Science.gov

Sample records for hydrophobic integral membrane

  1. New insight into the fouling behavior of hydrophobic and hydrophilic polypropylene membranes in integrated membrane bioreactors.

    PubMed

    Guo, Yan-Fen; Sun, Pi-Chao; Wei, Jun-Fu

    2017-09-04

    To investigate the effect of hydrophobic and hydrophilic polypropylene hollow fiber membranes (PPHFMs) applied in membrane bioreactors (MBR), the fouling behaviors of membrane surfaces and pores has been tested. The structural and morphological features on the membrane surface were characterized using attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), field emission scanning electron microscopy (FE-SEM), atomic force microscope (AFM), energy dispersive X-ray spectroscopy (EDS) and laser granularity distribution analysis. The results showed that significantly more polysaccharide, protein and inorganic ingredients were accumulated in the original membrane compared to the hydrophilic membrane. Furthermore, it was found that the pore size influenced the particle distribution and accumulation, such that smaller pore size membranes tended to contain fewer pollutants and a narrow size distribution. Under a constant flux of 11.5 L/m(2)h, the transmembrane pressure (TMP) varied narrowly between 38 and 53 KPa. Alongside this, a relatively hydrophilic membrane (PP-g-AA) showed the characteristics of lower TMP in comparison to hydrophobic membranes (PP). Indeed, the flux recovery (FR) was 30% higher than those of the original PPHFMM. This investigation broadens our understanding of membrane modifying and fouling behavior in integrated MBRs.

  2. Improvement of hydrophobic integral membrane protein identification by mild performic acid oxidation-assisted digestion.

    PubMed

    Cao, Rui; Liu, Yisong; Chen, Ping; Lv, Rong; Song, Qin; Sheng, Tingting; He, Quanyuan; Wang, Yin; Wang, Xianchun; Liang, Songping

    2010-12-15

    Integral membrane proteins (IMPs) are critical for the maintenance of biological systems and represent important targets for the treatment of disease. The hydrophobicity and low abundance of IMPs make them difficult to analyze. In proteomic analyses, hydrophobic peptides including transmembrane domains are often underrepresented, and this reduces the sequence coverage and reliability of the identified IMPs. Here we report a new strategy, mild performic acid oxidation treatment (mPAOT), for improvement of IMP identification. In the mPAOT strategy, the hydrophobicity of IMPs is significantly decreased by oxidizing their methionine and cysteine residues with performic acid, thereby improving the solubility and enzymolysis of these proteins. The application of the mPAOT strategy to the analysis of IMPs from human nasopharyngeal carcinoma CNE1 cell line demonstrated that many IMPs, including those with high hydrophobicity, could be reliably identified.

  3. Transmembrane helix hydrophobicity is an energetic barrier during the retrotranslocation of integral membrane ERAD substrates

    PubMed Central

    Guerriero, Christopher J.; Reutter, Karl-Richard; Augustine, Andrew A.; Preston, G. Michael; Weiberth, Kurt F.; Mackie, Timothy D.; Cleveland-Rubeor, Hillary C.; Bethel, Neville P.; Callenberg, Keith M.; Nakatsukasa, Kunio; Grabe, Michael; Brodsky, Jeffrey L.

    2017-01-01

    Integral membrane proteins fold inefficiently and are susceptible to turnover via the endoplasmic reticulum–associated degradation (ERAD) pathway. During ERAD, misfolded proteins are recognized by molecular chaperones, polyubiquitinated, and retrotranslocated to the cytoplasm for proteasomal degradation. Although many aspects of this pathway are defined, how transmembrane helices (TMHs) are removed from the membrane and into the cytoplasm before degradation is poorly understood. In this study, we asked whether the hydrophobic character of a TMH acts as an energetic barrier to retrotranslocation. To this end, we designed a dual-pass model ERAD substrate, Chimera A*, which contains the cytoplasmic misfolded domain from a characterized ERAD substrate, Sterile 6* (Ste6p*). We found that the degradation requirements for Chimera A* and Ste6p* are similar, but Chimera A* was retrotranslocated more efficiently than Ste6p* in an in vitro assay in which retrotranslocation can be quantified. We then constructed a series of Chimera A* variants containing synthetic TMHs with a range of ΔG values for membrane insertion. TMH hydrophobicity correlated inversely with retrotranslocation efficiency, and in all cases, retrotranslocation remained Cdc48p dependent. These findings provide insight into the energetic restrictions on the retrotranslocation reaction, as well as a new computational approach to predict retrotranslocation efficiency. PMID:28539401

  4. Hydrophobic Compounds Reshape Membrane Domains

    PubMed Central

    Barnoud, Jonathan; Rossi, Giulia; Marrink, Siewert J.; Monticelli, Luca

    2014-01-01

    Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo. PMID:25299598

  5. Deconvoluting the Effect of the Hydrophobic and Hydrophilic Domains of an Amphiphilic Integral Membrane Protein in Lipid Bicontinuous Cubic Mesophases.

    PubMed

    van 't Hag, Leonie; Shen, Hsin-Hui; Lu, Jingxiong; Hawley, Adrian M; Gras, Sally L; Drummond, Calum J; Conn, Charlotte E

    2015-11-10

    Lipidic bicontinuous cubic mesophases with encapsulated amphiphilic proteins are widely used in a range of biological and biomedical applications, including in meso crystallization, as drug delivery vehicles for therapeutic proteins, and as biosensors and biofuel cells. However, the effect of amphiphilic protein encapsulation on the cubic phase nanostructure is not well-understood. In this study, we illustrate the effect of incorporating the bacterial amphiphilic membrane protein Ag43, and its individual hydrophobic β(43) and hydrophilic α(43) domains, in bicontinuous cubic mesophases. For the monoolein, monoalmitolein, and phytantriol cubic phases with and without 8% w/w cholesterol, the effect of the full length amphiphilic protein Ag43 on the cubic phase nanostructure was more significant than the sum of the individual hydrophobic β(43) and hydrophilic α(43) domains. Several factors were found to potentially influence the impact of the hydrophobic β(43) domain on the cubic phase internal nanostructure. These include the size of the hydrophobic β(43) domain relative to the thickness of the lipid bilayer, as well as its charge and diameter. The size of the hydrophilic α(43) domain relative to the water channel radius of the cubic mesophase was also found to be important. The secondary structure of the Ag43 proteins was affected by the hydrophobic thickness and physicochemical properties of the lipid bilayer and the water channel diameter of the cubic phase. Such structural changes may be small but could potentially affect membrane protein function.

  6. Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain.

    PubMed

    Zhang, Liyan; Sato, Yoko; Hessa, Tara; von Heijne, Gunnar; Lee, Jong-Kook; Kodama, Itsuo; Sakaguchi, Masao; Uozumi, Nobuyuki

    2007-05-15

    Membrane-embedded voltage-sensor domains in voltage-dependent potassium channels (K(v) channels) contain an impressive number of charged residues. How can such highly charged protein domains be efficiently inserted into biological membranes? In the plant K(v) channel KAT1, the S2, S3, and S4 transmembrane helices insert cooperatively, because the S3, S4, and S3-S4 segments do not have any membrane insertion ability by themselves. Here we show that, in the Drosophila Shaker K(v) channel, which has a more hydrophobic S3 helix than KAT1, S3 can both insert into the membrane by itself and mediate the insertion of the S3-S4 segment in the absence of S2. An engineered KAT1 S3-S4 segment in which the hydrophobicity of S3 was increased or where S3 was replaced by Shaker S3 behaves as Shaker S3-S4. Electrostatic interactions among charged residues in S2, S3, and S4, including the salt bridges between E283 or E293 in S2 and R368 in S4, are required for fully efficient membrane insertion of the Shaker voltage-sensor domain. These results suggest that cooperative insertion of the voltage-sensor transmembrane helices is a property common to K(v) channels and that the degree of cooperativity depends on a balance between electrostatic and hydrophobic forces.

  7. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    PubMed

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding

    PubMed Central

    De Marothy, Minttu T; Elofsson, Arne

    2015-01-01

    Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices—implying a dynamic relationship between membrane proteins and their environment. PMID:25970811

  9. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding.

    PubMed

    De Marothy, Minttu T; Elofsson, Arne

    2015-07-01

    Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices-implying a dynamic relationship between membrane proteins and their environment. © 2015 The Protein Society.

  10. Evaluation of hydrophobic micro-zeolite-mixed matrix membrane and integrated with acetone-butanol-ethanol fermentation for enhanced butanol production.

    PubMed

    Xue, Chuang; Yang, Decai; Du, Guangqing; Chen, Lijie; Ren, Jiangang; Bai, Fengwu

    2015-01-01

    Butanol is regarded as an advanced biofuel that can be derived from renewable biomass. However, the main challenge for microbial butanol production is low butanol titer, yield and productivity, leading to intensive energy consumption in product recovery. Various alternative separation technologies such as extraction, adsorption and gas stripping, etc., could be integrated with acetone-butanol-ethanol (ABE) fermentation with improving butanol productivity, but their butanol selectivities are not satisfactory. The membrane-based pervaporation technology is recently attracting increasing attention since it has potentially desirable butanol selectivity. The performance of the zeolite-mixed polydimethylsiloxane (PDMS) membranes were evaluated to recover butanol from butanol/water binary solution as well as fermentation broth in the integrated ABE fermentation system. The separation factor and butanol titer in permeate of the zeolite-mixed PDMS membrane were up to 33.0 and 334.6 g/L at 80°C, respectively, which increased with increasing zeolite loading weight in the membrane as well as feed temperature. The enhanced butanol separation factor was attributed to the hydrophobic zeolites with large pore size providing selective routes preferable for butanol permeation. In fed-batch fermentation incorporated with pervaporation, 54.9 g/L ABE (34.5 g/L butanol, 17.0 g/L acetone and 3.4 g/L ethanol) were produced from 172.3 g/L glucose. The overall butanol productivity and yield increased by 16.0 and 11.1%, respectively, which was attributed to the alleviated butanol inhibition by pervaporation and reassimilation of acids for ABE production. The zeolite-mixed membrane produced a highly concentrated condensate containing 169.6 g/L butanol or 253.3 g/L ABE, which after phase separation easily gave the final product containing >600 g/L butanol. Zeolite loading in the PDMS matrix was attributed to improving the pervaporative performance of the membrane, showing great

  11. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes

    SciTech Connect

    EVANS, LINDSEY; MILLER, JAMES E.

    2002-01-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel{reg_sign} Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

  12. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    PubMed Central

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein–protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes. PMID:25635869

  13. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains.

    PubMed

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J; Eggeling, Christian; Hell, Stefan W; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-30

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.

  14. Characterization of histatin 5 with respect to amphipathicity, hydrophobicity, and effects on cell and mitochondrial membrane integrity excludes a candidacidal mechanism of pore formation.

    PubMed

    Helmerhorst, E J; van't Hof, W; Breeuwer, P; Veerman, E C; Abee, T; Troxler, R F; Amerongen, A V; Oppenheim, F G

    2001-02-23

    Histatin 5 is a 24-residue peptide from human saliva with antifungal properties. We recently demonstrated that histatin 5 translocates across the yeast membrane and targets to the mitochondria, suggesting an unusual antifungal mechanism (Helmerhorst, E. J., Breeuwer, P., van't Hof, W., Walgreen-Weterings, E., Oomen, L. C. J. M., Veerman, E. C. I., Nieuw Amerongen, A. V., and Abee, T. (1999) J. Biol. Chem. 274, 7286-7291). The present study used specifically designed synthetic analogs of histatin 5 to elucidate the role of peptide amphipathicity, hydrophobicity, and the propensity to adopt alpha-helical structures in relation to membrane permeabilization and fungicidal activity. Studies included circular dichroism measurements, evaluation of the effects on the cytoplasmic transmembrane potential and on the respiration of isolated mitochondria, and analysis of the peptide hydrophobicity/amphipathicity relationship (Eisenberg, D. (1984) Annu. Rev. Biochem. 53, 595-623). The 14-residue synthetic peptides used were dh-5, comprising the functional domain of histatin 5, and dhvar1 and dhvar4, both designed to maximize amphipathic characteristics. The results obtained show that the amphipathic analogs exhibited a high fungicidal activity, a high propensity to form an alpha-helix, dissipated the cytoplasmic transmembrane potential, and uncoupled the respiration of isolated mitochondria, similar to the pore-forming peptide PGLa (Peptide with N-terminal Glycine and C-terminal Leucine-amide). In contrast, histatin 5 and dh-5 showed fewer or none of these features. The difference in these functional characteristics between histatin 5 and dh-5 on the one hand and dhvar1, dhvar4, and PGLa on the other hand correlated well with their predicted affinity for membranes based on hydrophobicity/amphipathicity analysis. These data indicate that the salivary protein histatin 5 exerts its antifungal function through a mechanism other than pore formation.

  15. The hydrophobic proteome of mitochondrial membranes from Arabidopsis cell suspensions.

    PubMed

    Brugière, Sabine; Kowalski, Solène; Ferro, Myriam; Seigneurin-Berny, Daphné; Miras, Stéphane; Salvi, Daniel; Ravanel, Stéphane; d'Hérin, Pierre; Garin, Jérôme; Bourguignon, Jacques; Joyard, Jacques; Rolland, Norbert

    2004-06-01

    The development of mitochondria and the integration of their function within a plant cell rely on the presence of a complex biochemical machinery located within their limiting membranes. The aim of the present work was: (1) to enhance our understanding of the biochemical machinery of mitochondrial membranes and (2) to test the versatility of the procedure developed for the identification of the hydrophobic proteome of the chloroplast envelope [Molecular and Cellular Proteomics 2 (2003) 325-345]. A proteomic analysis was performed, to provide the most exhaustive view of the protein repertoire of these membranes. For this purpose, highly purified mitochondria were prepared from Arabidopsis cultured cells and membrane proteins were extracted. To get a more exhaustive array of membrane proteins from Arabidopsis mitochondria, from the most to the less hydrophobic ones, various extraction procedures (chloroform/methanol extraction, alkaline or saline treatments) were applied. LC-MS/MS analyses were then performed on each membrane subfraction, leading to the identification of more than 110 proteins. The identification of these proteins is discussed with respect to their mitochondrial localization, their physicochemical properties and their implications in the metabolism of mitochondria. In order to provide a new overview of the biochemical machinery of the plant mitochondria, proteins identified during this work were compared to the lists of proteins identified during previous proteomic analyses performed on plant and algae mitochondria (Arabidopsis, pea, Chlamydomonas, rice, etc.). A total of 502 proteins are listed. About 40% of the 114 proteins identified during this work were not identified during previous proteomic studies performed on mitochondria.

  16. A biologically inspired hydrophobic membrane for application in pervaporation.

    PubMed

    Jullok, Nora; Martínez, Rodrigo; Wouters, Christine; Luis, Patricia; Sanz, María Teresa; Van der Bruggen, Bart

    2013-02-05

    An artificial polydimethylsiloxane/polyphenylsulfone (PDMS/PPSU) membrane, which emulates the hydrophobic behavior of natural membranes, was synthesized. Hydrophobicity was achieved by coating the membrane surface sublayer using conventional silicon material, which imitates the character of epicuticular wax (EW) of Prunus laurocerasus L. leaves. It was then applied as a separation medium in pervaporation (PV) of diluted mixtures of ethyl acetate and aroma compounds. The membrane's biomimetic characteristics were evaluated using surface morphology analyses, that is, Fourier transform infrared (FTIR), water contact angle measurements, and SEM imaging. A comparison of properties of the membranes synthesized in this work against selected hydrophobic plant leaves indicated a good agreement. PV using these biologically inspired artificial membranes demonstrated preference for the permeation of ethyl acetate. Besides intrinsic characteristics, it was also observed that the chemical potential is highly influential in activating sorption, diffusion, and desorption of a specific compound.

  17. FOLDING AMPHIPATHIC HELICES INTO MEMBRANES: AMPHIPHILICITY TRUMPS HYDROPHOBICITY

    PubMed Central

    Fernández-Vidal, Mónica; Jayasinghe, Sajith; Ladokhin, Alexey S.; White, Stephen H.

    2007-01-01

    High amphiphilicity is a hallmark of interfacial helices in membrane proteins and membrane-active peptides, such as toxins and antimicrobial peptides. Although there is general agreement that amphiphilicity is important for membrane-interface binding, an unanswered question is its importance relative to simple hydrophobicity-driven partitioning. We have examined this fundamental question using measurements of the interfacial partitioning of a family of seventeen-residue amidated-acetylated peptides into both neutral and anionic lipid vesicles. Composed only of Ala, Leu, and Gln residues, the amino acid sequences of the peptides were varied to change peptide amphiphilicity without changing total hydrophobicity. We found that peptide helicity in water and interface increased linearly with hydrophobic moment, as did the favorable peptide partitioning free energy. This observation provides simple tools for designing amphipathic helical peptides. Finally, our results show that helical amphiphilicity is far more important for interfacial binding than simple hydrophobicity. PMID:17532340

  18. Hydrophobic forces drive spontaneous membrane insertion of the bacteriophage Pf3 coat protein without topological control.

    PubMed Central

    Kiefer, D; Kuhn, A

    1999-01-01

    Bacterial integral inner membrane proteins are either translocated across the lipid bilayer using an energy-driven enzyme, such as the Sec translocase, or they might interact directly with the membrane due to hydrophobic forces. We report that the single-spanning Pf3 coat protein is spontaneously inserted into the membrane of Escherichia coli and requires the electrical component of the membrane potential (DeltaPsi) to translocate its N-terminal region. This results in a final N(out)C(in) orientation of the protein in the cytoplasmic membrane, due the potential-driven translocation of the aspartyl residue at position 18 in the hydrophilic N-terminal tail. Uncharged protein tails are only translocated when the hydrophobic transmembrane region of the protein has been extended. An extended transmembrane anchor allows membrane insertion in the absence of an electrochemical membrane potential, but also causes the loss of a strict determination of the topology. PMID:10562542

  19. Dehydration processes using membranes with hydrophobic coating

    DOEpatents

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  20. Peptide environment specifies conformation. Helicity of hydrophobic segments compared in aqueous, organic, and membrane environments.

    PubMed

    Li, S C; Deber, C M

    1993-11-05

    Transmembrane segments in integral membrane proteins exist characteristically as helices in lipid bilayers, yet are often rich in residues considered helix-destabilizing (Val, Ile, Gly) in soluble proteins. We propose that helicity of a transmembrane segment is likely to be affected by factors other than the "intrinsic" helical propensities of its component amino acids. This hypothesis is tested by comparing the conformation(s) in aqueous, organic, membrane-mimetic (micellar), and membrane (bilayer) environments of designed model peptides with systematically altered helical propensity and/or segmental hydrophobicity. Peptides of prototypic sequence NH2-(Ser-Lys)2-Ala5-Leu6-Ala7-Ala8-Leu9-Ala10-++ +Trp11-Ala12-Leu13-Ala14- (Lys-Ser)3-OH were synthesized, which incorporate a hydrophobic core "guest" segment (residues 5-14) into a water-soluble hydrophilic host matrix. Related peptides featured substitution of Leu6,9,13-->Gly, Leu6,9,13-->Ala, and Ala7,10,14-->Gly. Circular dichroism spectra revealed that algorithms for soluble proteins correctly predicted peptide helical proclivities in aqueous solutions, but peptide helicity in organic (trifluoroethanol) solvents, membrane-mimetic SDS micelles, and negatively charged lipid bilayer vesicles, was found to be governed almost exclusively by the segmental hydrophobicity of the peptide mid-hydrophobic core segment. In related Trp fluorescence studies, peptide-membrane association was similarly correlated with extent of hydrophobic interaction.

  1. Highly efficient hydrophobic titania ceramic membranes for water desalination.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Koter, Stanisław; Kujawski, Wojciech

    2014-08-27

    Hydrophobic titania ceramic membranes (300 kD) were prepared by grafting of C6F13C2H4Si(OC2H5)3 and C12F25C2H4Si(OC2H5)3 molecules and thus applied in membrane distillation (MD) process of NaCl solutions. Grafting efficiency and hydrophobicity were evaluated by contact angle measurement, atomic force microscopy, scanning electron microscopy, nitrogen adsorption/desorption, and liquid entry pressure measurement of water. Desalination of NaCl solutions was performed using the modified hydrophobic membranes in air gap MD (AGMD) and direct contact MD (DCMD) processes in various operating conditions. High values of NaCl retention coefficient (>99%) were reached. The permeate fluxes were in the range 231-3692 g·h(-1)·m(-2), depending on applied experimental conditions. AGMD mode appeared to be more efficient showing higher fluxes and selectivity in desalination. Overall mass transfer coefficients (K) for membranes tested in AGMD were constant over the investigated temperature range. However, K values in DCMD increased at elevated temperature. The hydrophobic layer was also stable after 4 years of exposure to open air.

  2. Influence of Hydrophobic Mismatching on Membrane Protein Diffusion

    PubMed Central

    Guigas, Gernot; Weiss, Matthias

    2008-01-01

    The observation of membrane domains in vivo and in vitro has triggered a renewed interest in the size-dependent diffusion of membrane inclusions (e.g., clusters of transmembrane proteins and lipid rafts). Here, we have used coarse-grained membrane simulations to quantify the influence of a hydrophobic mismatch between the inclusion's transmembrane portion and the surrounding lipid bilayer on the diffusive mobility of the inclusion. Our data indicate only slight changes in the mobility (<30%) when altering the hydrophobic mismatch, and the scaling of the diffusion coefficient D is most consistent with previous hydrodynamic predictions, i.e., with the Saffman-Delbruck relation and the edgewise motion of a thin disk in the limit of small and large radii, respectively. PMID:18502792

  3. Influence of hydrophobic mismatching on membrane protein diffusion.

    PubMed

    Guigas, Gernot; Weiss, Matthias

    2008-08-01

    The observation of membrane domains in vivo and in vitro has triggered a renewed interest in the size-dependent diffusion of membrane inclusions (e.g., clusters of transmembrane proteins and lipid rafts). Here, we have used coarse-grained membrane simulations to quantify the influence of a hydrophobic mismatch between the inclusion's transmembrane portion and the surrounding lipid bilayer on the diffusive mobility of the inclusion. Our data indicate only slight changes in the mobility (<30%) when altering the hydrophobic mismatch, and the scaling of the diffusion coefficient D is most consistent with previous hydrodynamic predictions, i.e., with the Saffman-Delbruck relation and the edgewise motion of a thin disk in the limit of small and large radii, respectively.

  4. Colony counting on hydrophobic grid-membrane filters.

    PubMed

    Sharpe, A N; Diotte, M P; Dudas, I; Malcolm, S; Peterkin, P I

    1983-07-01

    A device to facilitate manual scoring of hydrophobic grid-membrane filters (HGMF) is described. Variations in scores were generally less than 2.5% between 41 analysts from six laboratories, who, using the apparatus, scored a set of five specimen HGMF in different ways, and there was good agreement between scores from positive and negative grid-cell counts by each analyst. A scoring procedure for use in routine microbiological analysis, suitable for HGMF at various degrees of saturation, is recommended.

  5. Sticking polydisperse hydrophobic magnetite nanoparticles to lipid membranes.

    PubMed

    Paulus, Michael; Degen, Patrick; Brenner, Thorsten; Tiemeyer, Sebastian; Struth, Bernd; Tolan, Metin; Rehage, Heinz

    2010-10-19

    The formation of a layer of hydrophobic magnetite (Fe(3)O(4)) nanoparticles stabilized by lauric acid is analyzed by in situ X-ray reflectivity measurements. The data analysis shows that the nanoparticles partially disperse their hydrophobic coating. Consequently, a Langmuir layer was formed by lauric acid molecules that can be compressed into an untilted condensed phase. A majority of the nanoparticles are attached to the Langmuir film integrating lauric acid residue on their surface into the Langmuir film. Hence, the particles at the liquid-gas interface can be identified as so-called Janus beads, which are amphiphilic solids having two sides with different functionality.

  6. Tunable Surface Hydrophobicity and Fluid Transport through Nanoporous Membranes

    NASA Astrophysics Data System (ADS)

    Ostrowski, Joseph H. J.

    There are more than three billion people across the globe that struggle to obtain clean drinkable water. One of the most promising avenues for generating potable water is through reverse osmosis and nanofiltration. Both solutions require a semipermeable membrane that prohibits passage of unwanted solute particles but allows passage of the solvent. Atomically thin two-dimensional membranes based on porous graphene show great promise as semipermeable materials, but modeling fluid flow on length scales between the microscopic (nanometer and smaller) and macroscopic (micron and larger) regimes presents formidable challenges. This thesis explores both equilibrium and nonequilibrium aspects of this problem and develops new methodology for simulating systems away from thermal equilibrium. First, we hypothesize that there is a wetting penalty for water as it tries to breach a sheet of graphene that should be naturally hydrophobic. By using equilibrium molecular dynamics simulations, we show that the hydrophobicity depends sensitively on the degree of electrical doping, offering an opportunity to tune the hydrophobic effect of graphene using small amounts of doping. The wetting contact angle, a measure of hydrophobicity, changes dramatically with the voltage applied to single layer graphene. We find that the sensitivity of the hydrophobic effect to voltage depends not on hydrogen bonding motifs at the interface between graphene and water, but instead on a phenomenon known as electrowetting. The theory of electrowetting predicts that the difference in surface tensions that defines the contact angle is quartic in the voltage, rather than quadratic, as it would be in bilayer graphene or in a two-dimensional metal. To explore the nonequilibrium aspects of fluid passage through atomically thin membranes, we developed a molecular dynamics methodology for simulating fluid flow at constant flux based on Gauss's principle of least constraint. This method develops microscopic

  7. Why Hydrophilic Water can Permeate Hydrophobic Interior of Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Qiao, Baofu; Olvera de La Cruz, Monica

    2014-03-01

    Water molecules as well as some small molecules have long been found to be able to diffuse across lipid membranes. Such permeation is of significant biological and biotechnological importance. For instance, the permeation of water across lipid membrane plays a important role in regulating ionic concentrations inside of cells. Such water permeation without the assistance of proteins embedded in membranes has been found to be a energetically unfavorable process. We, for the first time, explicitly depict the driving force for such an energetically unfavorable process. Atomistic molecular dynamics simulations are employed to investigate water diffusion in both liquid-crystalline and ordered gel phases of membranes containing zwitterionic DPPC or anionic DLPS lipid. The membrane conformation is calculated to have a critical role in water permeation, regardless of the type of lipid. The fluctuations in the potential energy are found to have a significant, if not the exclusive, role in the transportation of water across lipid membranes. Our results are also informative for the diffusion of small molecules of CO2, O2 and drug molecules, the absence of diffusion of ions, and the diffusion of water into the hydrophobic pores of carbon nanotubes. The authors acknowledge the support from the Office of the Director of Defense Research and Engineering (DDR & E) under Award No. FA9550-10-1-0167.

  8. Facile preparation of salt-tolerant anion-exchange membrane adsorber using hydrophobic membrane as substrate.

    PubMed

    Fan, Jinxin; Luo, Jianquan; Chen, Xiangrong; Wan, Yinhua

    2017-03-24

    In this study, a polyvinylidene fluoride (PVDF) hydrophobic membrane with high mechanical property was used as substrate to prepare salt-tolerant anion-exchange (STAE) membrane adsorber. Effective hydrophilization and functionalization of PVDF membrane was realized via polydopamine (PDA) deposition, thus overcoming the drawbacks of hydrophobic substrates including poor water permeability, inert property as well as severe non-specific adsorption. The following polyallylamine (PAH) coupling was carried out at pH 10.0, where unprotonated amine groups on PAH chains were more prone to couple with PDA. This membrane adsorber could remain 75% of protein binding capacity when NaCl concentration increased from 0 to 150mM, while its protein binding capacity was independent of flow rate from 10 to 100 membrane volume (MV)/min due to its high mechanical strength (tensile strength: 43.58±2.30MPa). With 200mM NaCl addition at pH 7.5, high purity (above 99%) and high recovery (almost 100%) of Immunoglobulin G (IgG) were obtained when using the STAE membrane adsorber to separate IgG/human serum albumin (HSA) mixture, being similar to that without NaCl at pH 6.0 (both under the flow rate of 10-100MV/min). Finally, the reliable reusability was confirmed by five reuse cycles of protein binding and elution operations. In comparison with commercial membrane adsorber, the new membrane adsorber exhibited a better mechanical property, higher IgG polishing efficiency and reusability, while the protein binding capacity was lower due to less NH2 density on the membrane. The outcome of this work not only offers a facile and effective approach to prepare membrane adsorbers based on hydrophobic membranes, but also demonstrates great potential of this new designed STAE membrane adsorbers for efficient monoclonal antibody (mAb) polishing. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ammonia recovery from landfill leachate using hydrophobic membrane contactors.

    PubMed

    Amaral, Míriam C S; Magalhães, Nátalie C; Moravia, Wagner G; Ferreira, Carolina D

    2016-11-01

    This article aims to evaluate membrane contactors capability to remove and recover ammonia from landfill leachate (LFL). A hydrophobic hollow fiber membrane module was used to achieve such purpose. A sulfuric acid diluted solution was used as extraction solution to speed up ammonia content removal. Several factors that have influence on ammonia removal and recovery capability such as ammonia solution pH, concentration of sulfuric acid solutions and flow rate of liquid phases have been examined. Microfiltration was the method used as pretreatment. The results have shown that membrane contactor operated with LFL (pH 10), 0.1 M acid solution and liquid flow rate up to 0.5 L min(-1) achieved 99.9% of ammonia removal, which corresponds to 79.1% of ammonia recovery from the extraction solution, and it is capable to produce highly purified ammonium sulfate solutions (41.2%, wt wt(-1)) to be used as fertilizer. The concentration of total ammonia nitrogen (TAN) in the residual LFL complies with Brazilian law requirements of 20.0 mg L(-1) of TAN, regarding the disposal of effluents.

  10. Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch.

    PubMed

    Itel, Fabian; Najer, Adrian; Palivan, Cornelia G; Meier, Wolfgang

    2015-06-10

    The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.

  11. A new method for permeability measurement of hydrophobic membranes in Vacuum Membrane Distillation process.

    PubMed

    Dao, T D; Mericq, J-P; Laborie, S; Cabassud, C

    2013-04-15

    In this paper, a new method for permeability measurement of hydrophobic membranes used in Vacuum Membrane Distillation, instead of common measurement methods, was proposed. As VMD is a pressure and temperature driven process, the idea of this work is to propose a new water vapour permeability measurement method based on variation of feed temperature at a fixed vacuum pressure. This new method showed a greater stability and simplicity than the existing pressure variation method by not only allowing a wide range of feed temperature (25 °C ÷ 60 °C) to be scanned continuously, but also avoiding fluctuations of the system as observed in the pressure variation test. Permeabilities of two different kinds of hydrophobic membranes were measured by this new method and also by the existing pressure variation test. A comparison between these two methods was also presented to assess the feasibility and applicability of this new method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Preparation of hydrophobic PVDF hollow fiber membranes for desalination through membrane distillation.

    PubMed

    Hou, Deyin; Wang, Jun; Qu, Dan; Luan, Zhaokun; Zhao, Changwei; Ren, Xiaojing

    2009-01-01

    Fabrication of polyvinylidene fluoride (PVDF) hydrophobic asymmetric hollow fiber membranes was studied by introducing inorganic salt LiCl and water soluble polymer polyethylene glycol (PEG) 1500, using N,N-dimethylacetamide (DMAc) as solvent and tap water as the coagulation medium. The membranes properties also were tested and characterized. It is found that the non-solvent additive can increase membranes porosity, ether LiCl or PEG 1500. Because of the addition of PEG 1500, the PVDF membranes obtained a rough topography on the membrane surface and the contact angle of the PVDF membranes increased to 113.50 degrees compared to 89.82 degrees of the PVDF membranes spun without an additive. During direct contact membrane distillation (DCMD) of 0.6 M sodium chloride solution, the PVDF membranes spun with PEG 1500 as a non-solvent additive achieved higher water permeation flux compared to the membranes spun from PVDF/DMAc and PVDF/DMAC/LiCl dopes, but the latter two membranes exhibited higher salt rejection rate.

  13. Membrane solubilization by a hydrophobic polyelectrolyte: surface activity and membrane binding.

    PubMed Central

    Thomas, J L; Barton, S W; Tirrell, D A

    1994-01-01

    We have previously observed that the hydrophobic polyelectrolyte poly(2-ethylacrylic acid) solubilizes lipid membranes in a pH-dependent manner, and we have exploited this phenomenon to prepare lipid vesicles that release their contents in response to pH, light, or glucose (Thomas, J. L., and D. A. Tirrell. Acc. Chem. Res. 25:336-342, 1992). The physical basis for the interaction between poly(2-ethylacrylic acid) and lipid membranes has been explored using surface tensiometry and fluorimetry. Varying the polymer concentration results in changes in surface activity and membrane binding that correlate with shifts in the critical pH for membrane solubilization. Furthermore, the binding affinity is reduced as the amount of bound polymer increases. These results are consistent with a hydrophobically driven micellization process, similar to those observed with apolipoproteins, melittin, and other amphiphilic alpha-helix-based polypeptides. The absence of specific secondary structure in the synthetic polymer suggests that amphiphilicity, rather than structure, is the most important factor in membrane micellization by macromolecules. PMID:7811920

  14. Improved Aerobic Colony Count Technique for Hydrophobic Grid Membrane Filters

    PubMed Central

    Parrington, Lorna J.; Sharpe, Anthony N.; Peterkin, Pearl I.

    1993-01-01

    The AOAC International official action procedure for performing aerobic colony counts on hydrophobic grid membrane filters (HGMFs) uses Trypticase soy-fast green FCF agar (FGA) incubated for 48 h. Microbial growths are various shades of green on a pale green background, which can cause problems for automated as well as manual counting. HGMFs which had been incubated 24 or 48 h at 35°C on Trypticase soy agar were flooded underneath with 1 to 2 ml of 0.1% triphenyltetrazolium chloride (TTC) solution by simply lifting one corner of the filter while it was still on the agar and adding the reagent. Microbial growths on HGMFs were counted after color had been allowed to develop for 15 min at room temperature. With representative foods, virtually all colonies stained pink to red. Automated electronic counts made by using the MI-100 HGMF Interpreter were easier and more reliable than control HGMF counts made by the AOAC International official action procedure. Manual counting was easier as well because of increased visibility of the microbial growths. Except in the case of dairy products, 24-h TTC counts did not differ significantly from 48-h FGA counts, whereas the FGA counts at 24 h were always significantly lower, indicating that for many food products the HGMF TTC flooding method permits aerobic colony counts to be made after 24 h. PMID:16349033

  15. Improved aerobic colony count technique for hydrophobic grid membrane filters.

    PubMed

    Parrington, L J; Sharpe, A N; Peterkin, P I

    1993-09-01

    The AOAC International official action procedure for performing aerobic colony counts on hydrophobic grid membrane filters (HGMFs) uses Trypticase soy-fast green FCF agar (FGA) incubated for 48 h. Microbial growths are various shades of green on a pale green background, which can cause problems for automated as well as manual counting. HGMFs which had been incubated 24 or 48 h at 35 degrees C on Trypticase soy agar were flooded underneath with 1 to 2 ml of 0.1% triphenyltetrazolium chloride (TTC) solution by simply lifting one corner of the filter while it was still on the agar and adding the reagent. Microbial growths on HGMFs were counted after color had been allowed to develop for 15 min at room temperature. With representative foods, virtually all colonies stained pink to red. Automated electronic counts made by using the MI-100 HGMF Interpreter were easier and more reliable than control HGMF counts made by the AOAC International official action procedure. Manual counting was easier as well because of increased visibility of the microbial growths. Except in the case of dairy products, 24-h TTC counts did not differ significantly from 48-h FGA counts, whereas the FGA counts at 24 h were always significantly lower, indicating that for many food products the HGMF TTC flooding method permits aerobic colony counts to be made after 24 h.

  16. Hydrophobic interaction membrane chromatography for bioseparation and responsive polymer ligands involved

    NASA Astrophysics Data System (ADS)

    Chen, Jingling; Peng, Rong; Chen, Xiaonong

    2017-09-01

    Hydrophobic interaction chromatography (HIC) is a rapid growing bioseparation technique, which separates biomolecules, such as therapeutic proteins and antibodys, based on the reversible hydrophobic interaction between immobilized hydrophobic ligands on chromatographic resin spheres and non-polar regions of solute molecule. In this review, the fundamental concepts of HIC and the factors that may affect purification efficiency of HIC is summarized, followed by the comparison of HIC with affinity chromatography and ion-exchange chromatography. Hydrophobic interaction membrane chromatography (HIMC) combines the advantages of HIC and membrane process and has showed great potential in bioseparation. For better understanding of HIMC, this review presents an overview of two main concerns about HIMC, i.e. membrane materials and hydrophobic ligands. Specifically, cellulose fiber-based membrane substrate and environment-responsive ligands are emphasized.

  17. Automated food microbiology: potential for the hydrophobic grid-membrane filter.

    PubMed Central

    Sharpe, A N; Diotte, M P; Dudas, I; Michaud, G L

    1978-01-01

    Bacterial counts obtained on hydrophobic grid-membrane filters were comparable to conventional plate counts for Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus in homogenates from a range of foods. The wide numerical operating range of the hydrophobic grid-membrane filters allowed sequential diluting to be reduced or even eliminated, making them attractive as components in automated systems of analysis. Food debris could be rinsed completely from the unincubated hydrophobic grid-membrane filter surface without affecting the subsequent count, thus eliminating the possibility of counting food particles, a common source of error in electronic counting systems. PMID:100054

  18. Oxygen-Permeable, Hydrophobic Membranes of Silanized alpha-Al2O3

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.

    2006-01-01

    Membranes made of silanized alumina have been prepared and tested as prototypes of derivatized ceramic membranes that are both highly permeable to oxygen and hydrophobic. Improved oxygen-permeable, hydrophobic membranes would be attractive for use in several technological disciplines, including supporting high-temperature aqueousphase oxidation in industrial production of chemicals, oxygenation of aqueous streams for bioreactors, and oxygenation of blood during open-heart surgery and in cases of extreme pulmonary dysfunction. In comparison with organic polymeric oxygen-permeable membranes now commercially available, the derivatized ceramic membranes are more chemically robust, are capable of withstanding higher temperatures, and exhibit higher oxygen-diffusion coefficients.

  19. Study on structure and hydrophobicity of PP/EVA co-blending membrane: Quenching rate

    NASA Astrophysics Data System (ADS)

    Tang, Na; Li, Zhao; Hua, Xinxin

    2017-03-01

    Isotactic polypropylene (iPP)/ethylene vinyl acetate (EVA) co-blending hydrophobic microporous membranes for vacuum membrane distillation (VMD) were prepared via thermally induced phase separation (TIPS). In the process of preparation, quenching rate has a great influence on the membrane morphology.

  20. Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability.

    PubMed

    Chen, Guan-Jie; Kuo, Chia-Hung; Chen, Chih-I; Yu, Chung-Cheng; Shieh, Chwen-Jen; Liu, Yung-Chuan

    2012-02-01

    In this study, three membranes: regenerated cellulose (RC), glass fiber (GF) and polyvinylidene fluoride (PVDF), were grafted with 1,4-diaminobutane (DA) and activated with glutaraldehyde (GA) for lipase covalent immobilization. The efficiencies of lipases immobilized on these membranes with different hydrophobic/hydrophilic properties were compared. The lipase immobilized on hydrophobic PVDF-DA-GA membrane exhibited more than an 11-fold increase in activity compared to its immobilization on a hydrophilic RC-DA-GA membrane. The relationship between surface hydrophobicity and immobilized efficiencies was investigated using hydrophobic/hydrophilic GF membranes which were prepared by grafting a different ratio of n-butylamine/1,4-diaminobutane (BA/DA). The immobilized lipase activity on the GF membrane increased with the increased BA/DA ratio. This means that lipase activity was exhibited more on the hydrophobic surface. Moreover, the modified PVDF-DA membrane was grafted with GA, epichlorohydrin (EPI) and cyanuric chloride (CC), respectively. The lipase immobilized on the PVDF-DA-EPI membrane displayed the highest specific activity compared to other membranes. This immobilized lipase exhibited more significant stability on pH, thermal, reuse, and storage than did the free enzyme. The results exhibited that the EPI modified PVDF is a promising support for lipase immobilization. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Matrix membranes and integrability

    SciTech Connect

    Zachos, C.; Fairlie, D.; Curtright, T.

    1997-06-01

    This is a pedagogical digest of results reported in Curtright, Fairlie, {ampersand} Zachos 1997, and an explicit implementation of Euler`s construction for the solution of the Poisson Bracket dual Nahm equation. But it does not cover 9 and 10-dimensional systems, and subsequent progress on them Fairlie 1997. Cubic interactions are considered in 3 and 7 space dimensions, respectively, for bosonic membranes in Poisson Bracket form. Their symmetries and vacuum configurations are explored. Their associated first order equations are transformed to Nahm`s equations, and are hence seen to be integrable, for the 3-dimensional case, by virtue of the explicit Lax pair provided. Most constructions introduced also apply to matrix commutator or Moyal Bracket analogs.

  2. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating.

    PubMed

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-09-02

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto a porous stainless-steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water-air interface, collect and convert solar light into heat, and locally heat only the water surface for enhanced evaporation.

  3. Interfacial polymerization on hydrophobic PVDF UF membranes surface: Membrane wetting through pressurization

    NASA Astrophysics Data System (ADS)

    Lee, Ju Sung; Lee, Hyun Ho; Seo, Jin Ah; Park, Hyun Sic; Park, Jinwon; Min, Byoung Ryul

    2015-11-01

    PVDF is widely used in water treatment membranes because of it high chemical resistance and thermal stability levels, and desirable mechanical properties. On the other hand, it is seldom used as support membrane for RO membranes, as it is difficult to undertake interfacial polymerization by traditional methods due to characteristic of hydrophobic surface. However, if the MPD solution is applied at pressures which exceed the pressure at which the PVDF membrane pushes water away, then it can be wetted within the membrane and PA/PVDF composite membrane can be prepared through the reaction of the wetted MPD and TMC. The theoretical penetration pressure needed to wet MPD solution in PVDF with pore size of 10 nm, calculated using Jurin's Law, is 8.8 bar. In this study, PVDF membrane was immersed in MPD solution for 4 h at pressures higher than theoretical penetration pressure using N2 gas at 25 °C. Interfacial polymerization with TMC was undertaken with surface of the PVDF membrane wetted in MPD solution in this manner to form a thin but consistent PA layer, which was verified through FT-IR and SEM. Salt rejection and permeation flux measurements for NaCl 5000 ppm was conducted for the PA/PVDF membranes prepared in this manner at 25 °C, 30 bar using cross-flow water permeation system. PA/PVDF composite membrane wetted with MPD solution and interfacial polymerization undertaken at 10, 16 and 20 bar with N2 gas displayed salt rejection ratio of 37.94, 41.79 and 51.03%, and permeation flux of 7.38, 5.26 and 7.94LMH, respectively. The salt rejection ratio for membrane wetted with MPD at 16 bar with CO2 gas displayed salt rejection ratio of 78.26% and permeation flux of 4.91LMH. The results confirmed the possibility of using PVDF UF membrane of superior properties as support membrane for NF and RO.

  4. Polymeric nanopore membranes for hydrophobicity-based separations by conformal initiated chemical vapor deposition.

    PubMed

    Asatekin, Ayse; Gleason, Karen K

    2011-02-09

    High-aspect ratio hydrophobic, cylindrical nanopores having diameters as low as 5 nm are rapidly fabricated using conformal vapor deposition of fluorinated polymeric layers into porous track-etched polycarbonate membranes. The resultant selectivity of these membranes for pairs of small molecules of similar size, but of different hydrophobicity, arises from solute-pore wall interactions emphasized by confinement. Increasing selectivity was observed as pore diameter decreased and as the surface of the pore became more hydrophobic. Cylindrical pores provided higher selectivity than bottleneck-shaped pores having the same minimum diameter. A maximum selectivity of 234 was achieved between mesitylene and phloroglucinol by the best performing membrane. Membranes with small fluorinated pores exhibited an effective cutoff based on the polar surface area of the molecules, with limited correlation with solute size. This technology could lead to a new generation of membrane separations based on specific interactions.

  5. Organic solvent extraction as a versatile procedure to identify hydrophobic chloroplast membrane proteins.

    PubMed

    Ferro, M; Seigneurin-Berny, D; Rolland, N; Chapel, A; Salvi, D; Garin, J; Joyard, J

    2000-10-01

    As a complementary approach to genome projects, proteomic analyses have been set up to identify new gene products. One of the major challenges in proteomics concerns membrane proteins, especially the minor ones. A procedure based on the differential extraction of membrane proteins in chloroform/methanol mixtures, was tested on the two different chloroplast membrane systems: envolope and thylakoid membranes. Combining the use of classical sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry analyses, this procedure enabled identification of hydrophobic proteins. The propensity of hydrophobic proteins to partition in chloroform/methanol mixtures was directly correlated with the number of amino acid residues/number of putative transmembrane regions (Res/TM ratio). Regardless of the particular case of some lipid-interacting proteins, chloroform/methanol extractions allowed enrichment of hydrophobic proteins and exclusion of hydrophilic proteins from both membrane systems, thus demonstrating the versatility of the procedure.

  6. Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation.

    PubMed

    Hammami, Mohammed Amen; Croissant, Jonas G; Francis, Lijo; Alsaiari, Shahad K; Anjum, Dalaver H; Ghaffour, Noreddine; Khashab, Niveen M

    2017-01-18

    Engineering and scaling-up new materials for better water desalination are imperative to find alternative fresh water sources to meet future demands. Herein, the fabrication of hydrophobic poly(ether imide) composite nanofiber membranes doped with novel ethylene-pentafluorophenylene-based periodic mesoporous organosilica nanoparticles is reported for enhanced and fouling resistant membrane distillation. Novel organosilica nanoparticles were homogeneously incorporated into electrospun nanofiber membranes depicting a proportional increase of hydrophobicity to the particle contents. Direct contact membrane distillation experiments on the organosilica-doped membrane with only 5% doping showed an increase of flux of 140% compared to commercial membranes. The high porosity of organosilica nanoparticles was further utilized to load the eugenol antimicrobial agent which produced a dramatic enhancement of the antibiofouling properties of the membrane of 70% after 24 h.

  7. How hydrophobic nanoparticles aggregate in the interior of membranes: A computer simulation.

    PubMed

    Tian, Falin; Zhang, Xianren; Dong, Wei

    2014-11-01

    Lipid-based dispersion of hydrophobic nanoparticles (NPs) not only gives fundamental insight into how nanomaterials distribute in live cells and organisms, but also provides a quite general route to designing nanocarrier agents in triggered drug delivery and medical imaging. It is not clearly understood how hydrophobic NPs arrange in the interior of a membrane. In this paper, with computer simulation techniques, we demonstrate that hydrophobic NPs having a diameter compared to the hydrophobic thickness of the membrane are capable of clustering in the hydrophobic interior of a cell membrane. Except from the isotropic aggregation, an unexpected linear arrangement of spherical NPs, which is still not found from experiments, is identified here. The free-energy costs associated with linear and isotropic aggregations are computed explicitly to interpret aggregation behavior and the obtained phase diagrams give us a comprehensive understanding of where linear aggregation is expected. In this work we also shows that NP size and membrane tension play key roles in determining the NP aggregate, while the effects of NP concentration and membrane curvature seem to be relatively weak.

  8. How hydrophobic nanoparticles aggregate in the interior of membranes: A computer simulation

    NASA Astrophysics Data System (ADS)

    Tian, Falin; Zhang, Xianren; Dong, Wei

    2014-11-01

    Lipid-based dispersion of hydrophobic nanoparticles (NPs) not only gives fundamental insight into how nanomaterials distribute in live cells and organisms, but also provides a quite general route to designing nanocarrier agents in triggered drug delivery and medical imaging. It is not clearly understood how hydrophobic NPs arrange in the interior of a membrane. In this paper, with computer simulation techniques, we demonstrate that hydrophobic NPs having a diameter compared to the hydrophobic thickness of the membrane are capable of clustering in the hydrophobic interior of a cell membrane. Except from the isotropic aggregation, an unexpected linear arrangement of spherical NPs, which is still not found from experiments, is identified here. The free-energy costs associated with linear and isotropic aggregations are computed explicitly to interpret aggregation behavior and the obtained phase diagrams give us a comprehensive understanding of where linear aggregation is expected. In this work we also shows that NP size and membrane tension play key roles in determining the NP aggregate, while the effects of NP concentration and membrane curvature seem to be relatively weak.

  9. Infrared spectral marker bands characterizing a transient water wire inside a hydrophobic membrane protein

    SciTech Connect

    Wolf, Steffen; Gerwert, Klaus; Freier, Erik; Cui, Qiang

    2014-12-14

    Proton conduction along protein-bound “water wires” is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations. A non-hydrogen bonded (“dangling”) O–H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.

  10. Paper-PEG-based membranes for hydrophobic interaction chromatography: purification of monoclonal antibody.

    PubMed

    Yu, Deqiang; Chen, Xiaonong; Pelton, Robert; Ghosh, Raja

    2008-04-15

    This article discusses the preparation of novel Paper-PEG interpenetrating polymer network-based membranes as inexpensive alternative to currently available adsorptive membranes. The Paper-PEG membranes were developed for carrying out hydrophobic interaction membrane chromatography (HIMC). PEG is normally very hydrophilic but can undergo phase separation and become hydrophobic in the presence of high antichaotropic salt concentrations. Two variants of the Paper-PEG membranes, Paper-PEG 1 and Paper-PEG 2 were prepared by grafting different amounts of the polymer on filter paper and these were tested for their hydraulic properties and antibody binding capacity. The better of the two membranes (Paper-PEG 1) was then used for purifying the monoclonal antibody hIgG1-CD4 from simulated mammalian cell culture supernatant. The processing conditions required for purification were systematically optimized. The dynamic antibody binding capacity of the Paper-PEG 1 membrane was about 9 mg/mL of bed volume. A single step membrane chromatographic process using Paper-PEG 1 membrane gave high monoclonal antibody purity and recovery. The hydraulic permeability of the paper-based membrane was high and was maintained even after many runs, indicating that membrane fouling was negligible and the membrane was largely incompressible.

  11. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes

    NASA Astrophysics Data System (ADS)

    Ogawa, Tasuku; Ding, Bin; Sone, Yuji; Shiratori, Seimei

    2007-04-01

    We have recently fabricated super-hydrophobic membrane surfaces based on the inspiration of self-cleaning silver ragwort leaves. This biomimetic super-hydrophobic surface was composed of fluoroalkylsilane (FAS)-modified layer-by-layer (LBL) structured film-coated electrospun nanofibrous membranes. The rough fibre surface caused by the electrostatic LBL coating of TiO2 nanoparticles and poly(acrylic acid) (PAA) was used to imitate the rough surface of nanosized grooves along the silver ragwort leaf fibre axis. The results showed that the FAS modification was the key process for increasing the surface hydrophobicity of the fibrous membranes. Additionally, the dependence of the hydrophobicity of the membrane surfaces upon the number of LBL coating bilayers was affected by the membrane surface roughness. Moreover, x-ray photoelectron spectroscopy (XPS) results further indicated that the surface of LBL film-coated fibres absorbed more fluoro groups than the fibre surface without the LBL coating. A (TiO2/PAA)10 film-coated cellulose acetate nanofibrous membrane with FAS surface modification showed the highest water contact angle of 162° and lowest water-roll angle of 2°.

  12. Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor.

    PubMed

    Matar, Gerald; Gonzalez-Gil, Graciela; Maab, Husnul; Nunes, Suzana; Le-Clech, Pierre; Vrouwenvelder, Johannes; Saikaly, Pascal E

    2016-05-15

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m(2) h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m(2) h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be

  13. Visualizing and quantifying the nanoscale hydrophobicity and chemical distribution of surface modified polyethersulfone (PES) membranes.

    PubMed

    Fu, Wanyi; Carbrello, Christina; Wu, Xiaosong; Zhang, Wen

    2017-10-06

    Chemical modifications bring unique properties into polymeric membranes that may have enhanced filtration or separation efficiencies, antifouling, antimicrobial activity and selectivity. However, there is a lack of nanoscale characterization of the chemical additive distribution and the impacts of chemical modifiers or additives on membrane surface properties, especially those at the nanoscale. In this study, a series of industrially relevant polyethersulfone (PES) membranes modified with poly (ethylene glycol) (PEG) and polyvinylpyrrolidone (PVP) were analysed systematically. Particularly, hydrophobicity and chemical distribution were scrutinized by atomic force microscopy (AFM) and AFM coupled with infrared analysis capability (AFM-IR) for the first time that successfully resolved nanoscale structural and chemical properties of the chemically modified PES membranes. Our results indicated the heterogeneous spatial distribution of PVP and PEG based on their characteristic IR bands and the resulting hydrophobicity distribution on modified membrane surfaces at the nanoscale. Particularly, we established a linear correlation (R(2) = 0.9449) between the measured adhesion force and water contact angles, which enabled the examination of local surface hydrophobicity. The PES membranes became more hydrophilic with the increasing blend of PVP and PEG. With AFM-IR, trace amounts (1-4%) of PVP could be identified sensitively on PES membranes based on their unique characteristic IR bands, which were not achieved by FTIR or IR mapping. Overall, these novel characterization approaches hold paramount importance for the design and quality control of polymer membrane modification and manufacturing.

  14. Composite membrane with integral rim

    DOEpatents

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  15. Hydrophobic grid membrane filter method for aerobic plate count in foods: collaborative study.

    PubMed

    Entis, P

    1986-01-01

    Twenty-one laboratories participated in a collaborative study to validate a hydrophobic grid membrane filter (HGMF) method for aerobic plate count by comparing its performance against the AOAC/APHA pour plate method. Raw milk, raw poultry, whole egg powder, flours, and spices were included in the study. Counts obtained by the HGMF and pour plate methods did not differ significantly, except in the case of whole egg powder, for which the HGMF method produced significantly higher counts. The hydrophobic grid membrane filter method for aerobic plate count in foods has been adopted official first action.

  16. Bilayer-thickness-mediated interactions between integral membrane proteins.

    PubMed

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  17. Proteomic characterization of integral membrane proteins using thermostatted liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Moore, Sarah M; Wu, Christine C

    2012-01-01

    Due to the hydrophobicity and localization of integral membrane proteins, they are difficult to study using conventional biochemical methods that are compatible with proteomic analyses. This chapter describes the coupling of multiple crucial steps that lead to the optimized shotgun proteomic analysis of integral membrane proteins while maintaining empirical topology information. Namely, a membrane shaving method is utilized to separate protease accessible peptides from membrane embedded peptides and elevated temperatures during chromatographic separation is utilized to augment the recovery of hydrophobic peptides for in-line analysis using tandem mass spectrometry. This combination of steps facilitates increased identification of membrane proteins while also maintaining information regarding protein topology.

  18. Membrane anchoring of diacylglycerol lactones substituted with rigid hydrophobic acyl domains correlates with biological activities.

    PubMed

    Raifman, Or; Kolusheva, Sofiya; Comin, Maria J; Kedei, Noemi; Lewin, Nancy E; Blumberg, Peter M; Marquez, Victor E; Jelinek, Raz

    2010-01-01

    Synthetic diacylglycerol lactones (DAG lactones) are effective modulators of critical cellular signaling pathways downstream of the lipophilic second messenger diacylglycerol that activate a host of protein kinase C (PKC) isozymes as well as other non-kinase proteins that share with PKC similar C1 membrane-targeting domains. A fundamental determinant of the biological activity of these amphiphilic molecules is the nature of their interactions with cellular membranes. This study characterizes the membrane interactions and bilayer anchoring of a series of DAG lactones in which the hydrophobic moiety is a 'molecular rod', namely a rigid 4-[2-(R-phenyl)ethynyl]benzoate moiety in the acyl position. Use of assays employing chromatic biomimetic vesicles and biophysical techniques revealed that the mode of membrane anchoring of the DAG lactone derivatives was markedly affected by the presence of the hydrophobic diphenyl rod and by the size of the functional unit at the terminus of the rod. Two primary mechanisms of interaction were observed: surface binding of the DAG lactones at the lipid/water interface and deep insertion of the ligands into the alkyl core of the lipid bilayer. These membrane-insertion properties could explain the different patterns of the PKC translocation from the cytosol to membranes that is induced by the molecular-rod DAG lactones. This investigation emphasizes that the side residues of DAG lactones, rather than simply conferring hydrophobicity, profoundly influence membrane interactions, and thus may further contribute to the diversity of biological actions of these synthetic biomimetic ligands.

  19. Engineering of the E. coli outer membrane protein FhuA to overcome the hydrophobic mismatch in thick polymeric membranes.

    PubMed

    Muhammad, Noor; Dworeck, Tamara; Fioroni, Marco; Schwaneberg, Ulrich

    2011-03-17

    Channel proteins like the engineered FhuA Δ1-159 often cannot insert into thick polymeric membranes due to a mismatch between the hydrophobic surface of the protein and the hydrophobic surface of the polymer membrane. To address this problem usually specific block copolymers are synthesized to facilitate protein insertion. Within this study in a reverse approach we match the protein to the polymer instead of matching the polymer to the protein. To increase the FhuA Δ1-159 hydrophobic surface by 1 nm, the last 5 amino acids of each of the 22 β-sheets, prior to the more regular periplasmatic β-turns, were doubled leading to an extended FhuA Δ1-159 (FhuA Δ1-159 Ext). The secondary structure prediction and CD spectroscopy indicate the β-barrel folding of FhuA Δ1-159 Ext. The FhuA Δ1-159 Ext insertion and functionality within a nanocontainer polymeric membrane based on the triblock copolymer PIB(1000)-PEG(6000)-PIB(1000) (PIB = polyisobutylene, PEG = polyethyleneglycol) has been proven by kinetic analysis using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine). Identical experiments with the unmodified FhuA Δ1-159 report no kinetics and presumably no insertion into the PIB(1000)-PEG(6000)-PIB(1000) membrane. Furthermore labeling of the Lys-NH(2) groups present in the FhuA Δ1-159 Ext channel, leads to controllability of in/out flux of substrates and products from the nanocontainer. Using a simple "semi rational" approach the protein's hydrophobic transmembrane region was increased by 1 nm, leading to a predicted lower hydrophobic mismatch between the protein and polymer membrane, minimizing the insertion energy penalty. The strategy of adding amino acids to the FhuA Δ1-159 Ext hydrophobic part can be further expanded to increase the protein's hydrophobicity, promoting the efficient embedding into thicker/more hydrophobic block copolymer membranes.

  20. Interplay between hydrophobicity and the positive-inside rule in determining membrane-protein topology

    PubMed Central

    Elazar, Assaf; Weinstein, Jonathan Jacob; Prilusky, Jaime; Fleishman, Sarel Jacob

    2016-01-01

    The energetics of membrane-protein interactions determine protein topology and structure: hydrophobicity drives the insertion of helical segments into the membrane, and positive charges orient the protein with respect to the membrane plane according to the positive-inside rule. Until recently, however, quantifying these contributions met with difficulty, precluding systematic analysis of the energetic basis for membrane-protein topology. We recently developed the dsTβL method, which uses deep sequencing and in vitro selection of segments inserted into the bacterial plasma membrane to infer insertion-energy profiles for each amino acid residue across the membrane, and quantified the insertion contribution from hydrophobicity and the positive-inside rule. Here, we present a topology-prediction algorithm called TopGraph, which is based on a sequence search for minimum dsTβL insertion energy. Whereas the average insertion energy assigned by previous experimental scales was positive (unfavorable), the average assigned by TopGraph in a nonredundant set is −6.9 kcal/mol. By quantifying contributions from both hydrophobicity and the positive-inside rule we further find that in about half of large membrane proteins polar segments are inserted into the membrane to position more positive charges in the cytoplasm, suggesting an interplay between these two energy contributions. Because membrane-embedded polar residues are crucial for substrate binding and conformational change, the results implicate the positive-inside rule in determining the architectures of membrane-protein functional sites. This insight may aid structure prediction, engineering, and design of membrane proteins. TopGraph is available online (topgraph.weizmann.ac.il). PMID:27562165

  1. Interplay between hydrophobicity and the positive-inside rule in determining membrane-protein topology.

    PubMed

    Elazar, Assaf; Weinstein, Jonathan Jacob; Prilusky, Jaime; Fleishman, Sarel Jacob

    2016-09-13

    The energetics of membrane-protein interactions determine protein topology and structure: hydrophobicity drives the insertion of helical segments into the membrane, and positive charges orient the protein with respect to the membrane plane according to the positive-inside rule. Until recently, however, quantifying these contributions met with difficulty, precluding systematic analysis of the energetic basis for membrane-protein topology. We recently developed the dsTβL method, which uses deep sequencing and in vitro selection of segments inserted into the bacterial plasma membrane to infer insertion-energy profiles for each amino acid residue across the membrane, and quantified the insertion contribution from hydrophobicity and the positive-inside rule. Here, we present a topology-prediction algorithm called TopGraph, which is based on a sequence search for minimum dsTβL insertion energy. Whereas the average insertion energy assigned by previous experimental scales was positive (unfavorable), the average assigned by TopGraph in a nonredundant set is -6.9 kcal/mol. By quantifying contributions from both hydrophobicity and the positive-inside rule we further find that in about half of large membrane proteins polar segments are inserted into the membrane to position more positive charges in the cytoplasm, suggesting an interplay between these two energy contributions. Because membrane-embedded polar residues are crucial for substrate binding and conformational change, the results implicate the positive-inside rule in determining the architectures of membrane-protein functional sites. This insight may aid structure prediction, engineering, and design of membrane proteins. TopGraph is available online (topgraph.weizmann.ac.il).

  2. Roles of Hydrophobicity and Charge Distribution of Cationic Antimicrobial Peptides in Peptide-Membrane Interactions*

    PubMed Central

    Yin, Lois M.; Edwards, Michelle A.; Li, Jessica; Yip, Christopher M.; Deber, Charles M.

    2012-01-01

    Cationic antimicrobial peptides (CAPs) occur as important innate immunity agents in many organisms, including humans, and offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to membrane lysis and eventually cell death. In this work, we studied the biophysical and microbiological characteristics of designed CAPs varying in hydrophobicity levels and charge distributions by a variety of biophysical and biochemical approaches, including in-tandem atomic force microscopy, attenuated total reflection-FTIR, CD spectroscopy, and SDS-PAGE. Peptide structural properties were correlated with their membrane-disruptive abilities and antimicrobial activities. In bacterial lipid model membranes, a time-dependent increase in aggregated β-strand-type structure in CAPs with relatively high hydrophobicity (such as KKKKKKALFALWLAFLA-NH2) was essentially absent in CAPs with lower hydrophobicity (such as KKKKKKAAFAAWAAFAA-NH2). Redistribution of positive charges by placing three Lys residues at both termini while maintaining identical sequences minimized self-aggregation above the dimer level. Peptides containing four Leu residues were destructive to mammalian model membranes, whereas those with corresponding Ala residues were not. This finding was mirrored in hemolysis studies in human erythrocytes, where Ala-only peptides displayed virtually no hemolysis up to 320 μm, but the four-Leu peptides induced 40–80% hemolysis at the same concentration range. All peptides studied displayed strong antimicrobial activity against Pseudomonas aeruginosa (minimum inhibitory concentrations of 4–32 μm). The overall findings suggest optimum routes to balancing peptide hydrophobicity and charge distribution that allow efficient penetration and disruption of the bacterial membranes without damage to mammalian (host) membranes. PMID:22253439

  3. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability.

    PubMed

    Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo

    2013-02-14

    Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.

  4. Purification of plasmid DNA from Escherichia coli ferments using anion-exchange membrane and hydrophobic chromatography.

    PubMed

    Guerrero-Germán, Patricia; Montesinos-Cisneros, Rosa Ma; Prazeres, D Miguel F; Tejeda-Mansir, Armando

    2011-01-01

    A novel downstream bioprocess was developed to obtain purified plasmid DNA (pDNA) from Escherichia coli ferments. The intermediate recovery and purification of the pDNA in cell lysate was conducted using hollow-fiber tangential filtration and frontal anion-exchange membrane and elution hydrophobic chromatographies. The purity of the solutions of pDNA obtained during each process stage was investigated. The results show that the pDNA solution purity increased 30-fold and more than 99% of RNA in the lysate was removed during the process operations. The combination of membrane operations and hydrophobic interaction chromatography resulted in an efficient way to recover pDNA from cell lysates. A better understanding of membrane-based technology for the purification of pDNA from clarified E. coli lysate was developed in this research.

  5. Lateral diffusion of membrane proteins: consequences of hydrophobic mismatch and lipid composition.

    PubMed

    Ramadurai, Sivaramakrishnan; Duurkens, Ria; Krasnikov, Victor V; Poolman, Bert

    2010-09-08

    Biological membranes are composed of a large number lipid species differing in hydrophobic length, degree of saturation, and charge and size of the headgroup. We now present data on the effect of hydrocarbon chain length of the lipids and headgroup composition on the lateral mobility of the proteins in model membranes. The trimeric glutamate transporter (GltT) and the monomeric lactose transporter (LacY) were reconstituted in giant unilamellar vesicles composed of unsaturated phosphocholine lipids of varying acyl chain length (14-22 carbon atoms) and various ratios of DOPE/DOPG/DOPC lipids. The lateral mobility of the proteins and of a fluorescent lipid analog was determined as a function of the hydrophobic thickness of the bilayer (h) and lipid composition, using fluorescence correlation spectroscopy. The diffusion coefficient of LacY decreased with increasing thickness of the bilayer, in accordance with the continuum hydrodynamic model of Saffman-Delbrück. For GltT, the mobility had its maximum at diC18:1 PC, which is close to the hydrophobic thickness of the bilayer in vivo. The lateral mobility decreased linearly with the concentration of DOPE but was not affected by the fraction of anionic lipids from DOPG. The addition of DOPG and DOPE did not affect the activity of GltT. We conclude that the hydrophobic thickness of the bilayer is a major determinant of molecule diffusion in membranes, but protein-specific properties may lead to deviations from the Saffman-Delbrück model.

  6. How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Kujawski, Wojciech; Bryjak, Marek; Kujawski, Jan

    2016-03-23

    The combination of microscopic (atomic force microscopy and scanning electron microscopy) and goniometric (static and dynamic measurements) techniques, and surface characterization (surface free energy determination, critical surface tension, liquid entry pressure, hydraulic permeability) was implemented to discuss the influence of perfluoroalkylsilanes structure and grafting time on the physicochemistry of the created hydrophobic surfaces on the titania ceramic membranes of 5 kD and 300 kD. The impact of molecular structure of perfluoroalkylsilanes modifiers (possessing from 6 to 12 carbon atoms in the fluorinated part of the alkyl chain) and the time of the functionalization process in the range of 5 to 35 h was studied. Based on the scanning electron microscopy with energy-dispersive X-ray spectroscopy, it was found that the localization of grafting molecules depends on the membrane pore size (5 kD or 300 kD). In the case of 5 kD titania membranes, modifiers are attached mainly on the surface and only partially inside the membrane pores, whereas, for 300 kD membranes, the perfluoroalkylsilanes molecules are present within the whole porous structure of the membranes. The application of 4 various types of PFAS molecules enabled for interesting observations and remarks. It was explained how to obtain ceramic membrane surfaces with controlled material (contact angle, roughness, contact angle hysteresis) and separation properties. Highly hydrophobic surfaces with low values of contact angle hysteresis and low roughness were obtained. These surfaces possessed also low values of critical surface tension, which means that surfaces are highly resistant to wetting. This finding is crucial in membrane applicability in separation processes. The obtained and characterized hydrophobic membranes were subsequently applied in air-gap membrane distillation processes. All membranes were very efficient in MD processes, showing good transport and selective properties (∼99% of Na

  7. Achieving enhanced hydrophobicity of graphene membranes by covalent modification with polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Lei, Wei-Wei; Li, Hang; Shi, Ling-Ying; Diao, Yong-Fu; Zhang, Yu-Lin; Ran, Rong; Ni, Wei

    2017-05-01

    In this study, the graphene oxide was covalently modified by amino terminated polydimethylsiloxane (PDMS) through amidation reaction. And the membranes of the graphene oxide (GO), reduced graphene oxide (RGO) and PDMS-covalently modified graphene were prepared respectively by a vacuum filtration method, and the wettability of these membranes were investigated. Infrared spectroscopy, Raman, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetry analysis combined with dispersion ability indicated that PDMS chains were successfully grafted on the surface of graphene oxide sheets. The morphology of the prepared membranes had smooth surface and well-stacked structure in the cross-section indicated by the scanning electron microscope and EDS-mapping. The contact angle measurements indicated that the PDMS-modified graphene membrane with water contact angle 129.5° showed increased hydrophobicity compared with GO and RGO membranes.

  8. Membrane anchoring of diacylglycerol-lactones substituted with rigid hydrophobic acyl domains correlates with biological activities

    PubMed Central

    Raifman, Or; Kolusheva, Sofiya; Comin, Maria J.; Kedei, Noemi; Lewin, Nancy E.; Blumberg, Peter M.; Marquez, Victor E.; Jelinek, Raz

    2009-01-01

    Summary Synthetic diacylglycerol lactones (DAG-lactones) are effective modulators of critical cellular signaling pathways, downstream of the lipophilic second messenger diacylglycerol, that activate a host of protein kinase C (PKC) isozymes as well as other non-kinase proteins that share with PKC similar C1 membrane-targeting domains. A fundamental determinant of the biological activity of these amphiphilic molecules is the nature of their interactions with cellular membranes. This study characterizes the membrane interactions and bilayer anchoring of a series of DAG-lactones in which the hydrophobic moiety is a “molecular rod”, namely a rigid 4-[2-(R-phenyl)ethynyl]benzoate moiety in the acyl position. Application of assays employing chromatic biomimetic vesicles and biophysical techniques reveals that the mode of membrane anchoring of the DAG-lactone derivatives was markedly affected by the presence of the hydrophobic diphenyl rod and by the size of the functional unit displayed at the terminus of the rod. Two primary mechanisms of interaction were observed: surface binding of the DAG-lactones at the lipid/water interface and deep insertion of the ligands into the alkyl core of the lipid bilayer. These membrane-insertion properties could explain the different patterns of PKC translocation from cytosol to membranes induced by the molecular-rod DAG-lactones. This investigation emphasizes that the side-residues of DAG-lactones, rather than simply conferring hydrophobicity, profoundly influence membrane interactions and in that fashion may further contribute to the diversity of biological actions of these synthetic biomimetic ligands. PMID:19961537

  9. The role of hydrophobic interactions in positioning of peripheral proteins in membranes

    PubMed Central

    Lomize, Andrei L; Pogozheva, Irina D; Lomize, Mikhail A; Mosberg, Henry I

    2007-01-01

    Background Three-dimensional (3D) structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined. Results We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM) database. Conclusion Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our results demonstrate that

  10. A minimal hydrophobicity is needed to employ amphiphilic p(HPMA)-co-p(LMA) random copolymers in membrane research.

    PubMed

    Stangl, Michael; Hemmelmann, Mirjam; Allmeroth, Mareli; Zentel, Rudolf; Schneider, Dirk

    2014-03-11

    Because a polymer environment might be milder than a detergent micelle, amphiphilic polymers have attracted attention as alternatives to detergents in membrane biochemistry. The polymer poly[N-(2-hydroxypropyl)-methacrylamid] [p(HPMA)] has recently been modified with hydrophobic lauryl methacrylate (LMA) moieties, resulting in the synthesis of amphiphilic p(HPMA)-co-p(LMA) polymers. p(HPMA)-co-p(LMA) polymers with a LMA content of 5 or 15% have unstable hydrophobic cores. This, on one hand, promotes interactions of the hydrophobic LMA moieties with membranes, resulting in membrane rupture, but at the same time prevents formation of a hydrophobic, membrane mimetic environment that is sufficiently stable for the incorporation of transmembrane proteins. On the other hand, the p(HPMA)-co-p(LMA) polymer with a LMA content of 25% forms a stable hydrophobic core structure, which prevents hydrophobic interactions with membrane lipids but allows stable incorporation of membrane proteins. On the basis of our data, it becomes obvious that amphiphilic polymers have to have threshold hydrophobicities should an application in membrane protein research be anticipated.

  11. Hydrophobic ion interactions with membranes. Thermodynamic analysis of tetraphenylphosphonium binding to vesicles.

    PubMed Central

    Flewelling, R F; Hubbell, W L

    1986-01-01

    The thermodynamic properties for the interaction of the hydrophobic ion tetraphenylphosphonium (TPP+) with egg phosphatidylcholine vesicles were studied in detail by equilibrium dialysis and spin label techniques. A partition coefficient of beta = 4.2 + 0.4 x 10(-6) cm (K congruent to 100) was determined. Electrostatic saturation sets in at approximately 600 microM (about one absorbed TPP+ molecule per 100 lipids), and is not screened by salt. The temperature dependence of binding was determined, which reveals that the binding is entropy-driven with a positive (repulsive) enthalpy of binding, a result to be compared with hydrophobic anions in which the binding enthalpy is negative. The membrane dipole potential may be responsible for this binding difference. Activity coefficients are determined and shown to be significantly different from those of most common salts, an important result that should be considered in all hydrophobic ion studies. Comparison of the TPP+ results with those of its anionic structural analogue, tetraphenylboron (TPB-), permits a general analysis of hydrophobic ion interactions with membranes. A theoretical model consistent with the entire set of data is developed in an accompanying article. PMID:3006814

  12. Performance of hydrophobic interaction ligands for human membrane-bound catechol-O-methyltransferase purification.

    PubMed

    Santos, Fátima Milhano; Pedro, Augusto Quaresma; Soares, Rui Filipe; Martins, Rita; Bonifácio, Maria João; Queiroz, João António; Passarinha, Luís António

    2013-06-01

    Despite of membrane catechol-O-methyltransferase (MBCOMT, EC 2.1.1.6) physiological importance on catecholamines' O-methylation, no studies allowed their total isolation. Therefore, for the first time, we compare the performance of three hydrophobic adsorbents (butyl-, epoxy-, and octyl-Sepharose) in purification of recombinant human COMT (hMBCOMT) from crude Brevibacillus choshinensis cell lysates to develop a sustainable chromatographic process. Hydrophobic matrices were evaluated in terms of selectivity and hMBCOMT's binding and elution conditions. Results show that hMBCOMT's adsorption was promoted on octyl and butyl at ≤375 mM NaH2 PO4, while on epoxy higher concentrations (>850 mM) were required. Additionally, hMBCOMT's elution was promoted on epoxy, butyl, and octyl using respectively 0.1-0.5, 0.25-1, and 1% of Triton X-100. On butyl media, a stepwise strategy using 375 and 0 mM NaH2PO4, followed by three elution steps at 0.25, 0.7 and 1% Triton X-100, allowed selective hMBCOMT isolation. In conclusion, significant amounts of MBCOMT were purified with high selectivity on a single chromatography procedure, despite its elution occurs on multiple peaks. Although successful applications of hydrophobic interaction chromatography in purification of membrane proteins are uncommon, we proved that traditional hydrophobic matrices can open a promising unexplored field to fulfill specific requirements for kinetic and pharmacological trials.

  13. Change of apocytochrome c translocation across membrane in consequence of hydrophobic segment deletion.

    PubMed

    Wang, Xiaoping; Han, Xuehai; Jia, Songtao; Yang, Fuyu

    2002-04-01

    Wild-type apocytochrome c and its hydrophobic segment deleted mutants, named delta28-39, delta72-86 and delta28-29/72-86 were constructed, expressed and highly purified respectively. Insertion ability into phospholipid monolayer, inducing leakage of entrapped fluorescent dye fluorescein sulfonate (FS) from liposomes, and translocation across model membrane system showed that the wild-type apoprotein and delta28-39 almost exhibited the same characteristics, while mutants with segment 72-86 deletion did not. Furthermore, CD spectra, intrinsic fluorescence emission spectra, and the accessibility of the protein to the fluorescence quenchers: KI, acrylamide and HB demonstrated that the segment 72-86 deletion has a significant effect on the conformational changes of apocytochrome c following its interaction with phospholipid. On the basis of these results it is postulated that the C-terminal hydrophobic segment 72-86 plays an important role in the translocation of apocytochrome c across membrane.

  14. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.

    PubMed Central

    Harroun, T A; Heller, W T; Weiss, T M; Yang, L; Huang, H W

    1999-01-01

    We present a quantitative analysis of the effects of hydrophobic matching and membrane-mediated protein-protein interactions exhibited by gramicidin embedded in dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) bilayers (Harroun et al., 1999. Biophys. J. 76:937-945). Incorporating gramicidin, at 1:10 peptide/lipid molar ratio, decreases the phosphate-to-phosphate (PtP) peak separation in the DMPC bilayer from 35.3 A without gramicidin to 32.7 A. In contrast, the same molar ratio of gramicidin in DLPC increases the PtP from 30.8 A to 32.1 A. Concurrently, x-ray in-plane scattering showed that the most probable nearest-neighbor separation between gramicidin channels was 26.8 A in DLPC, but reduced to 23.3 A in DMPC. In this paper we review the idea of hydrophobic matching in which the lipid bilayer deforms to match the hydrophobic surface of the embedded proteins. We use a simple elasticity theory, including thickness compression, tension, and splay terms to describe the membrane deformation. The energy of membrane deformation is compared with the energy cost of hydrophobic mismatch. We discuss the boundary conditions between a gramicidin channel and the lipid bilayer. We used a numerical method to solve the problem of membrane deformation profile in the presence of a high density of gramicidin channels and ran computer simulations of 81 gramicidin channels to find the equilibrium distributions of the channels in the plane of the bilayer. The simulations contain four parameters: bilayer thickness compressibility 1/B, bilayer bending rigidity Kc, the channel-bilayer mismatch Do, and the slope of the interface at the lipid-protein boundary s. B, Kc, and Do were experimentally measured; the only free parameter is s. The value of s is determined by the requirement that the theory produces the experimental values of bilayer thinning by gramicidin and the shift in the peak position of the in-plane scattering due to membrane-mediated channel

  15. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus.

    PubMed

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin.

  16. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus

    PubMed Central

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  17. A rapid method to assess the hydrophobicity of the intestinal microvillus membrane in vivo.

    PubMed

    Meddings, J B; Dietschy, J M

    1989-08-01

    Absorption rates for many biologically important compounds are determined by the relative hydrophobicity of the jejunal microvillus membrane. An estimate of this parameter may be obtained by measuring the incremental change in free energy that occurs when a methylene group partitions into the bilayer form an external aqueous solution. Although sensitive, this measurement has been difficult to quantitate in vivo; therefore, these studies have historically been performed in vitro. We describe a rapid, simple technique to measure this parameter in vivo. Furthermore, this method directly quantitates the resistance of aqueous unstirred layers that lie external to the microvillus membrane.

  18. Probabilistic aspects of polymorph selection by heterogeneous nucleation on microporous hydrophobic membrane surfaces

    NASA Astrophysics Data System (ADS)

    Curcio, Efrem; Di Profio, Gianluca; Drioli, Enrico

    2008-12-01

    In this work, probabilistic aspects related to the heterogeneous nucleation on microporous hydrophobic surfaces, i.e. polymeric membranes, have been theoretically investigated to understand the ability of this innovative crystallization technique to promote the formation of different polymorphs. The theoretical results, which clarify the effects of physicochemical properties of membranes (i.e. porosity, contact angle between supersaturated solution, and polymeric substrate) on the nucleation process of polymorphs, have been used to discuss the experimentally observed selective crystallization of forms I and II of paracetamol.

  19. Side Chain Hydrophobicity Modulates Therapeutic Activity and Membrane Selectivity of Antimicrobial Peptide Mastoparan-X

    PubMed Central

    Gjetting, Torben; Andresen, Thomas L.

    2014-01-01

    The discovery of new anti-infective compounds is stagnating and multi-resistant bacteria continue to emerge, threatening to end the “antibiotic era”. Antimicrobial peptides (AMPs) and lipo-peptides such as daptomycin offer themselves as a new potential class of antibiotics; however, further optimization is needed if AMPs are to find broad use as antibiotics. In the present work, eight analogues of mastoparan-X (MPX) were investigated, having side chain modifications in position 1, 8 and 14 to modulate peptide hydrophobicity. The self-association properties of the peptides were characterized, and the peptide-membrane interactions in model membranes were compared with the bactericidal and haemolytic properties. Alanine substitution at position 1 and 14 resulted in higher target selectivity (red blood cells versus bacteria), but also decreased bactericidal potency. For these analogues, the gain in target selectivity correlated to biophysical parameters showing an increased effective charge and reduction in the partitioning coefficient for membrane insertion. Introduction of an unnatural amino acid, with an octyl side chain by amino acid substitution, at positions 1, 8 and 14 resulted in increased bactericidal potency at the expense of radically reduced membrane target selectivity. Overall, optimized membrane selectivity or bactericidal potency was achieved by changes in side chain hydrophobicity of MPX. However, enhanced potency was achieved at the expense of selectivity and vice versa in all cases. PMID:24621994

  20. Morphology and albumin secretion of adult rat hepatocytes cultured on a hydrophobic porous expanded polytetrafluoroethylene membrane.

    PubMed

    Kurosawa, Hiroshi; Yuminamochi, Eri; Yasuda, Ruri; Amano, Yoshifumi

    2003-01-01

    Primary culture of rat hepatocytes was performed on a hydrophobic porous expanded polytetrafluoroethylene (ePTFE) membrane incorporated into the base of a culture dish. Two types of ePTFE membranes, a uniaxially expanded type (ePTFE-1) and a biaxially expanded type (ePTFE-2), could be used as the culture surfaces for hepatocytes. The formation of multicellular aggregates was observed in the culture dish when each membrane type was used. A pore size of 1 mum or higher was adequate for cell adhesion and albumin secretion for both membrane types. The activity of albumin secretion in the dish with the ePTFE membrane was markedly higher than that in the polystyrene dish. Spheroidal multicellular aggregates (spheroids) were observed when hepatocytes were cultured on the ePTFE-1 membrane. The ePTFE-1 membrane maintained the albumin secretion activity for a longer period than the non-expanded PTFE film. It was assumed that the cooperative action of membrane structure and oxygen permeability promoted the formation of cell aggregates and increased the albumin secretion activity.

  1. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.

    PubMed Central

    Harroun, T A; Heller, W T; Weiss, T M; Yang, L; Huang, H W

    1999-01-01

    Hydrophobic matching, in which transmembrane proteins cause the surrounding lipid bilayer to adjust its hydrocarbon thickness to match the length of the hydrophobic surface of the protein, is a commonly accepted idea in membrane biophysics. To test this idea, gramicidin (gD) was embedded in 1, 2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1, 2-myristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers at the peptide/lipid molar ratio of 1:10. Circular dichroism (CD) was measured to ensure that the gramicidin was in the beta6.3 helix form. The bilayer thickness (the phosphate-to-phosphate distance, or PtP) was measured by x-ray lamellar diffraction. In the Lalpha phase near full hydration, PtP is 30.8 A for pure DLPC, 32.1 A for the DLPC/gD mixture, 35.3 A for pure DMPC, and 32.7 A for the DMPC/gD mixture. Gramicidin apparently stretches DLPC and thins DMPC toward a common thickness as expected by hydrophobic matching. Concurrently, gramicidin-gramicidin correlations were measured by x-ray in-plane scattering. In the fluid phase, the gramicidin-gramicidin nearest-neighbor separation is 26.8 A in DLPC, but shortens to 23.3 A in DMPC. These experiments confirm the conjecture that when proteins are embedded in a membrane, hydrophobic matching creates a strain field in the lipid bilayer that in turn gives rise to a membrane-mediated attractive potential between proteins. PMID:9929495

  2. Membrane penetration of Sendai virus glycoproteins during the early stages of fusion with liposomes as determined by hydrophobic photoaffinity labeling

    SciTech Connect

    Novick, S.L.; Hoekstra, D.

    1988-10-01

    The hydrophobic photoaffinity label 3-(trifluoromethyl)-3-(m-(/sup 125/I)iodophenyl)diazirine was used to label Sendai virus proteins during fusion with cardiolipin and phosphatidylserine liposomes. Preferential labeling of the viral fusion protein during the initial stages of fusion demonstrated that this protein interacts with the hydrophobic core of the target membrane as an initiating event of virus-liposome fusion. Labeling showed time, temperature, and pH dependence consistent with earlier fluorescent measurements of fusion kinetics. The present method provides conclusive evidence supporting the hypothesis that hydrophobic interaction of the fusion protein with the target bilayer is an initial event in the fusion mechanism of viral membranes.

  3. Cholesterol expels ibuprofen from the hydrophobic membrane core and stabilizes lamellar phases in lipid membranes containing ibuprofen.

    PubMed

    Alsop, Richard J; Armstrong, Clare L; Maqbool, Amna; Toppozini, Laura; Dies, Hannah; Rheinstädter, Maikel C

    2015-06-28

    There is increasing evidence that common drugs, such as aspirin and ibuprofen, interact with lipid membranes. Ibuprofen is one of the most common over the counter drugs in the world, and is used for relief of pain and fever. It interacts with the cyclooxygenase pathway leading to inhibition of prostaglandin synthesis. From X-ray diffraction of highly oriented model membranes containing between 0 and 20 mol% ibuprofen, 20 mol% cholesterol, and dimyristoylphosphatidylcholine (DMPC), we present evidence for a non-specific interaction between ibuprofen and cholesterol in lipid bilayers. At a low ibuprofen concentrations of 2 mol%, three different populations of ibuprofen molecules were found: two in the lipid head group region and one in the hydrophobic membrane core. At higher ibuprofen concentrations of 10 and 20 mol%, the lamellar bilayer structure is disrupted and a lamellar to cubic phase transition was observed. In the presence of 20 mol% cholesterol, ibuprofen (at 5 mol%) was found to be expelled from the membrane core and reside solely in the head group region of the bilayers. 20 mol% cholesterol was found to stabilize lamellar membrane structure and the formation of a cubic phase at 10 and 20 mol% ibuprofen was suppressed. The results demonstrate that ibuprofen interacts with lipid membranes and that the interaction is strongly dependent on the presence of cholesterol.

  4. Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specific interactions.

    PubMed

    Wang, Conan K; Wacklin, Hanna P; Craik, David J

    2012-12-21

    Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities.

  5. Cyclotides Insert into Lipid Bilayers to Form Membrane Pores and Destabilize the Membrane through Hydrophobic and Phosphoethanolamine-specific Interactions*

    PubMed Central

    Wang, Conan K.; Wacklin, Hanna P.; Craik, David J.

    2012-01-01

    Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities. PMID:23129773

  6. Water-membrane partition thermodynamics of an amphiphilic lipopeptide: an enthalpy-driven hydrophobic effect.

    PubMed

    Gorfe, Alemayehu A; Baron, Riccardo; McCammon, J Andrew

    2008-10-01

    To shed light on the driving force for the hydrophobic effect that partitions amphiphilic lipoproteins between water and membrane, we carried out an atomically detailed thermodynamic analysis of a triply lipid modified H-ras heptapeptide anchor (ANCH) in water and in a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Combining molecular mechanical and continuum solvent approaches with an improved technique for solute entropy calculation, we obtained an overall transfer free energy of approximately -13 kcal mol(-1). This value is in qualitative agreement with free energy changes derived from a potential of mean force calculation and indirect experimental observations. Changes in free energies of solvation and ANCH conformational reorganization are unfavorable, whereas ANCH-DMPC interactions-especially van der Waals-favor insertion. These results are consistent with an enthalpy-driven hydrophobic effect, in accord with earlier calorimetric data on the membrane partition of other amphiphiles. Furthermore, structural and entropic analysis of molecular dynamics-generated ensembles suggests that conformational selection may play a hitherto unappreciated role in membrane insertion of lipid-modified peptides and proteins.

  7. The effects of non-solvent on surface morphology and hydrophobicity of dip-coated polypropylene membrane

    NASA Astrophysics Data System (ADS)

    Faiqotul Himma, Nurul; Kusuma Wardani, Anita; Gede Wenten, I.

    2017-05-01

    Polypropylene (PP) has been widely used for fabrication of hydrophobic microporous membrane due to its good thermal and chemical stability. However, the hydrophobicity of PP is inadequate to prevent membrane wetting which hinders its application in long-term operation of membrane contactor and other hydrophobic membrane processes. Endowing the membrane with superhydrophobicity has become an attractive way to improve wetting resistance. In this work, superhydrophobic PP membrane was prepared by coating with roughened polymer film. A simple technique of two-step dip-coating was used for deposition of the non-solvent solution and polymer solution. The effects of five non-solvent types were investigated, including ethanol, isopropyl alcohol (IPA), acetone, methyl ethyl ketone (MEK), and cyclohexanone. All non-solvents increased the surface roughness, leading to an improvement of membrane hydrophobicity. Superhydrophobic PP membranes with high water contact angle (WCA) of 150.4° and 151.3° have been successfully prepared by using IPA and MEK, respectively. Morphology characterization revealed that both modified membranes had more uniform and larger number of smaller aggregates which might minimize surface area in contact with liquid, resulting in increased contact angle. As the coating was conducted separately, the utilization of non-solvent could be more effective.

  8. Membrane stiffness is modified by integral membrane proteins.

    PubMed

    Fowler, Philip W; Hélie, Jean; Duncan, Anna; Chavent, Matthieu; Koldsø, Heidi; Sansom, Mark S P

    2016-09-20

    The ease with which a cell membrane can bend and deform is important for a wide range of biological functions. Peripheral proteins that induce curvature in membranes (e.g. BAR domains) have been studied for a number of years. Little is known, however, about the effect of integral membrane proteins on the stiffness of a membrane (characterised by the bending rigidity, Kc). We demonstrate by computer simulation that adding integral membrane proteins at physiological densities alters the stiffness of the membrane. First we establish that the coarse-grained MARTINI forcefield is able to accurately reproduce the bending rigidity of a small patch of 1500 phosphatidyl choline lipids by comparing the calculated value to both experiment and an atomistic simulation of the same system. This enables us to simulate the dynamics of large (ca. 50 000 lipids) patches of membrane using the MARTINI coarse-grained description. We find that altering the lipid composition changes the bending rigidity. Adding integral membrane proteins to lipid bilayers also changes the bending rigidity, whilst adding a simple peripheral membrane protein has no effect. Our results suggest that integral membrane proteins can have different effects, and in the case of the bacterial outer membrane protein, BtuB, the greater the density of protein, the larger the reduction in stiffness.

  9. Nature of Interactions between PEO-PPO-PEO Triblock Copolymers and Lipid Membranes: (I) The Effect of Polymer Hydrophobicity on Its Ability to Protect Liposomes from Peroxidation

    PubMed Central

    Wang, Jia-Yu; Marks, Jeremy; Lee, Ka Yee C.

    2013-01-01

    PEO-PPO-PEO triblock copolymers have opposing effects on lipid membrane integrity- they can behave either as membrane sealants or as membrane permeabilizers. To gain insights into their biomembrane activities, the fundamental interactions between a series of PEO-based polymers and phospholipid vesicles were investigated. Specifically, the effect of copolymer hydrophobicity on its ability to prevent liposomes from peroxidation was evaluated, and partitioning free energy and coefficient involved in the interactions were derived. Our results show that the high degree of hydrophilicity is a key feature of the copolymers that can effectively protect liposomes from peroxidation and the protective effect of the copolymers stems from their adsorption at the membrane surface without penetrating into the bilayer core. The origin of this protective effect induced by polymer absorption is attributed to the retardation of membrane hydration dynamics, which is further illustrated in the accompany study on dynamic nuclear polarization (DNP)-derived hydration dynamics1. PMID:22808900

  10. Enrichment of Integral Membrane Proteins for Proteomic Analysis Using Liquid Chromatography-Tandem Mass Spectrometry

    SciTech Connect

    Blonder, Josip; Goshe, Michael B.; Moore, Ronald J.; Pasa-Tolic, Liljiana; Masselon, Christophe D.; Lipton, Mary S.; Smith, Richard D.

    2002-04-01

    Currently, most proteomic studies rely on liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect and identify constituent peptides of enzymatically digested proteins obtained from various organisms and cell types. However, sample preparation methods for isolating membrane proteins typically involve the use of detergents, chaotropes, or reducing reagents that often interfere with electrospray ionization (ESI). To increase the identification of integral membrane proteins by LC-ESI-MS/MS, a sample preparation method combining carbonate extraction and surfactant-free organics solvent-assisted solubilization and proteolysis was developed and used to target the membrane subproteome of Deinococcus radiodurans. Out of 503 proteins identified, 135 were recognized as hydrophobic based on their positive grand average of hydropathicity values that covers 15% of the theoretical hydrophobic proteome. Using the PSORT algorithm, 268 identified proteins were recognized as integral membrane proteins covering 21% and 43% of the predicted integral cytoplasmic and outer membrane proteins, respectively. Of the integral cytoplasmic membrane proteins containing four or more predicted transmembrane domains (TMDs), 65% were identified by detecting at least one peptide spanning a TMD using LC-MS/MS. The extensive identification of highly hydrophobic proteins containing multiple TMDs confirms the efficacy of the described sample preparation protocol to isolate and solubilize integral membrane proteins and validates the method for large-scale analysis of bacterial membrane subproteomes using LC-ESI-MS/MS.

  11. Tuning surface hydrophilicity/hydrophobicity of hydrocarbon proton exchange membranes (PEMs).

    PubMed

    He, Chenfeng; Mighri, Frej; Guiver, Michael D; Kaliaguine, Serge

    2016-03-15

    The effect of annealing on the surface hydrophilicity of various representative classes of hydrocarbon-based proton exchange membranes (PEMs) is investigated. In all cases, a more hydrophilic membrane surface develops after annealing at elevated temperatures. The annealing time also had some influence, but in different ways depending on the class of PEM. Longer annealing times resulted in more hydrophilic membrane surfaces for copolymerized sulfonated poly(ether ether ketone) (SPEEK-HQ), while the opposite behavior occurred in sulfonated poly(aryl ether ether ketone) (Ph-SPEEK), sulfonated poly(aryl ether ether ketone ketone) (Ph-m-SPEEKK) and sulfonated poly (aryl ether ether nitrile) (SPAEEN-B). Increased surface hydrophilicity upon annealing results from ionic cluster decomposition, according to the "Eisenberg-Hird-Moore model" (EHM). The increased surface hydrophilicity is supported by contact angle (CA) measurements, and the cluster decomposition is auxiliarily supported by probing the level of atomic sulfur (sulfonic acid) within different surface depths using angle-dependent XPS as well as ATR-FTIR. Membrane acidification leads to more hydrophilic surfaces by elimination of the hydrogen bonding that occurs between strongly-bound residual solvent (dimethylacetamide, DMAc) and PEM sulfonic acid groups. The study of physicochemical tuning of surface hydrophilicity/hydrophobicity of PEMs by annealing and acidification provides insights for improving membrane electrode assembly (MEA) fabrication in fuel cell (FC).

  12. Proteomic analysis of integral plasma membrane proteins.

    PubMed

    Zhao, Yingxin; Zhang, Wei; Kho, Yoonjung; Zhao, Yingming

    2004-04-01

    Efficient methods for profiling proteins integral to the plasma membrane are highly desirable for the identification of overexpressed proteins in disease cells. Such methods will aid in both understanding basic biological processes and discovering protein targets for the design of therapeutic monoclonal antibodies. Avoiding contamination by subcellular organelles and cytosolic proteins is crucial to the successful proteomic analysis of integral plasma membrane proteins. Here we report a biotin-directed affinity purification (BDAP) method for the preparation of integral plasma membrane proteins, which involves (1) biotinylation of cell surface membrane proteins in viable cells, (2) affinity enrichment using streptavidin beads, and (3) depletion of plasma membrane-associated cytosolic proteins by harsh washes with high-salt and high-pH buffers. The integral plasma membrane proteins are then extracted and subjected to SDS-PAGE separation and HPLC/MS/MS for protein identification. We used the BDAP method to prepare integral plasma membrane proteins from a human lung cancer cell line. Western blotting analysis showed that the preparation was almost completely devoid of actin, a major cytosolic protein. Nano-HPLC/MS/MS analysis of only 30 microg of protein extracted from the affinity-enriched integral plasma membrane preparation led to the identification of 898 unique proteins, of which 781 were annotated with regard to their plasma membrane localization. Among the annotated proteins, at least 526 (67.3%) were integral plasma membrane proteins. Notable among them were 62 prenylated proteins and 45 Ras family proteins. To our knowledge, this is the most comprehensive proteomic analysis of integral plasma membrane proteins in mammalian cells to date. Given the importance of integral membrane proteins for drug design, the described approach will expedite the characterization of plasma membrane subproteomes and the discovery of plasma membrane protein drug targets.

  13. Membrane bioreactor with a porous hydrophobic membrane as a gas-liquid contactor for waste gas treatment

    SciTech Connect

    Reij, M.W.; Gooijer, K.D. de; Bont, J.A.M. de; Hartmans, S. )

    1995-01-20

    A novel type of bioreactor for waste gas treatment has been designed. The reactor contains a microporous hydrophobic membrane to create a large interface between the waste gas and the aqueous phase. To test the new reactor, propene was chosen because of its high air/water partition coefficient, which causes a low water concentration and hampers its removal from air. Propene transfer from air to a suspension of propene-utilizing Xanthobacter Py2 cells in the membrane bioreactor proved to be controlled by mass transfer in the liquid phase. The resistance of the membrane was negligible. Simulated propene transfer rates agreed well with the experimental data. A stable biofilm of Xanthobacter Py2 developed on the membrane during prolonged operation. The propene flux into the biofilm was 1 [times] 10[sup [minus]6] mol m[sup [minus]2] s[sup [minus]1] at a propene concentration of 9.3 [times] 10[sup [minus]2] mol m[sup [minus]3] in the gas phase.

  14. Role of hydrophobicity in adhesion of wild yeast isolated from the ultrafiltration membranes of an apple juice processing plant.

    PubMed

    Tarifa, María Clara; Brugnoni, Lorena Inés; Lozano, Jorge Enrique

    2013-01-01

    The role of cell surface hydrophobicity in the adhesion to stainless steel (SS) of 11 wild yeast strains isolated from the ultrafiltration membranes of an apple juice processing plant was investigated. The isolated yeasts belonged to four species: Candida krusei (5 isolates), Candida tropicalis (2 isolates), Kluyveromyces marxianus (3 isolates) and Rhodotorula mucilaginosa (1 isolate). Surface hydrophobicity was measured by the microbial adhesion to solvents method. Yeast cells and surfaces were incubated in apple juice and temporal measurements of the numbers of adherent cells were made. Ten isolates showed moderate to high hydrophobicity and 1 strain was hydrophilic. The hydrophobicity expressed by the yeast surfaces correlated positively with the rate of adhesion of each strain. These results indicated that cell surface hydrophobicity governs the initial attachment of the studied yeast strains to SS surfaces common to apple juice processing plants.

  15. Enumeration of High Numbers of Bacteria Using Hydrophobic Grid-Membrane Filters

    PubMed Central

    Sharpe, Anthony N.; Michaud, Gregory L.

    1975-01-01

    Printing a wax grid on a conventional membrane filter yields a device functioning as a most probable number apparatus (MPN), used at a single dilution but with a very large number of growth compartments (e.g., 3,650). By restraining the lateral spread and confluence of colonies, the hydrophobic grid-membrane filter (HGMF) allows growth- or colony-forming units (GU) to be resolved at levels far above those which produce an uncountable lawn on a conventional membrane filter. It also eliminates the size variation of normal bacterial colonies. As a result, the HGMF can give more accurate estimates of the concentration of GU. The method by which grid-cell count observations can be used to obtain MPN estimates of the number of GUs is described, and estimates obtained using the MPN method on the HGMF are compared with those resulting from conventional colony count procedures on membrane filters. A linear relation was observed between MPNGU and the number of GUs, at levels up to 30,000 GUs, for pure cultures of bacteria and for samples of natural waters. The HGMF has great potential for reducing the labor required in quantitative microbiology, since it allows, with one filter, enumeration of microorganisms over a very large concentration range and therefore reduces the need to make dilutions. PMID:1103728

  16. Enumeration of high numbers of bacteria using hydrophobic grid-membrane filters.

    PubMed

    Sharpe, A N; Michaud, G L

    1975-10-01

    Printing a wax grid on a conventional membrane filter yields a device functioning as a most probable number apparatus (MPN), used at a single dilution but with a very large number of growth compartments (e.g., 3,650). By restraining the lateral spread and confluence of colonies, the hydrophobic grid-membrane filter (HGMF) allows growth- or colony-forming units (GU) to be resolved at levels far above those which produce an uncountable lawn on a conventional membrane filter. It also eliminates the size variation of normal bacterial colonies. As a result, the HGMF can give more accurate estimates of the concentration of GU. The method by which grid-cell count observations can be used to obtain MPN estimates of the number of GUs is described, and estimates obtained using the MPN method on the HGMF are compared with those resulting from conventional colony count procedures on membrane filters. A linear relation was observed between MPNGU and the number of GUs, at levels up to 30,000 GUs, for pure cultures of bacteria and for samples of natural waters. The HGMF has great potential for reducing the labor required in quantitative microbiology, since it allows, with one filter, enumeration of microorganisms over a very large concentration range and therefore reduces the need to make dilutions.

  17. Hydrophobicity, topography in membranes and photosensitization of silicon phthalocyanines with axial ligands of varying lengths.

    PubMed

    Sholto, Alan; Ehrenberg, Benjamin

    2008-03-01

    Six amphiphilic silicon phthalocyanines (SiPc's) axially linked to a dimethylated amino alkyl group of varying length have been examined for their potential suitability as photosensitizers for photodynamic therapy (PDT). This group of molecules was chosen because the length of the axial ligand might place the chromophoric part of the molecule at different vertical depths in the membrane and possibly affect the extent of membrane localized damage caused by singlet oxygen. We tested the relative penetration depth of the SiPc groups in the membrane by the extent to which their fluorescence was quenched by external iodide ions. We also measured singlet oxygen quantum yields of the SiPc's in a liposome membrane, using the fluorescent target for singlet oxygen, 9,10-dimethylanthracene. The hydrophobicity parameters, LogP, were calculated and were also measured. Some correlation was found between them and Kb's, the binding constants for liposomes. The effect of the axial ligand's length is less striking than in similar cases with hematoporphyrins and protoporphyrins. We link this smaller effect with a bending of the linker chain that enables, sterically, a better positioning of the sensitizer molecules within the ordered lipid layer structure.

  18. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides

    SciTech Connect

    Kelsey, D.R.; Flanagan, T.D.; Young, J.E.; Yeagle, P.L. )

    1991-06-01

    Hydrophobic di- and tripeptides which are capable of inhibiting enveloped virus infection of cells are also capable of inhibiting at least three different types of membrane fusion events. Large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE), containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and/or p-xylene bis(pyridinium bromide) (DPX), were formed by extrusion. Vesicle fusion and leakage were then monitored with the ANTS/DPX fluorescence assay. Sendai virus fusion with lipid vesicles and Sendai virus fusion with human erythrocyte membranes were measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride (R18). This study found that the effectiveness of the peptides carbobenzoxy-L-Phe-L-Phe (Z-L-Phe-L-Phe), Z-L-Phe, Z-D-Phe, and Z-Gly-L-Phe-L-Phe in inhibiting N-methyl DOPE LUV fusion or fusion of virus with N-methyl DOPE LUV also paralleled their reported ability to block viral infectivity. Furthermore, Z-D-Phe-L-PheGly and Z-Gly-L-Phe inhibited Sendai virus fusion with human erythrocyte membranes with the same relative potency with which they inhibited vesicle-vesicle and virus-vesicle fusion. The evidence suggests a mechanism by which these peptides exert their inhibition of plaque formation by enveloped viruses. This class of inhibitors apparently acts by inhibiting fusion of the viral envelope with the target cell membrane, thereby preventing viral infection. The physical pathway by which these peptides inhibit membrane fusion was investigated. {sup 31}P nuclear magnetic resonance (NMR) of proposed intermediates in the pathway for membrane fusion in LUV revealed that the potent fusion inhibitor Z-D-Phe-L-PheGly selectively altered the structure (or dynamics) of the hypothesized fusion intermediates and that the poor inhibitor Z-Gly-L-Phe did not.

  19. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch.

    PubMed

    Fattal, D R; Ben-Shaul, A

    1993-11-01

    The interaction free energy between a hydrophobic, transmembrane, protein and the surrounding lipid environment is calculated based on a microscopic model for lipid organization. The protein is treated as a rigid hydrophobic solute of thickness dP, embedded in a lipid bilayer of unperturbed thickness doL. The lipid chains in the immediate vicinity of the protein are assumed to adjust their length to that of the protein (e.g., they are stretched when dP > doL) in order to bridge over the lipid-protein hydrophobic mismatch (dP-doL). The bilayer's hydrophobic thickness is assumed to decay exponentially to its asymptotic, unperturbed, value. The lipid deformation free energy is represented as a sum of chain (hydrophobic core) and interfacial (head-group region) contributions. The chain contribution is calculated using a detailed molecular theory of chain packing statistics, which allows the calculation of conformational properties and thermodynamic functions (in a mean-field approximation) of the lipid tails. The tails are treated as single chain amphiphiles, modeled using the rotational isometric state scheme. The interfacial free energy is represented by a phenomenological expression, accounting for the opposing effects of head-group repulsions and hydrocarbon-water surface tension. The lipid deformation free energy delta F is calculated as a function of dP-doL. Most calculations are for C14 amphiphiles which, in the absence of a protein, pack at an average area per head-group ao approximately equal to 32 A2 (doL approximately 24.5 A), corresponding to the fluid state of the membrane. When dP = doL, delta F > 0 and is due entirely to the loss of conformational entropy experienced by the chains around the protein. When dP > doL, the interaction free energy is further increased due to the enhanced stretching of the tails. When dP < doL, chain flexibility (entropy) increases, but this contribution to delta F is overcounted by the increase in the interfacial free energy

  20. Enumeration of coliforms in nonfat dry milk and canned custard by hydrophobic grid membrane filter method: collaborative study.

    PubMed

    Entis, P

    1983-07-01

    A collaborative study was conducted in 14 laboratories to evaluate the performance of the hydrophobic grid membrane filter method against the official final action method, 46.016, for enumeration of coliforms in foods. Twelve artificially contaminated samples of nonfat dry milk and canned custard were analyzed by each laboratory. The random errors (S2r) associated with the hydrophobic grid membrane filter method were significantly lower than those of the official method, and the counts obtained by the new method fell within the 95% confidence interval of the reference method. The coliform counts obtained by the hydrophobic grid membrane filter method did not differ significantly from those obtained by the reference method as measured by a 3-way analysis of variance. The new method has been adopted official first action.

  1. Integrable structure in discrete shell membrane theory

    PubMed Central

    Schief, W. K.

    2014-01-01

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory. PMID:24808755

  2. Colorful Hydrophobic Poly(Vinyl Butyral)/Cationic Dye Fibrous Membranes via a Colored Solution Electrospinning Process

    NASA Astrophysics Data System (ADS)

    Yan, Xu; You, Ming-Hao; Lou, Tao; Yu, Miao; Zhang, Jun-Cheng; Gong, Mao-Gang; Lv, Fu-Yan; Huang, Yuan-Yuan; Long, Yun-Ze

    2016-12-01

    Colorful nanofibrous membranes have attracted much attention for their visual varieties and various functionalities. In this article, a colored solution electrospinning process was used to fabricate colorful hydrophobic poly(vinyl butyral) (PVB)/cationic dye nanofibrous membranes (NFMs) successfully. The color and morphology of these as-spun nanofibrous membranes have been analyzed by colorimetry, spectroscopy, and scanning electron microscopy (SEM). It is shown that the as-spun colorful PVB-based membranes exhibit excellent level-dyeing property and color stability. Furthermore, the doping of cationic dye and the increase of dye concentration can decrease the diameter of the as-spun colored fibers, which results in better level-dyeing property and higher water contact angle more than 140°. The stained PVB fibrous membranes with excellent level-dyeing property and hydrophobicity are promising in some applications such as textiles, wallpapers, and anticorrosive coating/painting.

  3. Colorful Hydrophobic Poly(Vinyl Butyral)/Cationic Dye Fibrous Membranes via a Colored Solution Electrospinning Process.

    PubMed

    Yan, Xu; You, Ming-Hao; Lou, Tao; Yu, Miao; Zhang, Jun-Cheng; Gong, Mao-Gang; Lv, Fu-Yan; Huang, Yuan-Yuan; Long, Yun-Ze

    2016-12-01

    Colorful nanofibrous membranes have attracted much attention for their visual varieties and various functionalities. In this article, a colored solution electrospinning process was used to fabricate colorful hydrophobic poly(vinyl butyral) (PVB)/cationic dye nanofibrous membranes (NFMs) successfully. The color and morphology of these as-spun nanofibrous membranes have been analyzed by colorimetry, spectroscopy, and scanning electron microscopy (SEM). It is shown that the as-spun colorful PVB-based membranes exhibit excellent level-dyeing property and color stability. Furthermore, the doping of cationic dye and the increase of dye concentration can decrease the diameter of the as-spun colored fibers, which results in better level-dyeing property and higher water contact angle more than 140°. The stained PVB fibrous membranes with excellent level-dyeing property and hydrophobicity are promising in some applications such as textiles, wallpapers, and anticorrosive coating/painting.

  4. Influence of hydrophobic/hydrophilic fractions of extracellular organic matters of Microcystis aeruginosa on ultrafiltration membrane fouling.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Tan, Chaoqun; Zhu, Mingqiu

    2014-02-01

    Fouling is a major obstacle to maintain the efficiency of ultrafiltration-based drinking water treatment process. Algal extracellular organic matters (EOMs) are currently considered as one of the major sources of membrane fouling. The objective of this study was to investigate the influence of different hydrophobic/hydrophilic fractions of EOM extracted from Microcystis aeruginosa on ultrafiltration membrane fouling at lab scale. The experimental data indicated that EOM exhibited similar flux decline trends on polyethersulfone (PES) and regenerated cellulose (RC) membranes but caused greater irreversible fouling on PES membrane than RC membrane due to its hydrophobic property. It was also observed that charged hydrophilic (CHPI) and neutral hydrophilic (NHPI) fractions caused greater flux decline over hydrophobic (HPO) and transphilic (TPI) fractions. For PES membrane, the order of the irreversible fouling potentials for the four fractions was HPO>TPI>CHPI>NHPI, while the irreversible fouling potentials of RC membrane were tiny and could be ignored. Fluorescence excitation-emission matrix (EEM) spectra and Fourier transform infrared (FTIR) spectra suggested that protein-like, polysaccharide-like and humic-like substances were the major components responsible for membrane fouling. The results also indicated that the irreversible fouling increased as the pH decreased. The addition of calcium to feed solutions led to more severe flux decline and irreversible fouling. © 2013.

  5. Lateral diffusion in model membranes is independent of the size of the hydrophobic region of molecules.

    PubMed Central

    Balcom, B J; Petersen, N O

    1993-01-01

    We have systematically investigated the probe size and shape dependence of lateral diffusion in model dimyristoyl phosphatidylcholine membranes. Linear hydrophobic polymers, which differ in length by an order of magnitude, were used to explore the effect on the lateral diffusion coefficient of hydrodynamic restrictions in the bilayer interior. The polymers employed are isoprenoid alcohols--citronellol, solanesol, and dolichol. Tracer lateral diffusion coefficients were measured by fluorescence photobleaching recovery. Despite the large difference in lengths, the nitrobenzoxadiazole labelled alcohols all diffuse at the rate of lipid self-diffusion (5.0 x 10(-12) m2 s-1, 29 degrees C) in the liquid crystal phase. Companion measurements in isotropic polymer solution, in gel phase lipid membranes and with nonpolar fluorescent polyaromatic hydrocarbons, show a marked dependence of the lateral diffusion coefficient on the probe molecule size. Our results in the liquid crystal phase are in accord with free area theory which asserts that lateral diffusion in the membrane is restricted by the surface-free area. Probe molecules which are significantly longer than the host phospholipid, seven times longer in the case of dolichol, are still restricted in their lateral motion by the surface properties of the bilayer in the liquid crystal phase. Fluorescence quenching experiments indicate that the nitrobenzoxadiazole label does not reside at the aqueous interface, although it must reside in close proximity according to the diffusion measurements. PMID:8218892

  6. Evaluation of persistent hydrophobic organic compounds in the Columbia River Basin using semipermeable-membrane devices

    USGS Publications Warehouse

    McCarthy, K.A.; Gale, R.W.

    2001-01-01

    Persistent hydrophobic organic compounds are of concern in the Columbia River because they have been correlated with adverse effects on wildlife. We analysed samples from nine main-stem and six tributary sites throughout the Columbia River Basin (Washington and Oregon) for polychlorinated dibenzo-p-dioxins, dibenzofurans, polychlorinated biphenyls, organochlorine pesticides, and priority-pollutant polycyclic aromatic hydrocarbons. Because these compounds may have important biological consequences at aqueous concentrations well below the detection limits associated with conventional sampling methods, we used semipermeable-membrane devices to sample water and achieved parts-per-quintillion detection limits. All of these compound classes were prevalent within the basin, but concentrations of many analytes were highest in the vicinity of Portland-Vancouver, indicating that the Willamette subbasin-and perhaps the urban area in particular-is an important source of these compounds. Data collected during basin low-flow conditions in 1997 and again during basin high-flow conditions in 1998 indicate that in-stream processes such as dilution by relatively clean inflow, and flow through island hyporheic zones may be important mechanisms for attenuating dissolved concentrations of hydrophobic compounds.

  7. DNA Duplexes with Hydrophobic Modifications Inhibit Fusion between HIV-1 and Cell Membranes

    PubMed Central

    Xu, Liang; Cai, Lifeng; Chen, Xueliang; Jiang, Xifeng; Chong, Huihui; Zheng, Baohua; Wang, Kun; He, Junlin; Chen, Wei; Zhang, Tao; Cheng, Maosheng; He, Yuxian

    2013-01-01

    Discovery of new drugs for the treatment of AIDS typically possessing unique structures associated with novel mechanisms of action has been of great importance due to the quick drug-resistant mutations of HIV-1 strains. The work presented in this report describes a novel class of DNA duplex-based HIV-1 fusion inhibitors. Hydrophobic groups were introduced into a DNA duplex skeleton either at one end, at both ends, or in the middle. These modified DNA duplexes inhibited fusion between HIV-1 and human cell membranes at micro- or submicromolar concentrations. Respective inhibitors adopted an aptamer pattern instead of a base-pairing interaction pattern. Structure-activity relationship studies of the respective DNA duplexes showed that the rigid and negatively charged DNA skeletons, in addition to the presence of hydrophobic groups, were crucial to the anti-HIV-1 activity of these compounds. A fluorescent resonance energy transfer (FRET)-based inhibitory assay showed that these duplex inhibitors interacted with the primary pocket in the gp41 N-terminal heptad repeat (NHR) instead of interacting with the lipid bilayers. PMID:23896466

  8. Automation of microbial enumeration: development of a disposable hydrophobic grid-membrane filter unit.

    PubMed Central

    Tsuji, K; Bussey, D M

    1986-01-01

    A disposable filter unit containing a hydrophobic grid-membrane filter (HGMF) was developed. The unit is liquid tight to serve as a specimen transport container and, by removal of the funnel extender (175- or 300-ml capacity), the unit becomes less than the height of two stacked petri plates to save space during in situ incubation. The polyethylene mesh which supports the HGMF facilitates rinse removal of any substance(s) that would interfere with microbial growth. The correlations between a pour plate, a conventional square HGMF, and a disposable filter unit on microbial enumeration were examined. Characteristics (e.g., clumping, spreading, etc.) of some microorganisms limit the linear counting range to less than 1,000 CFU per filter. Images PMID:3096206

  9. Automation of microbial enumeration: development of a disposable hydrophobic grid-membrane filter unit.

    PubMed

    Tsuji, K; Bussey, D M

    1986-10-01

    A disposable filter unit containing a hydrophobic grid-membrane filter (HGMF) was developed. The unit is liquid tight to serve as a specimen transport container and, by removal of the funnel extender (175- or 300-ml capacity), the unit becomes less than the height of two stacked petri plates to save space during in situ incubation. The polyethylene mesh which supports the HGMF facilitates rinse removal of any substance(s) that would interfere with microbial growth. The correlations between a pour plate, a conventional square HGMF, and a disposable filter unit on microbial enumeration were examined. Characteristics (e.g., clumping, spreading, etc.) of some microorganisms limit the linear counting range to less than 1,000 CFU per filter.

  10. Efficient Glycosylphosphatidylinositol (GPI) Modification of Membrane Proteins Requires a C-terminal Anchoring Signal of Marginal Hydrophobicity*

    PubMed Central

    Galian, Carmen; Björkholm, Patrik; Bulleid, Neil; von Heijne, Gunnar

    2012-01-01

    Many plasma membrane proteins are anchored to the membrane via a C-terminal glycosylphosphatidylinositol (GPI) moiety. The GPI anchor is attached to the protein in the endoplasmic reticulum by transamidation, a reaction in which a C-terminal GPI-attachment signal is cleaved off concomitantly with addition of the GPI moiety. GPI-attachment signals are poorly conserved on the sequence level but are all composed of a polar segment that includes the GPI-attachment site followed by a hydrophobic segment located at the very C terminus of the protein. Here, we show that efficient GPI modification requires that the hydrophobicity of the C-terminal segment is “marginal”: less hydrophobic than type II transmembrane anchors and more hydrophobic than the most hydrophobic segments found in secreted proteins. We further show that the GPI-attachment signal can be modified by the transamidase irrespective of whether it is first released into the lumen of the endoplasmic reticulum or is retained in the endoplasmic reticulum membrane. PMID:22431723

  11. Molecular Dynamics Simulations of Model Trans-Membrane Peptides in Lipid Bilayers: A Systematic Investigation of Hydrophobic Mismatch

    PubMed Central

    Kandasamy, Senthil K.; Larson, Ronald G.

    2006-01-01

    Hydrophobic mismatch, which is the difference between the hydrophobic length of trans-membrane segments of a protein and the hydrophobic width of the surrounding lipid bilayer, is known to play a role in membrane protein function. We have performed molecular dynamics simulations of trans-membrane KALP peptides (sequence: GKK(LA)nLKKA) in phospholipid bilayers to investigate hydrophobic mismatch alleviation mechanisms. By varying systematically the length of the peptide (KALP15, KALP19, KALP23, KALP27, and KALP31) and the lipid hydrophobic length (DLPC, DMPC, and DPPC), a wide range of mismatch conditions were studied. Simulations of durations of 50–200 ns show that under positive mismatch, the system alleviates the mismatch predominantly by tilting the peptide and to a smaller extent by increased lipid ordering in the immediate vicinity of the peptide. Under negative mismatch, alleviation takes place by a combination of local bilayer bending and the snorkeling of the lysine residues of the peptide. Simulations performed at a higher peptide/lipid molar ratio (1:25) reveal slower dynamics of both the peptide and lipid relative to those at a lower peptide/lipid ratio (1:128). The lysine residues have favorable interactions with specific oxygen atoms of the phospholipid headgroups, indicating the preferred localization of these residues at the lipid/water interface. PMID:16428278

  12. Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: a systematic investigation of hydrophobic mismatch.

    PubMed

    Kandasamy, Senthil K; Larson, Ronald G

    2006-04-01

    Hydrophobic mismatch, which is the difference between the hydrophobic length of trans-membrane segments of a protein and the hydrophobic width of the surrounding lipid bilayer, is known to play a role in membrane protein function. We have performed molecular dynamics simulations of trans-membrane KALP peptides (sequence: GKK(LA)nLKKA) in phospholipid bilayers to investigate hydrophobic mismatch alleviation mechanisms. By varying systematically the length of the peptide (KALP15, KALP19, KALP23, KALP27, and KALP31) and the lipid hydrophobic length (DLPC, DMPC, and DPPC), a wide range of mismatch conditions were studied. Simulations of durations of 50-200 ns show that under positive mismatch, the system alleviates the mismatch predominantly by tilting the peptide and to a smaller extent by increased lipid ordering in the immediate vicinity of the peptide. Under negative mismatch, alleviation takes place by a combination of local bilayer bending and the snorkeling of the lysine residues of the peptide. Simulations performed at a higher peptide/lipid molar ratio (1:25) reveal slower dynamics of both the peptide and lipid relative to those at a lower peptide/lipid ratio (1:128). The lysine residues have favorable interactions with specific oxygen atoms of the phospholipid headgroups, indicating the preferred localization of these residues at the lipid/water interface.

  13. Electrostatic and hydrophobic interactions differentially tune membrane binding kinetics of the C2 domain of protein kinase Cα.

    PubMed

    Scott, Angela M; Antal, Corina E; Newton, Alexandra C

    2013-06-07

    The cellular activation of conventional protein kinase C (PKC) isozymes is initiated by the binding of their C2 domains to membranes in response to elevations in intracellular Ca(2+). Following this C2 domain-mediated membrane recruitment, the C1 domain binds its membrane-embedded ligand diacylglycerol, resulting in activation of PKC. Here we explore the molecular mechanisms by which the C2 domain controls the initial step in the activation of PKC. Using stopped-flow fluorescence spectroscopy to measure association and dissociation rate constants, we show that hydrophobic interactions are the major driving force in the binding of the C2 domain to anionic membranes, whereas electrostatic interactions dominate in membrane retention. Specifically, mutation of select hydrophobic or select basic residues in the Ca(2+)-binding loops reduces membrane affinity by distinct mechanisms; mutation of hydrophobic residues primarily alters association rate constants, whereas mutation of charged residues affects dissociation rate constants. Live cell imaging reveals that introduction of these mutations into full-length PKCα not only reduces the Ca(2+)-dependent translocation to plasma membrane but, by impairing the plasma membrane-sensing role of the C2 domain, causes phorbol ester-triggered redistribution of PKCα to other membranes, such as the Golgi. These data underscore the key role of the C2 domain in driving conventional PKC isozymes to the plasma membrane and reveal that not only the amplitude but also the subcellular location of conventional PKC signaling can be tuned by altering the affinity of this module for membranes.

  14. Electrostatic and Hydrophobic Interactions Differentially Tune Membrane Binding Kinetics of the C2 Domain of Protein Kinase Cα*

    PubMed Central

    Scott, Angela M.; Antal, Corina E.; Newton, Alexandra C.

    2013-01-01

    The cellular activation of conventional protein kinase C (PKC) isozymes is initiated by the binding of their C2 domains to membranes in response to elevations in intracellular Ca2+. Following this C2 domain-mediated membrane recruitment, the C1 domain binds its membrane-embedded ligand diacylglycerol, resulting in activation of PKC. Here we explore the molecular mechanisms by which the C2 domain controls the initial step in the activation of PKC. Using stopped-flow fluorescence spectroscopy to measure association and dissociation rate constants, we show that hydrophobic interactions are the major driving force in the binding of the C2 domain to anionic membranes, whereas electrostatic interactions dominate in membrane retention. Specifically, mutation of select hydrophobic or select basic residues in the Ca2+-binding loops reduces membrane affinity by distinct mechanisms; mutation of hydrophobic residues primarily alters association rate constants, whereas mutation of charged residues affects dissociation rate constants. Live cell imaging reveals that introduction of these mutations into full-length PKCα not only reduces the Ca2+-dependent translocation to plasma membrane but, by impairing the plasma membrane-sensing role of the C2 domain, causes phorbol ester-triggered redistribution of PKCα to other membranes, such as the Golgi. These data underscore the key role of the C2 domain in driving conventional PKC isozymes to the plasma membrane and reveal that not only the amplitude but also the subcellular location of conventional PKC signaling can be tuned by altering the affinity of this module for membranes. PMID:23589289

  15. Measurement of Antimicrobial-Resistant Escherichia coli in Pig Feces with a Hydrophobic Grid Membrane Filter Interpreter System

    PubMed Central

    Dunlop, R. Hugo; McEwen, Scott A.; Meek, Alan H.; Clarke, Robert C.; Friendship, Robert M.; Black, William D.; Sharpe, Anthony N.

    1998-01-01

    Hydrophobic grid membrane filter technology was used to measure resistance among Escherichia coli in pig fecal samples to ampicillin, sulfisoxazole, and tetracycline. The method accurately measured resistance, with sensitivities ranging from 96.5 to 99.5% and specificities ranging from 87.0 to 98.3%, and it identified E. coli with 96% confidence. PMID:9435092

  16. Effect of non-solvent additives on the morphology, pore structure, and direct contact membrane distillation performance of PVDF-CTFE hydrophobic membranes.

    PubMed

    Zheng, Libing; Wu, Zhenjun; Zhang, Yong; Wei, Yuansong; Wang, Jun

    2016-07-01

    Four common types of additives for polymer membrane preparation including organic macromolecule and micromolecule additives, inorganic salts and acids, and the strong non-solvent H2O were used to prepare poly (vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) hydrophobic flat-sheet membranes. Membrane properties including morphology, porosity, hydrophobicity, pore size and pore distribution were investigated, and the permeability was evaluated via direct contact membrane distillation (DCMD) of 3.5g/L NaCl solution in a DCMD configuration. Both inorganic and organic micromolecule additives were found to slightly influence membrane hydrophobicity. Polyethylene glycol (PEG), organic acids, LiCl, MgCl2, and LiCl/H2O mixtures were proved to be effective additives to PVDF-CTFE membranes due to their pore-controlling effects and the capacity to improve the properties and performance of the resultant membranes. The occurrence of a pre-gelation process showed that when organic and inorganic micromolecules were added to PVDF-CTFE solution, the resultant membranes presented a high interconnectivity structure. The membrane prepared with dibutyl phthalate (DBP) showed a nonporous surface and symmetrical cross-section. When H2O and LiCl/H2O mixtures were also used as additives, they were beneficial for solid-liquid demixing, especially when LiCl/H2O mixed additives were used. The membrane prepared with 5% LiCl+2% H2O achieved a flux of 24.53kg/(m(2)·hr) with 99.98% salt rejection. This study is expected to offer a reference not only for PVDF-CTFE membrane preparation but also for other polymer membranes.

  17. Hydrophobic contributions to the membrane docking of synaptotagmin 7 C2A domain: mechanistic contrast between isoforms 1 and 7.

    PubMed

    Brandt, Devin S; Coffman, Matthew D; Falke, Joseph J; Knight, Jefferson D

    2012-10-02

    Synaptotagmin (Syt) triggers Ca(2+)-dependent membrane fusion via its tandem C2 domains, C2A and C2B. The 17 known human isoforms are active in different secretory cell types, including neurons (Syt1 and others) and pancreatic β cells (Syt7 and others). Here, quantitative fluorescence measurements reveal notable differences in the membrane docking mechanisms of Syt1 C2A and Syt7 C2A to vesicles comprised of physiological lipid mixtures. In agreement with previous studies, the Ca(2+) sensitivity of membrane binding is much higher for Syt7 C2A. We report here for the first time that this increased sensitivity is due to the slower target membrane dissociation of Syt7 C2A. Association and dissociation rate constants for Syt7 C2A are found to be ~2-fold and ~60-fold slower than Syt1 C2A, respectively. Furthermore, the membrane dissociation of Syt7 C2A but not Syt1 C2A is slowed by Na(2)SO(4) and trehalose, solutes that enhance the hydrophobic effect. Overall, the simplest model consistent with these findings proposes that Syt7 C2A first docks electrostatically to the target membrane surface and then inserts into the bilayer via a slow hydrophobic mechanism. In contrast, the membrane docking of Syt1 C2A is known to be predominantly electrostatic. Thus, these two highly homologous domains exhibit distinct mechanisms of membrane binding correlated with their known differences in function.

  18. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF₄microwave plasma treatment

    SciTech Connect

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2014-11-29

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreased from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.

  19. Deciphering the role of charge, hydration, and hydrophobicity for cytotoxic activities and membrane interactions of bile acid based facial amphiphiles.

    PubMed

    Singh, Manish; Singh, Ashima; Kundu, Somanath; Bansal, Sandhya; Bajaj, Avinash

    2013-08-01

    We synthesized four cationic bile acid based facial amphiphiles featuring trimethyl ammonium head groups. We evaluated the role of these amphiphiles for cytotoxic activities against colon cancer cells and their membrane interactions by varying charge, hydration and hydrophobicity. The singly charged cationic Lithocholic acid based amphiphile (LCA-TMA1) is most cytotoxic, whereas the triply charged cationic Cholic acid based amphiphile (CA-TMA3) is least cytotoxic. Light microscopy and Annexin-FITC assay revealed that these facial amphiphiles caused late apoptosis. In addition, we studied the interactions of these amphiphiles with model membrane systems by Prodan-based hydration, DPH-based anisotropy, and differential scanning calorimetry. LCA-TMA1 is most hydrophobic with a hard charge causing efficient dehydration and maximum perturbations of membranes thereby facilitating translocation and high cytotoxicity against colon cancer cells. In contrast, the highly hydrated and multiple charged CA-TMA3 caused least membrane perturbations leading to low translocation and less cytotoxicity. As expected, Chenodeoxycholic acid and Deoxycholic acid based amphiphiles (CDCA-TMA2, DCA-TMA2) featuring two charged head groups showed intermediate behavior. Thus, we deciphered that charge, hydration, and hydrophobicity of these amphiphiles govern membrane interactions, translocation, and resulting cytoxicity against colon cancer cells.

  20. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF₄microwave plasma treatment

    DOE PAGES

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; ...

    2014-11-29

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less

  1. Switchable hydrophobic/hydrophilic surface of electrospun poly (L-lactide) membranes obtained by CF4 microwave plasma treatment

    NASA Astrophysics Data System (ADS)

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2015-02-01

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF4 microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF4 plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF4 plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreased from 116 ± 3.0° to ∼0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF4 plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.

  2. Understanding the fouling of algogenic organic matter in microfiltration using membrane-foulant interaction energy analysis: effects of organic hydrophobicity.

    PubMed

    Huang, Weiwei; Chu, Huaqiang; Dong, Bingzhi

    2014-10-01

    Fouling caused by algogenic organic matter (AOM) in membrane filtration is a critical problem in algae-rich waters, and understanding fouling mechanisms, particularly by identifying the predominant membrane foulants, could have significant effects on algal fouling prediction and pretreatment. In this work, the fouling behavior of Aphanizomenon flos-aquae (APF)- and Anabaena flos-aquae (ANF)-AOM fractions was analyzed using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The results show that the interfacial energy of membranes and foulants could be used for AOM membrane fouling analysis. The attractive energy was highest between the membrane and the neutral hydrophilic fractions (N-HPI) on clean membrane surfaces, followed by the energy associated with the hydrophobic fractions (HPO) and the transphilic fractions (TPI) in both of the AOMs; on the other hand, the negatively charged hydrophilic organics (C-HPI) in the APF-AOM suffered from repulsive interactions when nearing the membrane surface, which was consistent with their initial filtration flux. After the formation of an initial fouling layer on the membrane surface, membrane fouling was controlled mainly by the cohesion free energy between the approaching foulants and the foulants on the fouled membranes. In addition, it was observed that the interfacial energy between foulants was the dominant factor controlling membrane fouling in AOM filtration. Finally, the interfacial energies between the N-HPI fractions had the greatest effect on both APF-AOM and ANF-AOM membrane fouling. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Assessing the accuracy of integral equation theories for nano-sized hydrophobic solutes in water

    NASA Astrophysics Data System (ADS)

    Fujita, Takatoshi; Yamamoto, Takeshi

    2017-07-01

    Integral equation theories provide an efficient route for computing the solvation free energy (SFE) of molecular systems in water. The accuracy of those theories is usually tested against small molecules via comparison of SFE with reference data. However, tests against larger molecules in the nanometer regime are scarce in literature despite recent applications to such systems. Here, we thus study the accuracy and validity of a commonly used integral equation theory, namely, a three-dimensional reference interaction site model (3D-RISM), by considering the following problems: (1) solvation of a small to large Lennard-Jones particle, (2) binding of planar hydrophobic systems with varying size and hydrophobicity, and (3) self-assembly of amphiphilic molecules into a nanocapsule. The energy representation method is also utilized for comparison. The results show that the 3D-RISM method works successfully for small molecules, while the accuracy degrades systematically with system size and hydrophobicity. The size-dependent error in SFE does not cancel adequately between two solute configurations, resulting in a substantial error in the free energy difference. It is also shown that the free energy profiles for hydrophobic association exhibit a fictitious high-energy barrier, suggesting that care must be taken for studying such systems. The numerical difficulties observed above are discussed based on the relation between hypernetted-chain approximation, classical density functional theory with quadratic expansion, and the size-dependent error arising from the cavity region of the system.

  4. Assessing the accuracy of integral equation theories for nano-sized hydrophobic solutes in water.

    PubMed

    Fujita, Takatoshi; Yamamoto, Takeshi

    2017-07-07

    Integral equation theories provide an efficient route for computing the solvation free energy (SFE) of molecular systems in water. The accuracy of those theories is usually tested against small molecules via comparison of SFE with reference data. However, tests against larger molecules in the nanometer regime are scarce in literature despite recent applications to such systems. Here, we thus study the accuracy and validity of a commonly used integral equation theory, namely, a three-dimensional reference interaction site model (3D-RISM), by considering the following problems: (1) solvation of a small to large Lennard-Jones particle, (2) binding of planar hydrophobic systems with varying size and hydrophobicity, and (3) self-assembly of amphiphilic molecules into a nanocapsule. The energy representation method is also utilized for comparison. The results show that the 3D-RISM method works successfully for small molecules, while the accuracy degrades systematically with system size and hydrophobicity. The size-dependent error in SFE does not cancel adequately between two solute configurations, resulting in a substantial error in the free energy difference. It is also shown that the free energy profiles for hydrophobic association exhibit a fictitious high-energy barrier, suggesting that care must be taken for studying such systems. The numerical difficulties observed above are discussed based on the relation between hypernetted-chain approximation, classical density functional theory with quadratic expansion, and the size-dependent error arising from the cavity region of the system.

  5. Hydrogen/deuterium exchange of hydrophobic peptides in model membranes by electrospray ionization mass spectrometry.

    PubMed

    Hansen, Raino K; Broadhurst, R William; Skelton, Paul C; Arkin, Isaiah T

    2002-12-01

    We demonstrate here that the hydrogen/deuterium solvent exchange (HDX) properties of the transmembrane fragment of the M2 protein of Influenza A (M2-TM) incorporated into lipid vesicles or detergent micelles can be studied with straightforward electrospray (ESI) and nanospray mass spectrometry (MS) configurations provided that key factors, including sample preparation techniques, are optimized. Small unilamellar vesicle preparations were obtained by solubilizing dimyristoyl phosphatidylcholine (DMPC) and the M2-TM peptide in aqueous solution with n-octyl-beta-D-glycopyranoside, followed by dialysis to remove the detergent. Electron microscopy experiments revealed that subsequent concentration by centrifugation introduced large multilamellar aggregates that were not compatible with ESI-MS. By contrast, a lyophilization-based concentration procedure, followed by thawing above the liquid crystal transition temperature of the lipid component, maintained the liposome size profile and yielded excellent ion fluxes in both ESI-MS and nano-ESI-MS. Using these methods the global HDX profile of M2-TM in aqueous DMPC vesicles was compared with that in methanol, demonstrating that several amide sites were protected from exchange by the lipid membrane. We also show that hydrophobic peptides can be detected by ESI-MS in the presence of a large molar excess of the detergent Triton X-100. The rate of HDX of M2-TM in Triton X-100 micelles was faster than that in DMPC vesicles but slower than when the peptide had been denatured in methanol. These results indicate that the accessibility of backbone amide sites to the solvent can be profoundly affected by membrane protein structure and dynamics, as well as the properties of model bilayer systems.

  6. Continuously Infusing Hyperpolarized 129Xe into Flowing Aqueous Solutions Using Hydrophobic Gas Exchange Membranes

    PubMed Central

    Cleveland, Zackary I.; Möller, Harald E.; Hedlund, Laurence W.; Driehuys, Bastiaan

    2009-01-01

    Hyperpolarized (HP) 129Xe yields high signal intensities in magnetic resonance (MR) and, through its large chemical shift range of ∼300 ppm, provides detailed information about the local chemical environment. To exploit these properties in aqueous solutions and living tissues requires the development of methods for efficiently dissolving HP 129Xe over an extended time period. To this end, we have used commercially available gas exchange modules to continuously infuse concentrated HP 129Xe into flowing liquids, including rat whole blood, for periods as long as one hour, and have demonstrated the feasibility of dissolved-phase MR imaging with sub-millimeter resolution within minutes. These modules, which exchange gases using hydrophobic microporous polymer membranes, are compatible with a variety of liquids and are suitable for infusing HP 129Xe into the bloodstream in vivo. Additionally, we have developed a detailed mathematical model of the infused HP 129Xe signal dynamics that should be useful in designing improved infusion systems that yield even higher dissolved HP 129Xe signal intensities. PMID:19702286

  7. Interaction of Phenylalanine with DPPC Model Membranes: More Than a Hydrophobic Interaction.

    PubMed

    Rosa, A S; Cutro, A C; Frías, M A; Disalvo, E A

    2015-12-31

    The negative free energy previously reported is explained by the stabilization of a PC-Phe (phosphocholine-phenylalanine) complex in the presence of water shown by the decrease in the symmetric stretching frequency of the phosphate group of the lipid (PO2(-)). An entropic contribution due to the disruption of the water network around the phenyl and in the membrane defect may be invoked. The dipole potential decrease is explained by the orientation of the carboxylate opposing to the CO of the lipids with oxygen moiety toward the low hydrated hydrocarbon core. The symmetric bending frequency of NH3(+) group of Phe, decreases in 5.2 cm(-1) in relation to water congruent with zeta potential shift to positive values. The Phe to DPPC dissociation constant is Kd = 2.23 ± 0.09 mM, from which the free energy change is about -4.54 kcal/mol at 25 °C. This may be due to hydrophobic contributions and two hydrogen bonds.

  8. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore.

    PubMed

    Akimov, Sergey A; Volynsky, Pavel E; Galimzyanov, Timur R; Kuzmin, Peter I; Pavlov, Konstantin V; Batishchev, Oleg V

    2017-09-22

    Lipid membranes serve as effective barriers allowing cells to maintain internal composition differing from that of extracellular medium. Membrane permeation, both natural and artificial, can take place via appearance of transversal pores. The rearrangements of lipids leading to pore formation in the intact membrane are not yet understood in details. We applied continuum elasticity theory to obtain continuous trajectory of pore formation and closure, and analyzed molecular dynamics trajectories of pre-formed pore reseal. We hypothesized that a transversal pore is preceded by a hydrophobic defect: intermediate structure spanning through the membrane, the side walls of which are partially aligned by lipid tails. This prediction was confirmed by our molecular dynamics simulations. Conversion of the hydrophobic defect into the hydrophilic pore required surmounting some energy barrier. A metastable state was found for the hydrophilic pore at the radius of a few nanometers. The dependence of the energy on radius was approximately quadratic for hydrophobic defect and small hydrophilic pore, while for large radii it depended on the radius linearly. The pore energy related to its perimeter, line tension, thus depends of the pore radius. Calculated values of the line tension for large pores were in quantitative agreement with available experimental data.

  9. The use of UV-visible spectroscopy for the determination of hydrophobic interactions between neuropeptides and membrane model systems.

    PubMed

    Young, J K; Graham, W H; Beard, D J; Hicks, R P

    1992-08-01

    Ultraviolet-visible spectroscopy has been used as a rapid method to evaluate the hydrophobic interactions between a series of cationic and zwitterionic neuropeptides and dipeptides with the hydrophobic core of two membrane model systems; sodium dodecyl sulfate and lysophosphatidylcholine micelles. If a hydrophobic interaction occurs, a 1-nm bathochromic shift is observed in the uv-visible spectrum of the aromatic side chains when going from aqueous solution to a micellar solution. The aromatic residues of substance P, bradykinin, and Des-Arg9 bradykinin all exhibited the 1-nm bathochromic shift in the presence of sodium dodecyl sulfate while those of Met-enkephalin did not. The opposite effects were observed in the presence of lysophosphatidylcholine micelles.

  10. Integral membrane proteins in proteomics. How to break open the black box?

    PubMed

    Vit, O; Petrak, J

    2017-02-05

    Integral membrane proteins (IMPs) are coded by 20-30% of human genes and execute important functions - transmembrane transport, signal transduction, cell-cell communication, cell adhesion to the extracellular matrix, and many other processes. Due to their hydrophobicity, low expression and lack of trypsin cleavage sites in their transmembrane segments, IMPs have been generally under-represented in routine proteomic analyses. However, the field of membrane proteomics has changed markedly in the past decade, namely due to the introduction of filter assisted sample preparation (FASP), the establishment of cell surface capture (CSC) protocols, and the development of methods that enable analysis of the hydrophobic transmembrane segments. This review will summarize the recent developments in the field and outline the most successful strategies for the analysis of integral membrane proteins.

  11. Preparation and Characterization of a Hydrophobic Metal-Organic Framework Membrane Supported on Thin Porous Metal Sheet

    SciTech Connect

    Liu, Jian; Canfield, Nathan L.; Liu, Wei

    2016-02-29

    A hydrophobic metal-organic framework (MOF) UiO-66-CH3 is prepared and its solvothermal stability is investigated in comparison to UiO-66. It is confirmed that the MOF stability is enhanced by introduction of the two methyl groups, while the water adsorption is reduced. Given its hydrophobicity and stability, UiO-66-CH3 is proposed as an attractive membrane material for gas separation under moisture conditions. The UiO-66-CH3 membrane is prepared on a 50µm-thin porous Ni support sheet for the first time by use of a secondary growth method. It is found that uniform seed coating on the support is necessary to form a continuous membrane. In addition to growth time and temperature, presence of a modulator in the growth solution is found to be useful for controlling hydrothermal membrane growth on the seeded support. A dense, inter-grown membrane layer is formed by 24-h growth over a temperature range from 120 oC to 160 oC. The membrane surface comprises 500 nm octahedral crystals, which are supposed to grow out of the original 100 nm spherical seeding crystals. The separation characteristics of resulting membranes are tested with pure CO2, air, CO2/air mixture, and humid CO2/air mixture. CO2 permeance as high as 1.9E-06 mol/m2/s/Pa at 31oC is obtained. Unlike the hydrophilic zeolite membranes, CO2 permeation through this membrane is not blocked by the presence of water vapor in the feed gas. The results suggest that this MOF framework is a promising membrane material worth to be further investigated for separation of CO2 and other small molecules from humid gas mixtures.

  12. Membrane Partitioning of the Pore-Forming Domain of Colicin A. Role of the Hydrophobic Helical Hairpin

    PubMed Central

    Bermejo, Ivan L.; Arnulphi, Cristina; Ibáñez de Opakua, Alain; Alonso-Mariño, Marián; Goñi, Félix M.; Viguera, Ana R.

    2013-01-01

    The colicins are bacteriocins that target Escherichia coli and kill bacterial cells through different mechanisms. Colicin A forms ion channels in the inner membranes of nonimmune bacteria. This activity resides exclusively in its C-terminal fragment (residues 387–592). The soluble free form of this domain is a 10 α-helix bundle. The hydrophobic helical hairpin, H8–H9, is buried inside the structure and shielded by eight amphipathic surface helices. The interaction of the C-terminal colicin A domain and several chimeric variants with lipidic vesicles was examined here by isothermal titration calorimetry. In the mutant constructions, natural sequences of the hydrophobic helices H8 and H9 were either removed or substituted by polyalanine or polyleucine. All the constructions fully associated with DOPG liposomes including the mutant that lacked helices H8 and H9, indicating that amphipathic rather than hydrophobic helices were the major determinants of the exothermic binding reactions. Alanine is not specially favored in the lipid-bound form; the chimeric construct with polyalanine produced lower enthalpy gain. On the other hand, the large negative heat capacities associated with partitioning, a characteristic feature of the hydrophobic effect, were found to be dependent on the sequence hydrophobicity of helices H8 and H9. PMID:24047995

  13. Fouling and long-term durability of an integrated forward osmosis and membrane distillation system.

    PubMed

    Husnain, T; Mi, B; Riffat, R

    2015-01-01

    An integrated forward osmosis (FO) and membrane distillation (MD) system has great potential for sustainable wastewater reuse. However, the fouling and long-term durability of the system remains largely unknown. This study investigates the fouling behaviour and efficiency of cleaning procedures of FO and MD membranes used for treating domestic wastewater. Results showed that a significant decline in flux of both FO and MD membranes were observed during treatment of wastewater with organic foulants. However, shear force generated by the increased cross-flow physically removed the loosely attached foulants from the FO membrane surface and resulted in 86-88% recovery of flux by cleaning with tap water. For the MD membrane, almost no flux recovery was achieved due to adsorption of organic foulants on the hydrophobic membrane surface, thus indicating significant irreversible fouling/wetting, which may not be effectively cleaned even with chemical reagents. Long-term (10 d) tests showed consistent performance of the FO membrane by rejecting the contaminants. However, organic foulants reduced the hydrophobicity of the MD membrane, caused wetting problems and allowed contaminants to pass through. The results demonstrate that combination of the FO and MD processes can effectively reduce irreversible membrane fouling and solve the wetting problem of the MD membrane.

  14. Rescuing Those Left Behind: Recovering and Characterizing Underdigested Membrane and Hydrophobic Proteins To Enhance Proteome Measurement Depth

    SciTech Connect

    Giannone, Richard J.; Wurch, Louie L.; Podar, Mircea; Hettich, Robert L.

    2015-06-25

    The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. It is thought that this interaction is membrane-associated, involving a myriad of membrane-anchored proteins; proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitansproteins. We show that proteins with increased hydrophobic character, including membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. Moreover, these gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.

  15. Rescuing Those Left Behind: Recovering and Characterizing Underdigested Membrane and Hydrophobic Proteins To Enhance Proteome Measurement Depth

    DOE PAGES

    Giannone, Richard J.; Wurch, Louie L.; Podar, Mircea; ...

    2015-06-25

    The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. It is thought that this interaction is membrane-associated, involving a myriad of membrane-anchored proteins; proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitansproteins. We show that proteins with increased hydrophobic character, includingmore » membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. Moreover, these gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.« less

  16. Rescuing Those Left Behind: Recovering and Characterizing Underdigested Membrane and Hydrophobic Proteins To Enhance Proteome Measurement Depth.

    PubMed

    Giannone, Richard J; Wurch, Louie L; Podar, Mircea; Hettich, Robert L

    2015-08-04

    The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. As this interaction is thought to be membrane-associated, involving a myriad of membrane-anchored proteins, proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitans proteins. Using this method, we show that proteins with increased hydrophobic character, including membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. These gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.

  17. Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif.

    PubMed

    Geissler, Brett; Ahrens, Sebastian; Satchell, Karla J F

    2012-02-01

    Plasma membrane targeting is essential for the proper function of many bacterial toxins. A conserved fourhelical bundle membrane localization domain (4HBM) was recently identified within three diverse families of toxins: clostridial glucosylating toxins, MARTX toxins and Pasteurella multocida-like toxins. When expressed in tissue culture cells or in yeast, GFP fusions to at least one 4HBM from each toxin family show significant peripheral membrane localization but with differing profiles. Both in vivo expression and in vitro binding studies reveal that the ability of these domains to localize to the plasma membrane and bind negatively charged phospholipids requires a basic-hydrophobic motif formed by the L1 and L3 loops. The different binding capacity of each 4HBM is defined by the hydrophobicity of an exposed residue within the motif. This study establishes that bacterial effectors utilize a normal host cell mechanism to locate the plasma membrane where they can then access their intracellular targets. © 2011 Blackwell Publishing Ltd.

  18. The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes

    PubMed Central

    Peiró, Ana; Martínez-Gil, Luis; Tamborero, Silvia; Pallás, Vicente

    2014-01-01

    ABSTRACT Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta. Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport

  19. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (I) effect of polymer hydrophobicity on its ability to protect liposomes from peroxidation.

    PubMed

    Wang, Jia-Yu; Marks, Jeremy; Lee, Ka Yee C

    2012-09-10

    PEO-PPO-PEO triblock copolymers have opposing effects on lipid membrane integrity: they can behave either as membrane sealants or as membrane permeabilizers. To gain insights into their biomembrane activities, the fundamental interactions between a series of PEO-based polymers and phospholipid vesicles were investigated. Specifically, the effect of copolymer hydrophobicity on its ability to prevent liposomes from peroxidation was evaluated, and partitioning free energy and coefficient involved in the interactions were derived. Our results show that the high degree of hydrophilicity is a key feature of the copolymers that can effectively protect liposomes from peroxidation and the protective effect of the copolymers stems from their adsorption at the membrane surface without penetrating into the bilayer core. The origin of this protective effect induced by polymer absorption is attributed to the retardation of membrane hydration dynamics, which is further illustrated in the accompanying study on dynamic nuclear polarization (DNP)-derived hydration dynamics (Cheng, C.-Y.; Wang, J.-Y.; Kausik, R.; Lee, K. Y. C.; Han S. Biomacromolecules, 2012, DOI: 10.1021/bm300848c).

  20. Enhanced cellular uptake of nanoparticles by increasing the hydrophobicity of poly(lactic acid) through copolymerization with cell-membrane-lipid components.

    PubMed

    Samadi Moghaddam, Mariam; Heiny, Markus; Shastri, V Prasad

    2015-10-07

    The influence of hydrophobicity on the internalization of polymeric nanoparticles (NPs) remains poorly investigated. The hydrophobicity of poly(L-lactide) was increased by copolymerization with cell-membrane-lipid components, and this significantly enhanced the uptake of NPs up to 60% in the human cervical cancer cell line in comparison to unmodified poly(L-lactide) NPs.

  1. Study on the removal of organic micropollutants from aqueous and ethanol solutions by HAP membranes with tunable hydrophilicity and hydrophobicity.

    PubMed

    He, Junyong; Li, Yulian; Cai, Xingguo; Chen, Kai; Zheng, Hejing; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-05-01

    A biocompatible and uniquely defined hydroxyapatite (HAP) adsorption membrane with a sandwich structure was developed for the removal of organic micropollutants for the first time. Both the adsorption and membrane technique were used for the removal of organic micropollutants. The hydrophilicity and hydrophobicity of the HAP adsorbent and membrane were tunable by controlling the surface structure of HAP. The adsorption of organic micropollutants on the HAP adsorbent was studied in batch experiments. The adsorption process was fit with the Freundlich model, while the adsorption kinetics followed the pseudo-second-order model. The HAP membrane could remove organic micropollutants effectively by dynamic adsorption in both aqueous and ethanol solutions. The removal efficiencies of organic micropollutants depended on the solution composition, membrane thickness and hydrophilicity, flow rate, and the initial concentration of organic micropollutants. The adsorption capacities of the HAP membrane with a sandwich structure (membrane thickness was 0.3 mm) were 6700, 6510, 6310, 5960, 5490, 5230, 4980 and 4360 L m(-2) for 1-naphthyl amine, 2-naphthol, bisphenol S, propranolol hydrochloride, metolachlor, ethinyl oestradiol, 2,4-dichlorophenol and bisphenol A, respectively, when the initial concentration was 3.0 mg L(-1). The biocompatible HAP adsorption membrane can be easily regenerated by methanol and was thus demonstrated to be a novel concept for the removal of organic micropollutants from both aqueous and organic solutions.

  2. Steam-stable hydrophobic ITQ-29 molecular sieve membrane with H(2) selectivity prepared by secondary growth using Kryptofix 222 as SDA.

    PubMed

    Huang, Aisheng; Caro, Jürgen

    2010-11-07

    A neutral framework cation-free hydrophobic ITQ-29 molecular sieve membrane with hydrogen selectivity was prepared on porous α-Al(2)O(3) supports by using Kryptofix 222 as organic structure directing agent through secondary growth method.

  3. Localization of Membrane-Associated Proteins in Vesicular Stomatitis Virus by Use of Hydrophobic Membrane Probes and Cross-Linking Reagents

    PubMed Central

    Zakowski, Jack J.; Wagner, Robert R.

    1980-01-01

    The location of membrane-associated proteins of vesicular stomatitis virus was investigated by using two monofunctional and three bifunctional probes that differ in the degree to which they partition into membranes and in their specific group reactivity. Two hydrophobic aryl azide probes, [125I]5-iodonaphthyl-1-azide and [3H]pyrenesulfonylazide, readily partitioned into virion membrane and, when activated to nitrenes by UV irradiation, formed stable covalent adducts to membrane constituents. Both of these monofunctional probes labeled the glyco-protein G and matrix M proteins, but [125I]5-iodonaphthyl-1-azide also labeled the nucleocapsid N protein and an unidentified low-molecular-weight component. Protein labeling of intact virions was unaffected by the presence of cytochrome c or glutathione, but disruption of membrane by sodium dodecyl sulfate greatly enhanced the labeling of all viral proteins except G. Labeling of G protein was essentially restricted to the membrane-embedded, thermolysin-resistant tail fragment. Three bifunctional reagents, tartryl diazide, dimethylsuberimidate, and 4,4′-dithiobisphenylazide, were tested for their capacity to cross-link proteins to membrane phospholipids of virions grown in the presence of [3H]palmitate. Only G and M proteins of intact virions were labeled with 3H-phospholipid by these cross-linkers; the reactions were not affected by cytochrome c but were abolished by disruption of virus with sodium dodecyl sulfate. Dimethylsuberimidate, which reacts with free amino groups, cross-linked 3H-phospholipid to both G and M protein. In contrast, the hydrophilic tartryl diazide cross-linked phospholipid primarily to the M protein, whereas the hydrophobic 4,4′-dithiobisphenylazide cross-linked phospholipid primarily to the intrinsic G protein. These data support the hypothesis that the G protein traverses the virion membrane and that the M protein is membrane associated but does not penetrate very deeply, if at all. PMID:6255216

  4. Synthesis and characterization of partially fluorinated hydrophobic-hydrophilic multiblock copolymers containing sulfonate groups for proton exchange membrane

    NASA Astrophysics Data System (ADS)

    Li, Yanxiang; Roy, Abhishek; Badami, Anand S.; Hill, Melinda; Yang, Juan; Dunn, Stuart; McGrath, James E.

    A new hydrophobic-hydrophilic multiblock copolymer has been successfully synthesized based on the careful coupling of a fluorine terminated poly(arylene ether ketone) (6FK) hydrophobic oligomer and a phenoxide terminated disulfonated poly(arylene ether sulfone) (BPSH) hydrophilic oligomer. 19F and 1H NMR spectra were used to characterize the oligomers' molecular weights and multiblock copolymer's structure. The comparison of the multiblock copolymer 13C NMR spectrum with that of the random copolymer showed that the transetherification side reaction was minimized in this synthesis. The morphologies of membranes were investigated by tapping mode atomic force microscopy (AFM), which showed that the multiblock membrane acidified by the high temperature method has sharp phase separation. Membrane properties like protonic conductivity, water uptake, and self-diffusion coefficient of water as a function of temperature and relative humidity (RH) were characterized for the multiblock copolymer and compared with ketone type random copolymers at similar ion exchange capacity value and Nafion ® controls. The multiblock copolymers are promising candidates for proton exchange membranes especially for applications at high temperatures and low relative humidity.

  5. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides.

    PubMed

    Hollmann, Axel; Martínez, Melina; Noguera, Martín E; Augusto, Marcelo T; Disalvo, Anibal; Santos, Nuno C; Semorile, Liliana; Maffía, Paulo C

    2016-05-01

    Cationic antimicrobial peptides (CAMPs) represent important self defense molecules in many organisms, including humans. These peptides have a broad spectrum of activities, killing or neutralizing many Gram-negative and Gram-positive bacteria. The emergence of multidrug resistant microbes has stimulated research on the development of alternative antibiotics. In the search for new antibiotics, cationic antimicrobial peptides (CAMPs) offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to lysis of microbial membranes and eventually cell death. In particular, the group of linear α-helical cationic peptides has attracted increasing interest from clinical as well as basic research during the last decade. In this work, we studied the biophysical and microbiological characteristics of three new designed CAMPs. We modified a previously studied CAMP sequence, in order to increase or diminish the hydrophobic face, changing the position of two lysines or replacing three leucines, respectively. These mutations modified the hydrophobic moment of the resulting peptides and allowed us to study the importance of this parameter in the membrane interactions of the peptides. The structural properties of the peptides were also correlated with their membrane-disruptive abilities, antimicrobial activities and hemolysis of human red blood cells.

  6. Hydrophobic Mismatch and Phase Transition in a Membrane Composed by a Mixture of Linear and Bola Phospholipids

    NASA Astrophysics Data System (ADS)

    Longo, Gabriel; Szleifer, Igal

    2006-03-01

    Archeobacteria are microorganisms that can survive and proliferate in extreme habitats, such as high salt concentration environments, anaerobic conditions, and high or low temperatures. A membrane composed of bolaform phospholipids is what gives these unique survival qualities to the bacteria. The nature and composition of this membrane has not yet been elucidated. In this work, a membrane composed by a mixture of linear and bola phospholipids is studied using a molecular theory. The effect of changing the fraction of bolaform phospholipids, as well as the length of the hydrocarbon chain of the linear lipid are studied. A phase separation in the mixture between a thin bola rich membrane and a thick linear rich membrane is found. The thin membrane is mainly composed by ``spanning'' bola molecules whose polar heads are in opposed hydrophilic regions of the membrane. The phase separation is only present when the hydrocarbon chains of both molecular species have comparable sizes. The driving force for the phase separation is the size matching between the hydrophobic chains of the linear phospholipid and the spanning bola lipid.

  7. Formation of Pervaporation Membranes from Polyphosphazenes Having Hydrophilic and Hydrophobic Pendant Groups: Synthesis and Characterization

    SciTech Connect

    Stewart, Frederick Forrest; Harrup, Mason Kurt; Luther, Thomas Alan; Orme, Christopher Joseph; Lash, Robert Paul

    2001-02-01

    A series of new polyphosphazene polymers were synthesized using three different pendant groups with the goal of probing structure-function relationships between pendant group substitution and polymer swelling/water flux through thin dense films. Formation of polymers with relative degrees of hydrophilicity was probed by varying the stoichiometry of the pendant groups attached to the phosphazene backbone: p-methoxyphenol, 2-(2-methoxyethoxy)ethanol, and o-allylphenol. The polymers in this study were characterized using NMR, thermal methods, and dilute solution light-scattering techniques. These techniques revealed that the polymers were amorphous high polymers (Mw = 105-107) with varying ratios of pendant groups as determined by integration of the 1H- and 31P-NMR spectra. Thin dense film membranes were solution-cast with azo-bis(cyclohexane)carbonitrile included in the matrix and crosslinked using thermal initiation.

  8. Novel Campylobacter isolation method using hydrophobic grid membrane filter and semisolid medium.

    PubMed

    Valdivieso-Garcia, Alfonso; Harris, Kathleen; Riche, Edward; Campbell, Stephanie; Jarvie, Anne; Popa, Maria; Deckert, Anne; Reid-Smith, Richard; Rahn, Kris

    2007-02-01

    Culture procedures for isolation of thermophilic campylobacters from food matrices are complex, labor intensive, and time-consuming. Most available methods include the use of antibiotics as selective agents to prevent the growth of competing microflora. A simple procedure for isolation of thermophilic campylobacters after enrichment in Rosef's enrichment broth was developed using a hydrophobic grid membrane filter (HGMF) on semisolid medium (SSM). SSM contains no antibiotics, and the HGMF physically separates Campylobacter from the enrichment broth, allowing isolation based on differential motility. The HGMF-SSM method was compared to the Agriculture and Agri-Food Canada Food Safety Procedures Manual (FSPM-10) method (Isolation of Thermophilic Campylobacters from Fresh Pork, Beef Veal, Poultry and Ready-to-Eat Meat Products), which includes the use of selective antibiotics. During the initial study, after enrichment the HGMF-SSM method yielded pure cultures of campylobacters after 16 to 18 h (overnight) compared with 48 h for the FSPM-10 method. Ninety-four turkey samples collected at local retail stores and 38 frozen pig fecal samples were processed by both methods. Thirty-five samples (26.5%) were positive by the HGMF-SSM method; 24 (18.2%) of these positive samples contained Campylobacter jejuni and 11 (8.3%) contained Campylobacter coli. With the FSPM-10 method, 25 samples (18.9%) were positive: 21 (15.9%) with C. jejuni and 4 (3%) with C. coli. For a subsequent field study, only the HGMF-SSM method was used to isolate Campylobacter from 1,200 chicken samples and 454 turkey samples sold at retail. Analysis of five subisolates from various samples indicated that only one type of Campylobacter was recovered by the HGMF-SSM method, as ascertained by MICs for 10 antimicrobials, sequencing of the short variable region of the flaA gene, and fingerprinting based on amplified fragment length polymorphism. The absence of antibiotics in the SSM may explain the higher

  9. Field uptake rates of hydrophobic organic contaminants by semipermeable membrane devices: environmental monitoring considerations.

    PubMed

    Sanchez-Hernandez, Juan C; Borghini, F; Corral, A; Grimalt, J O

    2004-11-01

    The uptake rates of selected hydrophobic organic contaminants (HOCs) by semipermeable membrane devices (SPMDs)--a polyethylene layflat containing the lipid triolein--were investigated under natural conditions. SPMDs were exposed in three sampling sites (industrial, urban, and agricultural areas) in the Tajo River (Toledo, Spain) for 5, 11 and 20 d. The organochlorine compounds 4,4'-DDT, 4,4'-DDE, alpha-HCH, gamma-HCH, pentachlorobenzene, hexachlorobenzene, and polychlorinated biphenyls (PCBs), and the 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) were detected in the SPMDs deployed in the three sampling sites. A linear uptake rate was found for DDTs and for 4-Cl- and 5-Cl-substituted PCB congeners in all sampling sites. Concentrations of HCHs (80.3 ng g(-1) SPMD for alpha-HCH and 109 ng g(-1) SPMD for gamma-HCH after 20 d of exposure) increased according to a linear uptake rate in the SPMDs deployed in the sampling site located in the agricultural area. Likewise, a marked increase of total PAH concentration (up to 300 ng g(-1) SPMD after 20 d of exposure) was solely found in the sampling site situated near a thermoelectric power station. Examination of individual PAHs revealed that PAHs with log K(OW) between 4.2 and 5.7 displayed a linear uptake rate over the 20 d of exposure. Water concentrations (ng L(-1)) of HCB (0.80-2.48), lindane (1.30-11.5), 4,4'-DDT (0.61-2.02), 4,4'-DDE (6.89-11.6) and total PAHs (12.0-26.7) estimated by a linear uptake kinetic model were found to be high in comparison with other polluted aquatic systems, and similar to concentrations in other Spanish rivers. Our results suggest that SPMD kinetic uptake studies in the natural environment are recommended for identifying point-pollution sources, and that shorter times of SPMD exposure (approximately 1 week) are desirable to minimize one of the main problems of field SPMD deployment, i.e., the biofouling, which negatively affects the estimation of the dissolved HOC

  10. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    NASA Astrophysics Data System (ADS)

    Dumée, Ludovic F.; Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin; Schütz, Jürg

    2016-02-01

    The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher than 99.99%. This is the first time that an investigation demonstrates how the permeation characteristics of these membranes is directly related to data from spectral, morphological and surface charge analyses, which provide new insights on the impact of plasma treatments on both, the surface charge and roughness, of PTFE porous materials.

  11. Distribution and diffusivity of a hydrophobic probe molecule in the interior of a membrane: theory and simulation.

    PubMed Central

    Huertas, M L; Cruz, V; Cascales, J J; Acuña, A U; García de la Torre, J

    1996-01-01

    We propose a simple model for the distribution of position and orientation and the diffusion of a hydrophobic probe molecule embedded in a membrane. The molecule experiences both a Maier-Saupe orienting potential as well as an enclosing potential of repulsion from the membrane walls. A statistical thermodynamics treatment of the model provides predictions of the location and orientation of the molecule within the membrane. In particular, we evaluate the order parameter of the molecule in terms of the model constants. The diffusivity of the probe is studied by Brownian dynamics simulation. For rotational diffusion, we check an available analytical approximate treatment that allows for the prediction of the dynamics in terms of equilibrium quantities. We also pay attention to quantities related to the initial and mean reorientational rate of the probe. For translational diffusion, we use the simulation results to analyze some general aspects of lateral and transversal diffusion. Images FIGURE 3 FIGURE 6 FIGURE 7 PMID:8874017

  12. The Outer Membrane Protein OmpW Forms an Eight-Stranded beta-Barrel with a Hydrophobic Channel

    SciTech Connect

    Hong,H.; Patel, D.; Tamm, L.; van den Berg, B.

    2006-01-01

    Escherichia coli OmpW belongs to a family of small outer membrane (OM) proteins that are widespread in Gram-negative bacteria. Their functions are unknown, but recent data suggest that they may be involved in the protection of bacteria against various forms of environmental stress. In order to gain insight into the function of these proteins we have determined the crystal structure of Escherichia coli OmpW to 2.7 Angstroms resolution. The structure shows that OmpW forms an eight-stranded beta-barrel with a long and narrow hydrophobic channel that contains a bound LDAO detergent molecule. Single channel conductance experiments show that OmpW functions as an ion channel in planar lipid bilayers. The channel activity can be blocked by the addition of LDAO. Taken together, the data suggest that members of the OmpW family could be involved in the transport of small hydrophobic molecules across the bacterial OM.

  13. Chemical studies of viral entry mechanisms: I. Hydrophobic protein-lipid interactions during Sendai virus membrane fusion. II. Kinetics of bacteriophage. lambda. DNA injection

    SciTech Connect

    Novick, S.L.

    1990-01-01

    Sendai virus glycoprotein interactions with target membranes during the early stages of fusion were examined using time-resolved hydrophobic photoaffinity labeling with the lipid-soluble carbene generator 3-(trifluoromethyl)-3-(m({sup 125}I) iodophenyl)diazirine. During Sendai virus fusion with liposomes composed of cardiolipin or phosphatidylserine, the viral fusion (F) protein is preferentially labeled at early time points, supporting the hypothesis that hydrophobic interaction of the fusion peptide at the N-terminus of the F{sub 1} subunit with the target membrane is an initiating event in fusion. Correlation of hydrophobic interactions with independently monitored fusion kinetics further supports this conclusion. The F{sub 1} subunit, containing the putative hydrophobic fusion sequence, is exclusively labeled, and the F{sub 2} subunit does not participate in fusion. Labeling shows temperature and pH dependence consistent with a need for protein conformational mobility and fusion at neutral pH. Higher amounts of labeling during fusion with CL vesicles than during virus-PS vesicle fusion reflects membrane packing regulation of peptide insertion into target membranes. Labeling of the viral hemagglutinin/neuraminidase (HN) at low pH indicates that HN-mediated fusion is triggered by hydrophobic interactions. Controls for diffusional labeling exclude a major contribution from this source. Labeling during reconstituted Sendai virus envelope-liposome fusion shows that functional reconstitution involves protein retention of the ability to undergo hydrophobic interactions. Examination of Sendai virus fusion with erythrocyte membranes indicates that hydrophobic interactions also trigger fusion between biological membranes. The data show that hydrophobic fusion protein interaction with both artificial and biological membranes is a triggering event in fusion.

  14. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  15. The membrane lateral pressure-perturbing capacity of parabens and their effects on the mechanosensitive channel directly correlate with hydrophobicity.

    PubMed

    Kamaraju, Kishore; Sukharev, Sergei

    2008-10-07

    Lipid bilayers provide a natural anisotropic environment for membrane proteins and can serve as apolar reservoirs for lipid-derived second messengers or lipophilic drugs. Partitioning of lipophilic agents changes the lateral pressure distribution in the bilayer, affecting integral proteins. p-Hydroxybenzoic acid esters (parabens) are amphipathic compounds widely used as food and cosmetics preservatives, but the mechanisms of their broad antibacterial action are unknown. Here we describe effects of ethyl, propyl, and butyl parabens on the gating of the bacterial mechanosensitive channel of small conductance (MscS) and compare them with the surface activity and lateral pressure changes measured in lipid monolayers in the presence of these substances. Near the bilayer-monolayer equivalence pressure of 35 mN/m, ethyl, propyl, or butyl paraben present in the subphase at 1 mM increased the surface pressure of the monolayer by 5, 12.5, or 20%, respectively. No spontaneous activation of MscS channels was observed in patch-clamp experiments with parabens added from either the cytoplasmic or periplasmic side. Increasing concentrations of parabens on the cytoplasmic side of excised patches shifted activation curves of MscS toward higher tensions. A good correlation between the pressure increases in monolayers and shifts in activation midpoints in patch-clamp experiments suggested that the more hydrophobic parabens partition more strongly into the lipid and exert larger effects on channel gating through changes in lateral pressure. We show that cytoplasmically presented ethyl or butyl parabens both hasten the process of desensitization of MscS and influence inactivation differently. The higher rate of desensitization is likely due to increased lateral pressure in the cytoplasmic leaflet surrounding the gate. Neither of the parabens strongly affects the rate of recovery and does not seem to penetrate the TM2-TM3 interhelical clefts in MscS. We conclude that the bacterial

  16. Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture.

    PubMed

    Moghadas, Hajar; Saidi, Mohammad Said; Kashaninejad, Navid; Kiyoumarsioskouei, Amir; Nguyen, Nam-Trung

    2017-08-22

    This paper reports the fabrication of electrospun polydimethylsiloxane (PDMS) membranes/scaffolds that are suitable for three-dimensional (3D) cell culture. Through modification the ratio between PDMS and polymethylmethacrylate (PMMA) as carrier polymer, we report the possibility of increasing PDMS weight ratio of up to 6 for electrospinning. Increasing the PDMS content increases the fiber diameter, the pore size, and the hydrophobicity. To our best knowledge, this is the first report describing beads-free, durable and portable electrospun membrane with maximum content of PDMS suitable for cell culture applications. To show the proof-of-concept, we successfully cultured epithelial lung cancer cells on these membranes in a static well plate without surface modification. Surprisingly, due to three-dimensional (3D) and hydrophobic nature of the electrospun fibers, cells aggregated into 3D multicellular spheroids. These easily detachable and cost-effective scaffolds with controllable thicknesses and high tensile strength are good candidates for cell-stretching devices, organ-on-a-chip devices, tissue engineering and studies of non-adherent mammalian cancer stem cells.

  17. Method of making a membrane having hydrophilic and hydrophobic surfaces for adhering cells or antibodies by using atomic oxygen or hydroxyl radicals

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)

    1994-01-01

    A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.

  18. Integral Membrane Protein Expression in Saccharomyces cerevisiae.

    PubMed

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Stroud, Robert M; Hays, Franklin A

    2016-01-01

    Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.

  19. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  20. Hydrophobic domains of mouse polyomavirus minor capsid proteins promote membrane association and virus exit from the ER.

    PubMed

    Huérfano, Sandra; Ryabchenko, Boris; Španielová, Hana; Forstová, Jitka

    2017-03-01

    The minor structural protein VP2 and its shorter variant, VP3, of mouse polyomavirus (MPyV) are essential for virus exit from the endoplasmic reticulum (ER) during viral trafficking to the nucleus. Here, we followed the role of putative hydrophobic domains (HD) of the minor proteins in membrane affinity and viral infectivity. We prepared variants of VP2, each mutated to decrease hydrophobicity of one of three predicted hydrophobic domains: VP2-mHD1, VP2-mHD2 or VP2-mHD3 mutated in HD1 (amino acids (aa) 60-101), HD2 (aa 125-165) or HD3 (aa 287-307), respectively. Transient production of the mutated proteins revealed that only VP2-mHD2 lost the affinity for intracellular membranes. Cytotoxicity connected with the ability of VP2/VP3 to perforate membranes decreased markedly for VP2-mHD2, but only slightly for VP2-mHD1. The mutant VP2-mHD3 exhibited properties similar to the wild-type protein. MPyV genomes, each carrying one of the mutations, were prepared for virus production. MPyV-mHD1 and MPyV-mHD2 viruses could be isolated, while the HD3 mutation in VP2/VP3 prevented virus assembly. We found that both MPyV-mHD1 and MPyV-mHD2 viruses arrived at the ER without delay and were processed by ER residential enzymes. However, the ability to associate with ER membranes was decreased in the case of MPyV-mHD1 and practically abolished in the case of MPyV-mHD2. Interestingly, while MPyV-mHD2 was not infectious, infection of MPyV-mHD1 virus was delayed. These findings reveal that HD2, common to both VP2 and VP3, is responsible for the membrane binding properties of the minor proteins, while HD1 of VP2 is likely required to stabilize VP2-membrane association and to enhance viral exit from the ER. © 2017 Federation of European Biochemical Societies.

  1. An Integral Equation Study of the Hydrophobic Interaction between Graphene Plates

    PubMed Central

    Howard, Jesse J.; Perkyns, John S.; Choudhury, Niharendu; Pettitt, B. Montgomery

    2009-01-01

    The hydrophobic association of two parallel graphene sheets is studied using the 3D-RISM HNC integral equations with several theoretical methods for the solvent distribution functions. The potential of mean force is calculated to study the effects of the aqueous solvent models and methods on the plates as a function of distance. The results of several integral equations (IE) are compared to MD simulations for the same model. The 3D-IEs are able to qualitatively reproduce the nature of the solvent effects on the potential of mean force but not quantitatively. The local minima in the potential of mean force occur at distances allowing well defined layers of solvent between the plates but are not coincident with those found in simulation of the same potential regardless of the theoretical methods tested here. The dewetting or drying transition between the plates is generally incorrectly dependent on steric effects with these methods even for very hydrophobic systems without solute-solvent attractions, in contradiction with simulation. PMID:19262740

  2. Effects of hydrophobicity of diffusion layer on the electroreduction of biomass derivatives in polymer electrolyte membrane reactors.

    PubMed

    Chen, Wei; He, Gaohong; Ge, Feilong; Xiao, Wu; Benziger, Jay; Wu, Xuemei

    2015-01-01

    For the first time, the hydrophobicity design of a diffusion layer based on the volatility of hydrogenation reactants in aqueous solutions is reported. The hydrophobicity of the diffusion layer greatly influences the hydrogenation performance of two model biomass derivatives, namely, butanone and maleic acid, in polymer electrolyte membrane reactors operated at atmospheric pressure. Hydrophobic carbon paper repels aqueous solutions, but highly volatile butanone can permeate in vapor form and achieve a high hydrogenation rate, whereas, for nonvolatile maleic acid, great mass transfer resistance prevents hydrogenation. With a hydrophilic stainless-steel welded mesh diffusion layer, aqueous solutions of both butanone and maleic acid permeate in liquid form. Hydrogenation of maleic acid reaches a similar level as that of butanone. The maximum reaction rate is 340 nmol cm(-2)  s(-1) for both hydrogenation systems and the current efficiency reaches 70 %. These results are better than those reported in the literature. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Primary structure analysis of an integral membrane glycoprotein of the nuclear pore

    PubMed Central

    1989-01-01

    The complete primary structure of an integral membrane glycoprotein of the nuclear pore was deduced from the cDNA sequence. The cDNA encodes a polypeptide of 204,205 D containing a 25-residue-long signal sequence, two hydrophobic segments that could function as transmembrane segments, and 13 potential N-linked oligosaccharide addition sites. Endoglycosidase H reduces the molecular mass by approximately 9 kD suggesting that not all of these 13 sites are used. We discuss possible models for the topology of this protein in the pore membrane as well as a possible role in the formation of pores and pore complexes. PMID:2738089

  4. Hydrophobic grid membrane filter/MUG method for total coliform and Escherichia coli enumeration in foods: collaborative study.

    PubMed

    Entis, P

    1989-01-01

    Twenty-four laboratories participated in a collaborative study to validate a hydrophobic grid membrane filter (HGMF) method incorporating the use of 4-methylumbelliferyl-beta-D-glucuronide (MUG) for enumeration of total coliform and Escherichia coli bacteria in foods by comparing its performance against the AOAC 3-tube MPN method (46.013-46.016). Raw milk, raw ground poultry, whole egg powder, cheese powder, and ground black pepper were included in the study. The total coliform methods did not differ significantly, except that the 3-tube method detected a significantly higher level of total coliforms than did the HGMF method in the ground black pepper. Conversely, the HGMF/MUG E. coli method detected significantly higher numbers of E. coli present in the egg powder, cheese powder, and ground black pepper samples, while not differing significantly from the 3-tube method for the raw milk and raw ground poultry samples. The overall confirmation rate of MUG-positive colonies isolated using the HGMF method was 99.5%. The hydrophobic grid membrane filter/MUG method has been adopted official first action as an additional method to AOAC official final action method 46.030-46.034.

  5. Pervaporative removal of organics from water using hydrophobic membranes. Binary mixtures

    SciTech Connect

    Kujawski, W.

    2000-01-01

    Results of pervaporation experiments are presented for the separation of several polar and nonpolar organic solvents from their aqueous solutions. Three membranes were evaluated: a polydimethylsiloxane (PERVAP-1060) membrane, a PDMS ZSM-5 zeolite filled (PERVAP-1070) membrane, and a poly(ether-block-amide) (PEBAX-4033) membrane. The effect of feed composition on flux and selectivity was also investigated. Performance parameters of a given membrane depended both on the kind of the organic solvent and the feed composition. The PERVAP-1070 membrane exhibited the highest selectivity with a separation factor over 900 in contact with a water-butyl acetate mixture. Polar solvents like methanol were also preferentially separated from aqueous solutions, but the separation factors were close to those obtained from liquid-vapor equilibria data. Permeate fluxes of organics increased with increasing feed concentration. Synergetic effects between water and organics fluxes were also observed.

  6. Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides

    PubMed Central

    Kamat, Neha P; Tobé, Sylvia; Hill, Ian T; Szostak, Jack W

    2015-01-01

    Cooperative interactions between RNA and vesicle membranes on the prebiotic earth may have led to the emergence of primitive cells. The membrane surface offers a potential platform for the catalysis of reactions involving RNA, but this scenario relies upon the existence of a simple mechanism by which RNA could become associated with protocell membranes. Here, we show that electrostatic interactions provided by short, basic, amphipathic peptides can be harnessed to drive RNA binding to both zwitterionic phospholipid and anionic fatty acid membranes. We show that the association of cationic molecules with phospholipid vesicles can enhance the local positive charge on a membrane and attract RNA polynucleotides. This phenomenon can be reproduced with amphipathic peptides as short as three amino acids. Finally, we show that peptides can cross bilayer membranes to localize encapsulated RNA. This mechanism of polynucleotide confinement could have been important for primitive cellular evolution. PMID:26223820

  7. The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity.

    PubMed

    Cebrián, Rubén; Martínez-Bueno, Manuel; Valdivia, Eva; Albert, Armando; Maqueda, Mercedes; Sánchez-Barrena, María José

    2015-05-01

    The molecular mechanism underlining the antibacterial activity of the bacteriocin AS-48 is not known, and two different and opposite alternatives have been proposed. Available data suggested that the interaction of positively charged amino acids of AS-48 with the membrane would produce membrane destabilization and disruption. Alternatively, it has been proposed that AS-48 activity could rely on the effective insertion of the bacteriocin into the membrane. The biological and structural properties of the AS-48G13K/L40K double mutant were investigated to shed light on this subject. Compared with the wild type, the mutant protein suffered an important reduction in the antibacterial activity. Biochemical and structural studies of AS-48G13K/L40K mutant suggest the basis of its decreased antimicrobial activity. Lipid cosedimentation assays showed that the membrane affinity of AS-48G13K/L40K is 12-fold lower than that observed for the wild type. L40K mutation is responsible for this reduced membrane affinity and thus, hydrophobic interactions are involved in membrane association. Furthermore, the high-resolution crystal structure of AS-48G13K/L40K, together with the study of its dimeric character in solution showed that G13K stabilizes the inactive water-soluble dimer, which displays a reduced dipole moment. Our data suggest that the cumulative effect of these three affected properties reduces AS-48 activity, and point out that the bactericidal effect is achieved by the electrostatically driven approach of the inactive water-soluble dimer towards the membrane, followed by the dissociation and insertion of the protein into the lipid bilayer.

  8. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation.

    PubMed

    Chae, Pil Seok; Bae, Hyoung Eun; Das, Manabendra

    2014-10-21

    We prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.

  9. Thermoelectric Integrated Membrane Evaporation Subsystem operational improvements

    NASA Technical Reports Server (NTRS)

    Dehner, G. F.; Winkler, H. E.; Reysa, R. P.

    1984-01-01

    A three-man preprototype Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) has been developed to provide high quality water recovery from waste fluids on extended duration space flights. In the most recent effort, a number of improvements have been made to simplify subsystem operation and increase performance. These modifications include changes to the hollow fiber membrane evaporator, the condensing section of the thermoelectric heat pump, and the electronic controller logic and display. This paper describes the results of the test program that was conducted to evaluate the implemented improvements. In addition, an advanced design concept is discussed that will provide lower electrical power consumption, greater water production capacity, lower weight, and a smaller package than the present subsystem configuration.

  10. Thermoelectric integrated membrane evaporation water recovery technology

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  11. Thermoelectric integrated membrane evaporation water recovery technology

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  12. Thermoelectric Integrated Membrane Evaporation Subsystem operational improvements

    NASA Technical Reports Server (NTRS)

    Dehner, G. F.; Winkler, H. E.; Reysa, R. P.

    1984-01-01

    A three-man preprototype Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) has been developed to provide high quality water recovery from waste fluids on extended duration space flights. In the most recent effort, a number of improvements have been made to simplify subsystem operation and increase performance. These modifications include changes to the hollow fiber membrane evaporator, the condensing section of the thermoelectric heat pump, and the electronic controller logic and display. This paper describes the results of the test program that was conducted to evaluate the implemented improvements. In addition, an advanced design concept is discussed that will provide lower electrical power consumption, greater water production capacity, lower weight, and a smaller package than the present subsystem configuration.

  13. The membrane integration of a naturally occurring alpha-helical hairpin.

    PubMed

    Nagy, Akos; Turner, R James

    2007-05-04

    Helical hairpins, two closely spaced helical membrane spanning segments separated by a short surface turn, are thought to be common in integral membrane proteins. Here, we study the membrane integration of a naturally occurring helical hairpin from the secretory Na(+)-K(+)-2Cl(-) cotransporter NKCC1. This sequence is only slightly longer and significantly less hydrophobic than a previously identified minimal poly-leucine model hairpin structure. Using site directed mutagenesis we document the importance of the turn propensity of the amino acids in the intervening surface turn but, somewhat surprisingly, our results indicate that the formation of this natural hairpin apparently does not depend on specific helix-helix interactions. Our results suggest that helical hairpins may be formed quite readily from even minimally hydrophobic sequences separated by a short, sufficiently strong, turn signal, and that current methods for predicting integral membrane protein topology may miss many similar short helical hairpin sequences. Thus the occurrence of these structures may be much more common than presently thought.

  14. Secretion of endothelin converting enzyme-1a: the hydrophobic signal anchor domain alone is not sufficient to promote membrane localization.

    PubMed

    Brooks, S C; Fernandez, L; Ergul, A

    2000-05-01

    Endothelin converting enzyme-1 (ECE-1) is a type II membrane protein that is important for the proteolytic activation of big endothelin-1 to endothelin-1. Although the highly conserved zinc-binding motif is known to be located in the extracellular domain, the role(s) of the N-terminal and membrane-spanning signal anchor domains in the biosynthesis and function of ECE-1 isoforms, ECE-1a, ECE-1b, and ECE-1c, remain undetermined. In this study, we provide evidence that the deletion of the cytoplasmic N-terminal tail (residues 1-55) of ECE-1a results in the cleavage of a potential signal peptide located in the signal anchor domain leading to the partial secretion of the recombinant enzyme into the media. However, the truncation of N-terminal and/or signal anchor domain does not affect the activity of ECE-1a. Therefore, our results demonstrate that the hydrophobic signal anchor domain alone is not sufficient for the membrane anchoring of ECE-1a and that the N-terminal domain of ECE-1a is important for membrane targeting as well as the intracellular localization of the enzyme.

  15. Label-free proteomic analysis of the hydrophobic membrane protein complement in articular chondrocytes: a technique for identification of membrane biomarkers

    PubMed Central

    Matta, Csaba; Zhang, Xiaofei; Liddell, Susan; Smith, Julia R.; Mobasheri, Ali

    2015-01-01

    Abstract Context: There is insufficient knowledge about the chondrocyte membranome and its molecular composition. Objective: To develop a Triton X-114 based separation technique using nanoLC-MS/MS combined with shotgun proteomics to identify chondrocyte membrane proteins. Materials and methods: Articular chondrocytes from equine metacarpophalangeal joints were separated into hydrophobic and hydrophilic fractions; trypsin-digested proteins were analysed by nanoLC-MS/MS. Results: A total of 315 proteins were identified. The phase extraction method yielded a high proportion of membrane proteins (56%) including CD276, S100-A6 and three VDAC isoforms. Discussion: Defining the chondrocyte membranome is likely to reveal new biomarker targets for conventional and biological drug discovery. PMID:26864288

  16. Outer membrane permeability for nonpolar antimicrobial agents underlies extreme susceptibility of Pasteurella multocida to the hydrophobic biocide triclosan.

    PubMed

    Ellison, Matthew L; Champlin, Franklin R

    2007-10-06

    Pasteurella multocida exhibits nonspecific susceptibility to nonpolar antimicrobial agents such as triclosan, despite possessing an ultrastructurally typical gram-negative cell envelope. Capsulated and noncapsulated cell surface variants were examined to investigate the role outer membrane permeability plays in triclosan susceptibility. Test strains were unable to initiate growth in the presence of bile salts and were susceptible to triclosan with minimal inhibitory concentrations (MICs) ranging from 0.06 to 0.25 microg/ml. Disk agar diffusion bioassays revealed triclosan susceptibility to be dose dependent and all strains were susceptible to the hydrophobic antibiotics novobiocin, rifamycin SV, and chloramphenicol. Triclosan minimal bactericidal concentrations were greater than MICs, thereby suggesting that dose dependency reflected both bacteriostatic and bactericidal effects. Total and viable cell density growth kinetic determinations revealed a triclosan concentration of 2.0 microg/ml resulted in loss of batch culture viability within 4-24 h. Concentrations of 0.02 and 0.2 microg/ml exerted either a bacteriostatic or bactericidal effect depending on the strain. Uptake of the hydrophobic probe 1-N-phenylnaphthylamine was greater in P. multocida strains than refractory control organisms Pseudomonas aeruginosa and Escherichia coli thereby suggesting the presence of phospholipid bilayer regions in the outer membrane. Because triclosan inhibits a conserved enoyl-ACP reductase necessary for bacterial fatty acid biosynthesis, these data support the notion that extreme susceptibility in P. multocida is due to the general inability of the outer membrane to exclude nonpolar compounds. Moreover, susceptibility is independent of the presence of capsular material and the biocide is bactericidal in a concentration dependent manner.

  17. Adsorption and transport of charged vs. neutral hydrophobic molecules at the membrane of murine erythroleukemia (MEL) cells.

    PubMed

    Zeng, Jia; Eckenrode, Heather M; Dai, Hai-Lung; Wilhelm, Michael J

    2015-03-01

    The adsorption and transport of hydrophobic molecules at the membrane surface of pre- and post-DMSO induced differentiated murine erythroleukemia (MEL) cells were examined by time- and wavelength-resolved second harmonic light scattering. Two medium (<600 Da) hydrophobic molecules, cationic malachite green (MG) and neutral bromocresol purple (BCP), were investigated. While it was observed that the MG cation adsorbs onto the surface of the MEL cell, neutral BCP does not. It is suggested that an electrostatic interaction between the opposite charges of the cation and the MEL cell surface is the primary driving force for adsorption. Comparisons of adsorption density and free energy, measured at different pH and cell morphology, indicate that the interaction is predominantly through sialic acid carboxyl groups. MG cation adsorption densities have been determined as (0.6±0.3)×10(6) μm(-2) on the surface of undifferentiated MEL cells, and (1.8±0.5)×10(7) μm(-2) on differentiated MEL cells, while the deduced adsorption free energies are effectively identical (ca. -10.9±0.1 and -10.8±0.1 kcal mol(-1), respectively). The measured MG densities indicate that the total number of surface carboxyl groups is largely conserved following differentiation, and therefore the density of carboxylic groups is much larger on the differentiated cell surface than the undifferentiated one. Finally, in contrast to synthetic liposomes and bacterial membranes, surface adsorbed MG cations are unable to traverse the MEL cell membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish.

    PubMed

    Kwon, Jung-Hwan; Escher, Beate I

    2008-03-01

    Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.

  19. Rapid detection of Salmonella spp. in food by use of the ISO-GRID hydrophobic grid membrane filter.

    PubMed Central

    Entis, P; Brodsky, M H; Sharpe, A N; Jarvis, G A

    1982-01-01

    A rapid hydrophobic grid-membrane filter (HGMF) method was developed and compared with the Health Protection Branch cultural method for the detection of Salmonella spp. in 798 spiked samples and 265 naturally contaminated samples of food. With the HGMF method, Salmonella spp. were isolated from 618 of the spiked samples and 190 of the naturally contaminated samples. The conventional method recovered Salmonella spp. from 622 spiked samples and 204 unspiked samples. The isolation rates from Salmonella-positive samples for the two methods were not significantly different (94.6% overall for the HGMF method and 96.7% for the conventional approach), but the HGMF results were available in only 2 to 3 days after sample receipt compared with 3 to 4 days by the conventional method. Images PMID:7059168

  20. Rapid detection of Salmonella spp. in food by use of the ISO-GRID hydrophobic grid membrane filter.

    PubMed

    Entis, P; Brodsky, M H; Sharpe, A N; Jarvis, G A

    1982-02-01

    A rapid hydrophobic grid-membrane filter (HGMF) method was developed and compared with the Health Protection Branch cultural method for the detection of Salmonella spp. in 798 spiked samples and 265 naturally contaminated samples of food. With the HGMF method, Salmonella spp. were isolated from 618 of the spiked samples and 190 of the naturally contaminated samples. The conventional method recovered Salmonella spp. from 622 spiked samples and 204 unspiked samples. The isolation rates from Salmonella-positive samples for the two methods were not significantly different (94.6% overall for the HGMF method and 96.7% for the conventional approach), but the HGMF results were available in only 2 to 3 days after sample receipt compared with 3 to 4 days by the conventional method.

  1. Improved hydrophobic grid membrane filter method, using EF-18 agar, for detection of Salmonella in foods: collaborative study.

    PubMed

    Entis, P

    1990-01-01

    A collaborative study was carried out in 30 laboratories to validate improvements to the official final action hydrophobic grid membrane filter (HGMF) screening method for Salmonella in foods, 985.42, by comparing the performance of the improved HGMF method against that of the AOAC/BAM conventional culture method. Six products were included in the collaborative study: milk chocolate, raw deboned poultry meat, black pepper, soy flour, egg yolk powder, and nonfat dry milk. The raw deboned poultry meat was naturally contaminated with Salmonella, and the remaining 5 products were each inoculated in advance with low levels of individual Salmonella serotypes. The AOAC/BAM method produced 11 false negative results and the improved HGMF method produced 18 false negative results. The improved HGMF Salmonella method has been approved interim official first action for all foods to replace the HGMF official final action method, 985.42.

  2. Imidazolium-containing, hydrophobic-ionic-hydrophilic ABC triblock copolymers: synthesis, ordered phase-separation, and supported membrane fabrication

    SciTech Connect

    Wiesenauer, EF; Nguyen, PT; Newell, BS; Bailey, TS; Nobleb, RD; Gin, DL

    2013-01-01

    Novel ABC triblock copolymers containing hydrophobic, imidazolium ionic liquid (IL)-based ionic, and non-charged hydrophilic blocks were synthesized by direct sequential, ring-opening metathesis polymerization (ROMP) of three chemically immiscible norborene monomers. The resulting ABC triblock copolymers were found by small-angle X-ray scattering to phase-separate into different nanostructures in their pure melt states, depending on their block sequence and compositions. Supported composite membranes of these triblock copolymers were successfully fabricated with defect-free, <= 20 microns thick top coatings. Preliminary CO2/light gas transport studies demonstrated the potential of this new type of IL-based block copolymer material for gas separation applications.

  3. In Vivo Identification of the Outer Membrane Protein OmcA-MtrC Interaction Network in Shewanella oneidensis MR-1 Cells Using Novel Hydrophobic Chemical Cross-Linkers

    SciTech Connect

    Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Zakharova, Natalia L.; Yang, Li; Zheng, Chunxiang; Wolff, Meagan A.; Tolic, Nikola; Anderson, Gordon A.; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Bruce, James E.

    2008-04-01

    Outer membrane (OM) cytochromes OmcA (SO1779) and MtrC (SO1778) are the integral components of electron transfer used by Shewanella oneidensis for anaerobic respiration of metal (hydr)oxides. Here the OmcA-MtrC interaction was identified in vivo using a novel hydrophobic chemical cross-linker (MRN) combined with immunoprecipitation techniques. In addition, identification of other OM proteins from the cross-linked complexes allows first visualization of the OmcA-MtrC interaction network. Further experiments on omcA and mtrC mutant cells showed OmcA plays a central role in the network interaction. For comparison, two commercial cross-linkers were also used in parallel and both resulted in fewer OM protein identifications, indicating the superior properties of MRN for identification of membrane protein interactions. Finally, comparison experiments of in vivo cross-linking and cell lysate cross-linking resulted in significantly different protein interaction data, demonstrating the importance of in vivo cross-linking for study of protein-protein interactions in cells.

  4. Hydrophilic TiO2 porous spheres anchored on hydrophobic polypropylene membrane for wettability induced high photodegrading activities

    NASA Astrophysics Data System (ADS)

    Niu, Fang; Zhang, Le-Sheng; Chen, Chao-Qiu; Li, Wei; Li, Lin; Song, Wei-Guo; Jiang, Lei

    2010-08-01

    TiO2 porous nanospheres on polypropylene (PP) films (TiO2/PP composite) are produced at ambient temperature. Particle/pore size match up is the key anchoring point to overcome the low affinity between hydrophilic materials and hydrophobic materials. With the hydrophilic TiO2 catalyst evenly dispersed on a hydrophobic surface, the aqueous solution will selectively skip the substrate and wet the catalysts. Such a wettability-induced smart system maximizes the degrading activity of the TiO2 catalyst. In photodegrading reactions, the resulting TiO2/PP composite film exhibits a 10 times higher activity in flow-type setup than the same TiO2 catalyst in a traditional batch-type setup.TiO2 porous nanospheres on polypropylene (PP) films (TiO2/PP composite) are produced at ambient temperature. Particle/pore size match up is the key anchoring point to overcome the low affinity between hydrophilic materials and hydrophobic materials. With the hydrophilic TiO2 catalyst evenly dispersed on a hydrophobic surface, the aqueous solution will selectively skip the substrate and wet the catalysts. Such a wettability-induced smart system maximizes the degrading activity of the TiO2 catalyst. In photodegrading reactions, the resulting TiO2/PP composite film exhibits a 10 times higher activity in flow-type setup than the same TiO2 catalyst in a traditional batch-type setup. Electronic supplementary information (ESI) available: XRD results for TiO2 porous nanospheres; photos of Methylene Blue, and Rhodamine B (100 mg L-1) aqueous solution degraded by TiO2/PP composite film under UV irradiation in the flow-type setup; quantitative plots of concentration profiles; contact angle of water droplets on TiO2 porous spheres and on PP membrane; SEM image of used TiO2/PP composite. See DOI: 10.1039/c0nr00182a

  5. Factors affecting alcohol-water pervaporation performance of hydrophobic zeolite-silicone rubber mixed matrix membranes

    EPA Science Inventory

    Mixed matrix membranes (MMMs) consisting of ZSM-5 zeolite particles dispersed in silicone rubber exhibited ethanol-water pervaporation permselectivities up to 5 times that of silicone rubber alone and 3 times higher than simple vapor-liquid equilibrium (VLE). A number of conditi...

  6. Factors affecting alcohol-water pervaporation performance of hydrophobic zeolite-silicone rubber mixed matrix membranes

    EPA Science Inventory

    Mixed matrix membranes (MMMs) consisting of ZSM-5 zeolite particles dispersed in silicone rubber exhibited ethanol-water pervaporation permselectivities up to 5 times that of silicone rubber alone and 3 times higher than simple vapor-liquid equilibrium (VLE). A number of conditi...

  7. The N-terminal hydrophobic region of the mature phosphate translocator is sufficient for targeting to the chloroplast inner envelope membrane.

    PubMed Central

    Knight, J S; Gray, J C

    1995-01-01

    To locate the sequence required for directing the phosphate translocator to the chloroplast inner envelope membrane, a series of chimeric proteins constituting parts of the phosphate translocator and the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, which is normally located in the stroma, has been produced. Reciprocal exchanges of the presequences and mature sequences of the phosphate translocator and the small subunit indicated that the phosphate translocator presequence contains stromal targeting information and that the mature protein is responsible for inner envelope membrane targeting. Chimeric proteins containing the N-terminal 46 amino acid residues of the phosphate translocator were directed to the inner envelope membrane. Subdivision of this region into its composite hydrophilic and hydrophobic regions showed that the hydrophobic region alone, which consists of amino acid residues 24 to 45, was able to direct the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase to the inner envelope membrane. PMID:8589626

  8. Integrated oxidation membrane filtration process - NOM rejection and membrane fouling.

    PubMed

    Winter, J; Uhl, W; Bérubé, P R

    2016-11-01

    The extent and mechanisms by which organic matter in a solution can be retained and foul a membrane largely depends on the molecular weight of the material being filtered and the molecular weight cut-off (MWCO) of the membrane. The present study investigated the effect of the MWCO of a membrane and the molecular weight distribution of natural organic matter (NOM) in a source water on the increase in resistance to the permeate flux over time. Of particular interest was the effect of oxidation, applied prior to membrane filtration, on the predominant fouling mechanism. Oxidation can change the molecular weight distribution of organic matter in raw water, and therefore the ability of a membrane to retain this organic matter. Oxidation, using both ozonation and UV/H2O2, could effectively reduce the extent of fouling for higher MWCO membranes. However, neither oxidation approaches could effectively reduce the extent of fouling for lower MWCO membranes, likely because oxidation could not effectively oxidize lower molecular weight organic matter. Althoug the data indicated that the extent of fouling is increasing with the amount of DOC retained by the membrane, no statistically significant correlation was observed between these parameters. The results suggest that oxidation did not affect the predominant fouling mechanism. However, it did affect the molecular weight distribution of the organic matter retained by the membranes, and as a result, the resistance offered by the foulant cake layer.

  9. Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes.

    PubMed

    Yang, Yoosoo; Hong, Yeonsun; Nam, Gi-Hoon; Chung, Jin Hwa; Koh, Eunee; Kim, In-San

    2017-02-06

    An efficient system for direct delivery of integral membrane proteins is successfully developed using a new biocompatible exosome-based platform. Fusogenic exosomes harboring viral fusogen, vascular stomatitis virus (VSV)-G protein, can fuse with and modify plasma membranes in a process called "membrane editing." This can facilitate the transfer of biologically active membrane proteins into the target cell membranes both in vitro and in vivo.

  10. Chemical Synthesis of the Highly Hydrophobic Antiviral Membrane-Associated Protein IFITM3 and Modified Variants.

    PubMed

    Harmand, Thibault J; Pattabiraman, Vijaya R; Bode, Jeffrey W

    2017-10-02

    Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral transmembrane protein that is thought to serve as the primary factor for inhibiting the replication of a large number of viruses, including West Nile virus, Dengue virus, Ebola virus, and Zika virus. Production of this 14.5 kDa, 133-residue transmembrane protein, especially with essential posttranslational modifications, by recombinant expression is challenging. In this report, we document the chemical synthesis of IFTIM3 in multi-milligram quantities (>15 mg) and the preparation of phosphorylated and fluorescent variants. The synthesis was accomplished by using KAHA ligations, which operate under acidic aqueous/organic mixtures that excel at solubilizing even the exceptionally hydrophobic C-terminal region of IFITM3. The synthetic material is readily incorporated into model vesicles and forms the basis for using synthetic, homogenous IFITM3 and its derivatives for further studying its structure and biological mode of action. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Integral membrane proteins of the chloroplast envelope: Identification and subcellular localization of new transporters

    PubMed Central

    Ferro, Myriam; Salvi, Daniel; Rivière-Rolland, Hélène; Vermat, Thierry; Seigneurin-Berny, Daphné; Grunwald, Didier; Garin, Jérôme; Joyard, Jacques; Rolland, Norbert

    2002-01-01

    A two-membrane system, or envelope, surrounds plastids. Because of the integration of chloroplast metabolism within the plant cell, the envelope is the site of many specific transport activities. However, only a few proteins involved in the processes of transport across the chloroplast envelope have been identified already at the molecular level. To discover new envelope transporters, we developed a subcellular proteomic approach, which is aimed to identify the most hydrophobic envelope proteins. This strategy combined the use of highly purified and characterized membrane fractions, extraction of the hydrophobic proteins with organic solvents, SDS/PAGE separation, and tandem mass spectrometry analysis. To process the large amount of MS/MS data, a blast-based program was developed for searching in protein, expressed sequence tag, and genomic plant databases. Among the 54 identified proteins, 27 were new envelope proteins, with most of them bearing multiple α-helical transmembrane regions and being very likely envelope transporters. The present proteomic study also allowed us to identify common features among the known and newly identified putative envelope inner membrane transporters. These features were used to mine the complete Arabidopsis genome and allowed us to establish a virtual plastid envelope integral protein database. Altogether, both proteomic and in silico approaches identified more than 50 candidates for the as yet previously uncharacterized plastid envelope transporters. The predictable function of some of these proteins opens up areas of investigation that may lead to a better understanding of the chloroplast metabolism. The present subcellular proteomic approach is amenable to the analysis of the hydrophobic core of other intracellular membrane systems. PMID:12177442

  12. Comparison of membrane filtration rates and hydrophobic grid membrane filter coliform and Escherichia coli counts in food suspensions using paddle-type and pulsifier sample preparation procedures.

    PubMed

    Sharpe, A N; Hearn, E M; Kovacs-Nolan, J

    2000-01-01

    Food suspensions prepared by Pulsifier contained less debris and filtered 1.3x to 12x faster through hydrophobic grid membrane filters (HGMFs) than those prepared by Stomacher 400. Coliform and Escherichia coli counts made by an HGMF method yielded 84 and 36 paired samples, respectively, positive by both suspending methods. Overall counts of pulsificates and stomachates did not differ significantly for either analysis, though coliform counts by Pulsifier were significantly higher in mushrooms and significantly lower in ground pork (P = 0.05). Regression equations for log10 counts of coliform and E. coli by Pulsifier and Stomacher were: Pulsifier = 0.12 + 0.97 x Stomacher, and Pulsifier = 0.01 + 1.01 x Stomacher, respectively.

  13. Comparison of the hydrophobic-grid membrane filter procedure and standard methods for coliform analysis of water.

    PubMed

    McDaniels, A E; Bordner, R H; Menkedick, J R; Weber, C I

    1987-05-01

    The hydrophobic-grid membrane filter (HGMF) has been proposed as an alternate method to the standard membrane filter (MF) procedure for the detection and enumeration of coliforms from water. Eight samples of nonchlorinated wastewater effluents were analyzed by the HGMF, standard MF, and tube fermentation most-probable-number methods for fecal coliforms, and eight samples each of polluted surface and dosed drinking waters were analyzed by the same methods for total coliforms. The drinking waters were dosed with coliforms and other heterotrophs concentrated from nonchlorinated domestic wastewater and treated with chlorine to reduce the numbers of organisms and simulate stress caused by chlorination. Statistical analyses determined that recoveries of fecal coliforms were significantly higher by the filtration methods for the nonchlorinated domestic wastewaters but not for the other waters. The results also indicated that recoveries of fecal and total coliforms did not differ significantly when either MFs or HGMFs were used. Total coliform results obtained with HGMFs having greater than 100 positive grid cells were significantly more precise than estimates obtained by the standard MF method only for polluted surface waters.

  14. Comparison of the hydrophobic-grid membrane filter procedure and standard methods for coliform analysis of water.

    PubMed Central

    McDaniels, A E; Bordner, R H; Menkedick, J R; Weber, C I

    1987-01-01

    The hydrophobic-grid membrane filter (HGMF) has been proposed as an alternate method to the standard membrane filter (MF) procedure for the detection and enumeration of coliforms from water. Eight samples of nonchlorinated wastewater effluents were analyzed by the HGMF, standard MF, and tube fermentation most-probable-number methods for fecal coliforms, and eight samples each of polluted surface and dosed drinking waters were analyzed by the same methods for total coliforms. The drinking waters were dosed with coliforms and other heterotrophs concentrated from nonchlorinated domestic wastewater and treated with chlorine to reduce the numbers of organisms and simulate stress caused by chlorination. Statistical analyses determined that recoveries of fecal coliforms were significantly higher by the filtration methods for the nonchlorinated domestic wastewaters but not for the other waters. The results also indicated that recoveries of fecal and total coliforms did not differ significantly when either MFs or HGMFs were used. Total coliform results obtained with HGMFs having greater than 100 positive grid cells were significantly more precise than estimates obtained by the standard MF method only for polluted surface waters. Images PMID:3606086

  15. The cost of living in the membrane: A case study of hydrophobic mismatch for the multi-segment protein LeuT

    PubMed Central

    Mondal, Sayan; Khelashvili, George; Shi, Lei; Weinstein, Harel

    2013-01-01

    Many observations of the role of the membrane in the function and organization of transmembrane (TM) proteins have been explained in terms of hydrophobic mismatch between the membrane and the inserted protein. For a quantitative investigation of this mechanism in the lipid-protein interactions of functionally relevant conformations adopted by a multi-TM segment protein, the bacterial Leucine Transporter (LeuT), we employed a novel method, Continuum-Molecular Dynamics (CTMD), that quantifies the energetics of hydrophobic mismatch by combining the elastic continuum theory of membrane deformations with an atomistic level description of the radially asymmetric membrane-protein interface from MD simulations. LeuT has been serving as a model for structure-function studies of the mammalian Neurotransmitter:Sodium Symporters (NSSs), such as the dopamine and serotonin transporters, which are the subject of intense research in the field of neurotransmission. The membrane models in which LeuT was embedded for these studies were composed of 1-palmitoyl-2-oleoyl-sn -glycero-3-phosphocholine (POPC) lipid, or 3:1 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) lipids. The results show that deformation of the host membrane alone is not sufficient to alleviate the hydrophobic mismatch at specific residues of LeuT. The calculations reveal significant membrane thinning and water penetration due to the specific local polar environment produced by the charged K288 of TM7 in LeuT, that is membrane-facing deep inside the hydrophobic milieu of the membrane. This significant perturbation is shown to result in unfavorable polar-hydrophobic interactions at neighboring hydrophobic residues in TM1a and TM7. We show that all the effects attributed to the K288 residue (membrane thinning, water penetration, and the unfavorable polar-hydrophobic interactions at TM1a and TM7), are abolished in calculations with the

  16. The cost of living in the membrane: a case study of hydrophobic mismatch for the multi-segment protein LeuT.

    PubMed

    Mondal, Sayan; Khelashvili, George; Shi, Lei; Weinstein, Harel

    2013-04-01

    Many observations of the role of the membrane in the function and organization of transmembrane (TM) proteins have been explained in terms of hydrophobic mismatch between the membrane and the inserted protein. For a quantitative investigation of this mechanism in the lipid-protein interactions of functionally relevant conformations adopted by a multi-TM segment protein, the bacterial leucine transporter (LeuT), we employed a novel method, Continuum-Molecular Dynamics (CTMD), that quantifies the energetics of hydrophobic mismatch by combining the elastic continuum theory of membrane deformations with an atomistic level description of the radially asymmetric membrane-protein interface from MD simulations. LeuT has been serving as a model for structure-function studies of the mammalian neurotransmitter:sodium symporters (NSSs), such as the dopamine and serotonin transporters, which are the subject of intense research in the field of neurotransmission. The membrane models in which LeuT was embedded for these studies were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid, or 3:1 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) lipids. The results show that deformation of the host membrane alone is not sufficient to alleviate the hydrophobic mismatch at specific residues of LeuT. The calculations reveal significant membrane thinning and water penetration due to the specific local polar environment produced by the charged K288 of TM7 in LeuT, that is membrane-facing deep inside the hydrophobic milieu of the membrane. This significant perturbation is shown to result in unfavorable polar-hydrophobic interactions at neighboring hydrophobic residues in TM1a and TM7. We show that all the effects attributed to the K288 residue (membrane thinning, water penetration, and the unfavorable polar-hydrophobic interactions at TM1a and TM7), are abolished in calculations with the

  17. 1-Dodecyl-3-methylimidazolium chloride-assisted sample preparation method for efficient integral membrane proteome analysis.

    PubMed

    Zhao, Qun; Fang, Fei; Liang, Yu; Yuan, Huiming; Yang, Kaiguang; Wu, Qi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2014-08-05

    Due to their extremely hydrophobic nature, the analysis of integral membrane proteins (IMPs) is of great challenge. Although various additives have been applied to improve the solubility of IMPs, they still suffer from low solubilization efficiency, incompatibility with trypsin digestion, or interference with MS detection. Herein, the systematic study on the effect of ionic liquid structure on membrane protein solubilization and trypsin biocompatibility was performed, based on which 1-dodecyl-3-methylimidazolium chloride (C12Im-Cl) was selected for the sample preparation of IMPs. Compared with other commonly used additives, such as sodium dodecyl sulfate (SDS), Rapigest, and methanol, C12Im-Cl showed the best performance. In addition, with a strong cation exchange trap column, it could be easily removed after trypsin digestion, which not only was beneficial to avoid protein precipitation during digestion but also had no adverse effect on LC-MS-based separation and detection. Such a C12Im-Cl-assisted sample preparation method was further applied to the membrane proteome analysis of rat brain. Compared with the SDS-assisted method, 1.4 and 3.5 times improvement on the identified IMP and hydrophobic peptide number were achieved (251 vs 178, and 982 vs 279). All these results demonstrated that the C12Im-Cl-assisted sample preparation method is of great promise to promote the large-scale membrane proteome profiling.

  18. Remote homology detection of integral membrane proteins using conserved sequence features.

    PubMed

    Bernsel, Andreas; Viklund, Håkan; Elofsson, Arne

    2008-05-15

    Compared with globular proteins, transmembrane proteins are surrounded by a more intricate environment and, consequently, amino acid composition varies between the different compartments. Existing algorithms for homology detection are generally developed with globular proteins in mind and may not be optimal to detect distant homology between transmembrane proteins. Here, we introduce a new profile-profile based alignment method for remote homology detection of transmembrane proteins in a hidden Markov model framework that takes advantage of the sequence constraints placed by the hydrophobic interior of the membrane. We expect that, for distant membrane protein homologs, even if the sequences have diverged too far to be recognized, the hydrophobicity pattern and the transmembrane topology are better conserved. By using this information in parallel with sequence information, we show that both sensitivity and specificity can be substantially improved for remote homology detection in two independent test sets. In addition, we show that alignment quality can be improved for the most distant homologs in a public dataset of membrane protein structures. Applying the method to the Pfam domain database, we are able to suggest new putative evolutionary relationships for a few relatively uncharacterized protein domain families, of which several are confirmed by other methods. The method is called Searcher for Homology Relationships of Integral Membrane Proteins (SHRIMP) and is available for download at http://www.sbc.su.se/shrimp/. 2007 Wiley-Liss, Inc.

  19. Simultaneous evaluation of plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential in bovine spermatozoa by flow cytometry.

    PubMed

    Kanno, Chihiro; Kang, Sung-Sik; Kitade, Yasuyuki; Yanagawa, Yojiro; Takahashi, Yoshiyuki; Nagano, Masashi

    2016-08-01

    The present study aimed to develop an objective evaluation procedure to estimate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bull spermatozoa simultaneously by flow cytometry. Firstly, we used frozen-thawed semen mixed with 0, 25, 50, 75 or 100% dead spermatozoa. Semen was stained using three staining solutions: SYBR-14, propidium iodide (PI), and phycoerythrin-conjugated peanut agglutinin (PE-PNA), for the evaluation of plasma membrane integrity and acrosomal integrity. Then, characteristics evaluated by flow cytometry and by fluorescence microscopy were compared. Characteristics of spermatozoa (viability and acrosomal integrity) evaluated by flow cytometry and by fluorescence microscopy were found to be similar. Secondly, we attempted to evaluate the plasma membrane integrity, acrosomal integrity, and also mitochondrial membrane potential of spermatozoa by flow cytometry using conventional staining with three dyes (SYBR-14, PI, and PE-PNA) combined with MitoTracker Deep Red (MTDR) staining (quadruple staining). The spermatozoon characteristics evaluated by flow cytometry using quadruple staining were then compared with those of staining using SYBR-14, PI, and PE-PNA and staining using SYBR-14 and MTDR. There were no significant differences in all characteristics (viability, acrosomal integrity, and mitochondrial membrane potential) evaluated by quadruple staining and the other procedures. In conclusion, quadruple staining using SYBR-14, PI, PE-PNA, and MTDR for flow cytometry can be used to evaluate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bovine spermatozoa simultaneously.

  20. An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region

    PubMed Central

    1993-01-01

    We have identified an integral membrane protein of 145 kD (estimated by SDS-PAGE) of rat liver nuclear envelopes that binds to WGA. We obtained peptide sequence from purified p145 and cloned and sequenced several cDNA clones and one genomic clone. The relative molecular mass of p145 calculated from its complete, cDNA deduced primary structure is 120.7 kD. Antibodies raised against a synthetic peptide represented in p145 reacted monospecifically with p145. In indirect immunofluorescence these antibodies gave punctate staining of the nuclear envelope. Immunogold EM showed specific decoration of the nuclear pores. Thus p145 is an integral membrane protein located specifically in the "pore membrane" domain of the nuclear envelope. To indicate this specific location, and based on its calculated relative molecular mass, the protein is termed POM 121 (pore membrane protein of 121 kD). The 1,199- residue-long primary structure shows a hydrophobic region (residues 29- 72) that is likely to form one (or two adjacent) transmembrane segment(s). The bulk of the protein (residues 73-1199) is predicted to be exposed not on the cisternal side but on the pore side of the pore membrane. It contains 36 consensus sites for various kinases. However, its most striking feature is a repetitive pentapeptide motif XFXFG that has also been shown to occur in several nucleoporins. This nucleoporin- like domain of POM 121 is proposed to function in anchoring components of the nuclear pore complex to the pore membrane. PMID:8335683

  1. An integrated, cross-disciplinary study of soil hydrophobicity at atomic, molecular, core and landscape scales

    NASA Astrophysics Data System (ADS)

    Matthews, G. Peter; Doerr, Stefan; Van Keulen, Geertje; Dudley, Ed; Francis, Lewis; Whalley, Richard; Gazze, Andrea; Hallin, Ingrid; Quinn, Gerry; Sinclair, Kat; Ashton, Rhys

    2017-04-01

    Soil hydrophobicity can lead to reduced soil fertility and heightened flood risk caused by increased run-off. Soil hydrophobicity is a well-known phenomenon when induced by natural events such as wildfires and anthropogenic causes including adding organic wastes or hydrocarbon contaminants. This presentation concerns a much more subtle effect - the naturally occurring changes between hydrophilic and hydrophobic states caused by periods of wetness and drought. Although subtle, they nevertheless affect vast areas of soil, and so their effects can be very significant, and are predicted to increase under climate change conditions. To understand the effect, a major interdisciplinary study has been commissioned by the UK's Natural Environment Research Council (NERC) to investigate soil hydrophobicity over length scales ranging from atomic through molecular, core and landscape scale. We present the key findings from the many publications currently in preparation. The programme is predicated on the hypothesis that changes in soil protein abundance and localization, induced by variations in soil moisture and temperature, are crucial driving forces for transitions between hydrophobic and hydrophilic conditions at soil particle surfaces, and that these effects can be meaningfully upscaled from molecular to landscape scale. Three soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (natural rough pasture, Wales), intermediate to severe (pasture, Wales), and subcritical (managed research grassland, Rothamsted Research, England). The latter is already highly characterised so was also used as a control. Hydrophobic/ hydrophilic transitions were determined from water droplet penetration times. Scientific advances in the following five areas will be described: (i) the identification of these soil proteins by proteomic methods, using novel separation methods which reduces interference by humic acids, and allows identification

  2. Application of a DNA hybridization-hydrophobic-grid membrane filter method for detection and isolation of verotoxigenic escherichia coli.

    PubMed

    Todd, E C; Szabo, R A; MacKenzie, J M; Martin, A; Rahn, K; Gyles, C; Gao, A; Alves, D; Yee, A J

    1999-11-01

    Verotoxigenic Escherichia coli (VTEC) strains were isolated from food and animal fecal samples by using PCR to screen for the presence of VTEC after broth enrichment and then filtering VTEC-positive cultures through hydrophobic-grid membrane filters (HGMFs) which were incubated on MacConkey agar. The filters were probed with a digoxigenin-labeled PCR product generated by amplification of a conserved verotoxin gene sequence. Replication of the growth on filters allowed probe-positive colonies to be picked. When ground beef samples were inoculated with VTEC strains, 100% of the strains were recovered, and the detection limit was 0.1 CFU per g. Similar results were obtained with seven types of artificially contaminated vegetables. A survey of 32 packages of vegetables and 23 samples of apple cider obtained at the retail level did not reveal the presence of VTEC. However, the intestinal fecal contents of a moose, 1 of 35 wild mammals and birds examined, contained E. coli O157:H7. The DNA hybridization-HGMF method was also used in a prevalence survey of 327 raw and 744 ready-to-eat products; VTEC strains were recovered from 4.9% of the raw products and 0.7% of the ready-to-eat products. No serotype O157:H7 strains were detected. This method is particularly suited for surveys in which low numbers of VTEC-positive samples are expected and isolates are required.

  3. Mycoplasma gallisepticum inactivated by targeting the hydrophobic domain of the membrane preserves surface lipoproteins and induces a strong immune response.

    PubMed

    Atalla, Hazem; Lysnyansky, Inna; Raviv, Yossef; Rottem, Shlomo

    2015-01-01

    An innovative approach for inactivation of Mycoplasma gallisepticum using the hydrophobic photoinduced alkylating probe 1, 5-iodonaphthylazide (INA) is described. Treatment of washed M. gallisepticum mid-exponential culture (0.2 mg cell protein /mL) with INA followed by irradiation with far-ultraviolet light (310-380 nm) completely abolished viability. Transmission electron microscopy showed that the majority of the inactivated M. gallisepticum were comparable in size to intact cells, but that part of the INA-treated M. gallisepticum preparation also contained low density cells and membrane vesicles. Confocal microscopy revealed that untreated M. gallisepticum cells were internalized by chicken red blood cells (c-RBCs), whereas the INA-inactivated cells remained attached to the outer surface of the c-RBCs. INA treatment of M. gallisepticum resulted in a complete inactivation of F0F1 -ATPase and of the L-arginine uptake system, but the cytoplasmatic soluble NADH2 dehydrogenase was only partially affected. Western blot analysis of the lipoprotein fraction showed that the INA-treated M. gallisepticum retained their lipoproteins. Following subcutaneous injection of M. gallisepticum INA-bacterin, 100% and 68.8% of chickens were positive by the rapid serum agglutination test and enzyme-linked immunosorbent assay respectively, 2 weeks post-injection. These data suggest that the photoinducible alkylating agent INA inactivates M. gallisepticum but preserves its surface lipoproteins and thus has the potential to be used as a general approach for the inactivation of mycoplasmas for vaccine development.

  4. Application of a DNA Hybridization–Hydrophobic-Grid Membrane Filter Method for Detection and Isolation of Verotoxigenic Escherichia coli

    PubMed Central

    Todd, E. C. D.; Szabo, R. A.; MacKenzie, J. M.; Martin, A.; Rahn, K.; Gyles, C.; Gao, A.; Alves, D.; Yee, A. J.

    1999-01-01

    Verotoxigenic Escherichia coli (VTEC) strains were isolated from food and animal fecal samples by using PCR to screen for the presence of VTEC after broth enrichment and then filtering VTEC-positive cultures through hydrophobic-grid membrane filters (HGMFs) which were incubated on MacConkey agar. The filters were probed with a digoxigenin-labeled PCR product generated by amplification of a conserved verotoxin gene sequence. Replication of the growth on filters allowed probe-positive colonies to be picked. When ground beef samples were inoculated with VTEC strains, 100% of the strains were recovered, and the detection limit was 0.1 CFU per g. Similar results were obtained with seven types of artificially contaminated vegetables. A survey of 32 packages of vegetables and 23 samples of apple cider obtained at the retail level did not reveal the presence of VTEC. However, the intestinal fecal contents of a moose, 1 of 35 wild mammals and birds examined, contained E. coli O157:H7. The DNA hybridization-HGMF method was also used in a prevalence survey of 327 raw and 744 ready-to-eat products; VTEC strains were recovered from 4.9% of the raw products and 0.7% of the ready-to-eat products. No serotype O157:H7 strains were detected. This method is particularly suited for surveys in which low numbers of VTEC-positive samples are expected and isolates are required. PMID:10543785

  5. New Method for Super Hydrophobic Treatment of Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells Using Electrochemical Reduction of Diazonium Salts.

    PubMed

    Thomas, Yohann R J; Benayad, Anass; Schroder, Maxime; Morin, Arnaud; Pauchet, Joël

    2015-07-15

    The purpose of this article is to report a new method for the surface functionalization of commercially available gas diffusion layers (GDLs) by the electrochemical reduction of diazonium salt containing hydrophobic functional groups. The method results in superhydrophobic GDLs, over a large area, without pore blocking. An X-ray photoelectron spectroscopy study based on core level spectra and chemical mapping has demonstrated the successful grafting route, resulting in a homogeneous distribution of the covalently bonded hydrophobic molecules on the surface of the GDL fibers. The result was corroborated by contact angle measurement, showing similar hydrophobicity between the grafted and PTFE-modified GDLs. The electrochemically modified GDLs were tested in proton exchange membrane fuel cells under automotive, wet, and dry conditions and demonstrated improved performance over traditional GDLs.

  6. Evaluating survival of Escherichia coli O157:H7 in frozen and thawed apple cider: potential use of a hydrophobic grid membrane filter-SD-39 agar method.

    PubMed

    Sage, J R; Ingham, S C

    1998-04-01

    To determine the susceptibility of Escherichia coli O157:H7 to freezing and thawing in apple cider, methods that recover injured cells are needed for accurate enumeration. This study compared the ISO-GRID hydrophobic grid membrane filter (HGMF) SD-39 agar method to two other methods: a reference most probable number (MPN) method, and plating on sorbitol MacConkey agar (SMA). To determine numbers of injured cells, SMA spread plating was also compared to Trypticase soy agar (TSA) spread plating. Two strains of E. coli O157:H7 QA 326 and ATCC 43895, were inoculated into presterilized apple cider (10 ml) which was then frozen (-20 degrees C for 24 h). Samples were thawed at 4 degrees C for 4 h, or at 23 degrees C for 1.5 h, or in a microwave oven (700 W for 10 s). Substantial cell death (0.69- to 6.33 log10 CFU/ml decreases) and injury (0.70- to 2.38-log10 CFU/ml decreases) occurred during freezing and thawing. The extent of death and injury varied with strain and thawing method. The TSA spread plating method recovered the most cells while the HGMF method always recovered more viable cells than the reference MPN method and also either recovered significantly more (P < 0.05) cells or a not significantly different number of cells than SMA spread plating. Some injured cells of both strains were not counted by the HGMF method. Significant numbers of cells injured by freezing and thawing at 4 degrees C in apple cider were enumerated in the cider was diluted 1:2 Trypticase soy broth immediately before plating. Two epifluorescent microscopic methods showed that injury was not associated with loss of cell membrane integrity.

  7. Biochemical characterization of the small hydrophobic protein of avian metapneumovirus

    USDA-ARS?s Scientific Manuscript database

    Avian metapneumovirus (aMPV) is a paramyxovirus that has three membrane-associate proteins: glycoprotein (G), fusion (F), and small hydrophobic (SH) proteins. Among them, the SH protein is a small type II integral membrane protein that is incorporated into virions and is only present in certain para...

  8. Purification of basolateral integral membrane proteins by cationic colloidal silica-based apical membrane subtraction.

    PubMed

    Goode, Robert J A; Simpson, Richard J

    2009-01-01

    Epithelial cell polarity mediates many essential biological functions and perturbation of the apical/basolateral divide is a hallmark of epithelial to mesenchymal transition in carcinoma. Therefore, correct targeting of proteins to the apical and basolateral surfaces is essential to proper epithelial cell function. However, proteomic characterisation of apical/basolateral sorting has been largely ignored, due to ineffectual separation techniques and contamination of plasma-membrane preparations with housekeeping proteins. Here we describe a method that strips the apical membrane from the adherent cells and releases the intracellular contents, thereby leaving the basolateral membrane available for stringent washes and collection. Analysis of the basolateral membrane of an adherent colon adenocarcinoma cell line resulted in 66% of identified proteins being integral membrane proteins, which possessed either a transmembrane domain or lipid modification, including 35 CD antigens. Based on the abundance of peptides from basolateral marker proteins, this method efficiently captures basolateral integral membrane proteins, with minimal contamination from other membranes and basic proteins.

  9. Improving membrane protein expression by optimizing integration efficiency.

    PubMed

    Niesen, Michiel J M; Marshall, Stephen S; Miller, Thomas F; Clemons, William M

    2017-09-16

    The heterologous overexpression of integral membrane proteins in Escherichia coli often yields insufficient quantities of purifiable protein for applications of interest. The current study leverages a recently demonstrated link between co-translational membrane integration efficiency and protein expression levels to predict protein sequence modifications that improve expression. Membrane integration efficiencies, obtained using a coarse-grained simulation approach, robustly predicted effects on expression of the integral membrane protein TatC for a set of 140 sequence modifications, including loop-swap chimeras and single-residue mutations distributed throughout the protein sequence. Mutations that improve simulated integration efficiency were four-fold enriched with respect to improved experimentally observed expression levels. Furthermore, the effect of double mutations, on both simulated integration efficiency and experimentally observed expression levels were cumulative and largely independent, suggesting that multiple mutations can be introduced to yield higher levels of purifiable protein. This work provides a foundation for a general method for the rational overexpression of integral membrane proteins based on computationally simulated membrane integration efficiencies. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  10. Physical behavior of the hydrophobic core of membranes: properties of 1-stearoyl-2-linoleoyl-sn-glycerol.

    PubMed

    Di, L; Small, D M

    1995-12-26

    Phospholipids containing a saturated fatty acid in the primary position and an unsaturated fatty acid in the secondary position are a major structural part of biological membranes. The mixed-chain hydrophobic core of the membranes is the diacylglycerol part. To better understand the core properties of membranes we have studied the physical behavior of 1-stearoyl-2-linoleoyl-sn-glycerol (SLDG) by X-ray diffraction and differential scanning calorimetry (DSC) in the dry and hydrated states. Dry SLDG has four polymorphic phases: alpha (transition temperature, 11.6 degrees C; delta H = 7.5 kcal/mol); sub-alpha 1 (3.0 degrees C; 0.6 kcal/mol); sub-alpha 2(-1.0 degrees C; 0.5 kcal/mol); and beta' (16.1 degrees C; 15.4 kcal/mol). The alpha, sub-alpha 1, and sub-alpha 2 phases are metastable with a probable extended bilayer structure (d001 approximately 59.5 A). The chain packing of the alpha phase is hexagonal, while sub-alpha 1 and sub-alpha 2 have pseudohexagonal chain packing. The beta' phase has a tilted bilayer structure (46.9 A) with strong wide-angle diffractions, suggesting elements of orthorhombic perpendicular packing. Compared to saturated 1,2-diacylglycerols, SLDG packs much less efficiently, but, when compared to 1-stearoyl-2-oleoyl-sn-glycerol, it appears to pack somewhat more efficiently. Thus polyunsaturated linoleate chains appear to pack marginally more effectively with the saturated stearate chains than do monounsaturated chains. SLDG hydrates with 0.5 mol of H2O, which prevents the beta' phase from forming. Only one hydrated alpha phase (alpha w) and two hydrated sub-alpha (sub-alpha w1, sub-alpha w2) phases are formed. These phases are similar in structure to the nonhydrated alpha phases, but the bilayer period is increased by about 2 A (d001 approximately 61.5 A). This causes minor changes in polymorphism, including lower melting temperatures and enthalpy. A comparison of diacylglycerols to phosphatidylcholines with the same chains shows that the

  11. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions.

    PubMed

    Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred

    2012-07-01

    Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.

  12. Type II integral membrane protein, TM of J paramyxovirus promotes cell-to-cell fusion.

    PubMed

    Li, Zhuo; Hung, Cher; Paterson, Reay G; Michel, Frank; Fuentes, Sandra; Place, Ryan; Lin, Yuan; Hogan, Robert J; Lamb, Robert A; He, Biao

    2015-10-06

    Paramyxoviruses include many important animal and human pathogens. Most paramyxoviruses have two integral membrane proteins: fusion protein (F) and attachment proteins hemagglutinin, hemagglutinin-neuraminidase, or glycoprotein (G), which are critical for viral entry into cells. J paramyxovirus (JPV) encodes four integral membrane proteins: F, G, SH, and transmembrane (TM). The function of TM is not known. In this work, we have generated a viable JPV lacking TM (JPV∆TM). JPV∆TM formed opaque plaques compared with JPV. Quantitative syncytia assays showed that JPV∆TM was defective in promoting cell-to-cell fusion (i.e., syncytia formation) compared with JPV. Furthermore, cells separately expressing F, G, TM, or F plus G did not form syncytia whereas cells expressing F plus TM formed some syncytia. However, syncytia formation was much greater with coexpression of F, G, and TM. Biochemical analysis indicates that F, G, and TM interact with each other. A small hydrophobic region in the TM ectodomain from amino acid residues 118 to 132, the hydrophobic loop (HL), was important for syncytial promotion, suggesting that the TM HL region plays a critical role in cell-to-cell fusion.

  13. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations.

    PubMed

    Urbic, T; Holovko, M F

    2011-10-07

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. © 2011 American Institute of Physics

  14. A hydrophobic filter confers the cation selectivity of Zygosaccharomyces rouxii plasma-membrane Na+/H+ antiporter.

    PubMed

    Kinclova-Zimmermannova, Olga; Falson, Pierre; Cmunt, Denis; Sychrova, Hana

    2015-04-24

    Na(+)/H(+) antiporters may recognize all alkali-metal cations as substrates but may transport them selectively. Plasma-membrane Zygosaccharomyces rouxii Sod2-22 antiporter exports Na(+) and Li(+), but not K(+). The molecular basis of this selectivity is unknown. We combined protein structure modeling, site-directed mutagenesis, phenotype analysis and cation efflux measurements to localize and characterize the cation selectivity region. A three-dimensional model of the ZrSod2-22 transmembrane domain was generated based on the X-ray structure of the Escherichia coli NhaA antiporter and primary sequence alignments with homologous yeast antiporters. The model suggested a close proximity of Thr141, Ala179 and Val375 from transmembrane segments 4, 5 and 11, respectively, forming a hydrophobic hole in the putative cation pathway's core. A series of mutagenesis experiments verified the model and showed that structural modifications of the hole resulted in altered cation selectivity and transport activity. The triple ZrSod2-22 mutant T141S-A179T-V375I gained K(+) transport capacity. The point mutation A179T restricted the antiporter substrate specificity to Li(+) and reduced its transport activity, while serine at this position preserved the native cation selectivity. The negative effect of the A179T mutation can be eliminated by introducing a second mutation, T141S or T141A, in the preceding transmembrane domain. Our experimental results confirm that the three residues found through modeling play a central role in the determination of cation selectivity and transport activity in Z. rouxii Na(+)/H(+) antiporter and that the cation selectivity can be modulated by repositioning a single local methyl group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices.

    PubMed

    Luthra, Amit; Zhu, Guangyu; Desrosiers, Daniel C; Eggers, Christian H; Mulay, Vishwaroop; Anand, Arvind; McArthur, Fiona A; Romano, Fabian B; Caimano, Melissa J; Heuck, Alejandro P; Malkowski, Michael G; Radolf, Justin D

    2011-12-02

    The molecular architecture and composition of the outer membrane (OM) of Treponema pallidum (Tp), the noncultivable agent of venereal syphilis, differ considerably from those of typical Gram-negative bacteria. Several years ago we described TP0453, the only lipoprotein associated with the inner leaflet of the Tp OM. Whereas polypeptides of other treponemal lipoproteins are hydrophilic, non-lipidated TP0453 can integrate into membranes, a property attributed to its multiple amphipathic helices (AHs). Furthermore, membrane integration of the TP0453 polypeptide was found to increase membrane permeability, suggesting the molecule functions in a porin-like manner. To better understand the mechanism of membrane integration of TP0453 and its physiological role in Tp OM biogenesis, we solved its crystal structure and used mutagenesis to identify membrane insertion elements. The crystal structure of TP0453 consists of an α/β/α-fold and includes five stably folded AHs. In high concentrations of detergent, TP0453 transitions from a closed to open conformation by lateral movement of two groups of AHs, exposing a large hydrophobic cavity. Triton X-114 phase partitioning, liposome floatation assay, and bis-1-anilino-8-naphthalenesulfonate binding revealed that two adjacent AHs are critical for membrane sensing/integration. Using terbium-dipicolinic acid complex-loaded large unilamellar vesicles, we found that TP0453 increased efflux of fluorophore only at acidic pH. Gel filtration and cross-linking experiments demonstrated that one AH critical for membrane sensing/insertion also forms a dimeric interface. Based on structural dynamics and comparison with Mycobacterium tuberculosis lipoproteins LprG and LppX, we propose that TP0453 functions as a carrier of lipids, glycolipids, and/or derivatives during OM biogenesis.

  16. Integrated system for extraction, purification, and digestion of membrane proteins.

    PubMed

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Deng, Chunhui; Zhang, Xiangmin

    2016-05-01

    An integrated system was developed for directly processing living cells into peptides of membrane proteins. Living cells were directly injected into the system and cracked in a capillary column by ultrasonic treatment. Owing to hydrophilicity for broken pieces of the cell membrane, the obtained membranes were retained in a well-designed bi-filter. While cytoplasm proteins were eluted from the bi-filter, the membranes were dissolved and protein released by flushing 4% SDS buffer through the bi-filter. The membrane proteins were subsequently transferred into a micro-reactor and covalently bound in the reactor for purification and digestion. As the system greatly simplified the whole pretreatment processes and minimized both sample loss and contamination, it could be used to analyze the membrane proteome samples of thousand-cell-scales with acceptable reliability and stability. We totally identified 1348 proteins from 5000 HepG2 cells, 615 of which were annotated as membrane proteins. In contrast, with conventional method, only 233 membrane proteins were identified. It is adequately demonstrated that the integrated system shows promising practicability for the membrane proteome analysis of small amount of cells.

  17. An integrated simulator of structure and anisotropic flow in gas diffusion layers with hydrophobic additives

    NASA Astrophysics Data System (ADS)

    Burganos, Vasilis N.; Skouras, Eugene D.; Kalarakis, Alexandros N.

    2017-10-01

    The lattice-Boltzmann (LB) method is used in this work to reproduce the controlled addition of binder and hydrophobicity-promoting agents, like polytetrafluoroethylene (PTFE), into gas diffusion layers (GDLs) and to predict flow permeabilities in the through- and in-plane directions. The present simulator manages to reproduce spreading of binder and hydrophobic additives, sequentially, into the neat fibrous layer using a two-phase flow model. Gas flow simulation is achieved by the same code, sidestepping the need for a post-processing flow code and avoiding the usual input/output and data interface problems that arise in other techniques. Compression effects on flow anisotropy of the impregnated GDL are also studied. The permeability predictions for different compression levels and for different binder or PTFE loadings are found to compare well with experimental data for commercial GDL products and with computational fluid dynamics (CFD) predictions. Alternatively, the PTFE-impregnated structure is reproduced from Scanning Electron Microscopy (SEM) images using an independent, purely geometrical approach. A comparison of the two approaches is made regarding their adequacy to reproduce correctly the main structural features of the GDL and to predict anisotropic flow permeabilities at different volume fractions of binder and hydrophobic additives.

  18. Hen oviduct signal peptidase is an integral membrane protein.

    PubMed

    Lively, M O; Walsh, K A

    1983-08-10

    Membrane preparations from rough endoplasmic reticulum of hen oviduct resemble those of dog pancreas in their capacity to translocate nascent secretory proteins into membrane vesicles present during cell-free protein synthesis. As with the dog membranes, the precursor form of human placental lactogen is transported into the vesicles and processed to the native secretory form by an associated "signal peptidase." The oviduct microsomal membranes glycosylate nascent ovomucoid and ovalbumin in vitro. Attempts to extract the signal peptidase from these membrane vesicles revealed that it is one of the least easily solubilized proteins. A protocol for enrichment of signal peptidase was developed that took advantage of its tight association with these vesicles. These studies indicate that the enzyme has the characteristics of an integral membrane protein which remains active in membrane vesicles even after extraction with low concentrations of detergent that do not dissolve the lipid bilayer or after disruption of membrane vesicles in ice-cold 0.1 M Na2CO3, pH 11.5 (Fujiki, Y., Hubbard, A. L., Fowler, S., and Lazarow, P.B. (1982) J. Cell Biol. 93, 97-102), which releases the majority of membrane-associated proteins. Solubilization requires concentrations of nondenaturing detergents that totally dissolve the lipid bilayer. The detergent-solubilized enzyme retains the activity and the characteristic specificity of the membrane-bound form.

  19. The Crystal Structure of OprG from Pseudomonas aeruginosa a Potential Channel for Transport of Hydrophobic Molecules across the Outer Membrane

    SciTech Connect

    D Touw; D Patel; b van den Berg

    2011-12-31

    The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The crystal structure, together with recent biochemical data, suggests that OprG and other OmpW family members form channels that mediate the diffusion of small hydrophobic molecules across the OM by a lateral diffusion mechanism similar to that of E. coli FadL.

  20. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    PubMed

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2016-12-30

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  1. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D; Elimelech, Menachem

    2015-10-01

    This study investigates the performance of an integrated osmotic and microfiltration membrane bioreactor (O/MF-MBR) system for wastewater treatment and reclamation. The O/MF-MBR system simultaneously used microfiltration (MF) and forward osmosis (FO) membranes to extract water from the mixed liquor of an aerobic bioreactor. The MF membrane facilitated the bleeding of dissolved inorganic salts and thus prevented the build-up of salinity in the bioreactor. As a result, sludge production and microbial activity were relatively stable over 60 days of operation. Compared to MF, the FO process produced a better permeate quality in terms of nutrients, total organic carbon, as well as hydrophilic and biologically persistent trace organic chemicals (TrOCs). The high rejection by the FO membrane also led to accumulation of hydrophilic and biologically persistent TrOCs in the bioreactor, consequently increasing their concentration in the MF permeate. On the other hand, hydrophobic and readily biodegradable TrOCs were minimally detected in both MF and FO permeates, with no clear difference in the removal efficiencies between two processes.

  2. A Two-Stage Model for Lipid Modulation of the Activity of Integral Membrane Proteins

    PubMed Central

    Dodes Traian, Martín M.; Cattoni, Diego I.; Levi, Valeria; González Flecha, F. Luis

    2012-01-01

    Lipid-protein interactions play an essential role in the regulation of biological function of integral membrane proteins; however, the underlying molecular mechanisms are not fully understood. Here we explore the modulation by phospholipids of the enzymatic activity of the plasma membrane calcium pump reconstituted in detergent-phospholipid mixed micelles of variable composition. The presence of increasing quantities of phospholipids in the micelles produced a cooperative increase in the ATPase activity of the enzyme. This activation effect was reversible and depended on the phospholipid/detergent ratio and not on the total lipid concentration. Enzyme activation was accompanied by a small structural change at the transmembrane domain reported by 1-aniline-8-naphtalenesulfonate fluorescence. In addition, the composition of the amphipilic environment sensed by the protein was evaluated by measuring the relative affinity of the assayed phospholipid for the transmembrane surface of the protein. The obtained results allow us to postulate a two-stage mechanistic model explaining the modulation of protein activity based on the exchange among non-structural amphiphiles at the hydrophobic transmembrane surface, and a lipid-induced conformational change. The model allowed to obtain a cooperativity coefficient reporting on the efficiency of the transduction step between lipid adsorption and catalytic site activation. This model can be easily applied to other phospholipid/detergent mixtures as well to other membrane proteins. The systematic quantitative evaluation of these systems could contribute to gain insight into the structure-activity relationships between proteins and lipids in biological membranes. PMID:22723977

  3. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry

    PubMed Central

    Souda, Puneet; Ryan, Christopher M.; Cramer, William A.; Whitelegge, Julian

    2011-01-01

    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein’s native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electroncapture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. PMID:21982782

  4. Effect of integral membrane proteins on the lateral mobility of plastoquinone in phosphatidylcholine proteoliposomes

    PubMed Central

    Blackwell, Mary F.; Whitmarsh, John

    1990-01-01

    Pyrene fluorescence quenching by plastoquinone was used to estimate the rate of plastoquinone lateral diffusion in soybean phosphatidylcholine proteoliposomes containing the following integral membrane proteins: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc1, and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 · 10-7 cm2 s-1 in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc1, and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration. PMID:19431774

  5. Immunoassay of C-reactive protein by hot electron induced electrochemiluminescence using integrated electrodes with hydrophobic sample confinement.

    PubMed

    Ylinen-Hinkka, T; Niskanen, A J; Franssila, S; Kulmala, S

    2011-09-19

    C-reactive protein (CRP) was determined in the concentration range 0.01-10 mg L(-1) using hot electron induced electrochemiluminescence (HECL) with devices combining both working and counter electrodes and sample confinement on a single chip. The sample area on the electrodes was defined by a hydrophobic ring, which enabled dispensing the reagents and the analyte directly on the electrode. Immunoassay of CRP by HECL using integrated electrodes is a good candidate for a high-sensitivity point-of-care CRP-test, because the concentration range is suitable, miniaturisation of the measurement system has been demonstrated and the assay method with integrated electrodes is easy to use. High-sensitivity CRP tests can be used to monitor the current state of cardiovascular disease and also to predict future cardiovascular problems in apparently healthy people. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Cell-cell contact affects membrane integrity after intracellular freezing.

    PubMed

    Acker, J P; McGann, L E

    2000-02-01

    The response of cells to freezing depends critically on the presence of an intact cell membrane. During rapid cooling, the cell plasma membrane may no longer be an effective barrier to ice propagation and can be breached by extracellular ice resulting in the nucleation of the supercooled cytoplasm. In tissues, the formation of intracellular ice is compounded by the presence of cell-cell and cell-surface interactions. Three different hamster fibroblast model systems were used to simulate structures found in organized tissues. Samples were supercooled to an experimental temperature on a cryostage and ice nucleated at the constant temperature. A dual fluorescent staining technique was used for the quantitative assessment of the integrity of the cell plasma membrane. A novel technique using the fluorescent stain SYTO was used for the detection of intracellular ice formation (IIF) in cell monolayers. The cumulative incidence of cells with a loss of membrane integrity and the cumulative incidence of IIF were determined as a function of temperature. Cells in suspension and individual attached cells showed no significant difference in the number of cells that formed intracellular ice and those that lost membrane integrity. For cells in a monolayer, with cell-cell contact, intracellular ice formation did not result in the immediate disruption of the plasma membrane in the majority of cells. This introduces the potential for minimizing damage due to IIF and for developing strategies for the cryoprotection of tissues during rapid cooling. Copyright 2000 Academic Press.

  7. Membrane composition influences the topology bias of bacterial integral membrane proteins.

    PubMed

    Bay, Denice C; Turner, Raymond J

    2013-02-01

    Small multidrug resistance (SMR) protein family members confer bacterial resistance to toxic antiseptics and are believed to function as dual topology oligomers. If dual topology is essential for SMR activity, then the topology bias should change as bacterial membrane lipid compositions alter to maintain a "neutral" topology bias. To test this hypothesis, a bioinformatic analysis of bacterial SMR protein sequences was performed to determine a membrane protein topology based on charged amino acid residues within loops, and termini regions according to the positive inside rule. Three bacterial lipid membrane parameters were examined, providing the proportion of polar lipid head group charges at the membrane surface (PLH), the relative hydrophobic fatty acid length (FAL), and the proportion of fatty acid unsaturation (FAU). Our analysis indicates that individual SMR pairs, and to a lesser extent SMR singleton topology biases, are significantly correlated to increasing PLH, FAL and FAU differences validating the hypothesis. Correlations between the topology biases of SMR proteins identified in Gram+ compared to Gram- species and each lipid parameter demonstrated a linear inverse relationship.

  8. Prokaryotic and eukaryotic integral membrane proteins have similar architecture.

    PubMed

    Gaur, Rajneesh Kumar; Natekar, Girija Arun

    2010-03-01

    Integral membrane proteins constitute a major constituent of lipid bilayer both in prokaryotes and eukaryotes. The statistical analysis was carried out to determine the bias in amino acid distribution between prokaryotic and eukaryotic integral membrane proteins (pIntMPs and eIntMPs). Our results indicate that both pIntMPs and eIntMPs demonstrate the striking similarity in amino acid distribution in their transmembrane and extramembranous region. pIntMPs have relatively greater functional importance for Gly and Asn in comparison to eIntMPs.

  9. Detection of Listeria monocytogenes by direct colony hybridization on hydrophobic grid-membrane filters by using a chromogen-labeled DNA probe.

    PubMed Central

    Peterkin, P I; Idziak, E S; Sharpe, A N

    1991-01-01

    A DNA probe specific for Listeria monocytogenes was isolated from a beta-hemolytic recombinant clone of an L. monocytogenes gene bank. It was labeled with horseradish peroxidase and used in a direct colony hybridization method on hydrophobic grid-membrane filters for the detection of the organism. Following color development of the chromogen, a commercial counter (HGMF Interpreter) was able to detect and count the organisms electronically. The method gave a positive reaction with 70 L. monocytogenes strains, while showing a negative reaction with 10 strains of other Listeria spp. and with 20 organisms of other genera. Images PMID:1901711

  10. Detection of Listeria monocytogenes by direct colony hybridization on hydrophobic grid-membrane filters by using a chromogen-labeled DNA probe.

    PubMed

    Peterkin, P I; Idziak, E S; Sharpe, A N

    1991-02-01

    A DNA probe specific for Listeria monocytogenes was isolated from a beta-hemolytic recombinant clone of an L. monocytogenes gene bank. It was labeled with horseradish peroxidase and used in a direct colony hybridization method on hydrophobic grid-membrane filters for the detection of the organism. Following color development of the chromogen, a commercial counter (HGMF Interpreter) was able to detect and count the organisms electronically. The method gave a positive reaction with 70 L. monocytogenes strains, while showing a negative reaction with 10 strains of other Listeria spp. and with 20 organisms of other genera.

  11. A bioluminescence ATP assay for estimating surface hydrophobicity and membrane damage of Escherichia coli cells treated with pulsed electric fields

    USDA-ARS?s Scientific Manuscript database

    Pulse Electric Field (PEF) treatments, a non-thermal process have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (AJ, pH 3.8) purchased from a wholesale ...

  12. Integration of lateral porous silicon membranes into planar microfluidics.

    PubMed

    Leïchlé, Thierry; Bourrier, David

    2015-02-07

    In this work, we present a novel fabrication process that enables the monolithic integration of lateral porous silicon membranes into single-layer planar microchannels. This fabrication technique relies on the patterning of local electrodes to guide pore formation horizontally within the membrane and on the use of silicon-on-insulator substrates to spatially localize porous silicon within the channel depth. The feasibility of our approach is studied by current flow analysis using the finite element method and supported by creating 10 μm long mesoporous membranes within 20 μm deep microchannels. The fabricated membranes are demonstrated to be potentially useful for dead-end microfiltration by adequately retaining 300 nm diameter beads while macromolecules such as single-stranded DNA and immunoglobulin G permeate the membrane. The experimentally determined fluidic resistance is in accordance with the theoretical value expected from the estimated pore size and porosity. The work presented here is expected to greatly simplify the integration of membranes capable of size exclusion based separation into fluidic devices and opens doors to the use of porous silicon in planar lab on a chip devices.

  13. MALDI tissue profiling of integral membrane proteins from ocular tissues.

    PubMed

    Thibault, Danielle B; Gillam, Christopher J; Grey, Angus C; Han, Jun; Schey, Kevin L

    2008-06-01

    MALDI tissue profiling and imaging have become valuable tools for rapid, direct analysis of tissues to investigate spatial distributions of proteins, potentially leading to an enhanced understanding of the molecular basis of disease. Sample preparation methods developed to date for these techniques produce protein expression profiles from predominantly hydrophilic, soluble proteins. The ability to obtain information about the spatial distribution of integral membrane proteins is critical to more fully understand their role in physiological processes, including transport, adhesion, and signaling. In this article, a sample preparation method for direct tissue profiling of integral membrane proteins is presented. Spatially resolved profiles for the abundant lens membrane proteins aquaporin 0 (AQP0) and MP20, and the retinal membrane protein opsin, were obtained using this method. MALDI tissue profiling results were validated by analysis of dissected tissue prepared by traditional membrane protein processing methods. Furthermore, direct tissue profiling of lens membrane proteins revealed age related post-translational modifications, as well as a novel modification that had not been detected using conventional tissue homogenization methods.

  14. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation.

    PubMed

    Fan, Xinfei; Zhao, Huimin; Quan, Xie; Liu, Yanming; Chen, Shuo

    2016-01-01

    Membrane filtration provides an effective solution for removing pollutants from water but is limited by serious membrane fouling. In this work, an effective approach was used to mitigate membrane fouling by integrating membrane filtration with electropolarization using an electroconductive nanocarbon-based membrane. The electropolarized membrane (EM) by alternating square-wave potentials between +1.0 V and -1.0 V with a pulse width of 60 s exhibited a permeate flux 8.1 times as high as that without electropolarization for filtering feed water containing bacteria, which confirms the ability of the EM to achieve biofouling mitigation. Moreover, the permeate flux of EM was 1.5 times as high as that without electropolarization when filtrating natural organic matter (NOM) from water, and demonstrated good performance in organic fouling mitigation with EM. Furthermore, the EM was also effective for complex fouling mitigation in filtering water containing coexisting bacteria and NOM, and presented an increased flux rate 1.9 times as high as that without electropolarization. The superior fouling mitigation performance of EM was attributed to the synergistic effects of electrostatic repulsion, electrochemical oxidation and electrokinetic behaviors. This work opens an effective avenue for membrane fouling mitigation of water-treatment membrane filtration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Membranes for the Sulfur-Iodine Integrated Laboratory Scale Demonstration

    SciTech Connect

    Frederick F. Stewart

    2007-08-01

    INL has developed polymeric membrane-based chemical separations to enable the thermochemical production of hydrogen. Major activities included studies of sulfuric acid concentration membranes, hydriodic acid concentration membranes, SO2/O2 separation membranes, potential applications of a catalyst reactor system for the decomposition of HI, and evaluation of the chemical separation needs for alternate thermochemical cycles. Membranes for the concentration of sulfuric acid were studied using pervaporation. The goal of this task was to offer the sulfur-iodine (S-I) and the hybrid sulfur (HyS) cycles a method to concentrate the sulfuric acid containing effluent from the decomposer without boiling. In this work, sulfuric acid decomposer effluent needs to be concentrated from ~50 % acid to 80 %. This task continued FY 2006 efforts to characterize water selective membranes for use in sulfuric acid concentration. In FY 2007, experiments were conducted to provide specific information, including transmembrane fluxes, separation factors, and membrane durability, necessary for proper decision making on the potential inclusion of this process into the S-I or HyS Integrated Laboratory Scale demonstration.

  16. Increased binding of a hydrophobic, photolabile probe to Escherichia coli inversely correlates to membrane potential but not adenosine 5'-triphosphate levels.

    PubMed Central

    Wolf, M K; Konisky, J

    1981-01-01

    We describe conditions for a quantitative determination of azidopyrene binding to Escherichia coli cells. In addition, we define conditions whereby irradiation of azidopyrene in the presence of cells leads to irreversible association of probe with cells. This is presumably due to the light-dependent generation of reactive nitrenes and subsequent incorporation of nitrenopyrene moieties into cellular components. These methods allowed us to determine that the amount of azidopyrene bound to cells was inversely correlated with the magnitude of the cellular membrane potential, but was not correlated with high or low adenosine 5-triphosphate levels per se. Cells bound more azidopyrene if the delta psi was low. Cell-bound azidopyrene was found to be entirely associated with the inner and outer membrane. We suggest that the decreased association of hydrophobic probes upon energization of whole cells reflects a rapid transition in structural properties of the cell envelope. PMID:7007317

  17. A class of mild surfactants that keep integral membrane proteins water-soluble for functional studies and crystallization.

    PubMed

    Hovers, Jens; Potschies, Meike; Polidori, Ange; Pucci, Bernard; Raynal, Simon; Bonneté, Françoise; Serrano-Vega, Maria J; Tate, Christopher G; Picot, Daniel; Pierre, Yves; Popot, Jean-Luc; Nehmé, Rony; Bidet, Michel; Mus-Veteau, Isabelle; Busskamp, Holger; Jung, Karl-Heinz; Marx, Andreas; Timmins, Peter A; Welte, Wolfram

    2011-04-01

    Mixed protein-surfactant micelles are used for in vitro studies and 3D crystallization when solutions of pure, monodisperse integral membrane proteins are required. However, many membrane proteins undergo inactivation when transferred from the biomembrane into micelles of conventional surfactants with alkyl chains as hydrophobic moieties. Here we describe the development of surfactants with rigid, saturated or aromatic hydrocarbon groups as hydrophobic parts. Their stabilizing properties are demonstrated with three different integral membrane proteins. The temperature at which 50% of the binding sites for specific ligands are lost is used as a measure of stability and dodecyl-β-D-maltoside ('C12-b-M') as a reference for conventional surfactants. One surfactant increased the stability of two different G protein-coupled receptors and the human Patched protein receptor by approximately 10°C compared to C12-b-M. Another surfactant yielded the highest stabilization of the human Patched protein receptor compared to C12-b-M (13°C) but was inferior for the G protein-coupled receptors. In addition, one of the surfactants was successfully used to stabilize and crystallize the cytochrome b(6 )f complex from Chlamydomonas reinhardtii. The structure was solved to the same resolution as previously reported in C12-b-M.

  18. A class of mild surfactants that keep integral membrane proteins water-soluble for functional studies and crystallization

    PubMed Central

    Hovers, Jens; Potschies, Meike; Polidori, Ange; Pucci, Bernard; Raynal, Simon; Bonneté, Françoise; Serrano-Vega, Maria J.; Tate, Christopher G.; Picot, Daniel; Pierre, Yves; Popot, Jean-Luc; Nehmé, Rony; Bidet, Michel; Mus-Veteau, Isabelle; Bußkamp, Holger; Jung, Karl-Heinz; Marx, Andreas; Timmins, Peter A.; Welte, Wolfram

    2013-01-01

    Mixed protein-surfactant micelles are used for in vitro studies and 3D crystallization when solutions of pure, monodisperse integral membrane proteins are required. However, many membrane proteins undergo inactivation when transferred from the biomembrane into micelles of conventional surfactants with alkyl chains as hydrophobic moieties. Here we describe the development of surfactants with rigid, saturated or aromatic hydrocarbon groups as hydrophobic parts. Their stabilizing properties are demonstrated with three different integral membrane proteins. The temperature at which 50% of the binding sites for specific ligands are lost is used as a measure of stability and dodecyl-β-D-maltoside (“C12-b-M”) as a reference for conventional surfactants. One surfactant increased the stability of two different G protein-coupled receptors by approximately 10°C compared to C12-b-M. Another surfactant yielded a stabilization of the human Patched protein receptor by 13°C. In addition, one of the surfactants was successfully used to stabilize and crystallize the cytochrome b6f complex from Chlamydomonas reinhardtii. The structure was solved to the same resolution as previously reported in C12-b-M. PMID:21314479

  19. Application of enzyme-linked immunosorbent assay for measurement of polychlorinated biphenyls from hydrophobic solutions: Extracts of fish and dialysates of semipermeable membrane devices: Chapter 26

    USGS Publications Warehouse

    Zajicek, James L.; Tillitt, Donald E.; Huckins, James N.; Petty, Jimmie D.; Potts, Michael E.; Nardone, David A.

    1996-01-01

    Determination of PCBs in biological tissue extracts by enzyme-linked immunosorbent assays (ELISAs) can be problematic, since the hydrophobic solvents used for their extraction and isolation from interfering biochemicals have limited compatibility with the polar solvents (e.g. methanol/water) and the immunochemical reagents used in ELISA. Our studies of these solvent effects indicate that significant errors can occur when microliter volumes of PCB containing extracts, in hydrophobic solvents, are diluted directly into methanol/water diluents. Errors include low recovery and excess variability among sub-samples taken from the same sample dilution. These errors are associated with inhomogeneity of the dilution, which is readily visualized by the use of a hydrophobic dye, Solvent Blue 35. Solvent Blue 35 is also used to visualize the evaporative removal of hydrophobic solvent and the dissolution of the resulting PCB/dye residue by pure methanol and 50% (v/v) methanol/water, typical ELISA diluents. Evaporative removal of isooctane by an ambient temperature nitrogen purge with subsequent dissolution in 100% methanol gives near quantitative recovery of model PCB congeners. We also compare concentrations of total PCBs from ELISA (ePCB) to their corresponding concentrations determined from capillary gas chromatography (GC) in selected fish sample extracts and dialysates of semipermeable membrane device (SPMD) passive samplers using an optimized solvent exchange procedure. Based on Aroclor 1254 calibrations, ePCBs (ng/mL) determined in fish extracts are positively correlated with total PCB concentrations (ng/mL) determined by GC: ePCB = 1.16 * total-cPCB - 5.92. Measured ePCBs (ng/3 SPMDs) were also positively correlated (r2 = 0.999) with PCB totals (ng/3 SPMDs) measured by GC for dialysates of SPMDs: ePCB = 1.52 * total PCB - 212. Therefore, this ELISA system for PCBs can be a rapid alternative to traditional GC analyses for determination of PCBs in extracts of biota or in

  20. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.

    PubMed

    Fried, Eric S; Luchan, Joshua; Gilchrist, M Lane

    2016-04-12

    Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays.

  1. Direct determination of hydration in the interdigitated and ripple phases of dihexadecylphosphatidylcholine: hydration of a hydrophobic cavity at the membrane/water interface.

    PubMed Central

    Channareddy, S; Janes, N

    1999-01-01

    Hydrophobic cavities at the membrane/water interface are stably expressed in interdigitated membranes. The nonsolvent water associated with 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (Hxdc(2)GroPCho) in the interdigitated (L(beta)I) and ripple (P(beta')) states and with its ester analogue 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (Pam(2)PtdCho) in the gel (L(beta')) and P(beta') states are determined directly. In the L(beta)I state at lower temperatures (4-20 degrees C), 16-18 water molecules per phospholipid are bound, consistent with water-filled cavities and hydrated headgroups. At 28 degrees C, the nonsolvent water decreases to 12, consistent with a reduction of the cavity depth by 0.34 nm due to increased chain interpenetration. This geometric lability may be a common feature of hydrophobic cavities. Only 5.4 waters are bound in the noninterdigitated P(beta') (40 degrees C), whereas the ester bound 8.1 waters in its P(beta') (37 degrees C), a difference of about one water per ester carbonyl. The relative dehydration of the ether linkage is consistent with it promoting more densely packed structures, which in turn, accounts for its ability to interdigitate. PMID:10512824

  2. Direct determination of hydration in the interdigitated and ripple phases of dihexadecylphosphatidylcholine: hydration of a hydrophobic cavity at the membrane/water interface.

    PubMed

    Channareddy, S; Janes, N

    1999-10-01

    Hydrophobic cavities at the membrane/water interface are stably expressed in interdigitated membranes. The nonsolvent water associated with 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (Hxdc(2)GroPCho) in the interdigitated (L(beta)I) and ripple (P(beta')) states and with its ester analogue 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (Pam(2)PtdCho) in the gel (L(beta')) and P(beta') states are determined directly. In the L(beta)I state at lower temperatures (4-20 degrees C), 16-18 water molecules per phospholipid are bound, consistent with water-filled cavities and hydrated headgroups. At 28 degrees C, the nonsolvent water decreases to 12, consistent with a reduction of the cavity depth by 0.34 nm due to increased chain interpenetration. This geometric lability may be a common feature of hydrophobic cavities. Only 5.4 waters are bound in the noninterdigitated P(beta') (40 degrees C), whereas the ester bound 8.1 waters in its P(beta') (37 degrees C), a difference of about one water per ester carbonyl. The relative dehydration of the ether linkage is consistent with it promoting more densely packed structures, which in turn, accounts for its ability to interdigitate.

  3. A short C-terminal tail prevents mis-targeting of hydrophobic mitochondrial membrane proteins to the ER.

    PubMed

    Reithinger, Johannes H; Yim, Chewon; Park, Kwangjin; Björkholm, Patrik; von Heijne, Gunnar; Kim, Hyun

    2013-11-01

    Sdh3/Shh3, a subunit of mitochondrial succinate dehydrogenase, contains transmembrane domains with a hydrophobicity comparable to that of endoplasmic reticulum (ER) proteins. Here, we show that a C-terminal reporter fusion to Sdh3/Shh3 results in partial mis-targeting of the protein to the ER. This mis-targeting is mediated by the signal recognition particle (SRP) and depends on the length of the C-terminal tail. These results imply that if nuclear-encoded mitochondrial proteins contain strongly hydrophobic transmembrane domains and a long C-terminal tail, they have the potential to be recognized by SRP and mis-targeted to the ER. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Functional Reconstitution of the Integral Membrane Enzyme, Isoprenylcysteine Carboxyl Methyltransferase, in Synthetic Bolalipid Membrane Vesicles†

    PubMed Central

    Febo-Ayala, Wilma; Morera-Félix, Shakira L.

    2008-01-01

    temperature of the lipid or the temperature of the assay, the low activity observed in 75–100 mol% C20BAS membranes can be attributed to hydrophobic mismatch between this bolalipid and the hydrophobic surface of Ste14p. PMID:17144661

  5. Multiple Distinct Targeting Signals in Integral Peroxisomal Membrane Proteins

    PubMed Central

    Jones, Jacob M.; Morrell, James C.; Gould, Stephen J.

    2001-01-01

    Peroxisomal proteins are synthesized on free polysomes and then transported from the cytoplasm to peroxisomes. This process is mediated by two short well-defined targeting signals in peroxisomal matrix proteins, but a well-defined targeting signal has not yet been described for peroxisomal membrane proteins (PMPs). One assumption in virtually all prior studies of PMP targeting is that a given protein contains one, and only one, distinct targeting signal. Here, we show that the metabolite transporter PMP34, an integral PMP, contains at least two nonoverlapping sets of targeting information, either of which is sufficient for insertion into the peroxisome membrane. We also show that another integral PMP, the peroxin PEX13, also contains two independent sets of peroxisomal targeting information. These results challenge a major assumption of most PMP targeting studies. In addition, we demonstrate that PEX19, a factor required for peroxisomal membrane biogenesis, interacts with the two minimal targeting regions of PMP34. Together, these results raise the interesting possibility that PMP import may require novel mechanisms to ensure the solubility of integral PMPs before their insertion in the peroxisome membrane, and that PEX19 may play a central role in this process. PMID:11402059

  6. Direct ultrafiltration performance and membrane integrity monitoring by microbiological analysis.

    PubMed

    Ferrer, O; Casas, S; Galvañ, C; Lucena, F; Bosch, A; Galofré, B; Mesa, J; Jofre, J; Bernat, X

    2015-10-15

    The feasibility of substituting a conventional pre-treatment, consisting of dioxi-chlorination, coagulation/flocculation, settling and sand filtration, of a drinking water treatment plant (DWTP) by direct ultrafiltration (UF) has been assessed from a microbiological standpoint. Bacterial indicators, viral indicators and human viruses have been monitored in raw river, ultrafiltered and conventionally pre-treated water samples during two years. Direct UF has proven to remove bacterial indicators quite efficiently and to a greater extent than the conventional process does. Nevertheless, the removal of small viruses such as some small bacteriophages and human viruses (e.g. enteroviruses and noroviruses) is lower than the current conventional pre-treatment. Membrane integrity has been assessed during two years by means of tailored tests based on bacteriophages with different properties (MS-2, GA and PDR-1) and bacterial spores (Bacillus spores). Membrane integrity has not been compromised despite the challenging conditions faced by directly treating raw river water. Bacteriophage PDR-1 appears as a suitable microbe to test membrane integrity, as its size is slightly larger than the considered membrane pore size. However, its implementation at full scale plant is still challenging due to difficulties in obtaining enough phages for its seeding.

  7. Binding of Sudan II and IV to lecithin liposomes and E. coli membranes: insights into the toxicity of hydrophobic azo dyes

    PubMed Central

    Li, Lu; Gao, Hong-Wen; Ren, Jiao-Rong; Chen, Ling; Li, Yu-Cheng; Zhao, Jian-Fu; Zhao, He-Ping; Yuan, Yuan

    2007-01-01

    Background Sudan red compounds are hydrophobic azo dyes, still used as food additives in some countries. However, they have been shown to be unsafe, causing tumors in the liver and urinary bladder in rats. They have been classified as category 3 human carcinogens by the International Agency for Research on Cancer. A number of hypotheses that could explain the mechanism of carcinogenesis have been proposed for dyes similar to the Sudan red compounds. Traditionally, investigations of the membrane toxicity of organic substances have focused on hydrocarbons, e.g. polycyclic aromatic hydrocarbons (PAHs), and DDT. In contrast to hydrocarbons, Sudan red compounds contain azo and hydroxy groups, which can form hydrogen bonds with the polar head groups of membrane phospholipids. Thus, entry may be impeded. They could have different toxicities from other lipophilic hydrocarbons. The available data show that because these compounds are lipophilic, interactions with hydrophobic parts of the cell are important for their toxicity. Lipophilic compounds accumulate in the membrane, causing expansion of the membrane surface area, inhibition of primary ion pumps and increased proton permeability. Results This work investigated the interactions of the amphiphilic compounds Sudan II and IV with lecithin liposomes and live Escherichia coli (E. coli). Sudan II and IV binding to lecithin liposomes and live E. coli corresponds to the Langmuir adsorption isotherm. In the Sudan red compounds – lecithin liposome solutions, the binding ratio of Sudan II to lecithin is 1/31 and that of Sudan IV to 1/314. The binding constant of the Sudan II-lecithin complex is 1.75 × 104 and that of the Sudan IV-lecithin complex 2.92 × 105. Besides, the influences of pH, electrolyte and temperature were investigated and analyzed quantitatively. In the Sudan red compounds – E.coli mixture, the binding ratios of Sudan II and Sudan IV to E.coli membrane phospholipid are 1/29 and 1/114. The binding constants

  8. Comparison of methods for assessing integrity of equine sperm membranes.

    PubMed

    Foster, M L; Love, C C; Varner, D D; Brinsko, S P; Hinrichs, K; Teague, S; Lacaze, K; Blanchard, T L

    2011-07-15

    Sperm membrane integrity (SMI) is thought to be an important measure of stallion sperm quality. The objective was to compare three methods for evaluating SMI: flow cytometry using SYBR-14/propidium iodide (PI) stain; an automated cell counting device using PI stain; and eosin-nigrosin stain. Raw equine semen was subjected to various treatments containing 20 to 80% seminal plasma in extender, with differing sperm concentrations, to simulate spontaneous loss of SMI. The SMI was assessed immediately, and after 1 and 2 d of cooled storage. Agreement between methods was determined according to Bland-Altman methodology. Eosin-nigrosin staining yielded higher (2%) overall mean values for SMI than did flow cytometry. Flow cytometry yielded higher (6%) overall mean values for SMI than did the automated cell counter. As percentage of membrane-damaged sperm increased, agreement of SMI measurement between methods decreased. When semen contained 50-79% membrane-intact sperm, the 95% limits of agreement between SMI determined by flow cytometry and eosin-nigrosin staining were greater (range = -26.9 to 24.3%; i.e., a 51.2% span) than for SMI determined by flow cytometry and the automated cell counter (range = -3.1 to 17.0%; 20.1% span). When sperm populations contained <50% membrane-intact sperm, the 95% limits of agreement between SMI determined by flow cytometry and eosin-nigrosin staining were greater (range = -35.9 to 19.0%; 54.9% span) than for SMI determined by flow cytometry and the automated cell counter (range = -11.6 to 28.7%; 40.3% span). We concluded that eosin-nigrosin staining assessments of percent membrane-intact sperm agreed less with flow cytometry when <80% of sperm had intact membranes, whereas automated cell counter assessments of percent membrane-intact sperm agreed less with flow cytometry when <30% of sperm had intact membranes.

  9. The trans-membrane domain of Bcl-2α, but not its hydrophobic cleft, is a critical determinant for efficient IP3 receptor inhibition

    PubMed Central

    Ivanova, Hristina; Ritaine, Abigael; Wagner, Larry; Luyten, Tomas; Shapovalov, George; Welkenhuyzen, Kirsten; Seitaj, Bruno; Monaco, Giovanni; De Smedt, Humbert; Prevarskaya, Natalia; Yule, David I.; Parys, Jan B.; Bultynck, Geert

    2016-01-01

    The anti-apoptotic Bcl-2 protein is emerging as an efficient inhibitor of IP3R function, contributing to its oncogenic properties. Yet, the underlying molecular mechanisms remain not fully understood. Using mutations or pharmacological inhibition to antagonize Bcl-2's hydrophobic cleft, we excluded this functional domain as responsible for Bcl-2-mediated IP3Rs inhibition. In contrast, the deletion of the C-terminus, containing the trans-membrane domain, which is only present in Bcl-2α, but not in Bcl-2β, led to impaired inhibition of IP3R-mediated Ca2+ release and staurosporine-induced apoptosis. Strikingly, the trans-membrane domain was sufficient for IP3R binding and inhibition. We therefore propose a novel model, in which the Bcl-2's C-terminus serves as a functional anchor, which beyond mere ER-membrane targeting, underlies efficient IP3R inhibition by (i) positioning the BH4 domain in the close proximity of its binding site on IP3R, thus facilitating their interaction; (ii) inhibiting IP3R-channel openings through a direct interaction with the C-terminal region of the channel downstream of the channel-pore. Finally, since the hydrophobic cleft of Bcl-2 was not involved in IP3R suppression, our findings indicate that ABT-199 does not interfere with IP3R regulation by Bcl-2 and its mechanism of action as a cell-death therapeutic in cancer cells likely does not involve Ca2+ signaling. PMID:27494888

  10. An integrated process: ester synthesis in an enzymatic membrane reactor and water sorption.

    PubMed

    Trusek-Holownia, Anna; Noworyta, Andrzej

    2007-05-31

    In the case of such reactions as ester synthesis, water is produced during the reaction. Because these reactions are carried out in hydrophobic solvents an additional (water) phase in the system must not be allowed, i.e. the concentration of water saturation in the organic solvent should not be exceeded. In such a case, the reaction kinetics and product equilibrium concentration undergo undesirable changes because of the partition coefficient of the components and hampered process of product separation. Hence, removal of the water produced in the reaction determines whether the process is successful or not. For this purpose, the integrated process with water sorption in the column with molecular sieves was applied. Integration of the process of synthesis and dehydration of a reaction phase, in which a biocatalyst is suspended and not dissolved as in water solutions, requires holding up of the catalyst in the reactor before directing the stream of reaction mixture to dehydration process. This hold-up and a possibility of multiple use of the catalyst may be accomplished by using a separating barrier, e.g. an ultrafiltration membrane or by permanent fixing of the catalyst to the matrix, e.g. a polymeric membrane. The efficiency and activity of a biocatalyst (lipase CAL-B) immobilized on a polymer membrane by sorption and chemical binding, were determined. A subject of study was the synthesis of geranyl acetate, one of the most known aromatic compound. A hydrophobic (polypropylene) matrix was shown to be a much better carrier in the reactions performed in an organic solvent than a hydrophilic (polyamide) membrane being tested. The reaction kinetics of geranyl acetate synthesis with the use of geraniol and acetic acid as substrates, was described by the equation defining the "Ping-Pong Bi Bi" mechanism that was related additionally to the inhibition of a substrate (acetic acid). The following constants of kinetic equation were obtained k(3)(')=0.344 mol g(-1)h(-1), K

  11. Integral membrane protein interaction with Triton cytoskeletons of erythrocytes.

    PubMed

    Sheetz, M P

    1979-10-19

    The organization of erythrocyte membrane lipids and proteins has been studied following the release of cytoplasmic components with the non-ionic detergent Triton X-100. After detergent extraction, a detergent-resistant complex called the erythrocyte cytoskeleton is separated from detergent, solubilized lipid and protein by sucrose buoyant density sedimentation. In cytoskeletons prepared under isotonic conditions all of the major erythrocyte membrane proteins are retained except for the integral protein, glycophorin, which is quantitatively solubilized and another integral glycoprotein, band 3, which is only 60% removed. When cytoskeletons are prepared in hypertonic KCl solutions, band 3 is fully solubilized along with bands 2.1 and 4.2 and several minor components. The resulting cytoskeletons have the same morphology as those prepared in isotonic buffer but they are composed of only three major peripheral proteins, spectrin, actin and band 4.1. We have designated this peripheral protein complex the 'shell' of the erythrocyte membrane, and have shown that the attachment of band 3 to the shell satisfies the criteria for a specific interaction. Although Triton did affect erythrocyte shape, cytoskeleton lipid content and the activity of membrane proteases, there was no indication that Triton altered the attachment of band 3 to the shell. We suggest that band 3 attaches to the shell as part of a ternary complex of bands 2.1, 3 and 4.2.

  12. Transposome mutagenesis of an integral membrane transporter in Corynebacterium matruchotii.

    PubMed

    Wang, Cindy; Hayes, Barry; Vestling, Martha M; Takayama, Kuni

    2006-02-17

    A transposon-5 insertion library of Corynebacterium matruchotii ATCC14266 was generated and screened for mutants with altered corynomycolic acid content. One of these designated 319 mutants showed an interruption of a gene encoding an integral membrane protein. MALDI mass spectra of trehalose monocorynomycolate (TMCM), trehalose dicorynomycolate, and methyl corynomycolates derived from cell wall arabinogalactan-corynomycolate showed that these lipids from the mutant contained a lower amount of short-chain (C24 to C34) and much greater amount of long-chain (primarily C(36:2)) corynomycolic acids than the wild type. An analysis of mRNA demonstrated that the integral membrane protein and ATP-binding cassette transporter are transcriptionally coupled. These results suggested that the proteins/enzymes encoded by the membrane transporter gene locus preferably move short-chain corynomycolic acids from the cytoplasm across the membrane bilayer to the periplasmic space where the synthesis of TMCM is thought to occur. This is the first evidence linking corynomycolic acid to a transporter gene locus.

  13. Disrupted plasma membrane localization and loss of function reveal regions of human equilibrative nucleoside transporter 1 involved in structural integrity and activity.

    PubMed

    Nivillac, Nicole M I; Wasal, Karanvir; Villani, Daniela F; Naydenova, Zlatina; Hanna, W J Brad; Coe, Imogen R

    2009-10-01

    Human Equilibrative Nucleoside Transporter 1 (hENT1) is an integral membrane protein that transports nucleosides and analog drugs across cellular membranes. Very little is known about intracellular processing and localization of hENT1. Here we show that disruption of a highly conserved triplet (PWN) near the N-terminus, or the last eight C-terminal residues (two hydrophobic triplets separated by a positive arginine) result in loss of plasma membrane localization and/or transport function. To understand the role of specific residues within these regions, we studied the localization patterns of N- or C-terminal deletion and/or substitution mutants of GFP-hENT1 using confocal microscopy. Quantification of GFP-hENT1 (mutant and wildtype) protein at the plasma membrane was conducted using nitrobenzylthioinosine (NBTI) binding. Functionality of the GFP-hENT1 mutants was determined by heterologous expression in Xenopus laevis oocytes followed by measurement of uridine uptake. Mutation of the proline within the PWN motif disrupts plasma membrane localization. C-terminal mutations (primarily within the hydrophobic triplets) lead to hENT1 retention within the cell (e.g. in the ER). Some mutants still localize to the plasma membrane but show reduced transport activity. These data suggest that these two regions contribute to the structural integrity and thus correct processing and function of hENT1.

  14. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    PubMed Central

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  15. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature.

    PubMed

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-02-19

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons.

  16. Antimonide-based membranes synthesis integration and strain engineering

    PubMed Central

    Anwar, Farhana; Klein, Brianna A.; Rasoulof, Amin; Dawson, Noel M.; Schuler-Sandy, Ted; Deneke, Christoph F.; Ferreira, Sukarno O.; Cavallo, Francesca; Krishna, Sanjay

    2017-01-01

    Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5 μm and lateral sizes from 24×24μm2 to 1×1 cm2. Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to ∼3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range. PMID:27986953

  17. Antimonide-based membranes synthesis integration and strain engineering.

    PubMed

    Zamiri, Marziyeh; Anwar, Farhana; Klein, Brianna A; Rasoulof, Amin; Dawson, Noel M; Schuler-Sandy, Ted; Deneke, Christoph F; Ferreira, Sukarno O; Cavallo, Francesca; Krishna, Sanjay

    2017-01-03

    Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5 [Formula: see text]m and lateral sizes from [Formula: see text]m(2) to [Formula: see text] cm(2) Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to [Formula: see text]3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range.

  18. Association of dystrophin and an integral membrane glycoprotein.

    PubMed

    Campbell, K P; Kahl, S D

    1989-03-16

    Duchenne muscular dystrophy (DMD) is caused by a defective gene found on the X-chromosome. Dystrophin is encoded by the DMD gene and represents about 0.002% of total muscle protein. Immunochemical studies have shown that dystrophin is localized to the sarcolemma in normal muscle but is absent in muscle from DMD patients. Many features of the predicted primary structure of dystrophin are shared with membrane cytoskeletal proteins, but the precise function of dystrophin in muscle is unknown. Here we report the first isolation of dystrophin from digitonin-solubilized skeletal muscle membranes using wheat germ agglutinin (WGA)-Sepharose. We find that dystrophin is not a glycoprotein but binds to WGA-Sepharose because of its tight association with a WGA-binding glycoprotein. The association of dystrophin with this glycoprotein is disrupted by agents that dissociate cytoskeletal proteins from membranes. We conclude that dystrophin is linked to an integral membrane glycoprotein in the sarcolemma. Our results indicate that the function of dystrophin could be to link this glycoprotein to the underlying cytoskeleton and thus help either to preserve membrane stability or to keep the glycoprotein non-uniformly distributed in the sarcolemma.

  19. Conjugated carbon monolayer membranes: methods for synthesis and integration.

    PubMed

    Unarunotai, Sakulsuk; Murata, Yuya; Chialvo, Cesar E; Mason, Nadya; Petrov, Ivan; Nuzzo, Ralph G; Moore, Jeffrey S; Rogers, John A

    2010-03-12

    Monolayer membranes of conjugated carbon represent a class of nanomaterial with demonstrated uses in various areas of electronics, ranging from transparent, flexible, and stretchable thin film conductors, to semiconducting materials in moderate and high-performance field-effect transistors. Although graphene represents the most prominent example, many other more structurally and chemically diverse systems are also of interest. This article provides a review of demonstrated synthetic and integration strategies, and speculates on future directions for the field.

  20. Ethanol fermentation integrated with PDMS composite membrane: An effective process.

    PubMed

    Fu, Chaohui; Cai, Di; Hu, Song; Miao, Qi; Wang, Yong; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-01-01

    The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

    PubMed Central

    Muralikumar, Shalini; Mahalakshmi, B; Lily Therese, K; Madhavan, HN; Alameen, Mohamed; Thirumudi, Indhuja

    2016-01-01

    Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins—namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis. PMID:27445648

  2. Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1).

    PubMed

    Vetrivel, Umashankar; Muralikumar, Shalini; Mahalakshmi, B; Lily Therese, K; Madhavan, H N; Alameen, Mohamed; Thirumudi, Indhuja

    2016-06-01

    Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

  3. High-Resolution Coarse-Grained Model of Hydrated Anion-Exchange Membranes that Accounts for Hydrophobic and Ionic Interactions through Short-Ranged Potentials.

    PubMed

    Lu, Jibao; Jacobson, Liam C; Perez Sirkin, Yamila A; Molinero, Valeria

    2017-01-10

    Molecular simulations provide a versatile tool to study the structure, anion conductivity, and stability of anion-exchange membrane (AEM) materials and can provide a fundamental understanding of the relation between structure and property of membranes that is key for their use in fuel cells and other applications. The quest for large spatial and temporal scales required to model the multiscale structure and transport processes in the polymer electrolyte membranes, however, cannot be met with fully atomistic models, and the available coarse-grained (CG) models suffer from several challenges associated with their low-resolution. Here, we develop a high-resolution CG force field for hydrated polyphenylene oxide/trimethylamine chloride (PPO/TMACl) membranes compatible with the mW water model using a hierarchical parametrization approach based on Uncertainty Quantification and reference atomistic simulations modeled with the Generalized Amber Force Field (GAFF) and TIP4P/2005 water. The parametrization weighs multiple properties, including coordination numbers, radial distribution functions (RDFs), self-diffusion coefficients of water and ions, relative vapor pressure of water in the solution, hydration enthalpy of the tetramethylammonium chloride (TMACl) salt, and cohesive energy of its aqueous solutions. We analyze the interdependence between properties and address how to compromise between the accuracies of the properties to achieve an overall best representability. Our optimized CG model FFcomp quantitatively reproduces the diffusivities and RDFs of the reference atomistic model and qualitatively reproduces the experimental relative vapor pressure of water in solutions of tetramethylammonium chloride. These properties are of utmost relevance for the design and operation of fuel cell membranes. To our knowledge, this is the first CG model that includes explicitly each water and ion and accounts for hydrophobic, ionic, and intramolecular interactions explicitly

  4. Functional dissection of SseF, a membrane-integral effector protein of intracellular Salmonella enterica.

    PubMed

    Müller, Petra; Chikkaballi, Deepak; Hensel, Michael

    2012-01-01

    During intracellular life, the bacterial pathogen Salmonella enterica translocates a complex cocktail of effector proteins by means of the SPI2-encoded type III secretions system. The effectors jointly modify the endosomal system and vesicular transport in host cells. SseF and SseG are two effectors encoded by genes within Salmonella Pathogenicity Island 2 and both effector associate with endosomal membranes and microtubules and are involved in the formation of Salmonella-induced filaments. Our previous deletional analyses identified protein domains of SseF required for the effector function. Here we present a detailed mutational analysis that identifies a short hydrophobic motif as functionally essential. We demonstrate that SseF and SseG are still functional if translocated as a single fusion protein, but also mediate effector function if translocated in cells co-infected with sseF and sseG strains. SseF has characteristics of an integral membrane protein after translocation into host cells.

  5. Rapid hydrophobic grid membrane filter-enzyme-labeled antibody procedure for identification and enumeration of Escherichia coli O157 in foods.

    PubMed Central

    Todd, E C; Szabo, R A; Peterkin, P; Sharpe, A N; Parrington, L; Bundle, D; Gidney, M A; Perry, M B

    1988-01-01

    An O-antigen-specific monoclonal antibody, labeled by horseradish peroxidase-protein A, was used in a hydrophobic grid membrane filter-enzyme-labeled antibody method for rapid detection of Escherichia coli O157 in foods. The method yielded presumptive identification within 24 h and recovered, on average, 95% of E. coli O157:H7 artificially inoculated into comminuted beef, veal, pork, chicken giblets, and chicken carcass washings. In food samples from two outbreaks involving E. coli O157:H7, the organism was isolated at levels of up to 10(3)/g. The lower limit of sensitivity was 10 E. coli O157 per g of meat. Specific typing for E. coli O157:H7 can be achieved through staining with labeled H7 antiserum or tube agglutination. Images PMID:3060018

  6. Solid-state NMR structures of integral membrane proteins.

    PubMed

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.

  7. The Zeamine Antibiotics Affect the Integrity of Bacterial Membranes

    PubMed Central

    Masschelein, Joleen; Clauwers, Charlien; Stalmans, Karen; Nuyts, Koen; De Borggraeve, Wim; Briers, Yves; Aertsen, Abram; Michiels, Chris W.

    2014-01-01

    The zeamines (zeamine, zeamine I, and zeamine II) constitute an unusual class of cationic polyamine-polyketide-nonribosomal peptide antibiotics produced by Serratia plymuthica RVH1. They exhibit potent bactericidal activity, killing a broad range of Gram-negative and Gram-positive bacteria, including multidrug-resistant pathogens. Examination of their specific mode of action and molecular target revealed that the zeamines affect the integrity of cell membranes. The zeamines provoke rapid release of carboxyfluorescein from unilamellar vesicles with different phospholipid compositions, demonstrating that they can interact directly with the lipid bilayer in the absence of a specific target. DNA, RNA, fatty acid, and protein biosynthetic processes ceased simultaneously at subinhibitory levels of the antibiotics, presumably as a direct consequence of membrane disruption. The zeamine antibiotics also facilitated the uptake of small molecules, such as 1-N-phenylnaphtylamine, indicating their ability to permeabilize the Gram-negative outer membrane (OM). The valine-linked polyketide moiety present in zeamine and zeamine I was found to increase the efficiency of this process. In contrast, translocation of the large hydrophilic fluorescent peptidoglycan binding protein PBDKZ-GFP was not facilitated, suggesting that the zeamines cause subtle perturbation of the OM rather than drastic alterations or defined pore formation. At zeamine concentrations above those required for growth inhibition, membrane lysis occurred as indicated by time-lapse microscopy. Together, these findings show that the bactericidal activity of the zeamines derives from generalized membrane permeabilization, which likely is initiated by electrostatic interactions with negatively charged membrane components. PMID:25452285

  8. The entropic forces and dynamic integrity of single file water in hydrophobic nanotube confinements

    SciTech Connect

    Sahu, Pooja; Ali, Sk. M.

    2015-11-14

    Water in nanotube exhibits remarkably different properties from the bulk phase, which can be exploited in various nanoconfinement based technologies. The properties of water within nanotube can be further tuned by varying the nanotube electrostatics and functionalization of nanotube ends. Here, therefore, we investigate the effect of quantum partial charges and carbon nanotube (CNT) termination in terms of associated entropic forces. An attempt has been made to correlate the entropic forces with various dynamical and structural properties. The simulated structural features are consistent with general theoretical aspects, in which the interfacial water molecules at H terminated CNT are found to be distributed in a different way as compared to other CNTs. The rotational entropy components for different cases of CNTs are well corroborated by the decay time of hydrogen bond (HB) correlation functions. A part of this event has been explained in terms of orientation of water molecules in the chain, i.e., the change in direction of dipole moment of water molecules in the chain and it has been revealed that the HBs of CNT confined water molecules show long preserving correlation if their rotations inside CNT are restricted. Furthermore, the translational entropy components are rationally integrated with the differing degree of translational constraints, added by the CNTs. To the best of our information, perhaps this is the first study where the thermodynamic effects introduced by H-termination and induced dipole of CNT have been investigated. Additionally, we present a bridge relation between “translational diffusivity and configurational entropy” for water transport from bulk phase to inside CNTs.

  9. The entropic forces and dynamic integrity of single file water in hydrophobic nanotube confinements.

    PubMed

    Sahu, Pooja; Ali, Sk M

    2015-11-14

    Water in nanotube exhibits remarkably different properties from the bulk phase, which can be exploited in various nanoconfinement based technologies. The properties of water within nanotube can be further tuned by varying the nanotube electrostatics and functionalization of nanotube ends. Here, therefore, we investigate the effect of quantum partial charges and carbon nanotube (CNT) termination in terms of associated entropic forces. An attempt has been made to correlate the entropic forces with various dynamical and structural properties. The simulated structural features are consistent with general theoretical aspects, in which the interfacial water molecules at H terminated CNT are found to be distributed in a different way as compared to other CNTs. The rotational entropy components for different cases of CNTs are well corroborated by the decay time of hydrogen bond (HB) correlation functions. A part of this event has been explained in terms of orientation of water molecules in the chain, i.e., the change in direction of dipole moment of water molecules in the chain and it has been revealed that the HBs of CNT confined water molecules show long preserving correlation if their rotations inside CNT are restricted. Furthermore, the translational entropy components are rationally integrated with the differing degree of translational constraints, added by the CNTs. To the best of our information, perhaps this is the first study where the thermodynamic effects introduced by H-termination and induced dipole of CNT have been investigated. Additionally, we present a bridge relation between "translational diffusivity and configurational entropy" for water transport from bulk phase to inside CNTs.

  10. SCREENING BIOAVAILABLE HYDROPHOBIC TOXICANTS IN SURFACE WATERS WITH SEMIPERMEABLE MEMBRANE DEVICES: ROLE OF INHERENT OLEIC ACID IN TOXICITY EVALUATIONS

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) were deployed for 4 weeks in two rivers in Lithuania, The SPMD dialysates were tested in the Microtox assay and, surprisingly, the sample from the relatively clean (U) over bar la River exhibited three times more toxicity than the sample fro...

  11. ARAMEMNON, a Novel Database for Arabidopsis Integral Membrane Proteins1

    PubMed Central

    Schwacke, Rainer; Schneider, Anja; van der Graaff, Eric; Fischer, Karsten; Catoni, Elisabetta; Desimone, Marcelo; Frommer, Wolf B.; Flügge, Ulf-Ingo; Kunze, Reinhard

    2003-01-01

    A specialized database (DB) for Arabidopsis membrane proteins, ARAMEMNON, was designed that facilitates the interpretation of gene and protein sequence data by integrating features that are presently only available from individual sources. Using several publicly available prediction programs, putative integral membrane proteins were identified among the approximately 25,500 proteins in the Arabidopsis genome DBs. By averaging the predictions from seven programs, approximately 6,500 proteins were classified as transmembrane (TM) candidate proteins. Some 1,800 of these contain at least four TM spans and are possibly linked to transport functions. The ARAMEMNON DB enables direct comparison of the predictions of seven different TM span computation programs and the predictions of subcellular localization by eight signal peptide recognition programs. A special function displays the proteins related to the query and dynamically generates a protein family structure. As a first set of proteins from other organisms, all of the approximately 700 putative membrane proteins were extracted from the genome of the cyanobacterium Synechocystis sp. and incorporated in the ARAMEMNON DB. The ARAMEMNON DB is accessible at the URL http://aramemnon.botanik.uni-koeln.de. PMID:12529511

  12. Role of cardiolipin in stability of integral membrane proteins.

    PubMed

    Musatov, Andrej; Sedlák, Erik

    2017-08-23

    Cardiolipin (CL) is a unique phospholipid with a dimeric structure having four acyl chains and two phosphate groups found almost exclusively in certain membranes of bacteria and of mitochondria of eukaryotes. CL interacts with numerous proteins and has been implicated in function and stabilization of several integral membrane proteins (IMPs). While both functional and stabilization roles of CL in IMPs has been generally acknowledged, there are, in fact, only limited number of quantitative analysis that support this function of CL. This is likely caused by relatively complex determination of parameters characterizing stability of IMPs and particularly intricate assessment of role of specific PLs such as CL in IMPs stability. This review aims to summarize quantitative findings regarding stabilization role of CL in IMPs reported up to now. Copyright © 2017 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.

  13. A Link Between Integral Membrane Protein Expression and Simulated Integration Efficiency

    PubMed Central

    Müller, Axel; Tiemann, Katrin; Saladi, Shyam M.; Galimidi, Rachel P.; Zhang, Bin; Clemons, William M.; Miller, Thomas F.

    2016-01-01

    Integral membrane proteins (IMP) control the flow of information and nutrients across cell membranes, yet IMP mechanistic studies are hindered by difficulties in expression. We investigate this issue by addressing the connection between IMP sequence and observed expression levels. For homologs of the IMP TatC, observed expression levels widely vary and are affected by small changes in protein sequence. The effect of sequence changes on experimentally observed expression levels strongly correlates with the simulated integration efficiency obtained from coarse-grained modeling, which is directly confirmed using an in vivo assay. Furthermore, mutations that improve the simulated integration efficiency likewise increase the experimentally observed expression levels. Demonstration of these trends in both Escherichia coli and Mycobacterium smegmatis suggests that the results are general to other expression systems. This work suggests that IMP integration is a determinant for successful expression, raising the possibility of controlling IMP expression via rational design. PMID:27524616

  14. Effects of photooxidation on membrane integrity in Salix nigra seeds

    PubMed Central

    Roqueiro, Gonzalo; Facorro, Graciela B.; Huarte, Mónica G.; Rubín de Celis, Emilio; García, Fernando; Maldonado, Sara; Maroder, Horacio

    2010-01-01

    Background and Aims Salix nigra seeds are desiccation-tolerant, as are orthodox seeds, although in contrast to other orthodox seeds they lose viability in a few weeks at room temperature. They also differ in that the chloroplasts of the embryo tissues conserve their chlorophyll and endomembranes. The aim of this paper was to investigate the role of chlorophyll in seed deterioration. Methods Seeds were aged at different light intensities and atmospheric conditions. Mean germination time and normal and total germination were evaluated. The formation of free radicals was assessed using electronic spin resonance spectroscopy, and changes in the fatty acid composition from phospholipids, galactolipids and triglycerides using gas–liquid chromatography. Membrane integrity was studied with electronic spin resonance spin probe techniques, electrolyte leakage and transmission electron microscopy. Key Results Light and oxygen played an important role in free-radical generation, causing a decrease in normal germination and an increase in mean germination time. Both indices were associated with a decrease in polyunsaturated fatty acids derived from membrane lipids as phospholipids and galactolipids. The detection of damage in thylakoid membranes and an increase in plasmalemma permeability were consistent with the decrease in both types of lipids. Triglycerides remained unchanged. Light-induced damage began in outermost tissues and spread inwards, decreasing normal germination. Conclusions Salix nigra seeds were very susceptible to photooxidation. The thylakoid membranes appeared to be the first target of the photooxidative process since there were large decreases in galactolipids and both these lipids and the activated chlorophyll are contiguous in the structure of that membrane. Changes in normal germination and mean germination time could be explained by the deteriorative effects of oxidation. PMID:20338949

  15. Antimonide-based membranes synthesis integration and strain engineering

    NASA Astrophysics Data System (ADS)

    Zamiri, Marziyeh; Anwar, Farhana; Klein, Brianna A.; Rasoulof, Amin; Dawson, Noel M.; Schuler-Sandy, Ted; Deneke, Christoph F.; Ferreira, Sukarno O.; Cavallo, Francesca; Krishna, Sanjay

    2017-01-01

    Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5 μμm and lateral sizes from 24×24μ24×24μm2 to 1×11×1 cm2. Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to ˜˜3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range.

  16. Role for Ribosome-Associated Complex and Stress-Seventy subfamily B (RAC-Ssb) in integral membrane protein translation.

    PubMed

    Acosta-Sampson, Ligia; Döring, Kristina; Lin, Yuping; Yu, Vivian Y; Bukau, Bernd; Kramer, Günter; Cate, Jamie H D

    2017-10-02

    Targeting of most integral membrane proteins to the endoplasmic reticulum is controlled by the signal recognition particle (SRP), which recognizes a hydrophobic signal sequence near the protein N-terminus. Proper folding of these proteins is monitored by the unfolded protein response, and involves protein degradation pathways to ensure quality control. Here, we identify a new pathway for quality control of major facilitator superfamily transporters that occurs before the first transmembrane helix--the signal sequence recognized by SRP--is made by the ribosome. Increased rates of translation elongation of the N-terminal sequence of these integral membrane proteins can divert the nascent protein chains to the ribosome-associated complex (RAC) and Stress-Seventy Subfamily B (Ssb) chaperones. We also show that quality control of integral membrane proteins by RAC-Ssb couples translation rate to the unfolded protein response, which has implications for understanding mechanisms underlying human disease and protein production in biotechnology. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  17. A rapid and improved method for the detection of Vibrio parahaemolyticus and Vibrio vulnificus strains grown on hydrophobic grid membrane filters.

    PubMed

    Banerjee, S K; Pandian, S; Todd, E C; Farber, J M

    2002-06-01

    DNA probe-based detection methods were developed and characterized as an alternative to time-consuming and less specific conventional protocols. Digoxigenin-labeled probes were prepared by polymerase chain reaction amplification of the targeted sequences in the specific amplicons generated from genomic DNA. Specific probes with high yields were generated for the detection of the tlh gene of Vibrio parahaemolyticus and the cth gene of V. vulnificus. Colony (Southern) hybridization analyses were carried out using hydrophobic grid membrane filters (HGMFs) to allow biotype-specific differentiation of the two species. Eight strains of V. vulnificus and five strains of V. parahaemolyticus, including one standard (ATCC) strain of each biotype, were examined. Colony lysis, hybridization, and nonradioactive detection parameters were optimized for identification of the target biotypes arranged on the same HGMF and also on a conventional nylon membrane, thereby confirming the specificity of the probes and the comparative usefulness of the HGMFs. The experimental procedure presented here can be completed in 1 day. The protocol was designed specifically to identify the target Vibrio spp. and could potentially be used for the enumeration and differentiation of V. parahaemolyticus and V. vulnificus in foods.

  18. Membrane Vesicle Formation as a Multiple-Stress Response Mechanism Enhances Pseudomonas putida DOT-T1E Cell Surface Hydrophobicity and Biofilm Formation

    PubMed Central

    Baumgarten, Thomas; Sperling, Stefanie; Seifert, Jana; von Bergen, Martin; Steiniger, Frank; Wick, Lukas Y.

    2012-01-01

    Among the adaptive responses of bacteria to rapid changes in environmental conditions, those of the cell envelope are known to be the most crucial. Therefore, several mechanisms with which bacteria change their cell surface and membranes in the presence of different environmental stresses have been elucidated. Among these mechanisms, the release of outer membrane vesicles (MV) in Gram-negative bacteria has attracted particular research interest because of its involvement in pathogenic processes, such as that of Pseudomonas aeruginosa biofilm formation in cystic fibrosis lungs. In this study, we investigated the role of MV formation as an adaptive response of Pseudomonas putida DOT-T1E to several environmental stress factors and correlated it to the formation of biofilms. In the presence of toxic concentrations of long-chain alcohols, under osmotic stress caused by NaCl, in the presence of EDTA, and after heat shock, cells of this strain released MV within 10 min in the presence of a stressor. The MV formed showed similar size and charge properties, as well as comparable compositions of proteins and fatty acids. MV release caused a significant increase in cell surface hydrophobicity, and an enhanced tendency to form biofilms was demonstrated in this study. Therefore, the release of MV as a stress response could be put in a physiological context. PMID:22752175

  19. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor.

    PubMed

    Fortunato, Luca; Jeong, Sanghyun; Wang, Yiran; Behzad, Ali R; Leiknes, TorOve

    2016-12-01

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy.

    PubMed

    Fernández, César; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt

    2002-10-15

    Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and dihexanoylphosphatidylcholine (DHPC) provided a detailed description of protein-detergent interactions. The NOEs were measured in 3D (15)N- and (13)C-resolved [(1)H,(1)H]-NOESY spectra recorded with selectively methyl-protonated and otherwise uniformly (2)H,(13)C,(15)N-labeled OmpX in micelles of DHPC at natural isotope abundance. In these mixed micelles the NMR structure of OmpX consists of an eight-stranded antiparallel beta-barrel. The OmpX surface area covered with intermolecular NOEs to the DHPC hydrophobic tails forms a continuous cylinder jacket of approximately 28 A in height, which is centered about the middle of the long axis through the beta-barrel. In addition, some intermolecular NOEs with methyl groups of the DHPC polar head were identified along both boundaries of this cylinder jacket. The experimental data suggest that the hydrophobic surface areas of OmpX are covered with a monolayer of DHPC molecules, which appears to mimic quite faithfully the embedding of the beta-barrel in a double-layer lipid membrane.

  1. Lipid–protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy

    PubMed Central

    Fernández, César; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt

    2002-01-01

    Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and dihexanoylphosphatidylcholine (DHPC) provided a detailed description of protein–detergent interactions. The NOEs were measured in 3D 15N- and 13C-resolved [1H,1H]-NOESY spectra recorded with selectively methyl-protonated and otherwise uniformly 2H,13C,15N-labeled OmpX in micelles of DHPC at natural isotope abundance. In these mixed micelles the NMR structure of OmpX consists of an eight-stranded antiparallel β-barrel. The OmpX surface area covered with intermolecular NOEs to the DHPC hydrophobic tails forms a continuous cylinder jacket of approximately 28 Å in height, which is centered about the middle of the long axis through the β-barrel. In addition, some intermolecular NOEs with methyl groups of the DHPC polar head were identified along both boundaries of this cylinder jacket. The experimental data suggest that the hydrophobic surface areas of OmpX are covered with a monolayer of DHPC molecules, which appears to mimic quite faithfully the embedding of the β-barrel in a double-layer lipid membrane. PMID:12370417

  2. Porous Nanocomposites with Integrated Internal Domains: Application to Separation Membranes

    PubMed Central

    Li, Wenle; Walz, John Y.

    2014-01-01

    Asymmetric membranes with layered structure have made significant achievements due to their balanced properties and multi-functionalities that come from a combination of multiple layers. However, issues such as delamination and substructure resistance are generated by the intrinsic layered structure. Here, we present a strategy to integrate the traditional layered structure into an asymmetric but continuous porous network. Through infiltrations of microparticles and nanoparticles to targeted regions, active domains are created inside the porous scaffold versus having them applied externally. The fabricated internal active domains are highly adjustable in terms of its dimensions, pore size, and materials. We demonstrate that it is a general method that can be applicable to a wide variety of particles regardless of their material, dimensions, or geometry. By eliminating the external layered structure, problems such as those mentioned above can be eliminated. This integration technique can be extended to other devices required a layered structure, such as solid oxide fuel cells and lithium ion battery. PMID:24646923

  3. Expression and purification of integral membrane metallopeptidase HtpX.

    PubMed

    Arolas, Joan L; García-Castellanos, Raquel; Goulas, Theodoros; Akiyama, Yoshinori; Gomis-Rüth, F Xavier

    2014-07-01

    Little is known about the catalytic mechanism of integral membrane (IM) peptidases. HtpX is an IM metallopeptidase that plays a central role in protein quality control by preventing the accumulation of misfolded proteins in the membrane. Here we report the recombinant overexpression and purification of a catalytically ablated form of HtpX from Escherichia coli. Several E. coli strains, expression vectors, detergents, and purification strategies were tested to achieve maximum yields of pure and well-folded protein. HtpX was successfully overexpressed in E. coli BL21(DE3) cells using a pET-derived vector attaching a C-terminal His8-tag, extracted from the membranes using octyl-β-d-glucoside, and purified to homogeneity in the presence of this detergent in three consecutive steps: cobalt-affinity, anion-exchange, and size-exclusion chromatography. The production of HtpX in milligram amounts paves the way for structural studies, which will be essential to understand the catalytic mechanism of this IM peptidase and related family members.

  4. Closed and Semiclosed Interhelical Structures in Membrane vs Closed and Open Structures in Detergent for the Influenza Virus Hemagglutinin Fusion Peptide and Correlation of Hydrophobic Surface Area with Fusion Catalysis.

    PubMed

    Ghosh, Ujjayini; Xie, Li; Jia, Lihui; Liang, Shuang; Weliky, David P

    2015-06-24

    The ∼25 N-terminal "HAfp" residues of the HA2 subunit of the influenza virus hemagglutinin protein are critical for fusion between the viral and endosomal membranes at low pH. Earlier studies of HAfp in detergent support (1) N-helix/turn/C-helix structure at pH 5 with open interhelical geometry and N-helix/turn/C-coil structure at pH 7; or (2) N-helix/turn/C-helix at both pHs with closed interhelical geometry. These different structures led to very different models of HAfp membrane location and different models of catalysis of membrane fusion by HAfp. In this study, the interhelical geometry of membrane-associated HAfp is probed by solid-state NMR. The data are well-fitted to a population mixture of closed and semiclosed structures. The two structures have similar interhelical geometries and are planar with hydrophobic and hydrophilic faces. The different structures of HAfp in detergent vs membrane could be due to the differences in interaction with the curved micelle vs flat membrane with better geometric matching between the closed and semiclosed structures and the membrane. The higher fusogenicity of longer sequences and low pH is correlated with hydrophobic surface area and consequent increased membrane perturbation.

  5. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum

    PubMed Central

    Li, Xiaochun; Roberti, Rita; Blobel, Günter

    2014-01-01

    Sterols are essential biological molecules in the majority of life forms. Sterol reductases1 including Delta-14 sterol reductase (C14SR), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbon-carbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B Receptor2 (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Delta-14 sterol reductase (maSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z, a homolog of human C14SR, LBR, and DHCR7, with the cofactor NADPH. The enzyme contains 10 transmembrane segments (TM). Its catalytic domain comprises the C-terminal half (containing TM6-10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure3 suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves maSR1 can reduce the double bond of a cholesterol biosynthetic intermediate demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases. PMID:25307054

  6. MALDI/MS peptide mass fingerprinting for proteome analysis: identification of hydrophobic proteins attached to eucaryote keratinocyte cytoplasmic membrane using different matrices in concert

    PubMed Central

    Gonnet, Florence; Lemaître, Gilles; Waksman, Gilles; Tortajada, Jeanine

    2003-01-01

    Background MALDI-TOF-MS has become an important analytical tool in the identification of proteins and evaluation of their role in biological processes. A typical protocol consists of sample purification, separation of proteins by 2D-PAGE, enzymatic digestion and identification of proteins by peptide mass fingerprint. Unfortunately, this approach is not appropriate for the identification of membrane or low or high pI proteins. An alternative technique uses 1D-PAGE, which results in a mixture of proteins in each gel band. The direct analysis of the proteolytic digestion of this mixture is often problematic because of poor peptide detection and consequent poor sequence coverage in databases. Sequence coverage can be improved through the combination of several matrices. Results The aim of this study was to trust the MALDI analysis of complex biological samples, in order to identify proteins that interact with the membrane network of keratinocytes. Peptides obtained from protein trypsin digestions may have either hydrophobic or hydrophilic sections, in which case, the direct analysis of such a mixture by MALDI does not allow desorbing of all peptides. In this work, MALDI/MS experiments were thus performed using four different matrices in concert. The data were analysed with three algorithms in order to test each of them. We observed that the use of at least two matrices in concert leads to a twofold increase of the coverage of each protein. Considering data obtained in this study, we recommend the use of HCCA in concert with the SA matrix in order to obtain a good coverage of hydrophilic proteins, and DHB in concert with the SA matrix to obtain a good coverage of hydrophobic proteins. Conclusion In this work, experiments were performed directly on complex biological samples, in order to see systematic comparison between different matrices for real-life samples and to show a correlation that will be applicable to similar studies. When 1D gel is needed, each band may

  7. MALDI/MS peptide mass fingerprinting for proteome analysis: identification of hydrophobic proteins attached to eucaryote keratinocyte cytoplasmic membrane using different matrices in concert.

    PubMed

    Gonnet, Florence; Lemaître, Gilles; Waksman, Gilles; Tortajada, Jeanine

    2003-05-06

    BACKGROUND: MALDI-TOF-MS has become an important analytical tool in the identification of proteins and evaluation of their role in biological processes. A typical protocol consists of sample purification, separation of proteins by 2D-PAGE, enzymatic digestion and identification of proteins by peptide mass fingerprint. Unfortunately, this approach is not appropriate for the identification of membrane or low or high pI proteins. An alternative technique uses 1D-PAGE, which results in a mixture of proteins in each gel band. The direct analysis of the proteolytic digestion of this mixture is often problematic because of poor peptide detection and consequent poor sequence coverage in databases. Sequence coverage can be improved through the combination of several matrices. RESULTS: The aim of this study was to trust the MALDI analysis of complex biological samples, in order to identify proteins that interact with the membrane network of keratinocytes. Peptides obtained from protein trypsin digestions may have either hydrophobic or hydrophilic sections, in which case, the direct analysis of such a mixture by MALDI does not allow desorbing of all peptides. In this work, MALDI/MS experiments were thus performed using four different matrices in concert. The data were analysed with three algorithms in order to test each of them. We observed that the use of at least two matrices in concert leads to a twofold increase of the coverage of each protein. Considering data obtained in this study, we recommend the use of HCCA in concert with the SA matrix in order to obtain a good coverage of hydrophilic proteins, and DHB in concert with the SA matrix to obtain a good coverage of hydrophobic proteins. CONCLUSION: In this work, experiments were performed directly on complex biological samples, in order to see systematic comparison between different matrices for real-life samples and to show a correlation that will be applicable to similar studies. When 1D gel is needed, each band may

  8. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  9. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  10. Host Lipid and Temperature as Important Screening Variables for Crystallizing Integral Membrane Proteins in Lipidic Mesophases. Trials with Diacylglycerol Kinase

    PubMed Central

    Li, Dianfan; Shah, Syed T. A.; Caffrey, Martin

    2013-01-01

    A systematic study of the crystallization of an α-helical, integral membrane enzyme, diacylglycerol kinase, DgkA, using the lipidic cubic mesophase or in meso method is described. These trials have resulted in the production of blocky, rhombohedron-shaped crystals of diffraction quality currently in use for structure determination. Dramatic improvements in crystal quality were obtained when the identity of the lipid used to form the mesophase bilayer into which the protein was reconstituted as a prelude to crystallogenesis was varied. These monoacylglycerol lipids incorporated fatty acyl chains ranging from 14 to 18 carbon atoms long with cis olefinic bonds located toward the middle of the chain. Best crystals were obtained with a lipid that had an acyl chain 15 carbon atoms long with the double bond between carbons 7 and 8. It is speculated that the effectiveness of this lipid derives from hydrophobic mismatch between the target integral membrane protein and the bilayer of the host mesophase. Low temperature (4 °C) worked in concert with the short chain lipid to provide high quality crystals. Recommended screening strategies for crystallizing membrane proteins that include host lipid type and low temperature are made on the basis of this and related in meso crystallization trials. PMID:23956688

  11. The Outer Membrane of Brucella ovis Shows Increased Permeability to Hydrophobic Probes and Is More Susceptible to Cationic Peptides than Are the Outer Membranes of Mutant Rough Brucella abortus Strains

    PubMed Central

    Freer, Enrique; Pizarro-Cerdá, Javier; Weintraub, Andrej; Bengoechea, José-Antonio; Moriyón, Ignacio; Hultenby, Kjell; Gorvel, Jean-Pierre; Moreno, Edgardo

    1999-01-01

    The permeability of the outer membrane (OM) to hydrophobic probes and its susceptibility to bactericidal cationic peptides were investigated for natural rough Brucella ovis and for mutant rough Brucella abortus strains. The OM of B. ovis displayed an abrupt and faster kinetic profile than rough B. abortus during the uptake of the hydrophobic probe N-phenyl-naphthylamine. B. ovis was more sensitive than rough B. abortus to the action of cationic peptides. Bactenecins 5 and 7 induced morphological alterations on the OMs of both rough Brucella strains. B. ovis lipopolysaccharide (LPS) captured considerably more polymyxin B than LPSs from both rough and smooth B. abortus strains. Polymyxin B, poly-l-lysine, and poly-l-ornithine produced a thick coating on the surfaces of both strains, which was more evident in B. ovis than in rough B. abortus. The distinct functional properties of the OMs of these two rough strains correlate with some structural differences of their OMs and with their different biological behaviors in animals and culture cells. PMID:10531286

  12. Monitoring alkylphenols in water using the polar organic chemical integrative sampler (POCIS): Determining sampling rates via the extraction of PES membranes and Oasis beads.

    PubMed

    Silvani, Ludovica; Riccardi, Carmela; Eek, Espen; Papini, Marco Petrangeli; Morin, Nicolas A O; Cornelissen, Gerard; Oen, Amy M P; Hale, Sarah E

    2017-10-01

    Polar organic chemical integrative samplers (POCIS) have previously been used to monitor alkylphenol (AP) contamination in water and produced water. However, only the sorbent receiving phase of the POCIS (Oasis beads) is traditionally analyzed, thus limiting the use of POCIS for monitoring a range of APs with varying hydrophobicity. Here a "pharmaceutical" POCIS was calibrated in the laboratory using a static renewal setup for APs (from 2-ethylphenol to 4-n-nonylphenol) with varying hydrophobicity (log Kow between 2.47 and 5.76). The POCIS sampler was calibrated over its 28 day integrative regime and sampling rates (Rs) were determined. Uptake was shown to be a function of AP hydrophobicity where compounds with log Kow < 4 were preferentially accumulated in Oasis beads, and compounds with log Kow > 5 were preferentially accumulated in the PES membranes. A lag phase (over a 24 h period) before uptake in to the PES membranes occurred was evident. This work demonstrates that the analysis of both POCIS phases is vital in order to correctly determine environmentally relevant concentrations owing to the fact that for APs with log Kow ≤ 4 uptake, to the PES membranes and the Oasis beads, involves different processes compared to APs with log Kow ≥ 4. The extraction of both the POCIS matrices is thus recommended in order to assess the concentration of hydrophobic APs (log Kow ≥ 4), as well as hydrophilic APs, most effectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translation

    PubMed Central

    1991-01-01

    The immediate environment of nascent membrane proteins undergoing integration into the ER membrane was investigated by photocrosslinking. Nascent polypeptides of different lengths, each containing a single IgM transmembrane sequence that functions either as a stop-transfer or a signal-anchor sequence, were synthesized by in vitro translation of truncated mRNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)- Lys-tRNA, signal recognition particle, and microsomal membranes. This yielded nascent chains with photoreactive probes at one end of the transmembrane sequence where two lysine residues are located. When irradiated, these nascent chains reacted covalently with several ER proteins. One prominent crosslinking target was a glycoprotein similar in size to a protein termed mp39, shown previously to be situated adjacent to a secretory protein during its translocation across the ER membrane (Krieg, U. C., A. E. Johnson, and P. Walter. 1989. J. Cell Biol. 109:2033-2043; Wiedmann, M., D. Goerlich, E. Hartmann, T. V. Kurzchalia, and T. A. Rapoport. 1989. FEBS (Fed. Eur. Biochem. Soc.) Lett. 257:263-268) and likely to be identical to a protein previously designated the signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature (Lond.). 328:830-833). Changing the orientation of the transmembrane domain in the bilayer, or making the transmembrane domain the first topogenic sequence in the nascent chain instead of the second, did not significantly alter the identities of the ER proteins that were the primary crosslinking targets. Furthermore, the nascent chains crosslinked to the mp39-like glycoprotein and other microsomal proteins even after the cytoplasmic tail of the nascent chain had been lengthened by nearly 100 amino acids beyond the stop-transfer sequence. Yet when the nascent chain was allowed to terminate normally, the major photocrosslinks were no longer observed, including in particular that to the mp39-like

  14. Spacesuit Water Membrane Evaporator Integration with the ISS Extravehicular Mobility

    NASA Technical Reports Server (NTRS)

    Margiott, Victoria; Boyle, Robert

    2014-01-01

    NASA has developed a Solid Water Membrane Evaporation (SWME) to provide cooling for the next generation spacesuit. One approach to increasing the TRL of the system is to incorporate this hardware with the existing EMU. Several integration issues were addressed to support a potential demonstration of the SWME with the existing EMU. Systems analysis was performed to assess the capability of the SWME to maintain crewmember cooling and comfort as a replacement for sublimation. The materials of the SWME were reviewed to address compatibility with the EMU. Conceptual system placement and integration with the EMU via an EVA umbilical system to ensure crew mobility and Airlock egress were performed. A concept of operation for EVA use was identified that is compatible with the existing system. This concept is extensible as a means to provide cooling for the existing EMU. The cooling system of one of the EMUs on orbit has degraded, with the root cause undetermined. Should there be a common cause resident on ISS, this integration could provide a means to recover cooling capability for EMUs on orbit.

  15. Characterisation of organic matter in IX and PACl treated wastewater in relation to the fouling of a hydrophobic polypropylene membrane.

    PubMed

    Myat, Darli T; Mergen, Max; Zhao, Oliver; Stewart, Matthew B; Orbell, John D; Gray, Stephen

    2012-10-15

    Extensive organic characterisation of a wastewater using liquid chromatography with a photodiode array and fluorescence spectroscopy (Method A), and UV(254) and organic carbon detector (Method B) was undertaken, as well as with fluorescence excitation emission spectroscopy (EEM). Characterisation was performed on the wastewater before and after ion exchange (IX) treatment and polyaluminium chlorohydrate (PACl) coagulation, and following microfiltration of the wastewater and pre-treated wastewaters. Characterisation by EEM was unable to detect biopolymers within the humic rich wastewaters and was not subsequently used to characterise the MF permeates. IX treatment preferentially removed low molecular weight (MW) organic acids and neutrals, and moderate amounts of biopolymers in contrast to a previous report of no biopolymer removal with IX. PACl preferentially removed moderate MW humic and fulvic acids, and large amounts of biopolymers. PACl showed a great preference for removal of proteins from the biopolymer component in comparison to IX. An increase in the fluorescence response of tryptophan-like compounds in the biopolymer fraction following IX treatment suggests that low MW neutrals may influence the structure and/or inhibit aggregation of organic compounds. Fouling rates for IX and PACl treated wastewaters had high initial fouling rates that reduced to lower fouling rates with time, while the untreated Eastern Treatment Plant (ETP) wastewater displayed a consistent, high rate of fouling. The results for the IX and PACl treated wastewaters were consistent with the long-term fouling rate being determined by cake filtration while both pore constriction and cake filtration contributed to the higher initial fouling rates. Higher rejection of biopolymers was observed for PACl and IX waters compared to the untreated ETP water, suggesting increased adhesion of biopolymers to the membrane or cake layer may lead to the higher rejection. Crown Copyright © 2012

  16. Increased sensitivity of the rapid hydrophobic grid membrane filter enzyme-labeled antibody procedure for Escherichia coli O157 detection in foods and bovine feces.

    PubMed Central

    Szabo, R; Todd, E; MacKenzie, J; Parrington, L; Armstrong, A

    1990-01-01

    Several strains of Escherichia coli O157:H7 artificially inoculated into vegetables and dairy products were recovered on hydrophobic grid membrane filters and enumerated by an enzyme-labeled antibody assay. The mean of the recoveries from 12 fresh vegetables was 108.8%, whereas that from 10 dairy products was 93.2%. Modified tryptic soy broth at 43 degrees C with shaking at 100 rpm provided optimum recovery of the organism from meat, with a sensitivity of less than or equal to 1 CFU/g, which is 10 times more sensitive than direct plating. The method performed equally well with vegetable and dairy products. Tryptic soy broth, however, under the same conditions gave the best results for fecal samples. Of 22 asymptomatic dairy cattle, reported as having positive Brucella titers when assayed with polyclonal antibodies, eight were found to contain E. coli O157 in their feces as demonstrated by the enzyme-labeled antibody assay by using monoclonal antibodies. This finding may explain some of the false-positive Brucella tests. PMID:2268161

  17. Repeatability of the Petrifilm HEC test and agreement with a hydrophobic grid membrane filtration method for the enumeration of Escherichia coli O157:H7 on beef carcasses.

    PubMed

    Power, C A; McEwen, S A; Johnson, R P; Shoukri, M M; Rahn, K; Griffiths, M W; De Grandis, S A

    1998-04-01

    The Petrifilm HEC test (3M Canada Inc., London, Ontario), a quantitative microbiological test for Escherichia coli O157:H7, was evaluated for its performance as a beef-carcass monitoring test. Test repeatability and agreement and agreement with an E. coli O157:H7 detection method using a hydrophobic grid membrane filter (HGMF) overlaid onto cefixime-tellurite-sorbitol MacConkey agar (CT-SMAC) followed by a latex agglutination test for the O157 antigen were determined by using pure cultures of E. coli O157:H7, beef samples experimentally contaminated with bovine feces containing E. coli O157:H7, and naturally contaminated beef carcasses of unknown E. coli O157:H7 status from a local abattoir. The Petrifilm HEC test showed excellent repeatability and excellent agreement with the HGMF-CT-SMAC method when test samples were obtained from pure cultures and experimentally contaminated meat. All 125 naturally contaminated beef carcasses surveyed were negative for E. coli O157:H7 with both microbial methods. The Petrifilm HEC test, however, demonstrated a significantly lower proportion of cross-reactive organisms (false-positive reactions) than the HGMF-CT-SMAC method. Given the performance of this test coupled with its ease of use and compact size, it shows considerable promise for carcass testing where abattoir laboratory facilities are limited and as a substitute for more complex laboratory testing methods used in established laboratories.

  18. Comparison of the hydrophobic grid-membrane filter DNA probe method and the Health Protection Branch standard method for the detection of Listeria monocytogenes in foods.

    PubMed

    Yan, W; Malik, M N; Peterkin, P I; Sharpe, A N

    1996-07-01

    The standard Health Protection Branch (HPB) method for the detection of L. monocytogenes in foods involves lengthy enrichment, selection and biochemical testing, requiring up to 8 days to complete. A hydrophobic grid-membrane filter (HGMF) method employing a digoxigenin-labelled listeriolysin O probe required 5 days to complete, and included an image-analysis system for electronic data acquisition. A total of 200 food samples encompassing 8 high-risk food groups (soft and semi-soft cheeses, packaged raw vegetables, frozen cooked shrimp, ground poultry, ground pork, ground beef, jellied meats, and pâté) were screened for the presence of L. monocytogenes by the two methods. Overall, 32 (16%) and 30 (15%) of the naturally-contaminated food samples tested positive for L. monocytogenes by the HPB and DNA methods, respectively. The DNA probe method was highly specific in discriminating L. monocytogenes from other Listeria spp. present in 50 of the samples tested. Results showed 94% sensitivity and 100% specificity between the two methods. The HGMF DNA probe method is an efficient and reliable alternative to the HPB standard method for detecting L. monocytogenes in foods.

  19. Use of MRSD medium and the hydrophobic grid membrane filter technique to differentiate between pediococci and lactobacilli in fermented meat and starter cultures.

    PubMed

    Holley, R A; Millard, G E

    1988-10-01

    Modifications of MRS medium were made by incorporation of 0.1 M L-arginine-HCl, 0.0025% phenol red, 100 IU polymyxin B sulfate, by deletion of meat extract, use of only 1.2% (w/v) glucose and increase of Mn2+ to 1000 ppm. In addition, adoption of the hydrophobic grid membrane filter (HGMF) system with 0.025% Fast Green FCF dye and adjustment of the agar medium to pH 5.5 gave MRSD (differential) medium. Incubation at 25 degrees C anaerobically under N2 or CO2 followed by a post-growth staining procedure involving use of 0.4% (w/v) bromocresol purple yielded conditions under which pediococci colonies were blue whereas homo- and heterofermentative lactobacilli were green in color. Under these conditions, 7 pediococci, 16 lactobacilli, and 18 commercial meat starter cultures were successfully analyzed by plate count to yield a differential assessment of the lactobacilli and pediococci present without interference from the 9 other genera tested. Streptococcus lactis and Leuconostoc spp. produced blue and green colonies, respectively, at 25 degrees C which might interference but these organisms are not present in significant numbers in fermented meats. Pediococcus parvulus and Streptococcus faecalis produced green and blue colonies, respectively, but their very poor growth at 25 degrees C prevented their interference. Use of the developed MRSD medium was described for enumeration of both pediococci and lactobacilli in starter cultures and in fermenting dry sausages to enable documentation of starter culture performance.

  20. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography.

    PubMed

    Sadavarte, Rahul; Spearman, Maureen; Okun, Natalie; Butler, Michael; Ghosh, Raja

    2014-06-01

    Heavy chain monoclonal antibodies are being considered as alternative to whole-IgG monoclonal antibodies for certain niche applications. Protein-A chromatography which is widely used for purifying IgG monoclonal antibodies is also used for purifying heavy chain monoclonal antibodies as these molecules possess fully functional Fc regions. However, the acidic conditions used to elute bound antibody may sometimes also leach protein-A, which is immunotoxic. Low pH conditions also tend to make the mAb molecules unstable and prone to aggregation. Moreover, protein-A affinity chromatography does not remove aggregates already present in the feed. Hydrophobic interaction membrane chromatography (or HIMC) has already been studied as an alternative to protein-A chromatography for purifying whole-IgG monoclonal antibodies. This paper describes the use of HIMC for capturing a humanized chimeric heavy chain monoclonal antibody (EG2-hFC). Binding and eluting conditions were suitably optimized using pure EG2-hFC. Based on this, an HIMC method was developed for capture of EG2-hFC directly from cell culture supernatant. The EG2-hFc purity obtained in this single-step process was high. The glycan profiles of protein-A and HIMC purified monoclonal antibody samples were similar, clearly demonstrating that both techniques captured similarly glycosylated population of EG2-hFc. Moreover, this technique was able to resolve aggregates from monomeric form of the EG2-hFc.

  1. Intermediate purification of CHO-derived recombinant human Factor IX using hydrophobic interaction membrane-based chromatography and its comparison to a sulfated resin.

    PubMed

    Ribeiro, Daniel A; Passos, Douglas F; Ferraz, Helen C; Castilho, Leda R

    2017-09-04

    This work investigated the use of hydrophobic interaction membrane chromatography for intermediate purification of recombinant human Factor IX (rFIX) produced by CHO cells. The first purification step was based on a strong anion exchange monolith, thus forming a purification process fully based on convective media, which allow operation at high flow rates and low pressure drops, as well as modular scale-up. Although the starting material was challenging (CHO cell culture supernatant harvested at 70% cell viability), the two-step purification process showed promising results, with a global purification factor of 298, a global recovery of 69%, and DNA and endotoxin levels close to regulatory limits. Final host cell DNA (68.8 ng per dose of 500 IU), endotoxins (60 EU per dose of 500 IU) and activated FIX (FIXa/FIX = 2.33%) were in levels close to those recommended by regulatory authorities. HCP removal was of 99.98%, decreasing from 9 424 358 ppm in the supernatant to a final HCP value of 2071 ppm. The use of a supernatant harvested at higher viability and/or the addition of a third polishing step focusing on HCP removal could allow meeting the desired HCP range of 50-100 ppm, as well as the regulatory requirements for the other critical contaminants. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of an integrated membrane process for water reclamation.

    PubMed

    Lew, C H; Hu, J Y; Song, L F; Lee, L Y; Ong, S L; Ng, W J; Seah, H

    2005-01-01

    An integrated membrane process (IMP) comprising a membrane bioreactor (MBR) and a reverse osmosis (RO) process was developed for water reclamation. Wastewater was treated by an MBR operated at a sludge retention time (SRT) of 20 days and a hydraulic retention time (HRT) of 5.5 h. The IMP had an overall recovery efficiency of 80%. A unique feature of the IMP was the recycling of a fraction of RO concentrate back to the MBR. Experimental results revealed that a portion of the slow- and hard-to-degrade organic constituents in the recycle stream could be degraded by an acclimated biomass leading to an improved MBR treatment efficiency. Although recycling concentrated constituents could impose an inhibitory effect on the biomass and suppress their respiratory activities, results obtained suggested that operating MBR (in the novel IMP) at an F/M ratio below 0.03 g TOC/g VSS.day could yield an effluent quality comparable to that achievable without concentrate recycling. It is noted in this study that the novel IMP could achieve an average overall TOC removal efficiency of 88.940% and it consistently produced product water usable for high value reuse applications.

  3. NMR structure of the integral membrane protein OmpX.

    PubMed

    Fernández, César; Hilty, Christian; Wider, Gerhard; Güntert, Peter; Wüthrich, Kurt

    2004-03-05

    The structure of the integral membrane protein OmpX from Escherichia coli reconstituted in 60 kDa DHPC micelles (OmpX/DHPC) was calculated from 526 NOE upper limit distance constraints. The structure determination was based on complete sequence-specific assignments for the amide protons and the Val, Leu, and Ile(delta1) methyl groups in OmpX, which were selectively protonated on a perdeuterated background. The solution structure of OmpX in the DHPC micelles consists of a well-defined, eight-stranded antiparallel beta-barrel, with successive pairs of beta-strands connected by mobile loops. Several long-range NOEs observed outside of the transmembrane barrel characterize an extension of a four-stranded beta-sheet beyond the height of the barrel. This protruding beta-sheet is believed to be involved in intermolecular interactions responsible for the biological functions of OmpX. The present approach for de novo structure determination should be quite widely applicable to membrane proteins reconstituted in mixed micelles with overall molecular masses up to about 100 kDa, and may also provide a platform for additional functional studies.

  4. Integration between chemical oxidation and membrane thermophilic biological process.

    PubMed

    Bertanza, G; Collivignarelli, M C; Crotti, B M; Pedrazzani, R

    2010-01-01

    Full scale applications of activated sludge thermophilic aerobic process for treatment of liquid wastes are rare. This experimental work was carried out at a facility, where a thermophilic reactor (1,000 m(3) volume) is operated. In order to improve the global performance of the plant, it was decided to upgrade it, by means of two membrane filtration units (ultrafiltration -UF-, in place of the final sedimentation, and nanofiltration -NF-). Subsequently, the integration with chemical oxidation (O(3) and H(2)O(2)/UV processes) was taken into consideration. Studied solutions dealt with oxidation of both the NF effluents (permeate and concentrate). Based on experimental results and economic evaluation, an algorithm was proposed for defining limits of convenience of this process.

  5. Dystroglycan Maintains Inner Limiting Membrane Integrity to Coordinate Retinal Development.

    PubMed

    Clements, Reena; Turk, Rolf; Campbell, Kevin P; Wright, Kevin M

    2017-08-30

    Proper neural circuit formation requires the precise regulation of neuronal migration, axon guidance, and dendritic arborization. Mutations affecting the function of the transmembrane glycoprotein dystroglycan cause a form of congenital muscular dystrophy that is frequently associated with neurodevelopmental abnormalities. Despite its importance in brain development, the role of dystroglycan in regulating retinal development remains poorly understood. Using a mouse model of dystroglycanopathy (ISPD(L79*) ) and conditional dystroglycan mutants of both sexes, we show that dystroglycan is critical for the proper migration, axon guidance, and dendritic stratification of neurons in the inner retina. Using genetic approaches, we show that dystroglycan functions in neuroepithelial cells as an extracellular scaffold to maintain the integrity of the retinal inner limiting membrane. Surprisingly, despite the profound disruptions in inner retinal circuit formation, spontaneous retinal activity is preserved. These results highlight the importance of dystroglycan in coordinating multiple aspects of retinal development.SIGNIFICANCE STATEMENT The extracellular environment plays a critical role in coordinating neuronal migration and neurite outgrowth during neural circuit development. The transmembrane glycoprotein dystroglycan functions as a receptor for multiple extracellular matrix proteins and its dysfunction leads to a form of muscular dystrophy frequently associated with neurodevelopmental defects. Our results demonstrate that dystroglycan is required for maintaining the structural integrity of the inner limiting membrane (ILM) in the developing retina. In the absence of functional dystroglycan, ILM degeneration leads to defective migration, axon guidance, and mosaic spacing of neurons and a loss of multiple neuron types during retinal development. These results demonstrate that disorganization of retinal circuit development is a likely contributor to visual dysfunction in

  6. Voltage-Gated Hydrophobic Nanopores

    SciTech Connect

    Lavrik, Nickolay V

    2011-01-01

    Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even though the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered in long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transitions can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.

  7. Low-pressure membrane integrity tests for drinking water treatment: A review.

    PubMed

    Guo, H; Wyart, Y; Perot, J; Nauleau, F; Moulin, P

    2010-01-01

    Low-pressure membrane systems, including microfiltration (MF) and ultrafiltration (UF) membranes, are being increasingly used in drinking water treatments due to their high level of pathogen removal. However, the pathogen will pass through the membrane and contaminate the product if the membrane integrity is compromised. Therefore, an effective on-line integrity monitoring method for MF and UF membrane systems is essential to guarantee the regulatory requirements for pathogen removal. A lot of works on low-pressure membrane integrity tests have been conducted by many researchers. This paper provides a literature review about different low-pressure membrane integrity monitoring methods for the drinking water treatment, including direct methods (pressure-based tests, acoustic sensor test, liquid porosimetry, etc.) and indirect methods (particle counting, particle monitoring, turbidity monitoring, surrogate challenge tests). Additionally, some information about the operation of membrane integrity tests is presented here. It can be realized from this review that it remains urgent to develop an alternative on-line detection technique for a quick, accurate, simple, continuous and relatively inexpensive evaluation of low-pressure membrane integrity. To better satisfy regulatory requirements for drinking water treatments, the characteristic of this ideal membrane integrity test is proposed at the end of this paper.

  8. Phase separation in biological membranes: integration of theory and experiment.

    PubMed

    Elson, Elliot L; Fried, Eliot; Dolbow, John E; Genin, Guy M

    2010-01-01

    Lipid bilayer model membranes that contain a single lipid species can undergo transitions between ordered and disordered phases, and membranes that contain a mixture of lipid species can undergo phase separations. Studies of these transformations are of interest for what they can tell us about the interaction energies of lipid molecules of different species and conformations. Nanoscopic phases (<200 nm) can provide a model for membrane rafts, specialized membrane domains enriched in cholesterol and sphingomyelin, which are believed to have essential biological functions in cell membranes. Crucial questions are whether lipid nanodomains can exist in stable equilibrium in membranes and what is the distribution of their sizes and lifetimes in membranes of different composition. Theoretical methods have supplied much information on these questions, but better experimental methods are needed to detect and characterize nanodomains under normal membrane conditions. This review summarizes linkages between theoretical and experimental studies of phase separation in lipid bilayer model membranes.

  9. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    ERIC Educational Resources Information Center

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  10. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    ERIC Educational Resources Information Center

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  11. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel.

    PubMed

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F; Sepúlveda, Romina V; Aguayo, Daniel; González-Nilo, Fernando; González, Carlos; Latorre, Ramón

    2015-01-01

    Large-conductance Ca(2+)- and voltage-activated K(+) channel (BK) open probability is enhanced by depolarization, increasing Ca(2+) concentration, or both. These stimuli activate modular voltage and Ca(2+) sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca(2+), profoundly hinders channel opening while showing only minor effects on the voltage sensor active-resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca(2+) binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open-closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open-closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations. © 2015 Carrasquel-Ursulaez et al.

  12. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel

    PubMed Central

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F.; Sepúlveda, Romina V.; Aguayo, Daniel; González-Nilo, Fernando

    2015-01-01

    Large-conductance Ca2+- and voltage-activated K+ channel (BK) open probability is enhanced by depolarization, increasing Ca2+ concentration, or both. These stimuli activate modular voltage and Ca2+ sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca2+, profoundly hinders channel opening while showing only minor effects on the voltage sensor active–resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca2+ binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open–closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open–closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations. PMID:25548136

  13. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor

    SciTech Connect

    2009-11-01

    This factsheet describes a research project whose objective is to develop hydrogen-selective membranes for an innovative gas-separation process based on a water-gas-shift membrane reactor (WGS-MR) for the production of hydrogen.

  14. Phase separation in biological membranes: integration of theory and experiment

    PubMed Central

    Elson, Elliot L.; Fried, Eliot; Dolbow, John E.; Genin, Guy M.

    2013-01-01

    Lipid bilayer model membranes can undergo transitions between ordered and disordered phases, and membranes that contain a mixture of lipid species can undergo phase separations. Studies of these transformations are of interest for what they can tell us about the interaction energies of lipid molecules of different species and conformations. Nanoscopic phases can provide a model for membrane rafts, which have important biological functions in cell membranes. Important questions are whether lipid nanodomains can exist in stable equilibrium in membranes and what is the distribution of their sizes in membranes of different composition. It is also important to know the lifetimes of nanodomains. Theoretical methods have supplied much important information on these questions, but better experimental methods are needed to detect and characterize nanodomains under normal membrane conditions. This review summarizes linkages between theoretical and experimental studies of phase separation in lipid bilayer model membranes. PMID:20192775

  15. Design, Synthesis and Properties of Branch-chained Maltoside Detergents for Stabilization and Crystallization of Integral Membrane Proteins: Human Connexin 26

    PubMed Central

    Hong, Wen-Xu; Baker, Kent A.; Ma, Xingquan; Stevens, Raymond C.; Yeager, Mark; Zhang, Qinghai

    2010-01-01

    A challenging requirement for structural studies of integral membrane proteins (IMPs) is the use of amphiphiles that replicate the hydrophobic environment of membranes. Progress has been impeded by the limited number of useful detergents and the need for a deeper understanding of their structure-activity relationships. To this end, we designed a family of detergents containing short, branched alkyl chains at the interface between the polar head and apolar tail. This design mimics the second aliphatic chain of lipid molecules and reduces water penetration, thereby increasing the hydrophobicity within the interior of the micelle. To compare with the popular straight-chained maltoside detergents, the branch-chained β-D-maltosides were synthesized efficiently in pure anomeric form. The branch-chained maltosides form smaller micelles by having shorter main chains, while having comparable hydrophobicity to the detergents with only straight chains. Selected branch-chained and straight-chained maltoside detergents were examined for their ability to solubilize, stabilize, and aid the crystallization of human connexin 26, an α-helical IMP that forms hexamers. We showed that the branch-chained maltosides performed as well as straight-chained analogues and enabled crystallization in different space groups. PMID:20232919

  16. Design, synthesis, and properties of branch-chained maltoside detergents for stabilization and crystallization of integral membrane proteins: human connexin 26.

    PubMed

    Hong, Wen-Xu; Baker, Kent A; Ma, Xingquan; Stevens, Raymond C; Yeager, Mark; Zhang, Qinghai

    2010-06-01

    A challenging requirement for structural studies of integral membrane proteins (IMPs) is the use of amphiphiles that replicate the hydrophobic environment of membranes. Progress has been impeded by the limited number of useful detergents and the need for a deeper understanding of their structure-activity relationships. To this end, we designed a family of detergents containing short, branched alkyl chains at the interface between the polar head and the apolar tail. This design mimics the second aliphatic chain of lipid molecules and reduces water penetration, thereby increasing the hydrophobicity within the interior of the micelle. To compare with the popular straight-chained maltoside detergents, the branch-chained beta-D-maltosides were synthesized efficiently in pure anomeric form. The branch-chained maltosides form smaller micelles by having shorter main chains, while having comparable hydrophobicity to the detergents with only straight chains. Selected branch-chained and straight-chained maltoside detergents were examined for their ability to solubilize, stabilize, and aid the crystallization of human connexin 26, an alpha-helical IMP that forms hexamers. We showed that the branch-chained maltosides with optimized micellar properties performed as well as or better than the straight-chained analogues and enabled crystallization in different space groups.

  17. Evolutionary origins of membrane proteins

    NASA Astrophysics Data System (ADS)

    Mulkidjanian, Armen Y.; Galperin, Michael Y.

    Although the genes that encode membrane proteins make about 30% of the sequenced genomes, the evolution of membrane proteins and their origins are still poorly understood. Here we address this topic by taking a closer look at those membrane proteins the ancestors of which were present in the Last Universal Common Ancestor, and in particular, the F/V-type rotating ATPases. Reconstruction of their evolutionary history provides hints for understanding not only the origin of membrane proteins, but also of membranes themselves. We argue that the evolution of biological membranes could occur as a process of coevolution of lipid bilayers and membrane proteins, where the increase in the ion-tightness of the membrane bilayer may have been accompanied by a transition from amphiphilic, pore-forming membrane proteins to highly hydrophobic integral membrane complexes.

  18. Air separation by integrally asymmetric hollow-fiber membranes

    SciTech Connect

    Feng, X.; Ivory, J.; Rajan, V.S.V.

    1999-10-01

    Integrally asymmetric hollow-fiber membranes each with an outer skin layer and a porous substrate were studied for air separation to produce nitrogen and oxygen enriched air. The test on both bore-side feed and shell-side feed with concurrent and countercurrent flow arrangements for a wide range of stage cuts shows that the bore-side feed countercurrent flow was the most advantageous configuration in the permeator design. When operated in the bore-side feed countercurrent configuration, the permeator performance compared favorably with the commercial systems available for nitrogen production. A mathematical model was developed for this configuration. Since the concentration polarization in the substrate was a major concern for the bore-side feed configuration, especially for high stage-cut operations, a theoretical approach was pursued to formulate the concentration polarization. This allows for the diagnosis of the significance of concentration polarization in a specific permeation process, although it is difficult to predict concentration polarization accurately due to limited knowledge of the detailed membrance structure.

  19. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus

    USDA-ARS?s Scientific Manuscript database

    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size among the different viruses. Hu...

  20. Importance of Membrane Structural Integrity for RPE65 Retinoid Isomerization Activity

    SciTech Connect

    Golczak, Marcin; Kiser, Philip D.; Lodowski, David T.; Maeda, Akiko; Palczewski, Krzysztof

    2010-04-05

    Regeneration of visual chromophore in the vertebrate visual cycle involves the retinal pigment epithelium-specific protein RPE65, the key enzyme catalyzing the cleavage and isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol. Although RPE65 has no predicted membrane spanning domains, this protein predominantly associates with microsomal fractions isolated from bovine retinal pigment epithelium (RPE). We have re-examined the nature of RPE65 interactions with native microsomal membranes by using extraction and phase separation experiments. We observe that hydrophobic interactions are the dominant forces that promote RPE65 association with these membranes. These results are consistent with the crystallographic model of RPE65, which features a large lipophilic surface that surrounds the entrance to the catalytic site of this enzyme and likely interacts with the hydrophobic core of the endoplasmic reticulum membrane. Moreover, we report a critical role for phospholipid membranes in preserving the retinoid isomerization activity and physical properties of RPE65. Isomerase activity measured in bovine RPE was highly sensitive to phospholipase A{sup 2} treatment, but the observed decline in 11-cis-retinol production did not directly reflect inhibition by products of lipid hydrolysis. Instead, a direct correlation between the kinetics of phospholipid hydrolysis and retinoid isomerization suggests that the lipid membrane structure is critical for RPE65 enzymatic activity. We also provide evidence that RPE65 operates in a multiprotein complex with retinol dehydrogenase 5 and retinal G protein-coupled receptor in RPE microsomes. Modifications in the phospholipid environment affecting interactions with these protein components may be responsible for the alterations in retinoid metabolism observed in phospholipid-depleted RPE microsomes. Thus, our results indicate that the enzymatic activity of native RPE65 strongly depends on its membrane binding and

  1. Membrane curvature in cell biology: An integration of molecular mechanisms.

    PubMed

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  2. Membrane curvature in cell biology: An integration of molecular mechanisms

    PubMed Central

    Daste, Frederic

    2016-01-01

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists. PMID:27528656

  3. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  4. An Integrated Framework Advancing Membrane Protein Modeling and Design

    PubMed Central

    Weitzner, Brian D.; Duran, Amanda M.; Tilley, Drew C.; Elazar, Assaf; Gray, Jeffrey J.

    2015-01-01

    Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1) prediction of free energy changes upon mutation; (2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design. PMID:26325167

  5. Integrated antimicrobial and antifouling ultrafiltration membrane by surface grafting PEO and N-chloramine functional groups.

    PubMed

    Hou, Shuhua; Xing, Jialin; Dong, Xue; Zheng, Jifu; Li, Shenghai

    2017-08-15

    Ultrafiltration membranes with integrated antimicrobial and antifouling properties were fabricated using an engineering thermoplastic (carboxylated cardopoly(aryl ether ketone, PEK-COOH). Different molecular weights of PEO (Mw: 120, 350, 550) were grafted to the PEK-COOH membrane surface via EDC/NHS methodology. N-chloramine modified membranes then were prepared by simple exposure to dilute sodium hypochlorite solution. The surface grafting processes were all performed in water (i.e. without organic solvent). With this surface modification, the hydrophilicity of membranes improved significantly and the pure water flux increased compared to the unmodified PEK-COOH membrane. Furthermore, the PEO and N-chloramine modified membranes were resistant not only to both protein adsorption and bacterial adhesion, but also to microbial proliferation. The results of this work suggest that PEO and N-chloramine modified membranes are promising as fouling-resistant membranes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Modulating bilayer mechanical properties to promote the coupled folding and insertion of an integral membrane protein.

    PubMed

    Herrmann, Michaela; Danielczak, Bartholomäus; Textor, Martin; Klement, Jessica; Keller, Sandro

    2015-10-01

    Bilayer mechanical properties are not only of crucial importance to the mechanism of action of mechanosensation in lipid membranes but also affect preparative laboratory tasks such as membrane-protein refolding. We report this for coupled refolding and bilayer insertion of outer membrane phospholipase A (OmpLA), an integral membrane enzyme that catalyses the hydrolytic cleavage of glycerophospholipids. OmpLA can be refolded into a variety of detergent micelles and unilamellar vesicles composed of short-chain phospholipids but, in the absence of chemical or molecular chaperones, not into thicker membranes. Controlled modulation of bilayer mechanical properties by judicious use of subsolubilising concentrations of detergents induces monolayer curvature strain, acyl chain fluidisation, membrane thinning, and transient aqueous bilayer defects. This enables quantitative and functional refolding of OmpLA even into bilayer membranes composed of long-chain phospholipids to yield enzymatically active proteoliposomes without requiring membrane solubilisation.

  7. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    PubMed

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The hypo-osmotic swelling test for evaluation of sperm membrane integrity.

    PubMed

    Ramu, Sivakumar; Jeyendran, Rajasingam S

    2013-01-01

    A functional membrane is requisite for the fertilizing ability of spermatozoa, as it plays an integral role in sperm capacitation, acrosome reaction, and binding of the spermatozoon to the egg surface. The hypo-osmotic swelling (HOS) test evaluates the functional integrity of the sperm's plasma membrane and also serves as a useful indicator of fertility potential of sperm. The HOS test predicts membrane integrity by determining the ability of the sperm membrane to maintain equilibrium between the sperm cell and its environment. Influx of the fluid due to hypo-osmotic stress causes the sperm tail to coil and balloon or "swell." A higher percentage of swollen sperm indicates the presence of sperm having a functional and intact plasma membrane. Here, we present the detailed protocol for performing the HOS test and explain the results for interpretation.

  9. Novel fatty acid acylation of lens integral membrane protein aquaporin-0.

    PubMed

    Schey, Kevin L; Gutierrez, Danielle B; Wang, Zhen; Wei, Junhua; Grey, Angus C

    2010-11-16

    Fatty acid acylation of proteins is a well-studied co- or posttranslational modification typically conferring membrane trafficking signals or membrane anchoring properties to proteins. Commonly observed examples of protein acylation include N-terminal myristoylation and palmitoylation of cysteine residues. In the present study, direct tissue profiling mass spectrometry of bovine and human lens sections revealed an abundant signal tentatively assigned as a lipid-modified form of aquaporin-0. LC/MS/MS proteomic analysis of hydrophobic tryptic peptides from lens membrane proteins revealed both N-terminal and C-terminal peptides modified by 238 and 264 Da which were subsequently assigned by accurate mass measurement as palmitoylation and oleoylation, respectively. Specific sites of modification were the N-terminal methionine residue and lysine 238 revealing, for the first time, an oleic acid modification via an amide linkage to a lysine residue. The specific fatty acids involved reflect their abundance in the lens fiber cell plasma membrane. Imaging mass spectrometry indicated abundant acylated AQP0 in the inner cortical region of both bovine and human lenses and acylated truncation products in the lens nucleus. Additional analyses revealed that the lipid-modified forms partitioned exclusively to a detergent-resistant membrane fraction, suggesting a role in membrane domain targeting.

  10. Mutation of the highly conserved Ser-40 of the HIV-1 p6 gag protein to Phe causes the formation of a hydrophobic patch, enhances membrane association, and polyubiquitination of Gag.

    PubMed

    Hahn, Friedrich; Setz, Christian; Friedrich, Melanie; Rauch, Pia; Solbak, Sara Marie; Frøystein, Nils Age; Henklein, Petra; Votteler, Jörg; Fossen, Torgils; Schubert, Ulrich

    2014-10-02

    The HIV-1 p6 Gag protein contains two late assembly (l-) domains that recruit proteins of the endosomal sorting complex required for transport (ESCRT) pathway to mediate membrane fission between the nascent virion and the cell membrane. It was recently demonstrated that mutation of the highly conserved Ser-40 to Phe (S40F) disturbs CA-SP1 processing, virus morphogenesis, and infectivity. It also causes the formation of filopodia-like structures, while virus release remains unaffected. Here, we show that the mutation S40F, but not the conservative mutation to Asp (S40D) or Asn (S40N), augments membrane association, K48-linked polyubiquitination, entry into the 26S proteasome, and, consequently, enhances MHC-I antigen presentation of Gag derived epitopes. Nuclear magnetic resonance (NMR) structure analyses revealed that the newly introduced Phe-40, together with Tyr-36, causes the formation of a hydrophobic patch at the C-terminal α-helix of p6, providing a molecular rationale for the enhanced membrane association of Gag observed in vitro and in HIV-1 expressing cells. The extended exposure of the S40F mutant to unidentified membrane-resident ubiquitin E3-ligases might trigger the polyubiquitination of Gag. The cumulative data support a previous model of a so far undefined property of p6, which, in addition to MA, acts as membrane targeting domain of Gag.

  11. Mutation of the Highly Conserved Ser-40 of the HIV-1 p6 Gag Protein to Phe Causes the Formation of a Hydrophobic Patch, Enhances Membrane Association, and Polyubiquitination of Gag

    PubMed Central

    Hahn, Friedrich; Setz, Christian; Friedrich, Melanie; Rauch, Pia; Solbak, Sara Marie; Frøystein, Nils Åge; Henklein, Petra; Votteler, Jörg; Fossen, Torgils; Schubert, Ulrich

    2014-01-01

    The HIV-1 p6 Gag protein contains two late assembly (l-) domains that recruit proteins of the endosomal sorting complex required for transport (ESCRT) pathway to mediate membrane fission between the nascent virion and the cell membrane. It was recently demonstrated that mutation of the highly conserved Ser-40 to Phe (S40F) disturbs CA-SP1 processing, virus morphogenesis, and infectivity. It also causes the formation of filopodia-like structures, while virus release remains unaffected. Here, we show that the mutation S40F, but not the conservative mutation to Asp (S40D) or Asn (S40N), augments membrane association, K48-linked polyubiquitination, entry into the 26S proteasome, and, consequently, enhances MHC-I antigen presentation of Gag derived epitopes. Nuclear magnetic resonance (NMR) structure analyses revealed that the newly introduced Phe-40, together with Tyr-36, causes the formation of a hydrophobic patch at the C-terminal α-helix of p6, providing a molecular rationale for the enhanced membrane association of Gag observed in vitro and in HIV-1 expressing cells. The extended exposure of the S40F mutant to unidentified membrane-resident ubiquitin E3-ligases might trigger the polyubiquitination of Gag. The cumulative data support a previous model of a so far undefined property of p6, which, in addition to MA, acts as membrane targeting domain of Gag. PMID:25279819

  12. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  13. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  14. Starting the water treatment system at the putilovo cogeneration station constructed using integrated membrane technologies

    NASA Astrophysics Data System (ADS)

    Gromov, S. L.; Tropina, D. V.; Arkhipova, O. V.

    2011-07-01

    A new process diagram of a water treatment unit constructed using integrated membrane technologies and serving for replenishing losses of steam and condensate for a PGU-180 combined-cycle power unit is presented.

  15. Coating of TiO 2 photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted deposition method and their self-cleaning performance

    NASA Astrophysics Data System (ADS)

    Yamashita, H.; Nakao, H.; Takeuchi, M.; Nakatani, Y.; Anpo, M.

    2003-05-01

    By means of an ion assisted deposition method, a TiO 2 photocatalyst was prepared at relatively lower temperature on porous Teflon sheets (PTS) that are good candidates for the coating materials with super-hydrophobic surfaces. UV light irradiation of TiO 2 photocatalyst on PTS led to the photocatalytic degradation of organic pollutants (self-cleaning), which wear off the water-repellent property of the original PTS surface. The PTS surface loading of a small amount of TiO 2 photocatalyst can keep the super-hydrophobic properties of PTS for a long time because of the photocatalytic degradation of the accumulated pollutants.

  16. Protective effect of black tea on integral membrane proteins in rat liver.

    PubMed

    Szachowicz-Petelska, Barbara; Skrzydlewska, Elżbieta; Figaszewski, Zbigniew

    2013-01-01

    Ethanol intoxication is accompanied by oxidative stress formation. Consequently, it leads to disturbances in cellular metabolism that can alter the structure and function of cell membrane components. Black tea displays antioxidant properties, protects membrane phospholipids and may protect integral membrane proteins. In the present study, we examined whether black tea induces changes in the liver integral membrane proteins of 12-months old rats chronically intoxicated with ethanol. To estimate qualitatively and quantitatively the levels of the liver integral membrane proteins, the proteins were selectively hydrolyzed by trypsin, the obtained peptides were resolved by HPLC and the levels of specific amino acids within the individual peptides were determined. All of the obtained peptides contained phenylalanine (Phe), cysteine (Cys) and lysine (Lys). Compared to the control group, rats in the ethanol intoxication group showed decreased liver levels of integral membrane proteins as well as fewer trypsin-hydrolyzed peptides and amino acids in the hydrolyzed peptides. Administration of black tea to ethanol-intoxicated rats partially protected proteins against the structural changes caused by ethanol. Black tea prevented decreases in the levels of cysteine (in about 90% of cases), lysine (in about 60% of cases), phenylalanine (in about 70% of cases) and examined peptides (in about 60% of cases). The liver protein level was higher (by about 18%) in rats who received black tea and ethanol than in those who received ethanol alone. In conclusion, black tea partially protects the composition and level of rat liver cell integral membrane proteins against changes caused by ethanol intoxication.

  17. Rapid transfer of overexpressed integral membrane protein from the host membrane into soluble lipid nanodiscs without previous purification.

    PubMed

    Shirzad-Wasei, Nazhat; van Oostrum, Jenny; Bovee-Geurts, Petra H M; Kusters, Lisanne J A; Bosman, Giel J C G M; DeGrip, Willem J

    2015-08-01

    Structural and functional characterization of integral membrane proteins in a bilayer environment is strongly hampered by the requirement of detergents for solubilization and subsequent purification, as detergents commonly affect their structure and/or activity. Here, we describe a rapid procedure with minimal exposure to detergent to directly assemble an overexpressed integral membrane protein into soluble lipid nanodiscs prior to purification. This is exemplified with recombinant his-tagged rhodopsin, which is rapidly extracted from its host membrane and directly assembled into membrane scaffold protein (MSP) nanodiscs. We further demonstrate that, even when the MSP was his-tagged as well, partial purification of the rhodopsin-nanodiscs could be achieved exploiting immobilized-metal chromatography. Recoveries of rhodopsin up to 80% were achieved in the purified nanodisc fraction. Over 95% of contaminating membrane protein and his-tagged MSP could be removed from the rhodopsin-nanodiscs using a single Ni2+-affinity chromatography step. This level of purification is amply sufficient for functional studies. We provide evidence that the obtained rhodopsin-nanodisc preparations are fully functional both photochemically and in their ability to bind the cognate G-protein.

  18. Binding of plasma membrane lipids recruits the yeast integral membrane protein Ist2 to the cortical ER.

    PubMed

    Fischer, Marcel André; Temmerman, Koen; Ercan, Ebru; Nickel, Walter; Seedorf, Matthias

    2009-08-01

    Recruitment of cytosolic proteins to individual membranes is governed by a combination of protein-protein and protein-membrane interactions. Many proteins recognize phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] at the cytosolic surface of the plasma membrane (PM). Here, we show that a protein-lipid interaction can also serve as a dominant signal for the sorting of integral membrane proteins. Interaction with phosphatidly-inositolphosphates (PIPs) at the PM is involved in the targeting of the polytopic yeast protein Ist2 to PM-associated domains of the cortical endoplasmic reticulum (ER). Moreover, binding of PI(4,5)P(2) at the PM functions as a dominant mechanism that targets other integral membrane proteins to PM-associated domains of the cortical ER. This sorting to a subdomain of the ER abolishes proteasomal degradation and trafficking along the classical secretory (sec) pathway. In combination with the localization of IST2 mRNA to the bud tip and other redundant signals in Ist2, binding of PIPs leads to efficient accumulation of Ist2 at domains of the cortical ER from where the protein may reach the PM independently of the function of the sec-pathway.

  19. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis.

    PubMed

    Yang, L; Guan, T; Gerace, L

    1997-06-16

    We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin.

  20. Integral Membrane Proteins of the Nuclear Envelope Are Dispersed throughout the Endoplasmic Reticulum during Mitosis

    PubMed Central

    Yang, Li; Guan, Tinglu; Gerace, Larry

    1997-01-01

    We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin. PMID:9182656

  1. HAMLET Interacts with Lipid Membranes and Perturbs Their Structure and Integrity

    PubMed Central

    Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-01-01

    Background Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. Methodology/Principal Findings We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLAall-Ala). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. Conclusions/Significance The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death. PMID:20186341

  2. HAMLET interacts with lipid membranes and perturbs their structure and integrity.

    PubMed

    Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-02-23

    Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.

  3. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review.

    PubMed

    Yuan, Heyang; He, Zhen

    2015-11-01

    Bioelectrochemical systems (BES) represent an energy-efficient approach for wastewater treatment, but the effluent still requires further treatment for direct discharge or reuse. Integrating membrane filtration in BES can achieve high-quality effluents with additional benefits. Three types of filtration membranes, dynamic membrane, ultrafiltration membrane and forward osmosis membrane that are grouped based on pore size, have been studied for integration in BES. The integration can be accomplished either in an internal or an external configuration. In an internal configuration, membranes can act as a separator between the electrodes, or be immersed in the anode/cathode chamber as a filtration component. The external configuration allows BES and membrane module to be operated independently. Given much progress and interest in the integration of membrane filtration into BES, this paper has reviewed the past studies, described various integration methods, discussed the advantages and limitations of each integration, and presented challenges for future development.

  4. The Hydrophobic Effect.

    ERIC Educational Resources Information Center

    Huque, Entazul M.

    1989-01-01

    Discusses the physical basis and current understanding of hydrophobic effects. The thermodynamic background of the effects, hydrophobic hydration, and hydrophobic interactions are described. Four existing controversies are outlined. (YP)

  5. The Hydrophobic Effect.

    ERIC Educational Resources Information Center

    Huque, Entazul M.

    1989-01-01

    Discusses the physical basis and current understanding of hydrophobic effects. The thermodynamic background of the effects, hydrophobic hydration, and hydrophobic interactions are described. Four existing controversies are outlined. (YP)

  6. Correlation study of microalgae carbonation in membrane integrated photobioreactor

    NASA Astrophysics Data System (ADS)

    Suali, E.; Sarbatly, R.; Shaleh, S. R. M.; Lahin, F. A.; Anisuzzaman, S. M.

    2016-06-01

    Microalgae ability to utilise CO2 higher compared to terrestrial plant making it suitable for biomass production and as CO2 utiliser. This could be one of many ways to preserve a safer and healthier environment with less air pollutant. For study purposes, CO2 usually transported to microalgae culture broth with the aid of membrane technology to prevent formation of large bubble and to accelerate the carbonation of microalgal media. However, membrane susceptible to accumulation of CO2, which can cause extreme acidic to microalgal media. This prevents microalgae to assimilate CO2. Thus, this study proposes correlations to prevent the extreme acidic: which represents the relationship of: (1) CO2 inlet and accumulation, (2) CO2 inlet and CO2 at the membrane-liquid interphase and (3) CO2 inlet and CO2 solubility in the media. The correlations were successfully validated with a deviation of less than 20% compared to the theoretical value.

  7. Poloxamer-188 and citicoline provide neuronal membrane integrity and protect membrane stability in cortical spreading depression.

    PubMed

    Yıldırım, Timur; Eylen, Alpaslan; Lule, Sevda; Erdener, Sefik Evren; Vural, Atay; Karatas, Hulya; Ozveren, Mehmet Faik; Dalkara, Turgay; Gursoy-Ozdemir, Yasemin

    2015-01-01

    Under pathological conditions such as brain trauma, subarachnoid hemorrhage and stroke, cortical spreading depression (CSD) or peri-infarct depolarizations contribute to brain damage in animal models of neurological disorders as well as in human neurological diseases. CSD causes transient megachannel opening on the neuronal membrane, which may compromise neuronal survival under pathological conditions. Poloxamer-188 (P-188) and citicoline are neuroprotectants with membrane sealing properties. The aim of this study is to investigate the effect of P-188 and citicoline on the neuronal megachannel opening induced by CSD in the mouse brain. We have monitored megachannel opening with propidium iodide, a membrane impermeable fluorescent dye and, demonstrate that P-188 and citicoline strikingly decreased CSD-induced neuronal PI influx in cortex and hippocampal dentate gyrus. Therefore, these agents may be providing neuroprotection by blocking megachannel opening, which may be related to their membrane sealing action and warrant further investigation for treatment of traumatic brain injury and ischemic stroke.

  8. Surface-Bound Membrane-Mimetic Assemblies: Electrostatic Attributes of Integral Membrane Proteins

    DTIC Science & Technology

    1988-10-31

    other than bovine rhodopsin, we have used analogous techniques with a second retinal-containing protein, bacteriorhodopsin . This protein is found in the...purple membrane of Halobacterium halobium and serves as a light-driven proton pump to generate a transmembrane proton gradient used by the bacterium...and characterized by its absorption spectra. Figure 3 compares the spectra of bacteriorhodopsin in the natural purple membrane with that from protein

  9. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    SciTech Connect

    Shah, V. A. Gammon, P. M.; Rhead, S. D.; Halpin, J. E.; Trushkevych, O.; Wilson, N. R.; Myronov, M.; Edwards, R. S.; Patchett, D. H.; Allred, P. S.; Prest, M. J.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Chávez-Ángel, E.; Shchepetov, A.; Prunnila, M.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.; and others

    2014-04-14

    A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm{sup 2}. We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials.

  10. Probing the roles of Ca(2+) and Mg(2+) in humic acids-induced ultrafiltration membrane fouling using an integrated approach.

    PubMed

    Wang, Long-Fei; He, Dong-Qin; Chen, Wei; Yu, Han-Qing

    2015-09-15

    Membrane fouling induced by natural organic matter (NOM) negatively affects the performance of ultrafiltration (UF) technology in producing drinking water. Divalent cation is found to be an important factor that affects the NOM-induced membrane fouling process. In this work, attenuated total reflection-Fourier transformation infrared spectroscopy (ATR-FTIR) coupled with quartz crystal microbalance (QCM), assisted by isothermal titration calorimetry (ITC), is used to explore the contribution of Mg(2+) and Ca(2+), the two abundant divalent cations in natural water, to the UF membrane fouling caused by humic acid (HA) at a molecular level. The results show that Ca(2+) exhibited superior performance in accelerating fouling compared to Mg(2+). The hydrophobic polyethersulfone (PES) membrane exhibited greater complexation with HA in the presence of Mg(2+) and Ca(2+), compared to the hydrophilic cellulose membrane, as evidenced by the more intense polysaccharide C-O, aromatic C=C and carboxylic C=O bands in the FTIR spectra. The QCM and ITC measurements provide quantitative evidence to support that Ca(2+) was more effective than Mg(2+) in binding with HA and accumulating foulants on the membrane surfaces. The higher charge neutralization capacity and more favorable binding ability of Ca(2+) were found to be responsible for its greater contribution to the NOM-induced membrane fouling than Mg(2+). This work offers a new insight into the mechanism of cation-mediated NOM-induced membrane fouling process, and demonstrates that such an integrated ATR-FTIR/QCM/ITC approach could be a useful tool to explore other complicated interaction processes in natural and engineered environments.

  11. Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs.

    PubMed

    Raschle, Thomas; Hiller, Sebastian; Yu, Tsyr-Yan; Rice, Amanda J; Walz, Thomas; Wagner, Gerhard

    2009-12-16

    Biophysical studies of membrane proteins are often impeded by the requirement for a membrane mimicking environment. Detergent micelles are the most common choice, but the denaturing properties make them unsatisfactory for studies of many membrane proteins and their interactions. In the present work, we explore phospholipid bilayer nanodiscs as membrane mimics and employ electron microscopy and solution NMR spectroscopy to characterize the structure and function of the human voltage dependent anion channel (VDAC-1) as an example of a polytopic integral membrane protein. Electron microscopy reveals the formation of VDAC-1 multimers, an observation that is consistent with results obtained in native mitochondrial outer membranes. High-resolution NMR spectroscopy demonstrates a well folded VDAC-1 protein and native NADH binding functionality. The observed chemical shift changes upon addition of the native ligand NADH to nanodisc-embedded VDAC-1 resemble those of micelle-embedded VDAC-1, indicating a similar structure and function in the two membrane-mimicking environments. Overall, the ability to study integral membrane proteins at atomic resolution with solution NMR in phospholipid bilayers, rather than in detergent micelles, offers exciting novel possibilities to approach the biophysical properties of membrane proteins under nondenaturing conditions, which makes this technology particular suitable for protein-protein interactions and other functional studies.

  12. Expression of Prokaryotic Integral Membrane Proteins in E. coli.

    PubMed

    Love, James D

    2017-01-01

    Production of prokaryotic membrane proteins for structural and functional studies in E. coli can be parallelized and miniaturized. All stages from cloning, expression, purification to detergent selection can be investigated using high-throughput techniques to rapidly and economically find tractable targets.

  13. integrating Solid State NMR and Computations in Membrane Protein Science

    NASA Astrophysics Data System (ADS)

    Cross, Timothy

    2015-03-01

    Helical membrane protein structures are influenced by their native environment. Therefore the characterization of their structure in an environment that models as closely as possible their native environment is critical for achieving not only structural but functional understanding of these proteins. Solid state NMR spectroscopy in liquid crystalline lipid bilayers provides an excellent tool for such characterizations. Two classes of restraints can be obtained - absolute restraints that constrain the structure to a laboratory frame of reference when using uniformly oriented samples (approximately 1° of mosaic spread) and relative restraints that restrain one part of the structure with respect to another part such as torsional and distance restraints. Here, I will discuss unique restraints derived from uniformly oriented samples and the characterization of initial structures utilizing both restraint types, followed by restrained molecular dynamics refinement in the same lipid bilayer environment as that used for the experimental restraint collection. Protein examples will be taken from Influenza virus and Mycobacterium tuberculosis. When available comparisons of structures to those obtained using different membrane mimetic environments will be shown and the causes for structural distortions explained based on an understanding of membrane biophysics and its sophisticated influence on membrane proteins.

  14. Outer membrane lipoprotein VacJ is required for the membrane integrity, serum resistance and biofilm formation of Actinobacillus pleuropneumoniae.

    PubMed

    Xie, Fang; Li, Gang; Zhang, Wanjiang; Zhang, Yanhe; Zhou, Long; Liu, Shuanghong; Liu, Siguo; Wang, Chunlai

    2016-02-01

    The outer membrane proteins of Actinobacillus pleuropneumoniae are mediators of infection, acting as targets for the host's defense system. The outer membrane lipoprotein VacJ is involved in serum resistance and intercellular spreading in several pathogenic bacteria. To investigate the role of VacJ in the pathogenicity of Actinobacillus pleuropneumoniae, the vacJ gene-deletion mutant MD12 ΔvacJ was constructed. The increased susceptibility to KCl, SDS plus EDTA, and several antibiotics in the MD12ΔvacJ mutant suggested that the stability of the outer membrane was impaired as a result of the mutation in the vacJ gene. The increased NPN fluorescence and significant cellular morphological variation in the MD12ΔvacJ mutant further demonstrated the crucial role of the VacJ lipoprotein in maintaining the outer membrane integrity of A. pleuropneumoniae. In addition, the MD12ΔvacJ mutant exhibited decreased survival from the serum and complement killing compared to the wild-type strain. Interestingly, the MD12ΔvacJ mutant showed reduced biofilm formation compared to the wild-type strain. To our knowledge, this is the first description of the VacJ lipoprotein contributing to bacterial biofilm formation. The data presented in this study illustrate the important role of the VacJ lipoprotein in the maintenance of cellular integrity, serum resistance, and biofilm formation in A. pleuropneumoniae. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The outer membrane phospholipase A is essential for membrane integrity and type III secretion in Shigella flexneri.

    PubMed

    Wang, Xia; Jiang, Feng; Zheng, Jianhua; Chen, Lihong; Dong, Jie; Sun, Lilian; Zhu, Yafang; Liu, Bo; Yang, Jian; Yang, Guowei; Jin, Qi

    2016-09-01

    Outer membrane phospholipase A (OMPLA) is an enzyme located in the outer membrane of Gram-negative bacteria. OMPLA exhibits broad substrate specificity, and some of its substrates are located in the cellular envelope. Generally, the enzymatic activity can only be induced by perturbation of the cell envelope integrity through diverse methods. Although OMPLA has been thoroughly studied as a membrane protein in Escherichia coli and is constitutively expressed in many other bacterial pathogens, little is known regarding the functions of OMPLA during the process of bacterial infection. In this study, the proteomic and transcriptomic data indicated that OMPLA in Shigella flexneri, termed PldA, both stabilizes the bacterial membrane and is involved in bacterial infection under ordinary culture conditions. A series of physiological assays substantiated the disorganization of the bacterial outer membrane and the periplasmic space in the ΔpldA mutant strain. Furthermore, the ΔpldA mutant strain showed decreased levels of type III secretion system expression, contributing to the reduced internalization efficiency in host cells. The results of this study support that PldA, which is widespread across Gram-negative bacteria, is an important factor for the bacterial life cycle, particularly in human pathogens.

  16. Monitoring Changes in Membrane Polarity, Membrane Integrity, and Intracellular Ion Concentrations in Streptococcus pneumoniae Using Fluorescent Dyes

    PubMed Central

    Roche-Håkansson, Hazeline; Håkansson, Anders P.

    2014-01-01

    Membrane depolarization and ion fluxes are events that have been studied extensively in biological systems due to their ability to profoundly impact cellular functions, including energetics and signal transductions. While both fluorescent and electrophysiological methods, including electrode usage and patch-clamping, have been well developed for measuring these events in eukaryotic cells, methodology for measuring similar events in microorganisms have proven more challenging to develop given their small size in combination with the more complex outer surface of bacteria shielding the membrane. During our studies of death-initiation in Streptococcus pneumoniae (pneumococcus), we wanted to elucidate the role of membrane events, including changes in polarity, integrity, and intracellular ion concentrations. Searching the literature, we found that very few studies exist. Other investigators had monitored radioisotope uptake or equilibrium to measure ion fluxes and membrane potential and a limited number of studies, mostly in Gram-negative organisms, had seen some success using carbocyanine or oxonol fluorescent dyes to measure membrane potential, or loading bacteria with cell-permeant acetoxymethyl (AM) ester versions of ion-sensitive fluorescent indicator dyes. We therefore established and optimized protocols for measuring membrane potential, rupture, and ion-transport in the Gram-positive organism S. pneumoniae. We developed protocols using the bis-oxonol dye DiBAC4(3) and the cell-impermeant dye propidium iodide to measure membrane depolarization and rupture, respectively, as well as methods to optimally load the pneumococci with the AM esters of the ratiometric dyes Fura-2, PBFI, and BCECF to detect changes in intracellular concentrations of Ca2+, K+, and H+, respectively, using a fluorescence-detection plate reader. These protocols are the first of their kind for the pneumococcus and the majority of these dyes have not been used in any other bacterial species

  17. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes.

    PubMed

    Clementi, Emily A; Marks, Laura R; Roche-Håkansson, Hazeline; Håkansson, Anders P

    2014-02-17

    Membrane depolarization and ion fluxes are events that have been studied extensively in biological systems due to their ability to profoundly impact cellular functions, including energetics and signal transductions. While both fluorescent and electrophysiological methods, including electrode usage and patch-clamping, have been well developed for measuring these events in eukaryotic cells, methodology for measuring similar events in microorganisms have proven more challenging to develop given their small size in combination with the more complex outer surface of bacteria shielding the membrane. During our studies of death-initiation in Streptococcus pneumoniae (pneumococcus), we wanted to elucidate the role of membrane events, including changes in polarity, integrity, and intracellular ion concentrations. Searching the literature, we found that very few studies exist. Other investigators had monitored radioisotope uptake or equilibrium to measure ion fluxes and membrane potential and a limited number of studies, mostly in Gram-negative organisms, had seen some success using carbocyanine or oxonol fluorescent dyes to measure membrane potential, or loading bacteria with cell-permeant acetoxymethyl (AM) ester versions of ion-sensitive fluorescent indicator dyes. We therefore established and optimized protocols for measuring membrane potential, rupture, and ion-transport in the Gram-positive organism S. pneumoniae. We developed protocols using the bis-oxonol dye DiBAC4(3) and the cell-impermeant dye propidium iodide to measure membrane depolarization and rupture, respectively, as well as methods to optimally load the pneumococci with the AM esters of the ratiometric dyes Fura-2, PBFI, and BCECF to detect changes in intracellular concentrations of Ca(2+), K(+), and H(+), respectively, using a fluorescence-detection plate reader. These protocols are the first of their kind for the pneumococcus and the majority of these dyes have not been used in any other bacterial

  18. Role of Lipids in Folding, Misfolding and Function of Integral Membrane Proteins.

    PubMed

    Hong, Heedeok

    2015-01-01

    The lipid bilayer that constitutes cell membranes imposes environmental constraints on the structure, folding and function of integral membrane proteins. The cell membrane is an enormously heterogeneous and dynamic system in its chemical composition and associated physical forces. The lipid compositions of cell membranes not only vary over the tree of life but also differ by subcellular compartments within the same organism. Even in the same subcellular compartment, the membrane composition shows strong temporal and spatial dependence on the environmental or biological cues. Hence, one may expect that the membrane protein conformations and their equilibria strongly depend on the physicochemical variables of the lipid bilayer. Contrary to this expectation, the structures of homologous membrane proteins belonging to the same family but from evolutionary distant organisms exhibit a striking similarity. Furthermore, the atomic structures of the same protein in different lipid environments are also very similar. This suggests that certain stable folds optimized for a specific function have been selected by evolution. On the other hand, there is growing evidence that, despite the overall stability of the protein folds, functions of certain membrane proteins require a particular lipid composition in the bulk bilayer or binding of specific lipid species. Here I discuss the specific and nonspecific modulation of folding, misfolding and function of membrane proteins by lipids and introduce several diseases that are caused by misfolding of membrane proteins.

  19. Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins.

    PubMed

    Tribet, C; Diab, C; Dahmane, T; Zoonens, M; Popot, J-L; Winnik, F M

    2009-11-03

    The aggregation of integral membrane proteins (IMPs) in aqueous media is a significant concern for mechanistic investigations and pharmaceutical applications of this important class of proteins. Complexation of IMPs with amphiphiles, either detergents or short amphiphilic polymers known as amphipols (APols), renders IMPs water-soluble. It is common knowledge that IMP-detergent complexes are labile, while IMP-APol complexes are exceptionally stable and do not dissociate even under conditions of extreme dilution. To understand the thermodynamic origin of this difference in stability and to guide the design of new APols, we have studied by isothermal titration calorimetry (ITC) the heat exchanges during two reciprocal processes, the "trapping" of detergent-solubilized IMPs in APols and the "stripping" of IMP-APol complexes by detergents, using two IMPs (the transmembrane domain of porin OmpA from Escherichia coli and bacteriorhodopsin from Halobium salinarium), two APols [an anionic polymer derived from acrylic acid (A8-35) and a cationic phosphorylcholine-based polymer (C22-43)], and two neutral detergents [n-octyl thioglucoside (OTG) and n-octyltetraethylene glycol (C(8)E(4))]. In the presence of detergent, free APols and IMP-APol complexes form mixed particles, APol-detergent and IMP-APol-detergent, respectively, according to the regular mixing model. Diluting IMP-APol-detergent complexes below the critical micellar concentration (CMC) of the detergent triggers the dispersion of detergent molecules as monomers, a process characterized by an enthalpy of demicellization. The enthalpy of APol <--> detergent exchange on the hydrophobic surface of IMPs is negligibly small, an indication of the similarity of the molecular interactions of IMPs with the two types of amphiphiles. The enhanced stability against dilution of IMP-APol complexes, compared to IMP-detergent ones, originates from the difference in entropy gain achieved upon release in water of a few APol molecules

  20. [Investigation of hydrophobicity of Proteus vulgaris strains and ability of Proteus vulgaris and Proteus penneri strains to penetrate bladder membrane HCV T-29 cells ].

    PubMed

    Bartodziejska, Beata; Błaszczyk, Aleksandra; Wykrota, Marianna; Kwil, Iwona; Babicka, Dorota; Rózalski, Antoni

    2002-01-01

    Proteus bacilli play a particularly important role in urinary tract infections (UTI). Fimbriae and adherence ability and hemolysins production (HpmA, HlyA) are one of the factors of pathogenicity of these bacteria. In this paper we describe the invasion of HCV T-29 transitional bladder urothelial cells carcinoma strains of P. penneri, as well as P. vulgaris strains belonging to different serogroups. The cytotoxic effect was observed at 8 hour of incubation of the tested cells with P. vulgaris O21 and the same effect (complete lysis) at 6 hours by P. vulgaris O4 (this strain manifests maximal activity in the production of HlyA hemolysin). P. penneri strains, produce different types of fimbriae, expressed similar bacterial invasiveness. The hydrophobic properties of 25 P. vulgaris strains were also tested and only 3 strains occur to have hydrophobic cell surface.

  1. Use of a Corona Discharge to Selectively Pattern a Hydrophilic/Hydrophobic Interface for Integrating Segmented Flow with Microchip Electrophoresis and Electrochemical Detection

    PubMed Central

    Filla, Laura A.; Kirkpatrick, Douglas C.; Martin, R. Scott

    2011-01-01

    Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to “desegment” the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies where off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection. PMID:21718004

  2. Use of a corona discharge to selectively pattern a hydrophilic/hydrophobic interface for integrating segmented flow with microchip electrophoresis and electrochemical detection.

    PubMed

    Filla, Laura A; Kirkpatrick, Douglas C; Martin, R Scott

    2011-08-01

    Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to "desegment" the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies in which off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection.

  3. Systematic cyanobacterial membrane proteome analysis by combining acid hydrolysis and digestive enzymes with nano-liquid chromatography-Fourier transform mass spectrometry.

    PubMed

    Kwon, Joseph; Oh, Jeehyun; Park, Chiyoul; Cho, Kun; Kim, Seung Il; Kim, Soohyun; Lee, Sunghoon; Bhak, Jong; Norling, Birgitta; Choi, Jong-Soon

    2010-01-15

    The identification of membrane proteins is currently under-represented since the trans-membrane domains of membrane proteins have a hydrophobic property. Membrane proteins have mainly been analyzed by cleaving and identifying exposed hydrophilic domains. We developed the membrane proteomics method for targeting integral membrane proteins by the following sequential process: in-solution acid hydrolysis, reverse phase chromatographic separation, trypsin or chymotrypsin digestion and nano-liquid chromatography-Fourier transform mass spectrometry. When we employed total membrane proteins of Synechocystis sp. PCC 6803, 155 integral membrane proteins out of a predictable 706 were identified in a single application, corresponding to 22% of a genome. The combined methods of acid hydrolysis-trypsin (AT) and acid hydrolysis-chymotrypsin (AC) identified both hydrophilic and hydrophobic domains of integral membrane proteins, respectively. The systematic approach revealed a more concrete data in mapping the repertoire of cyanobacterial membrane and membrane-linked proteome.

  4. Iron Deprivation Affects Drug Susceptibilities of Mycobacteria Targeting Membrane Integrity

    PubMed Central

    Pal, Rahul; Hameed, Saif; Fatima, Zeeshan

    2015-01-01

    Multidrug resistance (MDR) acquired by Mycobacterium tuberculosis (MTB) through continuous deployment of antitubercular drugs warrants immediate search for novel targets and mechanisms. The ability of MTB to sense and become accustomed to changes in the host is essential for survival and confers the basis of infection. A crucial condition that MTB must surmount is iron limitation, during the establishment of infection, since iron is required by both bacteria and humans. This study focuses on how iron deprivation affects drug susceptibilities of known anti-TB drugs in Mycobacterium smegmatis, a “surrogate of MTB.” We showed that iron deprivation leads to enhanced potency of most commonly used first line anti-TB drugs that could be reverted upon iron supplementation. We explored that membrane homeostasis is disrupted upon iron deprivation as revealed by enhanced membrane permeability and hypersensitivity to membrane perturbing agent leading to increased passive diffusion of drug and TEM images showing detectable differences in cell envelope thickness. Furthermore, iron seems to be indispensable to sustain genotoxic stress suggesting its possible role in DNA repair machinery. Taken together, we for the first time established a link between cellular iron and drug susceptibility of mycobacteria suggesting iron as novel determinant to combat MDR. PMID:26779346

  5. TM7SF1 (GPR137B): a novel lysosome integral membrane protein.

    PubMed

    Gao, Jialin; Xia, Libin; Lu, Meiqing; Zhang, Binhua; Chen, Yueping; Xu, Rang; Wang, Lizhuo

    2012-09-01

    In the previous proteomic study of human placenta, transmembrane 7 superfamily member 1 (TM7SF1) was found enriched in lysosome compartments. TM7SF1 encodes a 399-amino acid protein with a calculated molecular mass of 45 kDa. Bioinformatic analysis of its amino acid sequence showed that it is a multipass transmembrane protein containing a potential dileucine-based lysosomal targeting signal and four putative N-glycosylation sites. By percoll-gradient centrifugation and further subfraction ways, the lysosomal solute and membrane compartments were isolated respectively. Immunoblotting analysis indicated that TM7SF1 was co-fractioned with lysosome associated membrane protein 2 (LAMP2), which was only detected in lysosomal membrane compartments whereas not detected in the solute compartments. Using specific anti-TM7SF1 antibody and double-immunofluorescence with lysosome membrane protein LAMP1 and Lyso-Tracker Red, the colocalisations of endogenous TM7SF1 with lysosome and late endosome markers were demonstrated. All of this indicated that TM7SF1 is an integral lysosome membrane protein. Rat ortholog of TM7SF1 was found to be strongly expressed in heart, liver, kidney and brain while not or low detected in other tissues. In summary, TM7SF1 was a lysosomal integral membrane protein that shows tissue-specific expression. As a G-protein-coupled receptor in lysosome membrane, TM7SF1 was predicted function as signal transduction across lysosome membrane.

  6. Isolation of monoclonal antibody from a Chinese hamster ovary supernatant. II: dynamics of the integrated separation on ion exchange and hydrophobic interaction chromatography media.

    PubMed

    Marek, Wojciech; Muca, Renata; Woś, Sylwia; Piątkowski, Wojciech; Antos, Dorota

    2013-08-30

    Dynamics of the purification process of a CHO derived monoclonal antibody by ion exchange chromatography (IEC), hydrophobic interaction chromatography (HIC) and their integration has been investigated. To quantify the adsorption behavior of the target protein (IgG1) and impurities contained in the supernatant, their elution course on IEC and HIC columns has been analyzed versus pH and/or the salt concentration in the mobile phase. A short-cut method has been proposed for mathematical modeling and determining underlying kinetic and thermodynamic parameters. The accuracy of the model predictions has been verified by comparing the simulated and experimental band profiles recorded in both chromatographic processes. After verification, the model was used to optimize operating conditions for the column loading and chromatographic elution in the integrated process IEC/HIC. Two alternative loading techniques based on the upstream and downstream feed dilution were taken into account in the optimization routine. In the first one the feed stream was diluted with the loading buffer prior to the column loading, while in the latter one the feed dilution was realized inside the column using the multiple-injection technique. It was shown that the downstream dilution allowed significant reduction of the contact time between the protein and the loading buffer.

  7. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    SciTech Connect

    Ferraris, John

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  8. Internal packing of helical membrane proteins

    PubMed Central

    Eilers, Markus; Shekar, Srinivasan C.; Shieh, Ted; Smith, Steven O.; Fleming, Patrick J.

    2000-01-01

    Helix packing is important in the folding, stability, and association of membrane proteins. Packing analysis of the helical portions of 7 integral membrane proteins and 37 soluble proteins show that the helices in membrane proteins have higher packing values (0.431) than in soluble proteins (0.405). The highest packing values in integral membrane proteins originate from small hydrophobic (G and A) and small hydroxyl-containing (S and T) amino acids, whereas in soluble proteins large hydrophobic and aromatic residues have the highest packing values. The highest packing values for membrane proteins are found in the transmembrane helix–helix interfaces. Glycine and alanine have the highest occurrence among the buried amino acids in membrane proteins, whereas leucine and alanine are the most common buried residue in soluble proteins. These observations are consistent with a shorter axial separation between helices in membrane proteins. The tight helix packing revealed in this analysis contributes to membrane protein stability and likely compensates for the lack of the hydrophobic effect as a driving force for helix–helix association in membranes. PMID:10823938

  9. HYDROPHOBIC ZEOLITE-SILICONE RUBBER MIXED MATRIX MEMBRANES FOR ETHANOL-WATER SEPARATION: EFFECT OF ZEOLITE AND SILICONE COMPONENT SELECTION ON PERVAPORATION PERFORMANCE

    EPA Science Inventory

    High-silica ZSM 5 zeolites were incorporated into poly(dimethyl siloxane) (PDMS) polymers to form mixed matrix membranes for ethanol removal from water via pervaporation. Membrane formulation and preparation parameters were varied to determine the effect on pervaporation perform...

  10. HYDROPHOBIC ZEOLITE-SILICONE RUBBER MIXED MATRIX MEMBRANES FOR ETHANOL-WATER SEPARATION: EFFECT OF ZEOLITE AND SILICONE COMPONENT SELECTION ON PERVAPORATION PERFORMANCE

    EPA Science Inventory

    High-silica ZSM 5 zeolites were incorporated into poly(dimethyl siloxane) (PDMS) polymers to form mixed matrix membranes for ethanol removal from water via pervaporation. Membrane formulation and preparation parameters were varied to determine the effect on pervaporation perform...

  11. Effects of various cryoprotective agents and membrane-stabilizing compounds on bull sperm membrane integrity after cooling and freezing.

    PubMed

    De Leeuw, F E; De Leeuw, A M; Den Daas, J H; Colenbrander, B; Verkleij, A J

    1993-02-01

    In this study attempts were made to improve the survival rates of bull spermatozoa after freezing/thawing and to clarify the importance of certain agents to the cryopreservation of spermatozoa. For that purpose the standard freezing extender was modified by the addition of different concentrations of various cryoprotectants and membrane-stabilizing agents: glycerol, 1,2-propanediol, polyvinylpyrrolidone, sucrose, egg yolk, lipid vesicles, and bovine serum albumin (BSA). Sperm membrane impermeability toward H33258 was employed as the parameter for sperm integrity during cooling and after freezing/thawing. Exclusion of glycerol from the extender did not significantly affect sperm integrity. Replacing 6% glycerol by 6% 1,2-propanediol resulted in reduced sperm survival, whereas replacement of glycerol by 62.5 mM sucrose slightly improved survival rates. Addition of 5 or 10% polyvinylpyrrolidone (either or not in combination with 0.5 M sucrose) significantly reduced sperm integrity. Excluding egg yolk from the extender caused a serious decrease of sperm survival after both cooling and freezing. The cryoprotection offered by egg yolk could not be mimicked by dioleoylphosphatidylcholine (DOPC) vesicles or DOPC/phosphatidic acid/cholesterol vesicles in concentrations up to 29 or 9 mM, respectively. However, the freezing extender containing 6.5 mM DOPC vesicles in combination with 6% BSA yielded results which did not significantly differ from those obtained with the standard extender; higher vesicle concentrations combined with BSA might produce even better results. Further research on the cryopreservation of bovine spermatozoa should focus on membrane stabilization since the membrane-stabilizing compounds yield more promising results than the ice-preventing agents.

  12. Integration of nanoporous membranes for sample filtration/preconcentration in microchip electrophoresis.

    PubMed

    Long, Zhicheng; Liu, Dayu; Ye, Nannan; Qin, Jianhua; Lin, Bingcheng

    2006-12-01

    Microfluidic devices integrating membrane-based sample preparation with electrophoretic separation are demonstrated. These multilayer devices consist of 10 nm pore diameter membranes sandwiched between two layers of PDMS substrates with embedded microchannels. Because of the membrane isolation, material exchange between two fluidic layers can be precisely controlled by applied voltages. More importantly, since only small molecules can pass through the nanopores, the integrated membrane can serve as a filter or a concentrator prior to microchip electrophoresis under different design and operation modes. As a filter, they can be used for separation and selective injection of small analytes from sample matrix. This has been effectively applied in rapid determination of reduced glutathione in human plasma and red blood cells without any off-chip deproteinization procedure. Alternatively, in the concentrator mode, they can be used for online purification and preconcentration of macromolecules, which was illustrated by removing primers and preconcentrating the product DNA from a PCR product mixture.

  13. Phase separation of integral membrane proteins in Triton X-114 solution.

    PubMed

    Bordier, C

    1981-02-25

    A solution of the nonionic detergent Triton X-114 is homogeneous at 0 degrees C but separates in an aqueous phase and a detergent phase above 20 degrees C. The extent of this detergent phase separation increases with the temperature and is sensitive to the presence of other surfactants. The partition of proteins during phase separation in solutions of Triton X-114 is investigated. Hydrophilic proteins are found exclusively in the aqueous phase, and integral membrane proteins with an amphiphilic nature are recovered in the detergent phase. Triton X-114 is used to solubilize membranes and whole cells, and the soluble material is submitted to phase separation. Integral membrane proteins can thus be separated from hydrophilic proteins and identified as such in crude membrane or cellular detergent extracts.

  14. A Novel and Facile Method to Prepare Integrated Electrospun Nanofibrous Membrane with Soldered Junctions.

    PubMed

    Shen, Lingdi; Chen, Jiajia; Hong, Guishan; Wang, Xuefen

    2016-01-01

    Integrated electrospun nanofibrous membrane was prepared by creating soldered junctions between nanofibers via a facile strategy. Polyacrylonitrile (PAN) mixed with poly(vinylidene fluoride) (PVDF) at different ratios of PVDF were prepared in N,N'-dimethyl formamide (DMF), then electrospun to fabricate PAN/PVDF membranes. PVDF can form microgels in DMF which slows down volatile speed of DMF and affects the solidification of PAN/PVDF nanofibers. The resulting membranes were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic water contact angle and tensile testing to confirm the morphology and mechanical properties. Soldered junctions were observed between nanofibers with the increase of PVDF content. These junctions made the membrane integrated and greatly enhanced tensile strength from 5.1 to 8.1 MPa (increased by ~60%) and tensile modulus from 49.4 to 117.9 MPa (increased by ~139%) without compromising porosity when the content of PVDF increased from 0 to 60 wt%.

  15. Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes.

    PubMed

    Jain, Tarun; Guerrero, Ricardo Jose S; Aguilar, Carlos A; Karnik, Rohit

    2013-04-16

    Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping of DNA-binding proteins involved in homologous recombination. While machining nanopores in dielectric membranes provides nanometer-scale precision, the rigid silicon support for the membrane contributes capacitive noise and limits integration with microfluidic networks for sample preprocessing. Herein, we demonstrate a technique to directly transfer solid-state nanopores machined in dielectric membranes from a silicon support into a microfluidic network. The resulting microfluidic-addressable nanopores can sense single DNA molecules at high bandwidths and with low noise, owing to significant reductions in membrane capacitance. This strategy will enable large-scale integration of solid-state nanopores with microfluidic upstream and downstream processing and permit new functions with nanopores such as complex manipulations for multidimensional analysis and parallel sensing in two and three-dimensional architectures.

  16. Effects of PEO-PPO-PEO triblock copolymers on phospholipid membrane integrity under osmotic stress.

    PubMed

    Wang, Jia-Yu; Chin, Jaemin; Marks, Jeremy D; Lee, Ka Yee C

    2010-08-03

    The effects of PEO-PPO-PEO triblock copolymers, mainly Poloxamer 188, on phospholipid membrane integrity under osmotic gradients were explored using giant unilamellar vesicles (GUVs). Fluorescence leakage assays showed two opposing effects of P188 on the structural integrity of GUVs depending on the duration of their incubation time. A two-state transition mechanism of interaction between the triblock copolymers and the phospholipid membrane is proposed: an adsorption (I) and an insertion (II) state. While the triblock copolymer in state I acts to moderately retard the leakage, their insertion in state II perturbs the lipid packing, thus increasing the membrane permeability. Our results suggest that the biomedical application of PEO-PPO-PEO triblock copolymers, either as cell membrane resealing agents or as accelerators for drug delivery, is directed by the delicate balance between these two states.

  17. Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes

    PubMed Central

    Piper, Robert C.

    2007-01-01

    Summary The pathways that deliver newly synthesized proteins that reside in lysosomes are well understood by comparison with our knowledge of how integral membrane proteins are sorted and delivered to the lysosome for degradation. Many membrane proteins are sorted to lysosomes following ubiquitination, which provides a sorting signal that can operate for sorting at the TGN (trans-Golgi network), at the plasma membrane or at the endosome for delivery into lumenal vesicles. Candidate multicomponent machines that can potentially move ubiquitinated integral membrane cargo proteins have been identified, but much work is still required to ascertain which of these candidates directly recognizes ubiquitinated cargo and what they do with cargo after recognition. In the case of the machinery required for sorting into the lumenal vesicles of endosomes, other functions have also been determined including a link between sorting and movement of endosomes along microtubules. PMID:17689064

  18. Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent.

    PubMed

    Marbelia, L; Bilad, M R; Passaris, I; Discart, V; Vandamme, D; Beuckels, A; Muylaert, K; Vankelecom, Ivo F J

    2014-07-01

    The feasibility of a new concept of wastewater treatment by combining a membrane bioreactor (MBR) and a microalgae membrane photobioreactor (MPBR) is assessed in this study. In this system, the organic carbon present in wastewater is expected to be fully oxidized in the MBR, while the nutrients are removed via the subsequent MPBR treatment. The effluent of a lab-scale MBR was fed into a PBR and a MPBR which served as growing medium for Chlorella vulgaris. The MPBRs demonstrated their superiority by limiting the algae wash-out, thus increasing the allowable optimum dilution rate (Dopt). At these corresponding Dopt values, 3.5 and 2 times higher biomass concentrations and volumetric productivities respectively were achieved by the MPBR. It is also possible to run the MPBR at still higher biomass concentration, thus enabling a smaller footprint and higher nutrient removal efficiency. However, reduced nutrient removal efficiencies were found to be one possible drawback.

  19. Crystal structure of the integral membrane diacylglycerol kinase

    PubMed Central

    Li, Dianfan; Lyons, Joseph A.; Pye, Valerie E.; Vogeley, Lutz; Aragão, David; Kenyon, Colin P.; Shah, Syed T. A.; Doherty, Christine; Aherne, Margaret; Caffrey, Martin

    2013-01-01

    Diacylglycerol kinase (DgkA) catalyzes the ATP-dependent phosphorylation of diacylglycerol to phosphatidic acid for use in shuttling water-soluble components to membrane derived oligosaccharide and lipopolysaccharide in the cell envelope of Gram-negative bacteria1. For half a century, this 121-residue kinase has served as a paradigm for investigating membrane protein enzymology1,3-7, folding8,9, assembly10-13, and stability1,14. Here, we present crystal structures for three functional forms of this unique and paradigmatic kinase, one of which is wild type (WT). These reveal a homo-trimeric enzyme with three transmembrane helices and an N-terminal amphiphilic helix per monomer. Bound lipid substrate and docked ATP identify the putative active site which is of the composite, shared site type. The crystal structures rationalize extensive biochemical and biophysical data on the enzyme. They are however at variance with a published solution NMR model2 in that domain swapping, a key feature of the solution form, is not observed in the crystal structures. PMID:23676677

  20. Molecular cloning of the common acute lymphoblastic leukemia antigen (CALLA) identifies a type II integral membrane protein

    SciTech Connect

    Shipp, M.A.; Richardson, N.E.; Sayre, P.H.; Brown, N.R.; Masteller, E.L.; Clayton, L.K.; Ritz, J.; Reinherz, E.L. )

    1988-07-01

    Common acute lymphoblastic leukemia antigen (CALLA) is a 100-kDa cell-surface glycoprotein expressed on most acute lymphoblastic leukemias and certain other immature lymphoid malignancies and on normal lymphoid progenitors. The latter are either uncommitted to B- or T-cell lineage or committed to only the earliest stages of B- or T-lymphocyte maturation. To elucidate the primary structure of CALLA, the authors purified the protein to homogeneity, obtained the NH{sub 2}-terminal sequence from both the intact protein and derived tryptic and V8 protease peptides and isolated CALLA cDNAs from a Nalm-6 cell line {lambda}gt10 library using redundant oligonucleotide probes. The CALLA cDNA sequence predicts a 750-amino acid integral membrane protein with a single 24-amino acid hydrophobic segment that could function as both a transmembrane region and a signal peptide. The COOH-terminal 700 amino acids, including six potential N-linked glycosylation sites compose the extracellular protein segment, whereas the 25 NM{sub 2}-terminal amino acids remaining after cleavage of the initiation methionine form the cytoplasmic tail. CALLA{sup +} cells contain CALLA transcripts of 2.7 to 5.7 kilobases with the major 5.7- and 3.7-kilobase mRNAs being preferentially expressed in specific cell types.

  1. Surface self-assembled PEGylation of fluoro-based PVDF membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance.

    PubMed

    Lin, Nien-Jung; Yang, Hui-Shan; Chang, Yung; Tung, Kuo-Lun; Chen, Wei-Hao; Cheng, Hui-Wen; Hsiao, Sheng-Wen; Aimar, Pierre; Yamamoto, Kazuo; Lai, Juin-Yih

    2013-08-13

    Stable biofouling resistance is significant for general filtration requirements, especially for the improvement of membrane lifetime. A systematic group of hyper-brush PEGylated diblock copolymers containing poly(ethylene glycol) methacrylate (PEGMA) and polystyrene (PS) was synthesized using an atom transfer radical polymerization (ATRP) method and varying PEGMA lengths. This study demonstrates the antibiofouling membrane surfaces by self-assembled anchoring PEGylated diblock copolymers of PS-b-PEGMA on the microporous poly(vinylidene fluoride) (PVDF) membrane. Two types of copolymers are used to modify the PVDF surface, one with different PS/PEGMA molar ratios in a range from 0.3 to 2.7 but the same PS molecular weights (MWs, ∼5.7 kDa), the other with different copolymer MWs (∼11.4, 19.9, and 34.1 kDa) but the similar PS/PEGMA ratio (∼1.7 ± 0.2). It was found that the adsorption capacities of diblock copolymers on PVDF membranes decreased as molar mass ratios of PS/PEGMA ratio reduced or molecular weights of PS-b-PEGMA increased because of steric hindrance. The increase in styrene content in copolymer enhanced the stability of polymer anchoring on the membrane, and the increase in PEGMA content enhanced the protein resistance of membranes. The optimum PS/PEGMA ratio was found to be in the range between 1.5 and 2.0 with copolymer MWs above 20.0 kDa for the ultrastable resistance of protein adsorption on the PEGylated PVDF membranes. The PVDF membrane coated with such a diblock copolymer owned excellent biofouling resistance to proteins of BSA and lysozyme as well as bacterium of Escherichia coli and Staphylococcus epidermidis and high stable microfiltration operated with domestic wastewater solution in a membrane bioreactor.

  2. The effect of creosote on membrane integrity in Myriophyllum and Hexagenia exposed in aquatic mesocosms

    SciTech Connect

    McCann, J.; Solomon, K.; Robinson, R.; Greenberg, B.; Day, K.

    1995-12-31

    Creosote is a complex mixture containing primarily polycyclic aromatic hydrocarbons (PAHs). PAHs have been implicated with changes in cell membranes of various organisms. Using 12m{sup 3} aquatic mesocosms as surrogates of the natural environment, Hexagenia sp. (mayfly larvae) and Myriophyllum sp. (an aquatic macrophyte) were sampled over two months following addition of creosote to the mesocosms. Measurements of membrane fluidity and potassium leakage were taken to determine changes in membrane integrity. These changes were related to dose and time after creosote addition.

  3. Double-Staining Method for Differentiation of Morphological Changes and Membrane Integrity of Campylobacter coli Cells

    PubMed Central

    Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier

    2002-01-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366

  4. Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers

    PubMed Central

    Bayburt, Timothy H.; Sligar, Stephen G.

    2003-01-01

    One of the biggest challenges in pharmaceutical research is obtaining integral membrane proteins in a functional, solubilized, and monodisperse state that provides a native-like environment that maintains the spectrum of in vivo activities. Many of these integral membrane proteins are receptors, enzymes, or other macromolecular assemblies that are important drug targets. An example is the general class of proteins composed of seven-transmembrane segments (7-TM) as exemplified by the G-protein–coupled receptors. In this article, we describe a simple system for self-assembling bacteriorhodopsin, as a model protein containing 7-TM helices, with phospholipids to form a nanometer-scale soluble bilayer structure encircled by a 200 amino acid scaffold protein. The result is the single molecule incorporation of an integral membrane protein target into a soluble and monodisperse structure that allows the structural and functional tools of solution biochemistry to be applied. PMID:14573860

  5. Effect of powdered activated carbon on integrated submerged membrane bioreactor-nanofiltration process for wastewater reclamation.

    PubMed

    Woo, Yun Chul; Lee, Jeong Jun; Shim, Wang-Geun; Shon, Ho Kyong; Tijing, Leonard D; Yao, Minwei; Kim, Han-Seung

    2016-06-01

    The aim of this study was to determine the effect of powdered activated carbon (PAC) on the overall performance of a submerged membrane bioreactor (SMBR) system integrated with nanofiltration (NF) for wastewater reclamation. It was found that the trans-membrane pressure of SMBR increased continuously while that of the SMBR with PAC was more stable, mainly because water could still pass through the PACs and membrane even though foulants adhered on the PAC surface. The presence of PAC was able to mitigate fouling in SMBR as well as in NF. SMBR-NF with PAC obtained a higher flux of 8.1 LMH compared to that without PAC (6.6 LMH). In addition, better permeate quality was obtained with SMBR-NF integrated process added with PAC. The present results suggest that the addition of PAC in integrated SMBR-NF process could possibly lead to satisfying water quality and can be operated for a long-term duration.

  6. Pervaporation behavior and integrated process for concentrating lignocellulosic ethanol through polydimethylsiloxane (PDMS) membrane.

    PubMed

    Chen, Jingwen; Zhang, Hongman; Wei, Ping; Zhang, Lin; Huang, He

    2014-02-01

    The effects of by-products from ethanol fermentation and hydrolysates of lignocelluloses on ethanol diffusion through polydimethylsiloxane (PDMS) membranes with/without silicalite-1 were investigated. A pervaporation process was integrated with lignocellulosic fermentation to concentrate bioethanol using bare PDMS membranes. Results showed that yeasts, solid particles, and salts increased ethanol flux and selectivity through the membranes (PDMS with/without silicalite-1), whereas glucose exerted negative effects on the performance. On bare PDMS membrane, the performance was not obviously affected by the existence of aliphatic acids. However, on PDMS-silicalite-1 membrane, a remarkable decrease in ethanol selectivity and a rapid growth of total flux in the presence of aliphatic acids were observed. These phenomena were due to the interaction of acids with silanol (Si-OH) groups to break the dense membrane surface. On the PDMS membranes with/without silicalite-1, degradation products of lignocellulosic hydrolysates such as furfural and hydroxyacetone slightly influenced separation performance. These results revealed that an integrated process can effectively eliminate product inhibition, improve ethanol productivity, and enhance the glucose conversion rate.

  7. Maintenance of Membrane Integrity and Permeability Depends on a Patched-Related Protein in Caenorhabditis elegans.

    PubMed

    Choi, Myung-Kyu; Son, Sangwon; Hong, Mingi; Choi, Min Sung; Kwon, Jae Young; Lee, Junho

    2016-04-01

    Membrane integrity is critical for cell survival, defects of which cause pathological symptoms such as metabolic diseases. In this study, we used ethanol sensitivity of the nematode Caenorhabditis elegans to identify genetic factors involved in membrane integrity. InC. elegans, acute exposure to a high concentration (7% v/v) of ethanol changes membrane permeability, as measured by propidium iodide staining, and causes paralysis. We used the timing of complete paralysis as an indicator for alteration of membrane integrity in our genetic screen, and identified ptr-6 as a gene that confers ethanol resistance when mutated. PTR-6 is a patched-related protein and contains a sterol sensing domain. Inhibition of two PTR-encoding genes,ptr-15 and ptr-23, and mboa-1, encoding an Acyl Co-A: cholesterol acyltransferase homolog, restored ethanol sensitivity of the ptr-6 mutant, suggesting that these ptr genes and mboa-1 are involved in the maintenance of membrane integrity and permeability. Our results suggest that C. elegans can be used as a model system to identify factors involved in metabolic diseases and to screen for therapeutic drugs. Copyright © 2016 by the Genetics Society of America.

  8. [Ureaplasma urealyticum infection affects sperm plasma membrane integrity in infertile men].

    PubMed

    Xia, Xin-Yi; An, Li-Mei; Li, Wei-Wei; Li, Ke; Shao, Yong; Shang, Xue-Jun; Yao, Bing; Cui, Ying-Xia; Huang, Yu-Feng

    2011-12-01

    To determine the impact of Ureaplasma urealyticum (Uu) infection on the integrity of sperm plasma membrane in infertile males. Sixty-three semen samples were divided into a Uu infection group (n = 32) and a normal control group (n = 31). Conventional semen analyses were performed by computer-assisted semen analysis (CASA) and Uu detected by the culture method. The semen samples were washed with PBS and dyed by SYBR-14/PI double fluorescent staining, followed by detection of the integrity of sperm plasma membrane by flow cytometry. The percentage of the sperm with intact plasma membrane was indicated as the percentage of sperm emitting green fluorescence (SYBR-14+/PI-%). The Uu infection group showed a significantly decreased integrity of sperm plasma membrane ([45.14 +/- 10.69]%) and reduced percentage of grade a + b sperm ([23.29 +/- 8.81]%) as compared with the normal control group ([72.68 +/- 9.91]% and [46.32 +/- 9.54]%) (P < 0.01). But there were no significant differences in the semen volume, pH value, and sperm concentration between the two groups (P > 0.05). Uu infection decreases the integrity of sperm plasma membrane, which might be an important factor of male infertility.

  9. Local hydrophobicity stabilizes secondary structures in proteins

    SciTech Connect

    Kanehisa, M.I.; Tsong, T.Y.

    1980-01-01

    The probability of occurrence of helix and ..beta..-sheet residues in 47 globular proteins was determined as a function of local hydrophobicity, which was defined by the sum of the Nozaki-Tanford transfer free energies at two nearest-neighbors on both sides of the amino acid sequence. In general, hydrophilic amino acids favor neither helix nor ..beta..-sheet formations when neighbor residues are also hydrophilic but favor helix formation at higher local hydrophobicity. On the other hand, some hydrophobic amino acids such as Met, Leu, and Ile favor helix formation when neighbor residues are hydrophilic. None of the hydrophobic amino acids favor ..beta..-sheet formation with hydrophilic neighbors, but most of them strongly favor ..beta..-sheet formation at high local hydrophobicity. When the average of 20 amino acids is taken, both helix and ..beta..-sheet residue probabilities are higher at higher local hydrophobicity, although the increase is steeper for ..beta..-sheets. Therefore, ..beta..-sheet formation is more influenced by local hydrophobicity than helix formation. Generally, helices are nearer the surface and tend to have hydrophilic and hydrophobic faces at opposite sides. The tendency of alternating regions of hydrophilic and hydrophobic residues in a helical sequence was revealed by calculating the correlation of the Nozaki-Tanford values. Such amphipathic helices may be important in protein-protein-lipid interactions and in forming hydrophilic channels in the membrane. The choice of 30 nonhomologous proteins as the data set did not alter the above results.

  10. Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes.

    PubMed Central

    Fujiki, Y; Rachubinski, R A; Lazarow, P B

    1984-01-01

    The manner of synthesis and assembly of the peroxisomal membrane proteins is unknown. Understanding these processes is essential to an understanding of the formation of the organelle. We have investigated the biogenesis of the previously identified major 21.7-kDa integral peroxisomal membrane polypeptide [Fujiki, Y., Fowler, S., Shio, H., Hubbard, A. L. & Lazarow, P. B. (1982) J. Cell Biol. 93, 103-110]. This protein was purified to apparent homogeneity and used to elicit a rabbit antiserum. In immunoblotting analysis, antibody bound only to the 22-kDa membrane polypeptide present exclusively in peroxisomal membranes. Total rat liver RNA was translated in a nuclease-treated rabbit reticulocyte cell-free protein-synthesizing system. The in vitro translation product, isolated by means of the antibody and Staphylococcus aureus cells, comigrated with the mature 22-kDa polypeptide in NaDodSO4/PAGE. Analysis of the translation products of RNAs from free and membrane-bound polysomes indicated that the mRNA for the 22-kDa membrane polypeptide is found predominantly in free polysomes. The results imply post-translational insertion of the membrane polypeptide into the peroxisomal membrane without proteolytic processing and suggest that peroxisomes, like mitochondria and chloroplasts, form by fission from preexisting organelles. Images PMID:6594687

  11. Effect of alcohols on gastric and small intestinal apical membrane integrity and fluidity.

    PubMed Central

    Ballard, H J; Wilkes, J M; Hirst, B H

    1988-01-01

    Duodenal and jejunal brush border membrane vesicle integrity was studied after in vitro treatment of rabbit tissue with ethyl, benzyl or octyl alcohol. The effects of the alcohols on gastric parietal cell apical and microsomal membrane vesicle integrity was also studied. Membrane vesicle integrity was determined from the enclosed volume of the vesicle preparations, measured as [14C]glucose space at equilibrium. Exposure of vesicles to the three alcohols caused concentration dependent decreases in enclosed volume. The rank order of potency of the alcohol was octyl greater than benzyl greater than ethyl. Concentrations greater than or equal to 10 mM benzyl alcohol significantly reduced the enclosed volume of duodenal or jejunal vesicles; jejunal vesicles were disrupted by 625 mM ethanol, whereas 2 M ethanol was required to disrupt the duodenal vesicles. Gastric apical membrane integrity was reduced with 0.25 M ethanol, the vesicles being approximately an order of magnitude more sensitive to ethanol than gross estimates of gastric mucosal damage, but 1 M ethanol was required to significantly damage gastric microsomes. All concentrations of benzyl or octyl alcohol tested (greater than or equal to 5 mM) reduced the enclosed volume of both gastric apical membrane vesicles and gastric microsomes. As determined by shrink-swell techniques, benzyl alcohol permeated duodenal vesicles at a faster rate than NH4Cl (apparent rate constant of 9.89 (0.71) X 10(-3)s-1 compared with 4.48 (0.23) X 10(-3)s-1). Therefore, reductions in enclosed volume in response to alcohol treatment could not be explained by alcohol induced osmotic shrinkage. The enclosed volume of the vesicles after alcohol treatment was negatively correlated with membrane fluidity suggesting a common causal effect, the increased fluidity increasing membrane fragility. Duodenal vesicles were more resistant to disruption by the alcohols compared with gastric and jejunal vesicles. PMID:3220304

  12. Membrane separation of carbon dioxide in the integrated gasification combined cycle systems

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Skorek-osikowska, Anna; Janusz-szymańska, Katarzyna

    2010-09-01

    Integrated gasification combined cycle systems (IGCC) are becoming more popular because of the characteristics, by which they are characterized, including low pollutants emissions, relatively high efficiency of electricity production and the ability to integrate the installation of carbon capture and storage (CCS). Currently, the most frequently used CO2 capture technology in IGCC systems is based on the absorption process. This method causes a significant increase of the internal load and decreases the efficiency of the entire system. It is therefore necessary to look for new methods of carbon dioxide capture. The authors of the present paper propose the use of membrane separation. The paper reviews available membranes for use in IGCC systems, indicates, inter alia, possible places of their implementation in the system and the required operation parameters. Attention is drawn to the most important parameters of membranes (among other selectivity and permeability) influencing the cost and performance of the whole installation. Numerical model of a membrane was used, among others, to analyze the influence of the basic parameters of the selected membranes on the purity and recovery ratio of the obtained permeate, as well as to determine the energetic cost of the use of membranes for the CO2 separation in IGCC systems. The calculations were made within the environment of the commercial package Aspen Plus. For the calculations both, membranes selective for carbon dioxide and membranes selective for hydrogen were used. Properly selected pressure before and after membrane module allowed for minimization of energy input on CCS installation assuring high purity and recovery ratio of separated gas.

  13. Transfer of a lipophilic drug (temoporfin) between small unilamellar liposomes and human plasma proteins: influence of membrane composition on vesicle integrity and release characteristics.

    PubMed

    Decker, Christiane; Steiniger, Frank; Fahr, Alfred

    2013-06-01

    The introduction of PEG lipid conjugates into lipid bilayers leads to long circulating liposomes with improved pharmacokinetics and pharmacodynamics characteristics. The concentration range of PEG-lipids is limited by their micelle forming properties. We investigated two phosphatidyl oligoglycerols as potential alternatives to PEG-lipid conjugates and compared their micelle forming properties after incorporation of increasing amounts of oligoglycerols into gel-phase liposomes via cryo-transmission electron microscopy. The incorporation of highly hydrophobic drugs into liposomes makes water soluble formulations possible and improves the therapeutic properties of the drug. We incorporated the hydrophobic photosensitizer temoporfin into liposomes varying in membrane fluidity and nature of surface modifying agents. The main purpose of this study was the investigation of liposome integrity and temoporfin incorporation stability in the presence of plasma. After incubation of temoporfin-loaded liposomes with human plasma for different time intervals, liposomes and the single lipoprotein fractions were separated via size-exclusion chromatography. Liposome stability and temoporfin distribution profile over the lipoprotein fractions were determined with the help of a non-exchangeable ³H-lipid label and ¹⁴C-labeled temoporfin. The results demonstrate that both oligoglycerols are suitable alternatives to PEG-lipid conjugates because of the lack of micelle forming properties, comparable liposome stability, and a reduced temoporfin transfer rate compared to PEG-lipids. Furthermore, the incorporation stability of temoporfin is--at least to some extent--influenced by membrane fluidity, indicating that fluid membranes may be better suited for retention of lipophilic drugs.

  14. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles**

    PubMed Central

    Hiller, Sebastian; Garces, Robert G.; Malia, Thomas J.; Orekhov, Vladislav Y.; Colombini, Marco; Wagner, Gerhard

    2008-01-01

    The voltage-dependent anion channel (VDAC) mediates trafficking of small molecules and ions across the eukaryotic outer mitochondrial membrane. VDAC also interacts with anti-apoptotic proteins from the Bcl-2 family and this interaction inhibits release of apoptogenic proteins from the mitochondrion. We present the NMR solution structure of recombinant human VDAC-1 reconstituted in detergent micelles. It forms a 19-stranded β-barrel with the first and last strand parallel. The hydrophobic outside perimeter of the barrel is covered by detergent molecules in a belt-like fashion. In the presence of cholesterol recombinant VDAC-1 can form voltage-gated channels in phospholipid bilayers similar to the native protein. NMR measurements revealed the binding sites of VDAC-1 for the Bcl-2 protein Bcl-xL, for β-NADH and for cholesterol. Bcl-xL interacts with the VDAC barrel laterally at strands 17 and 18. PMID:18755977

  15. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier.

    PubMed

    Bera, Swapna; Kar, Rajiv K; Mondal, Susanta; Pahan, Kalipada; Bhunia, Anirban

    2016-09-06

    Cell-penetrating peptides (CPPs) have shown promise in nonpermeable therapeutic drug delivery, because of their ability to transport a variety of cargo molecules across the cell membranes and their noncytotoxicity. Drosophila antennapedia homeodomain-derived CPP penetratin (RQIKIWFQNRRMKWKK), being rich in positively charged residues, has been increasingly used as a potential drug carrier for various purposes. Penetratin can breach the tight endothelial network known as the blood-brain barrier (BBB), permitting treatment of several neurodegenerative maladies, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, a detailed structural understanding of penetratin and its mechanism of action is lacking. This study defines structural features of the penetratin-derived peptide, DK17 (DRQIKIWFQNRRMKWKK), in several model membranes and describes a membrane-induced conformational transition of the DK17 peptide in these environments. A series of biophysical experiments, including high-resolution nuclear magnetic resonance spectroscopy, provides the three-dimensional structure of DK17 in different membranes mimicking the BBB or total brain lipid extract. Molecular dynamics simulations support the experimental results showing preferential binding of DK17 to particular lipids at atomic resolution. The peptide conserves the structure of the subdomain spanning residues Ile6-Arg11, despite considerable conformational variation in different membrane models. In vivo data suggest that the wild type, not a mutated sequence, enters the central nervous system. Together, these data highlight important structural and functional attributes of DK17 that could be utilized in drug delivery for neurodegenerative disorders.

  16. Determination of intraliposomal pH and its effect on membrane partitioning and passive loading of a hydrophobic camptothecin, DB-67.

    PubMed

    Joguparthi, Vijay; Feng, Shaoxin; Anderson, Bradley D

    2008-03-20

    The purpose of this work was to study the effect of pH on the liposomal encapsulation of a model camptothecin anti-tumor agent, DB-67, by considering the state of ionization and bilayer membrane/water partitioning of the drug as a function of pH. A novel fluorescence method was developed to monitor intravesicular pH in liposomal formulations containing entrapped DB-67 by using the drug itself as a pH indicator. Fluorescence spectra were recorded in aqueous buffers and liposomes and used to estimate the ionization constant of the A-ring phenol of DB-67 (pKappa(a2)) and shifts in ionization constants ( pKappa (a1) and pKappa(a2) ) due to membrane binding. Bilayer/water partitioning studies by equilibrium dialysis were employed to show that DB-67 is highly membrane bound over the entire pH range examined though binding decreases with an increase in pH. The observed ionization constants of membrane-bound DB-67 obtained from the equilibrium dialysis experiments were consistent with observations from fluorescence measurements and previous permeability results. The pH dependence of DB-67 loading using a passive loading technique was found to reflect the pH dependence of membrane binding of the drug. This results in poor encapsulation efficiency of DB-67 at high pH, necessitating further development of formulation strategies to improve loading efficiency.

  17. Determination of Intraliposomal pH and its Effect on Membrane Partitioning and Passive Loading of a Hydrophobic Camptothecin, DB-67

    PubMed Central

    Joguparthi, Vijay; Feng, Shaoxin; Anderson, Bradley D.

    2008-01-01

    The purpose of this work was to study the effect of pH on the liposomal encapsulation of a model camptothecin anti-tumor agent, DB-67, by considering the state of ionization and bilayer membrane/water partitioning of the drug as a function of pH. A novel fluorescence method was developed to monitor intravesicular pH in liposomal formulations containing entrapped DB-67 by using the drug itself as a pH indicator. Fluorescence spectra were recorded in aqueous buffers and liposomes and used to estimate the ionization constant of the A-ring phenol of DB-67 (pKa2) and shifts in ionization constants (pKa1 and pKa2) due to membrane binding. Bilayer/water partitioning studies by equilibrium dialysis were employed to show that DB-67 is highly membrane bound over the entire pH range examined though binding decreases with an increase in pH. The observed ionization constants of membrane-bound DB-67 obtained from the equilibrium dialysis experiments were consistent with observations from fluorescence measurements and previous permeability results. The pH dependence of DB-67 loading using a passive loading technique was found to reflect the pH dependence of membrane binding of the drug. This results in poor encapsulation efficiency of DB-67 at high pH, necessitating further development of formulation strategies to improve loading efficiency. PMID:18065174

  18. Development and application of a procedure for evaluating the long-term integrity of membranes for the anaerobic fluidized membrane bioreactor (AFMBR).

    PubMed

    Shin, Chungheon; Kim, Kihyun; McCarty, Perry L; Kim, Jeonghwan; Bae, Jaeho

    A bench-scale short-term test, developed to predict the long-term integrity of membranes with potential for use in anaerobic fluidized-bed membrane bioreactors, was used to evaluate several commercial hollow-fiber membranes. It was found that membrane performance varied widely, some membranes failing much more rapidly than others. Also found was that larger sizes of the fluidized media, in this case granular activated carbon (GAC), severely affected membrane structural integrity more than did smaller sizes, as did the method used for membrane attachment. Within the limits studied, the GAC packing ratio had only a minor impact. A decrease in membrane permeability that sometimes resulted during the testing and was caused by the deposition of fine GAC particles could be eliminated without membrane damage through simultaneous chemical cleaning and sonication. This new testing procedure should be useful for selecting membranes and reactor operating conditions to better ensure long-term operating performance of anaerobic fluidized-bed membrane bioreactors.

  19. Function of nuclear membrane proteins in shaping the nuclear envelope integrity during closed mitosis.

    PubMed

    Yang, Hui-Ju; Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2017-04-08

    The nuclear envelope (NE) not only protects the genome from being directly accessed by detrimental agents but also regulates genome organization. Breaches in NE integrity threaten genome stability and impede cellular function. Nonetheless, the NE constantly remodels, and NE integrity is endangered in dividing or differentiating cells. Specifically, in unicellular eukaryotes undergoing closed mitosis, the NE expands instead of breaking down during chromosome segregation. The newly assembling nuclear pore complexes (NPCs) penetrate the existing NE in interphase. A peculiar example of NE remodeling during nuclear differentiation in Tetrahymena involves formation of the redundant NE and clustered NPCs. Even under these conditions, the NE remains intact. Many recent studies on unicellular organisms have revealed that nuclear membrane proteins, such as LEM-domain proteins, play a role in maintaining NE integrity. This review summarizes and discusses how nuclear membrane proteins participate in NE integrity.

  20. A PCR reactor with an integrated alumina membrane for nucleic acid isolation.

    PubMed

    Kim, Jitae; Mauk, Michael; Chen, Dafeng; Qiu, Xianbo; Kim, Jungkyu; Gale, Bruce; Bau, Haim H

    2010-09-01

    Recently, there has been a growing interest in point-of-care devices capable of detecting nucleic acids (NA) in clinical and environmental samples. Nucleic acid detection requires, however, various sample preparation steps that complicate device operation. An attractive remedy is to integrate many, if not all, sample preparation operations and nucleic acid amplification into a single reaction chamber. A microfluidic chip that integrates, in a single chamber, polymerase chain reaction (PCR) amplification with solid-phase extraction of nucleic acids using a nanoporous, aluminium oxide membrane (AOM) is described. Samples suspected of containing target bacteria and/or viruses are mixed with lysis agents and a chaotropic salt and loaded into a plastic chip housing a nanoporous, aluminium oxide membrane. The nucleic acids in the lysate bind to the membrane. The membrane is then washed, the chamber is filled with the PCR reaction reagents, and the chamber's temperature is cycled to amplify the captured nucleic acids and produce detectable products. Both DNA and RNA (with reverse-transcription) isolation and amplification are demonstrated. Due to the dry membrane's high resistance to liquid flow, a specialized flow control system was devised to facilitate sample introduction and membrane washing.

  1. ICMSF methods study. XVII. An international comparative study of the direct plate and hydrophobic grid-membrane filter methods for enumeration of Escherichia coli in foods. International Commission on Microbiological Specifications for Foods.

    PubMed

    Sharpe, A N; Rayman, M K; Malik, N; Beckers, H J; Delfgou, E; Christian, J H; Eyles, M; Dodsworth, P; Nafziger, M; Gibbs, P A

    1987-02-01

    Eight laboratories compared counts of Escherichia coli from naturally or artificially contaminated ground beef, other meats and poultry, vegetables, fish and shellfish, cheese, and diverse sources such as swabs, by the Anderson-Baird-Parker direct plate (DP) and a hydrophobic grid-membrane filter (HGMF) method. For five of the eight laboratories overall counts by HGMF were significantly low (51-83%) compared with those by DP. Counts by HGMF tended to be lower for naturally contaminated samples; several possible causes were investigated. In a subsidiary study, analyst variation in counting HGMF ranged from 0.8-7.3%, with little evidence of effects from counting positive versus negative grid cells or from the fullness of growth or staining intensity.

  2. The Combined Effect of Hydrophobic Mismatch and Bilayer Local Bending on the Regulation of Mechanosensitive Ion Channels.

    PubMed

    Bavi, Omid; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef

    2016-01-01

    The hydrophobic mismatch between the lipid bilayer and integral membrane proteins has well-defined effect on mechanosensitive (MS) ion channels. Also, membrane local bending is suggested to modulate MS channel activity. Although a number of studies have already shown the significance of each individual factor, the combined effect of these physical factors on MS channel activity have not been investigated. Here using finite element simulation, we study the combined effect of hydrophobic mismatch and local bending on the archetypal mechanosensitive channel MscL. First we show how the local curvature direction impacts on MS channel modulation. In the case of MscL, we show inward (cytoplasmic) bending can more effectively gate the channel compared to outward bending. Then we indicate that in response to a specific local curvature, MscL inserted in a bilayer with the same hydrophobic length is more expanded in the constriction pore region compared to when there is a protein-lipid hydrophobic mismatch. Interestingly in the presence of a negative mismatch (thicker lipids), MscL constriction pore is more expanded than in the presence of positive mismatch (thinner lipids) in response to an identical membrane curvature. These results were confirmed by a parametric energetic calculation provided for MscL gating. These findings have several biophysical consequences for understanding the function of MS channels in response to two major physical stimuli in mechanobiology, namely hydrophobic mismatch and local membrane curvature.

  3. The Combined Effect of Hydrophobic Mismatch and Bilayer Local Bending on the Regulation of Mechanosensitive Ion Channels

    PubMed Central

    Bavi, Omid; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef

    2016-01-01

    The hydrophobic mismatch between the lipid bilayer and integral membrane proteins has well-defined effect on mechanosensitive (MS) ion channels. Also, membrane local bending is suggested to modulate MS channel activity. Although a number of studies have already shown the significance of each individual factor, the combined effect of these physical factors on MS channel activity have not been investigated. Here using finite element simulation, we study the combined effect of hydrophobic mismatch and local bending on the archetypal mechanosensitive channel MscL. First we show how the local curvature direction impacts on MS channel modulation. In the case of MscL, we show inward (cytoplasmic) bending can more effectively gate the channel compared to outward bending. Then we indicate that in response to a specific local curvature, MscL inserted in a bilayer with the same hydrophobic length is more expanded in the constriction pore region compared to when there is a protein-lipid hydrophobic mismatch. Interestingly in the presence of a negative mismatch (thicker lipids), MscL constriction pore is more expanded than in the presence of positive mismatch (thinner lipids) in response to an identical membrane curvature. These results were confirmed by a parametric energetic calculation provided for MscL gating. These findings have several biophysical consequences for understanding the function of MS channels in response to two major physical stimuli in mechanobiology, namely hydrophobic mismatch and local membrane curvature. PMID:26958847

  4. A Bioluminescent Cytotoxicity Assay for Assessment of Membrane Integrity Using a Proteolytic Biomarker

    PubMed Central

    Cho, Ming-Hsuang; Niles, Andrew; Huang, Ruili; Inglese, James; Austin, Christopher P.; Riss, Terry; Xia, Menghang

    2008-01-01

    Measurement of cell membrane integrity has been widely used to assess chemical cytotoxity. Several assays are available for determining cell membrane integrity including differential labeling techniques using neutral red and trypan blue dyes or fluorescent compounds such as propidium iodide. Other common methods for assessing cytotoxicity are enzymatic “release” assays which measure the extracellular activities of lactate dehydrogenase (LDH), adenylate kinase (AK), or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in culture medium. However, all these assays suffer from several practical limitations, including multiple reagent additions, scalability, low sensitivity, poor linearity, or requisite washes and medium exchanges. We have developed a new cytotoxicity assay which measures the activity of released intracellular proteases as a result of cell membrane impairment. It allows for a homogenous, one-step addition assay with a luminescent readout. We have optimized and miniaturized this assay into a 1536-well format, and validated it by screening a library of known toxins from the National Toxicology Program (NTP) using HEK 293 and human renal mesangial cells by quantitative high-throughput screening (qHTS). Several known and novel membrane disrupters were identified from the library, which indicates that the assay is robust and suitable for large scale library screening. This cytotoxicity assay, combined with the qHTS platform, allowed us to quickly and efficiently evaluate compound toxicities related to cell membrane integrity. PMID:18400464

  5. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    PubMed Central

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory. PMID:27695398

  6. Membranous nephropathy: integrating basic science into improved clinical management.

    PubMed

    Cattran, Daniel C; Brenchley, Paul E

    2017-03-01

    Idiopathic membranous nephropathy (INM) remains a common cause of the nephrotic syndrome in adults. The autoimmune nature of IMN was clearly delineated in 2009 with the identification of the glomerular-deposited IgG to be a podocyte receptor, phospholipase A2 receptor (PLA2R) in 70% to 75% of cases. This anti-PLA2R autoantibody, predominantly the IgG4 subclass, has been quantitated in serum using an enzyme-linked immunosorbent assay and has been used to aid diagnosis and monitor response to immunosuppressive therapy. In 2014, a second autoantigen, thrombospondin type 1 domain-containing 7A (THSD7A), was identified. Immunostaining of biopsy specimens has further detected either PLA2R or THSD7A antigen in the deposited immune complexes in 5% to 10% of cases autoantibody seronegative at the time of biopsy. Therefore, the term IMN should now be superseded by the term primary or autoimmune MN (AMN) (anti-PLA2R or anti-THSD7A positive) classifying ∼80% to 90% of cases previously designated IMN. Cases of secondary MN associated with other diseases show much lower association with these autoantibodies, but their true incidence in secondary cases still needs to be defined. How knowledge of the autoimmune mechanism and the sequential measurement of these autoantibodies is likely to change the clinical management and trajectory of AMN by more precisely defining its diagnosis, prognosis, and treatment is discussed. Their application early in the disease course to new and old therapies will provide additional precision to AMN management. We also review innovative therapeutic approaches on the horizon that are expected to lead to our ultimate goal of improved patient care in A(I)MN.

  7. Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF.

    PubMed

    Tan, Zaigao; Black, William; Yoon, Jong Moon; Shanks, Jacqueline V; Jarboe, Laura R

    2017-02-28

    Construction of microbial biocatalysts for the production of biorenewables at economically viable yields and titers is frequently hampered by product toxicity. Membrane damage is often deemed as the principal mechanism of this toxicity, particularly in regards to decreased membrane integrity. Previous studies have attempted to engineer the membrane with the goal of increasing membrane integrity. However, most of these works focused on engineering of phospholipids and efforts to identify membrane proteins that can be targeted to improve fatty acid production have been unsuccessful. Here we show that deletion of outer membrane protein ompF significantly increased membrane integrity, fatty acid tolerance and fatty acid production, possibly due to prevention of re-entry of short chain fatty acids. In contrast, deletion of fadL resulted in significantly decreased membrane integrity and fatty acid production. Consistently, increased expression of fadL remarkably increased membrane integrity and fatty acid tolerance while also increasing the final fatty acid titer. This 34% increase in the final fatty acid titer was possibly due to increased membrane lipid biosynthesis. Tuning of fadL expression showed that there is a positive relationship between fadL abundance and fatty acid production. Combinatorial deletion of ompF and increased expression of fadL were found to have an additive role in increasing membrane integrity, and was associated with a 53% increase the fatty acid titer, to 2.3 g/L. These results emphasize the importance of membrane proteins for maintaining membrane integrity and production of biorenewables, such as fatty acids, which expands the targets for membrane engineering.

  8. Microbial responses to membrane cleaning using sodium hypochlorite in membrane bioreactors: Cell integrity, key enzymes and intracellular reactive oxygen species.

    PubMed

    Han, Xiaomeng; Wang, Zhiwei; Wang, Xueye; Zheng, Xiang; Ma, Jinxing; Wu, Zhichao

    2016-01-01

    Sodium hypochlorite (NaClO) is a commonly used reagent for membrane cleaning in membrane bioreactors (MBRs), while it, being a kind of disinfectant (oxidant), may impair viability of microbes or even totally inactivate them upon its diffusion into mixed liquor during membrane cleaning. In this study, we systematically examine the effects of NaClO on microorganisms in terms of microbial cell integrity, metabolism behaviours (key enzymes), and intracellular reactive oxygen species (ROS) under various NaClO concentrations. Different proportions of microbial cells in activated sludge were damaged within several minutes dependent on NaClO dosages (5-50 mg/g-SS), and correspondingly organic matters were released to bulk solution. Inhibition of key enzymes involved in organic matter biodegradation, nitrification and denitrification was observed in the presence of NaClO above 1 mg/g-SS, and thus organic matter and nitrogen removal efficiencies were decreased. It was also demonstrated that intracellular ROS production was increased with the NaClO dosage higher than 1 mg/g-SS, which likely induced further damage to microbial cells.

  9. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  10. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  11. Coating cells with cationic silica-magnetite nanocomposites for rapid purification of integral plasma membrane proteins.

    PubMed

    Zhang, Wei; Zhao, Chao; Wang, Sheng; Fang, Caiyun; Xu, Yawei; Lu, Haojie; Yang, Pengyuan

    2011-09-01

    This study developed a simple and rapid purification method for plasma membrane with high yields from adherent cells. The plasma membrane (PM) sheets could be absorbed specifically by the cationic silica-magnetite nanocomposites (CSMN) under acidic conditions, and recovered directly in cell-lysis-buffer with no need for precipitation. The binding between CSMN and PM sheets was confirmed by electron microscopy. Western blot analysis demonstrated a >10-fold relative enrichment factor. Up to 422 integral membrane proteins were identified from 10(7) Huh7 cells. Notably, we found 29 Ras family proteins by classification according to their biological functions. The whole enrichment procedure took <30 min. The CSMN-based procedure demonstrates a simple, economical and efficient enrichment of integral PM proteins in proteomic study.

  12. Cell-free Expression and In Meso Crystallisation of an Integral Membrane Kinase for Structure Determination

    PubMed Central

    Shah, Syed Tasadaque Ali; Haberstock, Stefan; Dötsch, Volker; Bernhard, Frank; Caffrey, Martin

    2014-01-01

    Membrane proteins are key elements in cell physiology and drug targeting, but getting a high-resolution structure by crystallographic means is still enormously challenging. Novel strategies are in big demand to facilitate the structure determination process that will ultimately hasten the day when sequence information alone can provide a 3-dimensional model. Cell-free or in vitro expression enables rapid access to large quantities of high quality membrane proteins suitable for an array of applications. Despite its impressive efficiency, to date only two membrane proteins produced by the in vitro approach have yielded crystal structures. Here, we have analysed synergies of cell-free expression and crystallisation in lipidic mesophases for generating an X-ray structure of the integral membrane enzyme diacylglycerol kinase to 2.28 Å resolution. The quality of cellular and cell-free expressed kinase samples have been evaluated systematically by comparing i) spectroscopic properties, ii) purity and oligomer formation, iii) lipid content and iv) functionality. DgkA is the first membrane enzyme crystallised based on cell-free expression. The study provides a basic standard for the crystallisation of cell-free expressed membrane proteins and the methods detailed here should prove generally useful and contribute to accelerating the pace at which membrane protein structures are solved. PMID:25012698

  13. Use of pressure-hold test for sterilizing filter membrane integrity in radiopharmaceutical manufacturing.

    PubMed

    Belanger, Anthony P; Byrne, John F; Paolino, Justin M; DeGrado, Timothy R

    2009-11-01

    The bubble point test is the de facto standard for postproduction filter membrane integrity test in the radiopharmaceutical community. However, the bubble point test depends on a subjective visual assessment of bubbling rate that can be obscured by significant diffusive gas flows below the manufacturer's prescribed bubble point. To provide a more objective means to assess filter membrane integrity, this study evaluates the pressure-hold test as an alternative to the bubble point test. In our application of the pressure-hold test, the nonsterile side of the sterilizing filter is pressurized to 85% of the predetermined bubble point with nitrogen, the filter system is closed off from the pressurizing gas and the pressure is monitored over a prescribed time interval. The drop in pressure, which has a known relationship with diffusive gas flow, is used as a quantitative measure of membrane integrity. Characterization of the gas flow vs. pressure relationship of each filter/solution combination provides an objective and quantitative means for defining a critical value of pressure drop over which the membrane is indicated to be nonintegral. The method is applied to sterilizing filter integrity testing associated with the commonly produced radiopharmaceuticals, [(18)F]FDG and [(11)C]PIB. The method is shown to be robust, practical and amenable to automation in radiopharmaceutical manufacturing environments (e.g., hot cells).

  14. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    NASA Astrophysics Data System (ADS)

    Wang, Xianghong; Yuan, Shuaishuai; Shi, Dean; Yang, Yingkui; Jiang, Tao; Yan, Shunjie; Shi, Hengchong; Luan, Shifang; Yin, Jinghua

    2016-07-01

    Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  15. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite.

    PubMed

    Eskandari, Farzaneh; Momeni, Hamid Reza

    2016-01-01

    Exposure to arsenic is associated with impairment of male reproductive function by inducing oxidative stress. Silymarin with an antioxidant property scavenges free radicals. The aim of this study was to investigate if silymarin can prevent the adverse effects of sodium arsenite on ram sperm plasma membrane and acrosome integrity. Ram epidydimal spermatozoa were divided into five groups: spermatozoa at 0 hr, spermatozoa at 180 min (control), spermatozoa treated with silymarin (20 μM) + sodium arsenite (10 μM) for 180 min, spermatozoa treated with sodium arsenite (10 μM) for 180 min and spermatozoa treated with silymarin (20 μM) for 180 min. Double staining of Hoechst and propidium iodide was performed to evaluate sperm plasma membrane integrity, whereas comassie brilliant blue staining was used to assess acrosome integrity. Plasma membrane (p< 0.001) and acrosome integrity (p< 0.05) of the spermatozoa were significantly reduced in sodium arsenite group compared to the control. In silymarin + sodium arsenite group, silymarin was able to significantly (p< 0.001) ameliorate the adverse effects of sodium arsenite on these sperm parameters compared to sodium arsenite group. The incubation of sperm for 180 min (control group) showed a significant (p< 0.001) decrease in acrosome integrity compared to the spermatozoa at 0 hour. The application of silymarin alone for 180 min could also significantly (p< 0.05) increase sperm acrosome integrity compared to the control. Silymarin as a potent antioxidant could compensate the adverse effects of sodium arsenite on the ram sperm plasma membrane and acrosome integrity.

  16. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    PubMed

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Strategies for the purification of membrane proteins.

    PubMed

    Smith, Sinead Marian

    2011-01-01

    Although membrane proteins account for 20-30% of the coding regions of all sequenced genomes and play crucial roles in many fundamental cell processes, there are relatively few membranes proteins with known 3D structure. This is likely due to technical challenges associated with membrane protein extraction, solubilisation, and purification. Membrane proteins are classified based on the level of interaction with membrane lipid bilayers, with peripheral membrane proteins associating non-covalently with the membrane, and integral membrane proteins associating more strongly by means of hydrophobic interactions. Generally speaking, peripheral membrane proteins can be purified by milder techniques than integral membrane proteins, whose extraction requires phospholipid bilayer disruption by detergents. Here, important criteria for strategies of membrane protein purification are addressed, with a focus on the initial stages of membrane protein solublilisation, where problems are most frequently encountered. Protocols are outlined for the successful extraction of peripheral membrane proteins, solubilisation of integral membrane proteins, and detergent removal which is important not only for retaining native protein stability and biological functions, but also for the efficiency of later purification techniques.

  18. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.

    PubMed

    Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi

    2008-07-03

    The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure

  19. Solubilization of native integral membrane proteins in aqueous buffer by noncovalent chelation with monomethoxy poly(ethylene glycol) (mPEG) polymers.

    PubMed

    Janaratne, Thamara K; Okach, Linda; Brock, Ansgar; Lesley, Scott A

    2011-08-17

    Highly hydrophobic integral membrane proteins (IMPs)are typically purified in excess detergent media, often resulting in rapid inactivation and denaturation of the protein. One promising approach to solve this problem is to couple hydrophilic polymers, such as monomethoxypolyethylene glycol (mPEG) to IMPs under mild conditions in place of detergents. However, the broad application of this approach is hampered by poor reaction efficiencies, low tolerance of detergent stabilized membrane proteins to reaction conditions, and a lack of proper site-specific reversible approaches. Here, we have developed a straightforward, efficient, and mild approach to site-specific noncovalent binding of long-chain polymers to recombinant IMPs. This method uses the hexa-histidine tag (His-Tag) often used for purification of recombinant proteins as an attachment site for mPEGs. Solubility studies performed using five different IMPs confirmed that all tested mPEG-bound IMPs were completely soluble and stable in detergent free aqueous buffer compared to their precipitated native proteins under the identical circumstances. Activity assays and circular dichroism (CD) spectroscopy confirmed the structural integrity of modified IMPs.

  20. Solubilization of native integral membrane proteins in aqueous buffer by non-covalent chelation with monomethoxy polyethylene glycol (mPEG) polymers

    PubMed Central

    Janaratne, Thamara K.; Okach, Linda; Brock, Ansgar; Lesley, Scott A.

    2011-01-01

    Highly hydrophobic integral membrane proteins (IMPs) are typically purified in excess detergent media, often resulting in rapid inactivation and denaturation of the protein. One promising approach to solve this problem is to couple hydrophilic polymers, such as monomethoxypolyethylene glycol (mPEG) to IMPs under mild conditions in place of detergents. However, the broad application of this approach is hampered by poor reaction efficiencies, low tolerance of detergent stabilized membrane proteins to reaction conditions and a lack of proper site-specific reversible approaches. Here we have developed a straightforward, efficient and mild approach to site-specific non-covalent binding of long-chain polymers to recombinant IMPs. This method uses the hexa-histidine tag (His-Tag) often used for purification of recombinant proteins as an attachment site for mPEGs. Solubility studies performed using five different IMPs confirmed that all tested mPEG-bound IMPs were completely soluble and stable in detergent free aqueous buffer compared to their precipitated native proteins under the identical circumstances. Activity assays and circular dichroism (CD) spectroscopy confirmed the structural integrity of modified IMPs. PMID:21740061

  1. In vitro evaluation of tissue adhesives composed of hydrophobically modified gelatins and disuccinimidyl tartrate

    NASA Astrophysics Data System (ADS)

    Matsuda, Miyuki; Taguchi, Tetsushi

    2012-12-01

    The effect of the hydrophobic group content in gelatin on the bonding strength of novel tissue-penetrating tissue adhesives was evaluated. The hydrophobic groups introduced into gelatin were the saturated hexanoyl, palmitoyl, and stearoyl groups, and the unsaturated oleoyl group. A collagen casing was employed as an adherend to model soft tissue for the in vitro determination of bonding strength of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. The adhesive composed of stearoyl-modified gelatin (7.4% stearoyl; 10Ste) and disuccinimidyl tartrate showed the highest bonding strength. The bonding strength of the adhesives decreased as the degree of substitution of the hydrophobic groups increased. Cell culture experiments demonstrated that fluorescein isothiocyanate-labeled 10Ste was integrated onto the surface of smooth muscle cells and showed no cytotoxicity. These results suggest that 10Ste interacted with the hydrophobic domains of collagen casings, such as hydrophobic amino acid residues and cell membranes. Therefore, 10Ste-disuccinimidyl tartrate is a promising adhesive for use in aortic dissection.

  2. Preparative electrophoretic method for the purification of a hydrophobic membrane protein: subunit c of the mitochondrial ATP synthase from rat liver.

    PubMed

    Hagopian, K

    1999-09-10

    A method is described for the purification of subunit c of ATP synthase from rat liver mitochondria. After sample preparation and solvent extraction, the protein was purified to homogeneity by a single-step preparative electrophoretic procedure, using aqueous buffer and containing lithium dodecyl sulfate. The subunit is an extremely hydrophobic and insoluble protein and all solubilization attempts, using a variety of detergents, were unsuccessful except for lithium dodecyl sulfate. Buffer exchange and FPLC gel filtration removed the detergent from the purified sample, leaving the protein in a soluble form. The mammalian protein is composed of 75 amino acid residues, with a molecular mass of 7602 Da and is classified as a proteolipid. Subunit c accounts for 25 and 85% of the intralysosomal accumulation, within neurons, of storage material in juvenile and late-infantile forms of Batten's disease, respectively. This purification procedure allows access to a continuous supply of pure subunit c from a conventional source such as rat liver and preserves precious autopsy materials. The protein could be used as substrate in future proteolytic studies involving pepstatin-insensitive lysosomal proteases and for raising of more specific antibodies. The procedure could also be adapted/modified and used as a model for purifying other extremely insoluble proteins.

  3. Association of lipids with integral membrane surface proteins of Mycoplasma hyorhinis

    SciTech Connect

    Bricker, T.M.; Boyer, M.J.; Keith, J.; Watson-McKown, R.; Wise, K.S.

    1988-02-01

    Triton X-114 (TX-114)-phase fractionation was used to identify and characterize integral membrane surface proteins of the wall-less procaryote Mycoplasma hyorhinis GDL. Phase fractionation of mycoplasmas followed by analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed selective partitioning of approximately 30 (/sup 35/S)methionine-labeled intrinsic membrane proteins into the TX-114 phase. Similar analysis of (/sup 3/H)palmitate-labeled cells showed that approximately 20 proteins of this organism were associated with lipid, all of which also efficiently partitioned as integral membrane components into the detergent phase. Immunoblotting and immunoprecipitation of TX-114-phase proteins from /sup 125/I-surface-labeled cells with four monoclonal antibodies to distinct surface epitopes of M. hyorhinis identified surface proteins p120, p70, p42, and p23 as intrinsic membrane components. Immunoprecipitation of (/sup 3/H)palmitate-labeled TX-114-phase proteins further established that surface proteins p120, p70, and p23 (a molecule that mediates complement-dependent mycoplasmacidal monoclonal antibody activity) were among the lipid-associated proteins of this organism. Two of these proteins, p120 and p123, were acidic (pI less than or equal to 4.5), as shown by two-dimensional isoelectric focusing. This study established that M. hyorhinis contains an abundance of integral membrane proteins tightly associated with lipids and that many of these proteins are exposed at the external surface of the single limiting plasma membrane. Monoclonal antibodies are reported that will allow detailed analysis of the structure and processing of lipid-associated mycoplasma proteins.

  4. Mass spectrometric analysis of integral membrane proteins: application to complete mapping of bacteriorhodopsins and rhodopsin.

    PubMed Central

    Ball, L. E.; Oatis, J. E.; Dharmasiri, K.; Busman, M.; Wang, J.; Cowden, L. B.; Galijatovic, A.; Chen, N.; Crouch, R. K.; Knapp, D. R.

    1998-01-01

    Integral membrane proteins have not been readily amenable to the general methods developed for mass spectrometric (or internal Edman degradation) analysis of soluble proteins. We present here a sample preparation method and high performance liquid chromatography (HPLC) separation system which permits online HPLC-electrospray ionization mass spectrometry (ESI-MS) and -tandem mass spectrometry (MS/MS) analysis of cyanogen bromide cleavage fragments of integral membrane proteins. This method has been applied to wild type (WT) bacteriorhodopsin (bR), cysteine containing mutants of bR, and the prototypical G-protein coupled receptor, rhodopsin (Rh). In the described method, the protein is reduced and the cysteine residues pyridylethylated prior to separating the protein from the membrane. Following delipidation, the pyridylethylated protein is cleaved with cyanogen bromide. The cleavage fragments are separated by reversed phase HPLC using an isopropanol/acetonitrile/aqueous TFA solvent system and the effluent peptides analyzed online with a Finnigan LCQ Ion Trap Mass Spectrometer. With the exception of single amino acid fragments and the glycosylated fragment of Rh, which is observable by matrix assisted laser desorption ionization (MALDI)-MS, this system permits analysis of the entire protein in a single HPLC run. This methodology will enable pursuit of chemical modification and crosslinking studies designed to probe the three dimensional structures and functional conformational changes in these proteins. The approach should also be generally applicable to analysis of other integral membrane proteins. PMID:9541408

  5. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

    PubMed

    Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi

    2016-08-16

    Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.

  6. α-Synuclein Oligomers Induced by Docosahexaenoic Acid Affect Membrane Integrity

    PubMed Central

    Fecchio, Chiara; De Franceschi, Giorgia; Relini, Annalisa; Greggio, Elisa; Dalla Serra, Mauro; Bubacco, Luigi; Polverino de Laureto, Patrizia

    2013-01-01

    A key feature of Parkinson disease is the aggregation of α-synuclein and its intracellular deposition in fibrillar form. Increasing evidence suggests that the pathogenicity of α-synuclein is correlated with the activity of oligomers formed in the early stages of its aggregation process. Oligomers toxicity seems to be associated with both their ability to bind and affect the integrity of lipid membranes. Previously, we demonstrated that α-synuclein forms oligomeric species in the presence of docosahexaenoic acid and that these species are toxic to cells. Here we studied how interaction of these oligomers with membranes results in cell toxicity, using cellular membrane-mimetic and cell model systems. We found that α-synuclein oligomers are able to interact with large and small unilamellar negatively charged vesicles acquiring an increased amount of α-helical structure, which induces small molecules release. We explored the possibility that oligomers effects on membranes could be due to pore formation, to a detergent-like effect or to fibril growth on the membrane. Our biophysical and cellular findings are consistent with a model where α-synuclein oligomers are embedded into the lipid bilayer causing transient alteration of membrane permeability. PMID:24312431

  7. Recovery of flavonoids from orange press liquor by an integrated membrane process.

    PubMed

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René

    2014-08-11

    Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF) in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS) content of 10 g·100 g-1 was pre-concentrated by nanofiltration (NF) up to 32 g TSS 100 g-1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g-1, was performed by using an osmotic distillation (OD) apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g-1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF). The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  8. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process

    PubMed Central

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René

    2014-01-01

    Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF) in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS) content of 10 g·100 g−1 was pre-concentrated by nanofiltration (NF) up to 32 g TSS 100 g−1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g−1, was performed by using an osmotic distillation (OD) apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g−1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF). The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications. PMID:25116725

  9. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis.

    PubMed

    Town, M; Jean, G; Cherqui, S; Attard, M; Forestier, L; Whitmore, S A; Callen, D F; Gribouval, O; Broyer, M; Bates, G P; van't Hoff, W; Antignac, C

    1998-04-01

    Nephropathic cystinosis, an autosomal recessive disorder resulting from defective lysosomal transport of cystine, is the most common inherited cause of renal Fanconi syndrome. The cystinosis gene has been mapped to chromosome 17p13. We found that the locus D17S829 was homozygously deleted in 23 out of 70 patients, and identified a novel gene, CTNS, which mapped to the deletion interval. CTNS encodes an integral membrane protein, cystinosin, with features of a lysosomal membrane protein. Eleven different mutations, all predicted to cause loss of function of the protein, were found to segregate with the disorder.

  10. Influence of ethanolic extract of Tephrosia purpurea Linn. on mast cells and erythrocytes membrane integrity.

    PubMed

    Gokhale, A B; Dikshit, V J; Damre, A S; Kulkarni, K R; Saraf, M N

    2000-08-01

    The ethanolic extract of T. purpurea Linn. was studied for its in vitro effect on rat mast cell degranulation and erythrocyte membrane integrity in vitro. The extract in concentration of 25-200 microg/ml showed a dose-dependant inhibition of rat mast cell degranulation induded by compound 48/80 and egg albumin. T. purpurea extract was found to inhibit haemolysis of erythrocytes induced by hypotonic solution but accelerated haemolysis induced by heat at a concentration of 100 microg/ml. The studies reveal that the ethanolic extract of T. purpurea may inhibit degranulation of mast cells by a mechanism other than membrane stabilization.

  11. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Cheng, Jim C.; Pisano, Albert P.

    2013-10-01

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

  12. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    SciTech Connect

    So, Hongyun; Pisano, Albert P.; Cheng, Jim C.

    2013-10-14

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

  13. Use of image analysis to assess the plasma membrane integrity of ram spermatozoa in different diluents.

    PubMed

    Yániz, J L; Santolaria, P; Marco-Aguado, M A; López-Gatius, F

    2008-07-15

    Sperm membrane integrity can be assessed by examining a large number of fluorochrome-stained sperm cells over a relative short period of time by flow cytometry or fluorimetry. However, many small laboratories lack a flow-cytometer or fluorimeter for sperm analysis. This study was designed to develop a new image analysis method to evaluate the membrane integrity of ram spermatozoa with the aid of open software, and was divided into three experiments. In the first experiment, the new computer-assisted method was validated by mixing fresh semen samples with different volumes of killed semen in order to know the proportions of damaged spermatozoa in the samples. In the second trial, the new method was compared with the traditional manual counting, and the effect of three extender media on the suitability of the new developed method was evaluated. In the third experiment, the method proposed was tested by comparing the use of milk-, citrate- or TRIS-based diluents for ram semen preservation at 15 degrees C. In all experiments, semen was assessed for plasma membrane integrity and for percentage of motile and progressive sperm by CASA. In the new computer-assisted method, two images of the sperm cells in a given microscopy field are captured and the number of total- and membrane-damaged cells counted. In the first trial, proportions of damaged sperm cells in each sample determined by the automated procedure agreed closely (r2=0.98, P<0.001) with the predicted theoretical values. In experiment 2, the results of membrane integrity obtained using the new method were highly correlated with those provided by the conventional manual counting after PI-CFDA double staining (r=0.99, P<0.001), and also correlated with sperm motility and progressive motility percentages. Viability was significantly higher after dilution with citrate-, than with Tris-based medium, but similar to PBS (70.32+/-3.93, 55.48+/-5.76 and 65.38+/-3.15, respectively), After 0, 24 and 48h of storage

  14. Studies on improved integrated membrane-based chromatographic process for bioseparation

    NASA Astrophysics Data System (ADS)

    Xu, Yanke

    To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model

  15. A competing hydrophobic tug on L596 to the membrane core unlatches S4-S5 linker elbow from TRP helix and allows TRPV4 channel to open.

    PubMed

    Teng, Jinfeng; Loukin, Stephen H; Anishkin, Andriy; Kung, Ching

    2016-10-18

    We have some generalized physical understanding of how ion channels interact with surrounding lipids but few detailed descriptions on how interactions of particular amino acids with contacting lipids may regulate gating. Here we discovered a structure-specific interaction between an amino acid and inner-leaflet lipid that governs the gating transformations of TRPV4 (transient receptor potential vanilloid type 4). Many cation channels use a S4-S5 linker to transmit stimuli to the gate. At the start of TRPV4's linker helix is leucine 596. A hydrogen bond between the indole of W733 of the TRP helix and the backbone oxygen of L596 secures the helix/linker contact, which acts as a latch maintaining channel closure. The modeled side chain of L596 interacts with the inner lipid leaflet near the polar-nonpolar interface in our model-an interaction that we explored by mutagenesis. We examined the outward currents of TRPV4-expressing Xenopus oocyte upon depolarizations as well as phenotypes of expressing yeast cells. Making this residue less hydrophobic (L596A/G/W/Q/K) reduces open probability [Po; loss-of-function (LOF)], likely due to altered interactions at the polar-nonpolar interface. L596I raises Po [gain-of-function (GOF)], apparently by placing its methyl group further inward and receiving stronger water repulsion. Molecular dynamics simulations showed that the distance between the levels of α-carbons of H-bonded residues L596 and W733 is shortened in the LOFs and lengthened in the GOFs, strengthening or weakening the linker/TRP helix latch, respectively. These results highlight that L596 lipid attraction counteracts the latch bond in a tug-of-war to tune the Po of TRPV4.

  16. Integrated angular tracking and plasmonic membrane surfaces for a point of a care refractive index sensor

    NASA Astrophysics Data System (ADS)

    Bay, Marie-Claude; Eckert, Rolf; Grenet, Eric; Stanley, Ross P.; Franzi, Edo; Heinzelmann, Harry; Ozdemir, Cenk I.; Altug, Hatice; Dunbar, L. Andrea

    2016-02-01

    We present an optical system which integrates a plasmonic sensing surface and an angular tracking system to enable a compact refractive index measurement. A refractive index change at the surface of the sensing membrane causes a change in the angle at which monochromatic light is transmitted through the membrane. This transmission angle is measured by the angular tracking system. We show good theoretical and experimental agreement of the transmission of the plasmonic sensing surface at different angular illumination of the membranes. Using this compact optical setup the embedded angular tracking system has an accuracy of <10-4 deg. This corresponds to a sensitivity <10-5 refractive index units. Finally we demonstrate this measurement technique using different concentrations of saline solution.

  17. Spatial differences in an integral membrane proteome detected in laser capture microdissected samples.

    PubMed

    Wang, Zhen; Han, Jun; Schey, Kevin L

    2008-07-01

    The combination of laser capture microdissection and mass spectrometry represents a powerful technology for studying spatially resolved proteomes. Moreover, the compositions of integral membrane proteomes have rarely been studied in a spatially resolved manner. In this study, ocular lens tissue was carefully dissected by laser capture microdissection and conditions for membrane protein enrichment, trypsin digestion, and mass spectrometry analysis were optimized. Proteomic analysis allowed the identification of 170 proteins, 136 of which were identified with more than one peptide match. Spatial differences in protein expression were observed between cortical and nuclear samples. In addition, the spatial distribution of post-translational modifications to lens membrane proteins, such as the lens major intrinsic protein AQP0, were investigated and regional differences were measured for AQP0 C-terminal phosphorylation and truncation.

  18. Effect of sinus membrane perforation on dental implant integration: a retrospective study on 128 patients.

    PubMed

    Oh, Eric; Kraut, Richard A

    2011-02-01

    A common complication of sinus augmentation is perforation of the sinus membrane during augmentation and/or implant placement. This retrospective study examines the effect of sinus membrane perforation with regard to graft survival and implant integration. A total of 175 sinuses were augmented with 115 of the membranes being reported intact at the time of surgery. A total of three infections occurred in patients who sustained perforated sinuses and one infection occurred in a patient who had an intact sinus. All four infections resolved after culture sensitivity and placement of the patient on an appropriate antibiotic for 10 days. Of 438 dental implants placed in the augmented sinuses, five implants failed, four of which were associated with perforated sinuses and and which was not associated with a perforated grafted sinus.

  19. Integrated CO2, Humidity and Thermal Control by Membrane Gas Absorption, Results of Breadboard Testing

    NASA Astrophysics Data System (ADS)

    van Driel, C.; Eckhard, F.; Feron, P. H. M.; Savage, C. J.

    2002-01-01

    Membrane gas absorption for the removal of CO2 in manned spacecrafts is subject of study by Stork and TNO for many years. The system is based on the combination of membrane separation and gas absorption. The air is fed along one side of a hydrophobic membrane and diffuses through the membrane after which the CO2 is selectively absorbed by an absorption liquid. Great advantage is that the system not only can be used to remove the carbon dioxide but also can be applied to control the relative humidity and temperature of the cabin atmosphere. Absorption of moisture and heat is achieved by cooling the absorption liquid below the dewpoint temperature of the gas stream. In the studies, the Crew Transfer Vehicle is used as a basis. Compared to the planned h/w for this vehicle, an air conditioning system, consisting of a condensing heat exchanger, LiOH cartridges to remove the carbon dioxide and a water evaporator assembly, the MGA/MGD has a large volume and a small mass advantage. The absorption liquid circulates through the spacecraft thermal control loop, replacing the coolant water. This set-up has two advantages. At first, by increasing the absorption liquid temperature the CO2 desorption rate in the desorber is favoured and secondly, should additional heat rejection aside from the basic heat rejection system be required (off nominal case), this can be established by dumping extra water via the desorption module, using the associated heat of vaporisation. Control of the water desorption rate is achieved by adjusting the permeate pressure with the throttle valve. In the nominal case the water absorption rate is equal to the desorption rate. The CO2 absorption capacity of the absorption liquid is restored in a desorption unit. This process is based on pervaporation. On one side of the membrane the absorption liquid is fed, on the other side a reduced pressure is maintained. Due to this pressure difference a driving force for water vapour and CO2 is created. The water

  20. Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2.

    PubMed

    Zunke, Friederike; Andresen, Lisa; Wesseler, Sophia; Groth, Johann; Arnold, Philipp; Rothaug, Michelle; Mazzulli, Joseph R; Krainc, Dimitri; Blanz, Judith; Saftig, Paul; Schwake, Michael

    2016-04-05

    The lysosomal integral membrane protein type-2 (LIMP-2) plays a pivotal role in the delivery of β-glucocerebrosidase (GC) to lysosomes. Mutations in GC result in Gaucher's disease (GD) and are the major genetic risk factor for the development of Parkinson's disease (PD). Variants in the LIMP-2 gene cause action myoclonus-renal failure syndrome and also have been linked to PD. Given the importance of GC and LIMP-2 in disease pathogenesis, we studied their interaction sites in more detail. Our previous data demonstrated that the crystal structure of LIMP-2 displays a hydrophobic three-helix bundle composed of helices 4, 5, and 7, of which helix 5 and 7 are important for ligand binding. Here, we identified a similar helical motif in GC through surface potential analysis. Coimmunoprecipitation and immunofluorescence studies revealed a triple-helical interface region within GC as critical for LIMP-2 binding and lysosomal transport. Based on these findings, we generated a LIMP-2 helix 5-derived peptide that precipitated and activated recombinant wild-type and GD-associated N370S mutant GC in vitro. The helix 5 peptide fused to a cell-penetrating peptide also activated endogenous lysosomal GC and reduced α-synuclein levels, suggesting that LIMP-2-derived peptides can be used to activate endogenous as well as recombinant wild-type or mutant GC efficiently. Our data also provide a structural model of the LIMP-2/GC complex that will facilitate the development of GC chaperones and activators as potential therapeutics for GD, PD, and related synucleinopathies.

  1. Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2

    PubMed Central

    Zunke, Friederike; Andresen, Lisa; Wesseler, Sophia; Groth, Johann; Arnold, Philipp; Rothaug, Michelle; Mazzulli, Joseph R.; Krainc, Dimitri; Blanz, Judith; Saftig, Paul; Schwake, Michael

    2016-01-01

    The lysosomal integral membrane protein type-2 (LIMP-2) plays a pivotal role in the delivery of β-glucocerebrosidase (GC) to lysosomes. Mutations in GC result in Gaucher's disease (GD) and are the major genetic risk factor for the development of Parkinson's disease (PD). Variants in the LIMP-2 gene cause action myoclonus-renal failure syndrome and also have been linked to PD. Given the importance of GC and LIMP-2 in disease pathogenesis, we studied their interaction sites in more detail. Our previous data demonstrated that the crystal structure of LIMP-2 displays a hydrophobic three-helix bundle composed of helices 4, 5, and 7, of which helix 5 and 7 are important for ligand binding. Here, we identified a similar helical motif in GC through surface potential analysis. Coimmunoprecipitation and immunofluorescence studies revealed a triple-helical interface region within GC as critical for LIMP-2 binding and lysosomal transport. Based on these findings, we generated a LIMP-2 helix 5-derived peptide that precipitated and activated recombinant wild-type and GD-associated N370S mutant GC in vitro. The helix 5 peptide fused to a cell-penetrating peptide also activated endogenous lysosomal GC and reduced α-synuclein levels, suggesting that LIMP-2–derived peptides can be used to activate endogenous as well as recombinant wild-type or mutant GC efficiently. Our data also provide a structural model of the LIMP-2/GC complex that will facilitate the development of GC chaperones and activators as potential therapeutics for GD, PD, and related synucleinopathies. PMID:27001828

  2. Designing a hydrophobic barrier within biomimetic nanopores.

    PubMed

    Trick, Jemma L; Wallace, E Jayne; Bayley, Hagan; Sansom, Mark S P

    2014-11-25

    Nanopores in membranes have a range of potential applications. Biomimetic design of nanopores aims to mimic key functions of biological pores within a stable template structure. Molecular dynamics simulations have been used to test whether a simple β-barrel protein nanopore can be modified to incorporate a hydrophobic barrier to permeation. Simulations have been used to evaluate functional properties of such nanopores, using water flux as a proxy for ionic conductance. The behavior of these model pores has been characterized as a function of pore size and of the hydrophobicity of the amino acid side chains lining the narrow central constriction of the pore. Potential of mean force calculations have been used to calculate free energy landscapes for water and for ion permeation in selected models. These studies demonstrate that a hydrophobic barrier can indeed be designed into a β-barrel protein nanopore, and that the height of the barrier can be adjusted by modifying the number of consecutive rings of hydrophobic side chains. A hydrophobic barrier prevents both water and ion permeation even though the pore is sterically unoccluded. These results both provide insights into the nature of hydrophobic gating in biological pores and channels, and furthermore demonstrate that simple design features may be computationally transplanted into β-barrel membrane proteins to generate functionally complex nanopores.

  3. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins.

    PubMed

    Badgandi, Hemant B; Hwang, Sun-Hee; Shimada, Issei S; Loriot, Evan; Mukhopadhyay, Saikat

    2017-03-06

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein-coupled receptors (GPCRs) and the polycystic kidney disease-causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. © 2017 Badgandi et al.

  4. The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis.

    PubMed

    Sánchez-Alcázar, José A; Rodríguez-Hernández, Angeles; Cordero, Mario D; Fernández-Ayala, Daniel J M; Brea-Calvo, Gloria; Garcia, Katherina; Navas, Plácido

    2007-07-01

    It has recently been shown that the microtubule cytoskeleton is reformed during the execution phase of apoptosis. We demonstrate that this microtubule reformation occurs in many cell types and under different apoptotic stimuli. We confirm that the apoptotic microtubule network possesses a novel organization, whose nucleation appears independent of conventional gamma-tubulin ring complex containing structures. Our analysis suggests that microtubules are closely associated with the plasma membrane, forming a cortical ring or cellular "cocoon". Concomitantly other components of the cytoskeleton, such as actin and cytokeratins disassemble. We found that colchicine-mediated disruption of apoptotic microtubule network results in enhanced plasma membrane permeability and secondary necrosis, suggesting that the reformation of a microtubule cytoskeleton plays an important role in preserving plasma membrane integrity during apoptosis. Significantly, cells induced to enter apoptosis in the presence of the pan-caspase inhibitor z-VAD, nevertheless form microtubule-like structures suggesting that microtubule formation is not dependent on caspase activation. In contrast we found that treatment with EGTA-AM, an intracellular calcium chelator, prevents apoptotic microtubule network formation, suggesting that intracellular calcium may play an essential role in the microtubule reformation. We propose that apoptotic microtubule network is required to maintain plasma membrane integrity during the execution phase of apoptosis.

  5. Expression, Stability, and Membrane Integration of Truncation Mutants of Bovine Rhodopsin

    NASA Astrophysics Data System (ADS)

    Heymann, Jurgen A. W.; Subramaniam, Sriram

    1997-05-01

    Premature termination of protein synthesis by nonsense mutations is at the molecular origin of a number of inherited disorders in the family of G protein-coupled seven-helix receptor proteins. To understand how such truncated polypeptides are processed by the cell, we have carried out COS-1 cell expression studies of mutants of bovine rhodopsin truncated at the first 1, 1.5, 2, 3, or 5 transmembrane segments (TMS) of the seven present in wild-type opsin. Our experiments show that successful completion of different stages in the cellular processing of the protein [membrane insertion, N-linked glycosylation, stability to proteolytic degradation, and transport from the endoplasmic reticulum (ER) membrane] requires progressively longer lengths of the polypeptide chain. Thus, none of the truncations affected the ability of the polypeptides to be integral membrane proteins. C-terminal truncations that generated polypeptides with fewer than two TMS resulted in misorientation and prevented glycosylation at the N terminus, whereas truncations that generated polypeptides with fewer than five TMS greatly destabilized the protein. However, all of the truncations prevented exit of the polypeptide from the ER. We conclude that during the biogenesis of rhodopsin, proper integration into the ER membrane occurs only after the synthesis of at least two TMS is completed. Synthesis of the next three TMS confers a gradual increase in stability, whereas the presence of more than five TMS is necessary for exit from the ER.

  6. Direct effects of ionizing radiation on integral membrane proteins. Noncovalent energy transfer requires specific interpeptide interactions

    SciTech Connect

    Jhun, E.; Jhun, B.H.; Jones, L.R.; Jung, C.Y. )

    1991-05-25

    The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100{degree}C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein.

  7. Integrated optical design for highly dynamic laser beam shaping with membrane deformable mirrors

    NASA Astrophysics Data System (ADS)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2017-02-01

    The utilization of membrane deformable mirrors has raised its importance in laser materials processing since they enable the generation of highly spatial and temporal dynamic intensity distributions for a wide field of applications. To take full advantage of these devices for beam shaping, the huge amount of degrees of freedom has to be considered and optimized already within the early stage of the optical design. Since the functionality of commercial available ray-tracing software has been mainly specialized on geometric dependencies and their optimization within constraints, the complex system characteristics of deformable mirrors cannot be sufficiently taken into account yet. The main reasons are the electromechanical interdependencies of electrostatic membrane deformable mirrors, namely saturation and mechanical clamping, that result in non-linear deformation. This motivates the development of an integrative design methodology. The functionality of the ray-tracing program ZEMAX is extended with a model of an electrostatic membrane mirror. This model is based on experimentally determined influence functions. Furthermore, software routines are derived and integrated that allow for the compilation of optimization criteria for the most relevant analytically describable beam shaping problems. In this way, internal optimization routines can be applied for computing the appropriate membrane deflection of the deformable mirror as well as for the parametrization of static optical components. The experimental verification of simulated intensity distributions demonstrates that the beam shaping properties can be predicted with a high degree of reliability and precision.

  8. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins

    PubMed Central

    Shimada, Issei S.; Loriot, Evan

    2017-01-01

    The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane. PMID:28154160

  9. Roles of DNA repair and membrane integrity in heat resistance of Deinococcus radiodurans.

    PubMed

    Bauermeister, Anja; Hahn, Claudia; Rettberg, Petra; Reitz, Günther; Moeller, Ralf

    2012-11-01

    To study the effects of heat shock on Deinococcus radiodurans and the role of DNA repair in high temperature resistance, different strains of D. radiodurans (wild type, recA, irrE, and pprA) were treated with temperatures ranging from 40 to 100 °C under wet and dry conditions. The mutant strains were more sensitive to wet heat of ≥60 °C and dry heat of ≥80 °C than the wild type. Both wild-type and DNA repair-deficient strains were much more resistant to high temperatures when exposed in the dried state as opposed to cells in suspension. Molecular staining techniques with the wild-type strain revealed that cells in the dried state were able to retain membrane integrity after drying and subsequent heat exposure, while heat-exposed cells in suspension showed significant loss of membrane integrity and respiration activity. The results suggest that the repair of DNA damage (e.g., DNA double-strand breaks by RecA and PprA) is essential after treatment with wet heat at temperatures >60 °C and dry heat >80 °C, and the ability of D. radiodurans to stabilize its plasma membrane during dehydration might represent one aspect in the protection of dried cells from heat-induced membrane damage.

  10. Integral Membrane Protein Sorting to Vacuoles in Plant Cells: Evidence for Two Pathways

    PubMed Central

    Jiang, Liwen; Rogers, John C.

    1998-01-01

    Plant cells may contain two functionally distinct vacuolar compartments. Membranes of protein storage vacuoles (PSV) are marked by the presence of α-tonoplast intrinsic protein (TIP), whereas lytic vacuoles (LV) are marked by the presence of γ-TIP. Mechanisms for sorting integral membrane proteins to the different vacuoles have not been elucidated. Here we study a chimeric integral membrane reporter protein expressed in tobacco suspension culture protoplasts whose traffic was assessed biochemically by following acquisition of complex Asn-linked glycan modifications and proteolytic processing, and whose intracellular localization was determined with confocal immunofluorescence. We show that the transmembrane domain of the plant vacuolar sorting receptor BP-80 directs the reporter protein via the Golgi to the LV prevacuolar compartment, and attaching the cytoplasmic tail (CT) of γ-TIP did not alter this traffic. In contrast, the α-TIP CT prevented traffic of the reporter protein through the Golgi and caused it to be localized in organelles separate from ER and from Golgi and LV prevacuolar compartment markers. These organelles had a buoyant density consistent with vacuoles, and α-TIP protein colocalized in them with the α-TIP CT reporter protein when the two were expressed together in protoplasts. These results are consistent with two separate pathways to vacuoles for membrane proteins: a direct ER to PSV pathway, and a separate pathway via the Golgi to the LV. PMID:9832548

  11. Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up.

    PubMed

    Wang, Xinhua; Yuan, Bo; Chen, Yao; Li, Xiufen; Ren, Yueping

    2014-09-01

    The high salinity remains as one of major obstacles of the osmotic membrane bioreactor (OMBR). In this study, a new pathway was explored to prevent the salinity build-up by integrating the micro-filtration (MF) membrane to the OMBR (MF-OMBR). The results indicated that the salinity characterized by conductivity in the MF-OMBR was effectively alleviated and controlled at a lower value of about 5 mS/cm, and the stable flux of forward osmosis (FO) membrane correspondingly increased to approximately 5.5L/(m(2)h). Besides, the addition of MF membrane in the OMBR could increase the total organic carbon (TOC) and ammonium nitrogen (NH3-N) removals due to the activated sludge by improving the microbial activity. The membrane fouling especially the reversible fouling in the MF-OMBR was severer compared to that in the conventional OMBR, which resulted in a lower water flux than the expectation due to the increase of filtration resistance and external concentration polarization.

  12. Alterations of the Coxiella burnetii Replicative Vacuole Membrane Integrity and Interplay with the Autophagy Pathway

    PubMed Central

    Mansilla Pareja, María E.; Bongiovanni, Antonino; Lafont, Frank; Colombo, María I.

    2017-01-01

    Coxiella burnetii, the etiologic agent of Q fever, is a Gram-negative obligate intracellular bacterium. It has been previously described that both the endocytic and autophagic pathways contribute to the Coxiella replicative vacuole (CRV) generation. Galectins are β-galactoside-binding lectins that accumulate in the cytosol before being secreted via a non-conventional secretory pathway. It has been shown that Galectin-3, -8, -9 monitor bacteria vacuolar rupture and endosomal and lysosomal loss of membrane integrity through binding of host glycans exposed in the cytoplasm after membrane damage. Using microinjection of fluorescence-coupled dextrans, a FRET assay, and galectins distribution, we demonstrate that Coxiella infection actually result in transient phagosomal/CRV membrane damage in a Dot/Icm-dependent manner. We also show the association of different adaptor molecules involved in autophagy and of LC3 to the limiting membrane of the CRV. Moreover, we show that upon autophagy inhibition, the proportion of CRVs labeled with galectins and less acidified increases which is associated with bacteria replication impairment. Based on these observations, we propose that autophagy can facilitate resealing of intracellular damaged membranes. PMID:28484683

  13. On the Efficiency of NHS Ester Cross-Linkers for Stabilizing Integral Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Chen, Fan; Gerber, Sabina; Korkhov, Volodymyr M.; Mireku, Samantha; Bucher, Monika; Locher, Kaspar P.; Zenobi, Renato

    2015-03-01

    We have previously presented a straightforward approach based on high-mass matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) to study membrane proteins. In addition, the stoichiometry of integral membrane protein complexes could be determined by MALDI-MS, following chemical cross-linking via glutaraldehyde. However, glutaraldehyde polymerizes in solution and reacts nonspecifically with various functional groups of proteins, limiting its usefulness for structural studies of protein complexes. Here, we investigated the capability of N-hydroxysuccinimide (NHS) esters, which react much more specifically, to cross-link membrane protein complexes such as PglK and BtuC2D2. We present clear evidence that NHS esters are capable of stabilizing membrane protein complexes in situ, in the presence of detergents such as DDM, C12E8, and LDAO. The stabilization efficiency strongly depends on the membrane protein structure (i.e, the number of primary amine groups and the distances between primary amines). A minimum number of primary amine groups is required, and the distances between primary amines govern whether a cross-linker with a specific spacer arm length is able to bridge two amine groups.

  14. Alterations of the Coxiella burnetii Replicative Vacuole Membrane Integrity and Interplay with the Autophagy Pathway.

    PubMed

    Mansilla Pareja, María E; Bongiovanni, Antonino; Lafont, Frank; Colombo, María I

    2017-01-01

    Coxiella burnetii, the etiologic agent of Q fever, is a Gram-negative obligate intracellular bacterium. It has been previously described that both the endocytic and autophagic pathways contribute to the Coxiella replicative vacuole (CRV) generation. Galectins are β-galactoside-binding lectins that accumulate in the cytosol before being secreted via a non-conventional secretory pathway. It has been shown that Galectin-3, -8, -9 monitor bacteria vacuolar rupture and endosomal and lysosomal loss of membrane integrity through binding of host glycans exposed in the cytoplasm after membrane damage. Using microinjection of fluorescence-coupled dextrans, a FRET assay, and galectins distribution, we demonstrate that Coxiella infection actually result in transient phagosomal/CRV membrane damage in a Dot/Icm-dependent manner. We also show the association of different adaptor molecules involved in autophagy and of LC3 to the limiting membrane of the CRV. Moreover, we show that upon autophagy inhibition, the proportion of CRVs labeled with galectins and less acidified increases which is associated with bacteria replication impairment. Based on these observations, we propose that autophagy can facilitate resealing of intracellular damaged membranes.

  15. Identification of Two Novel Endoplasmic Reticulum Body-Specific Integral Membrane Proteins1[W][OA

    PubMed Central

    Yamada, Kenji; Nagano, Atsushi J.; Nishina, Momoko; Hara-Nishimura, Ikuko; Nishimura, Mikio

    2013-01-01

    The endoplasmic reticulum (ER) body, a large compartment specific to the Brassicales, accumulates β-glucosidase and possibly plays a role in the defense against pathogens and herbivores. Although the ER body is a subdomain of the ER, it is unclear whether any ER body-specific membrane protein exists. In this study, we identified two integral membrane proteins of the ER body in Arabidopsis (Arabidopsis thaliana) and termed them MEMBRANE PROTEIN OF ENDOPLASMIC RETICULUM BODY1 (MEB1) and MEB2. In Arabidopsis, a basic helix-loop-helix transcription factor, NAI1, and an ER body component, NAI2, regulate ER body formation. The expression profiles of MEB1 and MEB2 are similar to those of NAI1, NAI2, and ER body β-glucosidase PYK10 in Arabidopsis. The expression of MEB1 and MEB2 was reduced in the nai1 mutant, indicating that NAI1 regulates the expression of MEB1 and MEB2 genes. MEB1 and MEB2 proteins localize to the ER body membrane but not to the ER network, suggesting that these proteins are specifically recruited to the ER body membrane. MEB1 and MEB2 physically interacted with ER body component NAI2, and they were diffused throughout the ER network in the nai2 mutant, which has no ER body. Heterologous expression of MEB1 and MEB2 in yeast (Saccharomyces cerevisiae) suppresses iron and manganese toxicity, suggesting that MEB1 and MEB2 are metal transporters. These results indicate that the membrane of ER bodies has specific membrane proteins and suggest that the ER body is involved in defense against metal stress as well as pathogens and herbivores. PMID:23166355

  16. Preparation of hydrophobic coatings

    DOEpatents

    Branson, Eric D [Albuquerque, NM; Shah, Pratik B [Albuquerque, NM; Singh, Seema [Rio Rancho, NM; Brinker, C Jeffrey [Albuquerque, NM

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  17. Comparison of different methods for assessment of sperm concentration and membrane integrity with bull semen.

    PubMed

    Anzar, Muhammad; Kroetsch, Tom; Buhr, Mary M

    2009-01-01

    Assessing semen quality is crucially important for the exploitation of genetically superior sires in an artificial insemination (AI) program. In this study, we compare modern and conventional techniques to estimate bovine sperm concentration and membrane integrity. First, the NucleoCounter SP-100 was validated for sperm concentration and provided statistically reliable and repeatable estimates among aliquots and replicates of 25 fresh ejaculates. Sperm concentrations in 78 ejaculates were then determined with hemacytometer, flow cytometer, and NucleoCounter SP-100 and were significantly correlated (P < .001), with regression coefficients among these 3 techniques close to 1 (P < .01). However, the sperm concentration determined by hemacytometer was lower (P < .01) than by flow cytometer and NucleoCounter SP-100. Forty frozen-thawed semen samples were then assessed for sperm concentration and membrane integrity with hemacytometer, flow cytometer and NucleoCounter SP-100. Significant relationships were found for sperm concentration determined by hemacytometer and NucleoCounter SP-100 and for sperm membrane integrity determined by flow cytometer and NucleoCounter SP-100 (P < .01). Finally, the standard curves of sperm concentrations in 6 spectrophotometers, comparing optical density against counts drawn by hemacytometer and NucleoCounter SP-100 (n = 94 fresh ejaculates) showed different (P < .01) intercepts and regression coefficients (linear, quadratic, cubic). It was calculated that a breeding station can improve its production potential by 13% with the use of NucleoCounter SP-100 instead of hemacytometer for calibration of spectrophotometers. Flow cytometer and NucleoCounter SP-100 can be used with equal confidence to estimate sperm concentration and membrane integrity in domestic animals and human semen.

  18. An integrated membrane sub-harmonic Schottky diode mixers at 340GHz

    NASA Astrophysics Data System (ADS)

    Wang, Junlong; Yang, Dabao; Xing, Dong; Liang, Shixiong; Zhang, Lisen; Zhao, Xiangyang; Feng, Zhihong

    2015-11-01

    This paper presents a sub-harmonic mixer operating over the spectral band 332-348 GHz. The mixers employ integrated GaAs membrane Schottky diode technology. The simulated results show that the conversion loss of the mixer is below dB in the band from 333 GHz to 347 GHz with a local oscillator power requirement of 5mW.The minimum is 8.2dB at 344GHz.

  19. Simulating Nonlinear Deformations of Solar Sail Membranes Using Explicit Time Integration

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Chen, Tzikang; Sleight, David W.; Tessler, Alex

    2004-01-01

    In this study, the explicit time integration method is employed to predict deformation of highly flexible solar sail structural components. The nonlinear static analysis of a highly flexible ribbon structure is presented to demonstrate the need for having the explicit time integration method in the analysis toolbox for solar sail. Static analyses of the ribbon structure produce ambiquous results whereas the explicit time integration method determines the correct results. Extensive benchmarking examples are also presented to build confidence in the use of the explicit method. Previously determined nonlinear wrinkling deformations of solar sail membranes are found by the explicit method. As the explicit method is known to often require more computational time than nonlinear static methods, a study on mass scaling was also conducted. The computational times are reported for the nonlinear static and explicit time integration solutions to calibrate the advantage of using mass scaling for these problems.

  20. Osmotic tolerance limits and effects of cryoprotectants on the motility, plasma membrane integrity and acrosomal integrity of rat sperm.

    PubMed

    Si, Wei; Benson, James D; Men, Hongsheng; Critser, John K

    2006-12-01

    Osmotic stress is an important factor that can result in cell damage during cryopreservation. The objectives of this study were to determine: (1) isosmotic sperm cell volume; (2) osmotically inactive volume; (3) osmotic tolerance limits of rat sperm; and (4) the effects of addition and removal of glycerol (Gly), ethylene glycol (EG), propylene glycol (PG) or dimethyl sulfoxide (Me(2)SO) on rat sperm function. Sperm from Fischer 344 and Sprague-Dawley rats were used in this study. An electronic particle counter was used to measure the cell volume of rat sperm. Computer-assisted sperm motility analysis and flow-cytometric analysis were used to assess sperm motility, plasma membrane and acrosomal integrity. The isosmotic sperm cell volumes of the two strains were 37.0+/-0.1 and 36.2+/-0.2 microm(3), respectively. Rat sperm behaved as linear osmometers from 260 to 450 mOsm, and the osmotically inactive sperm volumes of the two strains were 79.8+/-1.5% and 81.4+/-2.2%, respectively. Rat sperm have very limited osmotic tolerances. The sperm motility and the sperm plasma membranes of both strains were sensitive to anisosmotic treatments, but the acrosomes of both strains were more sensitive to hyposmotic than hyperosmotic conditions. The one-step addition and removal of Me(2)SO showed the most deleterious effect on rat sperm motility, plasma membrane integrity, and acrosomal integrity among the four cryoprotectants. These data characterizing rat sperm osmotic behavior, osmotic and cryoprotectant tolerance will be used to design cryopreservation protocols for rat sperm.

  1. Reduced Graphene Oxide Bipolar Membranes for Integrated Solar Water Splitting in Optimal pH.

    PubMed

    McDonald, Michael B; Bruce, Jared P; McEleney, Kevin; Freund, Michael S

    2015-08-24

    The integration of light absorbers and catalysts for the water splitting process requires a membrane capable of both ion and electron management and product separation to realize efficient solar fuels systems. Bipolar membranes can maintain a pH gradient for optimal reaction conditions by the dissociation of water. Such membranes that contain graphene in the interfacial layer are fabricated by the chemical reduction of a uniformly deposited graphene oxide layer to convert sp(3) catalyst regions to sp(2) conductive regions. The resulting electrical and water dissociation properties are optimized by adjusting the exposure conditions, and treatments of less than 5 min render an interface that exceeds the conductivity requirements for integrated solar water splitting and increases the overpotential by <0.3 V. Integration with photoelectrodes is examined by characterizing the electrical interface formed between graphene and Si microwires, and we found that efficient Ohmic junctions are possible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex