milliseconds, there is potential that additional OH is internally produced, which would artificially increase the measured OH concentration. Here, we present experimental studies investigating potential interferences in the detection of OH and peroxy radicals for the LIF instruments of Forschungszentrum Jülich for nighttime conditions. For laboratory experiments, the inlet of the instrument was over flowed by excess synthetic air containing one or more reactants. In order to distinguish between OH produced by reactions upstream of the inlet and artificial signals produced inside the instrument, a chemical titration for OH was applied. Additional experiments were performed in the simulation chamber SAPHIR where simultaneous measurements by an open-path differential optical absorption spectrometer (DOAS) served as reference for OH to quantify potential artifacts in the LIF instrument. Experiments included the investigation of potential interferences related to the nitrate radical (NO3, N2O5), related to the ozonolysis of alkenes (ethene, propene, 1-butene, 2,3-dimethyl-2-butene, α-pinene, limonene, isoprene), and the laser photolysis of acetone. Experiments studying the laser photolysis of acetone yield OH signals in the fluorescence cell, which are equivalent to 0.05 × 106 cm-3 OH for a mixing ratio of 5 ppbv acetone. Under most atmospheric conditions, this interference is negligible. No significant interferences were found for atmospheric concentrations of reactants during ozonolysis experiments. Only for propene, α-pinene, limonene, and isoprene at reactant concentrations, which are orders of magnitude higher than in the atmosphere, could artificial OH be detected. The value of the interference depends on the turnover rate of the ozonolysis reaction. For example, an apparent OH concentration of approximately 1 × 106 cm-3 is observed when 5.8 ppbv limonene reacts with 600 ppbv ozone. Experiments with the nitrate radical NO3 reveal a small interference signal in the OH, HO2, and RO2 detection. Dependencies on experimental parameters point to artificial OH formation by surface reactions at the chamber walls or in molecular clusters in the gas expansion. The signal scales with the presence of NO3 giving equivalent radical concentrations of 1.1 × 105 cm-3 OH, 1 × 107 cm-3 HO2, and 1.7 × 107 cm-3 RO2 per 10 pptv NO3.
Lü, Jian-Ming; Rogge, Corina E.; Wu, Gang; Kulmacz, Richard J.; van der Donk, Wilfred A.; Tsai, Ah-lim
2011-01-01
Incubation of prostaglandin H synthase-1 (PGHS-1) under anaerobic conditions with peroxide and arachidonic acid leads to two major radical species: a pentadienyl radical and a radical with a narrow EPR spectrum. The proportions of the two radicals are sensitive to temperature, favoring the narrow radical species at 22 °C. The EPR characteristics of this latter radical are somewhat similar to the previously reported narrow-singlet tyrosine radical NS1a and are insensitive to deuterium labeling of AA. To probe the origin and structure of this radical, we combined EPR analysis with nitric oxide (NO) trapping of tyrosine and substrate derived radicals for both PGHS-1 and -2. Formation of 3-nitrotyrosine in the proteins was analyzed by immunoblotting, whereas NO adducts to AA and AA metabolites were analyzed by mass spectrometry and by chromatography of 14C-labeled products. The results indicate that both nitrated tyrosine residues and NO-AA adducts formed upon NO trapping. The NO-AA adduct was predominantly an oxime at C11 of AA with three conjugated double bonds, as indicated by absorption at 275 nm and by mass spectral analysis. This adduct amounted to 10% and 20% of the heme concentration of PGHS-1 and -2, respectively. For PGHS-1, the yield of NO-AA adduct matched the yield of the narrow radical signal obtained in parallel EPR experiments. High frequency EPR characterization of this narrow radical, reported in an accompanying paper, supports assignment to a new tyrosyl radical, NS1c, rather than an AA-based radical. To reconcile the results from EPR and NO-trapping studies, we propose that the NS1c is in equilibrium with an AA pentadienyl radical, and that the latter reacts preferentially with NO. PMID:21403766
Determining the local origin of hydroxyl radical generation during phacoemulsification.
Aust, Steven D; Terry, Scott; Hebdon, Thomas; Gunderson, Broc; Terry, Michael; Dimalanta, Ramon
2011-06-01
To determine the local origin of hydroxyl radicals during phacoemulsification using an ultrasonic phacoemulsification device that includes longitudinal and torsional modalities. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. Experimental study. Experiments were conducted using the Infiniti Vision System and Ozil handpiece. Hydroxyl radical concentrations during longitudinal and torsional phacoemulsification were quantitated as malondialdehyde (MDA) determined spectrophotometrically using the deoxyribose assay. The difference between the total concentration found in the aspirated solution at steady-state concentrations and the pre-aspirate levels deductively determined the concentration of MDA formed along the interior of the sonicating tip. The time to reach 50% of steady state as a function of reaction vessel volume was determined. The mean maximum for torsional ultrasound at 100% amplitude was 7.70 nM ± 0.38 (SD), 91.1% of which was generated outside the tip. During longitudinal ultrasound at 100% power, MDA concentration in the aspirated solution was 29.5 ± 0.3 nM, 71.6% of which was generated outside the tip. The time (seconds) to reach 50% of maximum for longitudinal ultrasound using 5 mL, 10 mL, and 20 mL reaction vessels was 12.6 ± 1.5, 21.0 ± 1.5, and 25.3 ± 3.4, respectively. Although a significantly greater proportion of the hydroxyl radicals generated during ultrasound modality were formed outside the phaco tip (91.1% torsional; 71.6% longitudinal), torsional ultrasound generated only about one-fourth the amount of MDA as longitudinal ultrasound in total and about one-third that generated outside the tip (7.02 nM versus 21.1 nM). No author has a financial or proprietary interest in any material or method mentioned. Additional disclosures are found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Edwards, P. M.; Young, C. J.; Aikin, K.; deGouw, J. A.; Dubé, W. P.; Geiger, F.; Gilman, J. B.; Helmig, D.; Holloway, J. S.; Kercher, J.; Lerner, B.; Martin, R.; McLaren, R.; Parrish, D. D.; Peischl, J.; Roberts, J. M.; Ryerson, T. B.; Thornton, J.; Warneke, C.; Williams, E. J.; Brown, S. S.
2013-03-01
The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) concentrations above levels harmful to human health for multiple days during the winters of 2009-2010 and 2010-2011. These wintertime O3 pollution episodes occur during cold, stable periods when the ground is snowcovered, and have been linked to emissions from the oil and gas extraction process. The Uintah Basin Winter Ozone Study (UBWOS) was a field intensive in early 2012, whose goal was to address current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. Although elevated O3 concentrations were not observed during the winter of 2011-2012, the comprehensive set of observations tests of our understanding of O3 photochemistry in this unusual emissions environment. A box model, constrained to the observations and using the explicit Master Chemical Mechanism (MCM) V3.2 chemistry scheme, has been used to investigate the sensitivities of O3 production during UBWOS 2012. Simulations identify the O3 production photochemistry to be highly radical limited. Production of OH from O3 photolysis (through reaction of O(1D) with water vapor) contributed only 170 pptv day-1, 8% of the total primary radical source on average. Other radical sources, including the photolysis of formaldehyde (HCHO, 52%), nitrous acid (HONO, 26%), and nitryl chloride (ClNO2, 13%) were larger. O3 production was also found to be highly sensitive to aromatic volatile organic compound (VOC) concentrations, due to radical amplification reactions in the oxidation scheme of these species. Radical production was shown to be small in comparison to the emissions of nitrogen oxides (NOx), such that NOx acted as the primary radical sink. Consequently, the system was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons (230 ppbv (2080 ppbC), 6 week average) relative to NOx (5.6 ppbv average). However, the importance of radical sources which are themselves derived from NOx emissions and chemistry, such as ClNO2 and HONO, make the response of the system to changes in NOx emissions uncertain. These box model simulations provide useful insight into the chemistry controlling winter O3 production in regions of oil and gas extraction.
Kinetic studies of retinol addition radicals.
El-Agamey, Ali; Fukuzumi, Shunichi; Naqvi, K Razi; McGarvey, David J
2011-03-07
Retinol neutral radicals (RS-retinol˙), generated from the reaction of retinol with 4-pyridylthiyl and 2-pyridylthiyl radicals in argon-saturated methanol, undergo β-elimination, which can be monitored via the slow secondary absorption rise at 380 nm attributed to the rearrangement of the unstable retinol neutral addition radicals to the more stable addition radicals. Rate constants for the β-elimination reactions (k(β)) of 4-PyrS-retinol˙ were measured at different temperatures and the Arrhenius equation for the reaction is described by log (k(β)/s(-1)) = (12.7 ± 0.2) - (54.3 ± 1.3)/θ, where θ = 2.3RT kJ mol(-1). The reactivities of retinol addition radicals (RS-retinol˙), generated from the reaction of retinol with various thiyl radicals, towards oxygen have also been investigated in methanol. In the presence of oxygen, the decay of RS-retinol˙ fits to biexponential kinetics and both observed rate constants for the RS-retinol˙ decay are oxygen-concentration dependent. This suggests that at least two thiyl addition radicals, formed from the reaction of RS˙ with retinol, undergo oxygen addition reactions. In light of the estimated rate constants for oxygen addition to RS-retinol˙ and RS-CAR˙ (CAR: carotenoid), the antioxidant-prooxidant properties of retinol are discussed.
Masood, Nusrat; Fatima, Kaneez; Luqman, Suaib
2014-01-01
We have described a modified method for evaluating inhibitor of peroxyl radicals, a well-recognized and -documented radical involved in cancer initiation and promotion as well as diseases related to oxidative stress and ageing. We are reporting hydrophilic and lipophilic as well as natural and synthetic forms of antioxidants revealing a diversified behaviour to peroxyl radical in a dose-dependent manner (1 nM-10 μM). A simple kinetic model for the competitive oxidation of an indicator molecule (ABTS) and a various antioxidant by a radical (ROO(•)) is described. The influences of both the concentration of antioxidant and duration of reaction (70 min) on the inhibition of the radical cation absorption are taken into account while determining the activity. The induction time of the reaction was also proposed as a parameter enabling determination of antioxidant content by optimizing and introducing other kinetic parameters in 96-well plate assays. The test evidently improves the original PRTC (peroxyl radical trapping capacity) assay in terms of the amount of chemical used, simultaneous tracking, that is, the generation of the radical taking place continually and the kinetic reduction technique (area under curve, peak value, slope, and Vmax).
Combined chemical and mechanical effects on free radicals in UHMWPE joints during implantation.
Jahan, M S; Wang, C; Schwartz, G; Davidson, J A
1991-08-01
An electron spin resonance (ESR) technique is employed to determine the free radical distribution in the articulating surfaces of retrieved acetabular cups and knee-joint plateaus (retrieved after more than 6 years of implantation). Similar measurements made on samples prepared from cyclically stressed and unstressed cups, and on samples following oxidations in nitric acid and intralipid solutions provided sufficient data to gain more knowledge about the combined chemical and mechanical effects on PE free radicals during implantation. In UHMWPE free radicals are primarily initiated by gamma-ray sterilization; however, during implantation, peroxy (scission type) free radicals are formed and reach a maximum concentration level (equilibrium state) due to oxidation by chemical (hemoglobin and/or synovial fluids) environment of the joints. Subsequently, due to frictional heating and stress in the loading zones, free radical reaction is accelerated and their number is reduced only in those areas. This is consistent with the observations of a temperature rise in acetabular cups during in vitro frictional wear stress tests and in vivo telemetry observations, as reported by others. Compared with the previously reported SEM micrographs the low-free-radical regions are correlated with high-wear areas and the high-free-radical regions with the low-wear areas.
David Jebaraj, D; Utsumi, Hideo; Milton Franklin Benial, A
2018-04-01
Low-frequency electron spin resonance studies were performed for 2 mM concentration of deuterated permeable and impermeable nitroxyl spin probes, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl and 3-carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy in pure water and various concentrations of corn oil solution. The electron spin resonance parameters such as the line width, hyperfine coupling constant, g factor, rotational correlation time, permeability, and partition parameter were estimated. The broadening of line width was observed for nitroxyl radicals in corn oil mixture. The rotational correlation time increases with increasing concentration of corn oil, which indicates the less mobile nature of spin probe in corn oil mixture. The membrane permeability and partition parameter values were estimated as a function of corn oil concentration, which reveals that the nitroxyl radicals permeate equally into the aqueous phase and oil phase at the corn oil concentration of 50%. The electron spin resonance spectra demonstrate the permeable and impermeable nature of nitroxyl spin probes. From these results, the corn oil concentration was optimized as 50% for phantom studies. In this work, the corn oil and pure water mixture phantom models with various viscosities correspond to plasma membrane, and whole blood membrane with different hematocrit levels was studied for monitoring the biological characteristics and their interactions with permeable nitroxyl spin probe. These results will be useful for the development of electron spin resonance and Overhauser-enhanced magnetic resonance imaging modalities in biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.
Matsuo, Y; Kihara, T; Ikeda, M; Ninomiya, M; Onodera, H; Kogure, K
1995-11-01
A growing body of experimental data indicate that oxygen radicals may mediate the brain injury during ischemia-reperfusion. One potential source of oxygen radicals is activated neutrophils. To study the role of neutrophils in radical production during cerebral ischemia-reperfusion, we evaluated the effects of depletion of circulating neutrophils by administration of an anti-neutrophil monoclonal antibody (RP3) on radical formation in rats with 1-h middle cerebral artery (MCA) occlusion. In the present study, we employed a new electron spin resonance method coupled with brain microdialysis. The method uses the endogenous ascorbyl radical (AR) concentration as a marker of oxygen radicals and requires no spin-trapping agents. In the vehicle controls, extracellular AR decreased during MCA occlusion. After reperfusion, AR significantly increased at 30 min and 1 h, returned to near basal level until 2 h, and increased again at 24 h after reperfusion. In the rats treated with RP3, AR decreased during MCA occlusion to the same extent as in the vehicle control. However, RP3 treatment completely inhibited the increase in extracellular AR after reperfusion. RP3 treatment exerted no effect on the changes in extracellular ascorbate or tissue PO2 throughout the experimental period. In conclusion, neutrophils are a major source of oxygen radicals during reperfusion after focal cerebral ischemia.
Amić, Ana; Marković, Zoran; Marković, Jasmina M Dimitrić; Jeremić, Svetlana; Lučić, Bono; Amić, Dragan
2016-12-01
Free radical scavenging and inhibitory potency against cyclooxygenase-2 (COX-2) by two abundant colon metabolites of polyphenols, i.e., 3-hydroxyphenylacetic acid (3-HPAA) and 4-hydroxyphenylpropionic acid (4-HPPA) were theoretically studied. Different free radical scavenging mechanisms are investigated in water and pentyl ethanoate as a solvent. By considering electronic properties of scavenged free radicals, hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms are found to be thermodynamically probable and competitive processes in both media. The Gibbs free energy change for reaction of inactivation of free radicals indicates 3-HPAA and 4-HPPA as potent scavengers. Their reactivity toward free radicals was predicted to decrease as follows: hydroxyl>alkoxyls>phenoxyl≈peroxyls>superoxide. Shown free radical scavenging potency of 3-HPAA and 4-HPPA along with their high μM concentration produced by microbial colon degradation of polyphenols could enable at least in situ inactivation of free radicals. Docking analysis with structural forms of 3-HPAA and 4-HPPA indicates dianionic ligands as potent inhibitors of COX-2, an inducible enzyme involved in colon carcinogenesis. Obtained results suggest that suppressing levels of free radicals and COX-2 could be achieved by 3-HPAA and 4-HPPA indicating that these compounds may contribute to reduced risk of colon cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Plasma Jet (V)UV-Radiation Impact on Biologically Relevant Liquids and Cell Suspension
NASA Astrophysics Data System (ADS)
Tresp, H.; Bussiahn, R.; Bundscherer, L.; Monden, A.; Hammer, M. U.; Masur, K.; Weltmann, K.-D.; Woedtke, Th. V.; Reuter, S.
2014-10-01
In this study the generation of radicals in plasma treated liquids has been investigated. To quantify the contribution of plasma vacuum ultraviolet (VUV) and ultraviolet (UV) radiation on the species investigated, three cases have been studied: UV of plasma jet only, UV and VUV of plasma jet combined, and the plasma effluent including all reactive components. The emitted VUV has been observed by optical emission spectroscopy and its effect on radical formation in liquids has been analyzed by electron spin resonance spectroscopy. Radicals have been determined in ultrapure water (dH2O), as well as in more complex, biorelevant solutions like phosphate buffered saline (PBS) solution, and two different cell culture media. Various compositions lead to different reactive species formation, e.g. in PBS superoxide anion and hydroxyl radicals have been detected, in cell suspension also glutathione thiyl radicals have been found. This study highlights that UV has no impact on radical generation, whereas VUV is relevant for producing radicals. VUV treatment of dH2O generates one third of the radical concentration produced by plasma-effluent treatment. It is relevant for plasma medicine because although plasma sources are operated in open air atmosphere, still VUV can lead to formation of biorelevant radicals. This work is funded by German Federal Ministry of Education a Research (BMBF) (Grant # 03Z2DN12+11).
Liao, Shaohua; Pan, Bo; Li, Hao; Zhang, Di; Xing, Baoshan
2014-01-01
Biochar can benefit human society as a carbon-negative material and soil amendment. However, negative biochar impacts on plant germination and growth have been observed, and they have not been fully explained. Therefore, protocols to avoid these risks cannot be proposed. We hypothesized that the free radicals generated during charring may inhibit plant germination and growth. Significant electron paramagnetic resonance (EPR) signals were observed in the biochars derived from several types of common biomass (corn stalk, rice, and wheat straws) and the major biopolymer components of biomass (cellulose and lignin), but not in the original materials, suggesting the ubiquitous presence of free radicals in biochars. EPR signal intensity increased with increasing pyrolysis temperature, and it was dominantly contributed by oxygen centered in the mixture of oxygen- and carbon-centered free radicals as the temperature increased. The free radicals in biochars induced strong ·OH radicals in the aqueous phase. Significant germination inhibition, root and shoot growth retardation and plasma membrane damage were observed for biochars with abundant free radicals. Germination inhibition and plasma membrane damage were not obvious for biochars containing low free radicals, but they were apparent at comparable concentrations of conventional contaminants, such as heavy metals and polyaromatic hydrocarbons. The potential risk and harm of relatively persistent free radicals in biochars must be addressed to apply them safely.
Radical Scavenging Activities of Tannin Extracted from Amaranth (Amaranthus caudatus L.).
Jo, Hyeon-Ju; Chung, Kang-Hyun; Yoon, Jin A; Lee, Kwon-Jai; Song, Byeong Chun; An, Jeung Hee
2015-06-01
This study investigates the bioactivity of tannin from amaranth (Amaranthus caudatus L.) extracts. The antioxidant activities of the extracts from amaranth leaves, flowers, and seeds were evaluated. Tannin from leaves of amaranth has been evaluated for superoxide scavenging activity by using DPPH and ABTS(+) analysis, reducing power, protective effect against H2O2-induced oxidative damage in L-132 and BNL-CL2 cells, and inhibition of superoxide radical effects on HL-60 cells. At a concentration of 100 μg/ml, tannin showed protective effects and restored cell survival to 69.2% and 41.8% for L-132 and BNL-CL2 cells, respectively. Furthermore, at the same concentration, tannin inhibited 41% of the activity of the superoxide radical on HL-60 cells and 43.4% of the increase in nitric oxide levels in RAW 264.7 cells. The expression levels of the antioxidant-associated protein SOD-1 were significantly increased in a concentration-dependent manner in RAW 264.7 cells treated with tannin from amaranth leaves. These results suggest that tannin from the leaves of Amaranthus caudatus L. is a promising source of antioxidant component that can be used as a food preservative or nutraceutical.
Protein Corona Prevents TiO2 Phototoxicity
Garvas, Maja; Testen, Anze; Umek, Polona; Gloter, Alexandre; Koklic, Tilen; Strancar, Janez
2015-01-01
Background & Aim TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations. Methods & Results Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles’ surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes’ surface. Conclusion These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired – as for efficient photodynamic cancer therapy. PMID:26083725
Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.
Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun
2016-12-01
Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.
Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun
2015-11-01
To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.
Young, Cora J; Washenfelder, Rebecca A; Roberts, James M; Mielke, Levi H; Osthoff, Hans D; Tsai, Catalina; Pikelnaya, Olga; Stutz, Jochen; Veres, Patrick R; Cochran, Anthony K; VandenBoer, Trevor C; Flynn, James; Grossberg, Nicole; Haman, Christine L; Lefer, Barry; Stark, Harald; Graus, Martin; de Gouw, Joost; Gilman, Jessica B; Kuster, William C; Brown, Steven S
2012-10-16
Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.
NASA Technical Reports Server (NTRS)
Derwent, Richard G.; Volz-Thomas, Andreas
1990-01-01
Chemical reaction with hydroxyl radicals formed in the troposphere from ozone photolysis in the presence of methane, carbon monoxide and nitrogen oxides provides an important removal mechanism for halocarbons containing C-H and C = C double bonds. The isotropic distribution in atmospheric carbon monoxide was used to quantify the tropospheric hydroxyl radical distribution. Here, this methodology is reevaluated in the light of recent chemical kinetic data evaluations and new understandings gained in the life cycles of methane and carbon monoxide. None of these changes has forced a significant revision in the CO-14 approach. However, it is somewhat more clearly apparent how important basic chemical kinetic data are to the accurate establishment of the tropospheric hydroxyl radical distribution.
Bernard, G R; Lucht, W D; Niedermeyer, M E; Snapper, J R; Ogletree, M L; Brigham, K L
1984-01-01
Oxygen free radicals released during endotoxemia may contribute to the lung injury of the adult respiratory distress syndrome (ARDS). As this syndrome occurs frequently after gram-negative sepsis in humans, we studied the effect of intravenous N-acetylcysteine (NAC), a free radical scavenger, upon the endotoxin (E)-induced model of ARDS in awake sheep. In vivo studies demonstrated that NAC attenuates the endotoxin-induced rise in pulmonary artery pressure (62 +/- 3 torr with E control vs. 43 +/- 3 torr for E + NAC), and markedly diminishes the rise in lymph flow at 1 h (8.5 +/- 1.2 vs 4.5 +/- 0.6 ml/15 min) and 4 h (5.0 +/- 0.6 vs. 3.3 +/- 0.4 ml/15 min), respectively, for E control vs. E + NAC. NAC also markedly attenuated the alterations in lung mechanics after endotoxemia. Dynamic compliance at 2 h after endotoxemia was 44 +/- 6% of base line for E vs. 76 +/- 10% of base line for E + NAC. Resistance to airflow across the lung at 1 h postendotoxin was 811 +/- 280% of base line for E vs. 391 +/- 233% of base line for E + NAC. NAC substantially reduced the 1 h postendotoxin rise in lymph concentrations of thromboxane B2 (8.29 +/- 3.28 vs. 2.75 +/- 1.93 ng/ml for E vs. E + NAC) and 6-keto-prostaglandin-F1 alpha (0.91 +/- 0.27 vs. 0.23 +/- 0.12 ng/ml for E vs. E + NAC). In addition, in vitro studies were performed which revealed NAC to be a potent free radical scavenger in both biologic and nonbiologic free radical generating systems. NAC decreased phorbol-stimulated granulocyte aggregation in a concentration-dependent manner in vitro. Minimal effects were observed, however, upon leukocyte degranulation at the concentrations of NAC achieved during the in vivo tests. Thus, NAC significantly attenuated all monitored pathophysiologic changes in the endotoxin model of ARDS in sheep, possibly by its ability to scavenge toxic oxygen free radicals. A direct impairment of the ability of inflammatory cells to generate oxygen radicals cannot be ruled out. PMID:6725559
Cheng, Jason Y; Riesz, Peter
2007-07-01
Recently it has been shown that long chain (C5-C8) n-alkyl glucopyranosides completely inhibit ultrasound-induced cytolysis [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This protective effect has possible applications in HIFU (high intensity focused ultrasound) for tumor treatment, and in ultrasound assisted drug delivery and gene therapy. n-Alkyl glucopyranosides with hexyl (5mM), heptyl (3mM), octyl (2mM) n-alkyl chains protected 100% of HL-60 cells in vitro from 1.057 MHz ultrasound-induced cytolysis under a range of conditions that resulted in 35-100% cytolysis in the absence of glucopyranosides. However the hydrophilic methyl-beta-d-glucopyranoside did not protect cells. The surface active n-alkyl glucopyranosides accumulate at the gas-liquid interface of cavitation bubbles. The OH radicals and H atoms formed in collapsing cavitation bubbles react by H-atom abstraction from either the n-alkyl chain or the glucose moiety of the n-alkyl glucopyranosides. Owing to the high concentration of the long chain surfactants at the gas-liquid interface of cavitation bubbles, the initially formed carbon radicals on the alkyl chains are transferred to the glucose moieties to yield radicals which react with oxygen leading to the formation of hydrogen peroxide. In this work, we find that the sonochemically produced hydrogen peroxide yields from oxygen-saturated solutions of long chain (hexyl, octyl) n-alkyl glucopyranosides at 614 kHz and 1.057 MHz ultrasound increase with increasing n-alkyl glucopyranoside concentration but are independent of concentration for methyl-beta-D-glucopyranoside. These results are consistent with the previously proposed mechanism of sonoprotection [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This sequence of events prevents sonodynamic cell killing by initiation of lipid peroxidation chain reactions in cellular membranes by peroxyl and/or alkoxyl radicals [V. Misik, P. Riesz, Ann. N.Y. Acad. Sci., 899 (2000) 335].
Liu, Yingjun; Seco, Roger; Kim, Saewung; Guenther, Alex B; Goldstein, Allen H; Keutsch, Frank N; Springston, Stephen R; Watson, Thomas B; Artaxo, Paulo; Souza, Rodrigo A F; McKinney, Karena A; Martin, Scot T
2018-04-01
Nitrogen oxides (NO x ) emitted from human activities are believed to regulate the atmospheric oxidation capacity of the troposphere. However, observational evidence is limited for the low-to-median NO x concentrations prevalent outside of polluted regions. Directly measuring oxidation capacity, represented primarily by hydroxyl radicals (OH), is challenging, and the span in NO x concentrations at a single observation site is often not wide. Concentrations of isoprene and its photo-oxidation products were used to infer the equivalent noontime OH concentrations. The fetch at an observation site in central Amazonia experienced varied contributions from background regional air, urban pollution, and biomass burning. The afternoon concentrations of reactive nitrogen oxides (NO y ), indicative of NO x exposure during the preceding few hours, spanned from 0.3 to 3.5 parts per billion. Accompanying the increase of NO y concentration, the inferred equivalent noontime OH concentrations increased by at least 250% from 0.6 × 10 6 to 1.6 × 10 6 cm -3 . The conclusion is that, compared to background conditions of low NO x concentrations over the Amazon forest, pollution increased NO x concentrations and amplified OH concentrations, indicating the susceptibility of the atmospheric oxidation capacity over the forest to anthropogenic influence and reinforcing the important role of NO x in sustaining OH concentrations.
Moreno, S N; Mason, R P; Docampo, R
1984-12-10
At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.
NASA Astrophysics Data System (ADS)
Novelli, A.; Bohn, B.; Dorn, H. P.; Häseler, R.; Hofzumahaus, A.; Kaminski, M.; Yu, Z.; Li, X.; Tillmann, R.; Wegener, R.; Fuchs, H.; Kiendler-Scharr, A.; Wahner, A.
2017-12-01
The hydroxyl radical (OH) is the dominant daytime oxidant in the troposphere. It starts the degradation of volatile organic compounds (VOC) originating from both anthropogenic and biogenic emissions. Hence, it is a crucial trace species in model simulations as it has a large impact on many reactive trace gases. Many field campaigns performed in isoprene dominated environment in low NOx conditions have shown large discrepancies between the measured and the modelled OH radical concentrations. These results have contributed to the discovery of new regeneration paths for OH radicals from isoprene-OH second generation products with maximum efficiency at low NO. The current chemical models (e.g. MCM 3.3.1) include this novel chemistry allowing for an investigation of the validity of the OH regeneration at different chemical conditions. Over 11 experiments focusing on the OH oxidation of isoprene were performed at the SAPHIR chamber in the Forschungszentrum Jülich. Measurements of VOCs, NOx, O3, HONO were performed together with the measurement of OH radicals (by both LIF-FAGE and DOAS) and OH reactivity. Within the simulation chamber, the NO mixing ratio was varied between 0.05 to 2 ppbv allowing the investigation of both the "new" regeneration path for OH radicals and the well-known NO+HO2 mechanism. A comparison with the MCM 3.3.1 that includes the upgraded LIM1 mechanism showed very good agreement (within 10%) for the OH data at all concentrations of NOx investigated. Comparison with different models, without LIM1 and with updated rates for the OH regeneration, will be presented together with a detailed analysis of the impact of this study on results from previous field campaigns.
NASA Astrophysics Data System (ADS)
Matsumoto, Takuro; Miyazaki, Tetsuo; Kosugi, Yoshio; Kumada, Takayuki; Koyama, Sinji; Kodama, Seiji; Watanabe, Masami
1997-05-01
When golden hamster embryo (GHE) cells or concentrated albumin solution (0.1 kg dm -3) that is a model system of cells is irradiated with γ-rays at 295 K, organic radicals produced can be observed by ESR. The organic radicals survive at both 295 and 310 K for such a long time as 20 h. The long-lived radicals in GHE cells and the albumin solution react with vitamin C by the rate constants of 0.007 dm 3 mol -1 s -1 and 0.014 dm 3 mol -1 s -1, respectively. The long-lived radicals in human cells cause gene mutation, which is suppressed by addition of vitamin C. The isotope effect on the rate constant ( k) for the reaction of the long-lived radicals and vitamin C has been studied in the albumin solution by use of protonated vitamin C and deuterated vitamin C. The isotope effect ( kH/ kD) was more than 20 ≈ 50 and was interpreted in terms of tunneling reaction.
NASA Technical Reports Server (NTRS)
Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.
1997-01-01
Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron paramagnetic resonance imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of approximately 0.18 mm along a 2-mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2-mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 1-h cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.
NASA Technical Reports Server (NTRS)
Ahn, Myong K.; Eaton, Sandra S.; Eaton, Gareth R.; Meador, Mary Ann B.
1997-01-01
Prior studies have shown that free radicals generated by heating polyimides above 300 C are stable at room temperature and are involved in thermo-oxidative degradation in the presence of oxygen gas. Electron Paramagnetic Resonance Imaging (EPRI) is a technique to determine the spatial distribution of free radicals. X-band (9.5 GHz) EPR images of PMR-15 polyimide were obtained with a spatial resolution of about 0.18 mm along a 2 mm dimension of the sample. In a polyimide sample that was not thermocycled, the radical distribution was uniform along the 2 mm dimension of the sample. For a polyimide sample that was exposed to thermocycling in air for 300 one-hour cycles at 335 C, one-dimensional EPRI showed a higher concentration of free radicals in the surface layers than in the bulk sample. A spectral-spatial two-dimensional image showed that the EPR lineshape of the surface layer remained the same as that of the bulk. These EPRI results suggest that the thermo-oxidative degradation of PMR-15 resin involves free radicals present in the oxygen-rich surface layer.
Varanasi, Lathika; Coscarelli, Erica; Khaksari, Maryam; Mazzoleni, Lynn R; Minakata, Daisuke
2018-05-15
Considering the increasing identification of trace organic contaminants in natural aquatic environments, the removal of trace organic contaminants from water or wastewater discharge is an urgent task. Ultraviolet (UV) and UV-based advanced oxidation processes (AOPs), such as UV/hydrogen peroxide (UV/H 2 O 2 ), UV/free chlorine and UV/persulfate, are attractive and promising approaches for the removal of these contaminants due to the high reactivity of active radical species produced in these UV-AOPs with a wide variety of organic contaminants. However, the removal efficiency of trace contaminants is greatly affected by the presence of background dissolved organic matter (DOM). In this study, we use ultrahigh resolution mass spectrometry to evaluate the transformation of a standard Suwanee River fulvic acid DOM isolate in UV photolysis and UV-AOPs. The use of probe compounds allows for the determination of the steady-state concentrations of active radical species in each UV-AOP. The changes in the H/C and O/C elemental ratios, double bond equivalents, and the low-molecular-weight transformation product concentrations of organic acids reveal that different DOM transformation patterns are induced by each UV-AOP. By comparison with the known reactivities of each radical species with specific organic compounds, we mechanistically and systematically elucidate the molecular-level DOM transformation pathways induced by hydroxyl, chlorine, and sulfate radicals in UV-AOPs. We find that there is a distinct transformation in the aliphatic components of DOM due to HO• in UV/H 2 O 2 and UV/free chlorine. Cl• induced transformation of olefinic species is also observed in the UV/free chlorine system. Transformation of aromatic and olefinic moieties by SO 4 •- are the predominant pathways in the UV/persulfate system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sirota, T V
2015-01-01
An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.
Spectroscopic studies on the antioxidant activity of p-coumaric acid.
Kiliç, Ismail; Yeşiloğlu, Yeşim
2013-11-01
p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe(2+)) chelating activity and ferric ions (Fe(3+)) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPH scavenging, ABTS(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties. Copyright © 2013 Elsevier B.V. All rights reserved.
Schuldt, E Z; Farias, M R; Ribeiro-do-Valle, R M; Ckless, K
2004-09-01
This study investigated the superoxide anion and hydroxyl radical scavenger properties, as well as the inhibition of lipid peroxidation by the crude hydroalcoholic extract (CE) and the butanolic (BF) and ethyl acetate (EAF) fractions of Cuphea carthagenensis leaves. In a enzymatic system of O2- production (xanthine/xanthine oxidase system) the CE, EAF and BF (0.1-100 microg ml(-1)) were effective at inhibiting both uric acid formation and NBT reduction by O2(-1). In the non-enzymatic system of O2- generation, the CE and fractions were effective only at the concentration of 100 microg ml(-1). The CE, EAF and BF were also evaluated for their ability to scavenge hydroxyl radicals and/or to chelate iron. The results showed that CE, BF and EAF from C. carthagenensis (0.1-100 microg ml(-1)) were able to inhibit deoxyribose degradation in a concentration-dependent manner. CE was more potent than the fractions. In a hydrophobic system, increasing concentrations of CE, EAF and BF (0.1-100 microg ml(-1)) caused graded inhibition of lipid peroxidation of rat liver homogenate. The EAF displayed the lowest median inhibitory concentration. The present study suggests that an extract (CE) and fractions (EAF and BF) from C. carthagenensis leaves are significant sources of phenolic compounds with antioxidant activity in vitro and may have important health effects, for example, in cardiovascular disease.
Ahmad, Sohail; AbdEl-Salam, Naser M; Ullah, Riaz
2016-01-01
The present study deals with the antimicrobial, antioxidant, and functional group analysis of Heliotropium bacciferum extracts. Disc diffusion susceptibility method was followed for antimicrobial assessment. Noteworthy antimicrobial activities were recorded by various plant extracts against antibiotic resistant microorganisms. Plant flower extracts antioxidant activity was investigated against 2, 2-diphenyl-1-picryl hydrazyl radical by ultraviolet spectrophotometer (517 nm). Plant extracts displayed noteworthy radical scavenging activities at all concentrations (25-225 μg/mL). Notable activities were recorded by crude, chloroform and ethyl acetate extracts up to 88.27% at 225 μg/mL concentration. Compounds functional groups were examined by Fourier transform infrared spectroscopic studies. Alkanes, alkenes, alkyl halides, amines, carboxylic acids, amides, esters, alcohols, phenols, nitrocompounds, and aromatic compounds were identified by FTIR analysis. Thin layer chromatography bioautography was carried out for all plant extracts. Different bands were separated by various solvent systems. The results of the current study justify the use of Heliotropium bacciferum in traditional remedial herbal medicines.
Ninomiya, Kazuaki; Takamatsu, Hiromi; Onishi, Ayaka; Takahashi, Kenji; Shimizu, Nobuaki
2013-07-01
The present study demonstrated that the combined use of the sonocatalytic reaction (using ultrasound and titanium dioxide) and the Fenton reaction exhibited synergistically enhanced hydroxyl (OH) radical generation. Dihydroxybenzoic acid (DHBA) concentration as index of OH radical generation was 13 and 115 μM at 10 min in the sonocatalytic reaction and Fenton reaction, respectively. On the other hand, the DHBA concentration was 378 μM at 10 min in the sonocatalytic-Fenton reaction. The sonocatalytic-Fenton reaction was used for degradation of lignin. The lignin degradation ratio was 1.8%, 49.9%, and 60.0% at 180 min in the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively. Moreover, the sonocatalytic-Fenton reaction was applied to pretreatment of lignocellulosic biomass to enhance subsequent enzymatic saccharification. The cellulose saccharification ratio was 11%, 14%, 16% and 25% at 360 min of pretreatment by control reaction, the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Peroxy Radical Measurements during PROPHET-AMOS 2016
NASA Astrophysics Data System (ADS)
Wood, E. C. D.; Deming, B.; Rollings, D.
2016-12-01
We present measurements of total peroxy radicals (HO2 + RO2) using the Ethane Chemical Amplifier (ECHAMP) technique during the PROPHET-AMOS project in Pellston, Michigan during July 2016. The C2H6/NO amplification chemistry occurred in FEP reaction chambers at the top of the PROPHET tower at a height of 34 m. The NO2 amplification product was transported through tubing to two cavity attenuated phase shift spectrometers (CAPS) housed inside the PROPHET laboratory. Two calibration sources were used: one based on water photolysis in the presence of isoprene and ozone actinometry, and another based on methyl iodide (CH3I) photolysis. The former was integrated into the inlet system, allowing for daily calibrations, whereas the latter was used twice during the campaign. Peak mixing ratios on warm, sunny days were approximately 40 ppt. Nighttime concentrations varied from below the instrumental detection limit to approximately 5 ppt. The measured peroxy radical concentrations will be compared to HO2 and HO2* mixing ratios measured by the Indiana University LIF-FAGE instrument.
Impacts of cloud water droplets on the OH production rate from peroxide photolysis.
Martins-Costa, M T C; Anglada, J M; Francisco, J S; Ruiz-López, Manuel F
2017-12-06
Understanding the difference between observed and modeled concentrations of HO x radicals in the troposphere is a current major issue in atmospheric chemistry. It is widely believed that existing atmospheric models miss a source of such radicals and several potential new sources have been proposed. In recent years, interest has increased on the role played by cloud droplets and organic aerosols. Computer modeling of ozone photolysis, for instance, has shown that atmospheric aqueous interfaces accelerate the associated OH production rate by as much as 3-4 orders of magnitude. Since methylhydroperoxide is a main source and sink of HO x radicals, especially at low NO x concentrations, it is fundamental to assess what is the influence of clouds on its chemistry and photochemistry. In this study, computer simulations for the photolysis of methylhydroperoxide at the air-water interface have been carried out showing that the OH production rate is severely enhanced, reaching a comparable level to ozone photolysis.
[Functional food and bioavailability in the target organ skin].
Darwin, M; Schanzer, S; Teichmann, A; Blume-Peytavi, U; Sterry, W; Lademann, J
2006-04-01
Reactive free radicals can be produced in the skin by the action of environmental factors, such as sun radiation and toxins. These radicals can damage the DNA, proteins and lipids of the living cells. The consequences can be skin aging, immune suppression and even skin cancer. Humans have developed a protective mechanism against the action of free radicals in the form of antioxidant substances. Several of these antioxidants cannot be produced by humans and have to be acquired via food, such as carotenoids. Optical, non-invasive methods, like resonance Raman spectroscopy, allow a qualitative and quantitative online detection of the kinetics of antioxidants such as carotenoids in the skin. By employing this method it has been shown that the uptake of carotenoids in food can lead to an accumulation in the skin. On the other hand, stress, illness and UV-radiation can reduce the concentration of antioxidant substances in the skin. A high concentration of antioxidant substances is protective and associated with a reduction in skin wrinkling.
Saturated laser fluorescence in turbulent sooting flames at high pressure
NASA Technical Reports Server (NTRS)
King, G. B.; Carter, C. D.; Laurendeau, N. M.
1984-01-01
The primary objective was to develop a quantitative, single pulse, laser-saturated fluorescence (LSF) technique for measurement of radical species concentrations in practical flames. The species of immediate interest was the hydroxyl radical. Measurements were made in both turbulent premixed diffusion flames at pressures between 1 and 20 atm. Interferences from Mie scattering were assessed by doping with particles or by controlling soot loading through variation of equivalence ratio and fuel type. The efficacy of the LSF method at high pressure was addressed by comparing fluorescence and adsorption measurements in a premixed, laminar flat flame at 1-20 atm. Signal-averaging over many laser shots is sufficient to determine the local concentration of radical species in laminar flames. However, for turbulent flames, single pulse measurements are more appropriate since a statistically significant number of laser pulses is needed to determine the probability function (PDF). PDFs can be analyzed to give true average properties and true local kinetics in turbulent, chemically reactive flows.
Zhao, Weixiong; Fang, Bo; Lin, Xiaoxiao; Gai, Yanbo; Zhang, Weijun; Chen, Wenge; Chen, Zhiyou; Zhang, Haifeng; Chen, Weidong
2018-03-20
Atmospheric simulation chambers play vital roles in the validation of chemical mechanisms and act as a bridge between field measurements and modeling. Chambers operating at atmospheric levels of OH radicals (10 6 -10 7 molecule/cm 3 ) can significantly enhance the possibility for investigating the discrepancies between the observation and model predications. However, few chambers can directly detect chamber OH radicals at ambient levels. In this paper, we report on the first combination of a superconducting magnet with midinfrared Faraday rotation spectroscopy (FRS) for real time in situ measurement of the OH concentration in an atmospheric simulation chamber. With the use of a multipass enhanced FRS, a detection limit of 3.2 × 10 6 OH/cm 3 (2σ, 4 s) was achieved with an absorption path length of 108 m. The developed FRS system provided a unique, self-calibrated analytical instrument for in situ direct measurement of chamber OH concentration.
Zdybel, Magdalena; Chodurek, Ewa; Pilawa, Barbara
2014-01-01
Free radicals in A-2058 human melanoma cells were studied by the use of electron paramagnetic resonance (EPR) spectroscopy. The aim of this work was to determine the changes in relative free radical concentrations in tumor A-2058 cells after treatment by valproic acid (VPA) and 5,7-dimethoxycoumarin (DMC). The influences of VPA and DMC on free radicals in A-2058 cells were compared with those for human melanoma malignum A-375 and G-361 cells, which were tested by us earlier. Human malignant melanoma A-2058 cells were exposed to interactions with VPA, DMC, and both VPA and DMC. The tumor cells A-2058 were purchased from LGC Standards (Lomianki, Poland), and they were grown in the standard conditions: at 37°C and in an atmosphere containing 95% air and 5% CO2, in the Minimum Essential Medium Eagle (MEM, Sigma-Aldrich). The A-2058 cells were incubated with VPA (1 mM) and DMC (10 μM) for 4 days. The first-derivative EPR spectra of the control A-2058 cells, and the cells treated with VPA, DMC, and both VPA and DMC, were measured by the electron paramagnetic resonance spectrometer of Radiopan (Poznań, Poland) with microwaves from an X-band (9.3 GHz). The parameters of the EPR lines: amplitudes (A), integral intensities (I), line widths (ΔBpp), and g-factors, were analyzed. The changes of amplitudes and line widths with microwave power increasing from 2.2 to 70 mW were drawn evaluated, o-Semiquinone free radicals of melanin biopolymer are mainly responsible for the EPR lines of A-2058 melanoma malignum cells. The amounts of free radicals in A-2058 cells treated with VPA, and both VPA and DMC, were lower than in the untreated control cells. Application of the tested substances (VPA, and both VPA and DMC) as the antitumor compounds was discussed. DMC without VPA did not decrease free radicals concentration in A-2058 cells. The studies con-firmed that EPR spectroscopy may be used to examine interactions of free radicals with antitumor compounds.
Colado, M I; O'Shea, E; Granados, R; Murray, T K; Green, A R
1997-01-01
Administration of 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy') to several species results in a long lasting neurotoxic degeneration of 5-hydroxytryptaminergic neurones in several regions of the brain. We have now investigated whether this degeneration is likely to be the result of free radical-induced damage. Free radical formation can be assessed by measuring the formation of 2,3- and 2,5-dihydroxybenzoic acid (2,3-DHBA and 2,5-DHBA) from salicylic acid. An existing method involving implantation of a probe into the hippocampus and in vivo microdialysis was modified and validated. Administration of MDMA (15 mg kg−1, i.p.) to Dark Agouti (DA) rats increased the formation of 2,3-DHBA (but not 2,5-DHBA) for at least 6 h. Seven days after this dose of MDMA, the concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) was reduced by over 50% in hippocampus, cortex and striatum, reflecting neurotoxic damage. There was no change in the concentration of dopamine or 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum. p-Chloroamphetamine (PCA), another compound which produces a neurotoxic loss of cerebral 5-HT content, when given at a dose of 5 mg kg−1 also significantly increased the formation of 2,3-DHBA (but not 2,5-DHBA) in the dialysate for over 4.5 h. post-injection starting 2 h after treatment. In contrast, fenfluramine administration (15 mg kg−1, i.p.) failed to increase the 2,3-DHBA or 2,5-DHBA concentration in the dialysate. A single fenfluramine injection nevertheless also markedly decreased the concentration of 5-HT and 5-HIAA in the hippocampus, cortex and striatum seven days later. When rats pretreated with fenfluramine (15 mg kg−1, i.p.) seven days earlier were given MDMA (15 mg kg−1, i.p.) no increase in 2,3-DHBA was seen in the dialysate from the hippocampal probe. This indicates that the increase in free radical formation following MDMA is occurring in 5-HT neurones which have been damaged by the prior fenfluramine injection. Administration of the free radical scavenging agent α-phenyl-N-tert-butyl nitrone (PBN; 120 mg kg−1, i.p.) 10 min before and 120 min after an MDMA (15 mg kg−1, i.p.) injection prevented the acute rise in the 2,3-DHBA concentration in the dialysate and attenuated by 30% the long term damage to hippocampal 5-HT neurones (as indicated by a smaller MDMA-induced decrease in both the concentration of 5-HT and 5-HIAA and also the binding of [3H]-paroxetine). These data indicate that a major mechanism by which MDMA and PCA induce damage to 5-hydroxytryptaminergic neurones in rat brain is by increasing the formation of free radicals. These probably result from the degradation of catechol and quinone metabolites of these substituted amphetamines. In contrast, fenfluramine induces damage by another mechanism not involving free radicals; a proposal supported by some of our earlier indirect studies. We suggest that these different modes of action render untenable the recent suggestion that MDMA will not be neurotoxic in humans because fenfluramine appears safe at clinical doses. PMID:9222545
Evaluation of pulsed streamer corona experiments to determine the O* radical yield
NASA Astrophysics Data System (ADS)
van Heesch, E. J. M.; Winands, G. J. J.; Pemen, A. J. M.
2008-12-01
The production of O* radicals in air by a pulsed streamer plasma is studied by integration of a large set of precise experimental data and the chemical kinetics of ozone production. The measured data comprise ozone production, plasma energy, streamer volume, streamer length, streamer velocity, humidity and gas-flow rate. Instead of entering input parameters into a kinetic model to calculate the end products the opposite strategy is followed. Since the amount of end-products (ozone) is known from the measurements the model had to be applied in the reverse direction to determine the input parameters, i.e. the O* radical concentration.
Fluorescence-Based Sensor for Monitoring Activation of Lunar Dust
NASA Technical Reports Server (NTRS)
Wallace, William T.; Jeevarajan, Antony S.
2012-01-01
This sensor unit is designed to determine the level of activation of lunar dust or simulant particles using a fluorescent technique. Activation of the surface of a lunar soil sample (for instance, through grinding) should produce a freshly fractured surface. When these reactive surfaces interact with oxygen and water, they produce hydroxyl radicals. These radicals will react with a terephthalate diluted in the aqueous medium to form 2-hydroxyterephthalate. The fluorescence produced by 2-hydroxyterephthalate provides qualitative proof of the activation of the sample. Using a calibration curve produced by synthesized 2-hydroxyterephthalate, the amount of hydroxyl radicals produced as a function of sample concentration can also be determined.
Evidence for Formation of a Radical-Mediated Flavin-N5 Covalent Intermediate.
Dai, Yumin; Valentino, Hannah R; Sobrado, Pablo
2018-05-18
The redox-neutral reaction catalyzed by 2-haloacrylate hydratase (2-HAH) leads to the conversion of 2-chloroacrylate to pyruvate. Previous mechanistic studies demonstrated formation of a flavin-iminium ion as an important intermediate in the 2-HAH catalytic cycle. Time-resolved flavin absorbance studies were performed in this study and the data showed that the enzyme is capable of stabilizing both anionic and neutral flavin semiquinone species. The presence of a radical scavenger decreases the activity in a concentration-dependent manner. These data are consistent with the flavin iminium intermediate occurring via radical recombination. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yuan, Jiaojiao; Li, Bing; Qin, Frank G. F.; Tu, Junling
2018-01-01
High purify oleuropein (81.04% OL) was hydrolyzed by hemicellulase and phenols was existed in the ethyl acetate extract of enzymatic hydrolysate (EAE). The results presented that there were hydroxytyrosol (HT), tyrosol, caffeic acid, 3,4-dihydroxybenzoic acid, 3,4-dihydroxy phenylacetic acid in EAE by HPLC, and HT content was 19.36%. Antioxidant activities (DPPH radical scavenging capacity) were all added as the samples concentration increased, and dose-effect relationships also existed. HT possessed the highest DPPH radical scavenging capacity, followed by Vc, and eugenol, OL, caffeic acid, 3,4-dihydroxy phenylacetic acid and 3,4-dihydroxybenzoic acid.
Detection of environmentally persistent free radicals at a superfund wood treating site.
dela Cruz, Albert Leo N; Gehling, William; Lomnicki, Slawomir; Cook, Robert; Dellinger, Barry
2011-08-01
Environmentally persistent free radicals (EPFRs) have previously been observed in association with combustion-generated particles and airborne PM(2.5) (particulate matter, d < 2.5um). The purpose of this study was to determine if similar radicals were present in soils and sediments at Superfund sites. The site was a former wood treating facility containing pentachlorophenol (PCP) as a major contaminant. Both contaminated and noncontaminated (just outside the contaminated area) soil samples were collected. The samples were subjected to the conventional humic substances (HS) extraction procedure. Electron paramagnetic resonance (EPR) spectroscopy was used to measure the EPFR concentrations and determine their structure for each sample fraction. Analyses revealed a ∼30× higher EPFR concentration in the PCP contaminated soils (20.2 × 10(17) spins/g) than in the noncontaminated soil (0.7 × 10(17) spins/g). Almost 90% of the EPFR signal originated from the minerals/clays/humins fraction. GC-MS analyses revealed ∼6500 ppm of PCP in the contaminated soil samples and none detected in the background samples. Inductively coupled plasma-atomic emission spectrophotometry (ICP-AES) analyses revealed ∼7× higher concentrations of redox-active transition metals, in the contaminated soils than the noncontaminated soil. Vapor phase and liquid phase dosing of the clays/minerals/humins fraction of the soil with PCP resulted in an EPR signal identical to that observed in the contaminated soil, strongly suggesting the observed EPFR is pentachlorophenoxyl radical. Chemisorption and electron transfer from PCP to transition metals and other electron sinks in the soil are proposed to be responsible for EPFR formation.
Ionizing radiation-induced destruction of benzene and dienes in aqueous media.
Al-Sheikhly, Mohamad; Poster, Dianne L; An, Jung-Chul; Neta, Pedatsur; Silverman, Joseph; Huie, Robert E
2006-05-01
Pulse radiolysis with spectrophotometric and conductometric detection was utilized to study the formation and reactions of radicals from benzene and dienes in aqueous solutions. The benzene OH adduct, *C6H6OH, reacts with O2 (k = 3 x 10(8) L mol(-1) s(-1)) in a reversible reaction. The peroxyl radical, HOC6H6O2*, undergoes O2*- elimination, bimolecular decay, and reaction with benzene to initiate a chain reaction, depending on the dose rate, benzene concentration, and pH. The occurrence of the chain reaction is demonstrated in low-dose-rate gamma radiolysis experiments where the consumption of O2 was monitored. 1,4-Cyclohexadiene, 1,4-hexadiene, and 1,4-pentadiene form OH-adducts and undergo H-abstraction by O*- radicals. The OH-adducts react with O2 to form peroxyl radicals. These peroxyl radicals, however, do not undergo unimolecular O2*- elimination but rather decay by second-order processes, which lead to subsequent steps of O2*- elimination.
Effect of Curcumin Against Oxidation of Biomolecules by Hydroxyl Radicals
Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little
2014-01-01
Background: Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. Objective: The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. Materials and Methods: We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Results: Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. Conclusion: These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals. PMID:25478334
Amić, Ana; Marković, Zoran; Klein, Erik; Dimitrić Marković, Jasmina M; Milenković, Dejan
2018-04-25
The role of antiradical moieties (catechol, guaiacyl and carboxyl group) and molecular conformation in antioxidative potency of dihydrocaffeic acid (DHCA) and dihydroferulic acid (DHFA) was investigated by density functional theory (DFT) method. The thermodynamic preference of different reaction paths of double (2H + /2e - ) free radical scavenging mechanisms was estimated. Antiradical potency of DHCA and DHFA was compared with that exerted by their unsaturated analogs - caffeic acid (CA) and ferulic acid (FA). Cis/trans and anti-isomers of studied cinnamic acid derivatives may scavenge free radicals via double processes by involvement of catechol or guaiacyl moiety. Carboxyl group of syn-isomers may also participate in the inactivation of free radicals. Gibbs free energies of reactions with various free radicals indicate that syn-DHCA and syn-DHFA, colon catabolites that could be present in systemic circulation in low μM concentrations, have a potential to contribute to health benefits by direct free radical scavenging. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries
Wang, Qiang; Zheng, Jianming; Walter, Eric; ...
2015-01-09
Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-Smore » cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.« less
Chatti, Ines Bouhlel; Boubaker, Jihed; Skandrani, Ines; Bhouri, Wissem; Ghedira, Kamel; Chekir Ghedira, Leila
2011-08-01
The antioxidant potency of Acacia salicina extracts was investigated. Total antioxidant capacity was determined using an ABTS(+) assay. Superoxide radical scavenging was measured using riboflavin-light-nitro blue tetrazolium (NBT) assay. In addition, the content of phenols, total flavonoids and sterols were measured in the tested extracts. The petroleum ether exhibited a potent scavenging activity toward ABTS radical cations. Whereas, chloroform extract showed the highest activity against superoxides radicals and was also able to protect pKS plasmid DNA against hydroxyl radicals induced DNA damages. The antimutagenicity of these extracts was assayed using the Ames assay against Salmonella typhimurium TA98 and S. typhimurium TA 1535 tester strains at different concentrations. These extracts decreased significantly the mutagenecity induced by sodium azide (SA) and 4-nitro-o-phenylenediamine (NOP). The antioxidant and antimutagenecity activities exhibited by A. salicina depended on the chemical composition of the tested extracts. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bell, D; Jackson, M; Nicoll, J J; Millar, A; Dawes, J; Muir, A L
1990-01-01
Activated neutrophils releasing proteolytic enzymes and oxygen free radicals have been implicated in extending myocardial injury after myocardial infarction. Neutrophil elastase was used as a marker of neutrophil activation and the non-peroxide diene conjugate of linoleic acid was used as an indicator of free radical activity in 32 patients after acute myocardial infarction; 17 were treated by intravenous thrombolysis. Patients with acute myocardial infarction had higher plasma concentrations of neutrophil elastase and the non-peroxide diene conjugated isomer of linoleic acid than normal volunteers or patients with stable ischaemic heart disease. Patients treated by thrombolysis had an early peak of neutrophil elastase at eight hours while those who had not been treated by thrombolysis showed a later peak 40 hours after infarction. The plasma concentration of non-peroxide conjugated diene of linoleic acid was highest 16 hours after the infarction irrespective of treatment by thrombolysis. Quantitative imaging with single photon emission tomography showed decreased uptake of indium-111 labelled neutrophils in the infarcted myocardium (as judged from technetium-99m pyrophosphate) in those who had received thrombolysis, suggesting a decreased inflammatory response. The results indicate increased neutrophil activation and free radical production after myocardial infarction; they also suggest that thrombolysis does not amplify the inflammatory response and may indeed suppress it. Images PMID:2317413
Collier, A; Jackson, M; Dawkes, R M; Bell, D; Clarke, B F
1988-11-01
Free radicals are unstable chemical species which react with and oxidize adjacent molecules, particularly polyunsaturated lipids. The diene-conjugated non-peroxide isomer of linoleic acid (PL-9,11-LA') has been identified as the main diene-conjugated compound in plasma, and is a probable marker of free radical activity. The aim of the current study was to determine whether the level of PL-9,11-LA', measured by HPLC, is altered in insulin-dependent diabetes, and to investigate whether any abnormality demonstrated correlated with microvascular disease in the form of retinopathy. There was no difference in the concentrations of linoleic acid between the diabetic and control groups (422(129) vs 402(81) (SD) mumol l-1). However, the concentration of PL-9,11-LA' was significantly reduced in the diabetic group compared with control group (15.6(6.7) vs 19.3(3.9) mumol l-1, p less than 0.01), with the molar ratio of PL-9,11-LA':linoleic acid x 100 similarly reduced (3.8(1.3) vs 5.0(1.6)%, p less than 0.005). This study does not support the concept that free radicals play a significant role in the development of diabetic vascular disease.
Physical factors influence for biologic systems
NASA Astrophysics Data System (ADS)
Piruzyan, L. A.
2005-08-01
Physical methods are widely spread in diagnostics and therapy of different pathologies, especially in oncology. The application of lasers occurred to be the perspective approach for combined methods application in medicine. Our work is devoted to investigation of thermal effect of focused laser beam in the model of Garding-Passi melanoma and also to the study of free radicals activity after the radiation with non-focused laser beam. The histologic alterations correlated with theoretical calculations of temperature distribution in irradiated tissue for energies 30-60 J attracted our interest. The values of maximal temperatures in depths of tissue for energies 30-60 J were carried out. In the model of permanent magnetic field (PMF) effect for mice ascites sarcoma 37 we have showed the linear dependence of tumor growth inhibition from the period of PMF treatment. Simultaneously we investigated PMF influence for free radical"s (FR) concentrations in mice organs and tissues and potentially appearing questions of PMF effect for biopotential in connection with FR formation. We have also studied the alterations of K, Na and Ca ions concentrations in ascetic fluids after animal"s PMF treatment. We revealed some reasons of biopotential generation and concluded that biopotential is not the result of specific ions gradient only but its generation can be followed by free radicals states appearance and occurrence of semi-conductivity in biostructures.
Oyana, Tonny J.; Lomnicki, Slawomir M.; Guo, Chuqi; Cormier, Stephania A.
2018-01-01
Stable, bioreactive, radicals known as environmentally persistent free radicals (EPFRs) have been found to exist on the surface of airborne PM2.5. These EPFRs have been found to form during many combustion processes, are present in vehicular exhaust, and persist in the environment for weeks and biological systems for up to 12 h. To measure EPFRs in PM samples, high volume samplers are required and measurements are less representative of community exposure; therefore, we developed a novel spatial phytosampling methodology to study the spatial patterns of EPFR concentrations using plants. Leaf samples for laboratory PM analysis were collected from 188 randomly drawn sampling sites within a 500-m buffer zone of pollution sources across a sampling grid measuring 32.9 × 28.4 km in Memphis, Tennessee. PM was isolated from the intact leaves and size fractionated, and EPFRs on PM quantified by electron paramagnetic resonance spectroscopy. The radical concentration was found to positively correlate with the EPFR g-value, thus indicating cumulative content of oxygen centered radicals in PM with higher EPFR load. Our spatial phytosampling approach reveals spatial variations and potential “hotspots” risk due to EPFR exposure across Memphis and provides valuable insights for identifying exposure and demographic differences for health studies. PMID:28805054
dela Cruz, Albert Leo N; Cook, Robert L; Dellinger, Barry; Lomnicki, Slawomir M; Donnelly, Kirby C; Kelley, Matthew A; Cosgriff, David
2014-01-01
We previously reported the presence of environmentally persistent free radicals (EPFRs) in pentachlorophenol (PCP) contaminated soils at a closed wood treatment facility site in Georgia. The reported EPFRs were pentachlorophenoxyl radicals formed on soils under ambient conditions via electron transfer from PCP to electron acceptors in the soil. In this study, we present results for soil and sediment samples from additional Superfund sites in Montana and Washington. Paramagnetic centers associated with different chemical environments were characterized by distinct g-factors and line widths (ΔHp-p). EPFR concentrations in contaminated samples were ~30×, ~12×, and ~2× higher than background samples at the Georgia, Montana, and Washington sites, respectively. EPR signals in the Montana contaminated soils were very similar to those previously observed for pentachlorophenol contaminated soils at the Georgia site, i.e., g = 2.00300 and ΔHp-p = 6.0 G, whereas signals in the Washington sediment samples were similar to those previously observed for other PAH contaminated soils, i.e., g = 2.00270 and ΔHp-p = 9.0 G. Total carbon content measurements exhibited direct correlation with EPFR concentration. The presence of radicals in sites contaminated a decade to a century ago suggests continuous formation of EPFRs from molecular contaminants in the soil and sediment.
NASA Astrophysics Data System (ADS)
Karamah, E. F.; Leonita, S.; Bismo, S.
2018-01-01
Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC
dela Cruz, Albert Leo N.; Cook, Robert L.; Dellinger, Barry; Lomnicki, Slawomir M.; Donnelly, Kirby C.; Kelley, Matthew A.; Cosgriff, David
2014-01-01
We previously reported the presence of environmentally persistent free radicals (EPFRs) in pentachlorophenol (PCP) contaminated soils at a closed wood treatment facility site in Georgia. The reported EPFRs were pentachlorophenoxyl radicals formed on soils under ambient conditions via electron transfer from PCP to electron acceptors in the soil. In this study, we present results for soil and sediment samples from additional Superfund sites in Montana and Washington. Paramagnetic centers associated with different chemical environments were characterized by distinct g-factors and line widths (ΔHp-p). EPFR concentrations in contaminated samples were ~30x, ~12x, and ~2x higher than background samples at the Georgia, Montana, and Washington sites, respectively. EPR signals in the Montana contaminated soils were very similar to those previously observed for pentachlorophenol contaminated soils at the Georgia site, i.e., g = 2.00300 and ΔHp-p = 6.0 G, whereas signals in the Washington sediment samples were similar to those previously observed for other PAH contaminated soils, i.e., g = 2.00270 and ΔHp-p = 9.0G. Total carbon content measurements exhibited direct correlation with EPFR concentration. The presence of radicals in sites contaminated a decade to a century ago suggests continuous formation of EPFRs from molecular contaminants in the soil and sediment. PMID:24244947
Oyana, Tonny J; Lomnicki, Slawomir M; Guo, Chuqi; Cormier, Stephania A
2017-09-19
Stable, bioreactive, radicals known as environmentally persistent free radicals (EPFRs) have been found to exist on the surface of airborne PM 2.5 . These EPFRs have been found to form during many combustion processes, are present in vehicular exhaust, and persist in the environment for weeks and biological systems for up to 12 h. To measure EPFRs in PM samples, high volume samplers are required and measurements are less representative of community exposure; therefore, we developed a novel spatial phytosampling methodology to study the spatial patterns of EPFR concentrations using plants. Leaf samples for laboratory PM analysis were collected from 188 randomly drawn sampling sites within a 500-m buffer zone of pollution sources across a sampling grid measuring 32.9 × 28.4 km in Memphis, Tennessee. PM was isolated from the intact leaves and size fractionated, and EPFRs on PM quantified by electron paramagnetic resonance spectroscopy. The radical concentration was found to positively correlate with the EPFR g-value, thus indicating cumulative content of oxygen centered radicals in PM with higher EPFR load. Our spatial phytosampling approach reveals spatial variations and potential "hotspots" risk due to EPFR exposure across Memphis and provides valuable insights for identifying exposure and demographic differences for health studies.
Choo, Wee-Sim; Birch, Edward John
2009-02-01
Lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate the antioxidant activity of the lipophilized products as model systems for enhanced protection of unsaturated oil. The lipophilized products were identified using ESI-MS. Free radical scavenging activity was determined using the DPPH radical method. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Ferulic acid showed much higher radical scavenging activity than cinnamic acid, which has limited activity. The esterification of cinnamic acid and ferulic acid with triolein resulted in significant increase and decrease in the radical scavenging activity, respectively. These opposite effects were due to the effect of addition of electron-donating alkyl groups on the predominant mechanism of reaction (hydrogen atom transfer or electron transfer) of a species with DPPH. The effect of esterification of cinnamic acid was confirmed using ethyl cinnamate which greatly enhances the radical scavenging activity. Although, compared to the lipophilized cinnamic acid product, the activity was lower. The radical scavenging activity of the main component isolated from lipophilized cinnamic acid product using solid phase extraction, monocinnamoyl dioleoyl glycerol, was as good as the unseparated mixture of lipophilized product. Based on the ratio of a substrate to DPPH concentration, lipophilized ferulic acid was a much more efficient radical scavenger than lipophilized cinnamic acid.
Cao, Wei; Wang, Wei David; Xu, Hai-Sen; Sergeyev, Ivan V; Struppe, Jochem; Wang, Xiaoling; Mentink-Vigier, Frederic; Gan, Zhehong; Xiao, Ming-Xing; Wang, Lu-Yao; Chen, Guo-Peng; Ding, San-Yuan; Bai, Shi; Wang, Wei
2018-06-06
Rapid progress has been witnessed in the past decade in the fields of covalent organic frameworks (COFs) and dynamic nuclear polarization (DNP). In this contribution, we bridge these two fields by constructing radical-embedded COFs as promising DNP agents. Via polarization transfer from unpaired electrons to nuclei, DNP realizes significant enhancement of NMR signal intensities. One of the crucial issues in DNP is to screen for suitable radicals to act as efficient polarizing agents, the basic criteria for which are homogeneous distribution and fixed orientation of unpaired electrons. We therefore envisioned that the crystalline and porous structures of COFs, if evenly embedded with radicals, may work as a new "crystalline sponge" for DNP experiments. As a proof of concept, we constructed a series of proxyl-radical-embedded COFs (denoted as PR( x)-COFs) and successfully applied them to achieve substantial DNP enhancement. Benefiting from the bottom-up and multivariate synthetic strategies, proxyl radicals have been covalently reticulated, homogeneously distributed, and rigidly embedded into the crystalline and mesoporous frameworks with adjustable concentration ( x%). Excellent performance of PR( x)-COFs has been observed for DNP 1 H, 13 C, and 15 N solid-state NMR enhancements. This contribution not only realizes the direct construction of radical COFs from radical monomers, but also explores the new application of COFs as DNP polarizing agents. Given that many radical COFs can therefore be rationally designed and facilely constructed with well-defined composition, distribution, and pore size, we expect that our effort will pave the way for utilizing radical COFs as standard polarizing agents in DNP NMR experiments.
Wang, Jing; Zheng, Meizhu; Chen, Lina; Liu, Zhiqiang; Zhang, Yuchi; Liu, Chun-Ming; Liu, Shu
2016-11-01
Hydroxyl radicals are the most reactive free radical of human body, a strong contributor to tissue damage. In this study, liquid chromatography coupled to electrospray ionization mass spectrometry was applied to screen and identify hydroxyl radical scavengers from the total flavonoids of Ginkgo biloba leaves, and high-performance counter current chromatography was used to separate and isolate the active compounds. Furthermore, molecular devices were used to determine hydroxyl radical scavenging activities of the obtained hydroxyl radical scavengers and other flavonoids from G. biloba leaves. As a result, six compounds were screened as hydroxyl radical scavengers, but only three flavonoids, namely, rutin, cosmos glycosides and apigenin-7-O-Glu-4'-O-Rha, were isolated successfully from total flavonoids by high-performance counter current chromatography. The purities of the three obtained compounds were over 90%, respectively, as determined by liquid chromatography. Molecular devices with 96-well microplates evaluation indicated that the 50% scavenging concentration values of screened compounds were lower than that of other flavonoids, they performed greater hydroxyl radical scavenging activity, and the evaluation effects were consistent with the liquid chromatography with mass spectrometry screening results. Therefore, chromatography combined with molecular devices is a feasible and an efficient method for systematic screening, identification, isolation, and evaluation of bioactive components in mixture of botanical medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hu, Yufei; Zhang, Zhujun; Yang, Chunyan
2008-07-01
Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.
Li, Linxiang; Abe, Yoshihiro; Kanagawa, Kiyotada; Shoji, Tomoko; Mashino, Tadahiko; Mochizuki, Masataka; Tanaka, Miho; Miyata, Naoki
2007-09-19
Hydroxyl radical formation by Fenton reaction in the presence of an iron-chelating agent such as EDTA was traced by two different assay methods; an electron spin resonance (ESR) spin-trapping method with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and high Performance liquid chromatography (HPLC)-fluorescence detection with terephthalic acid (TPA), a fluorescent probe for hydroxyl radicals. From the ESR spin-trapping measurement, it was observed that EDTA seemed to suppress hydroxyl radical formation with the increase of its concentration. On the other hand, hydroxyl radical formation by Fenton reaction was not affected by EDTA monitored by HPLC assay. Similar inconsistent effects of other iron-chelating agents such as nitrylotriacetic acid (NTA), diethylenetriamine penta acetic acid (DTPA), oxalate and citrate were also observed. On the addition of EDTA solution to the reaction mixture 10 min after the Fenton reaction started, when hydroxyl radical formation should have almost ceased but the ESR signal of DMPO-OH radicals could be detected, it was observed that the DMPO-OH* signal disappeared rapidly. With the simultaneous addition of Fe(II) solution and EDTA after the Fenton reaction ceased, the DMPO-OH* signal disappeared more rapidly. The results indicated that these chelating agents should enhance the quenching of [DMPO-OH]* radicals by Fe(II), but they did not suppress Fenton reaction by forming chelates with iron ions.
Antioxidant Properties of the Methanol Extract of the Wood and Pericarp of Caesalpinia decapetala
Pawar, CR; Surana, SJ
2010-01-01
The antioxidant activities of the methanol extracts from the wood and pericarp of Caesalpinia decapetala (Roth) Alston (Caesalpiniaceae) were assessed in efforts to validate the herb. The antioxidant activity of the plant has been studied using its ability to scavenger DPPH, superoxide radicals, and nitric oxide radical along with its ability to inhibit lipid peroxidation. The antioxidant activity and phenolic content of the pericarp as determined by the DPPH, superoxide radical, nitric oxide radical, total phenols, the flavonoids, and total flavonols were higher than that of the wood. Analysis of plant extracts revealed a high amount of polyphenols and flavonoids suggesting a possible role of these phytoconstituents in the antioxidant property. Moreover, the results were observed in a concentration and dose dependent manner. Studies clearly indicate that the C. decapetala has significant antioxidant activity. PMID:21331190
NASA Astrophysics Data System (ADS)
Zimmermann, Kathryn Jean
Nitrated polycyclic aromatic hydrocarbon (nitro-PAH) product distributions from the gas-phase hydroxyl (OH) and nitrate (NO3) radical-initiated reactions with selected PAHs, as well as the heterogeneous reactions of surface-bound PAHs with N2O5 and HNO3, were investigated. Chapter 2 presents formation yields of nitro-PAHs from the gas-phase OH radical-initiated reactions of 1,7- and 2,7-dimethylnaphthalene (DMN) as a function of NO 2 concentration over the range 0.04-0.14 ppmv. The measured formation yields of dimethylnitronaphthalenes (DMNNs) under conditions that the OH-DMN adducts reacted solely with NO2 were 0.252 ± 0.094% for Σ1,7-DMNNs and 0.010 ± 0.005% for Σ2,7-DMNNs. 1,7-dimethyl-5-nitronaphthalene (1,7DM5NN) was the major nitro-isomer formed, with a limiting high-NO 2 concentration yield of 0.212 ± 0.080% and with equal reactions of the 1,7-DMN-OH adduct with NO2 and O2 occurring in air at 60 ± 39 ppbv of NO2, indicating that the OH-DMN adduct reaction with NO2 can be important at NO2 concentrations commonly found in urban atmospheres. Although the yields of the DMNNs are low, ≤0.3%, the DMNN (and ethylnitronaphthalene) profiles from chamber experiments match well with those observed in polluted urban areas under conditions where OH radical-initiated chemistry is dominant, such as Mexico City, Mexico. Chapter 3 examines the nitro-PAH products of gas-phase OH and NO 3 radicals and heterogeneous N2O5 reactions with fluoranthene, pyrene, benz[a]anthracene, chrysene, and triphenylene. Analysis of nitro-PAHs in the NIST diesel particulate SRM (1975) and selected ambient samples are also presented. 2-Nitrofluoranthene (2-NFL) was the most abundant nitro-PAH in Riverside, CA and Mexico City, and the mw 273 nitro-PAHs were observed in lower concentrations. However, in Tokyo, Japan, concentrations of 1- + 2-nitrotriphenylene (NTP) were more similar to those of 2-NFL. Comparing specific nitro-PAH ratios in ambient particulate samples from Tokyo, Mexico City, and Riverside, and in diesel particles with those from chamber experiments confirms the atmospheric formation of 2-NFL and 2-nitropyrene (2-NPY) via gas-phase radical-initiated reactions. Heterogeneous nitration of ambient particle-bound PAHs is investigated in Chapter 4. Ambient particulate samples collected in Beijing, China, and from four sites within the Los Angeles air basin (Los Angeles, Azusa, Riverside, and Banning), along with filter-bound deuterated PAHs, were exposed to a gas-phase equilibrium mixture of N2O5, NO3 radicals, and NO2 in an environmental chamber at ambient pressure and temperature. For the majority of these reactions 1-nitropyrene was the nitro-PAH formed in the greatest amount and was determined to occur heterogeneously (and not in the gas-phase) by using isomer distribution patterns of deuterated nitro-PAHs either formed on filter surfaces or collected from the chamber in the gas-phase. Chapter 5 investigates the contributions of atmospheric formation (OH versus NO3 chemistry) and direct emissions (electrophilic nitration products) to ambient gas-phase and particulate nitro-PAHs sampled in the Los Angeles air basin and Mexico City, Mexico, over several sampling campaigns using a combination of several marker ratios of volatile and semi-volatile nitro-PAHs. Ratios of 2-nitrofluoranthene (2-NFL)/2-nitropyrene (2-NPY), 2-methyl-4-nitronaphthalene (2M4NN)/1-methyl-5-nitronaphthalene (1M5NN), and 2,7-dimethyl-4-nitronaphthalene (2,7DM4NN)/1,7-dimethyl-5-nitronaphthalene (1,7DM5NN) were used to assess the contribution of OH radical chemistry versus NO3 radical chemistry to ambient nitro-PAHs from 50 particle-phase and gas-phase samples. (Abstract shortened by UMI.).
Olczyk, Pawel; Ramos, Pawel; Bernas, Marcin; Komosinska-Vassev, Katarzyna; Stojko, Jerzy; Pilawa, Barbara
2013-01-01
Different groups of free radicals expressed in burn wounds treated with propolis and silver sulphadiazine were examined. The thermal effect forms major types of free radicals in a wound because of the breaking of chemical bonds. Free radicals, located in the heated skin, were tested after 21 days of treating by these two substances. The aim of this work was to find the method for determination of types and concentrations of different groups of free radicals in wound after high temperature impact during burning. The effects of the therapy by propolis and silver sulphadiazine on free radicals were studied. Since the chemical methods of free radicals studies are destructive, the usefulness of the electron paramagnetic resonance spectroscopy was tested in this work. The electron paramagnetic resonance spectra measured with the microwave power of 2.2 mW were numerically fitted by theoretical curves of Gaussian and Lorentzian shapes. The experimental electron paramagnetic resonance spectra of tissue samples are best fitted by the sum of one Gauss and two Lorentz lines. An innovatory numerical procedure of spectroscopic skin analysis was presented. It is very useful in the alternative medicine studies. PMID:23762162
EPR studies of the free radicals generated in gamma irradiated amino acid derivatives
NASA Astrophysics Data System (ADS)
Osmanoğlu, Y. Emre; Sütçü, Kerem
2017-10-01
Gamma irradiated powder forms of N-acetyl-DL-aspartic acid, N-carbamoyl-DL-aspartic acid and N-methyl-L-serine were investigated by electron paramagnetic resonance spectroscopy (EPR) at room temperature. In these compounds, the paramagnetic centers formed after irradiation were attributed to the HOOCCH2ĊHCOOH, COOHĊHCHNH and HOCH2ĊHCOOH radicals, respectively. The g values and the hyperfine coupling constants for the radical species are with values of g = 2.0038 ± 0.0005, aα = 2.15 mT, aβ(1) = 3.84 mT and aβ(2) = 2.15 for the first radical, g = 2.0039 ± 0.0005, aα = 1.7 mT, aß(1) = 0.62 mT, aß(2) = 0.54 mT, aγ = 0.53 mT for the second radical and g = 2.0039 ± 0.0005, aβ(1) = 2.40 mT, aβ(2) = 1.83 mT and aα = 1.83 mT for the third radical. The free radicals formed in three compounds were found to be stable for three months at room temperature. It was concluded that, spin density was concentrated predominantly in the 2pπ orbital of the carbon atom.
NASA Astrophysics Data System (ADS)
Javed, M. U.; Hens, K.; Martinez, M.; Kubistin, D.; Novelli, A.; Beygi, Z. H.; Axinte, R.; Nölscher, A. C.; Sinha, V.; Song, W.; Johnson, A. M.; Auld, J.; Bohn, B.; Sander, R.; Taraborrelli, D.; Williams, J.; Fischer, H.; Lelieveld, J.; Harder, H.
2016-12-01
Peroxy radicals play a key role in ozone (O3) production and hydroxyl (OH) recycling influencing the self-cleansing capacity and air quality. Organic peroxy radical (RO2) concentrations are estimated by three different approaches for a boreal forest, based on the field campaign HUMPPA-COPEC 2010 in Southern Finland. RO2 concentrations were simulated by a box model constrained by the comprehensive dataset from the campaign and cross-checked against the photostationary state (PSS) of NOx [= nitric oxide (NO) + nitrogen dioxide (NO2)] calculations. The model simulated RO2 concentrations appear too low to explain the measured PSS of NOx. As the atmospheric RO2 production is proportional to OH loss, the total OH loss rate frequency (total OH reactivity) in the model is underestimated compared to the measurements. The total OH reactivity of the model is tuned to match the observed total OH reactivity by increasing the biogenic volatile organic compound (BVOCs) concentrations for the model simulations. The new-found simulated RO2 concentrations based on the tuned OH reactivity explain the measured PSS of NOx reasonably well. Furthermore, the sensitivity of the NOx lifetime and the catalytic efficiency of NOx (CE) in O3 production, in the context of organic alkyl nitrate (RONO2) formation, was also investigated. Based on the campaign data, it was found that the lifetime of NOx and the CE are reduced and are sensitive to the RONO2 formation under low-NOx conditions, which matches a previous model-based study.
Antioxidant activities of Vaccinium uliginosum L. extract and its active components.
Kim, Young-Hee; Bang, Chae-Young; Won, Eun-Kyung; Kim, Jong-Pyung; Choung, Se-Young
2009-08-01
Vaccinium uliginosum L. (also known as bog bilberry) is a low-growing deciduous shrub classified in the Ericaceae family of plants, which includes numerous Vaccinium berries, blueberries, and cranberries. Berries of the Ericaceae family are known to contain organic acids, vitamins, glycosides, and anthocyanins and have been reported to have antioxidant activity. In order to identify the antioxidative principles of V. uliginosum, we separated water extracts into polyphenol, anthocyanin-rich (pigment), and sugar/acid fractions by using ethyl acetate, acidic methanol (MeOH), and 0.01 N HCl. Antioxidant activities were assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide radical, and hydroxyl radical assays. The crude extract and fractions containing polyphenol and pigment exhibited the greatest antioxidant activities with 50% inhibitory concentration (IC(50)) values of 85.8 microg/mL, 33.2 microg/mL, and 16.7 microg/mL, respectively, for the DPPH assay and 48.1 microg/mL, 83.8 microg/mL, and 51.9 microg/mL for the nonenzymatic superoxide radical assay. The fractions containing polyphenol, pigment, and sugar/acid significantly inhibited xanthine oxidase. To investigate the functional compounds from the active fractions, we purified the polyphenol fraction and separated the compounds by using chromatographic techniques. The crude extract was dissolved in MeOH and further purified by reversed-phase high-performance liquid chromatography (HPLC) using MeOH-water (35:65 vol/vol) (with 0.04% trifluoroacetic acid) to obtain VU-EA-1 (16.6 mg), VU-EA-2 (8.5 mg), VU-EA-3 (19.8 mg), VU-EA-4 (12.8 mg), VU-EA-5 (6.5 mg), and VU-EA-6 (23.5 mg). The MeOH-washed fraction from the HPLC was concentrated and purified by reversed-phase HPLC using MeOH-water (50:50 vol/vol) to give VU-EA-10 (12.4 mg). Antioxidant activity was assessed by DPPH, superoxide radical, and hydroxyl radical assays. The isolated compounds exhibited dose-dependent antioxidant activity with IC(50) values of 7.6 microg/mL (VU-EA-10) for the DPPH assay, 67.8 microg/mL (VU-EA-4) for the nonenzymatic superoxide radical assay, and 3.7 microg/mL (VU-EA-10) and 7.6 microg/ml (VU-EA-6) for the enzymatic superoxide radical assay and 30% inhibitory concentration values of 0.58 microg/mL (VU-EA-1), 0.57 microg/mL (VU-EA-5), and 0.70 microg/mL (VU-EA-6) for the hydroxyl radical assay. In conclusion, V. uliginosum had potent antioxidative activity, and flavonoids were isolated as the main active principles.
Klamerth, N; Rizzo, L; Malato, S; Maldonado, Manuel I; Agüera, A; Fernández-Alba, A R
2010-01-01
The degradation of 15 emerging contaminants (ECs) at low concentrations in simulated and real effluent of municipal wastewater treatment plant with photo-Fenton at unchanged pH and Fe=5 mg L(-1) in a pilot-scale solar CPC reactor was studied. The degradation of those 15 compounds (Acetaminophen, Antipyrine, Atrazine, Caffeine, Carbamazepine, Diclofenac, Flumequine, Hydroxybiphenyl, Ibuprofen, Isoproturon, Ketorolac, Ofloxacin, Progesterone, Sulfamethoxazole and Triclosan), each with an initial concentration of 100 microg L(-1), was found to depend on the presence of CO(3)(2-) and HCO(3)(-) (hydroxyl radicals scavengers) and on the type of water (simulated water, simulated effluent wastewater and real effluent wastewater), but is relatively independent of pH, the type of acid used for release of hydroxyl radicals scavengers and the initial H(2)O(2) concentration used. Toxicity tests with Vibrio fisheri showed that degradation of the compounds in real effluent wastewater led to toxicity increase. (c) 2009 Elsevier Ltd. All rights reserved.
Miura, Tomoaki
2013-05-30
Spin selectivity in long-lived charge separation at the micellar interface is studied using the magnetic field effect (MFE). An amphiphilic viologen is complexed with a nonionic surfactant to form a supramolecular acceptor cage, of which the size is controlled by the acceptor concentration, as confirmed by dynamic light scattering measurement. Photoinduced electron transfer (ET) from a guest polyaromatic molecule to the viologen moiety is observed spin-dependently with time-resolved fluorescence (trFL) and transient absorption (TA). A negative MFE on the radical yield is successfully observed, which indicates generation of singlet-born long-lived radical pair that is realized by supramolecular control of the donor-acceptor (D-A) distances. The dominance of the singlet-precursor MFE is sensitive to the acceptor concentration, which presumably affects the D-A distance as well as the cage size. However, theoretical analysis of the MFE gives large recombination rates of ca. 10(8) s(-1), which indicate the contribution of spin-allowed recombination of the pseudocontact radical pair generated by still active in-cage diffusion. Dependence of the viologen concentration and alkyl chain length on the recombination and escape dynamics is discussed in terms of precursor spin states and the microenvironments in the cage.
Ma, Tian; Garg, Shikha; Miller, Christopher J; Waite, T David
2015-05-15
The kinetics and mechanism of light-mediated formic acid (HCOO(-)) degradation in the presence of semiconducting silver chloride particles are investigated in this study. Our experimental results show that visible-light irradiation of AgCl(s) results in generation of holes and electrons with the photo-generated holes and its initial oxidation product carbonate radical, oxidizing HCOO(-) to form CO2. The HCOO(-) degradation rate increases with increase in silver concentration due to increase in rate of photo-generation of holes while the increase in chloride concentration decreases the degradation rate of HCOO(-) as a result of the scavenging of holes by Cl(-), thereby resulting in decreased holes and carbonate radical concentration. The results obtained indicate that a variety of other solution conditions including dioxygen concentration, bicarbonate concentration and pH influence the availability of holes and hence the HCOO(-) degradation rate in a manner consistent with our understanding of key processes. Based on our experimental results, we have developed a kinetic model capable of predicting AgCl(s)-mediated HCOO(-) photo-degradation over a wide range of conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Liu, Yingjun; Seco, Roger; Kim, Saewung; ...
2018-04-11
Nitrogen oxides (NO x) emitted from human activities are believed to regulate the atmospheric oxidation capacity of the troposphere. However, observational evidence is limited for the low-to-median NO x concentrations prevalent outside of polluted regions. Directly measuring oxidation capacity, represented primarily by hydroxyl radicals (OH), is challenging, and the span in NO x concentrations at a single observation site is often not wide. Concentrations of isoprene and its photo-oxidation products were used to infer the equivalent noontime OH concentrations. The fetch at an observation site in central Amazonia experienced varied contributions from background regional air, urban pollution, and biomass burning.more » The afternoon concentrations of reactive nitrogen oxides (NO y), indicative of NO x exposure during the preceding few hours, spanned from 0.3 to 3.5 parts per billion. Accompanying the increase of NO y concentration, the inferred equivalent noontime OH concentrations increased by at least 250% from 0.6 × 10 6 to 1.6 × 10 6 cm -3. The conclusion is that, compared to background conditions of low NO x concentrations over the Amazon forest, pollution increased NO x concentrations and amplified OH concentrations, indicating the susceptibility of the atmospheric oxidation capacity over the forest to anthropogenic influence and reinforcing the important role of NO x in sustaining OH concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yingjun; Seco, Roger; Kim, Saewung
Nitrogen oxides (NO x) emitted from human activities are believed to regulate the atmospheric oxidation capacity of the troposphere. However, observational evidence is limited for the low-to-median NO x concentrations prevalent outside of polluted regions. Directly measuring oxidation capacity, represented primarily by hydroxyl radicals (OH), is challenging, and the span in NO x concentrations at a single observation site is often not wide. Concentrations of isoprene and its photo-oxidation products were used to infer the equivalent noontime OH concentrations. The fetch at an observation site in central Amazonia experienced varied contributions from background regional air, urban pollution, and biomass burning.more » The afternoon concentrations of reactive nitrogen oxides (NO y), indicative of NO x exposure during the preceding few hours, spanned from 0.3 to 3.5 parts per billion. Accompanying the increase of NO y concentration, the inferred equivalent noontime OH concentrations increased by at least 250% from 0.6 × 10 6 to 1.6 × 10 6 cm -3. The conclusion is that, compared to background conditions of low NO x concentrations over the Amazon forest, pollution increased NO x concentrations and amplified OH concentrations, indicating the susceptibility of the atmospheric oxidation capacity over the forest to anthropogenic influence and reinforcing the important role of NO x in sustaining OH concentrations.« less
Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter
Lindsey, M.E.; Tarr, M.A.
2000-01-01
Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently first-order in pyrene to one that was apparently second-order in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.
Cordova, Clarissa A S; Siqueira, Ionara R; Netto, Carlos A; Yunes, Rosendo A; Volpato, Ana M; Cechinel Filho, Valdir; Curi-Pedrosa, Rozangela; Creczynski-Pasa, Tânia B
2002-01-01
Calendula officinalis (marigold) has many pharmacological properties. It is used for the treatment of skin disorders, pain and also as a bactericide, antiseptic and anti-inflammatory. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are known to participate in the pathogenesis of various human diseases and may be involved in the conditions which C. officinalis is used to treat. The aim of this study was to investigate the relationship between the beneficial properties of this plant and its antioxidant action. The butanolic fraction (BF) was studied because it is non-cytotoxic and is rich in a variety of bioactive metabolites including flavonoids and terpenoids. Superoxide radicals (O(2)(*-)) and hydroxyl radicals (HO(*)) are observed in decreasing concentrations in the presence of increasing concentrations of BF with IC(50) values of 1.0 +/- 0.09 mg/ml and 0.5 +/- 0.02 mg/ml, respectively, suggesting a possible free radical scavenging effect. Lipid peroxidation in liver microsomes induced by Fe(2+)/ascorbate was 100% inhibited by 0.5 mg/ml of BF (IC(50) = 0.15 mg/ml). Its total reactive antioxidant potential (TRAP) (in microM Trolox equivalents) was 368.14 +/- 23.03 and its total antioxidant reactivity (TAR) was calculated to be 249.19 +/- 14.5 microM. The results obtained suggest that the butanolic fraction of C. officinalis possesses a significant free radical scavenging and antioxidant activity and that the proposed therapeutic efficacy of this plant could be due, in part, to these properties.
Sonochemical and photosonochemical degradation of 4-chlorophenol in aqueous media.
Hamdaoui, Oualid; Naffrechoux, Emmanuel
2008-09-01
The degradation of 4-chlorophenol (4-CP) in aqueous media by 516 kHz ultrasonic irradiation was investigated in order to clarify the degradation mechanism. The degradation of concentrated 4-CP solution by means of ultrasound, UV irradiation and their combined application was also studied. The obtained results indicate that *OH radical are the primary reactive species responsible for 4-CP ultrasonic degradation. Very little 4-CP degradation occurs if the sonolysis is carried out in the presence of the *OH radical scavenger tert-butyl alcohol, also indicating that little or no pyrolysis of the compound occurs. The dominant degradation mechanism is the reaction of substrate with *OH radicals at the gas bubble-liquid interface rather than high temperature direct pyrolysis in ultrasonic cavities. This mechanism can explain the lower degradation rate of the ionic form of 4-CP that is partly due to the rapid dissociation of *OH radicals in alkaline solutions. The sonochemical destruction of concentrated 4-CP aqueous solution is obtained with low rate. Coupling photolysis with ultrasound irradiation results in increased efficiency compared to the individual processes operating at common conditions. Interestingly, the photosonochemical decomposition rate constant is greater than the additive rate constants of the two processes. This may be the result of three different oxidative processes direct photochemical action, high frequency sonochemistry and reaction with ozone produced by UV irradiation of air, dissolved in liquid phase because of the geyser effect of ultrasound streaming. Additionally, the photodecomposition, at 254 nm, of hydrogen peroxide produced by ultrasound generating *OH radical can partly explain the destruction enhancement.
Hydroxyl free radical production during torsional phacoemulsification.
Aust, Steven D; Hebdon, Thomas; Humbert, Jordan; Dimalanta, Ramon
2010-12-01
To quantitate free radical generation during phacoemulsification using an ultrasonic phacoemulsification device that includes a torsional mode and evaluate tip designs specific to the torsional mode. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. Experimental study. Experiments were performed using the Infiniti Vision System and OZil handpiece. Hydroxyl radical concentrations in the aspirated irrigation solution during torsional phacoemulsification were quantitated as nanomolar malondialdehyde (nM MDA) and determined spectrophotometrically using the deoxyribose assay. The mean free radical production during phacoemulsification with torsional modality at 100% amplitude was 30.1 nM MDA ± 5.1 (SD) using a 0.9 mm 45-degree Kelman tapered ABS tip. With other tip designs intended for use with the torsional modality, free radical production was further reduced when fitted with the 0.9 mm 45-degree Kelman mini-flared ABS tip (13.2 ± 5.6 nM MDA) or the 0.9 mm 45-degree OZil-12 mini-flared ABS tip (14.3 ± 6.7 nM MDA). Although the measurements resulting from the use of the latter 2 tips were not statistically significantly different (P ≈ .25), they were different from those of the tapered tip (P<.0001). The MDA concentration in the aspirated irrigation solution using the torsional modality was approximately one half that reported for the handpiece's longitudinal modality in a previous study using the same bent-tip design (Kelman tapered, P<.0001). The level of MDA was further reduced approximately one half with torsional-specific tips. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Jia, Shaoyi; Li, Feng; Liu, Yong; Ren, Haitao; Gong, Guili; Wang, Yanyan; Wu, Songhai
2013-11-01
Five polysaccharides were obtained from Agaricus blazei Murrill (ABM) through different extraction methods including hot water extraction, single enzyme extraction (pectinase, cellulase or papain) and compound enzymes extraction (cellulase:pectinase:papain). Their characteristics such as the polysaccharide yield, polysaccharide content, protein content, infrared spectra were determined, and antioxidant activities were investigated on the basis of hydroxyl radical, DPPH free radical, ABTS free radical and reducing power. The results showed that five extracts exhibited antioxidant activities in a concentration-dependent manner. Compared with other methods, the compound enzymes extraction method was found to present the highest polysaccharides yield (17.44%). Moreover, compound enzymes extracts exhibited the strongest reducing power and highest scavenging rates on hydroxyl radicals, DPPH radicals and ABTS radicals. On the contrary, hot water extraction method had the lowest polysaccharides yield of 11.95%, whose extracts also exhibited the lowest antioxidant activities. Overall, the available data obtained in vitro models suggested that ABM extracts were natural antioxidants and compound enzymes extraction was an appropriate, mild and effective extracting method for obtaining the polysaccharide extracts from Agaricus blazei Murrill (ABM). Copyright © 2013 Elsevier B.V. All rights reserved.
BPIC: A novel anti-tumor lead capable of inhibiting inflammation and scavenging free radicals.
Li, Shan; Wang, Yuji; Zhao, Ming; Wu, Jianhui; Peng, Shiqi
2015-03-01
Inflammation has a critical role in the tumor progression, free radical damage can worse the status of patients in cancer condition. The anti-cancer agents capable of inhibiting inflammation and scavenging free radicals attract a lot of our interest. Aimed at the discovery of such anti-tumor agent, a novel intercalator, benzyl 1-[4-hydroxy-3-(methoxycarbonyl)-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate (BPIC) was presented. The docking investigation of BPIC and doxorubicin towards the DNA (PDB ID: 1NAB) gave equal score and similar feature. The anti-proliferation assay of 8 cancer cells identified S180 cells had equal sensitivity to BPIC and doxorubicin. The anti-tumor assay defined the efficacy of BPIC been 2 folds higher than that of doxorubicin. At 1μmol/kg of dose BPIC effectively inhibited xylene-induced ear edema and decreased the plasma TNF-α and IL-8 of the mice. BPIC scavenged ∙OH, ∙O2(-) and NO free radicals in a concentration dependent manner and NO free radicals had the highest sensitivity. BPIC could be a novel anti-tumor lead capable of simultaneously inhibiting inflammation and scavenging free radicals. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Study of scavenging activity of sorghum pigment to hydroxyl free radicals by fluorimetry].
Zhang, Hai-rong; Wang, Wen-yan
2007-03-01
A natural product, sorghum pigment, consists of a number of important flavonoid derivatives, occurrs on the seed capsules or in the stems of many sorghums, and is widely applied in different fields of food, cosmetic and dyeing industries, It is important for scavenging hydroxyl free radicals and protection of human healthiness. Scavenging capacities of hydroxyl free radicals with sodium nitrite, quercetin and sorghum pigment were comparatively researched by fluorimetry, and the model of hydroxyl free radicals produced is based on the reaction of Cu2+ -catalyzed oxidation of ascorbic acid in the presence of hydrogen peroxide. The hydroxyl radicals react with benzoic acid, forming a fluorescent product, and the fluorescence intensity was determined by the concentration of hydroxybenzoic acid. The experimental results show that the sodium nitrite, quercetin and sorghum pigment have a quantity-effect relationship for scavenging hydroxyl free radicals, and sodium nitrite and quercetin in comparison with sorghum pigment have high antioxidant capacity. Finally, the quenching mechanisms were explored with sodium nitrite, sorghum pigment, and quercetin respectively. The sorghum pigment and sodium nitrite feature a dynamic quenching processes, while quercetin shows a static quenching processes. A reference method was provided for reasonable exploitation and utilization of sorghum pigment.
Antioxidant activity and oxidative stress protection of duck proteins hydrolysates in SK-N-SH cells.
Guo, Yuxing; Pan, Daodong; Wu, Zhen; Zhao, Chuanchuan; Cao, Jinxuan
2013-02-26
Studies have found that natural antioxidants, which are free-radical scavengers, can reduce the risk of diseases caused by free radicals. This work investigated the antioxidant properties of duck proteins hydrolysates. The free-radical scavenging function of CP-1 (M(r) > 10 kDa), CP-2 (5 kDa < M(r) < 10 kDa) and CP-3 (M(r) < 5 kDa), obtained through ultrafiltration and gel filtration were evaluated. The results showed that the lower molecular weight fraction exhibited a stronger free-radical scavenging ability. The highest free-radical scavenging activity was detected in the fraction of p4 purified from CP-3 using Sephadex G-15 column chromatography. The 50% inhibitory value (IC(50)) of p4 for scavenging radicals of superoxide, hydroxyl and 1,1-diphenyl-2-pycrylhydrazyl (DPPH) were, respectively, 0.97 mg mL(-1), 0.84 mg mL(-1) and 1.84 mg mL(-1). Furthermore, the p4 fraction at a concentration of 10 μg mL(-1) increased cell viability from 84.8% to 94% under antioxidative stress in neuroblastoma SK-N-SH cells.
Esterified dendritic TAM radicals with very high stability and enhanced oxygen sensitivity.
Song, Yuguang; Liu, Yangping; Hemann, Craig; Villamena, Frederick A; Zweier, Jay L
2013-02-15
In this work, we have developed a new class of dendritic TAM radicals (TG, TdG, and dTdG) through a convergent method based on the TAM core CT-03 or its deuterated analogue dCT-03 and trifurcated Newkome-type monomer. Among these radicals, dTdG exhibits the best EPR properties with sharpest EPR singlet and highest O(2) sensitivity due to deuteration of both the ester linker groups and the TAM core CT-03. Like the previous dendritic TAM radicals, these new compounds also show extremely high stability toward various reactive species owing to the dendritic encapsulation. The highly charged nature of these molecules resulting from nine carboxylate groups prevents concentration-dependent EPR line broadening at physiological pH. Furthermore, we demonstrate that these TAM radicals can be easily derivatized (e.g., PEGylation) at the nine carboxylate groups and the resulting PEGylated analogue dTdG-PEG completely inhibits the albumin binding, thereby enhancing suitability for in vivo applications. These new dendritic TAM radicals show great potential for in vivo EPR oximetric applications and provide insights on approaches to develop improved and targeted EPR oximetric probes for biomedical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bregeon, B.G.; Kadirgan, M.A.N.; Lamy, C.
1981-01-01
The authors have derived an experimental technique, using ESR spectroscopy, that allows this determination. A quartz burner equipped with an appropriate cooling system is placed directly in the ESR cavity. We obtained the hydrogen resonance signal and studied its variation for different positions of the flame inside the cavity. Hydrogen concentrations cannot be calculated directly from experimental data; hence we proceed indirectly to deconvoluate the resonance signal. This allows us to overcome the present severe handicap in obtaining atomic hydrogen concentrations in oxy-fuel flames from ESR measurements. Data obtained in this work, after temperature correction, give us the axial distributionmore » of hydrogen radicals for different oxy-propane and hydrogen-oxygen flames. These results show clearly that for all flames, the hydrogen radical concentration is maximum in a zone immediately above the inner cone. 13 refs.« less
Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K
2016-01-01
The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (< 5% O2). Dinitrosyl iron complexes with glutathione (the pharmaceutical drug "Oxacom") exerted an antioxidant effect, regardless of the value of the partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.
Preparation and antioxidant activities of oligosaccharides from Crassostrea gigas.
Wu, Shengjun; Huang, Xiaolian
2017-02-01
Oligosaccharides were prepared from Crassostrea gigas by hydrolysis of polysaccharide in C. gigas with peroxide oxygen (H2O2). The hydrolysates were cleared of protein, filtered, ultrafiltered and precipitated with absolute ethanol to give C. gigas oligosaccharides (CGOs). Factors affecting CGO yields, i.e., reaction time, temperature, and H2O2 concentration, were optimised as follows: 2.96h reaction time, 84.71°C reaction temperature, and 2.46% H2O2 concentration. Under these conditions, the maximum yield of CGOs reached 10.61%. The CGOs were then partially characterised by Fourier transform infrared spectroscopy, UV spectroscopy, monosaccharide composition, and antioxidant activities. Results indicate that CGOs possessed strong hydroxyl radical activity, 2,2-diphenyl-β-picrylhydrazyl-radical-scavenging activity and reducing capacity at a concentration of 100μg/mL. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, Sang Hee; Sun, Wenting; Ju, Yiguang
The impact of toluene addition in n-decane on OH concentrations, maximum heat release rates, and extinction limits were studied experimentally and computationally by using counterflow diffusion flames with laser induced fluorescence imaging. Sensitivity analyses of kinetic path ways and species transport on flame extinction were also conducted. The results showed that the extinction strain rate of n-decane/toluene/nitrogen flames decreased significantly with an increase of toluene addition and depended linearly on the maximum OH concentration. It was revealed that the maximum OH concentration, which depends on the fuel H/C ratio, can be used as an index of the radical pool andmore » chemical heat release rate, since it plays a significant role on the heat production via the reaction with other species, such as CO, H{sub 2}, and HCO. Experimental results further demonstrated that toluene addition in n-decane dramatically reduced the peak OH concentration via H abstraction reactions and accelerated flame extinction via kinetic coupling between toluene and n-decane mechanisms. Comparisons between experiments and simulations revealed that the current toluene mechanism significantly over-predicts the radical destruction rate, leading to under-prediction of extinction limits and OH concentrations, especially caused by the uncertainty of the H abstraction reaction from toluene, which rate coefficient has a difference by a factor of 5 in the tested toluene models. In addition, sensitivity analysis of diffusive transport showed that in addition to n-decane and toluene, the transport of OH and H also considerably affects the extinction limit. A reduced linear correlation between the extinction limits of n-decane/toluene blended fuels and the H/C ratio as well as the mean fuel molecular weight was obtained. The results suggest that an explicit prediction of the extinction limits of aromatic and alkane blended fuels can be established by using H/C ratio (or radical index) and the mean fuel molecular weight which represent the rates of radical production and the fuel transport, respectively. (author)« less
NASA Technical Reports Server (NTRS)
Anderson, James G.
1996-01-01
A summary of the first order scientific conclusions that emerged from the research done under this grant are as follows: (1) For the first time, the concentration of the key hydrogen and halogen radicals OH, H02, ClO and BrO were determined on a global scale extending from the arctic circle to the antarctic circle, over the altitude domain of the ER-2. That domain extends from 15-20 km altitude, covering a critical part of the lower stratosphere; (2) Simultaneous, in situ measurements of the concentrations of OH, H02, ClO, BrO, NO and NO2 demonstrate the predominance of odd-hydrogen and halogen free radical catalysis in determining the rate of removal of ozone in the lower stratosphere over the complete ASHOE mission. This extends to the global scale the "first look" data obtained during the NASA Stratospheric Photochemistry and Dynamics Experiment (SPADE), executed out of Ames Research Center in June 1993. This represents a major rearrangement of our understanding with respect to the hierarchy of dominant catalytic cycles controlling ozone loss in the lower stratosphere. For the past twenty years, it has been assumed that nitrogen radicals dominate the destruction rate of ozone in the lower stratosphere; (3) Throughout the altitude and latitude range covered by ASHOE, it was determined that a single catalytic cycle, HO2 + O3 yields OH + 2O2, accounted for one half of the total O3 removal in this region of the atmosphere. Halogen radical catalytic cycles were found to account for one third of the ozone loss, and nitrogen radicals were found to account for 20% of the loss; (4) Simultaneous observations of the full complement of radicals, tracers, ozone, and water vapor during ASHOE demonstrated quantitatively the coupling that exists between the rate limiting radicals and other reactive species in the photochemical reaction network. Specifically, the concentrations of ClO and HO2 are inversely correlated with the concentration of NOx. This carries the implication that the NOx effluent from the proposed High Speed Civil Transport may be less destructive to stratospheric ozone than had previously been thought. ASHOE brought this conclusion forward for the first time on a global basis; and (5) The density of BrO was measured on a global scale during ASHOE in the lower stratosphere. It was found that bromine is responsible for 55-65% of the local rate of catalytic destruction of ozone by reactions involving bromine and chlorine. Normalizing calculated loss rates to total available inorganic bromine and chlorine explicitly demonstrates that bromine is 60-80 times more efficient than chlorine in removing ozone in the lower stratosphere. An inferred value of total inorganic bromine is in excellent agreement with measurements of their source species, organic bromine compounds in the troposphere.
Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey
2018-01-01
Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.
Ogata, Fumihiko; Tanaka, Yuko; Kawasaki, Naohito
2014-01-01
In this study, waste edible oil was prepared by both heat and aeration treatment, and the increasing inhibitive effect of tocopherol treatment on the acid value (AV) and carbonyl value (CV) of the oil was investigated. The AV and CV of waste edible oil treated with tocopherol were 0.1-1.0% lower than those of the nontreated oil, indicating that tocopherol exerted a radical-scavenging activity. The concentration of tocopherol decreased with time, while that of the remaining 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals increased. These results suggest that the addition of tocopherol proved to be useful for preventing the deterioration of waste edible oil.
ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS
Kennedy, J.
1959-04-14
An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.
NASA Technical Reports Server (NTRS)
Osborn, D. E.; Lynch, D. C.; Fozzolari, R.
1991-01-01
A technique for photo generation of radicals is discussed that can be used in the recovery of oxygen and metals from extraterrestrial resources. The concept behind this work was to examine methods whereby radicals can be generated and used in the processing of refractory materials. In that regard, the focus is on the use of sunlight. Sunlight provides useful energy for processing in the forms of both thermal and quantum energy. A number of experiments were conducted in the chlorination of metals with and without the aid of UV and near UV light. The results of some of those experiments are discussed.
Free radical scavenging injectable hydrogels for regenerative therapy.
Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan
2017-02-01
Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Pulse radiolysis studies of 3,5-dimethyl pyrazole derivatives of selenoethers.
Barik, Atanu; Singh, Beena G; Sharma, Asmita; Jain, Vimal K; Priyadarsini, K Indira
2014-11-06
One electron redox reaction of two asymmetric 3,5-dimethyl pyrazole derivatives of selenoethers attached to ethanoic acid (DPSeEA) and propionic acid (DPSePA) were studied by pulse radiolysis technique using transient absorption detection. The reaction of the hydroxyl ((•)OH) radical with DPSeEA or DPSePA at pH 7 produced transients absorbing at 500 nm and at 300 nm, respectively. The absorbance at 500 nm increased with increasing parent concentration indicating formation of dimer radical cations. From the absorbance changes, the equilibrium constants for the formation of dimer radical cation of DPSeEA and DPSePA were estimated as 2020 and 1608 M(-1), respectively. The rate constants at pH 7 for the reaction of the (•)OH radical with DPSeEA and DPSePA were determined to be 9.6 × 10(9) and 1.4 × 10(10) M(-1) s(-1), respectively. The dimer radical cation of DPSeEA and DPSePA decayed by first order kinetics with a rate constant of 2.8 × 10(4) and 5.5 × 10(3) s(-1), respectively. The yield of radical cations of DPSeEA and DPSePA were estimated from the secondary electron transfer reaction, which corresponds to 38% and 48% of (•)OH radical yield, respectively. Some fraction of monomer radical cation undergoes decarboxylation reaction, and the yield of decarboxylation was 25% and 20% for DPSeEA and DPSePA, respectively. These results have implication in understanding their antioxidant activity. The reaction of trichloromethyl peroxyl radical, glutathione, and ascorbic acid further support their antioxidant behavior.
ESR evidence for radical production from the reaction of ozone with unsaturated lipids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Church, D.F.; McAdams, M.L..; Pryor, W.A.
1991-03-15
The authors report electron spin resonance (ESR) spin trapping evidence for radical production by the reaction of ozone with unsaturated compounds. Soy and egg phosphatidylcholine liposomes, fatty acid emulsions, and homogeneous aqueous solutions of 3-hexenoic acid were treated with ozone in the presence of the spin trap {alpha}-phenyl-N-tert-butyl nitrone (PBN). Under these conditions, they observe spin adducts resulting from the trapping of both organic carbon- and oxygen-centered radicals. When the lipid-soluble antioxidant alpha-tocopherol is included in the liposomal systems, the formation of spin adducts is completely inhibited. The authors suggest that radicals giving rise to these spin adducts arise formmore » the rapid decomposition of the 1,2,3-trioxolane intermediate that is initially formed when ozone reacts with the carbon-carbon double bonds of the substrates. These free radicals are not formed by the decomposition of the Criegee ozonide, since little of the ozonide is formed in the presence of water. Although hydrogen peroxide is the predominate peroxidic product of the ozone/alkene reaction, its decomposition is not responsible for the observed radical production since neither catalase nor iron chelators significantly affect the spin adduct yield. The radical yield is approximately 1%. Since a polyunsaturated fatty acid (PUFA) such as linoleic acid produces much higher concentrations of spin trappable radicals than does the monounsaturated fatty oleic acid, the results also suggest that sites in the lung containing higher levels of PUFA may be an important target for radical formation.« less
Haywood, Rachel
2006-01-01
With the continued rise in skin cancers worldwide there is a need for effective skin protection against sunlight damage. It was shown previously that sunscreens, which claimed UVA protection (SPF 20+), provided limited protection against UV-induced ascorbate radicals in human skin. Here the results of an electron spin resonance (ESR) investigation to irradiate ex vivo human skin with solar-simulated light are reported. The ascorbate radical signal in the majority of skin samples was directly proportional to the irradiance over relevant sunlight intensities (0.9-2.9 mW cm(-2)). Radical production (substratum-corneum) by UV (wavelengths < 400 nm) and visible components (> 400 nm) was approximately 67% and 33% respectively. Ascorbate radicals were in steady state concentration at low irradiance (approximately 1 mW cm(-2) equivalent to UK sunlight), but at higher irradiance (approximately 3 mW cm(-2)) decreased with time, suggesting ascorbate depletion. Radical protection by a four star-rated sunscreen (with UVA protection) was optimal when applied as a thin film (40-60% at 2 mg cm(-2)) but less so when rubbed into the skin (37% at 4 mg cm(-2) and no significant protection at 2 mg cm(-2)), possibly due to cream filling crevices, which reduced film thickness. This study validates ESR determinations of the ascorbate radical for quantitative protection measurements. Visible light contribution to radical production, and loss of protection when sunscreen is rubbed into skin, has implications for sunscreen design and use for the prevention of free-radical damage.
Correlation between electron spin resonance spectra and oil yield in eastern oil shales
Choudhury, M.; Rheams, K.F.; Harrell, J.W.
1986-01-01
Organic free radical spin concentrations were measured in 60 raw oil shale samples from north Alabama and south Tennessee and compared with Fischer assays and uranium concentrations. No correlation was found between spin concentration and oil yield for the complete set of samples. However, for a 13 sample set taken from a single core hole, a linear correlation was obtained. No correlation between spin concentration and uranium concentration was found. ?? 1986.
Lissi, E A; Modak, B; Torres, R; Escobar, J; Urzua, A
1999-06-01
Total reactive antioxidant potential (TRAP) of resinous exudates from Heliotropium species was evaluated by measuring the bleaching of stable free radicals. The antioxidant capacity of the resinous exudates in Trolox equivalents, evaluated from the bleaching of ABTS derived radical cations, ranged from 2.0 M (H. huascoense) to 5.2 M (H. stenophyllum), indicating a very high concentration of phenolic compounds. Considerably smaller values were obtained by measuring the bleaching of DPPH radicals. The ratio between the values obtained employing ABTS derived radicals and DPPH, ranged from 37 (H. megalanthum) to 4.5 (H. chenopodiaceum variety typica). The magnitude of the difference can be considered as an indication of the relative reactivity of the antioxidants present in the exudates. Similar ratios were observed when stoichiometric coefficients were evaluated for representative purified flavonoids obtained from the resinous exudates.
Skliarova, E I; Popova, T N; Shulgin, K K
2016-06-01
Effects of a synthetic biguanide derivative N-[imino(1-piperidinyl)methyl] guanidine (NIPMG) on free radical homeostasis, aconitase activity, and citrate concentration were studied in the liver and blood serum of rats with type 2 diabetes mellitus. Analysis of biochemiluminescence parameters showed that administration of this agent (10 mg/kg body weight) to animals with diabetes reduced the intensity of free radical processes in study tissues relative to the increased values in untreated diabetic animals. Under these conditions, aconitase activity, a principal target of ROS effects, and citrate level in the liver and blood serum of rats approached the control levels. The results show that NIPMG can positively regulate free radical homeostasis and reduce the intensity of oxidative stress in type 2 diabetes mellitus, which was accompanied by normalization of the studied parameters.
Zhao, Lei; Gao, Xiang; Luo, Zhong-Yang; Xuan, Jian-Yong; Jiang, Jian-Ping; Cen, Ke-Fa
2011-11-01
Streamer plays a key role in the process of OH radical generation. The propagation of primary and secondary streamers of positive wire-plate pulsed corona discharge was observed using a short gate ICCD in air environment. The influence of the applied voltage on the properties was investigated. It was shown that the primary streamer propagation velocity, electric coverage and length of secondary streamer increased significantly with increasing the applied voltage. Then 2-D OH distribution was investigated by the emission spectrum. With the analysis of the OH emission spectra, the distribution of OH radicals showed a trend of decreasing from the wire electrode to its circumambience. Compared with the streamer propagation trace, the authors found that OH radical distribution and streamer are in the same area. Both OH radical concentration and the intensity of streamer decreased when far away from the wire electrode.
Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.
Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek
2012-09-01
Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.
Matsugo, S; Yan, L J; Han, D; Packer, L
1995-01-05
We have developed a new molecular probe, N,N'-bis(2-hydroxyperoxy-2-methyoxyethyl)-1,4,5,8-naphthalen e-tetra-carboxylic- diimide (NP-III), that specifically generates hydroxyl radical upon irradiation with longer wavelength ultraviolet light (UVA). Hydroxyl radicals are generated only upon irradiation, thus NP-III is a new controllable hydroxyl radical source. Apolipoprotein (apo-B) of human low density lipoprotein (LDL), and bovine serum alubumin (BSA), were irradiated with UVA in the presence of NP-III and their oxidation was evaluated by two independent methods: assay of protein carbonyl groups and gel electrophoresis. NP-III oxidized apo-B and BSA in a time- and concentration-dependent manner. The results demonstrate that NP-III is a controllable, precise, and potentially tagetable source of hydroxyl radicals with which to induce protein oxidation.
Yan, Kun; Gao, Xiang; Luo, Yingwu
2015-07-01
A highly living polymer with over 100 kg mol(-1) molecular weight is very difficult to achieve by controlled radical polymerization since the unavoidable side reactions of irreversible radical termination and radical chain transfer to monomer reaction become significant. It is reported that over 500 kg mol(-1) polystyrene with high livingness and low dispersity could be synthesized by a facile two-stage reversible addition-fragmentation transfer emulsion polymerization. The monomer conversion reaches 90% within 10 h. High livingness of the product is ascribed to the extremely low initiator concentration and the chain transfer constant for monomer unexpectedly much lower than the well-accepted values in the conventional radical polymerization. The two-stage monomer feeding policy much decreases the dispersity of the product. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characteristics of ultraviolet light and radicals formed by pulsed discharge in water
NASA Astrophysics Data System (ADS)
Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki
2006-09-01
In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.
Monteagudo, J M; El-Taliawy, H; Durán, A; Caro, G; Bester, K
2018-06-20
Degradation of a diclofenac aqueous solution was performed using persulfate anions activated by ultrasound. The objective of this study was to analyze different parameters affecting the diclofenac (DCF) removal reaction by the ultrasonic persulfate (US/PS) process and to evaluate the role played by various intermediate oxidative species such as hydroxyl- and sulfate radicals, superoxide radical anion or singlet oxygen in the removal process as well as to determine a possible reaction pathway. The effects of pH, initial persulfate anion concentration, ultrasonic amplitude and temperature on DCF degradation were examined. Sulfate and hydroxyl radicals were involved in the main reaction pathway of diclofenac. Diclofenac amide and three hydroxy-diclofenac isomers (3´-hydroxy diclofenac, 4´-hydroxy diclofenac and 5-hydroxy diclofenac) were identified as reaction intermediates. Copyright © 2018 Elsevier B.V. All rights reserved.
How Is the Oxidative Capacity of the Cloud Aqueous Phase Modified By Bacteria?
NASA Astrophysics Data System (ADS)
Deguillaume, L.; Mouchel-Vallon, C.; Passananti, M.; Wirgot, N.; Joly, M.; Sancelme, M.; Bianco, A.; Cartier, N.; Brigante, M.; Mailhot, G.; Delort, A. M.; Chaumerliac, N. M.
2014-12-01
The aqueous phase photochemical reactions of constituents present in atmospheric water like H2O2, NO3-, NO2- and Fe(III) aqua-complexes or organic complexes can form radicals such as the hydroxyl radical HO within the water drop. However, the literature lacks of data precising the rate of HO formation and the relative contribution of the photochemical sources of HO. The production of radicals in cloud aqueous phase drives the oxidative capacity of the cloud medium and the efficiency of organic matter oxidation. The oxidation of organic compounds is suspected to lead to oxygenated species that could contribute to secondary organic aerosol (SOA) mass (Ervens et al., 2011). In current cloud chemistry models, HO concentrations strongly depend on the organic and iron amount. For high concentrations of organic compounds, this radical is efficiently consumed during the day due to the oxidation process. When iron concentrations are typical from continental cloud, the photolysis of Fe(III) complexes and the Fenton reaction drive the HO concentrations in the cloud models. The concept of biocatalysed reactions contributing to atmospheric chemistry as an alternative route to photochemistry is quite new (Vaïtilingom et al., 2013); it emerged from the recent discovery of metabolically active microorganisms in clouds. Microorganisms are well-known to degrade organic matter but they could also interact with oxidant species such as H2O2 (or their precursors) thanks to their oxidative and nitrosative stress metabolism that will act directly on these species and on their interactions with iron (metalloproteins and siderophores). For the moment, biological impact on radical chemistry within cloud has not been yet considered in cloud chemistry models. Bacterial activity will be introduced as catalysts in a multiphase cloud chemistry model using degradation rates measured in the laboratory. For example, biodegradation rates of the oxidants H2O2 by model bacteria will be tested in the model. Interactions of bacteria with iron through siderophore production will be also parameterized in the model. For this, we will perform idealistic scenarii to quantify the effect of bacteria on the aqueous budget of oxidants. Ervens et al., ACP, 11, 11069-11102, 2011. Vaïtilingom et al., PNAS, 110-2, 559-564, 2013.
Morsy, Mohamed A; Sultan, Salah M; Dafalla, Hatim
2009-08-15
In this study, electron paramagnetic resonance (EPR) is used, for the first time, as an analytical tool for the quantitative assay of ketoconazole (KTZ) in drug formulations. The drug was successfully characterized by the prominent signals by two radical species produced as a result of its oxidation with 400 microg/mL cerium(IV) in 0.10 mol dm(-3) sulfuric acid. The EPR signal of the reaction mixture was measured in eight capillary tubes housed in a 4 mm EPR sample tube. The radical stability was investigated by obtaining multi-EPR scans of each KTZ sample solution at time intervals of 2.5 min of the reaction mixing time. The plot of the disappearance of the radical species show that the disappearance is apparently of zero order. The zero-time intercept of the EPR signal amplitude, which should be proportional to the initial radical concentration, is linear in the sample concentration in the range between 100 and 400 microg/mL, with a correlation coefficient, r, of 0.999. The detection limit was determined to be 11.7 +/- 2.5 microg/mL. The method newly adopted was fully validated following the United States Pharmacopeia (USP) monograph protocol in both the generic and the proprietary forms. The method is very accurate, such that we were able to measure the concentration at confidence levels of 99.9%. The method was also found to be suitable for the assay of KTZ in its tablet and cream pharmaceutical preparations, as no interferences were encountered from excipients of the proprietary drugs. High specificity, simplicity, and rapidity are the merits of the present method compared to the previously reported methods.
Tsukamoto, Taiji; Tanaka, Shigeru
2015-08-01
We conducted a questionnaire survey of hospitals with robot-assisted surgical equipment to study changes of the surgical case loads after its installation and the managerial strategies for its purchase. The study included 154 hospitals (as of April 2014) that were queried about their radical prostatectomy case loads from January 2009 to December 2013, strategies for installation of the equipment in their hospitals, and other topics related to the study purpose. The overall response rate of hospitals was 63%, though it marginally varied according to type and area. The annual case load was determined based on the results of the questionnaire and other modalities. It increased from 3,518 in 2009 to 6,425 in 2013. The case load seemed to be concentrated in hospitals with robot equipment since the increase of their number was very minimal over the 5 years. The hospitals with the robot treated a larger number of newly diagnosed patients with the disease than before. Most of the patients were those having localized cancer that was indicated for radical surgery, suggesting again the concentration of the surgical case loads in the hospitals with robots. While most hospitals believed that installation of a robot was necessary as an option for treatment procedures, the future strategy of the hospital, and other reasons, the action of the hospital to gain prestige may be involved in the process of purchasing the equipment. In conclusion, robot-assisted laparoscopic radical prostatectomy has become popular as a surgical procedure for prostate cancer in our society. This may lead to a concentration of the surgical case load in a limited number of hospitals with robots. We also discuss the typical action of an acute-care hospital when it purchases expensive clinical medical equipment.
The reaction between CH 3O 2 and OH radicals: Product yields and atmospheric implications
Assaf, Emmanuel; Sheps, Leonid; Whalley, Lisa; ...
2017-01-25
The reaction between CH 3O 2 and OH radicals has been shown to be fast and to play an appreciable role for the removal of CH 3O 2 radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO 2 yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH 3O 2, OH, and HO 2 radicals by cw-CRDS. The possible formation of a Criegee intermediate has been measured by broadband cavity enhanced UV absorption. A yield of Φ HO2more » = (0.8 ± 0.2) and an upper limit for Φ Criegee = 0.05 has been determined for this reaction, suggesting a minor yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of the remote marine boundary layer has been determined by implementing these findings into a box model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH 3O 2+OH reaction into the model results in up to 30% decrease in the CH 3O 2 radical concentration while the HO 2 concentration increased by up to 20%. Finally, production and destruction of O 3 are also influenced by these changes, and the model indicates that taking into account the reaction between CH 3O 2 and OH leads to a 6% decrease of O 3.« less
Nwidu, Lucky Legbosi; Elmorsy, Ekramy; Thornton, Jack; Wijamunige, Buddhika; Wijesekara, Anusha; Tarbox, Rebecca; Warren, Averil; Carter, Wayne Grant
2017-12-01
There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 μg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC 50 = 140 μg/mL); for the leaves, the chloroform leaf fraction (IC 50 = 60 μg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC 50 = 0.3-3 μg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 μg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.
Liu, Haizhou; Bruton, Thomas A; Li, Wei; Buren, Jean Van; Prasse, Carsten; Doyle, Fiona M; Sedlak, David L
2016-01-19
Sulfate radical (SO4(•-)) is a strong, short-lived oxidant that is produced when persulfate (S2O8(2-)) reacts with transition metal oxides during in situ chemical oxidation (ISCO) of contaminated groundwater. Although engineers are aware of the ability of transition metal oxides to activate persulfate, the operation of ISCO remediation systems is hampered by an inadequate understanding of the factors that control SO4(•-) production and the overall efficiency of the process. To address these shortcomings, we assessed the stoichiometric efficiency and products of transition metal-catalyzed persulfate oxidation of benzene with pure iron- and manganese-containing minerals, clays, and aquifer solids. For most metal-containing solids, the stoichiometric efficiency, as determined by the loss of benzene relative to the loss of persulfate, approached the theoretical maximum. Rates of production of SO4(•-) or hydroxyl radical (HO(•)) generated from radical chain reactions were affected by the concentration of benzene, with rates of S2O8(2-) decomposition increasing as the benzene concentration increased. Under conditions selected to minimize the loss of initial transformation products through reaction with radicals, the production of phenol only accounted for 30%-60% of the benzene lost in the presence of O2. The remaining products included a ring-cleavage product that appeared to contain an α,β-unsaturated aldehyde functional group. In the absence of O2, the concentration of the ring-cleavage product increased relative to phenol. The formation of the ring-cleavage product warrants further studies of its toxicity and persistence in the subsurface.
Skopp, Gisela; Schmitt, Horst Peter; Pedal, Ingo
2006-01-01
A 22-year-old female with a history of developmental delay and seizures successfully treated with carbamazepine and levetiracetam developed fulminant hepatic failure and subsequently died. She had been admitted to the hospital following secondary generalized seizures of 35 min duration. A circulatory shock as well as intoxication was taken into consideration during the clinical course. Autopsy failed to reveal a macroscopically discernible cause of death. Significant findings on microscopic examination included acute tubular necrosis in the kidneys, pre-existing marked accumulation of neutral lipid within the hepatocytes as well as hyperacute liver damage with evidence of almost complete hepatocyte necrosis. Carbamazepine and levetiracetam were simultaneously determined from blood and tissues such as liver, lungs, muscle and kidneys by LC-MS/MS following addition of lamotrigine as an internal standard and liquid-liquid extraction. Validation data are given for levetiracetam. Both carbamazepine and levetiracetam were present in blood at concentrations within or below the therapeutic range, respectively. Moreover, tissue concentrations suggested long-term administration of anticonvulsant drugs, which is in accordance with the medical history. After excessive drug concentrations could be ruled out, the metabolic consequences of a prolonged carbamazepine therapy to cause severe hepatic injury in the present case are discussed. A mechanism of injury to the hepatocytes may be membrane damage by either an increased production of free radicals and/or a decreased free radical scavenging capacity. Following ischemia with reperfusion and during hyperthermia, large amounts of free radicals are formed. Induction of the mixed oxidase activity during longterm administration of carbamazepine may also increase production of free radicals, leaving the hepatic cell more vulnerable to oxidative injury.
The reaction between CH 3O 2 and OH radicals: Product yields and atmospheric implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assaf, Emmanuel; Sheps, Leonid; Whalley, Lisa
The reaction between CH 3O 2 and OH radicals has been shown to be fast and to play an appreciable role for the removal of CH 3O 2 radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO 2 yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH 3O 2, OH, and HO 2 radicals by cw-CRDS. The possible formation of a Criegee intermediate has been measured by broadband cavity enhanced UV absorption. A yield of Φ HO2more » = (0.8 ± 0.2) and an upper limit for Φ Criegee = 0.05 has been determined for this reaction, suggesting a minor yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of the remote marine boundary layer has been determined by implementing these findings into a box model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH 3O 2+OH reaction into the model results in up to 30% decrease in the CH 3O 2 radical concentration while the HO 2 concentration increased by up to 20%. Finally, production and destruction of O 3 are also influenced by these changes, and the model indicates that taking into account the reaction between CH 3O 2 and OH leads to a 6% decrease of O 3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathavan, T., E-mail: tjmathavan@gmail.com; Divya, A.; Benial, A. Milton Franklin
2016-05-23
Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.
NASA Astrophysics Data System (ADS)
Mathavan, T.; Divya, A.; Archana, J.; Ramasubbu, A.; Benial, A. Milton Franklin; Jothirajan, M. A.
2016-05-01
Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.
Wen, Yuezhong; Jiang, Xuanzhen; Liu, Weiping
2002-03-01
The combination of high voltage pulse discharge and ozonation as an advanced oxidation technology was used to investigate the degradation of 4-chlorophenol (4-CP) in water. The factors that affect the rate of degradation were discussed. The 1.95 x 10(-3) mol/L solutions of 4-CP were almost completely (96%) degraded after the discharge treatment of 30 min. The degradation of 4-CP was investigated as a function of the ozone concentration, radical scavenger and electrode distance. The rate of 4-CP degradation increases with an increase in ozone concentration and a decrease in the electrode distance from 20 mm to 10 mm. The presence of radical scavenger decreased the rate of 4-CP degradation.
2016-01-01
The present study deals with the antimicrobial, antioxidant, and functional group analysis of Heliotropium bacciferum extracts. Disc diffusion susceptibility method was followed for antimicrobial assessment. Noteworthy antimicrobial activities were recorded by various plant extracts against antibiotic resistant microorganisms. Plant flower extracts antioxidant activity was investigated against 2, 2-diphenyl-1-picryl hydrazyl radical by ultraviolet spectrophotometer (517 nm). Plant extracts displayed noteworthy radical scavenging activities at all concentrations (25–225 μg/mL). Notable activities were recorded by crude, chloroform and ethyl acetate extracts up to 88.27% at 225 μg/mL concentration. Compounds functional groups were examined by Fourier transform infrared spectroscopic studies. Alkanes, alkenes, alkyl halides, amines, carboxylic acids, amides, esters, alcohols, phenols, nitrocompounds, and aromatic compounds were identified by FTIR analysis. Thin layer chromatography bioautography was carried out for all plant extracts. Different bands were separated by various solvent systems. The results of the current study justify the use of Heliotropium bacciferum in traditional remedial herbal medicines. PMID:27597961
Marcu, Delia; Damian, Grigore; Cosma, Constantin; Cristea, Victoria
2013-09-01
The effects of gamma radiation are investigated by studying plant germination, growth and development, and biochemical characteristics of maize. Maize dry seeds are exposed to a gamma source at doses ranging from 0.1 to 1 kGy. Our results show that the germination potential, expressed through the final germination percentage and the germination index, as well as the physiological parameters of maize seedlings (root and shoot lengths) decreased by increasing the irradiation dose. Moreover, plants derived from seeds exposed at higher doses (≤0.5 kGy) did not survive more than 10 days. Biochemical differences based on photosynthetic pigment (chlorophyll a, chlorophyll b, carotenoids) content revealed an inversely proportional relationship to doses of exposure. Furthermore, the concentration of chlorophyll a was higher than chlorophyll b in both irradiated and non-irradiated seedlings. Electron spin resonance spectroscopy used to evaluate the amount of free radicals induced by gamma ray treatment demonstrates that the relative concentration of radiation-induced free radicals depends linearly on the absorbed doses.
The CRDS method application for study of the gas-phase processes in the hot CVD diamond thin film.
NASA Astrophysics Data System (ADS)
Buzaianumakarov, Vladimir; Hidalgo, Arturo; Morell, Gerardo; Weiner, Brad; Buzaianu, Madalina
2006-03-01
For detailed analysis of problem related to the hot CVD carbon-containing nano-material growing, we have to detect different intermediate species forming during the growing process as well as investigate dependences of concentrations of these species on different experimental parameters (concentrations of the CJH4, H2S stable chemical compounds and distance from the filament system to the substrate surface). In the present study, the HS and CS radicals were detected using the Cavity Ring Down Spectroscopic (CRDS) method in the hot CVD diamond thin film for the CH4(0.4 %) + H2 mixture doped by H2S (400 ppm). The absolute absorption density spectra of the HS and CS radicals were obtained as a function of different experimental parameters. This study proofs that the HS and CS radicals are an intermediate, which forms during the hot filament CVD process. The kinetics approach was developed for detailed analysis of the experimental data obtained. The kinetics scheme includes homogenous and heterogenous processes as well as processes of the chemical species transport in the CVD chamber.
Ma, Qingwei; Ren, Jing; Huang, Honghui; Wang, Shoubing; Wang, Xiangrong; Fan, Zhengqiu
2012-05-15
Degradation of microcystin-LR (MC-LR) in the presence of nitrous acid (HNO(2)) under irradiation of 365nm ultraviolet (UV) was studied for the first time. The influence of initial conditions including pH value, NaNO(2) concentration, MC-LR concentration and UV intensity were studied. MC-LR was degraded in the presence of HNO(2); enhanced degradation of MC-LR was observed with 365nm UV irradiation, caused by the generation of hydroxyl radicals through the photolysis of HNO(2). The degradation processes of MC-LR could well fit the pseudo-first-order kinetics. Mass spectrometry was applied for identification of the byproducts and the analysis of degradation mechanisms. Major degradation pathways were proposed according to the results of LC-MS analysis. The degradation of MC-LR was initiated via three major pathways: attack of hydroxyl radicals on the conjugated carbon double bonds of Adda, attack of hydroxyl radicals on the benzene ring of Adda, and attack of nitrosonium ion on the benzene ring of Adda. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hara, T.; Jones, L.; Tewari, K. C.; Li, N. C.
1981-02-01
The viscosity of SRC-LL liquid increases when subjected to accelerated aging by bubbling oxygen in the presence of copper strip at 62°C. Precipitates are formed and can be separated from the aged liquid by Soxhlet extraction with pentane. A 30-70 blend of SRC-I with SRC-LL was subjected to oxygen aging in the absence of copper, and the viscosity increased dramatically after 6 days at 62°. The content of preasphaltene and its molecular size increase with time of aging, accompanied by decrease of asphaltene and pentane-soluble contents. For the preasphaltene fraction on aging, gel permeation chromatography shows formation of larger particles. ESR experiments show that with oxygen aging, spin concentration in the preasphaltene fraction decreases. Perhaps some semiquinone, together with di- and tri-substituted phenoxy radicals, generated by oxygen aging of the coal liquid, interact with the free radicals already present in coal to yield larger particles and reduce free radical concentration. We are currently using the very high-field (600-MHz) NMR spectrometer at Mellon Institute to determine changes in structural parameters before and after aging of SRC-II and its chromatographically separated fractions.
Garzón, G Astrid; Manns, David C; Riedl, Ken; Schwartz, Steven J; Padilla-Zakour, Olga
2015-02-18
The contents and profile of polyphenols were analyzed in edible petals of nasturtium flowers (Tropaeolum majus) of three colors, and their oxygen radical absorbance capacities (ORAC) were compared. Three primary anthocyanins (ACNs) and 15 non-ACN phenolic compounds including hydroxycinammic acids (HCAs) and flavonoids (myricetin, quercetin, and kaempferol derivatives) were detected. Anthocyanin concentration was within 31.9 ± 21.7 and 114.5 ± 2.3 mg cyanidin-3-glucoside (cy-3-glu)/100 g fresh weight (FW) in yellow and red petals, respectively. The concentration of HCAs varied between 33.3 ± 7.1 and 235.6 ± 8.1 mg chlorogenic acid equivalents/100 g FW for red and yellow flowers, respectively. Red flowers had the highest level of flavonoids (315.1 ± 2.4 mg myricetin equivalents/100 g FW) and the highest ORAC radical-scavenging activity. These results show the diversity and abundance of polyphenolic compounds in nasturtium flowers, which could be the basis for applications in functional foods, cosmetics, and pharmaceuticals.
Yousuf Dar, Mohd; Shah, Wajaht A; Mubashir, Sofi; Rather, Manzoor A
2012-10-15
To evaluate the in vitro anti-proliferative and radical scavenging properties of the essential oil and its fractions and to determine the chemo-type of P. wallichiana essential oil. Pinus wallichiana oil was extracted by hydro-distillation and fractionated by silica gel column chromatography method. The oil and its fractions were analyzed by Gas chromatography, Gas chromatography-mass spectrometry and (13)C NMR. Different concentrations of oil 12.5, 25, 50 and 100μg/ml and single concentration 50μg/ml of its fractions B(1), B(2), A(2), G(2), Uk(13) and I(2) were evaluated for its anti-proliferative activity by in vitro {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} assay against human monocyte, lung carcinoma, liver adenocarcinoma, prostate and ovarian carcinoma, while as the radical scavenging activity was evaluated by different in vitro DPPH assays. The analyses indicated the presence of 17 constituents with β-pinene (46.8%) and α-pinene (25.2%) as major constituents. The oil and its fractions showed significant anti-proliferative activity. The radical scavenging activity also showed good results. The oil could be used as a drug to control the diseases like cancer, cirrhosis and arteriosclerosis, caused by reactive oxygen species. Copyright © 2012 Elsevier GmbH. All rights reserved.
Radiochemical ageing of EPDM elastomers. 3. Mechanism of radiooxidation
NASA Astrophysics Data System (ADS)
Rivaton, A.; Cambon, S.; Gardette, J.-L.
2005-01-01
The preceding paper of this series was devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing of EPDM (77.9% ethylene, 21.4% propylene, 0.7% diene) and EPR (76.6% ethylene, 23.4% propylene) films irradiated under oxygen atmosphere using 60Co gamma rays. The double bond of the diene was observed to be consumed with a high radiochemical yield. The oxidation and reticulation rates were observed to be higher in the case of EPDM than in EPR. Accumulation of the major oxidation products in both polymers was shown to occur in the order of decreasing concentrations: hydroperoxides, ketones, carboxylic acids and alcohols, peroxides. On the basis of the analysis of the oxidation products formed in EPDM and EPR, and taking into account their relative concentrations, the mechanisms accounting for the EPDM γ-degradation under oxygen atmosphere are proposed in the present paper. Two main processes are involved in the EPDM radiooxidation. The random γ-radiolysis of the polymer provides a constant source of macroalkyl radicals mainly formed on ethylene units. The secondary radicals so formed are likely to initiate a selective oxidation of the polymer through free-radicals reactions involving the abstraction of labile hydrogen atoms. In particular, the hydroperoxides decomposition and the consumption of the ENB moieties, this latter being the most oxidisable site and the source of crosslinking, may result from hydrogen abstraction by radical species.
Srivastava, Anup; Jagan Mohan Rao, L; Shivanandappa, T
2012-03-01
Currently, there is a great deal of interest in the study of natural compounds with free-radical-scavenging activity because of their potential role in maintaining human health and preventing diseases. In this paper, we report the antioxidant and cytoprotective properties of 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one (TBO) isolated from the aqueous extract of Decalepis hamiltonii roots. Our results show that TBO is a potent scavenger of superoxide (O(2)·-), hydroxyl (·OH), nitric oxide (·NO) and lipid peroxide (LOO·) - physiologically relevant free radicals with IC(50) values in nmolar (42-281) range. TBO also exhibited concentration-dependent secondary antioxidant activities such as reducing power, metal-chelating activity and inhibition of protein carbonylation. Further, TBO at nmolar concentration prevented CuSO(4)-induced human LDL oxidation. Apart from the in vitro free-radical-scavenging activity, TBO demonstrated cytoprotective activity in primary hepatocytes and Ehrlich ascites tumour (EAT) cells against oxidative-stress-inducing xenobiotics. The mechanism of cytoprotective action involved maintaining the intracellular glutathione (GSH), scavenging of reactive oxygen species (ROS) and inhibiting lipid peroxidation (LPO). Based on the results, it is suggested that TBO is a novel bioactive molecule with implications in both prevention and amelioration of diseases involving oxidative stress as well as in the general well-being.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Ambro, Emma L.; Møller, Kristian H.; Lopez-Hilfiker, Felipe D.
2017-04-11
We report chamber measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation, where radical concentrations were systematically varied and the molecular composition of semi to low volatility gases and SOA were measured online. Using a detailed chemical mechanism, we find that to explain the behavior of low volatility products and SOA mass yields relative to input H2O2 concentrations, the second generation dihydroxy hydroperoxy peroxy radical (C5H11O6•) must undergo an intra-molecular H-shift with a net forward rate constant of order 0.1 s-1 or higher, consistent with quantum chemical calculations which suggest a net forward rate constant of 0.3-0.9 s-1.more » Furthermore, these calculations suggest the dominant product of this isomerization is a dihydroxy hydroperoxy epoxide (C5H10O5) which is expected to have a saturation vapor pressure ~2 orders of magnitude higher than the dihydroxy dihydroperoxide, ISOP(OOH)2 (C5H12O6), a major product of the peroxy radical reacting with HO2. These results provide strong constraints on the likely volatility distribution of isoprene oxidation products under atmospheric conditions and thus on the importance of non-reactive gas-particle partitioning of isoprene oxidation products as an SOA source.« less
Reactive Secondary Sequence Oxidative Pathology Polymer Model and Antioxidant Tests
Petersen, Richard C.
2014-01-01
Aims To provide common Organic Chemistry/Polymer Science thermoset free-radical crosslinking Sciences for Medical understanding and also present research findings for several common vitamins/antioxidants with a new class of drugs known as free-radical inhibitors. Study Design Peroxide/Fenton transition-metal redox couples that generate free radicals were combined with unsaturated lipid oils to demonstrate thermoset-polymer chain growth by crosslinking with the α-β-unsaturated aldehyde acrolein into rubbery/adhesive solids. Further, Vitamin A and beta carotene were similarly studied for crosslink pathological potential. Also, free-radical inhibitor hydroquinone was compared for antioxidant capability with Vitamin E. Place and Duration of Study Department of Materials Science and Engineering and Department of Biomaterials, University of Alabama at Birmingham, between June 2005 and August 2012. Methodology Observations were recorded for Fenton free-radical crosslinking of unsaturated lipids and vitamin A/beta carotene by photography further with weight measurements and percent-shrinkage testing directly related to covalent crosslinking of unsaturated lipids recorded over time with different concentrations of acrolein. Also, hydroquinone and vitamin E were compared at concentrations from 0.0–7.3wt% as antioxidants for reductions in percent-shrinkage measurements, n = 5. Results Unsaturated lipid oils responded to Fenton thermoset-polymer reactive secondary sequence reactions only by acrolein with crosslinking into rubbery-type solids and different non-solid gluey products. Further, molecular oxygen crosslinking was demonstrated with lipid peroxidation and acrolein at specially identified margins. By peroxide/Fenton free-radical testing, both vitamin A and beta-carotene demonstrated possible pathology chemistry for chain-growth crosslinking. During lipid/acrolein testing over a 50 hour time period at 7.3wt% antioxidants, hydroquinone significantly reduced percent shrinkage greatly compared to the standard antioxidant vitamin E, %shrinkage at 11.6 ±1.3 for hydroquinone and 27.8 ±2.2 for vitamin E, P = .001. Conclusion Free radicals crosslinked unsaturated lipid fatty acids into thermoset polymers through Fenton reactions when combined with acrolein. Further, hydroquinone was a superior antioxidant to vitamin E. PMID:25909053
Forman, Henry Jay; Davies, Kelvin J. A.; Ursini, Fulvio
2013-01-01
We present arguments for an evolution in our understanding of how antioxidants in fruits and vegetables exert their health-protective effects. There is much epidemiological evidence for disease prevention by dietary antioxidants and chemical evidence that such compounds react in one-electron reactions with free radicals in vitro. Nonetheless, kinetic constraints indicate that in vivo scavenging of radicals is ineffective in antioxidant defense. Instead, enzymatic removal of non-radical electrophiles, such as hydroperoxides, in two-electron redox reactions is the major antioxidant mechanism. Furthermore, we propose that a major mechanism of action for nutritional antioxidants is the paradoxical oxidative activation of the Nrf2 (NF-E2-related factor 2) signaling pathway, which maintains protective oxidoreductases and their nucleophilic substrates. This maintenance of ‘Nucleophilic Tone,’ by a mechanism that can be called ‘Para-Hormesis,’ provides a means for regulating physiological non-toxic concentrations of the non-radical oxidant electrophiles that boost antioxidant enzymes, and damage removal and repair systems (for proteins, lipids, and DNA), at the optimal levels consistent with good health. PMID:23747930
Sulfur Dioxide Accelerates the Heterogeneous Oxidation Rate of Organic Aerosol by Hydroxyl Radicals
Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.
2016-03-08
There remains considerable uncertainty in how anthropogenic gas phase emissions alter the oxidative aging of organic aerosols in the troposphere. Here we observe a 10-20 fold acceleration in the effective heterogeneous OH oxidation rate of organic aerosol in the presence of SO 2. This acceleration originates from the radical chain reactions propagated by alkoxy radicals, which are formed efficiently inside the particle by the reaction of peroxy radicals with SO 2. As the OH approaches atmospheric concentrations, the radical chain length increases, transforming the aerosol at rates predicted to be up to 10 times the OH-aerosol collision frequency. Model predictions,more » constrained by experiments over orders of magnitude changes in [OH] and [SO 2], suggest that in polluted regions the heterogeneous processing of organic aerosols by OH ([SO 2] ≥ 40 ppb) occur on similar time scales as analogous gas-phase oxidation reactions. These results provide evidence for a previously unidentified mechanism by which organic aerosol oxidation is enhanced by anthropogenic gas phase emissions. (Chemical Equation Presented).« less
Free radicals in adolescent varicocele testis.
Romeo, Carmelo; Santoro, Giuseppe
2014-01-01
We examine the relationship between the structure and function of the testis and the oxidative and nitrosative stress, determined by an excessive production of free radicals and/or decreased availability of antioxidant defenses, which occur in the testis of adolescents affected by varicocele. Moreover, the effects of surgical treatment on oxidative stress were provided. We conducted a PubMed and Medline search between 1980 and 2014 using "adolescent," "varicocele," "free radicals," "oxidative and nitrosative stress," "testis," and "seminiferous tubules" as keywords. Cross-references were checked in each of the studies, and relevant articles were retrieved. We conclude that increased concentration of free radicals, generated by conditions of hypoxia, hyperthermia, and hormonal dysfunction observed in adolescent affected by varicocele, can harm germ cells directly or indirectly by influencing nonspermatogenic cells and basal lamina. With regard to few available data in current literature, further clinical trials on the pre- and postoperative ROS and RNS levels together with morphological studies of the cellular component of the testis are fundamental for complete comprehension of the role played by free radicals in the pathogenesis of adolescent varicocele and could justify its pharmacological treatment with antioxidants.
Ozone-mist spray sterilization for pest control in agricultural management
NASA Astrophysics Data System (ADS)
Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun
2013-02-01
We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
Maury, Julien; Jammi, Suribabu; Vibert, François; Marque, Sylvain R A; Siri, Didier; Feray, Laurence; Bertrand, Michèle
2012-10-19
The production of propargyl radicals in the reaction of dialkylzincs with propargyl iodides in nondegassed medium was investigated by EPR using tri-tert-butylnitrosobenzene (TTBNB) as a spin trap. The radical mechanism and the nature of the observed species were confirmed by the trapping of propargyl radicals generated by an alternative pathway: i.e., upon irradiation of propargyl iodides in the presence of hexa-n-butyldistannane. In dialkylzinc-mediated experiments a high concentration of adduct was instantaneously observed, whereas no spontaneous production of spin adduct was detected in a blank experiment performed with the propargylic iodide and TTBNB in the absence of diethylzinc. Under irradiation in the presence of distannane, two different species were observed at the very beginning of the irradiation; the nitroxide resulting from the trapping of propargyl radical at the propargyl carbon remained the only species detected after irradiating for several minutes. The absence of adducts resulting from the trapping of allenyl canonical forms was supported by DFT calculations and by the preparation of an authentic sample.
Dow, Geoffrey S; Gettayacamin, Montip; Hansukjariya, Pranee; Imerbsin, Rawiwan; Komcharoen, Srawuth; Sattabongkot, Jetsumon; Kyle, Dennis; Milhous, Wilbur; Cozens, Simon; Kenworthy, David; Miller, Anne; Veazey, Jim; Ohrt, Colin
2011-07-29
Tafenoquine is an 8-aminoquinoline being developed for radical cure (blood and liver stage elimination) of Plasmodium vivax. During monotherapy treatment, the compound exhibits slow parasite and fever clearance times, and toxicity in glucose-6-phosphate dehydrogenase (G6PD) deficiency is a concern. Combination with other antimalarials may mitigate these concerns. In 2005, the radical curative efficacy of tafenoquine combinations was investigated in Plasmodium cynomolgi-infected naïve Indian-origin Rhesus monkeys. In the first cohort, groups of two monkeys were treated with a three-day regimen of tafenoquine at different doses alone and in combination with a three-day chloroquine regimen to determine the minimum curative dose (MCD). In the second cohort, the radical curative efficacy of a single-day regimen of tafenoquine-mefloquine was compared to that of two three-day regimens comprising tafenoquine at its MCD with chloroquine or artemether-lumefantrine in groups of six monkeys. In a final cohort, the efficacy of the MCD of tafenoquine against hypnozoites alone and in combination with chloroquine was investigated in groups of six monkeys after quinine pre-treatment to eliminate asexual parasites. Plasma tafenoquine, chloroquine and desethylchloroquine concentrations were determined by LC-MS in order to compare doses of the drugs to those used clinically in humans. The total MCD of tafenoquine required in combination regimens for radical cure was ten-fold lower (1.8 mg/kg versus 18 mg/kg) than for monotherapy. This regimen (1.8 mg/kg) was equally efficacious as monotherapy or in combination with chloroquine after quinine pre-treatment to eliminate asexual stages. The same dose of (1.8 mg/kg) was radically curative in combination with artemether-lumefantrine. Tafenoquine was also radically curative when combined with mefloquine. The MCD of tafenoquine monotherapy for radical cure (18 mg/kg) appears to be biologically equivalent to a 600-1200 mg dose in humans. At its MCD in combination with blood schizonticidal drugs (1.8 mg/kg), the maximum observed plasma concentrations were substantially lower than (20-84 versus 550-1,100 ng/ml) after administration of 1, 200 mg in clinical studies. Ten-fold lower clinical doses of tafenoquine than used in prior studies may be effective against P. vivax hypnozoites if the drug is deployed in combination with effective blood-schizonticidal drugs.
2011-01-01
Background Tafenoquine is an 8-aminoquinoline being developed for radical cure (blood and liver stage elimination) of Plasmodium vivax. During monotherapy treatment, the compound exhibits slow parasite and fever clearance times, and toxicity in glucose-6-phosphate dehydrogenase (G6PD) deficiency is a concern. Combination with other antimalarials may mitigate these concerns. Methods In 2005, the radical curative efficacy of tafenoquine combinations was investigated in Plasmodium cynomolgi-infected naïve Indian-origin Rhesus monkeys. In the first cohort, groups of two monkeys were treated with a three-day regimen of tafenoquine at different doses alone and in combination with a three-day chloroquine regimen to determine the minimum curative dose (MCD). In the second cohort, the radical curative efficacy of a single-day regimen of tafenoquine-mefloquine was compared to that of two three-day regimens comprising tafenoquine at its MCD with chloroquine or artemether-lumefantrine in groups of six monkeys. In a final cohort, the efficacy of the MCD of tafenoquine against hypnozoites alone and in combination with chloroquine was investigated in groups of six monkeys after quinine pre-treatment to eliminate asexual parasites. Plasma tafenoquine, chloroquine and desethylchloroquine concentrations were determined by LC-MS in order to compare doses of the drugs to those used clinically in humans. Results The total MCD of tafenoquine required in combination regimens for radical cure was ten-fold lower (1.8 mg/kg versus 18 mg/kg) than for monotherapy. This regimen (1.8 mg/kg) was equally efficacious as monotherapy or in combination with chloroquine after quinine pre-treatment to eliminate asexual stages. The same dose of (1.8 mg/kg) was radically curative in combination with artemether-lumefantrine. Tafenoquine was also radically curative when combined with mefloquine. The MCD of tafenoquine monotherapy for radical cure (18 mg/kg) appears to be biologically equivalent to a 600-1200 mg dose in humans. At its MCD in combination with blood schizonticidal drugs (1.8 mg/kg), the maximum observed plasma concentrations were substantially lower than (20-84 versus 550-1,100 ng/ml) after administration of 1, 200 mg in clinical studies. Conclusions Ten-fold lower clinical doses of tafenoquine than used in prior studies may be effective against P. vivax hypnozoites if the drug is deployed in combination with effective blood-schizonticidal drugs. PMID:21801400
Haag, S F; Tscherch, K; Arndt, S; Kleemann, A; Gersonde, I; Lademann, J; Rohn, S; Meinke, M C
2014-02-01
Hyperforin is well-known for its anti-inflammatory, anti-tumor, anti-bacterial, and antioxidant properties. The application of a hyperforin-rich verum cream could strengthen the skin barrier function by reducing radical formation and stabilizing stratum corneum lipids. Here, it was investigated whether topical treatment with a hyperforin-rich cream increases the radical protection of the skin during VIS/NIR irradiation. Skin lipid profile was investigated applying HPTLC on skin lipid extracts. Furthermore, the absorption- and scattering coefficients, which influence radical formation, were determined. 11 volunteers were included in this study. After a single cream application, VIS/NIR-induced radical formation could be completely inhibited by both verum and placebo showing an immediate protection. After an application period of 4weeks, radical formation could be significantly reduced by 45% following placebo application and 78% after verum application showing a long-term protection. Furthermore, the skin lipids in both verum and placebo groups increased directly after a single cream application but only significantly for ceramide [AP], [NP1], and squalene. After long-term cream application, concentration of cholesterol and the ceramides increased, but no significance was observed. These results indicate that regular application of the hyperforin-rich cream can reduce radical formation and can stabilize skin lipids, which are responsible for the barrier function. Copyright © 2013 Elsevier B.V. All rights reserved.
Protective effect of Pterostilbene against free radical mediated oxidative damage
2013-01-01
Background Pterostilbene, a methoxylated analog of Resveratrol, is gradually gaining more importance as a therapeutic drug owing to its higher lipophilicity, bioavailability and biological activity than Resveratrol. This study was undertaken to characterize its ability to scavenge free radicals such as superoxide, hydroxyl and hydrogen peroxide and to protect bio-molecules within a cell against oxidative insult. Methods Anti-oxidant activity of Pterostilbene was evaluated extensively by employing several in vitro radical scavenging/inhibiting assays and pulse radiolysis study. In addition, its ability to protect rat liver mitochondria against tertiary-butyl hydroperoxide (TBHP) and hydroxyl radical generated oxidative damage was determined by measuring the damage markers such as protein carbonyls, protein sulphydryls, lipid hydroperoxides, lipid peroxides and 8-hydroxy-2'-deoxyguanosine. Pterostilbene was also evaluated for its ability to inhibit •OH radical induced single strand breaks in pBR322 DNA. Result Pterostilbene exhibited strong anti-oxidant activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide in a concentration dependent manner. Pterostilbene conferred protection to proteins, lipids and DNA in isolated mitochondrial fractions against TBHP and hydroxyl radical induced oxidative damage. It also protected pBR322 DNA against oxidative assault. Conclusions Thus, present study provides an evidence for the strong anti-oxidant property of Pterostilbene, methoxylated analog of Resveratrol, thereby potentiating its role as an anti-oxidant. PMID:24070177
OH, HO2, and HO2* Radical Chemistry During PROPHET-AMOS 2016: Measurements and Model Comparison
NASA Astrophysics Data System (ADS)
Bottorff, B.; Lew, M.; Rickly, P.; Stevens, P. S.
2017-12-01
The hydroxyl (OH) and peroxy radicals, both the hydroperoxy radical (HO2) and organic peroxy radicals (RO2), play an important role in atmospheric chemistry. In addition to controlling lifetimes of many trace gases important to issues of global climate change, reactions of these radicals can also lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in remote forest environments have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOX conditions. In the summer of 2016, OH, HO2 and HO2* (HO2 + αRO2) radicals were measured using the Indiana University Laser-Induced Fluorescence Fluorescence Assay by Gas Expansion (LIF-FAGE) technique as part of the Program for Research on Oxidants: PHtochemistry, Emissions, and Transport- Atmospheric Measurements of Oxidants in Summer (PROPHET-AMOS). This campaign took place in a forested area in northern Michigan characterized by high mixing ratios of isoprene and low mixing ratios of NOX. Ambient measurements from this campaign will be compared to previous measurements at this site and to modeled predictions using both the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism. Potential interferences associated with the OH measurements will also be examined.
Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.
Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen
2013-01-01
Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.
NASA Astrophysics Data System (ADS)
Zumbach, Volker; Schäfer, Jörg; Tobai, Jens; Ridder, Michael; Dreier, Thomas; Schaich, Thomas; Wolfrum, Jürgen; Ruf, Bernhard; Behrendt, Frank; Deutschman, Olaf; Warnatz, Jürgen
1997-10-01
A joint investigation has been undertaken of the gas-phase chemistry taking place in a hot-filament chemical vapor-deposition (HFCVD) process for diamond synthesis on silica surfaces by a detailed comparison of numerical modeling and experimental results. Molecular beam sampling using quadrupole mass spectroscopy and resonance-enhanced multiphoton ionization time of flight mass spectroscopy (REMPI-TOF-MS) has been used to determine absolute concentrations of stable hydrocarbons and radicals. Resulting species of a CH4/H2, a CH4/D2 (both 0.5%/99.5%) and a C2H2/H2 (0.25%/99.75%) feedgas mixture were investigated for varying filament and substrate temperatures. Spatially resolved temperature profiles at various substrate temperatures, obtained from coherent anti-Stokes Raman spectroscopy (CARS) of hydrogen, are used as input parameters for the numerical code to reproduce hydrogen atom, methyl radical, methane, acetylene, and ethylene concentration profiles in the boundary layer of the substrate. In addition, the concentration of vibrationally excited hydrogen is determined by CARS. Results reveal only qualitative agreement between measured data and simulations, concerning concentrations of stable species and radicals probed near the surface, on filament and substrate temperature dependence, respectively. Hydrogen and deuterium experiments show similar behaviour for all species. In the case of CH4 as feedgas the model describes measured concentration profiles of CH3, CH4, and C2H2 qualitatively well. Large differences between model and experiment occur for hydrogen atoms (factor of 2) and C2H4 (factor of 3). For acetylene as feedgas the model is not able to give any predictions because no conversion of C2H2 is seen in the model in contrast to the experiment.
Tan, Zhaofeng; Lu, Keding; Jiang, Meiqing; Su, Rong; Dong, Huabin; Zeng, Limin; Xie, Shaodong; Tan, Qinwen; Zhang, Yuanhang
2018-09-15
We present the in-situ measurements in Chengdu, a major city in south west of China, in September 2016. The concentrations of ozone and its precursor were measured at four sites. Although the campaign was conducted in early autumn, up to 100 ppbv (parts per billion by volume) daily maximum ozone was often observed at all sites. The observed ozone concentrations showed good agreement at all sites, which implied that ozone pollution is a regional issue in Chengdu. To better understand the ozone formation in Chengdu, an observation based model is used in this study to calculate the RO x radical concentrations (RO x = OH + HO 2 + RO 2 ) and ozone production rate (P(O 3 )). The model predicts OH daily maximum is in the range of 4-8 × 10 6 molecules cm -3 , and HO 2 and RO 2 are in the range of 3-6 × 10 8 molecules cm -3 . The modelled radical concentrations show a distinct difference between ozone pollution and attainment period. The relative incremental reactivity (RIR) results demonstrate that anthropogenic VOCs reduction is the most efficient way to mitigate ozone pollution at all sites, of which alkenes dominate >50% of the ozone production. Empirical kinetic modelling approach shows that three out of four sites are under the VOC-limited regime, while Pengzhou is in a transition regime due to the local petrochemical industry. The ozone budget analysis showed that the local ozone production driven by the photochemical process is important to the accumulation of ozone concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.
Mukai, Kazuo; Kohno, Yutaro; Ouchi, Aya; Nagaoka, Shin-ichi
2012-08-02
The measurements of the UV-vis absorption spectra of α-, β-, γ-, and δ-tocopheroxyl (α-, β-, γ-, and δ-Toc(•)) radicals were performed by reacting aroxyl (ArO(•)) radical with α-, β-, γ-, and δ-tocopherol (α-, β-, γ-, and δ-TocH), respectively, in acetonitrile solution including three kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), and Mg(ClO(4))(2)) (MX or MX(2)), using stopped-flow spectrophotometry. The maximum wavelengths (λ(max)) of the absorption spectra of the α-, β-, γ-, and δ-Toc(•) located at 425-428 nm without metal salts increased with increasing concentrations of metal salts (0-0.500 M) in acetonitrile and approached some constant values, suggesting (Toc(•)···M(+) (or M(2+))) complex formations. Similarly, the values of the apparent molar extinction coefficient (ε(max)) increased drastically with increasing concentrations of metal salts in acetonitrile and approached some constant values. The result suggests that the formations of Toc(•) dimers were suppressed by the metal ion complex formations of Toc(•) radicals. The stability constants (K) were determined for Li(+), Na(+), and Mg(2+) complexes of α-, β-, γ-, and δ-Toc(•). The K values increased in the order of NaClO(4) < LiClO(4) < Mg(ClO(4))(2), being independent of the kinds of Toc(•) radicals. Furthermore, the K values increased in the order of δ- < γ- < β- < α-Toc(•) radicals for each metal salt. The alkali and alkaline earth metal salts having a smaller ionic radius of the cation and a larger charge of the cation gave a larger shift of the λ(max) value, a larger ε(max) value, and a larger K value. The result of the DFT molecular orbital calculations indicated that the α-, β-, γ-, and δ-Toc(•) radicals were stabilized by the (1:1) complex formation with metal cations (Li(+), Na(+), and Mg(2+)). Stabilization energy (E(S)) due to the complex formation increased in the order of Na(+) < Li(+) < Mg(2+) complexes, being independent of the kinds of Toc(•) radicals. The calculated result also indicated that the metal cations coordinate to the O atom at the sixth position of α-, β-, γ-, and δ-Toc(•) radicals.
Revised estimates for ozone reduction by shuttle operation
NASA Technical Reports Server (NTRS)
Potter, A. E.
1978-01-01
Previous calculations by five different modeling groups of the effect of space shuttle operations on the ozone layer yielded an estimate of 0.2 percent ozone reduction for the Northern Hemisphere at 60 launches per year. Since these calculations were made, the accepted rate constant for the reaction between hydroperoxyl and nitric oxide to yield hydroxyl and nitrogen dioxide, HO2 + NO yields OH + NO2, was revised upward by more than an order of magnitude, with a resultant increase in the predicted ozone reduction for chlorofluoromethanes by a factor of approximately 2. New calculations of the shuttle effect were made with use of the new rate constant data, again by five different modeling groups. The new value of the shuttle effect on the ozone layer was found to be 0.25 percent. The increase resulting from the revised rate constant is considerably less for space shuttle operations than for chlorofluoromethane production, because the new rate constant also increases the calculated rate of downward transport of shuttle exhaust products out of the stratosphere.
Yuan, Chenyi; Chakraborty, Mrinal; Canonica, Silvio; Weavers, Linda K; Hadad, Christopher M; Chin, Yu-Ping
2016-11-15
Isoproturon (IPU) is a phenylurea herbicide used to control broad-leaf grasses on grain fields. Photosensitized transformation induced by excited triplet states of dissolved organic matter ( 3 DOM*) has been identified as an important degradation pathway for IPU in sunlit waters, but the reappearance of IPU in the absence of light is observed after the initial photolysis. In this study, we elucidate the kinetics of this photodegradation and dark-reappearance cycling of IPU in the presence of DOM proxies (aromatic ketones and reference fulvic acids). Using mass spectrometry and nuclear magnetic resonance spectroscopic techniques, a semi-stable intermediate (IPU int ) was found to be responsible for IPU reversion and was identified as a hydroperoxyl derivative of IPU. IPU int is photogenerated from incorporation of diatomic oxygen to IPU and is subjected to thermolysis whose rate depends on temperature, pH, the presence of DOM, and inorganic ions. These results are important to understand the overall aquatic fate of IPU and structurally similar compounds under diurnal conditions.
Berber, Adnan; Zengin, Gokhan; Aktumsek, Abdurrahman; Sanda, Murad Aydin; Uysal, Tuna
2014-03-01
Adenocarpus complicatus is distributed throughout the Anatolian peninsula and is widely used for human and animal nutrition. The purpose of this work was to study the antioxidant properties and fatty acid composition of different parts of this plant (fruits and mixed materials). The species was collected from Golyuzu village of the Seydisehir district near Konya province, Turkey. Fruit and mixed parts obtained from this species were ground and a 15g sample was used to prepare methanolic extracts. Powdered plant samples were extracted with 100mL methanol in a mechanical shaker. The obtained extracts were filtered and concentrated to dryness under reduced pressure and were subsequently stored at -20 degrees C. Antioxidant components, namely total phenolic and flavonoid content, were detected for each extract using spectrophotometric methods. Antioxidant capacity was evaluated by various assays including phosphomolybdenum, DPPH free radical scavenging capacity, metal chelating activity, and ferric and cupric ion reducing power. The fatty acid profiles of plant parts were also determined by using gas chromatography. The total phenolic content of fruit (36.21mgGAE/g) was higher than that of mixed materials (13.79mgGAE/g). The methanolic extract of mixed material had higher amounts of flavonoid than fruit extract. The free radical scavenging activity of extracts was expressed as IC50 value (microg/mL) (amount required to inhibit DPPH radical formation by 50%). The lower IC50 value reflects better free radical scavenging action. The radical scavenging activity of the samples was compared with BHT, it showed the mixed material to be almost two times more potent than the fruit extract. However, BHT is an excellent free radical scavenger with an IC50 of 34.061 microg/mL. The ferric and cupric reducing power potentials of the extracts were expressed as EC50 value (the effective concentration at which the absorbance was 0.5). Fruit extract exhibited strong ferric reducing power with an EC50 of 871.25 microg/mL. The metal chelating activity of the extracts increased with concentration. Chelating effect was 83.60% for fruit extract at 1mg/mL concentration. Oil content of fruit and mixed parts were detected as 6.71 and 6.14%, respectively. A total of 32 fatty acids were found in the oil. Essential fatty acids (linoleic and a-linolenic acid) were identified as the most abundant fatty acids in the oil. These results demonstrated that this plant species can be considered as an alternative to synthetic antioxidants. Likewise, the oil obtained from the plant can be used as a source of essential fatty acids for food and pharmacological applications.
Is Nitrate radical a major oxidant of elemental mercury in the atmosphere?
NASA Astrophysics Data System (ADS)
Luria, M.; Obrist, D.; Peleg, M.; Matveev, V.; Tas, E.
2012-12-01
Nitrate radicals (NO3) play a major role in the nighttime atmospheric oxidation of VOC. The radicals are produced throughout the reaction between O3 and NO2 and are removed via a sequence of homogeneous and heterogeneous reactions. Nitrate radicals reach significant levels only at night and mostly under conditions of low humidity (Asaf et al, 2009, 2010 and references therein). Because of its very high photolysis rate, daytime levels are extremely low, and thus are insignificant in atmospheric oxidation processes. The reaction of Hg with NO3 has not been sufficiently investigated; a value of 4x10-15 cm3 molec-1 s-1 (Sommar et al 1997) is most commonly used. Its importance for the atmospheric mercury chemistry was discussed by Mao el al., (2008) who examined the potential oxidation of mercury by the most common atmospheric oxidants applying the best available rate coefficients. According to their report, the uncertainty in the oxidation capacity of O3 is very large (a factor of 20). If the lower limit is applied, as suggested by Calvert and Lindberg (2005), oxidation by O3 is nearly negligible and, NO3 radicals, at typical nighttime levels, are responsible for the bulk of the Hg oxidation. Obviously this is true in the absence of reactive halogen compounds (RHC, Peleg et al., 2008). The most common method of measuring nitrate radicals is the differential optical absorption system (DOAS) technique. In a recent study performed at an urban semi arid site (Jerusalem, Israel; Asaf et al., 2009, 2010) it was found that nitrate levels could reach levels of up to 800 ppt, significantly higher than ever reported in the past. They further demonstrated that under the conditions prevailed; nitrate radicals are at least as important as the hydroxyl radicals in the overall oxidation capacity of VOC in the atmosphere. Side by side measurements of Nitrate radicals using the DOAS technique and speciated mercury compounds (Total, Particulate and Reactive gaseous) were performed during the summer months of 2012. Measurements took place at the same site and the same period were the highest levels of NO3 were earlier observed. Preliminary data indicated that RGM levels up to 100 pg/m3 were observed during the dark hours concurrent with NO3 concentrations higher than 200 ppt . First round model simulations using a 1-d model, the same model used for the simulations of Hg oxidation at the Dead Sea (Obrist et al., 2010) were also performed. The results indicated that for a 10 hour nighttime average of 50 ppt of nitrate radicals, the concentrations of RGM increase by a factor of more than three.
NASA Astrophysics Data System (ADS)
Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Stamate, Eugen
2017-11-01
The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm, immersed into a ceramic dielectric barrier. A closed flow-through system necessary for the measurements was prepared by placing a quartz plate at a height of 3 mm from the ceramic barrier. The production of nitrogen radicals was determined from the removal of a trace amount of NO in pure N2 gas, while the production of oxygen radicals was determined by ozone production in pure O2 or synthetic air. The production efficiency of N and O radicals and NO oxidation in synthetic air was comparable with the efficiency of a volume barrier discharge device. The power density per unit of surface area of the CBD device was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water contact angle below 10 degrees but also started to have an impact on the surface roughness.
Hwang, Eun-Sun; Thi, Nhuan Do
2014-01-01
Laver is one of the most consumed edible red algae seaweeds in the genus Porphyra. Laver is primarily prepared in the form of dried, roasted, and seasoned products. We investigated the total polyphenol and flavonoid contents of laver products, and evaluated the in vitro antioxidant properties of solvent extracts from commercially processed laver products. Significant differences in the concentration of phenolic compounds were found among differently processed laver. The total phenolic content for laver extracts ranged from 10.81 mg gallic acid equivalent (GAE)/g extract to 32.14 mg GAE/g extract, depending on extraction solvent and temperature. Laver extracts contained very few flavonoids (0.55 mg catechin equivalent/g extracts to 1.75 mg catechin equivalent/g extracts). 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), hydroxyl radical, and superoxide anion scavenging assays were used to determine the radical scavenging capacities of laver extracts. These assays revealed that the processing method and extraction condition affected the antioxidant potentials of laver. Antioxidant activity of dried laver, roasted laver, and seasoned laver increased in a concentration-dependent manner (100~1,000 μg/mL). The radical scavenging activities of 37°C and 100°C water extracts were lower than that of a 37°C 70% ethanol extract. The highest radical scavenging capacity was observed in the 37°C 70% ethanol extracts of dried laver, roasted laver, and seasoned laver. Overall, these results support that notion that laver contains bioactive compounds, such as polyphenols and flavonoids, which may have a positive effect on health. PMID:24772408
Hwang, Eun-Sun; Thi, Nhuan Do
2014-01-01
Laver is one of the most consumed edible red algae seaweeds in the genus Porphyra. Laver is primarily prepared in the form of dried, roasted, and seasoned products. We investigated the total polyphenol and flavonoid contents of laver products, and evaluated the in vitro antioxidant properties of solvent extracts from commercially processed laver products. Significant differences in the concentration of phenolic compounds were found among differently processed laver. The total phenolic content for laver extracts ranged from 10.81 mg gallic acid equivalent (GAE)/g extract to 32.14 mg GAE/g extract, depending on extraction solvent and temperature. Laver extracts contained very few flavonoids (0.55 mg catechin equivalent/g extracts to 1.75 mg catechin equivalent/g extracts). 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), hydroxyl radical, and superoxide anion scavenging assays were used to determine the radical scavenging capacities of laver extracts. These assays revealed that the processing method and extraction condition affected the antioxidant potentials of laver. Antioxidant activity of dried laver, roasted laver, and seasoned laver increased in a concentration-dependent manner (100~1,000 μg/mL). The radical scavenging activities of 37°C and 100°C water extracts were lower than that of a 37°C 70% ethanol extract. The highest radical scavenging capacity was observed in the 37°C 70% ethanol extracts of dried laver, roasted laver, and seasoned laver. Overall, these results support that notion that laver contains bioactive compounds, such as polyphenols and flavonoids, which may have a positive effect on health.
Jayaprakasha, G K; Girennavar, Basavaraj; Patil, Bhimanagouda S
2008-07-01
Antioxidant fractions from two different citrus species such as Rio Red (Citrus paradise Macf.) and Sour orange (Citrus aurantium L.) were extracted with five different polar solvents using Soxhlet type extractor. The total phenolic content of the extracts was determined by Folin-Ciocalteu method. Ethyl acetate extract of Rio Red and Sour orange was found to contain maximum phenolics. The dried fractions were screened for their antioxidant activity potential using in vitro model systems such as 1,1-diphenyl-2-picryl hydrazyl (DPPH), phosphomolybdenum method and nitroblue tetrazolium (NBT) reduction at different concentrations. The methanol:water (80:20) fraction of Rio Red showed the highest radical scavenging activity 42.5%, 77.8% and 92.1% at 250, 500 and 1000 ppm, respectively, while methanol:water (80:20) fraction of Sour orange showed the lowest radical scavenging activity at all the tested concentrations. All citrus fractions showed good antioxidant capacity by the formation of phosphomolybdenum complex at 200 ppm. In addition, superoxide radical scavenging activity was assayed using non-enzymatic (NADH/phenaxine methosulfate) superoxide generating system. All the extracts showed variable superoxide radical scavenging activity. Moreover, methanol:water (80:20) extract of Rio Red and methanol extract of Sour orange exhibited marked reducing power in potassium ferricyanide reduction method. The data obtained using above in vitro models clearly establish the antioxidant potential of citrus fruit extracts. However, comprehensive studies need to be conducted to ascertain the in vivo bioavailability, safety and efficacy of such extracts in experimental animals. To the best of our knowledge, this is the first report on antioxidant activity of different polar extracts from Rio Red and Sour oranges.
Indole Alkaloids from Chaetomium globosum.
Xu, Guo-Bo; He, Gu; Bai, Huan-Huan; Yang, Tao; Zhang, Guo-Lin; Wu, Lin-Wei; Li, Guo-You
2015-07-24
Two new indole alkaloids chaetocochin J (1) and chaetoglobinol A (8), along with chetomin (2), chetoseminudin A (3), cochliodinol (9), and semicochliodinol (10), were isolated from the rice culture of the fungus Chaetomium globosum. Their structures were elucidated by spectral analysis. Three new epipolythiodioxopiperazines, chaetocochins G-I (5-7), were identified by the combination of UPLC and mass spectrometric analysis. Chaetocochin I contained two sulfur bridges, one formed by three sulfur atoms between C-3 and C-11a, and the other formed by four sulfur atoms between C-3' and C-6'. Chaetocochin I was readily transformed into chetomin (2), chetoseminudin A (3), chaetocochin D (4), chaetocochin G (5), and chaetocochin H (6) by losing sulfur atoms. Compounds 1-3, and 8 exhibited antibacterial activities against Bacillus subtilis with MICs of 25, 0.78, 0.78, and 50 μg/mL, respectively, but not against Gram-negative bacterium (Escherichia coli). Compounds 2 and 8 were inactive against Candida albicans, Fusarium graminearum, Fusarium vasinfectum, Saccharomyces cerevisiae, and Aspergillus niger even at the high concentrations of 200 and 100 μg/mL, respectively. Compound 8 showed free radical scavenging capacity against the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical (ABTS(+•)), with IC50 values of 143.6 and 45.2 μM, respectively. The free radical scavenging capacity rates of compounds 1-3 on the DPPH and ABTS(+•) were less than 20% at the test concentrations (89.9-108.3 μM). The superoxide anion radical scavenging assay indicated that compounds 1-3, and 8 showed 14.8% (90.9 μM), 18.1% (90.9 μM), 51.5% (88.3 μM), and 30.4% (61.3 μM) superoxide anion radical scavenging capacity, respectively.
Wenzig, E M; Widowitz, U; Kunert, O; Chrubasik, S; Bucar, F; Knauder, E; Bauer, R
2008-10-01
The aim of the present study was to compare powdered rose hip with and without fruits (Rosae pseudofructus cum/sine fructibus, Rosa canina L., Rosaceae) with regard to their phytochemical profile and their in vitro anti-inflammatory and radical-scavenging properties. The two powders were subsequently extracted with solvents of increasing polarity and tested for inhibition of cyclooxygenase (COX-1, COX-2) and of 5-LOX-mediated leukotriene B(4) (LTB(4)) formation as well as for DPPH-radical-scavenging capacity. While the water and methanol extracts were inactive in the COX-1, COX-2 and LTB(4) inhibition assays, the n-hexane and the dichloromethane extracts inhibited all three enzymes. In the active extracts, the triterpenoic acids ursolic acid, oleanolic acid and betulinic acid were identified, although only in minute amounts. Furthermore, oleic, linoleic and alpha-linolenic acid were identified apart from several saturated fatty acids. Even though unsaturated fatty acids are known to be good inhibitors of COX-1, COX-2 and LT formation, no clear correlation between their concentration in the extracts and their activity was found. We suggest that other, yet unidentified, lipophilic constituents might play a more important role for the observed in vitro inhibitory activity on arachidonic acid metabolism. Some of the extracts also showed considerable DPPH radical scavenging activity, the methanolic extracts being most potent. The radical scavenging activity of the extracts correlated very well with their total phenolic content, while ascorbic acid contributes only little to the radical-scavenging activity due to its low concentration present in the extracts. In summary, extracts derived from powdered rose hip without fruits were more effective in all assays carried out compared with extracts derived from powdered rose hip with fruits.
Influence of various scavengers of •OH radicals on the radiation sensitivity of yeast and bacteria.
Múčka, Viliam; Bláha, Pavel; Čuba, Václav; Červenák, Jaroslav
2013-12-01
To quantitatively investigate the influence of various •OH (hydroxyl radical) scavengers on the radiation sensitivity of yeast and bacteria, particularly to define the relationship between the protective effect of a scavenger and its •OH scavenging efficiency. In order to study the protective effect of •OH scavengers we used various concentrations of four scavengers (methanol, potassium formate, ethanol and ascorbic acid) in isotonic salt solutions. These solutions containing live yeast (Saccharomyces cerevisiae) or bacteria (Escherichia coli) were irradiated with (60)Co isotope γ -radiation using two different doses and dose rates. The number of surviving cells was determined prior to and after irradiation both in suspension with and without scavengers. The surviving fractions after irradiation with and without the scavenger were evaluated. The main results of the paper were: The surviving fraction increased approximately linearly within the measured interval with increasing concentration of the scavenger. The same dependences were found for the protecting effect depending on the scavenging efficiency. The slopes of these dependences (k) were found to be characteristic for each scavenger. The k value determined the degree in which the scavenging of •OH radicals participated in the protection of living cells. The protective effects of scavengers at the same scavenging efficiency were different and unique for each scavenger. No simple relation was found between the efficiency of scavenger k and the rate constant kOH of the reactions between scavengers and •OH radicals. Our results suggest that the studied scavengers effectively protected yeast and bacteria against ionizing radiation. Although the scavenging of •OH radicals seems to be important for protection of living cells, it is clearly not the only process on which the protection is based.
Lipid peroxidation inhibition and antiradical activities of some leaf fractions of Mangifera indica.
Badmus, Jelili A; Adedosu, Temitope O; Fatoki, John O; Adegbite, Victor A; Adaramoye, Oluwatosin A; Odunola, Oyeronke A
2011-01-01
This study was undertaken to assess in vitro lipid peroxidation inhibitions and anti-radical activities of methanolic, chloroform, ethyl acetate and water fractions of Mangifera indica leaf. Inhibition of Fe(2+)-induced lipid peroxidation (LPO) in egg, brain, and liver homogenates, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (OH-) radical scavenging activities were evaluated. Total phenol was assessed in all fractions, and the reducing power of methanolic fraction was compared to gallic acid and ascorbic acid. The results showed that Fe2+ induced significant lipid peroxidation (LPO) in all the homogenates. Ethyl acetate fraction showed the highest percentage inhibition of LPO in both egg yolk (68.3%) and brain (66.3%), while the aqueous fraction exerted the highest inhibition in liver homogenate (89.1%) at a concentration of 10 microg/mL. These observed inhibitions of LPO by these fractions were higher than that of ascorbic acid used as a standard. The DPPH radical scavenging ability exhibited by ethyl acetate fraction was found to be the highest with IC50 value of 1.5 microg/mL. The ethyl acetate and methanolic fractions had the highest OH- radical scavenging ability with the same IC50 value of 5 microg/mL. The total phenol content of ethyl acetate fraction was the highest with 0.127 microg/mg gallic acid equivalent (GAE). The reductive potential of methanolic fraction showed a concentration-dependent increase. This study showed that inhibition of LPO and the DPPH and OH- radicals scavenging abilities of Mangifera indica leaf could be related to the presence of phenolic compounds. Therefore, the ethyl acetate fraction of the leaf may be a good source of natural antioxidative agent.
Sugahara, Shintaro; Ueda, Yuto; Fukuhara, Kumiko; Kamamuta, Yuki; Matsuda, Yasushi; Murata, Tatsuro; Kuroda, Yasuhiro; Kabata, Kiyotaka; Ono, Masateru; Igoshi, Keiji; Yasuda, Shin
2015-11-01
Yacon (Smallanthus sonchifolius), a native Andean plant, has been cultivated as a crop and locally used as a traditional folk medicine for the people suffering from diabetes and digestive/renal disorders. However, the medicinal properties of this plant and its processed foods have not been completely established. This study investigates the potent antioxidative effects of herbal tea leaves from yacon in different free radical models and a ferric reducing model. A hot-water extract exhibited the highest yield of total polyphenol and scavenging effect on 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical among four extracts prepared with hot water, methanol, ethanol, and ethylacetate. In addition, a higher reducing power of the hot-water extract was similarly demonstrated among these extracts. Varying concentrations of the hot-water extract resulted in different scavenging activities in four synthetic free radical models: DPPH radical (EC50 28.1 μg/mL), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (EC50 23.7 μg/mL), galvinoxyl radical (EC50 3.06 μg/mL), and chlorpromazine cation radical (EC50 475 μg/mL). The yacon tea-leaf extract further demonstrated superoxide anion (O2(-)) radical scavenging effects in the phenazine methosulfate-NADH-nitroblue tetrazolium (EC50 64.5 μg/mL) and xanthine oxidase assay systems (EC50 20.7 μg/mL). Subsequently, incubating human neutrophilic cells in the presence of the tea-leaf extract could suppress the cellular O2(-) radical generation (IC50 65.7 μg/mL) in a phorbol 12-myristate 13-acetate-activated cell model. These results support yacon tea leaves may be a good source of natural antioxidants for preventing O2(-) radical-mediated disorders. Yacon has been considered to be a potent alternative food source for patients who require a dietary cure in regional area, while the leaf part has been provided and consumed as an herbal tea in local markets. We demonstrated here potent antioxidative effects of the tea leaves from yacon in different free radical assays, reducing power assay, and cellular superoxide anion radical generation assay. Results support yacon tea leaves may be a good source of natural antioxidants for preventing O2(-) radical-mediated disorders. © 2015 Institute of Food Technologists®
Staluszka, Justyna; Steblecka, Malgorzata; Szajdzinska-Pietek, Ewa; Kohl, Ingrid; Salzmann, Christoph G; Hallbrucker, Andreas; Mayer, Erwin
2008-09-18
Hyperquenched glassy water (HGW) has been suggested as the best model for liquid water, to be used in low-temperature studies of indirect radiation effects on dissolved biomolecules (Bednarek et al. J. Am. Chem. Soc. 1996, 118, 9387). In the present work, these effects are examined by X-band electron spin resonance spectroscopy (ESR) in gamma-irradiated HGW matrix containing 2'-deoxyguanosine-5'-monophosphate. Analysis of the complex ESR spectra indicates that, in addition to OH(*) and HO2(*) radicals generated by water radiolysis, three species are trapped at 77 K:(i) G(C8)H(*) radical, the H-adduct to the double bond at C8; (ii) G(- *) radical anion, the product of electron scavenging by the aromatic ring of the base; and (iii) dR(-H)(*) radicals formed by H abstraction from the sugar moiety, predominantly at the C'5 position. We discuss the yields of the radicals, their thermal stability and transformations, as well as the effect of photobleaching. This study confirms our earlier suggestion that in HGW the H atom addition/abstraction products are created at 77 K in competition with HO2(*) radicals, in a concerted process following ionization of water molecule at L-type defect sites of the H-bonded matrix. The lack of OH(*) reactivity toward the solute suggests that the H-bonded structure in HGW is much more effective in recombining OH(*) radicals than that of aqueous glasses obtained from highly concentrated electrolyte solutions. Furthermore, complementary experiments for the neat matrix have provided evidence that HO2(*) radicals are not the product of H atom reaction with molecular oxygen, possibly generated by ultrasounds used in the process of sample preparation.
NASA Astrophysics Data System (ADS)
Yun, H.; Wang, T.; Wang, W.; Yu, C.; Xia, M.; Xue, L.; Wang, Z.; Zhang, N.; Poon, S.; Zhou, Y.; Yue, D.; Zhai, Y.
2017-12-01
Nitrous acid (HONO) is an important source of hydroxyl radical (OH) in the boundary layer, and has considerable impact on atmospheric oxidation capacity and ozone formation. However, the abundance of HONO and subsequent effects under severe pollution conditions, especially in winter, has not been thoroughly investigated. We conducted an intensive observation at a semi-rural site (Heshan) in the center of the Pearl River Delta (PRD) in January 2017. Extremely high HONO concentrations (up to 9.0 ppbv) were observed with a LOng-Path Absorption Photometer (LOPAP) in a severe pollution episode with especially high PM2.5 ( 400 μg m-3) and O3 ( 160 ppbv). HONO sustained at a relatively high level in the morning and had peaks even in the afternoon. An observation-based box model (OBM) built on Master Chemical Mechanism (MCM v3.3.1) was used to simulate the formation of HONO and its contribution to the radical concentrations. The results showed that HONO was the dominant source of primary radicals (= OH+HO2+RO2) and governed the in-situ production of ozone. Currently-identified HONO sources were added into the model to reveal the formation process of HONO during both the nighttime and daytime, and the relative importance of these sources will be discussed.
Origin of tropospheric NO(x) over subarctic eastern Canada in summer
NASA Technical Reports Server (NTRS)
Fan, S.-M; Jacob, D. J.; Mauzerall, D. L.; Bradshaw, J. D.; Sandholm, S. T.; Blake, D. R.; Singh, H. B.; Talbot, R. W.; Gregory, G. L.; Sachse, G. W.
1994-01-01
The original of NO(X) in the summertime troposphere over subarctic eastern Canada is investigated by photochemical modeling of aircraft and ground-based measurements from the Arctic Boundary Layer Expedition (ABLE 3B). It is found that decomposition of peroxyacetyl nitrate (PAN) can account for most of the NO(X) observed between the surface and 6.2 km altitude (aircraft ceiling). Forest fires represent the principal source of PAN in the region, implying the same origin for NO(X). There is, however, evidence for an unidentified source of NO(X) in occasional air masses subsiding from the upper troposphere. Isoprene emissions from boreal forests maintain high NO(X) concentrations in the continental boundary layer over eastern Canada by scavenging OH and NO3, thus slowing down conversion of NO(X) to HNO3, both in the daytime and at night. This effect is partly compensated by the production of CH3CO3 radicals during isoprene oxidation, which slows down the decomposition of PAN subsiding from the free troposphere. The peroxy radical concentrations estimated from concurrent measurements of NO and NO2 concentrations during ABLE 3B are consistent with values computed from our photochemical model below 4 km, but model values are low at higher altitudes. The discrepancy may reflect either a missing radical source in the model or interferences in the NO2 measurement.
Butruk, Beata; Trzaskowski, Maciej; Ciach, Tomasz
2012-08-01
In this paper the authors present a simple method of coating polyurethane (PU) surface with poly(vinyl pirrolidone) (PVP) hydrogel. The hydrogel-coated materials were designed for use in biomedical applications, especially in blood-contacting devices. The coating is formed due to free radical macromolecular grafting-crosslinking. Polymer surface was first immersed in an organic solution containing radical source: cumene hydroperoxide (CHP) with an addition of a branching and anchoring agent: ethylene glycol dimethylacrylate (EGDMA). In the second step, the substrate was immersed in a water solution containing given concentration of PVP and Fe(2+). The novelty of the process consists in the fact that free radicals are formed mostly at the polymer/solution interface, what assures high grafting efficiency together with the formation of covalent bonds between polymer substrate and modifying layer. The process was optimized for reagents concentrations. The coating properties: thickness and the swelling ratio were strongly influenced by CHP, Fe(2+), PVP and EGMDA concentrations. The chemical composition of the surface analyzed with FTIR-ATR spectroscopy confirmed the presence of PVP coating. In vitro biocompatibility tests with L929 fibroblasts confirmed non-cytotoxicity of the coatings. Hydrogel coating significantly improved polyurethane hemocompatibility. Studies with human whole blood revealed that both, the platelet consumption and the level of platelet activation were as low as for negative control. Copyright © 2012 Elsevier B.V. All rights reserved.
Korchev, A S; Shulyak, T S; Slaten, B L; Gale, W F; Mills, G
2005-04-28
Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.
Kuppusamy, P; Chzhan, M; Vij, K; Shteynbuk, M; Lefer, D J; Giannella, E; Zweier, J L
1994-01-01
It has been hypothesized that free radical metabolism and oxygenation in living organs and tissues such as the heart may vary over the spatially defined tissue structure. In an effort to study these spatially defined differences, we have developed electron paramagnetic resonance imaging instrumentation enabling the performance of three-dimensional spectral-spatial images of free radicals infused into the heart and large vessels. Using this instrumentation, high-quality three-dimensional spectral-spatial images of isolated perfused rat hearts and rabbit aortas are obtained. In the isolated aorta, it is shown that spatially and spectrally accurate images of the vessel lumen and wall could be obtained in this living vascular tissue. In the isolated rat heart, imaging experiments were performed to determine the kinetics of radical clearance at different spatial locations within the heart during myocardial ischemia. The kinetic data show the existence of regional and transmural differences in myocardial free radical clearance. It is further demonstrated that EPR imaging can be used to noninvasively measure spatially localized oxygen concentrations in the heart. Thus, the technique of spectral-spatial EPR imaging is shown to be a powerful tool in providing spatial information regarding the free radical distribution, metabolism, and tissue oxygenation in living biological organs and tissues. Images PMID:8159757
Rajapakse, Niranjan; Mendis, Eresha; Byun, Hee-Guk; Kim, Se-Kwon
2005-09-01
Low molecular weight peptides obtained from ultrafiltration (UF) of giant squid (Dosidicus gigas) muscle protein were studied for their antioxidative effects in different in vitro oxidative systems. The most potent two peptides, Asn-Ala-Asp-Phe-Gly-Leu-Asn-Gly-Leu-Glu-Gly-Leu-Ala (1307 Da) and Asn-Gly-Leu-Glu-Gly-Leu-Lys (747 Da), exhibited their antioxidant potential to act as chain-breaking antioxidants by inhibiting radical-mediated peroxidation of linoleic acid, and their activities were closer to highly active synthetic antioxidant, butylated hydroxytoluene. Addition of these peptides could enhance the viability of cytotoxic embryonic lung fibroblasts significantly (P<.05) at a low concentration of 50 microg/ml, and it was presumed due to the suppression of radical-induced oxidation of membrane lipids. Electron spin trapping studies revealed that the peptides were potent scavengers of free radicals in the order of carbon-centered (IC(50) 396.04 and 304.67 microM), hydroxyl (IC(50) 497.32 and 428.54 microM) and superoxide radicals (IC(50) 669.34 and 573.83 microM). Even though the exact molecular mechanism for scavenging of free radicals was unclear, unusually high hydrophobic amino acid composition (more than 75%) of giant squid muscle peptides was presumed to be involved in the observed activities.
HOx Radical Chemistry in an Indiana Forest Environment: Measurement and Model Comparison
NASA Astrophysics Data System (ADS)
Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Sklaveniti, S.; Leonardis, T.; Locoge, N.; Dusanter, S.; Kundu, S.; Deming, B.; Wood, E. C. D.; Gentner, D. R.
2015-12-01
Reactions of the hydroxyl (OH) and peroxy radicals (HO2 and RO2) play a central role in the chemistry of the atmosphere. In addition to controlling the lifetimes of many trace gases important to issues of global climate change, OH radical reactions initiate the oxidation of volatile organic compounds (VOCs) which can lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in forest environments characterized by high mixing ratios of isoprene and low mixing ratios of NOx have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOx conditions. In the summer of 2015, HOx radicals were measured using Laser-Induced Fluorescence Fluorescence Assay by Gas Expansion (LIF-FAGE) technique as part of the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC). This campaign took place in a forested area at the Indiana Research and Teaching Preserve (IURTP) near the Bloomington campus characterized by high mixing ratios of isoprene and low mixing ratios of NOx. Supporting measurements of photolysis rates, volatile organic compounds, nitrogen oxides, and other species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM).
Theriot, Jordan C.; Ryan, Matthew D.; French, Tracy A.; Pearson, Ryan M.; Miyake, Garret M.
2016-01-01
A standardized technique for atom transfer radical polymerization of vinyl monomers using perylene as a visible-light photocatalyst is presented. The procedure is performed under an inert atmosphere using air- and water-exclusion techniques. The outcome of the polymerization is affected by the ratios of monomer, initiator, and catalyst used as well as the reaction concentration, solvent, and nature of the light source. Temporal control over the polymerization can be exercised by turning the visible light source off and on. Low dispersities of the resultant polymers as well as the ability to chain-extend to form block copolymers suggest control over the polymerization, while chain end-group analysis provides evidence supporting an atom-transfer radical polymerization mechanism. PMID:27166728
Novel denture-cleaning system based on hydroxyl radical disinfection.
Kanno, Taro; Nakamura, Keisuke; Ikai, Hiroyo; Hayashi, Eisei; Shirato, Midori; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro; Sasaki, Keiichi
2012-01-01
The purpose of this study was to evaluate a new denture-cleaning device using hydroxyl radicals generated from photolysis of hydrogen peroxide (H2O2). Electron spin resonance analysis demonstrated that the yield of hydroxyl radicals increased with the concentration of H2O2 and light irradiation time. Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S aureus were killed within 10 minutes with a > 5-log reduction when treated with photolysis of 500 mM H2O2; Candida albicans was killed within 30 minutes with a > 4-log reduction with photolysis of 1,000 mM H2O2. The clinical test demonstrated that the device could effectively reduce microorganisms in denture plaque by approximately 7-log order within 20 minutes.
López-Alarcón, C; Lissi, E
2006-09-01
Oxygen radicals absorbance capacities (ORAC) indexes are frequently employed to characterize the radical trapping capacity of pure compounds and their complex mixtures. A drawback of ORAC values obtained using phycoerythrin, fluorescein (FL) or c-phycocyanin as targets, makes it possible to conclude that for very reactive compounds they are much more related to stoichiometric factors than to the reactivity of the tested compound. In the present paper, we propose a simple methodology, based on the bleaching of Pyrogallol Red (PGR) absorbance that provides ORAC indexes that are almost exclusively determined by the reactivity of the tested compounds. This difference is due to the high reactivity of PGR and the high concentrations of this compound employed in the experiments.
The photochemistry of anthropogenic nonmethane hydrocarbons in the troposphere
NASA Technical Reports Server (NTRS)
Brewer, D. A.; Augustsson, T. R.; Levine, J. S.
1983-01-01
A lumped, nonmethane hydrocarbon (NMHC) chemical mechanism is presently applied to a one-dimensional photochemical model of the troposphere. The profiles of OH, HO2, NO(x), and HNO3, showed only slight changes when NMHC chemistry was added. The integrated column of peroxyacetylnitrate (PAN), when NMHC chemistry was included, comprised 17 percent of the odd nitrogen budget. Advection is noted as an important possible mechanism for the removal of PAN at midlatitudes. The inclusion of such intermediate lifetime species as aldehydes and olefins has both provided additional sources of short-lived NMHC radicals, such as the peroxyacetyl radical that is the radical precursor of PAN, and offered a more detailed description of the concentrations of short-lived species and the overall NMHC chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedeva, Natalia V.; Schmidt, Robert D.; Concepcion, Javier J.
2011-01-01
The proton-coupled electron transfer (PCET) reaction between the bpz-based photoexcited ³MLCT state of [Ru II(bpy) 2(bpz)] 2+ (bpy = 2,2'-bipyridine, bpz = 2,2'-bipyrazine) and a series of substituted hydroquinones (H₂Q) has been studied by transient absorption (TA) and time-resolved electron paramagnetic resonance (TREPR) spectroscopy at X-band. When the reaction is carried out in a CH₃CN/H₂O mixed solvent system with unsubstituted hydroquinone, the neutral semiquinone radical (4a) and its conjugate base, the semiquinone radical anion (4b), are both observed. Variation of the acid strength in the solvent mixture allows the acid/base dependence of the PCET reaction to be investigated. In solutionsmore » with very low acid concentrations, TREPR spectra exclusively derived from radical anion 4b are observed, while at very high acid concentrations, the spectrum is assigned to the protonated structure 4a. At intermediate acid concentrations, either a superposition of spectra is observed (slow exchange between 4a and 4b) or substantial broadening in the TREPR spectrum is observed (fast exchange between 4a and 4b). Variation of substituents on the H₂Q ring substantially alter this acid/base dependence and provide a means to investigate electronic effects on both the ET and PT components of the PCET process. The TA results suggest a change in mechanism from PCET to direct ET quenching in strongly basic solutions and with electron withdrawing groups on the H₂Q ring system. Changing the ligand on the Ru complex also alters the acid/base dependence of the TREPR spectra through a series of complex equilibria between protonated and deprotonated hydroquinone radicals and anions. The relative intensities of the signals from radical 4a versus 4b can be rationalized quantitatively in terms of these equilibria and the relevant pK{sub a} values. An observed equilibrium deuterium isotope effect supports the conclusion that the post-PCET HQ •/Q •- equilibrium is the most important in determining the 4a/4b ratio at early delay times.« less
Free radicals in the stratosphere - A new observational technique
NASA Technical Reports Server (NTRS)
Anderson, J. G.; Hazen, N. L.; Mclaren, B. E.; Rowe, S. P.; Schiller, C. M.; Schwab, M. J.; Solomon, L.; Thompson, E. E.; Weinstock, E. M.
1985-01-01
A new approach to in situ observations of trace reactive species in the stratosphere is described. A balloon-borne system, floating 40 kilometers above the earth's surface, successfully lowered and then retracted a cluster of instruments a distance of 12 kilometers on a filament of Kevlar. This instrument cluster is capable of detecting gas-phase free radicals at the part-per-trillion level. The suspended instrument array has excellent stability and has been used to measured atomic oxygen concentrations in the stratosphere.
Research in atmospheric chemistry and transport
NASA Technical Reports Server (NTRS)
Yung, Y. L.
1982-01-01
The carbon monoxide cycle was studied by incorporating the known CO sources and sinks in a tracer model which used the winds generated by a general circulation model. The photochemical production and loss terms, which depended on OH radical concentrations, were calculated in an interactive fashion. Comparison of the computed global distribution and seasonal variations of CO with observations was used to yield constraints on the distribution and magnitude of the sources and sinks of CO, and the abundance of OH radicals in the troposphere.
ERIC Educational Resources Information Center
Tsarevsky, Nicolay V.; Woodruf, Shannon R.; Wisian-Neilson, Patty J.
2016-01-01
A two-session experiment is designed to introduce undergraduate students to concepts in catalysis, transition metal complexes, polymer synthesis, and postpolymerization modifications. In the first session, students synthesize poly(glycidyl methacrylate) via low-catalyst-concentration atom transfer radical polymerization (ATRP). The…
Sostaric, Joe Z
2008-09-01
Sonolysis of aqueous solutions of n-alkyl anionic surfactants results in the formation of secondary carbon-centered radicals (-*CH-). The yield of -*CH- depends on the bulk surfactant concentration up to a maximum attainable radical yield (the 'plateau yield') where an increasing surfactant concentration (below the critical micelle concentration) no longer affects the -*CH- yield. In an earlier study it was found that the ratio of -*CH- detected following sonolysis of aqueous solutions of sodium pentane sulfonate (SPSo) to that of sodium dodecyl sulfate (SDS) (i.e. CH(SPSo)/CH(SDS)) depended on the frequency of sonolysis, but was independent of the ultrasound intensity, at the plateau concentrations [J.Z. Sostaric, P. Riesz, Adsorption of surfactants at the gas/solution interface of cavitation bubbles: an ultrasound intensity-independent frequency effect in sonochemistry, J. Phys. Chem. B 106 (2002) 12537-12548]. In the current study, it was found that the CH(SPSo)/CH(SDS) ratio depended only on the ultrasound frequency and did not depend on the geometry of the ultrasound exposure apparatus considered.
Role of nitrite in the photochemical formation of radicals in the snow.
Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf
2014-01-01
Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.
Lee, Chang-Gon; Ahmed, Maruf; Jiang, Gui-Hun; Eun, Jong-Bang
2017-08-01
Encapsulated Asian pear juice powder was produced through spray drying using three maltodextrin levels (15, 20, and 25% w/v) and three inlet air temperatures (130, 150, and 170 °C). The impact of maltodextrin concentrations and inlet air temperatures on color, bioactive compounds, and morphological characteristics of encapsulated Asian pear juice powder were investigated. Maltodextrin concentrations and inlet air temperatures significantly influenced L * and b * values of encapsulated Asian pear juice powder. Increasing inlet air temperatures increased total phenolic content, whereas the vitamin C content decreased. Vitamin C content was strongly correlated with particle size, inlet air temperature, and maltodextrin concentration. ABTS + radical-scavenging activity was highly correlated with total phenol content while DPPH radical-scavenging activity was highly correlated with vitamin C content. Encapsulated powders made with higher inlet air temperature and higher maltodextrin concentration had lowest median particle diameter with a smoother, more regular and rounded outer surface than those of encapsulated powders produced with lower inlet air temperature and lower maltodextrin concentration. Therefore, the results demonstrate that high-quality encapsulated Asian pear juice powder could be manufactured by adding 15% (w/v) maltodextrin and spray-drying at 170 °C.
Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo
2015-02-16
Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.
NASA Astrophysics Data System (ADS)
Zhang, Huangwei; Chen, Zheng
2018-05-01
Premixed counterflow flames with thermally sensitive intermediate kinetics and radiation heat loss are analysed within the framework of large activation energy. Unlike previous studies considering one-step global reaction, two-step chemistry consisting of a chain branching reaction and a recombination reaction is considered here. The correlation between the flame front location and stretch rate is derived. Based on this correlation, the extinction limit and bifurcation characteristics of the strained premixed flame are studied, and the effects of fuel and radical Lewis numbers as well as radiation heat loss are examined. Different flame regimes and their extinction characteristics can be predicted by the present theory. It is found that fuel Lewis number affects the flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only has a quantitative influence. Stretch rates at the stretch and radiation extinction limits respectively decrease and increase with fuel Lewis number before the flammability limit is reached, while the radical Lewis number shows the opposite tendency. In addition, the relation between the standard flammability limit and the limit derived from the strained near stagnation flame is affected by the fuel Lewis number, but not by the radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours at flame front corresponding to flame bifurcation and extinction are also analysed in this work. It is shown that radical concentration at the flame front, under extinction stretch rate condition, increases with radical Lewis number but decreases with fuel Lewis number. It decreases with increased radiation loss.
Amati, Lucia; Campanella, Luigi; Dragone, Roberto; Nuccilli, Adriano; Tomassetti, Mauro; Vecchio, Stefano
2008-09-24
As a follow-up of the research programs carried out by our group concerning the artificial isothermal rancidification process in extra virgin olive oil (EVOO), in the present work the trends of both the total antioxidant capacity and the total polyphenols concentration as well as the main kinetic parameters of the process during the thermal oxidation of EVOO were studied and compared. In addition, the possibility of evaluating the increase in radicals concentration during the thermal oxidation process using a superoxide dismutase biosensor was also studied. The present investigation concerning this important food product is highly topical as it refers to the state of alteration of the EVOO used for cooking or frying, as a function of the temperature reached.
Chemical composition and antioxidant properties of clove leaf essential oil.
Jirovetz, Leopold; Buchbauer, Gerhard; Stoilova, Ivanka; Stoyanova, Albena; Krastanov, Albert; Schmidt, Erich
2006-08-23
The antioxidant activity of a commercial rectified clove leaf essential oil (Eugenia caryophyllus) and its main constituent eugenol was tested. This essential oil comprises in total 23 identified constituents, among them eugenol (76.8%), followed by beta-caryophyllene (17.4%), alpha-humulene (2.1%), and eugenyl acetate (1.2%) as the main components. The essential oil from clove demonstrated scavenging activity against the 2,2-diphenyl-1-picryl hydracyl (DPPH) radical at concentrations lower than the concentrations of eugenol, butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA). This essential oil also showed a significant inhibitory effect against hydroxyl radicals and acted as an iron chelator. With respect to the lipid peroxidation, the inhibitory activity of clove oil determined using a linoleic acid emulsion system indicated a higher antioxidant activity than the standard BHT.
Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei
2015-11-28
Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is important for understanding the lignin polymerization and may shed some light on the development of efficient laccase-mediator systems.
Ding, Bangwei; Bentrude, Wesley G
2003-03-19
Trimethyl phosphite, (MeO)(3)P, is introduced as an efficient and selective trap in oxiranylcarbinyl radical (2) systems, formed from haloepoxides 8-13 under thermal AIBN/n-Bu(3)SnH conditions at about 80 degrees C. Initially, the transformations of 8-13, in the absence of phosphite, to allyl alcohol 7 and/or vinyl ether 5 were measured quantitatively (Table 1). Structural variations in the intermediate oxiranylcarbinyl (2), allyloxy (3), and vinyloxycarbinyl (4) radicals involve influences of the thermodynamics and kinetics of the C-O (2 --> 3, k(1)) and C-C (2 --> 4, k(2)) radical scission processes and readily account for the changes in the amounts of product vinyl ether (5) and allyl alcohol (7) formed. Added (MeO)(3)P is inert to vinyloxycarbinyl radical 4 and selectively and rapidly traps allyloxy radical 3, diverting it to trimethyl phosphate and allyl radical 6. Allyl radicals (6) dimerize or are trapped by n-Bu(3)SnH to give alkenes, formed from haloepoxides 8, 9, and 13 in 69-95% yields. Intermediate vinyloxycarbinyl radicals (4), in the presence or absence of (MeO)(3)P, are trapped by n-Bu(3)SnH to give vinyl ethers (5). The concentrations of (MeO)(3)P and n-Bu(3)SnH were varied independently, and the amounts of phosphate, vinyl ether (5), and/or alkene from haloepoxides 10, 11, and 13 were carefully monitored. The results reflect readily understood influences of changes in the structures of radicals 2-4, particularly as they influence the C-O (k(1)) and C-C (k(2)) cleavages of intermediate oxiranylcarbinyl radical 2 and their reverse (k(-1), k(-2)). Diversion by (MeO)(3)P of allyloxy radicals (3) from haloepoxides 11 and 12 fulfills a prior prediction that under conditions closer to kinetic control, products of C-O scission, not just those of C-C scission, may result. Thus, for oxiranylcarbinyl radicals from haloepoxides 11, 12, and 13, C-O scission (k(1), 2 --> 3) competes readily with C-C cleavage (k(2), 2 --> 4), even though C-C scission is favored thermodynamically.
NASA Astrophysics Data System (ADS)
Lin, J.-T.; Liu, Z.; Zhang, Q.; Liu, H.; Mao, J.; Zhuang, G.
2012-12-01
Errors in chemical transport models (CTMs) interpreting the relation between space-retrieved tropospheric column densities of nitrogen dioxide (NO2) and emissions of nitrogen oxides (NOx) have important consequences on the inverse modeling. They are however difficult to quantify due to lack of adequate in situ measurements, particularly over China and other developing countries. This study proposes an alternate approach for model evaluation over East China, by analyzing the sensitivity of modeled NO2 columns to errors in meteorological and chemical parameters/processes important to the nitrogen abundance. As a demonstration, it evaluates the nested version of GEOS-Chem driven by the GEOS-5 meteorology and the INTEX-B anthropogenic emissions and used with retrievals from the Ozone Monitoring Instrument (OMI) to constrain emissions of NOx. The CTM has been used extensively for such applications. Errors are examined for a comprehensive set of meteorological and chemical parameters using measurements and/or uncertainty analysis based on current knowledge. Results are exploited then for sensitivity simulations perturbing the respective parameters, as the basis of the following post-model linearized and localized first-order modification. It is found that the model meteorology likely contains errors of various magnitudes in cloud optical depth, air temperature, water vapor, boundary layer height and many other parameters. Model errors also exist in gaseous and heterogeneous reactions, aerosol optical properties and emissions of non-nitrogen species affecting the nitrogen chemistry. Modifications accounting for quantified errors in 10 selected parameters increase the NO2 columns in most areas with an average positive impact of 18% in July and 8% in January, the most important factor being modified uptake of the hydroperoxyl radical (HO2) on aerosols. This suggests a possible systematic model bias such that the top-down emissions will be overestimated by the same magnitude if the model is used for emission inversion without corrections. The modifications however cannot eliminate the large model underestimates in cities and other extremely polluted areas (particularly in the north) as compared to satellite retrievals, likely pointing to underestimates of the a priori emission inventory in these places with important implications for understanding of atmospheric chemistry and air quality. Note that these modifications are simplified and should be interpreted with caution for error apportionment.
NASA Astrophysics Data System (ADS)
Kidwell, Nathanael M.; Mehta, Deepali N.; Zwier, Timothy S.; Reilly, Neil J.; Kokkin, Damian L.; McCarthy, Michael C.
2012-06-01
Combustion processes involve a myriad of complex reaction pathways which connect smaller precursors to larger polyaromatic hydrocarbons, many of which are still unknown. In particular, benzyl-type radicals play an important role in combustible fuels due to their intrinsic resonance stabilization and consequent increase in relative concentration. Here, we present a study of the vibronic spectroscopy of α-Methylbenzyl radical (α-MeBz), in which the orientation of the methyl group adjacent to the radical site responds to the electronic interaction extending from the conjugated π-system. Probing the isolated radical, produced in an electrical discharge under jet-cooled conditions, the two-color resonant two-photon ionization, fluorescence excitation, and dispersed fluorescence spectra were obtained in order to determine the ground and excited state barriers to internal rotation and the angular change associated with electronic excitation. Resonant ion-dip infrared spectroscopy (RIDIRS) has also been implemented to elucidate the infrared signatures in the alkyl and aromatic CH stretch regions in order to probe in a complementary way the state-dependent conformational preferences of α-MeBz. We will show that the D0- and D1-RIDIR spectra report sensitively on the strong coupling between the CH stretch vibrations and the C_α-C_β torsional geometry. Furthermore, photoionization efficiency scans were carried out to reveal the adiabatic ionization threshold of α-MeBz and the quantized levels present in the radical cation state.
Zhao, Meihua; Zhang, Chaosheng; Zeng, Guangming; Huang, Danlian; Xu, Piao; Cheng, Min
2015-11-01
This study examines the growth, metabolism of Phanerochaete chrysosporium (P. chrysosporium) and route of lignin degradation in response to cadmium (Cd) stress in solid-state fermentation of rice straw. Less living fungi biomass was found under Cd exposure, suggesting that Cd had strong toxicity to P. chrysosporium. The maximum values of lignin peroxidase and manganese peroxidase were 0.34 and 5.21 U g(-1) at the Cd concentration of 32 mg kg(-1), respectively, lower than that in control, which indicated Cd stress would inhibit ligninolytic enzymes. The production of reactive oxygen species (ROS) including hydroxyl radicals (OH), superoxide anion radical (O2(-)) and hydrogen peroxide (H2O2) increased after Cd exposure. Higher concentration of oxalate was detected at high Cd concentrations. Cd stress also had influence on the rates of lignocelluloses degradation and the route of lignin degradation. Partial Cd could be removed by P. chrysosporium. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shuang, Chen; Tie, Su; Yao-Bang, Zheng; Li, Chen; Ting-Xu, Liu; Ren-Bing, Li; Fu-Rong, Yang
2016-06-01
The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF (laser-induced fluorescence) in flame. The detailed physical models of spectral absorption lineshape broadening, collisional transition and quenching at elevated pressure are built. The fine energy level structure of the OH molecule is illustrated to understand the process with laser-induced fluorescence emission and others in the case without radiation, which include collisional quenching, rotational energy transfer (RET), and vibrational energy transfer (VET). Based on these, some numerical results are achieved by simulations in order to evaluate the fluorescence yield at elevated pressure. These results are useful for understanding the real physical processes in OH-LIF technique and finding a way to calibrate the signal for quantitative measurement of OH concentration in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338) and the Fund from the Science and Technology on Scramjet Key Laboratory, China (Grant No. STSKFKT2013004).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Wentao; Huang, Jinhua; Kowalski, Jeffrey A.
Redox-active organic materials (ROMs) have shown great promise for redox flow battery applications but generally encounter limited cycling efficiency and stability at relevant redox material concentrations in nonaqueous systems. Here we report a new heterocyclic organic anolyte molecule, 2,1,3-benzothiadiazole, that has high solubility, a low redox potential, and fast electrochemical kinetics. Coupling it with a benchmark catholyte ROM, the nonaqueous organic flow battery demonstrated significant improvement in cyclable redox material concentrations and cell efficiencies compared to the state-of-the-art nonaqueous systems. Especially, this system produced exceeding cyclability with relatively stable efficiencies and capacities at high ROM concentrations (>0.5 M), which ismore » ascribed to the highly delocalized charge densities in the radical anions of 2,1,3-benzothiadiazole, leading to good chemical stability. As a result, this material development represents significant progress toward promising next-generation energy storage.« less
Jayatilaka, Nayana; Nelson, William H.
2008-01-01
In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824
NASA Astrophysics Data System (ADS)
Heard, Dwayne
2015-04-01
Photo-oxidation in the troposphere is highly complex, being initiated by short lived free radical species, in the daytime dominated by the hydroxyl radical, OH. Chemical oxidation cycles, which also involve peroxy radicals (HO2 and RO2), remove natural or anthropogenic emissions (for example methane) and generate a range of secondary products, for example ozone, nitrogen dioxide, acidic and multifunctional organic species, and secondary organic aerosol, which impact on human health and climate. Owing to their short lifetime in the atmosphere, the abundance of radicals is determined solely by their rate of chemical production and loss, and not by transport. Field measurements of the concentrations of radicals and comparison with calculations using a numerical model therefore constitutes one of the very best ways to test whether the chemistry in each of these locations is understood and accurately represented in the model. Validation of the chemistry is important, as the predictions of climate and air quality models containing this chemistry are used to drive the formulation of policy and legislation. However, in situ measurements of radical species, owing to their very low abundance (often sub part per trillion) and short lifetimes (< 1 second for OH), remain extremely challenging. Laser-induced fluorescence spectroscopy (LIF) has enjoyed considerable success worldwide for the quantitative detection of radicals in a range of environments. The radicals are either excited directly by the laser (e.g. OH, IO) or are first chemically converted to OH prior to detection (e.g. HO2, RO2). Recent developments in the LIF technique for radical detection, which uses a supersonic expansion with detection at low pressure and multi kHz pulse repetition rate tunable laser systems, will be discussed, together with calibration methods to make signals absolute, and identification of potential interferences. LIF instruments have been operated on ground, ship and aircraft platforms at a number of locations worldwide, and examples from recent fieldwork involving the Leeds instruments will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderschans, G.P.; Vanrijn, C.J.S.; Bleichrodt, J.F.
1975-11-01
When an aqueous solution of double-stranded deoxyribonucleic acid (DNA) of bacteriophage PM2 containing phenylalanine and saturated with N2O is irradiated with gamma rays, radiation induced phenylalanine radicals are bound covalently. Under the conditions used about 25 phenylalanine molecules may be bound per lethal hit. Also for single-stranded PM2 DNA most of the phenylalanine radicals bound are nonlethal. Evidence is presented that in double-stranded DNA an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. Theremore » are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentration of these compounds in the vicinity of the negatively charged DNA molecules. (Author) (GRA)« less
Zastrow, Leonhard; Meinke, Martina C; Albrecht, Stephanie; Patzelt, Alexa; Lademann, Juergen
2017-01-01
Sunscreens have been constantly improving in the past few years. Today, they provide an efficient protection not only in the UVB but also in the UVA spectral region of the solar radiation. Recently it could be demonstrated that 50% of all free radicals induced in the skin due to solar radiation are formed in the visible and infrared spectral region. The good protective efficacy of sunscreens in the UV region prompts people to stay much longer in the sun than if they had left their skin unprotected. However, as no protection in the visible and infrared spectral region is provided, high amounts of free radicals are induced here that could easily exceed the critical radical concentration. This chapter describes how the effect of sunscreens can be extended to cover also the visible and infrared spectral region of the solar radiation by adding pigments and antioxidants with high radical protection factors to the sunscreen formulations.