Science.gov

Sample records for hydrophobic integral membrane

  1. Affinity Labeling of Highly Hydrophobic Integral Membrane Proteins for Proteome-Wide Analysis

    SciTech Connect

    Goshe, Michael B.; Blonder, Josip; Smith, Richard D.

    2003-03-01

    The ability to identify and quantify integral membrane proteins is an analytical challenge for mass spectrometry-based proteomics. The use of surfactants to solubilize and derivatize these proteins can suppress peptide ionization and interfere with chromatographic separations during microcapillary reversed-phase liquid chromatography-electrospray-tandem mass spectrometry. To circumvent the use of surfactants and increase proteome coverage, an affinity labeling method has been developed to target highly hydrophobic integral membrane proteins using organic-assisted extraction and solubilization followed by cysteinyl-specific labeling using biotinylation reagents. As demonstrated on the membrane subproteome of Deinococcus radiodurans, specific and quantitative labeling of integral membrane proteins was achieved using a 60% methanol-aqueous buffer system and (+)-biotinyl-iodoacetamidyl-3,6-dioxaoctanediamine as the cysteinyl-alkylating reagent. From a total of 220 unique Cys-labeled peptides, 89 proteins were identified of which 40 were integral membrane proteins containing from 1 to 9 mapped transmembrane domains with a maximum positive GRAVY of 1.08. The protocol described can be used with other stable isotope labeling reagents (e.g. ICAT) to enable comparative measurements to be made on differentially expressed hydrophobic membrane proteins from various organisms (e.g. pathogenic bacteria) and cell types and provide a viable method for comparative proteome-wide analyses.

  2. Hydrophobic Compounds Reshape Membrane Domains

    PubMed Central

    Barnoud, Jonathan; Rossi, Giulia; Marrink, Siewert J.; Monticelli, Luca

    2014-01-01

    Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo. PMID:25299598

  3. Deconvoluting the Effect of the Hydrophobic and Hydrophilic Domains of an Amphiphilic Integral Membrane Protein in Lipid Bicontinuous Cubic Mesophases.

    PubMed

    van 't Hag, Leonie; Shen, Hsin-Hui; Lu, Jingxiong; Hawley, Adrian M; Gras, Sally L; Drummond, Calum J; Conn, Charlotte E

    2015-11-10

    Lipidic bicontinuous cubic mesophases with encapsulated amphiphilic proteins are widely used in a range of biological and biomedical applications, including in meso crystallization, as drug delivery vehicles for therapeutic proteins, and as biosensors and biofuel cells. However, the effect of amphiphilic protein encapsulation on the cubic phase nanostructure is not well-understood. In this study, we illustrate the effect of incorporating the bacterial amphiphilic membrane protein Ag43, and its individual hydrophobic β(43) and hydrophilic α(43) domains, in bicontinuous cubic mesophases. For the monoolein, monoalmitolein, and phytantriol cubic phases with and without 8% w/w cholesterol, the effect of the full length amphiphilic protein Ag43 on the cubic phase nanostructure was more significant than the sum of the individual hydrophobic β(43) and hydrophilic α(43) domains. Several factors were found to potentially influence the impact of the hydrophobic β(43) domain on the cubic phase internal nanostructure. These include the size of the hydrophobic β(43) domain relative to the thickness of the lipid bilayer, as well as its charge and diameter. The size of the hydrophilic α(43) domain relative to the water channel radius of the cubic mesophase was also found to be important. The secondary structure of the Ag43 proteins was affected by the hydrophobic thickness and physicochemical properties of the lipid bilayer and the water channel diameter of the cubic phase. Such structural changes may be small but could potentially affect membrane protein function.

  4. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    PubMed

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography.

  5. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding

    PubMed Central

    De Marothy, Minttu T; Elofsson, Arne

    2015-01-01

    Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices—implying a dynamic relationship between membrane proteins and their environment. PMID:25970811

  6. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes

    SciTech Connect

    EVANS, LINDSEY; MILLER, JAMES E.

    2002-01-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel{reg_sign} Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

  7. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.

  8. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    PubMed Central

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein–protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes. PMID:25635869

  9. Stop-and-move of a marginally hydrophobic segment translocating across the endoplasmic reticulum membrane.

    PubMed

    Onishi, Yukiko; Yamagishi, Marifu; Imai, Kenta; Fujita, Hidenobu; Kida, Yuichiro; Sakaguchi, Masao

    2013-09-01

    Many membrane proteins are cotranslationally integrated into the endoplasmic reticulum membrane via the protein-conducting channel, the so-called translocon. The hydrophobic transmembrane segment of the translocating nascent polypeptide chain stops at the translocon and then moves laterally into the membrane. Partitioning of the hydrophobic segment into the membrane is the primary determinant for membrane insertion. Here, we examined the behavior of a marginally hydrophobic segment at the translocon and found that its stop-translocation was greatly affected by the C-terminally attached ribosomes. The marginally hydrophobic segment first stops at the membrane and then moves into the lumen as long as the nascent chain is attached to translating ribosomes. When it is released from the ribosome by the termination codon, the marginally hydrophobic segment does not move. Puromycin or RNase treatment also suppressed movement. The movement was reversibly inhibited by high-salt conditions and irreversibly inhibited by ethylenediaminetetraacetic acid. There is an unstable state prior to the stable membrane insertion of the transmembrane segment. This characteristic state is maintained by the synthesizing ribosome. PMID:23747484

  10. Dehydration processes using membranes with hydrophobic coating

    DOEpatents

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  11. Proteomic analysis of mouse liver plasma membrane: use of differential extraction to enrich hydrophobic membrane proteins.

    PubMed

    Zhang, Lijun; Xie, Jinyun; Wang, Xi'e; Liu, Xiaohui; Tang, Xinke; Cao, Rui; Hu, Weijun; Nie, Song; Fan, Chunming; Liang, Songping

    2005-11-01

    To comprehensively identify proteins of liver plasma membrane (PM), we isolated PMs from mouse liver by sucrose density gradient centrifugation. An optimized extraction method for whole PM proteins and several methods of differential extraction expected to enrich hydrophobic membrane proteins were tested. The extracted PM proteins were separated by 2-DE, and were identified by MALDI-TOF-MS, and ESI-quadrupole-TOF MS. As the complementary method, 1-DE-MS/MS was also used to identify PM proteins. The optimized lysis buffer containing urea, thiourea, CHAPS and NP-40 was able to extract more PM proteins, and treatment of PM samples with chloroform/methanol and sodium carbonate led to enrichment of more hydrophobic PM proteins. From the mouse liver PM fraction, 175 non-redundant gene products were identified, of which 88 (about 50%) were integral membrane proteins with one to seven transmembrane domains. The remaining products were probably membrane-associated and cytosolic proteins. The function distribution of all the identified liver PM proteins was analyzed; 40% represented enzymes, 12% receptors and 9% proteins with unknown function.

  12. Highly efficient hydrophobic titania ceramic membranes for water desalination.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Koter, Stanisław; Kujawski, Wojciech

    2014-08-27

    Hydrophobic titania ceramic membranes (300 kD) were prepared by grafting of C6F13C2H4Si(OC2H5)3 and C12F25C2H4Si(OC2H5)3 molecules and thus applied in membrane distillation (MD) process of NaCl solutions. Grafting efficiency and hydrophobicity were evaluated by contact angle measurement, atomic force microscopy, scanning electron microscopy, nitrogen adsorption/desorption, and liquid entry pressure measurement of water. Desalination of NaCl solutions was performed using the modified hydrophobic membranes in air gap MD (AGMD) and direct contact MD (DCMD) processes in various operating conditions. High values of NaCl retention coefficient (>99%) were reached. The permeate fluxes were in the range 231-3692 g·h(-1)·m(-2), depending on applied experimental conditions. AGMD mode appeared to be more efficient showing higher fluxes and selectivity in desalination. Overall mass transfer coefficients (K) for membranes tested in AGMD were constant over the investigated temperature range. However, K values in DCMD increased at elevated temperature. The hydrophobic layer was also stable after 4 years of exposure to open air. PMID:25084346

  13. [Hydrophobic membrane chromatography for fast purification of biological macromolecules].

    PubMed

    Yang, L; Chen, X; Jia, L; Zou, H; Zhang, Y

    1999-07-01

    Cellulose membrane bonded with four commonly used hydrophobic groups, octyl, butyl, phenyl and polyethylene glycol was first investigated for their binding and purification characteristics of protein and enzyme with octyl- and phenyl-Sepharose CL-4 B as controls. Hydrophobic membranes bound BSA effectively by hydrophobic interaction in high salt solution. Their binding capacities were not notably affected by significantly increasing the flow mass rate or decreasing the mass concentration of protein solution, but were much lower than those of octyl- and phenyl-Sepharose CL-4B. 11.8 fold of purification with an approximately 100% recovery of bovine liver catalase was achieved by step gradient elution on the phenyl cellulose membrane cartridge in a single step in only ten mins or a little more. Increase of the flow mass rate had no effect on the purification of catalase, however, the processing time was shortened greatly. Hydrophobic membrane chromatography here reported exibits a potential of fast processing of the protein solution in large volume with low mass concentration of the target protein, such as genetic engineering culture solution. PMID:12552843

  14. Highly efficient hydrophobic titania ceramic membranes for water desalination.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Koter, Stanisław; Kujawski, Wojciech

    2014-08-27

    Hydrophobic titania ceramic membranes (300 kD) were prepared by grafting of C6F13C2H4Si(OC2H5)3 and C12F25C2H4Si(OC2H5)3 molecules and thus applied in membrane distillation (MD) process of NaCl solutions. Grafting efficiency and hydrophobicity were evaluated by contact angle measurement, atomic force microscopy, scanning electron microscopy, nitrogen adsorption/desorption, and liquid entry pressure measurement of water. Desalination of NaCl solutions was performed using the modified hydrophobic membranes in air gap MD (AGMD) and direct contact MD (DCMD) processes in various operating conditions. High values of NaCl retention coefficient (>99%) were reached. The permeate fluxes were in the range 231-3692 g·h(-1)·m(-2), depending on applied experimental conditions. AGMD mode appeared to be more efficient showing higher fluxes and selectivity in desalination. Overall mass transfer coefficients (K) for membranes tested in AGMD were constant over the investigated temperature range. However, K values in DCMD increased at elevated temperature. The hydrophobic layer was also stable after 4 years of exposure to open air.

  15. Sticking polydisperse hydrophobic magnetite nanoparticles to lipid membranes.

    PubMed

    Paulus, Michael; Degen, Patrick; Brenner, Thorsten; Tiemeyer, Sebastian; Struth, Bernd; Tolan, Metin; Rehage, Heinz

    2010-10-19

    The formation of a layer of hydrophobic magnetite (Fe(3)O(4)) nanoparticles stabilized by lauric acid is analyzed by in situ X-ray reflectivity measurements. The data analysis shows that the nanoparticles partially disperse their hydrophobic coating. Consequently, a Langmuir layer was formed by lauric acid molecules that can be compressed into an untilted condensed phase. A majority of the nanoparticles are attached to the Langmuir film integrating lauric acid residue on their surface into the Langmuir film. Hence, the particles at the liquid-gas interface can be identified as so-called Janus beads, which are amphiphilic solids having two sides with different functionality.

  16. Sticking polydisperse hydrophobic magnetite nanoparticles to lipid membranes.

    PubMed

    Paulus, Michael; Degen, Patrick; Brenner, Thorsten; Tiemeyer, Sebastian; Struth, Bernd; Tolan, Metin; Rehage, Heinz

    2010-10-19

    The formation of a layer of hydrophobic magnetite (Fe(3)O(4)) nanoparticles stabilized by lauric acid is analyzed by in situ X-ray reflectivity measurements. The data analysis shows that the nanoparticles partially disperse their hydrophobic coating. Consequently, a Langmuir layer was formed by lauric acid molecules that can be compressed into an untilted condensed phase. A majority of the nanoparticles are attached to the Langmuir film integrating lauric acid residue on their surface into the Langmuir film. Hence, the particles at the liquid-gas interface can be identified as so-called Janus beads, which are amphiphilic solids having two sides with different functionality. PMID:20873726

  17. Why Hydrophilic Water can Permeate Hydrophobic Interior of Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Qiao, Baofu; Olvera de La Cruz, Monica

    2014-03-01

    Water molecules as well as some small molecules have long been found to be able to diffuse across lipid membranes. Such permeation is of significant biological and biotechnological importance. For instance, the permeation of water across lipid membrane plays a important role in regulating ionic concentrations inside of cells. Such water permeation without the assistance of proteins embedded in membranes has been found to be a energetically unfavorable process. We, for the first time, explicitly depict the driving force for such an energetically unfavorable process. Atomistic molecular dynamics simulations are employed to investigate water diffusion in both liquid-crystalline and ordered gel phases of membranes containing zwitterionic DPPC or anionic DLPS lipid. The membrane conformation is calculated to have a critical role in water permeation, regardless of the type of lipid. The fluctuations in the potential energy are found to have a significant, if not the exclusive, role in the transportation of water across lipid membranes. Our results are also informative for the diffusion of small molecules of CO2, O2 and drug molecules, the absence of diffusion of ions, and the diffusion of water into the hydrophobic pores of carbon nanotubes. The authors acknowledge the support from the Office of the Director of Defense Research and Engineering (DDR & E) under Award No. FA9550-10-1-0167.

  18. Converting a marginally hydrophobic soluble protein into a membrane protein.

    PubMed

    Nørholm, Morten H H; Cunningham, Fiona; Deber, Charles M; von Heijne, Gunnar

    2011-03-18

    δ-Helices are marginally hydrophobic α-helical segments in soluble proteins that exhibit certain sequence characteristics of transmembrane (TM) helices [Cunningham, F., Rath, A., Johnson, R. M. & Deber, C. M. (2009). Distinctions between hydrophobic helices in globular proteins and TM segments as factors in protein sorting. J. Biol. Chem., 284, 5395-402]. In order to better understand the difference between δ-helices and TM helices, we have studied the insertion of five TM-like δ-helices into dog pancreas microsomal membranes. Using model constructs in which an isolated δ-helix is engineered into a bona fide membrane protein, we find that, for two δ-helices originating from secreted proteins, at least three single-nucleotide mutations are necessary to obtain efficient membrane insertion, whereas one mutation is sufficient in a δ-helix from the cytosolic protein P450BM-3. We further find that only when the entire upstream region of the mutated δ-helix in the intact cytochrome P450BM-3 is deleted does a small fraction of the truncated protein insert into microsomes. Our results suggest that upstream portions of the polypeptide, as well as embedded charged residues, protect δ-helices in globular proteins from being recognized by the signal recognition particle-Sec61 endoplasmic-reticulum-targeting machinery and that δ-helices in secreted proteins are mutationally more distant from TM helices than δ-helices in cytosolic proteins.

  19. Polar interactions trump hydrophobicity in stabilizing the self-inserting membrane protein Mistic.

    PubMed

    Broecker, Jana; Fiedler, Sebastian; Gimpl, Katharina; Keller, Sandro

    2014-10-01

    Canonical integral membrane proteins are attached to lipid bilayers through hydrophobic transmembrane helices, whose topogenesis requires sophisticated insertion machineries. By contrast, membrane proteins that, for evolutionary or functional reasons, cannot rely on these machineries need to resort to driving forces other than hydrophobicity. A striking example is the self-inserting Bacillus subtilis protein Mistic, which is involved in biofilm formation and has found application as a fusion tag supporting the recombinant production and bilayer insertion of other membrane proteins. Although this unusual protein contains numerous polar and charged residues and lacks characteristic membrane-interaction motifs, it is tightly bound to membranes in vivo and membrane-mimetic systems in vitro. Therefore, we set out to quantify the contributions from polar and nonpolar interactions to the coupled folding and insertion of Mistic. To this end, we defined conditions under which the protein can be unfolded completely and reversibly from various detergent micelles by urea in a two-state equilibrium and where the unfolded state is independent of the detergent used for solubilizing the folded state. This enabled equilibrium unfolding experiments previously used for soluble and β-barrel membrane proteins, revealing that polar interactions with ionic and zwitterionic headgroups and, presumably, the interfacial dipole potential stabilize the protein much more efficiently than nonpolar interactions with the micelle core. These findings unveil the forces that allow a protein to tightly interact with a membrane-mimetic environment without major hydrophobic contributions and rationalize the differential suitability of detergents for the extraction and solubilization of Mistic-tagged membrane proteins.

  20. A new method for permeability measurement of hydrophobic membranes in Vacuum Membrane Distillation process.

    PubMed

    Dao, T D; Mericq, J-P; Laborie, S; Cabassud, C

    2013-04-15

    In this paper, a new method for permeability measurement of hydrophobic membranes used in Vacuum Membrane Distillation, instead of common measurement methods, was proposed. As VMD is a pressure and temperature driven process, the idea of this work is to propose a new water vapour permeability measurement method based on variation of feed temperature at a fixed vacuum pressure. This new method showed a greater stability and simplicity than the existing pressure variation method by not only allowing a wide range of feed temperature (25 °C ÷ 60 °C) to be scanned continuously, but also avoiding fluctuations of the system as observed in the pressure variation test. Permeabilities of two different kinds of hydrophobic membranes were measured by this new method and also by the existing pressure variation test. A comparison between these two methods was also presented to assess the feasibility and applicability of this new method. PMID:23415955

  1. Preparation of hydrophobic PVDF hollow fiber membranes for desalination through membrane distillation.

    PubMed

    Hou, Deyin; Wang, Jun; Qu, Dan; Luan, Zhaokun; Zhao, Changwei; Ren, Xiaojing

    2009-01-01

    Fabrication of polyvinylidene fluoride (PVDF) hydrophobic asymmetric hollow fiber membranes was studied by introducing inorganic salt LiCl and water soluble polymer polyethylene glycol (PEG) 1500, using N,N-dimethylacetamide (DMAc) as solvent and tap water as the coagulation medium. The membranes properties also were tested and characterized. It is found that the non-solvent additive can increase membranes porosity, ether LiCl or PEG 1500. Because of the addition of PEG 1500, the PVDF membranes obtained a rough topography on the membrane surface and the contact angle of the PVDF membranes increased to 113.50 degrees compared to 89.82 degrees of the PVDF membranes spun without an additive. During direct contact membrane distillation (DCMD) of 0.6 M sodium chloride solution, the PVDF membranes spun with PEG 1500 as a non-solvent additive achieved higher water permeation flux compared to the membranes spun from PVDF/DMAc and PVDF/DMAC/LiCl dopes, but the latter two membranes exhibited higher salt rejection rate.

  2. Improved Aerobic Colony Count Technique for Hydrophobic Grid Membrane Filters

    PubMed Central

    Parrington, Lorna J.; Sharpe, Anthony N.; Peterkin, Pearl I.

    1993-01-01

    The AOAC International official action procedure for performing aerobic colony counts on hydrophobic grid membrane filters (HGMFs) uses Trypticase soy-fast green FCF agar (FGA) incubated for 48 h. Microbial growths are various shades of green on a pale green background, which can cause problems for automated as well as manual counting. HGMFs which had been incubated 24 or 48 h at 35°C on Trypticase soy agar were flooded underneath with 1 to 2 ml of 0.1% triphenyltetrazolium chloride (TTC) solution by simply lifting one corner of the filter while it was still on the agar and adding the reagent. Microbial growths on HGMFs were counted after color had been allowed to develop for 15 min at room temperature. With representative foods, virtually all colonies stained pink to red. Automated electronic counts made by using the MI-100 HGMF Interpreter were easier and more reliable than control HGMF counts made by the AOAC International official action procedure. Manual counting was easier as well because of increased visibility of the microbial growths. Except in the case of dairy products, 24-h TTC counts did not differ significantly from 48-h FGA counts, whereas the FGA counts at 24 h were always significantly lower, indicating that for many food products the HGMF TTC flooding method permits aerobic colony counts to be made after 24 h. PMID:16349033

  3. Membrane Integration of Poliovirus 2B Viroporin▿

    PubMed Central

    Martínez-Gil, Luis; Bañó-Polo, Manuel; Redondo, Natalia; Sánchez-Martínez, Silvia; Nieva, José Luis; Carrasco, Luis; Mingarro, Ismael

    2011-01-01

    Virus infections can result in a variety of cellular injuries, and these often involve the permeabilization of host membranes by viral proteins of the viroporin family. Prototypical viroporin 2B is responsible for the alterations in host cell membrane permeability that take place in enterovirus-infected cells. 2B protein can be localized at the endoplasmic reticulum (ER) and the Golgi complex, inducing membrane remodeling and the blockade of glycoprotein trafficking. These findings suggest that 2B has the potential to integrate into the ER membrane, but specific information regarding its biogenesis and mechanism of membrane insertion is lacking. Here, we report experimental results of in vitro translation-glycosylation compatible with the translocon-mediated insertion of the 2B product into the ER membrane as a double-spanning integral membrane protein with an N-/C-terminal cytoplasmic orientation. A similar topology was found when 2B was synthesized in cultured cells. In addition, the in vitro translation of several truncated versions of the 2B protein suggests that the two hydrophobic regions cooperate to insert into the ER-derived microsomal membranes. PMID:21835803

  4. Oxygen-Permeable, Hydrophobic Membranes of Silanized alpha-Al2O3

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.

    2006-01-01

    Membranes made of silanized alumina have been prepared and tested as prototypes of derivatized ceramic membranes that are both highly permeable to oxygen and hydrophobic. Improved oxygen-permeable, hydrophobic membranes would be attractive for use in several technological disciplines, including supporting high-temperature aqueousphase oxidation in industrial production of chemicals, oxygenation of aqueous streams for bioreactors, and oxygenation of blood during open-heart surgery and in cases of extreme pulmonary dysfunction. In comparison with organic polymeric oxygen-permeable membranes now commercially available, the derivatized ceramic membranes are more chemically robust, are capable of withstanding higher temperatures, and exhibit higher oxygen-diffusion coefficients.

  5. Matrix membranes and integrability

    SciTech Connect

    Zachos, C.; Fairlie, D.; Curtright, T.

    1997-06-01

    This is a pedagogical digest of results reported in Curtright, Fairlie, {ampersand} Zachos 1997, and an explicit implementation of Euler`s construction for the solution of the Poisson Bracket dual Nahm equation. But it does not cover 9 and 10-dimensional systems, and subsequent progress on them Fairlie 1997. Cubic interactions are considered in 3 and 7 space dimensions, respectively, for bosonic membranes in Poisson Bracket form. Their symmetries and vacuum configurations are explored. Their associated first order equations are transformed to Nahm`s equations, and are hence seen to be integrable, for the 3-dimensional case, by virtue of the explicit Lax pair provided. Most constructions introduced also apply to matrix commutator or Moyal Bracket analogs.

  6. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating.

    PubMed

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-09-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto a porous stainless-steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water-air interface, collect and convert solar light into heat, and locally heat only the water surface for enhanced evaporation.

  7. Potentiometric responses of polymeric liquid membranes based on hydrophobic chelating agents to metal ions.

    PubMed

    Itoh, Y; Ueda, Y; Hirano, A; Sugawara, M; Tohda, K; Akaiwa, H; Umezawa, Y

    2001-05-01

    The effect of hydrophobicity of acidic chelating agents as sensing materials on the potentiometric responses of polymeric liquid membranes was investigated. The chelating agents tested were 8-quinolinol (HOx), dithizone (HDz), 1-(2-pyridylazo)-2-naphthol (PAN) and their alkylated analogues, 5-octyloxymethyl-8-quinolinol (HO8Q), di(phexylphenyl)thiocarbazone (C6HDz), 7-pentadecyloxy-1-(2-pyridylazo)-2-naphthol (C15PAN) and a series of N-alkylcarbonyl-N-phenylhydroxylamines (CnPHA, n = 3, 6, 9, 12). The distribution coefficients between membrane solvent and water were determined to evaluate the hydrophobicity of the agents. The potential-pH profiles of the membranes containing hydrophobic chelating agents demonstrated the generation of potentiometric responses, while less hydrophobic agents gave no response. A possible model for the generation of membrane potential is proposed. The charge separation is attained by the permselective uptake of metal cations by the chelating agent anion at membrane/solution interface, where the high hydrophobicity of the agent enables the anionic or deprotonated form of the agents to remain at the membrane/solution interface.

  8. How hydrophobic nanoparticles aggregate in the interior of membranes: A computer simulation

    NASA Astrophysics Data System (ADS)

    Tian, Falin; Zhang, Xianren; Dong, Wei

    2014-11-01

    Lipid-based dispersion of hydrophobic nanoparticles (NPs) not only gives fundamental insight into how nanomaterials distribute in live cells and organisms, but also provides a quite general route to designing nanocarrier agents in triggered drug delivery and medical imaging. It is not clearly understood how hydrophobic NPs arrange in the interior of a membrane. In this paper, with computer simulation techniques, we demonstrate that hydrophobic NPs having a diameter compared to the hydrophobic thickness of the membrane are capable of clustering in the hydrophobic interior of a cell membrane. Except from the isotropic aggregation, an unexpected linear arrangement of spherical NPs, which is still not found from experiments, is identified here. The free-energy costs associated with linear and isotropic aggregations are computed explicitly to interpret aggregation behavior and the obtained phase diagrams give us a comprehensive understanding of where linear aggregation is expected. In this work we also shows that NP size and membrane tension play key roles in determining the NP aggregate, while the effects of NP concentration and membrane curvature seem to be relatively weak.

  9. Infrared spectral marker bands characterizing a transient water wire inside a hydrophobic membrane protein

    SciTech Connect

    Wolf, Steffen; Gerwert, Klaus; Freier, Erik; Cui, Qiang

    2014-12-14

    Proton conduction along protein-bound “water wires” is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations. A non-hydrogen bonded (“dangling”) O–H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.

  10. Polydimethysiloxane Modified Silica Nanochannel Membrane for Hydrophobicity-Based Molecular Filtration and Detection.

    PubMed

    Lin, Xingyu; Zhang, Bowen; Yang, Qian; Yan, Fei; Hua, Xin; Su, Bin

    2016-08-01

    We report in this work the fabrication of ultrathin silica nanochannel membranes inhomogeneously modified by polydimethysiloxane (PDMS), designated as PDMS-SNM, for hydrophobicity-based molecular filtration and detection. The modification was accomplished by spatially selective evaporation of hydrophobic PDMS oligomers onto the top surface of the membrane and orifice of silica nanochannels. Thanks to this hydrophobic ultrathin layer and beneath ultrasmall channels (2-3 nm in diameter), only small hydrophobic molecules are able to transport through the PDMS-SNM, whereas hydrophilic and large ones are remarkably inhibited. We first employed this PDMS-SNM as the molecular sieving matrix for selective electrochemical detection of hydrophobic organophosphates (OPs) in milk samples without pretreatment. The PDMS-SNM modified electrode displayed an excellent analytical performance and antifouling/anti-interference ability. We also prepared the free-standing PDMS-SNM consisting of perforated channels, which could filtrate molecules based on their hydrophobicity with an excellent selectivity. As demonstrated, 2,4,6-trinitrotoluene and dopamine could be separated with a selectivity coefficient as high as 335. Moreover, because of the inhomogeneous nanochannel structure and ultrasmall thickness, a remarkably high flux of hydrophobic molecules across the PDMS-SNM was obtained, which was 3-4 orders of magnitude higher than that reported previously. PMID:27414252

  11. Paper-PEG-based membranes for hydrophobic interaction chromatography: purification of monoclonal antibody.

    PubMed

    Yu, Deqiang; Chen, Xiaonong; Pelton, Robert; Ghosh, Raja

    2008-04-15

    This article discusses the preparation of novel Paper-PEG interpenetrating polymer network-based membranes as inexpensive alternative to currently available adsorptive membranes. The Paper-PEG membranes were developed for carrying out hydrophobic interaction membrane chromatography (HIMC). PEG is normally very hydrophilic but can undergo phase separation and become hydrophobic in the presence of high antichaotropic salt concentrations. Two variants of the Paper-PEG membranes, Paper-PEG 1 and Paper-PEG 2 were prepared by grafting different amounts of the polymer on filter paper and these were tested for their hydraulic properties and antibody binding capacity. The better of the two membranes (Paper-PEG 1) was then used for purifying the monoclonal antibody hIgG1-CD4 from simulated mammalian cell culture supernatant. The processing conditions required for purification were systematically optimized. The dynamic antibody binding capacity of the Paper-PEG 1 membrane was about 9 mg/mL of bed volume. A single step membrane chromatographic process using Paper-PEG 1 membrane gave high monoclonal antibody purity and recovery. The hydraulic permeability of the paper-based membrane was high and was maintained even after many runs, indicating that membrane fouling was negligible and the membrane was largely incompressible.

  12. Composite membrane with integral rim

    DOEpatents

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  13. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes

    NASA Astrophysics Data System (ADS)

    Ogawa, Tasuku; Ding, Bin; Sone, Yuji; Shiratori, Seimei

    2007-04-01

    We have recently fabricated super-hydrophobic membrane surfaces based on the inspiration of self-cleaning silver ragwort leaves. This biomimetic super-hydrophobic surface was composed of fluoroalkylsilane (FAS)-modified layer-by-layer (LBL) structured film-coated electrospun nanofibrous membranes. The rough fibre surface caused by the electrostatic LBL coating of TiO2 nanoparticles and poly(acrylic acid) (PAA) was used to imitate the rough surface of nanosized grooves along the silver ragwort leaf fibre axis. The results showed that the FAS modification was the key process for increasing the surface hydrophobicity of the fibrous membranes. Additionally, the dependence of the hydrophobicity of the membrane surfaces upon the number of LBL coating bilayers was affected by the membrane surface roughness. Moreover, x-ray photoelectron spectroscopy (XPS) results further indicated that the surface of LBL film-coated fibres absorbed more fluoro groups than the fibre surface without the LBL coating. A (TiO2/PAA)10 film-coated cellulose acetate nanofibrous membrane with FAS surface modification showed the highest water contact angle of 162° and lowest water-roll angle of 2°.

  14. Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor.

    PubMed

    Matar, Gerald; Gonzalez-Gil, Graciela; Maab, Husnul; Nunes, Suzana; Le-Clech, Pierre; Vrouwenvelder, Johannes; Saikaly, Pascal E

    2016-05-15

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m(2) h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m(2) h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be

  15. Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor.

    PubMed

    Matar, Gerald; Gonzalez-Gil, Graciela; Maab, Husnul; Nunes, Suzana; Le-Clech, Pierre; Vrouwenvelder, Johannes; Saikaly, Pascal E

    2016-05-15

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m(2) h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m(2) h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be

  16. Bilayer-thickness-mediated interactions between integral membrane proteins.

    PubMed

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  17. Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration.

    PubMed

    Lee, Junsung; Kim, Jiyoung; Jeong, Moonkyoung; Lee, Hyoungjin; Goh, Unbyeol; Kim, Hyaeyeong; Kim, Byungji; Park, Ji-Ho

    2015-05-13

    Natural membrane vesicles (MVs) derived from various types of cells play an essential role in transporting biological materials between cells. Here, we show that exogenous compounds are packaged in the MVs by engineering the parental cells via liposomes, and the MVs mediate autonomous intercellular migration of the compounds through multiple cancer cell layers. Hydrophobic compounds delivered selectively to the plasma membrane of cancer cells using synthetic membrane fusogenic liposomes were efficiently incorporated into the membrane of MVs secreted from the cells and then transferred to neighboring cells via the MVs. This liposome-mediated MV engineering strategy allowed hydrophobic photosensitizers to significantly penetrate both spheroids and in vivo tumors, thereby enhancing the therapeutic efficacy. These results suggest that innate biological transport systems can be in situ engineered via synthetic liposomes to guide the penetration of chemotherapeutics across challenging tissue barriers in solid tumors.

  18. Interplay between hydrophobicity and the positive-inside rule in determining membrane-protein topology.

    PubMed

    Elazar, Assaf; Weinstein, Jonathan Jacob; Prilusky, Jaime; Fleishman, Sarel Jacob

    2016-09-13

    The energetics of membrane-protein interactions determine protein topology and structure: hydrophobicity drives the insertion of helical segments into the membrane, and positive charges orient the protein with respect to the membrane plane according to the positive-inside rule. Until recently, however, quantifying these contributions met with difficulty, precluding systematic analysis of the energetic basis for membrane-protein topology. We recently developed the dsTβL method, which uses deep sequencing and in vitro selection of segments inserted into the bacterial plasma membrane to infer insertion-energy profiles for each amino acid residue across the membrane, and quantified the insertion contribution from hydrophobicity and the positive-inside rule. Here, we present a topology-prediction algorithm called TopGraph, which is based on a sequence search for minimum dsTβL insertion energy. Whereas the average insertion energy assigned by previous experimental scales was positive (unfavorable), the average assigned by TopGraph in a nonredundant set is -6.9 kcal/mol. By quantifying contributions from both hydrophobicity and the positive-inside rule we further find that in about half of large membrane proteins polar segments are inserted into the membrane to position more positive charges in the cytoplasm, suggesting an interplay between these two energy contributions. Because membrane-embedded polar residues are crucial for substrate binding and conformational change, the results implicate the positive-inside rule in determining the architectures of membrane-protein functional sites. This insight may aid structure prediction, engineering, and design of membrane proteins. TopGraph is available online (topgraph.weizmann.ac.il). PMID:27562165

  19. Interplay between hydrophobicity and the positive-inside rule in determining membrane-protein topology.

    PubMed

    Elazar, Assaf; Weinstein, Jonathan Jacob; Prilusky, Jaime; Fleishman, Sarel Jacob

    2016-09-13

    The energetics of membrane-protein interactions determine protein topology and structure: hydrophobicity drives the insertion of helical segments into the membrane, and positive charges orient the protein with respect to the membrane plane according to the positive-inside rule. Until recently, however, quantifying these contributions met with difficulty, precluding systematic analysis of the energetic basis for membrane-protein topology. We recently developed the dsTβL method, which uses deep sequencing and in vitro selection of segments inserted into the bacterial plasma membrane to infer insertion-energy profiles for each amino acid residue across the membrane, and quantified the insertion contribution from hydrophobicity and the positive-inside rule. Here, we present a topology-prediction algorithm called TopGraph, which is based on a sequence search for minimum dsTβL insertion energy. Whereas the average insertion energy assigned by previous experimental scales was positive (unfavorable), the average assigned by TopGraph in a nonredundant set is -6.9 kcal/mol. By quantifying contributions from both hydrophobicity and the positive-inside rule we further find that in about half of large membrane proteins polar segments are inserted into the membrane to position more positive charges in the cytoplasm, suggesting an interplay between these two energy contributions. Because membrane-embedded polar residues are crucial for substrate binding and conformational change, the results implicate the positive-inside rule in determining the architectures of membrane-protein functional sites. This insight may aid structure prediction, engineering, and design of membrane proteins. TopGraph is available online (topgraph.weizmann.ac.il).

  20. Water Diffusion Dependence on Amphiphilic Block Design in (Amphiphilic-Hydrophobic) Diblock Copolymer Membranes.

    PubMed

    Dorenbos, Gert

    2016-06-30

    Polyelectrolyte membranes (PEMs) are applied in polyelectrolyte fuel cells (PEFC). The proton conductive pathways within PEMs are provided by nanometer-sized water containing pores. Large-scale application of PEFC requires the production of low-cost membranes with high proton conductivity and therefore good connected pore networks. Pore network formation within four alternative model diblock (hydrophobic_amphiphilic) copolymers in the presence of water is studied by dissipative particle dynamics. Each hydrophobic block contains 50 consecutively connected hydrophobic (A) fragments, and amphiphilic blocks contain 40 hydrophobic A beads and 10 hydrophilic C beads. For one amphiphilic block the C beads are distributed uniformly along the backbone. For the other architectures C beads are located at the end of the side chains attached at regular intervals along the backbone. Water diffusion through the pores is modeled by Monte Carlo tracer diffusion through mapped morphologies. Diffusion is highest for the grafted architectures and increases with increase of length of the side chains. A consistent picture emerges in which diffusion strongly increases with the value of ⟨Nbond⟩ within the amphiphilic block, where ⟨Nbond⟩ is the average number of bonds between hydrophobic A beads and the nearest C bead. PMID:27266679

  1. Water Diffusion Dependence on Amphiphilic Block Design in (Amphiphilic-Hydrophobic) Diblock Copolymer Membranes.

    PubMed

    Dorenbos, Gert

    2016-06-30

    Polyelectrolyte membranes (PEMs) are applied in polyelectrolyte fuel cells (PEFC). The proton conductive pathways within PEMs are provided by nanometer-sized water containing pores. Large-scale application of PEFC requires the production of low-cost membranes with high proton conductivity and therefore good connected pore networks. Pore network formation within four alternative model diblock (hydrophobic_amphiphilic) copolymers in the presence of water is studied by dissipative particle dynamics. Each hydrophobic block contains 50 consecutively connected hydrophobic (A) fragments, and amphiphilic blocks contain 40 hydrophobic A beads and 10 hydrophilic C beads. For one amphiphilic block the C beads are distributed uniformly along the backbone. For the other architectures C beads are located at the end of the side chains attached at regular intervals along the backbone. Water diffusion through the pores is modeled by Monte Carlo tracer diffusion through mapped morphologies. Diffusion is highest for the grafted architectures and increases with increase of length of the side chains. A consistent picture emerges in which diffusion strongly increases with the value of ⟨Nbond⟩ within the amphiphilic block, where ⟨Nbond⟩ is the average number of bonds between hydrophobic A beads and the nearest C bead.

  2. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability.

    PubMed

    Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo

    2013-02-14

    Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost. PMID:23223708

  3. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability.

    PubMed

    Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo

    2013-02-14

    Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.

  4. Hydrophobic allergens from the bottom fraction membrane of Hevea brasiliensis.

    PubMed

    Mengumpun, Kesajee; Tayapiwatana, Chatchai; Hamilton, Robert G; Sangsupawanich, Pasuree; Wititsuwannakul, Rapepun

    2008-01-01

    Several proteins of rubber latex have been recognized as allergens causing immediate hypersensitivity in humans. In this study, a bottom fraction membrane (BFM) protein preparation from Hevea brasiliensis trees grown in southern Thailand was used to detect specific IgE in four groups of serum samples. The first group included 170 samples of latex glove factory workers (LGWs); group 2 consisted of the sera of 35 health care workers (HCWs) who were repeatedly exposed to powdered latex gloves; groups 3 and 4 were 31 positive and 22 negative sera, respectively, obtained from Johns Hopkins University School of Medicine, Baltimore, USA, tested for IgE to latex allergen. It was found that 56/170 (33%), 5/35 (14%), 11/31 (35.5%) and 1/22 (4.5%) samples of the LGWs, HCWs, CAP+ and CAP- groups had significant IgE to the BFM proteins, respectively. However, of all subjects only one subject of group 1 had experienced allergic morbidity consisting of eczema, conjunctivitis and asthma. The IgE of this subject bound to a 55 kDa component in the rubber latex BFM preparation. Thus, this protein may be regarded as a novel, although minor, latex allergen. Further investigation is needed to characterize the component and to pinpoint its allergenic role. PMID:19054931

  5. How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Kujawski, Wojciech; Bryjak, Marek; Kujawski, Jan

    2016-03-23

    The combination of microscopic (atomic force microscopy and scanning electron microscopy) and goniometric (static and dynamic measurements) techniques, and surface characterization (surface free energy determination, critical surface tension, liquid entry pressure, hydraulic permeability) was implemented to discuss the influence of perfluoroalkylsilanes structure and grafting time on the physicochemistry of the created hydrophobic surfaces on the titania ceramic membranes of 5 kD and 300 kD. The impact of molecular structure of perfluoroalkylsilanes modifiers (possessing from 6 to 12 carbon atoms in the fluorinated part of the alkyl chain) and the time of the functionalization process in the range of 5 to 35 h was studied. Based on the scanning electron microscopy with energy-dispersive X-ray spectroscopy, it was found that the localization of grafting molecules depends on the membrane pore size (5 kD or 300 kD). In the case of 5 kD titania membranes, modifiers are attached mainly on the surface and only partially inside the membrane pores, whereas, for 300 kD membranes, the perfluoroalkylsilanes molecules are present within the whole porous structure of the membranes. The application of 4 various types of PFAS molecules enabled for interesting observations and remarks. It was explained how to obtain ceramic membrane surfaces with controlled material (contact angle, roughness, contact angle hysteresis) and separation properties. Highly hydrophobic surfaces with low values of contact angle hysteresis and low roughness were obtained. These surfaces possessed also low values of critical surface tension, which means that surfaces are highly resistant to wetting. This finding is crucial in membrane applicability in separation processes. The obtained and characterized hydrophobic membranes were subsequently applied in air-gap membrane distillation processes. All membranes were very efficient in MD processes, showing good transport and selective properties (∼99% of Na

  6. How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Kujawski, Wojciech; Bryjak, Marek; Kujawski, Jan

    2016-03-23

    The combination of microscopic (atomic force microscopy and scanning electron microscopy) and goniometric (static and dynamic measurements) techniques, and surface characterization (surface free energy determination, critical surface tension, liquid entry pressure, hydraulic permeability) was implemented to discuss the influence of perfluoroalkylsilanes structure and grafting time on the physicochemistry of the created hydrophobic surfaces on the titania ceramic membranes of 5 kD and 300 kD. The impact of molecular structure of perfluoroalkylsilanes modifiers (possessing from 6 to 12 carbon atoms in the fluorinated part of the alkyl chain) and the time of the functionalization process in the range of 5 to 35 h was studied. Based on the scanning electron microscopy with energy-dispersive X-ray spectroscopy, it was found that the localization of grafting molecules depends on the membrane pore size (5 kD or 300 kD). In the case of 5 kD titania membranes, modifiers are attached mainly on the surface and only partially inside the membrane pores, whereas, for 300 kD membranes, the perfluoroalkylsilanes molecules are present within the whole porous structure of the membranes. The application of 4 various types of PFAS molecules enabled for interesting observations and remarks. It was explained how to obtain ceramic membrane surfaces with controlled material (contact angle, roughness, contact angle hysteresis) and separation properties. Highly hydrophobic surfaces with low values of contact angle hysteresis and low roughness were obtained. These surfaces possessed also low values of critical surface tension, which means that surfaces are highly resistant to wetting. This finding is crucial in membrane applicability in separation processes. The obtained and characterized hydrophobic membranes were subsequently applied in air-gap membrane distillation processes. All membranes were very efficient in MD processes, showing good transport and selective properties (∼99% of Na

  7. Fouling and cleaning characteristics of ultrafiltration of hydrophobic dissolved organic matter by a polyvinyl chloride hollow fiber membrane.

    PubMed

    Guo, Xiaoyan; Gao, Wei; Li, Jihui; Hu, Wanli

    2009-06-01

    Ultrafiltration membrane fouling is a significant problem in drinking water treatment. Many researchers believe that hydrophobic natural organic matter is the main foulant. In this research, fulvic acid, tannin, and aniline were used to represent hydrophobic acid, neutral, and base, respectively, to investigate modified polyvinyl chloride ultrafiltration membrane fouling characteristics. Four kinds of cleaning methods were used in this study: flushing, backwashing, flushing and backwashing, and chemical cleaning with 0.5% sodium hydroxide. Each was performed on the three hydrophobic dissolved organic matters (acid, neutral, and base) to identify the fouling mechanisms of polyvinyl chloride ultrafiltration membrane. Results showed that hydrophobic base fouled membranes the most and hydrophobic acid the least based on cleaning difficulty.

  8. Toward a Molecular Understanding of the Mechanism of Cryopreservation by Polyampholytes: Cell Membrane Interactions and Hydrophobicity.

    PubMed

    Rajan, Robin; Hayashi, Fumiaki; Nagashima, Toshio; Matsumura, Kazuaki

    2016-05-01

    Cryopreservation enables long-term preservation of cells at ultralow temperatures. Current cryoprotective agents (CPAs) have several limitations, making it imperative to develop CPAs with advanced properties. Previously, we developed a novel synthetic polyampholyte-based CPA, copolymer of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and methacrylic acid(MAA) (poly(MAA-DMAEMA)), which showed excellent efficiency and biocompatibility. Introduction of hydrophobicity increased its efficiency significantly. Herein, we investigated the activity of other polyampholytes. We prepared two zwitterionic polymers, poly(sulfobetaine) (SPB) and poly(carboxymethyl betaine) (CMB), and compared their efficiency with poly(MAA-DMAEMA). Poly-SPB showed only intermediate property and poly-CMB showed no cryoprotective property. These data suggested that the polymer structure strongly influences cryoprotection, providing an impetus to elucidate the molecular mechanism of cryopreservation. We investigated the mechanism by studying the interaction of polymers with cell membrane, which allowed us to identify the interactions responsible for imparting different properties. Results unambiguously demonstrated that polyampholytes cryopreserve cells by strongly interacting with cell membrane, with hydrophobicity increasing the affinity for membrane interaction, which enables it to protect the membrane from various freezing-induced damages. Additionally, cryoprotective polymers, especially their hydrophobic derivatives, inhibit the recrystallization of ice, thus averting cell death. Hence, our results provide an important insight into the complex mechanism of cryopreservation, which might facilitate the rational design of polymeric CPAs with improved efficiency. PMID:27077533

  9. The role of hydrophobic interactions in positioning of peripheral proteins in membranes

    PubMed Central

    Lomize, Andrei L; Pogozheva, Irina D; Lomize, Mikhail A; Mosberg, Henry I

    2007-01-01

    Background Three-dimensional (3D) structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined. Results We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM) database. Conclusion Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our results demonstrate that

  10. Hydrophobic ion interactions with membranes. Thermodynamic analysis of tetraphenylphosphonium binding to vesicles.

    PubMed Central

    Flewelling, R F; Hubbell, W L

    1986-01-01

    The thermodynamic properties for the interaction of the hydrophobic ion tetraphenylphosphonium (TPP+) with egg phosphatidylcholine vesicles were studied in detail by equilibrium dialysis and spin label techniques. A partition coefficient of beta = 4.2 + 0.4 x 10(-6) cm (K congruent to 100) was determined. Electrostatic saturation sets in at approximately 600 microM (about one absorbed TPP+ molecule per 100 lipids), and is not screened by salt. The temperature dependence of binding was determined, which reveals that the binding is entropy-driven with a positive (repulsive) enthalpy of binding, a result to be compared with hydrophobic anions in which the binding enthalpy is negative. The membrane dipole potential may be responsible for this binding difference. Activity coefficients are determined and shown to be significantly different from those of most common salts, an important result that should be considered in all hydrophobic ion studies. Comparison of the TPP+ results with those of its anionic structural analogue, tetraphenylboron (TPB-), permits a general analysis of hydrophobic ion interactions with membranes. A theoretical model consistent with the entire set of data is developed in an accompanying article. PMID:3006814

  11. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus.

    PubMed

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  12. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus

    PubMed Central

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  13. Roles of Interleaflet Coupling and Hydrophobic Mismatch in Lipid Membrane Phase-Separation Kinetics.

    PubMed

    Fowler, Philip W; Williamson, John J; Sansom, Mark S P; Olmsted, Peter D

    2016-09-14

    Characterizing the nanoscale dynamic organization within lipid bilayer membranes is central to our understanding of cell membranes at a molecular level. We investigate phase separation and communication across leaflets in ternary lipid bilayers, including saturated lipids with between 12 and 20 carbons per tail. Coarse-grained molecular dynamics simulations reveal a novel two-step kinetics due to hydrophobic mismatch, in which the initial response of the apposed leaflets upon quenching is to increase local asymmetry (antiregistration), followed by dominance of symmetry (registration) as the bilayer equilibrates. Antiregistration can become thermodynamically preferred if domain size is restricted below ∼20 nm, with implications for the symmetry of rafts and nanoclusters in cell membranes, which have similar reported sizes. We relate our findings to theory derived from a semimicroscopic model in which the leaflets experience a "direct" area-dependent coupling, and an "indirect" coupling that arises from hydrophobic mismatch and is most important at domain boundaries. Registered phases differ in composition from antiregistered phases, consistent with a direct coupling between the leaflets. Increased hydrophobic mismatch purifies the phases, suggesting that it contributes to the molecule-level lipid immiscibility. Our results demonstrate an interplay of competing interleaflet couplings that affect phase compositions and kinetics, and lead to a length scale that can influence lateral and transverse bilayer organization within cells. PMID:27574865

  14. Roles of Interleaflet Coupling and Hydrophobic Mismatch in Lipid Membrane Phase-Separation Kinetics

    PubMed Central

    2016-01-01

    Characterizing the nanoscale dynamic organization within lipid bilayer membranes is central to our understanding of cell membranes at a molecular level. We investigate phase separation and communication across leaflets in ternary lipid bilayers, including saturated lipids with between 12 and 20 carbons per tail. Coarse-grained molecular dynamics simulations reveal a novel two-step kinetics due to hydrophobic mismatch, in which the initial response of the apposed leaflets upon quenching is to increase local asymmetry (antiregistration), followed by dominance of symmetry (registration) as the bilayer equilibrates. Antiregistration can become thermodynamically preferred if domain size is restricted below ∼20 nm, with implications for the symmetry of rafts and nanoclusters in cell membranes, which have similar reported sizes. We relate our findings to theory derived from a semimicroscopic model in which the leaflets experience a “direct” area-dependent coupling, and an “indirect” coupling that arises from hydrophobic mismatch and is most important at domain boundaries. Registered phases differ in composition from antiregistered phases, consistent with a direct coupling between the leaflets. Increased hydrophobic mismatch purifies the phases, suggesting that it contributes to the molecule-level lipid immiscibility. Our results demonstrate an interplay of competing interleaflet couplings that affect phase compositions and kinetics, and lead to a length scale that can influence lateral and transverse bilayer organization within cells. PMID:27574865

  15. Hydrophobic Variations of N-Oxide Amphiphiles for Membrane Protein Manipulation: Importance of Non-hydrocarbon Groups in the Hydrophobic Portion

    PubMed Central

    Aiman, Sadaf; Gellman, Samuel H.

    2014-01-01

    This study introduces several N-oxide amphiphiles evaluated for a large membrane protein assembly. Among these N-oxide amphiphiles, cholate-based agents (CAO and CAO-1) displayed the most favorable behaviors for membrane protein stabilization. This result raises the possibility that the identity and number of non-hydrocarbon groups present in the hydrophobic region plays a critical role in determining detergent properties. PMID:24347070

  16. Enumeration of total coliforms, fecal coliforms, and Escherichia coli in foods by hydrophobic grid membrane filter: supplementary report.

    PubMed

    Entis, P

    1984-01-01

    Raw, comminuted poultry meat was used to determine the specificity of the media and incubation conditions used in the hydrophobic grid membrane filter method. Confirmation rates for target colonies were 100% for total coliforms, 98% for fecal coliforms, and 97-99% for Escherichia coli. The results of total coliform enumeration in 30 pasteurized milk samples by both the hydrophobic grid membrane filter method and AOAC method 46.013-46.016 are also reported. PMID:6381469

  17. Cholesterol expels ibuprofen from the hydrophobic membrane core and stabilizes lamellar phases in lipid membranes containing ibuprofen.

    PubMed

    Alsop, Richard J; Armstrong, Clare L; Maqbool, Amna; Toppozini, Laura; Dies, Hannah; Rheinstädter, Maikel C

    2015-06-28

    There is increasing evidence that common drugs, such as aspirin and ibuprofen, interact with lipid membranes. Ibuprofen is one of the most common over the counter drugs in the world, and is used for relief of pain and fever. It interacts with the cyclooxygenase pathway leading to inhibition of prostaglandin synthesis. From X-ray diffraction of highly oriented model membranes containing between 0 and 20 mol% ibuprofen, 20 mol% cholesterol, and dimyristoylphosphatidylcholine (DMPC), we present evidence for a non-specific interaction between ibuprofen and cholesterol in lipid bilayers. At a low ibuprofen concentrations of 2 mol%, three different populations of ibuprofen molecules were found: two in the lipid head group region and one in the hydrophobic membrane core. At higher ibuprofen concentrations of 10 and 20 mol%, the lamellar bilayer structure is disrupted and a lamellar to cubic phase transition was observed. In the presence of 20 mol% cholesterol, ibuprofen (at 5 mol%) was found to be expelled from the membrane core and reside solely in the head group region of the bilayers. 20 mol% cholesterol was found to stabilize lamellar membrane structure and the formation of a cubic phase at 10 and 20 mol% ibuprofen was suppressed. The results demonstrate that ibuprofen interacts with lipid membranes and that the interaction is strongly dependent on the presence of cholesterol.

  18. MtsB, a hydrophobic membrane protein of Streptococcus iniae, is an effective subunit vaccine candidate.

    PubMed

    Zou, Lili; Wang, Jun; Huang, Baofeng; Xie, Mingquan; Li, Anxing

    2011-01-10

    Streptococcus iniae is a major bacterium that causes invasive disease in cultured fish worldwide. The protection relies mainly on anti-microbial compounds and vaccines, and there is much interest in developing S. iniae vaccine based on conserved protein immunogens. Subcellular localization of protein has important influence on its immunogenicity. The surface and extracellular proteins of pathogenic bacteria can be easily recognized by the infected host compare to intracellular proteins, which are the feasible vaccine development targets. However, a putative hydrophobic membrane protein (designated MtsB) of the ATP-binding cassette (ABC) transporter system was found to be protective against S. iniae HD-1 infection when used as an injection vaccine administered intraperitoneally into tilapia. The MtsB protein is present on the cytoplasmic membrane and is expressed in vivo during Kunming mice infection by S. iniae HD-1. This is believed to be the first report on the use of a hydrophobic membrane protein of the ABC system as an S. iniae subunit vaccine.

  19. Modulation by small hydrophobic molecules of valinomycin-mediated potassium transport across phospholipid vesicle membranes

    SciTech Connect

    Clement, N.R.; Gould, J.M.

    1981-01-01

    The effects of small hydrophobic molecules on valinonycin-mediated K/sup +/ transport in small unilamellar soybean phospholipid vesicles have been studied by using a vesicle-entrapped pH-sensitive hydropholic fluorescence probe to monitor counterion-limited, passive H/sup +/ diffusion into vesicles after an abrupt decrease in external pH. Under conditions where, even in the absence of valinomycin, transmembrane K/sup +/ movement represented the primary and limiting counterion flux, <1 valinomycin molecule/vesicle was sufficient to accelerate the rate of H/sup +/ entry into all of the vesicles. Incorporation of the bulkily substituted molecules butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and p-di-tert-butylbenzene into soybean lipid bilayers had no effect upon K/sup +/ diffusion in the absence of valinomycin. However, the presence of these hydrophobic molecules increased the apparent efficacy for K/sup +/ transport of a given valinomycin concentration by as much as 4-6 fold. The less bulky membrane perturbants tert-butyl alcohol, phenol, and heptane showed very much less dramatic effects. While the rate of valinomycin-mediated K/sup +/ transport (in the presence or absence of BHT) was very sensitive to temperature-induced changes in membrane fluidity, the degree of synergistic interaction between valinomycin and BHT was independent of temperature. Furthermore, BHT, BHA, and p-di-tert-butylbenzene, at levels which alter valinomycin-mediated K/sup +/ transport, did not by themselves induce changes in membrane fluidity. It is postulated that changes in phospholipid head-group packing and/or surface charge density brought about by the presence of bulky perturber molecules leads to changes in partitioning of valinomycin or the valinomycin-K/sup +/ complex between the aqueous and membrane phases.

  20. VAMP-1: a synaptic vesicle-associated integral membrane protein.

    PubMed Central

    Trimble, W S; Cowan, D M; Scheller, R H

    1988-01-01

    Several proteins are associated with, or are integral components of, the lipid bilayer that forms the delineating membrane of neuronal synaptic vesicles. To characterize these molecules, we used a polyclonal antiserum raised against purified cholinergic synaptic vesicles from Torpedo to screen a cDNA expression library constructed from mRNA of the electromotor nucleus. One clone encodes VAMP-1 (vesicle-associated membrane protein 1), a nervous-system-specific protein of 120 amino acids whose primary sequence can be divided into three domains: a proline-rich amino terminus, a highly charged internal region, and a hydrophobic carboxyl-terminal domain that is predicted to comprise a membrane anchor. Tryptic digestion of intact and lysed vesicles suggests that the protein faces the cytoplasm, where it may play a role in packaging, transport, or release of neurotransmitters. Images PMID:3380805

  1. Functional substitution of the transient membrane-anchor domain in Escherichia coli FtsY with an N-terminal hydrophobic segment of Streptomyces lividans FtsY.

    PubMed

    Maeda, Isamu; Hirata, Asumi; Shoji, Miki; Ueda, Shunsaku; Yoshida, Kazuyuki

    2008-10-01

    FtsY is a signal recognition particle receptor in Escherichia coli that mediates the targeting of integral membrane proteins to translocons by interacting with both signal recognition particle (SRP)-nascent polypeptide-ribosome complexes and the cytoplasmic membrane. Genes encoding the N-terminal segments of Streptomyces lividans FtsY were fused to a gene encoding the E. coli FtsY NG domain (truncated versions of FtsY lacking the transient membrane-anchor domain at the N-terminus), introduced into a conditional ftsY-deletion mutant of E. coli, and expressed in trans to produce chimeric FtsY proteins. Under FtsY-depleted conditions, strains producing chimeric proteins including 34 N-terminal hydrophobic residues grew whereas strains producing chimeric proteins without these 34 residues did not. A strain producing the chimeric protein comprising the 34 residues and NG domain processed beta-lactamase, suggesting that the SRP-dependent membrane integration of leader peptidase was restored in this strain. These results suggest that the N-terminal hydrophobic segment of FtsY in this Gram-positive bacterium is responsible for its interaction with the cytoplasmic membrane.

  2. Hydrophobicity, topography in membranes and photosensitization of silicon phthalocyanines with axial ligands of varying lengths.

    PubMed

    Sholto, Alan; Ehrenberg, Benjamin

    2008-03-01

    Six amphiphilic silicon phthalocyanines (SiPc's) axially linked to a dimethylated amino alkyl group of varying length have been examined for their potential suitability as photosensitizers for photodynamic therapy (PDT). This group of molecules was chosen because the length of the axial ligand might place the chromophoric part of the molecule at different vertical depths in the membrane and possibly affect the extent of membrane localized damage caused by singlet oxygen. We tested the relative penetration depth of the SiPc groups in the membrane by the extent to which their fluorescence was quenched by external iodide ions. We also measured singlet oxygen quantum yields of the SiPc's in a liposome membrane, using the fluorescent target for singlet oxygen, 9,10-dimethylanthracene. The hydrophobicity parameters, LogP, were calculated and were also measured. Some correlation was found between them and Kb's, the binding constants for liposomes. The effect of the axial ligand's length is less striking than in similar cases with hematoporphyrins and protoporphyrins. We link this smaller effect with a bending of the linker chain that enables, sterically, a better positioning of the sensitizer molecules within the ordered lipid layer structure.

  3. Inhibition of Sendai virus fusion with phospholipid vesicles and human erythrocyte membranes by hydrophobic peptides

    SciTech Connect

    Kelsey, D.R.; Flanagan, T.D.; Young, J.E.; Yeagle, P.L. )

    1991-06-01

    Hydrophobic di- and tripeptides which are capable of inhibiting enveloped virus infection of cells are also capable of inhibiting at least three different types of membrane fusion events. Large unilamellar vesicles (LUV) of N-methyl dioleoylphosphatidylethanolamine (N-methyl DOPE), containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and/or p-xylene bis(pyridinium bromide) (DPX), were formed by extrusion. Vesicle fusion and leakage were then monitored with the ANTS/DPX fluorescence assay. Sendai virus fusion with lipid vesicles and Sendai virus fusion with human erythrocyte membranes were measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride (R18). This study found that the effectiveness of the peptides carbobenzoxy-L-Phe-L-Phe (Z-L-Phe-L-Phe), Z-L-Phe, Z-D-Phe, and Z-Gly-L-Phe-L-Phe in inhibiting N-methyl DOPE LUV fusion or fusion of virus with N-methyl DOPE LUV also paralleled their reported ability to block viral infectivity. Furthermore, Z-D-Phe-L-PheGly and Z-Gly-L-Phe inhibited Sendai virus fusion with human erythrocyte membranes with the same relative potency with which they inhibited vesicle-vesicle and virus-vesicle fusion. The evidence suggests a mechanism by which these peptides exert their inhibition of plaque formation by enveloped viruses. This class of inhibitors apparently acts by inhibiting fusion of the viral envelope with the target cell membrane, thereby preventing viral infection. The physical pathway by which these peptides inhibit membrane fusion was investigated. {sup 31}P nuclear magnetic resonance (NMR) of proposed intermediates in the pathway for membrane fusion in LUV revealed that the potent fusion inhibitor Z-D-Phe-L-PheGly selectively altered the structure (or dynamics) of the hypothesized fusion intermediates and that the poor inhibitor Z-Gly-L-Phe did not.

  4. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch.

    PubMed Central

    Fattal, D R; Ben-Shaul, A

    1993-01-01

    The interaction free energy between a hydrophobic, transmembrane, protein and the surrounding lipid environment is calculated based on a microscopic model for lipid organization. The protein is treated as a rigid hydrophobic solute of thickness dP, embedded in a lipid bilayer of unperturbed thickness doL. The lipid chains in the immediate vicinity of the protein are assumed to adjust their length to that of the protein (e.g., they are stretched when dP > doL) in order to bridge over the lipid-protein hydrophobic mismatch (dP-doL). The bilayer's hydrophobic thickness is assumed to decay exponentially to its asymptotic, unperturbed, value. The lipid deformation free energy is represented as a sum of chain (hydrophobic core) and interfacial (head-group region) contributions. The chain contribution is calculated using a detailed molecular theory of chain packing statistics, which allows the calculation of conformational properties and thermodynamic functions (in a mean-field approximation) of the lipid tails. The tails are treated as single chain amphiphiles, modeled using the rotational isometric state scheme. The interfacial free energy is represented by a phenomenological expression, accounting for the opposing effects of head-group repulsions and hydrocarbon-water surface tension. The lipid deformation free energy delta F is calculated as a function of dP-doL. Most calculations are for C14 amphiphiles which, in the absence of a protein, pack at an average area per head-group ao approximately equal to 32 A2 (doL approximately 24.5 A), corresponding to the fluid state of the membrane. When dP = doL, delta F > 0 and is due entirely to the loss of conformational entropy experienced by the chains around the protein. When dP > doL, the interaction free energy is further increased due to the enhanced stretching of the tails. When dP < doL, chain flexibility (entropy) increases, but this contribution to delta F is overcounted by the increase in the interfacial free energy

  5. Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif.

    PubMed

    Geissler, Brett; Ahrens, Sebastian; Satchell, Karla J F

    2012-02-01

    Plasma membrane targeting is essential for the proper function of many bacterial toxins. A conserved fourhelical bundle membrane localization domain (4HBM) was recently identified within three diverse families of toxins: clostridial glucosylating toxins, MARTX toxins and Pasteurella multocida-like toxins. When expressed in tissue culture cells or in yeast, GFP fusions to at least one 4HBM from each toxin family show significant peripheral membrane localization but with differing profiles. Both in vivo expression and in vitro binding studies reveal that the ability of these domains to localize to the plasma membrane and bind negatively charged phospholipids requires a basic-hydrophobic motif formed by the L1 and L3 loops. The different binding capacity of each 4HBM is defined by the hydrophobicity of an exposed residue within the motif. This study establishes that bacterial effectors utilize a normal host cell mechanism to locate the plasma membrane where they can then access their intracellular targets.

  6. Influence of hydrophobic/hydrophilic fractions of extracellular organic matters of Microcystis aeruginosa on ultrafiltration membrane fouling.

    PubMed

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Tan, Chaoqun; Zhu, Mingqiu

    2014-02-01

    Fouling is a major obstacle to maintain the efficiency of ultrafiltration-based drinking water treatment process. Algal extracellular organic matters (EOMs) are currently considered as one of the major sources of membrane fouling. The objective of this study was to investigate the influence of different hydrophobic/hydrophilic fractions of EOM extracted from Microcystis aeruginosa on ultrafiltration membrane fouling at lab scale. The experimental data indicated that EOM exhibited similar flux decline trends on polyethersulfone (PES) and regenerated cellulose (RC) membranes but caused greater irreversible fouling on PES membrane than RC membrane due to its hydrophobic property. It was also observed that charged hydrophilic (CHPI) and neutral hydrophilic (NHPI) fractions caused greater flux decline over hydrophobic (HPO) and transphilic (TPI) fractions. For PES membrane, the order of the irreversible fouling potentials for the four fractions was HPO>TPI>CHPI>NHPI, while the irreversible fouling potentials of RC membrane were tiny and could be ignored. Fluorescence excitation-emission matrix (EEM) spectra and Fourier transform infrared (FTIR) spectra suggested that protein-like, polysaccharide-like and humic-like substances were the major components responsible for membrane fouling. The results also indicated that the irreversible fouling increased as the pH decreased. The addition of calcium to feed solutions led to more severe flux decline and irreversible fouling.

  7. Evaluation of persistent hydrophobic organic compounds in the Columbia River Basin using semipermeable-membrane devices

    USGS Publications Warehouse

    McCarthy, K.A.; Gale, R.W.

    2001-01-01

    Persistent hydrophobic organic compounds are of concern in the Columbia River because they have been correlated with adverse effects on wildlife. We analysed samples from nine main-stem and six tributary sites throughout the Columbia River Basin (Washington and Oregon) for polychlorinated dibenzo-p-dioxins, dibenzofurans, polychlorinated biphenyls, organochlorine pesticides, and priority-pollutant polycyclic aromatic hydrocarbons. Because these compounds may have important biological consequences at aqueous concentrations well below the detection limits associated with conventional sampling methods, we used semipermeable-membrane devices to sample water and achieved parts-per-quintillion detection limits. All of these compound classes were prevalent within the basin, but concentrations of many analytes were highest in the vicinity of Portland-Vancouver, indicating that the Willamette subbasin-and perhaps the urban area in particular-is an important source of these compounds. Data collected during basin low-flow conditions in 1997 and again during basin high-flow conditions in 1998 indicate that in-stream processes such as dilution by relatively clean inflow, and flow through island hyporheic zones may be important mechanisms for attenuating dissolved concentrations of hydrophobic compounds.

  8. Integral Membrane Proteins and Bilayer Proteomics

    PubMed Central

    Whitelegge, Julian P.

    2013-01-01

    Integral membrane proteins reside within the bilayer membranes that surround cells and organelles, playing critical roles in movement of molecules across them and the transduction of energy and signals. While their extreme amphipathicity presents technical challenges, biological mass spectrometry has been applied to all aspects of membrane protein chemistry and biology, including analysis of primary, secondary, tertiary and quaternary structure, as well as the dynamics that accompany functional cycles and catalysis. PMID:23301778

  9. Enumeration of total coliforms, fecal coliforms, and Escherichia coli in foods by hydrophobic grid membrane filter: collaborative study.

    PubMed

    Entis, P; Bennett, B; Brodsky, M H; Burgener, D M; Carlson, V L; Carson, M; Catherwood, K; Ciebin, B S; Cox, N A; Dahiya, R S

    1984-01-01

    A collaborative study was conducted in 18 laboratories to assess the performance of the hydrophobic grid membrane filter method against that of the AOAC official first action method 46.013-46.016 for enumerating total and fecal coliforms and Escherichia coli. The study was carried out on frozen breaded fish, raw comminuted poultry, unroasted walnut pieces, ground black pepper, and cheddar cheese. The hydrophobic grid membrane filter method recovered significantly larger numbers of target bacteria in 7 of the food/analysis combinations: fecal coliforms in fish; E. coli in poultry; fecal coliforms and E. coli in walnuts; and total coliforms, fecal coliforms and E. coli in black pepper. Random error (Sr2) associated with the hydrophobic grid membrane filter method was significantly lower than that of the reference method in over 30% of the paired sample series. The hydrophobic grid membrane filter method for total coliform, fecal coliform, and E. coli enumeration in foods has been adopted official first action. PMID:6381470

  10. Effect of non-solvent additives on the morphology, pore structure, and direct contact membrane distillation performance of PVDF-CTFE hydrophobic membranes.

    PubMed

    Zheng, Libing; Wu, Zhenjun; Zhang, Yong; Wei, Yuansong; Wang, Jun

    2016-07-01

    Four common types of additives for polymer membrane preparation including organic macromolecule and micromolecule additives, inorganic salts and acids, and the strong non-solvent H2O were used to prepare poly (vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) hydrophobic flat-sheet membranes. Membrane properties including morphology, porosity, hydrophobicity, pore size and pore distribution were investigated, and the permeability was evaluated via direct contact membrane distillation (DCMD) of 3.5g/L NaCl solution in a DCMD configuration. Both inorganic and organic micromolecule additives were found to slightly influence membrane hydrophobicity. Polyethylene glycol (PEG), organic acids, LiCl, MgCl2, and LiCl/H2O mixtures were proved to be effective additives to PVDF-CTFE membranes due to their pore-controlling effects and the capacity to improve the properties and performance of the resultant membranes. The occurrence of a pre-gelation process showed that when organic and inorganic micromolecules were added to PVDF-CTFE solution, the resultant membranes presented a high interconnectivity structure. The membrane prepared with dibutyl phthalate (DBP) showed a nonporous surface and symmetrical cross-section. When H2O and LiCl/H2O mixtures were also used as additives, they were beneficial for solid-liquid demixing, especially when LiCl/H2O mixed additives were used. The membrane prepared with 5% LiCl+2% H2O achieved a flux of 24.53kg/(m(2)·hr) with 99.98% salt rejection. This study is expected to offer a reference not only for PVDF-CTFE membrane preparation but also for other polymer membranes. PMID:27372116

  11. Effect of non-solvent additives on the morphology, pore structure, and direct contact membrane distillation performance of PVDF-CTFE hydrophobic membranes.

    PubMed

    Zheng, Libing; Wu, Zhenjun; Zhang, Yong; Wei, Yuansong; Wang, Jun

    2016-07-01

    Four common types of additives for polymer membrane preparation including organic macromolecule and micromolecule additives, inorganic salts and acids, and the strong non-solvent H2O were used to prepare poly (vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) hydrophobic flat-sheet membranes. Membrane properties including morphology, porosity, hydrophobicity, pore size and pore distribution were investigated, and the permeability was evaluated via direct contact membrane distillation (DCMD) of 3.5g/L NaCl solution in a DCMD configuration. Both inorganic and organic micromolecule additives were found to slightly influence membrane hydrophobicity. Polyethylene glycol (PEG), organic acids, LiCl, MgCl2, and LiCl/H2O mixtures were proved to be effective additives to PVDF-CTFE membranes due to their pore-controlling effects and the capacity to improve the properties and performance of the resultant membranes. The occurrence of a pre-gelation process showed that when organic and inorganic micromolecules were added to PVDF-CTFE solution, the resultant membranes presented a high interconnectivity structure. The membrane prepared with dibutyl phthalate (DBP) showed a nonporous surface and symmetrical cross-section. When H2O and LiCl/H2O mixtures were also used as additives, they were beneficial for solid-liquid demixing, especially when LiCl/H2O mixed additives were used. The membrane prepared with 5% LiCl+2% H2O achieved a flux of 24.53kg/(m(2)·hr) with 99.98% salt rejection. This study is expected to offer a reference not only for PVDF-CTFE membrane preparation but also for other polymer membranes.

  12. A fast method for the quantitative estimation of the distribution of hydrophobic and hydrophilic segments in alpha-helices of membrane proteins.

    PubMed

    Luzhkov, V B; Surkov, N F

    2000-01-01

    The work presents a fast quantitative approach for estimating the orientations of hydrophilic and hydrophobic regions in the helical wheels of membrane-spanning alpha-helices of transmembrane proteins. The common hydropathy analysis provides an estimate of the integral hydrophobicity in a moving window which scans an amino acid sequence. The new parameter, orientation hydrophobicity, is based on the estimate of hydrophobicity of the angular segment that scans the helical wheel of a given amino acid sequence. The corresponding procedure involves the treatment of transmembrane helices as cylinders with equal surface elements for each amino acid residue. The orientation hydrophobicity, P(phi), phi = 0-360 degrees, of a helical cylinder is given as a sum of hydrophobicities of individual amino acids which are taken as the S-shaped functions of the angle between the centre of amino acid surface element and the centre of the segment. Non-zero contribution to P(phi) comes only from the amino acids belonging to the angular segment for a given angle phi. The size of the angular segment is related to the size of the channel pore. The amplitudes of amino acid S-functions are calibrated in the way that their maximum values (reached when the amino acid is completely exposed into the pore) are equal to the corresponding hydropathy index in the selected scale (here taken as Goldman-Engelman-Steitz hydropathy scale). The given procedure is applied in the studies of three ionic channels with well characterized three-dimensional structures where the channel pore is formed by a bundle of alpha-helices: cholera toxin B, nicotinic acetylcholine homopentameric alpha7 receptor, and phospholamban. The estimated maximum of hydrophilic properties at the helical wheels are in a good agreement with the spatial orientations of alpha-helices in the corresponding channel pores.

  13. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF₄microwave plasma treatment

    SciTech Connect

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2014-11-29

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreased from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.

  14. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF₄microwave plasma treatment

    DOE PAGESBeta

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; Qian, Xiaoming; Xu, Zhiwei; Teng, Kunyue; Zhao, Lihuan; Wang, Jiajun; Jiao, Yanan

    2014-11-29

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less

  15. The application of the integral equation theory to study the hydrophobic interaction

    PubMed Central

    Mohorič, Tomaž; Urbic, Tomaz; Hribar-Lee, Barbara

    2014-01-01

    The Wertheim's integral equation theory was tested against newly obtained Monte Carlo computer simulations to describe the potential of mean force between two hydrophobic particles. An excellent agreement was obtained between the theoretical and simulation results. Further, the Wertheim's integral equation theory with polymer Percus-Yevick closure qualitatively correctly (with respect to the experimental data) describes the solvation structure under conditions where the simulation results are difficult to obtain with good enough accuracy. PMID:24437891

  16. Interaction of Phenylalanine with DPPC Model Membranes: More Than a Hydrophobic Interaction.

    PubMed

    Rosa, A S; Cutro, A C; Frías, M A; Disalvo, E A

    2015-12-31

    The negative free energy previously reported is explained by the stabilization of a PC-Phe (phosphocholine-phenylalanine) complex in the presence of water shown by the decrease in the symmetric stretching frequency of the phosphate group of the lipid (PO2(-)). An entropic contribution due to the disruption of the water network around the phenyl and in the membrane defect may be invoked. The dipole potential decrease is explained by the orientation of the carboxylate opposing to the CO of the lipids with oxygen moiety toward the low hydrated hydrocarbon core. The symmetric bending frequency of NH3(+) group of Phe, decreases in 5.2 cm(-1) in relation to water congruent with zeta potential shift to positive values. The Phe to DPPC dissociation constant is Kd = 2.23 ± 0.09 mM, from which the free energy change is about -4.54 kcal/mol at 25 °C. This may be due to hydrophobic contributions and two hydrogen bonds.

  17. Effects of hydrophobicity of diffusion layer on the electroreduction of biomass derivatives in polymer electrolyte membrane reactors.

    PubMed

    Chen, Wei; He, Gaohong; Ge, Feilong; Xiao, Wu; Benziger, Jay; Wu, Xuemei

    2015-01-01

    For the first time, the hydrophobicity design of a diffusion layer based on the volatility of hydrogenation reactants in aqueous solutions is reported. The hydrophobicity of the diffusion layer greatly influences the hydrogenation performance of two model biomass derivatives, namely, butanone and maleic acid, in polymer electrolyte membrane reactors operated at atmospheric pressure. Hydrophobic carbon paper repels aqueous solutions, but highly volatile butanone can permeate in vapor form and achieve a high hydrogenation rate, whereas, for nonvolatile maleic acid, great mass transfer resistance prevents hydrogenation. With a hydrophilic stainless-steel welded mesh diffusion layer, aqueous solutions of both butanone and maleic acid permeate in liquid form. Hydrogenation of maleic acid reaches a similar level as that of butanone. The maximum reaction rate is 340 nmol cm(-2)  s(-1) for both hydrogenation systems and the current efficiency reaches 70 %. These results are better than those reported in the literature. PMID:25319718

  18. Effects of hydrophobicity of diffusion layer on the electroreduction of biomass derivatives in polymer electrolyte membrane reactors.

    PubMed

    Chen, Wei; He, Gaohong; Ge, Feilong; Xiao, Wu; Benziger, Jay; Wu, Xuemei

    2015-01-01

    For the first time, the hydrophobicity design of a diffusion layer based on the volatility of hydrogenation reactants in aqueous solutions is reported. The hydrophobicity of the diffusion layer greatly influences the hydrogenation performance of two model biomass derivatives, namely, butanone and maleic acid, in polymer electrolyte membrane reactors operated at atmospheric pressure. Hydrophobic carbon paper repels aqueous solutions, but highly volatile butanone can permeate in vapor form and achieve a high hydrogenation rate, whereas, for nonvolatile maleic acid, great mass transfer resistance prevents hydrogenation. With a hydrophilic stainless-steel welded mesh diffusion layer, aqueous solutions of both butanone and maleic acid permeate in liquid form. Hydrogenation of maleic acid reaches a similar level as that of butanone. The maximum reaction rate is 340 nmol cm(-2)  s(-1) for both hydrogenation systems and the current efficiency reaches 70 %. These results are better than those reported in the literature.

  19. Fouling and long-term durability of an integrated forward osmosis and membrane distillation system.

    PubMed

    Husnain, T; Mi, B; Riffat, R

    2015-01-01

    An integrated forward osmosis (FO) and membrane distillation (MD) system has great potential for sustainable wastewater reuse. However, the fouling and long-term durability of the system remains largely unknown. This study investigates the fouling behaviour and efficiency of cleaning procedures of FO and MD membranes used for treating domestic wastewater. Results showed that a significant decline in flux of both FO and MD membranes were observed during treatment of wastewater with organic foulants. However, shear force generated by the increased cross-flow physically removed the loosely attached foulants from the FO membrane surface and resulted in 86-88% recovery of flux by cleaning with tap water. For the MD membrane, almost no flux recovery was achieved due to adsorption of organic foulants on the hydrophobic membrane surface, thus indicating significant irreversible fouling/wetting, which may not be effectively cleaned even with chemical reagents. Long-term (10 d) tests showed consistent performance of the FO membrane by rejecting the contaminants. However, organic foulants reduced the hydrophobicity of the MD membrane, caused wetting problems and allowed contaminants to pass through. The results demonstrate that combination of the FO and MD processes can effectively reduce irreversible membrane fouling and solve the wetting problem of the MD membrane. PMID:26606094

  20. Fouling and long-term durability of an integrated forward osmosis and membrane distillation system.

    PubMed

    Husnain, T; Mi, B; Riffat, R

    2015-01-01

    An integrated forward osmosis (FO) and membrane distillation (MD) system has great potential for sustainable wastewater reuse. However, the fouling and long-term durability of the system remains largely unknown. This study investigates the fouling behaviour and efficiency of cleaning procedures of FO and MD membranes used for treating domestic wastewater. Results showed that a significant decline in flux of both FO and MD membranes were observed during treatment of wastewater with organic foulants. However, shear force generated by the increased cross-flow physically removed the loosely attached foulants from the FO membrane surface and resulted in 86-88% recovery of flux by cleaning with tap water. For the MD membrane, almost no flux recovery was achieved due to adsorption of organic foulants on the hydrophobic membrane surface, thus indicating significant irreversible fouling/wetting, which may not be effectively cleaned even with chemical reagents. Long-term (10 d) tests showed consistent performance of the FO membrane by rejecting the contaminants. However, organic foulants reduced the hydrophobicity of the MD membrane, caused wetting problems and allowed contaminants to pass through. The results demonstrate that combination of the FO and MD processes can effectively reduce irreversible membrane fouling and solve the wetting problem of the MD membrane.

  1. Peripheral myelin of Xenopus laevis: Role of electrostatic and hydrophobic interactions in membrane compaction

    PubMed Central

    Luo, XiaoYang; Cerullo, Jana; Dawli, Tamara; Priest, Christina; Haddadin, Zaid; Kim, Angela; Inouye, Hideyo; Suffoletto, Brian P.; Avila, Robin L.; Lees, Jonathan P.B.; Sharma, Deepak; Xie, Bo; Costello, Catherine E.; Kirschner, Daniel A.

    2008-01-01

    P0 glycoprotein is the major structural protein of peripheral nerve myelin where it is thought to modulate inter-membrane adhesion at both the extracellular apposition, which is labile upon changes in pH and ionic strength, and the cytoplasmic apposition, which is resistant to such changes. Most studies on P0 have focused on structure-function correlates in higher vertebrates. Here, we focused on its role in the structure and interactions of frog (Xenopus laevis) myelin, where it exists primarily in a dimeric form. As part of our study, we deduced the full sequence of Xenopus laevis P0 (xP0) from its cDNA. The xP0 sequence was found to be similar to P0 sequences of higher vertebrates, suggesting that a common mechanism of PNS myelin compaction via P0 interaction might have emerged through evolution. As previously reported for mouse PNS myelin, a similar change of extracellular apposition in frog PNS myelin as a function of pH and ionic strength was observed, which can be explained by a conformational change of P0 due to protonation-deprotonation of His52 at P0’s putative adhesive interface. On the other hand, the cytoplasmic apposition in frog PNS myelin, like that in the mouse, remained unchanged at different pH and ionic strength. The contribution of hydrophobic interactions to stabilizing the cytoplasmic apposition was tested by incubating sciatic nerves with detergents. Dramatic expansion at the cytoplasmic apposition was observed for both frog and mouse, indicating a common hydrophobic nature at this apposition. Urea also expanded the cytoplasmic apposition of frog myelin likely owing to denaturation of P0. Removal of the fatty acids that attached to the single Cys residue in the cytoplasmic domain of P0 did not change PNS myelin structure of either frog or mouse, suggesting that the P0-attached fatty acyl chain does not play a significant role in PNS myelin compaction and stability. These results help clarify the present understanding of P0’s adhesion

  2. Membrane Partitioning of the Pore-Forming Domain of Colicin A. Role of the Hydrophobic Helical Hairpin

    PubMed Central

    Bermejo, Ivan L.; Arnulphi, Cristina; Ibáñez de Opakua, Alain; Alonso-Mariño, Marián; Goñi, Félix M.; Viguera, Ana R.

    2013-01-01

    The colicins are bacteriocins that target Escherichia coli and kill bacterial cells through different mechanisms. Colicin A forms ion channels in the inner membranes of nonimmune bacteria. This activity resides exclusively in its C-terminal fragment (residues 387–592). The soluble free form of this domain is a 10 α-helix bundle. The hydrophobic helical hairpin, H8–H9, is buried inside the structure and shielded by eight amphipathic surface helices. The interaction of the C-terminal colicin A domain and several chimeric variants with lipidic vesicles was examined here by isothermal titration calorimetry. In the mutant constructions, natural sequences of the hydrophobic helices H8 and H9 were either removed or substituted by polyalanine or polyleucine. All the constructions fully associated with DOPG liposomes including the mutant that lacked helices H8 and H9, indicating that amphipathic rather than hydrophobic helices were the major determinants of the exothermic binding reactions. Alanine is not specially favored in the lipid-bound form; the chimeric construct with polyalanine produced lower enthalpy gain. On the other hand, the large negative heat capacities associated with partitioning, a characteristic feature of the hydrophobic effect, were found to be dependent on the sequence hydrophobicity of helices H8 and H9. PMID:24047995

  3. Membrane Docking of the Synaptotagmin 7 C2A Domain: Computation Reveals Interplay between Electrostatic and Hydrophobic Contributions.

    PubMed

    Chon, Nara Lee; Osterberg, J Ryan; Henderson, Jack; Khan, Hanif M; Reuter, Nathalie; Knight, Jefferson D; Lin, Hai

    2015-09-22

    The C2A domain of synaptotagmin 7 (Syt7) is a Ca(2+) and membrane binding module that docks and inserts into cellular membranes in response to elevated intracellular Ca(2+) concentrations. Like other C2 domains, Syt7 C2A binds Ca(2+) and membranes primarily through three loop regions; however, it docks at Ca(2+) concentrations much lower than those required for other Syt C2A domains. To probe structural components of its unusually strong membrane docking, we conducted atomistic molecular dynamics simulations of Syt7 C2A under three conditions: in aqueous solution, in the proximity of a lipid bilayer membrane, and embedded in the membrane. The simulations of membrane-free protein indicate that Syt7 C2A likely binds three Ca(2+) ions in aqueous solution, consistent with prior experimental reports. Upon membrane docking, the outermost Ca(2+) ion interacts directly with lipid headgroups, while the other two Ca(2+) ions remain chelated by the protein. The membrane-bound domain was observed to exhibit large-amplitude swinging motions relative to the membrane surface, varying by up to 70° between a more parallel and a more perpendicular orientation, both during and after insertion of the Ca(2+) binding loops into the membrane. The computed orientation of the membrane-bound protein correlates well with experimental electron paramagnetic resonance measurements presented in the preceding paper ( DOI: 10.1021/acs.biochem.5b00421 ). In particular, the strictly conserved residue Phe229 inserted stably ∼4 Å below the average depth of lipid phosphate groups, providing critical hydrophobic interactions anchoring the domain in the membrane. Overall, the position and orientation of Syt7 C2A with respect to the membrane are consistent with experiments.

  4. [Effect of relative molecular mass distribution and hydrophilicity/ hydrophobicity of NOM on membrane fouling in MF-combined process].

    PubMed

    Hu, Meng-Liu; Lin, Jie; Xu, Guang-Hong; Dong, Bing-Zhi

    2013-01-01

    This study investigated the reversible and irreversible foulants in a submerged microfiltration (MF) with pretreatments (coagulation/powdered activated carbon (PAC)/potassium permanganate) in a pilot scale treatment of water from Taihu Lake. The study focused on the effect of relative molecular mass (M(r)) distribution and hydrophilicity/hydrophobicity on membrane fouling using high performance size-exclusion chromatography (HPSEC) with UV and TOC detectors and three dimension fluorescence excitation-emission matrix (3DEEM). HPSEC analyses showed that pretreatments could almost completely remove the macro molecules (M(r) > 10 x 10(3)), but only eliminate part of medium (10 x 10(3)) > M(r) > 1 x 10(3)) and micro molecules (M(r) < 1 x 10(3)). A majority of medium and micro molecules were found in chemical cleaning solutions, indicating that medium and micro molecules were the main foulants that contributed to irreversible membrane fouling. In addition, it was also found that the content of strong hydrophobic acids (SHA) and neutral hydrophilic (Neut) fractions in chemical solutions were far higher than that of weakly hydrophobic acids (WHA) and charged hydrophilic (Char), which suggested that both organic fractions were responsible for irreversible fouling. 3DEEM fluorescence demonstrated that aromatic proteins and soluble microbial products were the main contributors to irreversible membrane fouling. PMID:23487934

  5. Rescuing Those Left Behind: Recovering and Characterizing Underdigested Membrane and Hydrophobic Proteins To Enhance Proteome Measurement Depth

    DOE PAGESBeta

    Giannone, Richard J.; Wurch, Louie L.; Podar, Mircea; Hettich, Robert L.

    2015-06-25

    The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. It is thought that this interaction is membrane-associated, involving a myriad of membrane-anchored proteins; proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitansproteins. We show that proteins with increased hydrophobic character, includingmore » membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. Moreover, these gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.« less

  6. Rescuing Those Left Behind: Recovering and Characterizing Underdigested Membrane and Hydrophobic Proteins To Enhance Proteome Measurement Depth

    SciTech Connect

    Giannone, Richard J.; Wurch, Louie L.; Podar, Mircea; Hettich, Robert L.

    2015-06-25

    The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. It is thought that this interaction is membrane-associated, involving a myriad of membrane-anchored proteins; proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitansproteins. We show that proteins with increased hydrophobic character, including membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. Moreover, these gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.

  7. Selective Membrane Permeabilization by the Rotavirus VP5* Protein Is Abrogated by Mutations in an Internal Hydrophobic Domain

    PubMed Central

    Dowling, William; Denisova, Evgeniya; LaMonica, Rachel; Mackow, Erich R.

    2000-01-01

    Rotavirus infectivity is dependent on the proteolytic cleavage of the VP4 spike protein into VP8* and VP5* proteins. Proteolytically activated virus, as well as expressed VP5*, permeabilizes membranes, suggesting that cleavage exposes a membrane-interactive domain of VP5* which effects rapid viral entry. The VP5* protein contains a single long hydrophobic domain (VP5*-HD, residues 385 to 404) at an internal site. In order to address the role of the VP5*-HD in permeabilizing cellular membranes, we analyzed the entry of o-nitrophenyl-β-d-galactopyranoside (ONPG) into cells induced to express VP5* or mutated VP5* polypeptides. Following IPTG (isopropyl-β-d-thiogalactopyranoside) induction, VP5* and VP5* truncations containing the VP5*-HD permeabilized cells to the entry and cleavage of ONPG, while VP8* and control proteins had no effect on cellular permeability. Expression of VP5* deletions containing residues 265 to 474 or 265 to 404 permeabilized cells; however, C-terminal truncations which remove the conserved GGA (residues 399 to 401) within the HD abolished membrane permeability. Site-directed mutagenesis of the VP5-HD further demonstrated a requirement for residues within the HD for VP5*-induced membrane permeability. Functional analysis of mutant VP5*s indicate that conserved glycines within the HD are required and suggest that a random coiled structure rather than the strictly hydrophobic character of the domain is required for permeability. Expressed VP5* did not alter bacterial growth kinetics or lyse bacteria following induction. Instead, VP5*-mediated size-selective membrane permeability, releasing 376-Da carboxyfluorescein but not 4-kDa fluorescein isothiocyanate-dextran from preloaded liposomes. These findings suggest that the fundamental role for VP5* in the rotavirus entry process may be to expose triple-layered particles to low [Ca]i, which uncoats the virus, rather than to effect the detergent-like lysis of early endosomal membranes. PMID:10864647

  8. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides.

    PubMed

    Hollmann, Axel; Martínez, Melina; Noguera, Martín E; Augusto, Marcelo T; Disalvo, Anibal; Santos, Nuno C; Semorile, Liliana; Maffía, Paulo C

    2016-05-01

    Cationic antimicrobial peptides (CAMPs) represent important self defense molecules in many organisms, including humans. These peptides have a broad spectrum of activities, killing or neutralizing many Gram-negative and Gram-positive bacteria. The emergence of multidrug resistant microbes has stimulated research on the development of alternative antibiotics. In the search for new antibiotics, cationic antimicrobial peptides (CAMPs) offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to lysis of microbial membranes and eventually cell death. In particular, the group of linear α-helical cationic peptides has attracted increasing interest from clinical as well as basic research during the last decade. In this work, we studied the biophysical and microbiological characteristics of three new designed CAMPs. We modified a previously studied CAMP sequence, in order to increase or diminish the hydrophobic face, changing the position of two lysines or replacing three leucines, respectively. These mutations modified the hydrophobic moment of the resulting peptides and allowed us to study the importance of this parameter in the membrane interactions of the peptides. The structural properties of the peptides were also correlated with their membrane-disruptive abilities, antimicrobial activities and hemolysis of human red blood cells. PMID:26896660

  9. Nafion ® nanocomposite membranes: Effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance

    NASA Astrophysics Data System (ADS)

    Park, Chi Hoon; Kim, Hong Keon; Lee, Chang Hyun; Park, Ho Bum; Lee, Young Moo

    Nafion ®-silica nanocomposite membranes are successfully prepared by adding hydrophobic silica nanoparticles to a Nafion ® solution. To distribute these nanoparticles evenly in the Nafion ® matrix, various fluorosurfactants of different ionic character are employed. Fluorosurfactants with acid groups such as phosphonic acid and sulfonic acid play an important role in simultaneously increasing the homogeneous dispersion of silica nanoparticles, enhancing proton conductivity, and reducing the methanol permeability of the nanocomposite membranes. Therefore, the dispersion properties of inorganic fillers such as silica can significantly affect nanocomposite performance in direct methanol fuel cell (DMFC) applications, whereas surfactants, if used properly, can improve the nanocomposite membrane properties. In particular, a commercial fluorosurfactant containing a sulfonic acid group (Zonyl ® TBS) at the end of the surfactant chain exhibits better miscibility with the Nafion ® ionomer. This feature results in a reduction in the dimensional change of the nanocomposite membrane due to relatively lower water swelling and significantly reduced methanol permeability through the membrane. A membrane-electrode assembly (MEA) prepared from a Nafion ®-silica nanocomposite membrane with TBS shows the highest DMFC performance in terms of voltage vs. current density (V- I) and power density vs. current density (P- I). The current densities at 0.4 V and 90 °C are 342, 508, and 538 mA cm -2 with 1, 3 and 5 M methanol being fed at the anode side, respectively.

  10. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    NASA Astrophysics Data System (ADS)

    Dumée, Ludovic F.; Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin; Schütz, Jürg

    2016-02-01

    The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher than 99.99%. This is the first time that an investigation demonstrates how the permeation characteristics of these membranes is directly related to data from spectral, morphological and surface charge analyses, which provide new insights on the impact of plasma treatments on both, the surface charge and roughness, of PTFE porous materials.

  11. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  12. Novel Campylobacter isolation method using hydrophobic grid membrane filter and semisolid medium.

    PubMed

    Valdivieso-Garcia, Alfonso; Harris, Kathleen; Riche, Edward; Campbell, Stephanie; Jarvie, Anne; Popa, Maria; Deckert, Anne; Reid-Smith, Richard; Rahn, Kris

    2007-02-01

    Culture procedures for isolation of thermophilic campylobacters from food matrices are complex, labor intensive, and time-consuming. Most available methods include the use of antibiotics as selective agents to prevent the growth of competing microflora. A simple procedure for isolation of thermophilic campylobacters after enrichment in Rosef's enrichment broth was developed using a hydrophobic grid membrane filter (HGMF) on semisolid medium (SSM). SSM contains no antibiotics, and the HGMF physically separates Campylobacter from the enrichment broth, allowing isolation based on differential motility. The HGMF-SSM method was compared to the Agriculture and Agri-Food Canada Food Safety Procedures Manual (FSPM-10) method (Isolation of Thermophilic Campylobacters from Fresh Pork, Beef Veal, Poultry and Ready-to-Eat Meat Products), which includes the use of selective antibiotics. During the initial study, after enrichment the HGMF-SSM method yielded pure cultures of campylobacters after 16 to 18 h (overnight) compared with 48 h for the FSPM-10 method. Ninety-four turkey samples collected at local retail stores and 38 frozen pig fecal samples were processed by both methods. Thirty-five samples (26.5%) were positive by the HGMF-SSM method; 24 (18.2%) of these positive samples contained Campylobacter jejuni and 11 (8.3%) contained Campylobacter coli. With the FSPM-10 method, 25 samples (18.9%) were positive: 21 (15.9%) with C. jejuni and 4 (3%) with C. coli. For a subsequent field study, only the HGMF-SSM method was used to isolate Campylobacter from 1,200 chicken samples and 454 turkey samples sold at retail. Analysis of five subisolates from various samples indicated that only one type of Campylobacter was recovered by the HGMF-SSM method, as ascertained by MICs for 10 antimicrobials, sequencing of the short variable region of the flaA gene, and fingerprinting based on amplified fragment length polymorphism. The absence of antibiotics in the SSM may explain the higher

  13. The Outer Membrane Protein OmpW Forms an Eight-Stranded beta-Barrel with a Hydrophobic Channel

    SciTech Connect

    Hong,H.; Patel, D.; Tamm, L.; van den Berg, B.

    2006-01-01

    Escherichia coli OmpW belongs to a family of small outer membrane (OM) proteins that are widespread in Gram-negative bacteria. Their functions are unknown, but recent data suggest that they may be involved in the protection of bacteria against various forms of environmental stress. In order to gain insight into the function of these proteins we have determined the crystal structure of Escherichia coli OmpW to 2.7 Angstroms resolution. The structure shows that OmpW forms an eight-stranded beta-barrel with a long and narrow hydrophobic channel that contains a bound LDAO detergent molecule. Single channel conductance experiments show that OmpW functions as an ion channel in planar lipid bilayers. The channel activity can be blocked by the addition of LDAO. Taken together, the data suggest that members of the OmpW family could be involved in the transport of small hydrophobic molecules across the bacterial OM.

  14. Effects of exposure time on variations in the structure and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation

    NASA Astrophysics Data System (ADS)

    Peng, Yuelian; Fan, Hongwei; Dong, Yajun; Song, Yanna; Han, Hua

    2012-08-01

    The present investigation revealed how the surface morphology and hydrophobicity of polyvinylidene fluoride (PVDF) membranes, which were prepared via a vapor-induced phase separation (VIPS) method, were affected by the exposure time. The mass variation of the cast film was recorded. Membrane morphologies were observed by scanning electron microscopy (SEM) and thermal behaviors of membranes were examined by differential scanning calorimetry (DSC). Wide angle X-ray diffraction (WAXD) was employed to analyze the crystalline structures of the overall membranes and the surface layers. The results showed that different membrane morphologies and hydrophobicities could be obtained by changing the exposure time. A long exposure time facilitated the crystallization process, resulting in the formation of a porous skin and particle morphology, which increased the hydrophobicity of the surface. A short exposure time favored the formation of a digitate macrovoid and dense skin resulting from liquid-liquid phase separation in the immersion process, which reduced surface hydrophobicity. The water permeate flux in vacuum membrane distillation was greatly affected by the membrane porosity and surface hydrophobicity.

  15. Method of making a membrane having hydrophilic and hydrophobic surfaces for adhering cells or antibodies by using atomic oxygen or hydroxyl radicals

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)

    1994-01-01

    A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.

  16. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  17. Primary structure analysis of an integral membrane glycoprotein of the nuclear pore

    PubMed Central

    1989-01-01

    The complete primary structure of an integral membrane glycoprotein of the nuclear pore was deduced from the cDNA sequence. The cDNA encodes a polypeptide of 204,205 D containing a 25-residue-long signal sequence, two hydrophobic segments that could function as transmembrane segments, and 13 potential N-linked oligosaccharide addition sites. Endoglycosidase H reduces the molecular mass by approximately 9 kD suggesting that not all of these 13 sites are used. We discuss possible models for the topology of this protein in the pore membrane as well as a possible role in the formation of pores and pore complexes. PMID:2738089

  18. Thermoelectric integrated membrane evaporation water recovery technology

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  19. Hydrophobic grid membrane filter/MUG method for total coliform and Escherichia coli enumeration in foods: collaborative study.

    PubMed

    Entis, P

    1989-01-01

    Twenty-four laboratories participated in a collaborative study to validate a hydrophobic grid membrane filter (HGMF) method incorporating the use of 4-methylumbelliferyl-beta-D-glucuronide (MUG) for enumeration of total coliform and Escherichia coli bacteria in foods by comparing its performance against the AOAC 3-tube MPN method (46.013-46.016). Raw milk, raw ground poultry, whole egg powder, cheese powder, and ground black pepper were included in the study. The total coliform methods did not differ significantly, except that the 3-tube method detected a significantly higher level of total coliforms than did the HGMF method in the ground black pepper. Conversely, the HGMF/MUG E. coli method detected significantly higher numbers of E. coli present in the egg powder, cheese powder, and ground black pepper samples, while not differing significantly from the 3-tube method for the raw milk and raw ground poultry samples. The overall confirmation rate of MUG-positive colonies isolated using the HGMF method was 99.5%. The hydrophobic grid membrane filter/MUG method has been adopted official first action as an additional method to AOAC official final action method 46.030-46.034. PMID:2687225

  20. The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity.

    PubMed

    Cebrián, Rubén; Martínez-Bueno, Manuel; Valdivia, Eva; Albert, Armando; Maqueda, Mercedes; Sánchez-Barrena, María José

    2015-05-01

    The molecular mechanism underlining the antibacterial activity of the bacteriocin AS-48 is not known, and two different and opposite alternatives have been proposed. Available data suggested that the interaction of positively charged amino acids of AS-48 with the membrane would produce membrane destabilization and disruption. Alternatively, it has been proposed that AS-48 activity could rely on the effective insertion of the bacteriocin into the membrane. The biological and structural properties of the AS-48G13K/L40K double mutant were investigated to shed light on this subject. Compared with the wild type, the mutant protein suffered an important reduction in the antibacterial activity. Biochemical and structural studies of AS-48G13K/L40K mutant suggest the basis of its decreased antimicrobial activity. Lipid cosedimentation assays showed that the membrane affinity of AS-48G13K/L40K is 12-fold lower than that observed for the wild type. L40K mutation is responsible for this reduced membrane affinity and thus, hydrophobic interactions are involved in membrane association. Furthermore, the high-resolution crystal structure of AS-48G13K/L40K, together with the study of its dimeric character in solution showed that G13K stabilizes the inactive water-soluble dimer, which displays a reduced dipole moment. Our data suggest that the cumulative effect of these three affected properties reduces AS-48 activity, and point out that the bactericidal effect is achieved by the electrostatically driven approach of the inactive water-soluble dimer towards the membrane, followed by the dissociation and insertion of the protein into the lipid bilayer. PMID:25816760

  1. Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides.

    PubMed

    Kamat, Neha P; Tobé, Sylvia; Hill, Ian T; Szostak, Jack W

    2015-09-28

    Cooperative interactions between RNA and vesicle membranes on the prebiotic earth may have led to the emergence of primitive cells. The membrane surface offers a potential platform for the catalysis of reactions involving RNA, but this scenario relies upon the existence of a simple mechanism by which RNA could become associated with protocell membranes. Here, we show that electrostatic interactions provided by short, basic, amphipathic peptides can be harnessed to drive RNA binding to both zwitterionic phospholipid and anionic fatty acid membranes. We show that the association of cationic molecules with phospholipid vesicles can enhance the local positive charge on a membrane and attract RNA polynucleotides. This phenomenon can be reproduced with amphipathic peptides as short as three amino acids. Finally, we show that peptides can cross bilayer membranes to localize encapsulated RNA. This mechanism of polynucleotide confinement could have been important for primitive cellular evolution. PMID:26223820

  2. Electrostatic Localization of RNA to Protocell Membranes by Cationic Hydrophobic Peptides

    PubMed Central

    Kamat, Neha P; Tobé, Sylvia; Hill, Ian T; Szostak, Jack W

    2015-01-01

    Cooperative interactions between RNA and vesicle membranes on the prebiotic earth may have led to the emergence of primitive cells. The membrane surface offers a potential platform for the catalysis of reactions involving RNA, but this scenario relies upon the existence of a simple mechanism by which RNA could become associated with protocell membranes. Here, we show that electrostatic interactions provided by short, basic, amphipathic peptides can be harnessed to drive RNA binding to both zwitterionic phospholipid and anionic fatty acid membranes. We show that the association of cationic molecules with phospholipid vesicles can enhance the local positive charge on a membrane and attract RNA polynucleotides. This phenomenon can be reproduced with amphipathic peptides as short as three amino acids. Finally, we show that peptides can cross bilayer membranes to localize encapsulated RNA. This mechanism of polynucleotide confinement could have been important for primitive cellular evolution. PMID:26223820

  3. Pervaporative removal of organics from water using hydrophobic membranes. Binary mixtures

    SciTech Connect

    Kujawski, W.

    2000-01-01

    Results of pervaporation experiments are presented for the separation of several polar and nonpolar organic solvents from their aqueous solutions. Three membranes were evaluated: a polydimethylsiloxane (PERVAP-1060) membrane, a PDMS ZSM-5 zeolite filled (PERVAP-1070) membrane, and a poly(ether-block-amide) (PEBAX-4033) membrane. The effect of feed composition on flux and selectivity was also investigated. Performance parameters of a given membrane depended both on the kind of the organic solvent and the feed composition. The PERVAP-1070 membrane exhibited the highest selectivity with a separation factor over 900 in contact with a water-butyl acetate mixture. Polar solvents like methanol were also preferentially separated from aqueous solutions, but the separation factors were close to those obtained from liquid-vapor equilibria data. Permeate fluxes of organics increased with increasing feed concentration. Synergetic effects between water and organics fluxes were also observed.

  4. Lipid Raft-Mediated Membrane Tethering and Delivery of Hydrophobic Cargos from Liquid Crystal-Based Nanocarriers.

    PubMed

    Nag, Okhil K; Naciri, Jawad; Oh, Eunkeu; Spillmann, Christopher M; Delehanty, James B

    2016-04-20

    A main goal of bionanotechnology and nanoparticle (NP)-mediated drug delivery (NMDD) continues to be the development of novel biomaterials that can controllably modulate the activity of the NP-associated therapeutic cargo. One of the desired subcellular locations for targeted delivery in NMDD is the plasma membrane. However, the controlled delivery of hydrophobic cargos to the membrane bilayer poses significant challenges including cargo precipitation and lack of specificity. Here, we employ a liquid crystal NP (LCNP)-based delivery system for the controlled partitioning of a model dye cargo from within the NP core into the plasma membrane bilayer. During synthesis of the NPs, the water-insoluble model dye cargo, 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), was efficiently incorporated into the hydrophobic LCNP core as confirmed by multiple spectroscopic analyses. Conjugation of a PEGylated cholesterol derivative to the NP surface (DiO-LCNP-PEG-Chol) facilitated the localization of the dye-loaded NPs to lipid raft microdomains in the plasma membrane in HEK 293T/17 cell. Analysis of DiO cellular internalization kinetics revealed that when delivered as a LCNP-PEG-Chol NP, the half-life of DiO membrane residence time (30 min) was twice that of free DiO (DiO(free)) (15 min) delivered from bulk solution. Time-resolved laser scanning confocal microscopy was employed to visualize the passive efflux of DiO from the LCNP core and its insertion into the plasma membrane bilayer as confirmed by Förster resonance energy transfer (FRET) imaging. Finally, the delivery of DiO as a LCNP-PEG-Chol complex resulted in the attenuation of its cytotoxicity; the NP form of DiO exhibited ∼30-40% less toxicity compared to DiO(free). Our data demonstrate the utility of the LCNP platform as an efficient vehicle for the combined membrane-targeted delivery and physicochemical modulation of molecular cargos using lipid raft-mediated tethering.

  5. Label-free proteomic analysis of the hydrophobic membrane protein complement in articular chondrocytes: a technique for identification of membrane biomarkers

    PubMed Central

    Matta, Csaba; Zhang, Xiaofei; Liddell, Susan; Smith, Julia R.; Mobasheri, Ali

    2015-01-01

    Abstract Context: There is insufficient knowledge about the chondrocyte membranome and its molecular composition. Objective: To develop a Triton X-114 based separation technique using nanoLC-MS/MS combined with shotgun proteomics to identify chondrocyte membrane proteins. Materials and methods: Articular chondrocytes from equine metacarpophalangeal joints were separated into hydrophobic and hydrophilic fractions; trypsin-digested proteins were analysed by nanoLC-MS/MS. Results: A total of 315 proteins were identified. The phase extraction method yielded a high proportion of membrane proteins (56%) including CD276, S100-A6 and three VDAC isoforms. Discussion: Defining the chondrocyte membranome is likely to reveal new biomarker targets for conventional and biological drug discovery. PMID:26864288

  6. Adsorption and transport of charged vs. neutral hydrophobic molecules at the membrane of murine erythroleukemia (MEL) cells.

    PubMed

    Zeng, Jia; Eckenrode, Heather M; Dai, Hai-Lung; Wilhelm, Michael J

    2015-03-01

    The adsorption and transport of hydrophobic molecules at the membrane surface of pre- and post-DMSO induced differentiated murine erythroleukemia (MEL) cells were examined by time- and wavelength-resolved second harmonic light scattering. Two medium (<600 Da) hydrophobic molecules, cationic malachite green (MG) and neutral bromocresol purple (BCP), were investigated. While it was observed that the MG cation adsorbs onto the surface of the MEL cell, neutral BCP does not. It is suggested that an electrostatic interaction between the opposite charges of the cation and the MEL cell surface is the primary driving force for adsorption. Comparisons of adsorption density and free energy, measured at different pH and cell morphology, indicate that the interaction is predominantly through sialic acid carboxyl groups. MG cation adsorption densities have been determined as (0.6±0.3)×10(6) μm(-2) on the surface of undifferentiated MEL cells, and (1.8±0.5)×10(7) μm(-2) on differentiated MEL cells, while the deduced adsorption free energies are effectively identical (ca. -10.9±0.1 and -10.8±0.1 kcal mol(-1), respectively). The measured MG densities indicate that the total number of surface carboxyl groups is largely conserved following differentiation, and therefore the density of carboxylic groups is much larger on the differentiated cell surface than the undifferentiated one. Finally, in contrast to synthetic liposomes and bacterial membranes, surface adsorbed MG cations are unable to traverse the MEL cell membrane. PMID:25660095

  7. The hydrophobic adsorption of charged molecules to bilayer membranes: a test of the applicability of the stern equation.

    PubMed

    McLaughlin, S; Harary, H

    1976-05-01

    To describe the hydrophobic adsorption of charged molecules to bilayer membranes, one must recognize that the adsorption produces a change in the electrostatic potential at the surface of the membrane. The surface potential produced by the adsorption of the charged molecules can be described most simply by the Gouy equation from the theory of the diffuse double layer. This potential will tend to lower the concentration of the adsorbing ions in the aqueous phase immediately adjacent to the membrane, a phenomenon which can be described by the Boltzmann relation. The number of adsorbed ions is, in turn, a function of the aqueous concentration of these ions at the membrane solution interface and can be described, in the simplest case, by a Langmuir adsorption isotherm. If the ions are regarded as point charges, the combination of the Gouy, Boltzmann, and Langmuir relations may be considered a simplified Stern equation. To test experimentally the applicability of this equation, one should measure both the charge density and surface potential as a function of the concentration of adsorbing molecules in the bulk aqueous phases. Direct, accurate measurements of one of these parameters, the number of moles of 2, 6-toluidinylnaphthalenesulfonate ions bound to vesicles formed from phosphatidylcholine, are available in the literature (Huang, C., and Charlton, J.P. (1972), Biochemistry 11, 735). We estimated the change in the surface potential in two independent ways; by means of conductance measurements with "probe" molecules on planar black lipid membranes and by means of electrophoresis measurements on multilaminar unsonicated vesicles. The two estimates agreed with one another and all of the data could be adequately described by the Stern equation, assuming, at 25 degrees C, a dissociation constant of 2 X 10(-4) M and a maximum number of binding sites of 1/70 A2.

  8. Selective permeabilization of lipid membranes by photodynamic action via formation of hydrophobic defects or pre-pores.

    PubMed

    Kotova, Elena A; Kuzevanov, Alexey V; Pashkovskaya, Alina A; Antonenko, Yuri N

    2011-09-01

    To gain insight into mechanisms of photodynamic modification of biological membranes, we studied an impact of visible light in combination with a photosensitizer on translocation of various substances across artificial (vesicular and planar) bilayer lipid membranes (BLMs). Along with induction of carboxyfluorescein leakage from liposomes, pronounced stimulation of lipid flip-flop between the two monolayers was found after photosensitization, both processes being prevented by the singlet oxygen quencher sodium azide. On the contrary, no enhancement of potassium chloride efflux from liposomes was detected by conductometry under these conditions. Illumination of planar BLMs in the presence of a photosensitizer led to a marked increase in membrane permeability to amphiphilic 2-n-octylmalonic acid, but practically no change in the permeability to ammonia, which agreed with selective character of the photosensitized leakage of fluorescent dyes from liposomes (Pashkovskaya et al., Langmuir, 2010). Thus, the effect on transbilayer movement of molecules elicited by the photodynamic treatment substantially depended on the kind of translocated species, in particular, on their lipophilicity. Based on similarity with results of previous electroporation studies, we hypothesized about photodynamic induction of "pre-pores" or "hydrophobic defects" permeable to amphiphilic compounds and less permeable to hydrophilic substances and inorganic ions. PMID:21663731

  9. Buckle-driven delamination of hydrophobic micro-, nano-, and heterostructured membranes without a sacrificial layer

    NASA Astrophysics Data System (ADS)

    Larsen, George K.; Zhao, Yiping

    2013-10-01

    A fabrication method, based on thin film buckling, is demonstrated to form unique membranes that can be used for applications in optics and biosensing. This method should be applicable to a variety of material systems, which, along with its simplicity and compatibility with different film architectures, allows for widespread implementation.A fabrication method, based on thin film buckling, is demonstrated to form unique membranes that can be used for applications in optics and biosensing. This method should be applicable to a variety of material systems, which, along with its simplicity and compatibility with different film architectures, allows for widespread implementation. Electronic supplementary information (ESI) available: Monolayer characterization and details; morphological parameters of the membranes; diffraction pattern images; rigorous coupled wave analysis; pattern transfer fidelity; experimental details. See DOI: 10.1039/c3nr03933a

  10. In Vivo Identification of the Outer Membrane Protein OmcA-MtrC Interaction Network in Shewanella oneidensis MR-1 Cells Using Novel Hydrophobic Chemical Cross-Linkers

    SciTech Connect

    Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Zakharova, Natalia L.; Yang, Li; Zheng, Chunxiang; Wolff, Meagan A.; Tolic, Nikola; Anderson, Gordon A.; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Bruce, James E.

    2008-04-01

    Outer membrane (OM) cytochromes OmcA (SO1779) and MtrC (SO1778) are the integral components of electron transfer used by Shewanella oneidensis for anaerobic respiration of metal (hydr)oxides. Here the OmcA-MtrC interaction was identified in vivo using a novel hydrophobic chemical cross-linker (MRN) combined with immunoprecipitation techniques. In addition, identification of other OM proteins from the cross-linked complexes allows first visualization of the OmcA-MtrC interaction network. Further experiments on omcA and mtrC mutant cells showed OmcA plays a central role in the network interaction. For comparison, two commercial cross-linkers were also used in parallel and both resulted in fewer OM protein identifications, indicating the superior properties of MRN for identification of membrane protein interactions. Finally, comparison experiments of in vivo cross-linking and cell lysate cross-linking resulted in significantly different protein interaction data, demonstrating the importance of in vivo cross-linking for study of protein-protein interactions in cells.

  11. Characterization of the major integral protein of vacuolar membrane.

    PubMed

    Maeshima, M

    1992-04-01

    The vacuolar membrane of radish (Raphanus sativus) taproot contained a large quantity of a protein of 23 kilodaltons that accounted for more than 25% of the total membrane proteins. The protein, tentatively named VM 23, was purified and characterized. VM 23 tends to aggregate at high temperature even in the presence of 1% sodium dodecyl sulfate. The apparent molecular size of VM 23 was estimated to be about 400 kilodaltons by polyacrylamide gel electrophoresis in the presence of 0.1% Triton X-100. VM 23 was partially extracted from the vacuolar membranes with chloroform:methanol, indicating its high hydrophobicity. The hydrophobic carboxyl modifier N,N'-dicyclohexylcarbodiimide bound covalently to VM 23. The results suggest that VM 23 may act as a secondary transport system coupled with the proton transport. The antibody against radish VM 23 reacted with the major proteins in the vacuolar membranes of mung bean (Vigna radiata) and castor bean (Ricinus communis) hypocotyls and pumpkin (Cucurbita moschata) epicotyl, but not with that of sugar beet (Beta vulgaris) taproot. VM 23 comigrated with vacuolar H(+)-pyrophosphatase on sucrose density gradient centrifugation after sonication of membranes, indicating that it is associated with the vacuolar membrane.

  12. Factors affecting alcohol-water pervaporation performance of hydrophobic zeolite-silicone rubber mixed matrix membranes

    EPA Science Inventory

    Mixed matrix membranes (MMMs) consisting of ZSM-5 zeolite particles dispersed in silicone rubber exhibited ethanol-water pervaporation permselectivities up to 5 times that of silicone rubber alone and 3 times higher than simple vapor-liquid equilibrium (VLE). A number of conditi...

  13. Buckle-driven delamination of hydrophobic micro-, nano-, and heterostructured membranes without a sacrificial layer.

    PubMed

    Larsen, George K; Zhao, Yiping

    2013-11-21

    A fabrication method, based on thin film buckling, is demonstrated to form unique membranes that can be used for applications in optics and biosensing. This method should be applicable to a variety of material systems, which, along with its simplicity and compatibility with different film architectures, allows for widespread implementation.

  14. MECHANISM AND HYDROPHOBIC FORCES DRIVING MEMBRANE PROTEIN INSERTION OF SUBUNIT II OF CYTOCHROME BO OXIDASE

    PubMed Central

    Celebi, Nil; Dalbey, Ross E.; Yuan, Jijun

    2009-01-01

    Subunit II (CyoA) of cytochrome bo oxidase, which spans the inner membrane twice in bacteria, has several unusual features in membrane biogenesis. It is synthesized with an amino-terminal signal peptide. In addition, distinct pathways are used to insert the two ends of the protein. The amino-terminal domain is inserted by the YidC pathway whereas the large carboxyl-terminal domain is translocated by the SecYEG pathway. Insertion of the protein is also pmf-independent. In this study we examined the topogenic requirements and mechanism of insertion of CyoA in bacteria. We find that both the signal peptide and the first membrane spanning region are required for insertion of the amino-terminal periplasmic loop. The pmf-independence of insertion of the first periplasmic loop is due to the loop’s neutral net charge. We observe also that the introduction of negatively charged residues into the periplasmic loop makes insertion pmf dependent, whereas the addition of positively charged residues prevents insertion unless the pmf is abolished. Insertion of the carboxyl-terminal domain in the full-length CyoA occurs by a sequential mechanism even when the CyoA amino and carboxyl-terminal domains are swapped with other domains. However, when a long spacer peptide is added to increase the distance between the amino-terminal and carboxyl-terminal domains, insertion no longer occurs by a sequential mechanism. PMID:18155041

  15. Evidence for hydrophobic region within heavy chains of mouse B lymphocyte membrane-bound IgM

    PubMed Central

    Vassalli, Pierre; Tedghi, Rachel; Lisowska-Bernstein, Barbara; Tartakoff, Alan; Jaton, Jean-Claude

    1979-01-01

    The gel filtration behavior, in the presence of detergents, of membrane-bound IgM from normal mouse spleen B lymphocytes was compared to that of secretory IgM from mouse plasma cells. The proteins were labeled either by surface radioiodination or biosynthetically with radioactive amino acids. Cell lysates were fractionated on calibrated Sepharose 6B columns in the presence of the detergents Nonidet P-40 or deoxycholate. Eluted fractions were immunoprecipitated and the reduced or unreduced precipitates were analyzed by sodium dodecyl sulfate gel electrophoresis followed by radioautography. Surface 125I-labeled 8S IgM exhibited a gel filtration pattern in Nonidet P-40 corresponding to much higher apparent molecular weight than that of secretory 8S IgM, a difference that almost disappeared when gel filtration was performed in the presence of deoxycholate, which forms much smaller micelles than does Nonidet P-40. Biosynthetically labeled lymphocytes contain two types of IgM molecules differing in their gel filtration behavior and fate: one identical to secretory 8S IgM of plasma cells and secreted in the medium during chase periods, and the other identical to surface 125I-labeled IgM and remaining cell-associated. Because the surface-bound 8S IgM was not found to be associated with other labeled molecules, it is likely that the detergent-binding behavior of surface IgM is due to a hydrophobic segment carried by these Ig molecules. That lymphocytes synthesize two types of μ chains was also shown by the use of tunicamycin, an inhibitor of glycosylation. In its presence, two unglycosylated μ chains were observed: one identical in size to that made by tunicamycin-treated plasma cells, and the second slightly larger. Gel filtration in Nonidet P-40 of the cell lysates of tunicamycin-treated lymphocytes showed that the nonsecretory 8S IgM contains this second type of μ chains, whereas the IgM molecules of the secretory type contain plasma cell-like μ chains. It is

  16. Folded state of the integral membrane colicin E1 immunity protein in solvents of mixed polarity.

    PubMed

    Taylor, R M; Zakharov, S D; Bernard Heymann, J; Girvin, M E; Cramer, W A

    2000-10-10

    The colicin E1 immunity protein (ImmE1), a 13.2-kDa hydrophobic integral membrane protein localized in the Escherichia coli cytoplasmic membrane, protects the cell from the lethal, channel-forming activity of the bacteriocin, colicin E1. Utilizing its solubility in organic solvents, ImmE1 was purified by 1-butanol extraction of isolated membranes, followed by gel filtration and ion-exchange chromatography in a chloroform/methanol/H(2)O (4:4:1) solvent system. Circular dichroism analysis indicated that the alpha-helical content of ImmE1 is approximately 80% in 1-butanol or 2,2,2-trifluoroethanol, consistent with a previous membrane-folding model with three extended hydrophobic transmembrane helical domains, H1-H3. Each of these extended hydrophobic domains contains a centrally located single Cys residue that could be used as a probe of protein structure. The presence of tertiary structure of purified ImmE1 in a solvent of mixed polarity, chloroform/methanol/H(2)O (4:4:1) was demonstrated by (i) the constraints on Tyr residues shown by the amplitude of near-UV circular dichroism spectra in the wavelength interval, 270-285 nm; (ii) the correlation between the near-UV Tyr CD spectrum of single and double Cys-to-X mutants of the Imm protein and their in vivo activity; (iii) the upfield shift of methyl groups in a 1D NMR spectrum, a 2D- HSQC NMR spectrum of ImmE1 in the mixed polarity solvent mixture, and a broadening and disappearance of the indole (1)H proton resonance from Trp94 in H3 by a spin label attached to Cys16 in the H2 hydrophobic domain; (iv) near-UV circular dichroism spectra with a prominent ellipticity band centered at 290 nm from a single Trp inserted into the extended hydrophobic domains. It was concluded that the colicin E1 immunity protein adopts a folded conformation in chloroform/methanol/H(2)O (4:4:1) that is stabilized by helix-helix interactions. Analysis of the probable membrane folding topology indicated that several Tyr residues in the bilayer

  17. Valorization of artichoke wastewaters by integrated membrane process.

    PubMed

    Conidi, C; Cassano, A; Garcia-Castello, E

    2014-01-01

    In this work an integrated membrane system was developed on laboratory scale to fractionate artichoke wastewaters. In particular, a preliminary ultrafiltration (UF) step, based on the use of hollow fibre membranes, was investigated to remove suspended solids from an artichoke extract. The clarified solution was then submitted to a nanofiltration (NF) step. Two different 2.5 × 21 in. spiral-wound membranes (Desal DL and NP030) with different properties were investigated. Both membranes showed a high rejection towards the phenolic compounds analysed (chlorogenic acid, cynarin and apigenin-7-O-glucoside) and, consequently, towards the total antioxidant activity (TAA). On the other hand, the Desal DL membrane was characterized by a high rejection towards sugar compounds (glucose, fructose and sucrose) (100%) when compared with the NP030 membrane (4.02%). The performance of selected membranes in terms of permeate flux, fouling index and water permeability recovery was also evaluated. On the base of experimental results, an integrated membrane process for the fractionation of artichoke wastewaters was proposed. This conceptual process design permitted to obtain different valuable products: a retentate fraction (from the NP030 membrane) enriched in phenolic compounds suitable for nutraceutical, cosmeceutical or food application; a retentate fraction (from the Desal DL membrane), enriched in sugar compounds, of interest for food applications; a clear permeate (from the Desal DL membrane) which can be reused as process water or for membrane cleaning. PMID:24125635

  18. Application of a DNA Hybridization–Hydrophobic-Grid Membrane Filter Method for Detection and Isolation of Verotoxigenic Escherichia coli

    PubMed Central

    Todd, E. C. D.; Szabo, R. A.; MacKenzie, J. M.; Martin, A.; Rahn, K.; Gyles, C.; Gao, A.; Alves, D.; Yee, A. J.

    1999-01-01

    Verotoxigenic Escherichia coli (VTEC) strains were isolated from food and animal fecal samples by using PCR to screen for the presence of VTEC after broth enrichment and then filtering VTEC-positive cultures through hydrophobic-grid membrane filters (HGMFs) which were incubated on MacConkey agar. The filters were probed with a digoxigenin-labeled PCR product generated by amplification of a conserved verotoxin gene sequence. Replication of the growth on filters allowed probe-positive colonies to be picked. When ground beef samples were inoculated with VTEC strains, 100% of the strains were recovered, and the detection limit was 0.1 CFU per g. Similar results were obtained with seven types of artificially contaminated vegetables. A survey of 32 packages of vegetables and 23 samples of apple cider obtained at the retail level did not reveal the presence of VTEC. However, the intestinal fecal contents of a moose, 1 of 35 wild mammals and birds examined, contained E. coli O157:H7. The DNA hybridization-HGMF method was also used in a prevalence survey of 327 raw and 744 ready-to-eat products; VTEC strains were recovered from 4.9% of the raw products and 0.7% of the ready-to-eat products. No serotype O157:H7 strains were detected. This method is particularly suited for surveys in which low numbers of VTEC-positive samples are expected and isolates are required. PMID:10543785

  19. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations.

    PubMed

    Urbic, T; Holovko, M F

    2011-10-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied.

  20. Mercedes–Benz water molecules near hydrophobic wall: Integral equation theories vs Monte Carlo simulations

    PubMed Central

    Urbic, T.; Holovko, M. F.

    2011-01-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes–Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. PMID:21992334

  1. Mercedes-Benz water molecules near hydrophobic wall: Integral equation theories vs Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Urbic, T.; Holovko, M. F.

    2011-10-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied.

  2. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations.

    PubMed

    Urbic, T; Holovko, M F

    2011-10-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. PMID:21992334

  3. Role of hydrophobic interactions in the adsorption of poly(ethylene glycol) chains on phospholipid membranes investigated with a quartz crystal microbalance.

    PubMed

    Liu, Guangming; Fu, Li; Zhang, Guangzhao

    2009-03-19

    We have investigated the adsorption of poly(ethylene glycol) (PEG) with different end groups onto phospholipid membranes at the liquid/solid interface by use of a quartz crystal microbalance with dissipation in real time. On a SiO(2)-coated surface, the adsorption of lipid vesicles results in a solid-supported lipid bilayer. Our experiments demonstrate that PEG chains with enough hydrophobic end groups (PEG-C(18)H(37)) can insert in the bilayer and form aggregates on the membrane surface. On the other hand, the adsorbed vesicles are intact on a gold surface. When the end group of PEG chain is not hydrophobic enough, PEG chains do not interact with the vesicles so that they have slight effect on the vesicle stability. However, PEG-C(18)H(37) chains with enough hydrophobic end groups lead to a vesicle-to-bilayer transition because of the insertion of the chains and their aggregation on the membrane surface. In addition, the studies on effect of polymer concentration show that PEG-C(18)H(37) can readily induce the rupture of vesicles at a concentration above the critical micelle concentration.

  4. Loss of Elongation Factor P Disrupts Bacterial Outer Membrane Integrity

    PubMed Central

    Hersch, Steven J.; Roy, Hervé; Wiggers, J. Brad; Leung, Andrea S.; Buranyi, Stephen; Xie, Jinglin Lucy; Dare, Kiley; Ibba, Michael; Navarre, William Wiley

    2012-01-01

    Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits increased uptake of the hydrophobic dye 1-N-phenylnaphthylamine (NPN). Analysis of the membrane proteomes of wild-type and efp mutant Salmonella strains reveals few changes, including the prominent overexpression of a single porin, KdgM, in the efp mutant outer membrane. Removal of KdgM in the efp mutant background ameliorates the detergent, antibiotic, and osmosensitivity phenotypes and restores wild-type permeability to NPN. Our data support a role for EF-P in the translational regulation of a limited number of proteins that, when perturbed, renders the cell susceptible to stress by the adventitious overexpression of an outer membrane porin. PMID:22081389

  5. The Crystal Structure of OprG from Pseudomonas aeruginosa a Potential Channel for Transport of Hydrophobic Molecules across the Outer Membrane

    SciTech Connect

    D Touw; D Patel; b van den Berg

    2011-12-31

    The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The crystal structure, together with recent biochemical data, suggests that OprG and other OmpW family members form channels that mediate the diffusion of small hydrophobic molecules across the OM by a lateral diffusion mechanism similar to that of E. coli FadL.

  6. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D; Elimelech, Menachem

    2015-10-01

    This study investigates the performance of an integrated osmotic and microfiltration membrane bioreactor (O/MF-MBR) system for wastewater treatment and reclamation. The O/MF-MBR system simultaneously used microfiltration (MF) and forward osmosis (FO) membranes to extract water from the mixed liquor of an aerobic bioreactor. The MF membrane facilitated the bleeding of dissolved inorganic salts and thus prevented the build-up of salinity in the bioreactor. As a result, sludge production and microbial activity were relatively stable over 60 days of operation. Compared to MF, the FO process produced a better permeate quality in terms of nutrients, total organic carbon, as well as hydrophilic and biologically persistent trace organic chemicals (TrOCs). The high rejection by the FO membrane also led to accumulation of hydrophilic and biologically persistent TrOCs in the bioreactor, consequently increasing their concentration in the MF permeate. On the other hand, hydrophobic and readily biodegradable TrOCs were minimally detected in both MF and FO permeates, with no clear difference in the removal efficiencies between two processes.

  7. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D; Elimelech, Menachem

    2015-10-01

    This study investigates the performance of an integrated osmotic and microfiltration membrane bioreactor (O/MF-MBR) system for wastewater treatment and reclamation. The O/MF-MBR system simultaneously used microfiltration (MF) and forward osmosis (FO) membranes to extract water from the mixed liquor of an aerobic bioreactor. The MF membrane facilitated the bleeding of dissolved inorganic salts and thus prevented the build-up of salinity in the bioreactor. As a result, sludge production and microbial activity were relatively stable over 60 days of operation. Compared to MF, the FO process produced a better permeate quality in terms of nutrients, total organic carbon, as well as hydrophilic and biologically persistent trace organic chemicals (TrOCs). The high rejection by the FO membrane also led to accumulation of hydrophilic and biologically persistent TrOCs in the bioreactor, consequently increasing their concentration in the MF permeate. On the other hand, hydrophobic and readily biodegradable TrOCs were minimally detected in both MF and FO permeates, with no clear difference in the removal efficiencies between two processes. PMID:25966331

  8. Effect of integral membrane proteins on the lateral mobility of plastoquinone in phosphatidylcholine proteoliposomes

    PubMed Central

    Blackwell, Mary F.; Whitmarsh, John

    1990-01-01

    Pyrene fluorescence quenching by plastoquinone was used to estimate the rate of plastoquinone lateral diffusion in soybean phosphatidylcholine proteoliposomes containing the following integral membrane proteins: gramicidin D, spinach cytochrome bf complex, spinach cytochrome f, reaction centers from Rhodobacter sphaeroides, beef heart mitochondrial cytochrome bc1, and beef heart mitochondrial cytochrome oxidase. The measured plastoquinone lateral diffusion coefficient varied between 1 and 3 · 10-7 cm2 s-1 in control liposomes that lacked protein. When proteins were added, these values decreased: a 10-fold decrease was observed when 16-26% of the membrane surface area was occupied by protein for all the proteins but gramicidin. The larger protein complexes (cytochrome bf, Rhodobacter sphaeroides reaction centers, cytochrome bc1, and cytochrome oxidase), whose hydrophobic volumes were 15-20 times as large as that of cytochrome f and the gramicidin transmembrane dimer, were 15-20 times as effective in decreasing the lateral-diffusion coefficient over the range of concentrations studied. These proteins had a much stronger effect than that observed for bacteriorhodopsin in fluorescence photobleaching recovery measurements. The effect of high-protein concentrations in gramicidin proteoliposomes was in close agreement with fluorescence photobleaching measurements. The results are compared with the predictions of several theoretical models of lateral mobility as a function of integral membrane concentration. PMID:19431774

  9. Large-scale identification of yeast integral membrane protein interactions

    PubMed Central

    Miller, John P.; Lo, Russell S.; Ben-Hur, Asa; Desmarais, Cynthia; Stagljar, Igor; Noble, William Stafford; Fields, Stanley

    2005-01-01

    We carried out a large-scale screen to identify interactions between integral membrane proteins of Saccharomyces cerevisiae by using a modified split-ubiquitin technique. Among 705 proteins annotated as integral membrane, we identified 1,985 putative interactions involving 536 proteins. To ascribe confidence levels to the interactions, we used a support vector machine algorithm to classify interactions based on the assay results and protein data derived from the literature. Previously identified and computationally supported interactions were used to train the support vector machine, which identified 131 interactions of highest confidence, 209 of the next highest confidence, 468 of the next highest, and the remaining 1,085 of low confidence. This study provides numerous putative interactions among a class of proteins that have been difficult to analyze on a high-throughput basis by other approaches. The results identify potential previously undescribed components of established biological processes and roles for integral membrane proteins of ascribed functions. PMID:16093310

  10. Evolution with time of hydrophobicity and microrelief of a cation-exchange membrane surface and its impact on overlimiting mass transfer.

    PubMed

    Pismenskaya, Natalia D; Nikonenko, Victor V; Melnik, Nadezhda A; Shevtsova, Kseniya A; Belova, Elena I; Pourcelly, Gérald; Cot, Didier; Dammak, Lasâad; Larchet, Christian

    2012-02-23

    Surface properties were measured together with electrochemical characteristics of a CMX (Neosepta, Tokuyama Corp.) cation-exchange membrane. Relative hydrophobicity was controlled by the contact angle; XPS and SEM were used for characterizing chemical composition and microrelief of the surface, respectively. Voltammetry, chronopotentiometry, and mass transfer rate measurements were made as well. A "fresh" membrane and samples after 10, 25, 100, and 150 h of operation in an electrodialysis cell at an overlimiting current equal to 3 theoretical limiting currents, in a 0.02 M NaCl solution, were characterized. Some electrochemical properties were also measured for a Neosepta cation-exchange membrane, aged 2 years, in an industrial food process. It was found that the hydrophobicity of the CMX membrane has increased after the first 10 h of operation; more and more cavities of the dimension of the order of 1 μm have appeared with time testifying electrochemical erosion of the surface. The limiting current density (i(lim)) and the overlimiting transfer rate through the CMX membrane increased with time of its operation under overlimiting current. In the case of new CMX, i(lim) was very close to the theoretical value i(lim)(theor) calculated by the Lévêque equation. After 10 h of operation, i(lim) increased by 5%, and after 25, 100, and 150 h, the increase was by 30%, 70%, and 100%, respectively. Similarly, the mass transfer rate was found to increase up to 5 times (when desalting 0.005 M NaCl under 3 V) in comparison with the theoretical value. The ensemble of data was explained by the hypothesis that the passage of intensive current produces erosion of the ion-exchange polymer forming a continuous phase in CMX. This erosion results in exposure at the surface of the other constituent of CMX: small (about 100 nm) particles of relatively hydrophobic polyvinylchloride. Increasing surface hydrophobicity facilitates the slip of electroconvective vortexes along the surface

  11. Evolution with time of hydrophobicity and microrelief of a cation-exchange membrane surface and its impact on overlimiting mass transfer.

    PubMed

    Pismenskaya, Natalia D; Nikonenko, Victor V; Melnik, Nadezhda A; Shevtsova, Kseniya A; Belova, Elena I; Pourcelly, Gérald; Cot, Didier; Dammak, Lasâad; Larchet, Christian

    2012-02-23

    Surface properties were measured together with electrochemical characteristics of a CMX (Neosepta, Tokuyama Corp.) cation-exchange membrane. Relative hydrophobicity was controlled by the contact angle; XPS and SEM were used for characterizing chemical composition and microrelief of the surface, respectively. Voltammetry, chronopotentiometry, and mass transfer rate measurements were made as well. A "fresh" membrane and samples after 10, 25, 100, and 150 h of operation in an electrodialysis cell at an overlimiting current equal to 3 theoretical limiting currents, in a 0.02 M NaCl solution, were characterized. Some electrochemical properties were also measured for a Neosepta cation-exchange membrane, aged 2 years, in an industrial food process. It was found that the hydrophobicity of the CMX membrane has increased after the first 10 h of operation; more and more cavities of the dimension of the order of 1 μm have appeared with time testifying electrochemical erosion of the surface. The limiting current density (i(lim)) and the overlimiting transfer rate through the CMX membrane increased with time of its operation under overlimiting current. In the case of new CMX, i(lim) was very close to the theoretical value i(lim)(theor) calculated by the Lévêque equation. After 10 h of operation, i(lim) increased by 5%, and after 25, 100, and 150 h, the increase was by 30%, 70%, and 100%, respectively. Similarly, the mass transfer rate was found to increase up to 5 times (when desalting 0.005 M NaCl under 3 V) in comparison with the theoretical value. The ensemble of data was explained by the hypothesis that the passage of intensive current produces erosion of the ion-exchange polymer forming a continuous phase in CMX. This erosion results in exposure at the surface of the other constituent of CMX: small (about 100 nm) particles of relatively hydrophobic polyvinylchloride. Increasing surface hydrophobicity facilitates the slip of electroconvective vortexes along the surface

  12. Integration of lateral porous silicon membranes into planar microfluidics.

    PubMed

    Leïchlé, Thierry; Bourrier, David

    2015-02-01

    In this work, we present a novel fabrication process that enables the monolithic integration of lateral porous silicon membranes into single-layer planar microchannels. This fabrication technique relies on the patterning of local electrodes to guide pore formation horizontally within the membrane and on the use of silicon-on-insulator substrates to spatially localize porous silicon within the channel depth. The feasibility of our approach is studied by current flow analysis using the finite element method and supported by creating 10 μm long mesoporous membranes within 20 μm deep microchannels. The fabricated membranes are demonstrated to be potentially useful for dead-end microfiltration by adequately retaining 300 nm diameter beads while macromolecules such as single-stranded DNA and immunoglobulin G permeate the membrane. The experimentally determined fluidic resistance is in accordance with the theoretical value expected from the estimated pore size and porosity. The work presented here is expected to greatly simplify the integration of membranes capable of size exclusion based separation into fluidic devices and opens doors to the use of porous silicon in planar lab on a chip devices.

  13. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation.

    PubMed

    Fan, Xinfei; Zhao, Huimin; Quan, Xie; Liu, Yanming; Chen, Shuo

    2016-01-01

    Membrane filtration provides an effective solution for removing pollutants from water but is limited by serious membrane fouling. In this work, an effective approach was used to mitigate membrane fouling by integrating membrane filtration with electropolarization using an electroconductive nanocarbon-based membrane. The electropolarized membrane (EM) by alternating square-wave potentials between +1.0 V and -1.0 V with a pulse width of 60 s exhibited a permeate flux 8.1 times as high as that without electropolarization for filtering feed water containing bacteria, which confirms the ability of the EM to achieve biofouling mitigation. Moreover, the permeate flux of EM was 1.5 times as high as that without electropolarization when filtrating natural organic matter (NOM) from water, and demonstrated good performance in organic fouling mitigation with EM. Furthermore, the EM was also effective for complex fouling mitigation in filtering water containing coexisting bacteria and NOM, and presented an increased flux rate 1.9 times as high as that without electropolarization. The superior fouling mitigation performance of EM was attributed to the synergistic effects of electrostatic repulsion, electrochemical oxidation and electrokinetic behaviors. This work opens an effective avenue for membrane fouling mitigation of water-treatment membrane filtration systems.

  14. Membranes for the Sulfur-Iodine Integrated Laboratory Scale Demonstration

    SciTech Connect

    Frederick F. Stewart

    2007-08-01

    INL has developed polymeric membrane-based chemical separations to enable the thermochemical production of hydrogen. Major activities included studies of sulfuric acid concentration membranes, hydriodic acid concentration membranes, SO2/O2 separation membranes, potential applications of a catalyst reactor system for the decomposition of HI, and evaluation of the chemical separation needs for alternate thermochemical cycles. Membranes for the concentration of sulfuric acid were studied using pervaporation. The goal of this task was to offer the sulfur-iodine (S-I) and the hybrid sulfur (HyS) cycles a method to concentrate the sulfuric acid containing effluent from the decomposer without boiling. In this work, sulfuric acid decomposer effluent needs to be concentrated from ~50 % acid to 80 %. This task continued FY 2006 efforts to characterize water selective membranes for use in sulfuric acid concentration. In FY 2007, experiments were conducted to provide specific information, including transmembrane fluxes, separation factors, and membrane durability, necessary for proper decision making on the potential inclusion of this process into the S-I or HyS Integrated Laboratory Scale demonstration.

  15. A bioluminescence ATP assay for estimating surface hydrophobicity and membrane damage of Escherichia coli cells treated with pulsed electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulse Electric Field (PEF) treatments, a non-thermal process have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (AJ, pH 3.8) purchased from a wholesale ...

  16. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.

    PubMed

    Fried, Eric S; Luchan, Joshua; Gilchrist, M Lane

    2016-04-12

    Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays.

  17. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.

    PubMed

    Fried, Eric S; Luchan, Joshua; Gilchrist, M Lane

    2016-04-12

    Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays. PMID:26972467

  18. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.

    PubMed

    Killian, J A; Salemink, I; de Planque, M R; Lindblom, G; Koeppe, R E; Greathouse, D V

    1996-01-23

    We have investigated the effect of several hydrophobic polypeptides on the phase behavior of diacylphosphatidylcholines with different acyl chain length. The polypeptides are uncharged and consist of a sequence with variable length of alternating leucine and alanine, flanked on both sides by two tryptophans, and with the N- and C-termini blocked. First it was demonstrated by circular dichroism measurements that these peptides adopt an alpha-helical conformation with a transmembrane orientation in bilayers of dimyristoylphosphatidylcholine. Subsequent 31P NMR measurements showed that the peptides can affect lipid organization depending on the difference in hydrophobic length between the peptide and the lipid bilayer in the liquid-crystalline phase. When a 17 amino acid residue long peptide (WALP17) was incorporated in a 1/10 molar ratio of peptide to lipid, a bilayer was maintained in saturated phospholipids containing acyl chains of 12 and 14 C atoms, an isotropic phase was formed at 16 C atoms, and an inverted hexagonal (HII) phase at 18 and 20 C atoms. For a 19 amino acid residue long peptide (WALP19) similar changes in lipid phase behavior were observed, but at acyl chain lengths of 2 C-atoms longer. Also in several cis-unsaturated phosphatidylcholine model membranes it was found that these peptides and a shorter analog (WALP16) induce the formation of nonbilayer structures as a consequence of hydrophobic mismatch. It is proposed that this unique ability of the peptides to induce nonbilayer structures in phosphatidylcholine model membranes is due to the presence of two tryptophans at both sides of the membrane/water interface, which prevent the peptide from aggregating when the mismatch is increased. Comparison of the hydrophobic length of the bilayers with the length of the different peptides showed that it is the precise extent of mismatch that determines whether the preferred lipid organization is a bilayer, isotropic phase, or HII phase. The peptide

  19. Direct ultrafiltration performance and membrane integrity monitoring by microbiological analysis.

    PubMed

    Ferrer, O; Casas, S; Galvañ, C; Lucena, F; Bosch, A; Galofré, B; Mesa, J; Jofre, J; Bernat, X

    2015-10-15

    The feasibility of substituting a conventional pre-treatment, consisting of dioxi-chlorination, coagulation/flocculation, settling and sand filtration, of a drinking water treatment plant (DWTP) by direct ultrafiltration (UF) has been assessed from a microbiological standpoint. Bacterial indicators, viral indicators and human viruses have been monitored in raw river, ultrafiltered and conventionally pre-treated water samples during two years. Direct UF has proven to remove bacterial indicators quite efficiently and to a greater extent than the conventional process does. Nevertheless, the removal of small viruses such as some small bacteriophages and human viruses (e.g. enteroviruses and noroviruses) is lower than the current conventional pre-treatment. Membrane integrity has been assessed during two years by means of tailored tests based on bacteriophages with different properties (MS-2, GA and PDR-1) and bacterial spores (Bacillus spores). Membrane integrity has not been compromised despite the challenging conditions faced by directly treating raw river water. Bacteriophage PDR-1 appears as a suitable microbe to test membrane integrity, as its size is slightly larger than the considered membrane pore size. However, its implementation at full scale plant is still challenging due to difficulties in obtaining enough phages for its seeding.

  20. Binding of Sudan II and IV to lecithin liposomes and E. coli membranes: insights into the toxicity of hydrophobic azo dyes

    PubMed Central

    Li, Lu; Gao, Hong-Wen; Ren, Jiao-Rong; Chen, Ling; Li, Yu-Cheng; Zhao, Jian-Fu; Zhao, He-Ping; Yuan, Yuan

    2007-01-01

    Background Sudan red compounds are hydrophobic azo dyes, still used as food additives in some countries. However, they have been shown to be unsafe, causing tumors in the liver and urinary bladder in rats. They have been classified as category 3 human carcinogens by the International Agency for Research on Cancer. A number of hypotheses that could explain the mechanism of carcinogenesis have been proposed for dyes similar to the Sudan red compounds. Traditionally, investigations of the membrane toxicity of organic substances have focused on hydrocarbons, e.g. polycyclic aromatic hydrocarbons (PAHs), and DDT. In contrast to hydrocarbons, Sudan red compounds contain azo and hydroxy groups, which can form hydrogen bonds with the polar head groups of membrane phospholipids. Thus, entry may be impeded. They could have different toxicities from other lipophilic hydrocarbons. The available data show that because these compounds are lipophilic, interactions with hydrophobic parts of the cell are important for their toxicity. Lipophilic compounds accumulate in the membrane, causing expansion of the membrane surface area, inhibition of primary ion pumps and increased proton permeability. Results This work investigated the interactions of the amphiphilic compounds Sudan II and IV with lecithin liposomes and live Escherichia coli (E. coli). Sudan II and IV binding to lecithin liposomes and live E. coli corresponds to the Langmuir adsorption isotherm. In the Sudan red compounds – lecithin liposome solutions, the binding ratio of Sudan II to lecithin is 1/31 and that of Sudan IV to 1/314. The binding constant of the Sudan II-lecithin complex is 1.75 × 104 and that of the Sudan IV-lecithin complex 2.92 × 105. Besides, the influences of pH, electrolyte and temperature were investigated and analyzed quantitatively. In the Sudan red compounds – E.coli mixture, the binding ratios of Sudan II and Sudan IV to E.coli membrane phospholipid are 1/29 and 1/114. The binding constants

  1. Tracking of proton flow during transition from anaerobiosis to steady state. 2. Effect of cation uptake on the response of a hydrophobic membrane bound pH indicator.

    PubMed

    Luvisetto, S; Cola, C; Schmehl, I; Azzone, G F

    1991-11-15

    1. During aerobic cation uptake in liver mitochondria, the hydrophobic pH indicator bromothymol blue undergoes a multiphase response: phase 1 (rapid acidification), phase 2 (slow alkalinization), phase 3 (rapid alkalinization) and phase 4 (reacidification). 2. Titrations with ruthenium red and malonate indicate that the various phases depend on the relative rates of cation uptake and proton translocation: at high rates of cation uptake, phase 1 disappears and phases 2 and 3 are transformed in a monotonic process of alkalinization. 3. The comparison of the bromothymol blue response with the arsenazo III, 2',7'-bis(carboxyethyl)-5(6)carboxyfluorescein (BCECF) and safranine responses indicates that: (a) phase 2 (slow alkalinization) corresponds to a slow rise of matrix pH and a parallel decline of membrane potential; (b) phase 3 (rapid alkalinization) corresponds to termination of proton translocation and initiation of the processes of cation efflux and proton reuptake. All the above processes reach completion during phase 4. 4. Although bromothymol blue always behaves as a membrane-bound indicator, the extent to which it reflects the matrix or the cytosolic pH is a function of the membrane-potential-determined asymmetric distribution: in parallel with the lowering of the membrane potential, the dye chromophore is shifted from the cytosolic to the matrix side membrane layer. 5. A model is discussed which describes the behaviour of bromothymol blue as pH indicator recording the changes in membrane layers facing either the matrix or the cytosolic side. The complex response of the dye during cation uptake is due to two independent processes, one of pH change and another of dye intramembrane shift. Computer simulations of the dye response, based on the conversion of a kinetic model into an electrical network and closely reproducing the experimental observations, are reported. PMID:1718751

  2. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    PubMed Central

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  3. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature.

    PubMed

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-02-19

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons.

  4. Distribution of hydrophobic ionizable xenobiotics between water and lipid membranes: pentachlorophenol and pentachlorophenate. A comparison with octanol-water partition.

    PubMed

    Smejtek, P; Wang, S

    1993-09-01

    We have studied distribution of pentachlorophenol (PCP)--a major environmental pollutant--between egg-phosphatidylcholine (egg-PC) membranes and water. The objectives were (1) to compare the membrane-water partition of the un-ionized (HA) and ionized (A) PCP, and (2) to establish similarities and differences between the partition of PCP into lipid membranes and into octanol. The studies were made with egg-PC liposomes. It is shown that the distribution isotherms can be understood in terms of the Langmuir-Stern-Grahame adsorption model. The model is applicable to both the HA and A species; it takes into account the electrostatic interactions at the membrane-water interface charged by the adsorbed pentachlorophenate. Relationships between the membrane surface adsorption and bulk partition characteristics were presented and used to relate the partition of PCP into egg-PC membranes to those for octanol-water systems. Results (egg-PC membranes): bulk distribution coeff. gamma HA = 2.9 x 10(5), gamma A = 1.6 x 10(4), association constant KmHA = 2.9 x 10(5) M-1, KmA = 0.7 x 10(5) M-1, adsorption site area PsHA = 0.6 nm2, PsA = 3.5 nm2, and linear partition coeff. Beta mHA = 550 microns, beta mA = 30 microns. Comparable to gamma HA and gamma A for octanol-water are P(ow)(HA) approximately 1.3 x 10(5) and P(ow)(A) approximately 30. The major difference is in the distribution of ionized PCP which is several hundred times greater for egg-PC membranes compared to octanol. The difference is associated with the properties of the membrane-water interface. PMID:8215590

  5. Photolabeling of membrane-bound Torpedo nicotinic acetylcholine receptor with the hydrophobic probe 3-trifluoromethyl-3-(m-(/sup 125/I)iodophenyl)diazirine

    SciTech Connect

    White, B.J.; Cohen, J.B.

    1988-11-29

    The hydrophobic, photoactivatable probe 3-trifluoromethyl-3-(m-(/sup 125/I)iodophenyl)diazirine ((/sup 125/I)TID) was used to label acetylcholine receptor rich membranes purified from Torpedo californica electric organ. All four subunits of the acetylcholine receptor (AChR) were found to incorporate label, with the ..gamma..-subunit incorporating approximately 4 times as much as each of the other subunits. Carbamylcholine, an agonist, and histrionicotoxin, a noncompetitive antagonist, both strongly inhibited labeling of all AChR subunits in a specific and dose-dependent manner. In contrast, the competitive antagonist ..cap alpha..-bungarotoxin and the noncompetitive antagonist phencyclidine had only modest effect on (/sup 125/I)TID labeling of the AChR. The regions of the AChR ..cap alpha..-subunit that incorporate (/sup 125/)TID were mapped by Staphylococcus aureus V8 protest digestion. The carbamylcholine-sensitive site of labeling was localized to a 20-kDa V8 cleavage fragment that begins at Ser-173 and is of sufficient length to contain the three hydrophobic regions M1, M2, and M3. A 10-kDa fragment beginning at Asn-339 and containing the hydrophobic region M4 also incorporated (/sup 125/I)TID but in a carbamylcholine-insensitive manner. Two further cleavage fragments, which together span about one-third of the ..cap alpha..-subunit amino terminus, incorporated no detectable (/sup 125/I)TID. The mapping results place constraints on suggested models of AChR subunit topology.

  6. From dioxin to dioxin congeners: understanding the differences in hydrophobic aggregation in water and absorption into lipid membranes by means of atomistic simulations.

    PubMed

    Casalegno, Mosé; Raos, Guido; Sello, Guido

    2016-06-29

    Translocation of small molecules through a cell membrane barrier is a fundamental step to explain the response of cells to foreign molecules. Investigating the mechanisms through which this complex process takes place is especially important in the study of the adverse effects of toxicants. In this work, we start from the results of a previous simulation study of the mechanism of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) absorption into a model membrane, and extend it to four structural congeners of dioxin. The new molecules have been chosen taking into consideration the structural features that characterize dioxin: aromaticity, planarity, the presence of chlorine and oxygen atoms, and hydrophobicity. Our results for the absorption mechanism confirm our expectations based on the chemical structures, but also reveal some interesting differences in single-molecules and especially in cooperative actions underlying cluster absorption. The analysis of key parameters, such as free energies of transfer and translocation times, supports the idea that dioxin, more than its congeners investigated here, likely accumulates in cell membranes. PMID:27314876

  7. Solid-state NMR structures of integral membrane proteins.

    PubMed

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.

  8. Solid-state NMR structures of integral membrane proteins.

    PubMed

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions. PMID:26857803

  9. Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1)

    PubMed Central

    Muralikumar, Shalini; Mahalakshmi, B; Lily Therese, K; Madhavan, HN; Alameen, Mohamed; Thirumudi, Indhuja

    2016-01-01

    Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins—namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis. PMID:27445648

  10. Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1).

    PubMed

    Vetrivel, Umashankar; Muralikumar, Shalini; Mahalakshmi, B; Lily Therese, K; Madhavan, H N; Alameen, Mohamed; Thirumudi, Indhuja

    2016-06-01

    Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis.

  11. Multilevel Precision-Based Rational Design of Chemical Inhibitors Targeting the Hydrophobic Cleft of Toxoplasma gondii Apical Membrane Antigen 1 (AMA1).

    PubMed

    Vetrivel, Umashankar; Muralikumar, Shalini; Mahalakshmi, B; Lily Therese, K; Madhavan, H N; Alameen, Mohamed; Thirumudi, Indhuja

    2016-06-01

    Toxoplasma gondii is an intracellular Apicomplexan parasite and a causative agent of toxoplasmosis in human. It causes encephalitis, uveitis, chorioretinitis, and congenital infection. T. gondii invades the host cell by forming a moving junction (MJ) complex. This complex formation is initiated by intermolecular interactions between the two secretory parasitic proteins-namely, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2) and is critically essential for the host invasion process. By this study, we propose two potential leads, NSC95522 and NSC179676 that can efficiently target the AMA1 hydrophobic cleft, which is a hotspot for targeting MJ complex formation. The proposed leads are the result of an exhaustive conformational search-based virtual screen with multilevel precision scoring of the docking affinities. These two compounds surpassed all the precision levels of docking and also the stringent post docking and cumulative molecular dynamics evaluations. Moreover, the backbone flexibility of hotspot residues in the hydrophobic cleft, which has been previously reported to be essential for accommodative binding of RON2 to AMA1, was also highly perturbed by these compounds. Furthermore, binding free energy calculations of these two compounds also revealed a significant affinity to AMA1. Machine learning approaches also predicted these two compounds to possess more relevant activities. Hence, these two leads, NSC95522 and NSC179676, may prove to be potential inhibitors targeting AMA1-RON2 complex formation towards combating toxoplasmosis. PMID:27445648

  12. Effect of bioavailability on the fate of hydrophobic organic compounds and metal in treatment of young landfill leachate by membrane bioreactor.

    PubMed

    Zolfaghari, M; Droguia, P; Brar, S K; Buelna, G; Dubé, R

    2016-10-01

    Complex dissolved organic matter (DOM) present in landfill leachate provides reliable media for adsorption of highly hydrophobic contaminants, such as Di 2-ethyl hexyl phthalate (DEHP). In this research, the feasibility of submerged membrane bioreactor (SMBR) for treatment of landfill leachate (LFL) was determined. Later, the operating conditions were optimized for removal of DEHP, COD, NH4(+) and PO4(3-), and finally the effect of bioavailability was examined by introduction of different concentrations of humic acid into the influent. The result revealed that presence of complex agglomerated organic compounds increased the removal efficiency of DEHP and COD, even though DEHP biodegradation rate in sludge dramatically decreased (from 58.8% to 12.8%). MBR retention of different metals in the absence and in the presence of recalcitrant DOM was also studied. Like DEHP, ternary interaction between metals, DOM, and sludge play a pivotal role in their removal efficiency and their concentration in sludge. PMID:27448320

  13. Effect of bioavailability on the fate of hydrophobic organic compounds and metal in treatment of young landfill leachate by membrane bioreactor.

    PubMed

    Zolfaghari, M; Droguia, P; Brar, S K; Buelna, G; Dubé, R

    2016-10-01

    Complex dissolved organic matter (DOM) present in landfill leachate provides reliable media for adsorption of highly hydrophobic contaminants, such as Di 2-ethyl hexyl phthalate (DEHP). In this research, the feasibility of submerged membrane bioreactor (SMBR) for treatment of landfill leachate (LFL) was determined. Later, the operating conditions were optimized for removal of DEHP, COD, NH4(+) and PO4(3-), and finally the effect of bioavailability was examined by introduction of different concentrations of humic acid into the influent. The result revealed that presence of complex agglomerated organic compounds increased the removal efficiency of DEHP and COD, even though DEHP biodegradation rate in sludge dramatically decreased (from 58.8% to 12.8%). MBR retention of different metals in the absence and in the presence of recalcitrant DOM was also studied. Like DEHP, ternary interaction between metals, DOM, and sludge play a pivotal role in their removal efficiency and their concentration in sludge.

  14. Effects of photooxidation on membrane integrity in Salix nigra seeds

    PubMed Central

    Roqueiro, Gonzalo; Facorro, Graciela B.; Huarte, Mónica G.; Rubín de Celis, Emilio; García, Fernando; Maldonado, Sara; Maroder, Horacio

    2010-01-01

    Background and Aims Salix nigra seeds are desiccation-tolerant, as are orthodox seeds, although in contrast to other orthodox seeds they lose viability in a few weeks at room temperature. They also differ in that the chloroplasts of the embryo tissues conserve their chlorophyll and endomembranes. The aim of this paper was to investigate the role of chlorophyll in seed deterioration. Methods Seeds were aged at different light intensities and atmospheric conditions. Mean germination time and normal and total germination were evaluated. The formation of free radicals was assessed using electronic spin resonance spectroscopy, and changes in the fatty acid composition from phospholipids, galactolipids and triglycerides using gas–liquid chromatography. Membrane integrity was studied with electronic spin resonance spin probe techniques, electrolyte leakage and transmission electron microscopy. Key Results Light and oxygen played an important role in free-radical generation, causing a decrease in normal germination and an increase in mean germination time. Both indices were associated with a decrease in polyunsaturated fatty acids derived from membrane lipids as phospholipids and galactolipids. The detection of damage in thylakoid membranes and an increase in plasmalemma permeability were consistent with the decrease in both types of lipids. Triglycerides remained unchanged. Light-induced damage began in outermost tissues and spread inwards, decreasing normal germination. Conclusions Salix nigra seeds were very susceptible to photooxidation. The thylakoid membranes appeared to be the first target of the photooxidative process since there were large decreases in galactolipids and both these lipids and the activated chlorophyll are contiguous in the structure of that membrane. Changes in normal germination and mean germination time could be explained by the deteriorative effects of oxidation. PMID:20338949

  15. A Link between Integral Membrane Protein Expression and Simulated Integration Efficiency.

    PubMed

    Marshall, Stephen S; Niesen, Michiel J M; Müller, Axel; Tiemann, Katrin; Saladi, Shyam M; Galimidi, Rachel P; Zhang, Bin; Clemons, William M; Miller, Thomas F

    2016-08-23

    Integral membrane proteins (IMPs) control the flow of information and nutrients across cell membranes, yet IMP mechanistic studies are hindered by difficulties in expression. We investigate this issue by addressing the connection between IMP sequence and observed expression levels. For homologs of the IMP TatC, observed expression levels vary widely and are affected by small changes in protein sequence. The effect of sequence changes on experimentally observed expression levels strongly correlates with the simulated integration efficiency obtained from coarse-grained modeling, which is directly confirmed using an in vivo assay. Furthermore, mutations that improve the simulated integration efficiency likewise increase the experimentally observed expression levels. Demonstration of these trends in both Escherichia coli and Mycobacterium smegmatis suggests that the results are general to other expression systems. This work suggests that IMP integration is a determinant for successful expression, raising the possibility of controlling IMP expression via rational design. PMID:27524616

  16. A Link Between Integral Membrane Protein Expression and Simulated Integration Efficiency

    PubMed Central

    Müller, Axel; Tiemann, Katrin; Saladi, Shyam M.; Galimidi, Rachel P.; Zhang, Bin; Clemons, William M.; Miller, Thomas F.

    2016-01-01

    Integral membrane proteins (IMP) control the flow of information and nutrients across cell membranes, yet IMP mechanistic studies are hindered by difficulties in expression. We investigate this issue by addressing the connection between IMP sequence and observed expression levels. For homologs of the IMP TatC, observed expression levels widely vary and are affected by small changes in protein sequence. The effect of sequence changes on experimentally observed expression levels strongly correlates with the simulated integration efficiency obtained from coarse-grained modeling, which is directly confirmed using an in vivo assay. Furthermore, mutations that improve the simulated integration efficiency likewise increase the experimentally observed expression levels. Demonstration of these trends in both Escherichia coli and Mycobacterium smegmatis suggests that the results are general to other expression systems. This work suggests that IMP integration is a determinant for successful expression, raising the possibility of controlling IMP expression via rational design. PMID:27524616

  17. Lipodisks integrated with weak affinity chromatography enable fragment screening of integral membrane proteins.

    PubMed

    Duong-Thi, Minh-Dao; Bergström, Maria; Edwards, Katarina; Eriksson, Jonny; Ohlson, Sten; Ying, Janet To Yiu; Torres, Jaume; Hernández, Víctor Agmo

    2016-02-01

    Membrane proteins constitute the largest class of drug targets but they present many challenges in drug discovery. Importantly, the discovery of potential drug candidates is hampered by the limited availability of efficient methods for screening drug-protein interactions. In this work we present a novel strategy for rapid identification of molecules capable of binding to a selected membrane protein. An integral membrane protein (human aquaporin-1) was incorporated into planar lipid bilayer disks (lipodisks), which were subsequently covalently coupled to porous derivatized silica and packed into HPLC columns. The obtained affinity columns were used in a typical protocol for fragment screening by weak affinity chromatography (WAC), in which one hit was identified out of a 200 compound collection. The lipodisk-based strategy, which ensures a stable and native-like lipid environment for the protein, is expected to work also with other membrane proteins and screening procedures. PMID:26673836

  18. The entropic forces and dynamic integrity of single file water in hydrophobic nanotube confinements

    SciTech Connect

    Sahu, Pooja; Ali, Sk. M.

    2015-11-14

    Water in nanotube exhibits remarkably different properties from the bulk phase, which can be exploited in various nanoconfinement based technologies. The properties of water within nanotube can be further tuned by varying the nanotube electrostatics and functionalization of nanotube ends. Here, therefore, we investigate the effect of quantum partial charges and carbon nanotube (CNT) termination in terms of associated entropic forces. An attempt has been made to correlate the entropic forces with various dynamical and structural properties. The simulated structural features are consistent with general theoretical aspects, in which the interfacial water molecules at H terminated CNT are found to be distributed in a different way as compared to other CNTs. The rotational entropy components for different cases of CNTs are well corroborated by the decay time of hydrogen bond (HB) correlation functions. A part of this event has been explained in terms of orientation of water molecules in the chain, i.e., the change in direction of dipole moment of water molecules in the chain and it has been revealed that the HBs of CNT confined water molecules show long preserving correlation if their rotations inside CNT are restricted. Furthermore, the translational entropy components are rationally integrated with the differing degree of translational constraints, added by the CNTs. To the best of our information, perhaps this is the first study where the thermodynamic effects introduced by H-termination and induced dipole of CNT have been investigated. Additionally, we present a bridge relation between “translational diffusivity and configurational entropy” for water transport from bulk phase to inside CNTs.

  19. The entropic forces and dynamic integrity of single file water in hydrophobic nanotube confinements.

    PubMed

    Sahu, Pooja; Ali, Sk M

    2015-11-14

    Water in nanotube exhibits remarkably different properties from the bulk phase, which can be exploited in various nanoconfinement based technologies. The properties of water within nanotube can be further tuned by varying the nanotube electrostatics and functionalization of nanotube ends. Here, therefore, we investigate the effect of quantum partial charges and carbon nanotube (CNT) termination in terms of associated entropic forces. An attempt has been made to correlate the entropic forces with various dynamical and structural properties. The simulated structural features are consistent with general theoretical aspects, in which the interfacial water molecules at H terminated CNT are found to be distributed in a different way as compared to other CNTs. The rotational entropy components for different cases of CNTs are well corroborated by the decay time of hydrogen bond (HB) correlation functions. A part of this event has been explained in terms of orientation of water molecules in the chain, i.e., the change in direction of dipole moment of water molecules in the chain and it has been revealed that the HBs of CNT confined water molecules show long preserving correlation if their rotations inside CNT are restricted. Furthermore, the translational entropy components are rationally integrated with the differing degree of translational constraints, added by the CNTs. To the best of our information, perhaps this is the first study where the thermodynamic effects introduced by H-termination and induced dipole of CNT have been investigated. Additionally, we present a bridge relation between "translational diffusivity and configurational entropy" for water transport from bulk phase to inside CNTs. PMID:26567673

  20. The entropic forces and dynamic integrity of single file water in hydrophobic nanotube confinements

    NASA Astrophysics Data System (ADS)

    Sahu, Pooja; Ali, Sk. M.

    2015-11-01

    Water in nanotube exhibits remarkably different properties from the bulk phase, which can be exploited in various nanoconfinement based technologies. The properties of water within nanotube can be further tuned by varying the nanotube electrostatics and functionalization of nanotube ends. Here, therefore, we investigate the effect of quantum partial charges and carbon nanotube (CNT) termination in terms of associated entropic forces. An attempt has been made to correlate the entropic forces with various dynamical and structural properties. The simulated structural features are consistent with general theoretical aspects, in which the interfacial water molecules at H terminated CNT are found to be distributed in a different way as compared to other CNTs. The rotational entropy components for different cases of CNTs are well corroborated by the decay time of hydrogen bond (HB) correlation functions. A part of this event has been explained in terms of orientation of water molecules in the chain, i.e., the change in direction of dipole moment of water molecules in the chain and it has been revealed that the HBs of CNT confined water molecules show long preserving correlation if their rotations inside CNT are restricted. Furthermore, the translational entropy components are rationally integrated with the differing degree of translational constraints, added by the CNTs. To the best of our information, perhaps this is the first study where the thermodynamic effects introduced by H-termination and induced dipole of CNT have been investigated. Additionally, we present a bridge relation between "translational diffusivity and configurational entropy" for water transport from bulk phase to inside CNTs.

  1. Membrane Vesicle Formation as a Multiple-Stress Response Mechanism Enhances Pseudomonas putida DOT-T1E Cell Surface Hydrophobicity and Biofilm Formation

    PubMed Central

    Baumgarten, Thomas; Sperling, Stefanie; Seifert, Jana; von Bergen, Martin; Steiniger, Frank; Wick, Lukas Y.

    2012-01-01

    Among the adaptive responses of bacteria to rapid changes in environmental conditions, those of the cell envelope are known to be the most crucial. Therefore, several mechanisms with which bacteria change their cell surface and membranes in the presence of different environmental stresses have been elucidated. Among these mechanisms, the release of outer membrane vesicles (MV) in Gram-negative bacteria has attracted particular research interest because of its involvement in pathogenic processes, such as that of Pseudomonas aeruginosa biofilm formation in cystic fibrosis lungs. In this study, we investigated the role of MV formation as an adaptive response of Pseudomonas putida DOT-T1E to several environmental stress factors and correlated it to the formation of biofilms. In the presence of toxic concentrations of long-chain alcohols, under osmotic stress caused by NaCl, in the presence of EDTA, and after heat shock, cells of this strain released MV within 10 min in the presence of a stressor. The MV formed showed similar size and charge properties, as well as comparable compositions of proteins and fatty acids. MV release caused a significant increase in cell surface hydrophobicity, and an enhanced tendency to form biofilms was demonstrated in this study. Therefore, the release of MV as a stress response could be put in a physiological context. PMID:22752175

  2. Porous Nanocomposites with Integrated Internal Domains: Application to Separation Membranes

    PubMed Central

    Li, Wenle; Walz, John Y.

    2014-01-01

    Asymmetric membranes with layered structure have made significant achievements due to their balanced properties and multi-functionalities that come from a combination of multiple layers. However, issues such as delamination and substructure resistance are generated by the intrinsic layered structure. Here, we present a strategy to integrate the traditional layered structure into an asymmetric but continuous porous network. Through infiltrations of microparticles and nanoparticles to targeted regions, active domains are created inside the porous scaffold versus having them applied externally. The fabricated internal active domains are highly adjustable in terms of its dimensions, pore size, and materials. We demonstrate that it is a general method that can be applicable to a wide variety of particles regardless of their material, dimensions, or geometry. By eliminating the external layered structure, problems such as those mentioned above can be eliminated. This integration technique can be extended to other devices required a layered structure, such as solid oxide fuel cells and lithium ion battery. PMID:24646923

  3. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum

    PubMed Central

    Li, Xiaochun; Roberti, Rita; Blobel, Günter

    2014-01-01

    Sterols are essential biological molecules in the majority of life forms. Sterol reductases1 including Delta-14 sterol reductase (C14SR), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbon-carbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B Receptor2 (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Delta-14 sterol reductase (maSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z, a homolog of human C14SR, LBR, and DHCR7, with the cofactor NADPH. The enzyme contains 10 transmembrane segments (TM). Its catalytic domain comprises the C-terminal half (containing TM6-10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure3 suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves maSR1 can reduce the double bond of a cholesterol biosynthetic intermediate demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases. PMID:25307054

  4. Closed and Semiclosed Interhelical Structures in Membrane vs Closed and Open Structures in Detergent for the Influenza Virus Hemagglutinin Fusion Peptide and Correlation of Hydrophobic Surface Area with Fusion Catalysis.

    PubMed

    Ghosh, Ujjayini; Xie, Li; Jia, Lihui; Liang, Shuang; Weliky, David P

    2015-06-24

    The ∼25 N-terminal "HAfp" residues of the HA2 subunit of the influenza virus hemagglutinin protein are critical for fusion between the viral and endosomal membranes at low pH. Earlier studies of HAfp in detergent support (1) N-helix/turn/C-helix structure at pH 5 with open interhelical geometry and N-helix/turn/C-coil structure at pH 7; or (2) N-helix/turn/C-helix at both pHs with closed interhelical geometry. These different structures led to very different models of HAfp membrane location and different models of catalysis of membrane fusion by HAfp. In this study, the interhelical geometry of membrane-associated HAfp is probed by solid-state NMR. The data are well-fitted to a population mixture of closed and semiclosed structures. The two structures have similar interhelical geometries and are planar with hydrophobic and hydrophilic faces. The different structures of HAfp in detergent vs membrane could be due to the differences in interaction with the curved micelle vs flat membrane with better geometric matching between the closed and semiclosed structures and the membrane. The higher fusogenicity of longer sequences and low pH is correlated with hydrophobic surface area and consequent increased membrane perturbation.

  5. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  6. Host Lipid and Temperature as Important Screening Variables for Crystallizing Integral Membrane Proteins in Lipidic Mesophases. Trials with Diacylglycerol Kinase

    PubMed Central

    Li, Dianfan; Shah, Syed T. A.; Caffrey, Martin

    2013-01-01

    A systematic study of the crystallization of an α-helical, integral membrane enzyme, diacylglycerol kinase, DgkA, using the lipidic cubic mesophase or in meso method is described. These trials have resulted in the production of blocky, rhombohedron-shaped crystals of diffraction quality currently in use for structure determination. Dramatic improvements in crystal quality were obtained when the identity of the lipid used to form the mesophase bilayer into which the protein was reconstituted as a prelude to crystallogenesis was varied. These monoacylglycerol lipids incorporated fatty acyl chains ranging from 14 to 18 carbon atoms long with cis olefinic bonds located toward the middle of the chain. Best crystals were obtained with a lipid that had an acyl chain 15 carbon atoms long with the double bond between carbons 7 and 8. It is speculated that the effectiveness of this lipid derives from hydrophobic mismatch between the target integral membrane protein and the bilayer of the host mesophase. Low temperature (4 °C) worked in concert with the short chain lipid to provide high quality crystals. Recommended screening strategies for crystallizing membrane proteins that include host lipid type and low temperature are made on the basis of this and related in meso crystallization trials. PMID:23956688

  7. Enhancing water retention and low-humidity proton conductivity of sulfonated poly(ether ether ketone) composite membrane enabled by the polymer-microcapsules with controllable hydrophilicity-hydrophobicity

    NASA Astrophysics Data System (ADS)

    He, Guangwei; Li, Yifan; Li, Zongyu; Nie, Lingli; Wu, Hong; Yang, Xinlin; Zhao, Yuning; Jiang, Zhongyi

    2014-02-01

    Four kinds of polymer microcapsules (PMCs) with different hydrophilicity-hydrophobicity are synthesized via distillation-precipitation polymerization (polymer microcapsules form by self-crosslinking of monomers/crosslinkers in this process) and incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare composite membranes. To improve the water retention of the PMCs, the hydrophilicity-hydrophobicity of the PMCs is manipulated by regulating the proportion of hydrophilic ethylene glycol dimethacrylate (EGDMA) and hydrophobic divinylbenzene (DVB) crosslinkers in the synthesis formula. The hydrophilicity of the PMCs decreases with increasing the content of polyDVB in the PMCs. The four kinds of PMCs exhibit different water retention properties. The PMCs with appropriate hydrophilic/hydrophobic balance (EGDMA: DVB = 1:1) possess the best water retention properties. Incorporation of PMCs into SPEEK matrix enhances the water-retention properties, and consequently increases proton conductivity to 0.0132 S cm-1 under 20% relative humidity, about thirteen times higher than that of the SPEEK control membrane. Moreover, the incorporation of PMCs reduces the activation energy for proton conduction and the methanol permeability of the membranes. This study may be helpful to rational design of excellent water-retention materials.

  8. Spacesuit Water Membrane Evaporator Integration with the ISS Extravehicular Mobility

    NASA Technical Reports Server (NTRS)

    Margiott, Victoria; Boyle, Robert

    2014-01-01

    NASA has developed a Solid Water Membrane Evaporation (SWME) to provide cooling for the next generation spacesuit. One approach to increasing the TRL of the system is to incorporate this hardware with the existing EMU. Several integration issues were addressed to support a potential demonstration of the SWME with the existing EMU. Systems analysis was performed to assess the capability of the SWME to maintain crewmember cooling and comfort as a replacement for sublimation. The materials of the SWME were reviewed to address compatibility with the EMU. Conceptual system placement and integration with the EMU via an EVA umbilical system to ensure crew mobility and Airlock egress were performed. A concept of operation for EVA use was identified that is compatible with the existing system. This concept is extensible as a means to provide cooling for the existing EMU. The cooling system of one of the EMUs on orbit has degraded, with the root cause undetermined. Should there be a common cause resident on ISS, this integration could provide a means to recover cooling capability for EMUs on orbit.

  9. Development of an integrated membrane process for water reclamation.

    PubMed

    Lew, C H; Hu, J Y; Song, L F; Lee, L Y; Ong, S L; Ng, W J; Seah, H

    2005-01-01

    An integrated membrane process (IMP) comprising a membrane bioreactor (MBR) and a reverse osmosis (RO) process was developed for water reclamation. Wastewater was treated by an MBR operated at a sludge retention time (SRT) of 20 days and a hydraulic retention time (HRT) of 5.5 h. The IMP had an overall recovery efficiency of 80%. A unique feature of the IMP was the recycling of a fraction of RO concentrate back to the MBR. Experimental results revealed that a portion of the slow- and hard-to-degrade organic constituents in the recycle stream could be degraded by an acclimated biomass leading to an improved MBR treatment efficiency. Although recycling concentrated constituents could impose an inhibitory effect on the biomass and suppress their respiratory activities, results obtained suggested that operating MBR (in the novel IMP) at an F/M ratio below 0.03 g TOC/g VSS.day could yield an effluent quality comparable to that achievable without concentrate recycling. It is noted in this study that the novel IMP could achieve an average overall TOC removal efficiency of 88.940% and it consistently produced product water usable for high value reuse applications.

  10. Integration between chemical oxidation and membrane thermophilic biological process.

    PubMed

    Bertanza, G; Collivignarelli, M C; Crotti, B M; Pedrazzani, R

    2010-01-01

    Full scale applications of activated sludge thermophilic aerobic process for treatment of liquid wastes are rare. This experimental work was carried out at a facility, where a thermophilic reactor (1,000 m(3) volume) is operated. In order to improve the global performance of the plant, it was decided to upgrade it, by means of two membrane filtration units (ultrafiltration -UF-, in place of the final sedimentation, and nanofiltration -NF-). Subsequently, the integration with chemical oxidation (O(3) and H(2)O(2)/UV processes) was taken into consideration. Studied solutions dealt with oxidation of both the NF effluents (permeate and concentrate). Based on experimental results and economic evaluation, an algorithm was proposed for defining limits of convenience of this process.

  11. Polycaprolactone multicore-matrix particle for the simultaneous encapsulation of hydrophilic and hydrophobic compounds produced by membrane emulsification and solvent diffusion processes.

    PubMed

    Imbrogno, A; Dragosavac, M M; Piacentini, E; Vladisavljević, G T; Holdich, R G; Giorno, L

    2015-11-01

    Co-encapsulation of drugs in the same carrier, as well as the development of microencapsulation processes for biomolecules using mild operating conditions, and the production of particles with tailored size and uniformity are major challenges for encapsulation technologies. In the present work, a suitable method consisting of the combination of membrane emulsification with solvent diffusion is reported for the production of multi-core matrix particles with tailored size and potential application in multi-therapies. In the emulsification step, the production of a W/O/W emulsion was carried out using a batch Dispersion Cell for formulation testing and subsequently a continuous azimuthally oscillating membrane emulsification system for the scaling-up of the process to higher capacities. In both cases precise and gentle control of droplet size and uniformity of the W/O/W emulsion was achieved, preserving the encapsulation of the drug model within the droplet. Multi-core matrix particles were produced in a post emulsification step using solvent diffusion. The compartmentalized structure of the multicore-matrix particle combined with the different chemical properties of polycaprolactone (matrix material) and fish gelatin (core material) was tested for the simultaneous encapsulation of hydrophilic (copper ions) and hydrophobic (α-tocopherol) test components. The best operating conditions for the solidification of the particles to achieve the highest encapsulation efficiency of copper ions and α-tocopherol of 99 (± 4)% and 93(± 6)% respectively were found. The multi-core matrix particle produced in this work demonstrates good potential as a co-loaded delivery system.

  12. Characterisation of organic matter in IX and PACl treated wastewater in relation to the fouling of a hydrophobic polypropylene membrane.

    PubMed

    Myat, Darli T; Mergen, Max; Zhao, Oliver; Stewart, Matthew B; Orbell, John D; Gray, Stephen

    2012-10-15

    Extensive organic characterisation of a wastewater using liquid chromatography with a photodiode array and fluorescence spectroscopy (Method A), and UV(254) and organic carbon detector (Method B) was undertaken, as well as with fluorescence excitation emission spectroscopy (EEM). Characterisation was performed on the wastewater before and after ion exchange (IX) treatment and polyaluminium chlorohydrate (PACl) coagulation, and following microfiltration of the wastewater and pre-treated wastewaters. Characterisation by EEM was unable to detect biopolymers within the humic rich wastewaters and was not subsequently used to characterise the MF permeates. IX treatment preferentially removed low molecular weight (MW) organic acids and neutrals, and moderate amounts of biopolymers in contrast to a previous report of no biopolymer removal with IX. PACl preferentially removed moderate MW humic and fulvic acids, and large amounts of biopolymers. PACl showed a great preference for removal of proteins from the biopolymer component in comparison to IX. An increase in the fluorescence response of tryptophan-like compounds in the biopolymer fraction following IX treatment suggests that low MW neutrals may influence the structure and/or inhibit aggregation of organic compounds. Fouling rates for IX and PACl treated wastewaters had high initial fouling rates that reduced to lower fouling rates with time, while the untreated Eastern Treatment Plant (ETP) wastewater displayed a consistent, high rate of fouling. The results for the IX and PACl treated wastewaters were consistent with the long-term fouling rate being determined by cake filtration while both pore constriction and cake filtration contributed to the higher initial fouling rates. Higher rejection of biopolymers was observed for PACl and IX waters compared to the untreated ETP water, suggesting increased adhesion of biopolymers to the membrane or cake layer may lead to the higher rejection.

  13. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    ERIC Educational Resources Information Center

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  14. Voltage-Gated Hydrophobic Nanopores

    SciTech Connect

    Lavrik, Nickolay V

    2011-01-01

    Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even though the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered in long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transitions can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.

  15. Process Intensification with Integrated Water-Gas-Shift Membrane Reactor

    SciTech Connect

    2009-11-01

    This factsheet describes a research project whose objective is to develop hydrogen-selective membranes for an innovative gas-separation process based on a water-gas-shift membrane reactor (WGS-MR) for the production of hydrogen.

  16. Phase separation in biological membranes: integration of theory and experiment

    PubMed Central

    Elson, Elliot L.; Fried, Eliot; Dolbow, John E.; Genin, Guy M.

    2013-01-01

    Lipid bilayer model membranes can undergo transitions between ordered and disordered phases, and membranes that contain a mixture of lipid species can undergo phase separations. Studies of these transformations are of interest for what they can tell us about the interaction energies of lipid molecules of different species and conformations. Nanoscopic phases can provide a model for membrane rafts, which have important biological functions in cell membranes. Important questions are whether lipid nanodomains can exist in stable equilibrium in membranes and what is the distribution of their sizes in membranes of different composition. It is also important to know the lifetimes of nanodomains. Theoretical methods have supplied much important information on these questions, but better experimental methods are needed to detect and characterize nanodomains under normal membrane conditions. This review summarizes linkages between theoretical and experimental studies of phase separation in lipid bilayer model membranes. PMID:20192775

  17. Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family.

    PubMed

    Shanklin, John; Whittle, Edward

    2003-06-19

    Pseudomonas oleovorans alkane omega-hydroxylase (AlkB) is an integral membrane diiron enzyme that shares a requirement for iron and oxygen for activity in a manner similar to that of the non-heme integral membrane desaturases, epoxidases, acetylenases, conjugases, ketolases, decarbonylase and methyl oxidases. No overall sequence similarity is detected between AlkB and these desaturase-like enzymes by computer algorithms; however, they do contain a series of histidine residues in a similar relative positioning with respect to hydrophobic regions thought to be transmembrane domains. To test whether these conserved histidine residues are functionally equivalent to those of the desaturase-like enzymes we used scanning alanine mutagenesis to test if they are essential for activity of AlkB. These experiments show that alanine substitution of any of the eight conserved histidines results in complete inactivation, whereas replacement of three non-conserved histidines in close proximity to the conserved residues, results in only partial inactivation. These data provide the first experimental support for the hypotheses: (i) that the histidine motif in AlkB is equivalent to that in the desaturase-like enzymes and (ii) that the conserved histidine residues play a vital role such as coordinating the Fe ions comprising the diiron active site. PMID:12804773

  18. Yersinia pseudotuberculosis and Yersinia pestis show increased outer membrane permeability to hydrophobic agents which correlates with lipopolysaccharide acyl-chain fluidity.

    PubMed

    Bengoechea, J A; Brandenburg, K; Seydel, U; Díaz, R; Moriyón, I

    1998-06-01

    The hydrophobic probe N-phenyl-1-naphthylamine accumulated less in non-pathogenic Yersinia spp. and non-pathogenic and pathogenic Yersinia enterocolitica than in Yersinia pseudotuberculosis or Yersinia pestis. This was largely due to differences in the activity of efflux systems, but also to differences in outer membrane permeability because uptake of the probe in KCN/arsenate-poisoned cells was slower in the former group than in Y. pseudotuberculosis and Y. pestis. The probe accumulation rate was higher in Y. pseudotuberculosis and Y. pestis grown at 37 degrees C than at 26 degrees C and was always highest in Y. pestis. These yersiniae had LPSs with shorter polysaccharides than Y. enterocolitica, particularly when grown at 37 degrees C. Gel<-->liquid-crystalline phase transitions (Tc 28-31 degrees C) were observed in LPS aggregates of Y. enterocolitica grown at 26 and 37 degrees C, with no differences between non-pathogenic and pathogenic strains. Y. pseudotuberculosis and Y. pestis LPSs showed no phase transitions and, although the fluidity of LPSs of Y. pseudotuberculosis and Y. enterocolitica grown at 26 degrees C were close below the Tc of the latter, they were always in a more fluid state than Y. enterocolitica LPS. Comparison with previous studies of Salmonella choleraesuis subsp. choleraesuis serotype minnesota rough LPS showed that the increased fluidity and absence of transition of Y. pseudotuberculosis and Y. pestis LPSs cannot be explained by their shorter polysaccharides and suggested differences at the lipid A/core level. It is proposed that differences in LPS-LPS interactions and efflux activity explain the above observations and reflect the adaptation of Yersinia spp. to different habitats.

  19. Air separation by integrally asymmetric hollow-fiber membranes

    SciTech Connect

    Feng, X.; Ivory, J.; Rajan, V.S.V.

    1999-10-01

    Integrally asymmetric hollow-fiber membranes each with an outer skin layer and a porous substrate were studied for air separation to produce nitrogen and oxygen enriched air. The test on both bore-side feed and shell-side feed with concurrent and countercurrent flow arrangements for a wide range of stage cuts shows that the bore-side feed countercurrent flow was the most advantageous configuration in the permeator design. When operated in the bore-side feed countercurrent configuration, the permeator performance compared favorably with the commercial systems available for nitrogen production. A mathematical model was developed for this configuration. Since the concentration polarization in the substrate was a major concern for the bore-side feed configuration, especially for high stage-cut operations, a theoretical approach was pursued to formulate the concentration polarization. This allows for the diagnosis of the significance of concentration polarization in a specific permeation process, although it is difficult to predict concentration polarization accurately due to limited knowledge of the detailed membrance structure.

  20. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel.

    PubMed

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F; Sepúlveda, Romina V; Aguayo, Daniel; González-Nilo, Fernando; González, Carlos; Latorre, Ramón

    2015-01-01

    Large-conductance Ca(2+)- and voltage-activated K(+) channel (BK) open probability is enhanced by depolarization, increasing Ca(2+) concentration, or both. These stimuli activate modular voltage and Ca(2+) sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca(2+), profoundly hinders channel opening while showing only minor effects on the voltage sensor active-resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca(2+) binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open-closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open-closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations. PMID:25548136

  1. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel

    PubMed Central

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F.; Sepúlveda, Romina V.; Aguayo, Daniel; González-Nilo, Fernando

    2015-01-01

    Large-conductance Ca2+- and voltage-activated K+ channel (BK) open probability is enhanced by depolarization, increasing Ca2+ concentration, or both. These stimuli activate modular voltage and Ca2+ sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca2+, profoundly hinders channel opening while showing only minor effects on the voltage sensor active–resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca2+ binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open–closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open–closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations. PMID:25548136

  2. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel.

    PubMed

    Carrasquel-Ursulaez, Willy; Contreras, Gustavo F; Sepúlveda, Romina V; Aguayo, Daniel; González-Nilo, Fernando; González, Carlos; Latorre, Ramón

    2015-01-01

    Large-conductance Ca(2+)- and voltage-activated K(+) channel (BK) open probability is enhanced by depolarization, increasing Ca(2+) concentration, or both. These stimuli activate modular voltage and Ca(2+) sensors that are allosterically coupled to channel gating. Here, we report a point mutation of a phenylalanine (F380A) in the S6 transmembrane helix that, in the absence of internal Ca(2+), profoundly hinders channel opening while showing only minor effects on the voltage sensor active-resting equilibrium. Interpretation of these results using an allosteric model suggests that the F380A mutation greatly increases the free energy difference between open and closed states and uncouples Ca(2+) binding from voltage sensor activation and voltage sensor activation from channel opening. However, the presence of a bulky and more hydrophobic amino acid in the F380 position (F380W) increases the intrinsic open-closed equilibrium, weakening the coupling between both sensors with the pore domain. Based on these functional experiments and molecular dynamics simulations, we propose that F380 interacts with another S6 hydrophobic residue (L377) in contiguous subunits. This pair forms a hydrophobic ring important in determining the open-closed equilibrium and, like an integration node, participates in the communication between sensors and between the sensors and pore. Moreover, because of its effects on open probabilities, the F380A mutant can be used for detailed voltage sensor experiments in the presence of permeant cations.

  3. Importance of Membrane Structural Integrity for RPE65 Retinoid Isomerization Activity

    SciTech Connect

    Golczak, Marcin; Kiser, Philip D.; Lodowski, David T.; Maeda, Akiko; Palczewski, Krzysztof

    2010-04-05

    Regeneration of visual chromophore in the vertebrate visual cycle involves the retinal pigment epithelium-specific protein RPE65, the key enzyme catalyzing the cleavage and isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol. Although RPE65 has no predicted membrane spanning domains, this protein predominantly associates with microsomal fractions isolated from bovine retinal pigment epithelium (RPE). We have re-examined the nature of RPE65 interactions with native microsomal membranes by using extraction and phase separation experiments. We observe that hydrophobic interactions are the dominant forces that promote RPE65 association with these membranes. These results are consistent with the crystallographic model of RPE65, which features a large lipophilic surface that surrounds the entrance to the catalytic site of this enzyme and likely interacts with the hydrophobic core of the endoplasmic reticulum membrane. Moreover, we report a critical role for phospholipid membranes in preserving the retinoid isomerization activity and physical properties of RPE65. Isomerase activity measured in bovine RPE was highly sensitive to phospholipase A{sup 2} treatment, but the observed decline in 11-cis-retinol production did not directly reflect inhibition by products of lipid hydrolysis. Instead, a direct correlation between the kinetics of phospholipid hydrolysis and retinoid isomerization suggests that the lipid membrane structure is critical for RPE65 enzymatic activity. We also provide evidence that RPE65 operates in a multiprotein complex with retinol dehydrogenase 5 and retinal G protein-coupled receptor in RPE microsomes. Modifications in the phospholipid environment affecting interactions with these protein components may be responsible for the alterations in retinoid metabolism observed in phospholipid-depleted RPE microsomes. Thus, our results indicate that the enzymatic activity of native RPE65 strongly depends on its membrane binding and

  4. Integration of nanoporous membranes into microfluidic devices: electrokinetic bio-sample pre-concentration.

    PubMed

    Kim, Minseok; Kim, Taesung

    2013-10-21

    The integration of nanoporous membranes into microfluidic devices allows a wide range of analytical and biochemical applications such as stable concentration gradient generation, sample pre-concentration, and ion and biomolecule filtration in a controllable manner. However, further applications of nanoporous membranes in microfluidic devices require rapid and controllable fabrication methods of various nanoporous precursor materials; currently, few such methods exist. Here, we describe simple and robust methods that can be used for microfabricating four different precursor materials as leakage-tight membranes in a microfluidic channel network. The methods consist of a common integration process and individual solidification processes such as solvent evaporation, UV-curing, and temperature treatment. We demonstrate that the fabricated membranes can be used for electrokinetic, nanofluidic pre-concentration of bio-samples such as proteins, cells, and microspheres on either the anodic or cathodic side of the membranes. In addition, we not only characterize the physicochemical properties of the membranes such as conductance of membrane-integrated microchannels, relative permselectivity, and pre-concentration ability, but also compare fabrication availability, membrane robustness, surface charge density tunability and biocompatibility with buffer solutions. The methods are versatile for many nanoporous precursor materials and easy to control the location and dimension of the membranes. Hence, the methods developed and the characterized properties of the membranes tested in this work could be widely employed for further applications of nanoporous membranes in microfluidic systems.

  5. Membrane curvature in cell biology: An integration of molecular mechanisms.

    PubMed

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  6. Membrane curvature in cell biology: An integration of molecular mechanisms.

    PubMed

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists. PMID:27528656

  7. Monoclonal antibody to an integral membrane protein, the lactose permease.

    PubMed

    Eash, J; Villarejo, M R

    1983-02-01

    A monoclonal IgG antibody directed against the lactose permease was produced from animals inoculated with membranes of a lac Y plasmid strain. The appropriate antibody was selected by a series of ELISA assays in which membranes, purified permease, or a lac Y-Z chimeric protein was the immobilized antigen. The antibody recognizes a portion of the permease exposed on the surface of membrane vesicles but does not inhibit lactose transport.

  8. An Integrated Framework Advancing Membrane Protein Modeling and Design

    PubMed Central

    Weitzner, Brian D.; Duran, Amanda M.; Tilley, Drew C.; Elazar, Assaf; Gray, Jeffrey J.

    2015-01-01

    Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1) prediction of free energy changes upon mutation; (2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design. PMID:26325167

  9. An Integrated Framework Advancing Membrane Protein Modeling and Design.

    PubMed

    Alford, Rebecca F; Koehler Leman, Julia; Weitzner, Brian D; Duran, Amanda M; Tilley, Drew C; Elazar, Assaf; Gray, Jeffrey J

    2015-09-01

    Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1) prediction of free energy changes upon mutation; (2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design. PMID:26325167

  10. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  11. Identification and localization of integral membrane proteins of virulent Treponema pallidum subsp. pallidum by phase partitioning with the nonionic detergent triton X-114.

    PubMed

    Radolf, J D; Chamberlain, N R; Clausell, A; Norgard, M V

    1988-02-01

    Integral membrane proteins of Treponema pallidum subsp. pallidum (T. pallidum) were identified by phase partitioning with the nonionic detergent Triton X-114; antigens with apparent molecular masses of 47, 38, 36, 34, 32, 17, and 15 kilodaltons (kDa) were identified in the detergent phase. Immunoblotting with murine monoclonal antibodies directed against pathogen-specific 47- and 34-kDa T. pallidum antigens confirmed their presence in the detergent phase. Endoflagellar proteins of T. pallidum were not detected in immunoblots of detergent-phase proteins when monospecific antisera directed against endoflagella of the nonpathogenic T. phagedenis biotype Reiter were used. At detergent concentrations (0.02 and 0.1%) which appeared to solubilize selectively the outer membranes of treponemes radiolabeled with 35S in vitro, limited amounts of detergent-phase proteins were immunoprecipitated. Greater amounts of detergent-phase proteins were extracted at higher detergent concentrations (0.5 and 2.0%) which resulted in both outer membrane solubilization and ultrastructural derangements of the residual cytoplasmic bodies. Furthermore, Triton X-114 extraction of both intact treponemes and organisms without outer membranes yielded detergent phases with similar protein profiles. The results of these experiments indicate that the hydrophobic proteins identified by Triton X-114 are not located exclusively in the T. pallidum outer membrane. The results are also consistent with the hypothesis that the T. pallidum outer membrane is a protein-deficient lipid bilayer.

  12. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size among the different viruses. Hu...

  13. Topological Predictions for Integral Membrane Channel and Carrier Proteins

    PubMed Central

    Abhinay, Reddy; Jaehoon, Cho; Sam, Ling; Vamsee, Reddy; Maksim, Shlykov; Milton, Saier

    2014-01-01

    We evaluated topological predictions for nine different programs, HMMTOP, TMHMM, SVMTOP, DAS, SOSUI, TOPCONS, PHOBIUS, MEMSAT-SVM (hereinafter referred to as MEMSAT), and SPOCTOPUS. These programs were first evaluated using four large topologically well-defined families of secondary transporters, and the three best programs were further evaluated using topologically more diverse families of channels and carriers. In the initial studies, the order of accuracy was: SPOCTOPUS>MEMSAT>HMMTOP>TOPCONS>PHOBIUS>TMHMM>SVMTOP>DAS>S OSUI. Some families, such as the Sugar Porter family (2.A.1.1) of the Major Facilitator Superfamily (MFS; TC# 2.A.1) and the Amino acid/Polyamine/Organocation (APC) Family (TC# 2.A.3), were correctly predicted with high accuracy while others, such as the Mitochondrial Carrier (MC) (TC# 2.A.29) and the K+ transporter (Trk) families (TC# 2.A.38), were predicted with much lower accuracy. For small, topologically homogeneous families, SPOCTOPUS and MEMSAT were generally most reliable, while with large, more diverse superfamilies, HMMTOP often proved to have the greatest prediction accuracy. We next developed a novel program, TM-STATS, that tabulates HMMTOP, SPOCTOPUS or MEMSAT-based topological predictions for any subdivision (class, subclass, superfamily, family, subfamily, or any combination of these) of the Transporter Classification Database (TCDB; www.tcdb.org) and examined the following subclasses: α-type channel proteins (TC subclasses 1.A and 1.E), secreted poreforming toxins (TC subclass 1.C) and secondary carriers (subclass 2.A). Histograms 3 were generated for each of these subclasses, and the results were analyzed according to subclass, family and protein. The results provide an update of topological predictions for integral membrane transport proteins as well as guides for the development of more reliable topological prediction programs, taking family-specific characteristics into account. PMID:24992992

  14. Daptomycin exerts rapid bactericidal activity against Bacillus anthracis without disrupting membrane integrity

    PubMed Central

    Xing, Yu-hua; Wang, Wei; Dai, Su-qin; Liu, Ti-yan; Tan, Jun-jie; Qu, Guo-long; Li, Yu-xia; Ling, Yan; Liu, Gang; Fu, Xue-qi; Chen, Hui-peng

    2014-01-01

    Aim: To examine whether the novel cyclic lipopeptide antibiotic daptomycin could be used to treat anthrax and to study the mechanisms underlying its bactericidal action against Bacillus anthracis. Methods: Spore-forming B anthracis AP422 was tested. MIC values of antibiotics were determined. Cell membrane potential was measured using flow cytometric assays with membrane potential-sensitive fluorescent dyes. Cell membrane integrity was detected using To-Pro-3 iodide staining and transmission electron microscopy. K+ efflux and Na+ influx were measured using the fluorescent probes PBFI and SBFI-AM, respectively. Results: Daptomycin exhibited rapid bactericidal activity against vegetative B anthracis with a MIC value of 0.78 μg/mL, which was comparable to those of ciprofloxacin and penicillin G. Furthermore, daptomycin prevented the germinated spores from growing into vegetative bacteria. Daptomycin concentration-dependently dissipated the membrane potential of B anthracis and caused K+ efflux and Na+ influx without disrupting membrane integrity. In contrast, both ciprofloxacin and penicillin G did not change the membrane potential of vegetative bacteria or spores. Penicillin G disrupted membrane integrity of B anthracis, whereas ciprofloxacin had no such effect. Conclusion: Daptomycin exerts rapid bactericidal action against B anthracis via reducing membrane potential without disrupting membrane integrity. This antibiotic can be used as an alternate therapy for B anthracis infections. PMID:24362329

  15. An integrated membrane system for the biocatalytic production of 3'-sialyllactose from dairy by-products.

    PubMed

    Luo, Jianquan; Nordvang, Rune T; Morthensen, Sofie T; Zeuner, Birgitte; Meyer, Anne S; Mikkelsen, Jørn Dalgaard; Pinelo, Manuel

    2014-08-01

    An integrated membrane system was investigated for the production of 3'-sialyllactose by an engineered sialidase using casein glycomacropeptide (CGMP) and lactose as substrates. CGMP was purified by ultrafiltration (UF) to remove any small molecules present and then an enzymatic membrane reactor (EMR) was used to separate the product and reuse the enzyme. A PLCC regenerated cellulose membrane was found to be the most suitable for both the UF purification and EMR. Subsequently, nanofiltration (NF) was conducted to increase the purity of the 3'-sialyllactose by removing the excess lactose present. The NTR7450 membrane outperformed others in NF due to its high retention of 3'-sialyllactose (98%) and relatively low rejection of lactose (40%). The lactose in the permeate could be concentrated by the NF45 membrane and recycled into the EMR. The described integrated membrane system enables a more economic and efficient enzymatic production of 3'-sialyllactose. PMID:24880807

  16. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    PubMed

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%.

  17. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    PubMed

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. PMID:27176649

  18. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  19. HAMLET Interacts with Lipid Membranes and Perturbs Their Structure and Integrity

    PubMed Central

    Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-01-01

    Background Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. Methodology/Principal Findings We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLAall-Ala). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. Conclusions/Significance The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death. PMID:20186341

  20. Protective effect of black tea on integral membrane proteins in rat liver.

    PubMed

    Szachowicz-Petelska, Barbara; Skrzydlewska, Elżbieta; Figaszewski, Zbigniew

    2013-01-01

    Ethanol intoxication is accompanied by oxidative stress formation. Consequently, it leads to disturbances in cellular metabolism that can alter the structure and function of cell membrane components. Black tea displays antioxidant properties, protects membrane phospholipids and may protect integral membrane proteins. In the present study, we examined whether black tea induces changes in the liver integral membrane proteins of 12-months old rats chronically intoxicated with ethanol. To estimate qualitatively and quantitatively the levels of the liver integral membrane proteins, the proteins were selectively hydrolyzed by trypsin, the obtained peptides were resolved by HPLC and the levels of specific amino acids within the individual peptides were determined. All of the obtained peptides contained phenylalanine (Phe), cysteine (Cys) and lysine (Lys). Compared to the control group, rats in the ethanol intoxication group showed decreased liver levels of integral membrane proteins as well as fewer trypsin-hydrolyzed peptides and amino acids in the hydrolyzed peptides. Administration of black tea to ethanol-intoxicated rats partially protected proteins against the structural changes caused by ethanol. Black tea prevented decreases in the levels of cysteine (in about 90% of cases), lysine (in about 60% of cases), phenylalanine (in about 70% of cases) and examined peptides (in about 60% of cases). The liver protein level was higher (by about 18%) in rats who received black tea and ethanol than in those who received ethanol alone. In conclusion, black tea partially protects the composition and level of rat liver cell integral membrane proteins against changes caused by ethanol intoxication.

  1. Modulation of gramicidin channel conformation and organization by hydrophobic mismatch in saturated phosphatidylcholine bilayers.

    PubMed

    Kelkar, Devaki A; Chattopadhyay, Amitabha

    2007-05-01

    The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.

  2. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review.

    PubMed

    Yuan, Heyang; He, Zhen

    2015-11-01

    Bioelectrochemical systems (BES) represent an energy-efficient approach for wastewater treatment, but the effluent still requires further treatment for direct discharge or reuse. Integrating membrane filtration in BES can achieve high-quality effluents with additional benefits. Three types of filtration membranes, dynamic membrane, ultrafiltration membrane and forward osmosis membrane that are grouped based on pore size, have been studied for integration in BES. The integration can be accomplished either in an internal or an external configuration. In an internal configuration, membranes can act as a separator between the electrodes, or be immersed in the anode/cathode chamber as a filtration component. The external configuration allows BES and membrane module to be operated independently. Given much progress and interest in the integration of membrane filtration into BES, this paper has reviewed the past studies, described various integration methods, discussed the advantages and limitations of each integration, and presented challenges for future development.

  3. Correlation study of microalgae carbonation in membrane integrated photobioreactor

    NASA Astrophysics Data System (ADS)

    Suali, E.; Sarbatly, R.; Shaleh, S. R. M.; Lahin, F. A.; Anisuzzaman, S. M.

    2016-06-01

    Microalgae ability to utilise CO2 higher compared to terrestrial plant making it suitable for biomass production and as CO2 utiliser. This could be one of many ways to preserve a safer and healthier environment with less air pollutant. For study purposes, CO2 usually transported to microalgae culture broth with the aid of membrane technology to prevent formation of large bubble and to accelerate the carbonation of microalgal media. However, membrane susceptible to accumulation of CO2, which can cause extreme acidic to microalgal media. This prevents microalgae to assimilate CO2. Thus, this study proposes correlations to prevent the extreme acidic: which represents the relationship of: (1) CO2 inlet and accumulation, (2) CO2 inlet and CO2 at the membrane-liquid interphase and (3) CO2 inlet and CO2 solubility in the media. The correlations were successfully validated with a deviation of less than 20% compared to the theoretical value.

  4. Probing the roles of Ca(2+) and Mg(2+) in humic acids-induced ultrafiltration membrane fouling using an integrated approach.

    PubMed

    Wang, Long-Fei; He, Dong-Qin; Chen, Wei; Yu, Han-Qing

    2015-09-15

    Membrane fouling induced by natural organic matter (NOM) negatively affects the performance of ultrafiltration (UF) technology in producing drinking water. Divalent cation is found to be an important factor that affects the NOM-induced membrane fouling process. In this work, attenuated total reflection-Fourier transformation infrared spectroscopy (ATR-FTIR) coupled with quartz crystal microbalance (QCM), assisted by isothermal titration calorimetry (ITC), is used to explore the contribution of Mg(2+) and Ca(2+), the two abundant divalent cations in natural water, to the UF membrane fouling caused by humic acid (HA) at a molecular level. The results show that Ca(2+) exhibited superior performance in accelerating fouling compared to Mg(2+). The hydrophobic polyethersulfone (PES) membrane exhibited greater complexation with HA in the presence of Mg(2+) and Ca(2+), compared to the hydrophilic cellulose membrane, as evidenced by the more intense polysaccharide C-O, aromatic C=C and carboxylic C=O bands in the FTIR spectra. The QCM and ITC measurements provide quantitative evidence to support that Ca(2+) was more effective than Mg(2+) in binding with HA and accumulating foulants on the membrane surfaces. The higher charge neutralization capacity and more favorable binding ability of Ca(2+) were found to be responsible for its greater contribution to the NOM-induced membrane fouling than Mg(2+). This work offers a new insight into the mechanism of cation-mediated NOM-induced membrane fouling process, and demonstrates that such an integrated ATR-FTIR/QCM/ITC approach could be a useful tool to explore other complicated interaction processes in natural and engineered environments. PMID:26094086

  5. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    SciTech Connect

    Shah, V. A. Gammon, P. M.; Rhead, S. D.; Halpin, J. E.; Trushkevych, O.; Wilson, N. R.; Myronov, M.; Edwards, R. S.; Patchett, D. H.; Allred, P. S.; Prest, M. J.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Chávez-Ángel, E.; Shchepetov, A.; Prunnila, M.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.; and others

    2014-04-14

    A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm{sup 2}. We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials.

  6. integrating Solid State NMR and Computations in Membrane Protein Science

    NASA Astrophysics Data System (ADS)

    Cross, Timothy

    2015-03-01

    Helical membrane protein structures are influenced by their native environment. Therefore the characterization of their structure in an environment that models as closely as possible their native environment is critical for achieving not only structural but functional understanding of these proteins. Solid state NMR spectroscopy in liquid crystalline lipid bilayers provides an excellent tool for such characterizations. Two classes of restraints can be obtained - absolute restraints that constrain the structure to a laboratory frame of reference when using uniformly oriented samples (approximately 1° of mosaic spread) and relative restraints that restrain one part of the structure with respect to another part such as torsional and distance restraints. Here, I will discuss unique restraints derived from uniformly oriented samples and the characterization of initial structures utilizing both restraint types, followed by restrained molecular dynamics refinement in the same lipid bilayer environment as that used for the experimental restraint collection. Protein examples will be taken from Influenza virus and Mycobacterium tuberculosis. When available comparisons of structures to those obtained using different membrane mimetic environments will be shown and the causes for structural distortions explained based on an understanding of membrane biophysics and its sophisticated influence on membrane proteins.

  7. The outer membrane phospholipase A is essential for membrane integrity and type III secretion in Shigella flexneri

    PubMed Central

    Wang, Xia; Jiang, Feng; Zheng, Jianhua; Chen, Lihong; Dong, Jie; Sun, Lilian; Zhu, Yafang; Liu, Bo; Yang, Jian; Yang, Guowei

    2016-01-01

    Outer membrane phospholipase A (OMPLA) is an enzyme located in the outer membrane of Gram-negative bacteria. OMPLA exhibits broad substrate specificity, and some of its substrates are located in the cellular envelope. Generally, the enzymatic activity can only be induced by perturbation of the cell envelope integrity through diverse methods. Although OMPLA has been thoroughly studied as a membrane protein in Escherichia coli and is constitutively expressed in many other bacterial pathogens, little is known regarding the functions of OMPLA during the process of bacterial infection. In this study, the proteomic and transcriptomic data indicated that OMPLA in Shigella flexneri, termed PldA, both stabilizes the bacterial membrane and is involved in bacterial infection under ordinary culture conditions. A series of physiological assays substantiated the disorganization of the bacterial outer membrane and the periplasmic space in the ΔpldA mutant strain. Furthermore, the ΔpldA mutant strain showed decreased levels of type III secretion system expression, contributing to the reduced internalization efficiency in host cells. The results of this study support that PldA, which is widespread across Gram-negative bacteria, is an important factor for the bacterial life cycle, particularly in human pathogens. PMID:27655730

  8. Targeting of membranes to sea urchin sperm chromatin is mediated by a lamin B receptor-like integral membrane protein

    PubMed Central

    1996-01-01

    We have identified an integral membrane protein of sea urchin gametes with an apparent molecular mass of 56 kD that cross-reacts with an antibody against the nucleoplasmic NH2-terminal domain of human lamin B receptor (LBR). In mature sperm, p56 is located at the tip and base of the nucleus from where it is removed by egg cytosol in vitro. In the egg, p56 is present in a subset of cytoplasmic membranes (MV2 beta) which contributes the bulk of the nuclear envelope during male pronuclear formation. p56-containing vesicles are required for nuclear envelope assembly and have a chromatin-binding capacity that is mediated by p56. Lamin B is not present in these vesicles and is imported into the nucleus from a soluble pool at a later stage of pronuclear formation. Lamin B incorporation and addition of new membranes are necessary for pronuclear swelling and nuclear envelope growth. We suggest that p56 is a sea urchin LBR homologue that targets membranes to chromatin and later anchors the membrane to the lamina. PMID:8991085

  9. The Hydrophobic Effect.

    ERIC Educational Resources Information Center

    Huque, Entazul M.

    1989-01-01

    Discusses the physical basis and current understanding of hydrophobic effects. The thermodynamic background of the effects, hydrophobic hydration, and hydrophobic interactions are described. Four existing controversies are outlined. (YP)

  10. Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins.

    PubMed

    Tribet, C; Diab, C; Dahmane, T; Zoonens, M; Popot, J-L; Winnik, F M

    2009-11-01

    The aggregation of integral membrane proteins (IMPs) in aqueous media is a significant concern for mechanistic investigations and pharmaceutical applications of this important class of proteins. Complexation of IMPs with amphiphiles, either detergents or short amphiphilic polymers known as amphipols (APols), renders IMPs water-soluble. It is common knowledge that IMP-detergent complexes are labile, while IMP-APol complexes are exceptionally stable and do not dissociate even under conditions of extreme dilution. To understand the thermodynamic origin of this difference in stability and to guide the design of new APols, we have studied by isothermal titration calorimetry (ITC) the heat exchanges during two reciprocal processes, the "trapping" of detergent-solubilized IMPs in APols and the "stripping" of IMP-APol complexes by detergents, using two IMPs (the transmembrane domain of porin OmpA from Escherichia coli and bacteriorhodopsin from Halobium salinarium), two APols [an anionic polymer derived from acrylic acid (A8-35) and a cationic phosphorylcholine-based polymer (C22-43)], and two neutral detergents [n-octyl thioglucoside (OTG) and n-octyltetraethylene glycol (C(8)E(4))]. In the presence of detergent, free APols and IMP-APol complexes form mixed particles, APol-detergent and IMP-APol-detergent, respectively, according to the regular mixing model. Diluting IMP-APol-detergent complexes below the critical micellar concentration (CMC) of the detergent triggers the dispersion of detergent molecules as monomers, a process characterized by an enthalpy of demicellization. The enthalpy of APol <--> detergent exchange on the hydrophobic surface of IMPs is negligibly small, an indication of the similarity of the molecular interactions of IMPs with the two types of amphiphiles. The enhanced stability against dilution of IMP-APol complexes, compared to IMP-detergent ones, originates from the difference in entropy gain achieved upon release in water of a few APol molecules

  11. Successful integration of membrane technologies in a conventional purification process of tannery wastewater streams.

    PubMed

    Stoller, Marco; Sacco, Olga; Sannino, Diana; Chianese, Angelo

    2013-07-11

    The aim of this work is to design and integrate an optimized batch membrane process in a conventional purification process used for the treatment of tannery wastewater. The integration was performed by using two spiral wound membrane modules in series, that is, nanofiltration and reverse osmosis, as substitutes to the biological reactor. The membrane process was designed in terms of sensible fouling issues reduction, which may be observed on the nanofiltration membrane if no optimization is performed. The entity of the fouling phenomena was estimated by pressure cycling measurements, determining both the critical and the threshold flux on the nanofiltration membrane. The obtained results were used to estimate the need of the overdesign of the membrane plant, as well as to define optimized operating conditions in order to handle fouling issues correctly for a long period of time. Finally, the developed membrane process was compared, from a technical and economic point of view, with the conventional biological process, widely offered as an external service near tannery production sites, and, here, proposed to be substituted by membrane technologies.

  12. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    SciTech Connect

    Ferraris, John

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  13. Phase separation of integral membrane proteins in Triton X-114 solution.

    PubMed

    Bordier, C

    1981-02-25

    A solution of the nonionic detergent Triton X-114 is homogeneous at 0 degrees C but separates in an aqueous phase and a detergent phase above 20 degrees C. The extent of this detergent phase separation increases with the temperature and is sensitive to the presence of other surfactants. The partition of proteins during phase separation in solutions of Triton X-114 is investigated. Hydrophilic proteins are found exclusively in the aqueous phase, and integral membrane proteins with an amphiphilic nature are recovered in the detergent phase. Triton X-114 is used to solubilize membranes and whole cells, and the soluble material is submitted to phase separation. Integral membrane proteins can thus be separated from hydrophilic proteins and identified as such in crude membrane or cellular detergent extracts.

  14. A Novel and Facile Method to Prepare Integrated Electrospun Nanofibrous Membrane with Soldered Junctions.

    PubMed

    Shen, Lingdi; Chen, Jiajia; Hong, Guishan; Wang, Xuefen

    2016-01-01

    Integrated electrospun nanofibrous membrane was prepared by creating soldered junctions between nanofibers via a facile strategy. Polyacrylonitrile (PAN) mixed with poly(vinylidene fluoride) (PVDF) at different ratios of PVDF were prepared in N,N'-dimethyl formamide (DMF), then electrospun to fabricate PAN/PVDF membranes. PVDF can form microgels in DMF which slows down volatile speed of DMF and affects the solidification of PAN/PVDF nanofibers. The resulting membranes were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic water contact angle and tensile testing to confirm the morphology and mechanical properties. Soldered junctions were observed between nanofibers with the increase of PVDF content. These junctions made the membrane integrated and greatly enhanced tensile strength from 5.1 to 8.1 MPa (increased by ~60%) and tensile modulus from 49.4 to 117.9 MPa (increased by ~139%) without compromising porosity when the content of PVDF increased from 0 to 60 wt%. PMID:27398532

  15. Expression Screening of Integral Membrane Proteins by Fusion to Fluorescent Reporters.

    PubMed

    Bird, Louise E; Nettleship, Joanne E; Järvinen, Valtteri; Rada, Heather; Verma, Anil; Owens, Raymond J

    2016-01-01

    The production of recombinant integral membrane proteins for structural and functional studies remains technically challenging due to their relatively low levels of expression. To address this problem, screening strategies have been developed to identify the optimal membrane sequence and expression host for protein production. A common approach is to genetically fuse the membrane protein to a fluorescent reporter, typically Green Fluorescent Protein (GFP) enabling expression levels, localization and detergent solubilisation to be assessed. Initially developed for screening the heterologous expression of bacterial membrane proteins in Escherichia coli, the method has been extended to eukaryotic hosts, including insect and mammalian cells. Overall, GFP-based expression screening has made a major impact on the number of membrane protein structures that have been determined in the last few years. PMID:27553231

  16. HYDROPHOBIC ZEOLITE-SILICONE RUBBER MIXED MATRIX MEMBRANES FOR ETHANOL-WATER SEPARATION: EFFECT OF ZEOLITE AND SILICONE COMPONENT SELECTION ON PERVAPORATION PERFORMANCE

    EPA Science Inventory

    High-silica ZSM 5 zeolites were incorporated into poly(dimethyl siloxane) (PDMS) polymers to form mixed matrix membranes for ethanol removal from water via pervaporation. Membrane formulation and preparation parameters were varied to determine the effect on pervaporation perform...

  17. A Method for Solution NMR Structural Studies of Large Integral Membrane Proteins: Reverse Micelle Encapsulation

    PubMed Central

    Kielec, Joseph M.; Valentine, Kathleen G.; Wand, A. Joshua

    2009-01-01

    The structural study of membrane proteins perhaps represents one of the greatest challenges of the post-genomic era. While membrane proteins comprise over 50% of current and potential drug targets, their structural characterization lags far behind that of soluble proteins. Nuclear magnetic resonance (NMR) offers great potential not only with respect to structural characterization of integral membrane proteins but may also provide the ability to study the details of small ligand interactions. However, the size limitations of solution NMR have restricted comprehensive structural characterization of membrane protein NMR structures to the relatively small β-barrel proteins or helical proteins of relatively simple topology. In an effort to escape the barriers presented by slow molecular reorientation of large integral membrane proteins solubilized by detergent micelles in water, we have adapted the reverse micelle encapsulation strategy originally developed for the study of large soluble proteins by solution NMR methods. Here we review a novel approach to the solubilization of large integral membrane proteins in reverse micelle surfactants dissolved in low viscosity alkane solvents. The procedure is illustrated with a 54 kDa construct of the homotetrameric KcsA potassium channel. PMID:19665988

  18. The N-terminal domain tethers the voltage-gated calcium channel β2e-subunit to the plasma membrane via electrostatic and hydrophobic interactions.

    PubMed

    Miranda-Laferte, Erick; Ewers, David; Guzman, Raul E; Jordan, Nadine; Schmidt, Silke; Hidalgo, Patricia

    2014-04-11

    The β-subunit associates with the α1 pore-forming subunit of high voltage-activated calcium channels and modulates several aspects of ion conduction. Four β-subunits are encoded by four different genes with multiple splice variants. Only two members of this family, β2a and β2e, associate with the plasma membrane in the absence of the α1-subunit. Palmitoylation on a di-cysteine motif located at the N terminus of β2a promotes membrane targeting and correlates with the unique ability of this protein to slow down inactivation. In contrast, the mechanism by which β2e anchors to the plasma membrane remains elusive. Here, we identified an N-terminal segment in β2e encompassing a cluster of positively charged residues, which is strictly required for membrane anchoring, and when transferred to the cytoplasmic β1b isoform it confers membrane localization to the latter. In the presence of negatively charged phospholipid vesicles, this segment binds to acidic liposomes dependently on the ionic strength, and the intrinsic fluorescence emission maxima of its single tryptophan blue shifts considerably. Simultaneous substitution of more than two basic residues impairs membrane targeting. Coexpression of the fast inactivating R-type calcium channels with wild-type β2e, but not with a β2e membrane association-deficient mutant, slows down inactivation. We propose that a predicted α-helix within this domain orienting parallel to the membrane tethers the β2e-subunit to the lipid bilayer via electrostatic interactions. Penetration of the tryptophan side chain into the lipidic core stabilizes the membrane-bound conformation. This constitutes a new mechanism for membrane anchoring among the β-subunit family that also sustains slowed inactivation.

  19. Reduced Graphene Oxide Bipolar Membranes for Integrated Solar Water Splitting in Optimal pH.

    PubMed

    McDonald, Michael B; Bruce, Jared P; McEleney, Kevin; Freund, Michael S

    2015-08-24

    The integration of light absorbers and catalysts for the water splitting process requires a membrane capable of both ion and electron management and product separation to realize efficient solar fuels systems. Bipolar membranes can maintain a pH gradient for optimal reaction conditions by the dissociation of water. Such membranes that contain graphene in the interfacial layer are fabricated by the chemical reduction of a uniformly deposited graphene oxide layer to convert sp(3) catalyst regions to sp(2) conductive regions. The resulting electrical and water dissociation properties are optimized by adjusting the exposure conditions, and treatments of less than 5 min render an interface that exceeds the conductivity requirements for integrated solar water splitting and increases the overpotential by <0.3 V. Integration with photoelectrodes is examined by characterizing the electrical interface formed between graphene and Si microwires, and we found that efficient Ohmic junctions are possible.

  20. Effect of powdered activated carbon on integrated submerged membrane bioreactor-nanofiltration process for wastewater reclamation.

    PubMed

    Woo, Yun Chul; Lee, Jeong Jun; Shim, Wang-Geun; Shon, Ho Kyong; Tijing, Leonard D; Yao, Minwei; Kim, Han-Seung

    2016-06-01

    The aim of this study was to determine the effect of powdered activated carbon (PAC) on the overall performance of a submerged membrane bioreactor (SMBR) system integrated with nanofiltration (NF) for wastewater reclamation. It was found that the trans-membrane pressure of SMBR increased continuously while that of the SMBR with PAC was more stable, mainly because water could still pass through the PACs and membrane even though foulants adhered on the PAC surface. The presence of PAC was able to mitigate fouling in SMBR as well as in NF. SMBR-NF with PAC obtained a higher flux of 8.1 LMH compared to that without PAC (6.6 LMH). In addition, better permeate quality was obtained with SMBR-NF integrated process added with PAC. The present results suggest that the addition of PAC in integrated SMBR-NF process could possibly lead to satisfying water quality and can be operated for a long-term duration.

  1. A biofilter integrated with gas membrane separation unit for the treatment of fluctuating styrene loads.

    PubMed

    Li, Lin; Lian, Jing; Han, Yunping; Liu, Junxin

    2012-05-01

    Biofiltration for volatile organic compound control in waste gas streams is best operated at steady contaminant loadings. To provide long-term stable operation of a biofilter under adverse contaminant feeding conditions, an integrated bioreactor system with a gas separation membrane module installed after a biofilter was proposed for styrene treatment. Styrene was treated effectively, with average styrene effluent concentrations maintained at less than 50 mg m(-3) and a total removal efficiency of over 96% achieved when the biofiltration column faced fluctuating loads. The maximum elimination capacity of the integrated bioreactor system was 93.8 g m(-3)h(-1), which was higher than that obtained with the biofiltration column alone. The combination of these two processes (microbial and chemical) led to more efficient elimination of styrene and buffering of the fluctuating loads. The factors on gas membrane separation, microbial characteristics in the integrated bioreactor and membrane fouling were also investigated in this study.

  2. Reduced Graphene Oxide Bipolar Membranes for Integrated Solar Water Splitting in Optimal pH.

    PubMed

    McDonald, Michael B; Bruce, Jared P; McEleney, Kevin; Freund, Michael S

    2015-08-24

    The integration of light absorbers and catalysts for the water splitting process requires a membrane capable of both ion and electron management and product separation to realize efficient solar fuels systems. Bipolar membranes can maintain a pH gradient for optimal reaction conditions by the dissociation of water. Such membranes that contain graphene in the interfacial layer are fabricated by the chemical reduction of a uniformly deposited graphene oxide layer to convert sp(3) catalyst regions to sp(2) conductive regions. The resulting electrical and water dissociation properties are optimized by adjusting the exposure conditions, and treatments of less than 5 min render an interface that exceeds the conductivity requirements for integrated solar water splitting and increases the overpotential by <0.3 V. Integration with photoelectrodes is examined by characterizing the electrical interface formed between graphene and Si microwires, and we found that efficient Ohmic junctions are possible. PMID:26204850

  3. Double-Staining Method for Differentiation of Morphological Changes and Membrane Integrity of Campylobacter coli Cells

    PubMed Central

    Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier

    2002-01-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366

  4. Double-staining method for differentiation of morphological changes and membrane integrity of Campylobacter coli cells.

    PubMed

    Alonso, Jose L; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A; Hernández, Javier

    2002-10-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells.

  5. Development and application of a procedure for evaluating the long-term integrity of membranes for the anaerobic fluidized membrane bioreactor (AFMBR).

    PubMed

    Shin, Chungheon; Kim, Kihyun; McCarty, Perry L; Kim, Jeonghwan; Bae, Jaeho

    2016-01-01

    A bench-scale short-term test, developed to predict the long-term integrity of membranes with potential for use in anaerobic fluidized-bed membrane bioreactors, was used to evaluate several commercial hollow-fiber membranes. It was found that membrane performance varied widely, some membranes failing much more rapidly than others. Also found was that larger sizes of the fluidized media, in this case granular activated carbon (GAC), severely affected membrane structural integrity more than did smaller sizes, as did the method used for membrane attachment. Within the limits studied, the GAC packing ratio had only a minor impact. A decrease in membrane permeability that sometimes resulted during the testing and was caused by the deposition of fine GAC particles could be eliminated without membrane damage through simultaneous chemical cleaning and sonication. This new testing procedure should be useful for selecting membranes and reactor operating conditions to better ensure long-term operating performance of anaerobic fluidized-bed membrane bioreactors. PMID:27438251

  6. Transfer of a lipophilic drug (temoporfin) between small unilamellar liposomes and human plasma proteins: influence of membrane composition on vesicle integrity and release characteristics.

    PubMed

    Decker, Christiane; Steiniger, Frank; Fahr, Alfred

    2013-06-01

    The introduction of PEG lipid conjugates into lipid bilayers leads to long circulating liposomes with improved pharmacokinetics and pharmacodynamics characteristics. The concentration range of PEG-lipids is limited by their micelle forming properties. We investigated two phosphatidyl oligoglycerols as potential alternatives to PEG-lipid conjugates and compared their micelle forming properties after incorporation of increasing amounts of oligoglycerols into gel-phase liposomes via cryo-transmission electron microscopy. The incorporation of highly hydrophobic drugs into liposomes makes water soluble formulations possible and improves the therapeutic properties of the drug. We incorporated the hydrophobic photosensitizer temoporfin into liposomes varying in membrane fluidity and nature of surface modifying agents. The main purpose of this study was the investigation of liposome integrity and temoporfin incorporation stability in the presence of plasma. After incubation of temoporfin-loaded liposomes with human plasma for different time intervals, liposomes and the single lipoprotein fractions were separated via size-exclusion chromatography. Liposome stability and temoporfin distribution profile over the lipoprotein fractions were determined with the help of a non-exchangeable ³H-lipid label and ¹⁴C-labeled temoporfin. The results demonstrate that both oligoglycerols are suitable alternatives to PEG-lipid conjugates because of the lack of micelle forming properties, comparable liposome stability, and a reduced temoporfin transfer rate compared to PEG-lipids. Furthermore, the incorporation stability of temoporfin is--at least to some extent--influenced by membrane fluidity, indicating that fluid membranes may be better suited for retention of lipophilic drugs.

  7. A simple method to prepare modified polyethersulfone membrane with improved hydrophilic surface by one-pot: The effect of hydrophobic segment length and molecular weight of copolymers.

    PubMed

    Ran, Fen; Li, Jie; Lu, Yi; Wang, Lingren; Nie, Shengqiang; Song, Haiming; Zhao, Lei; Sun, Shudong; Zhao, Changsheng

    2014-04-01

    A simple method to prepare modified polyethersulfone (PES) membrane by one-pot is provided, and the method includes three steps: polymerization of vinyl pyrrolidone (VP), copolymerization of methyl methacrylate (MMA) and blending with PES. The effect of the PMMA segment length and molecular weight of the copolymer (PVP-b-PMMA-b-PVP, as an additive) on the structures and properties of the modified membranes was investigated. Activated partial thromboplastin time (APTT) tests indicated that with the increase of the poly(methyl methacrylate) (PMMA) segment length in the chains of the copolymers and with the increase of the molecular weight of the copolymers, the APTTs of the modified membranes increased to some extent, since less of the additives were lost during liquid-liquid phase separation process. Therefore, the copolymer was designed and prepared with appropriate ratio of poly(vinyl pyrrolidone) (PVP) to MMA and with appropriate molecular weight for better membrane performance. When the copolymer was blended in the membrane, the water permeance, protein anti-fouling property and sieving coefficients for PEG-12000 increased obviously. The simple, credible and feasible method had the potential to be used for the modification of membranes with improved blood compatibility, ultrafiltration and antifouling properties of biomaterials and for practical production.

  8. Microbial responses to membrane cleaning using sodium hypochlorite in membrane bioreactors: Cell integrity, key enzymes and intracellular reactive oxygen species.

    PubMed

    Han, Xiaomeng; Wang, Zhiwei; Wang, Xueye; Zheng, Xiang; Ma, Jinxing; Wu, Zhichao

    2016-01-01

    Sodium hypochlorite (NaClO) is a commonly used reagent for membrane cleaning in membrane bioreactors (MBRs), while it, being a kind of disinfectant (oxidant), may impair viability of microbes or even totally inactivate them upon its diffusion into mixed liquor during membrane cleaning. In this study, we systematically examine the effects of NaClO on microorganisms in terms of microbial cell integrity, metabolism behaviours (key enzymes), and intracellular reactive oxygen species (ROS) under various NaClO concentrations. Different proportions of microbial cells in activated sludge were damaged within several minutes dependent on NaClO dosages (5-50 mg/g-SS), and correspondingly organic matters were released to bulk solution. Inhibition of key enzymes involved in organic matter biodegradation, nitrification and denitrification was observed in the presence of NaClO above 1 mg/g-SS, and thus organic matter and nitrogen removal efficiencies were decreased. It was also demonstrated that intracellular ROS production was increased with the NaClO dosage higher than 1 mg/g-SS, which likely induced further damage to microbial cells.

  9. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    PubMed Central

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory. PMID:27695398

  10. Integrative Signaling Networks of Membrane Guanylate Cyclases: Biochemistry and Physiology

    PubMed Central

    Sharma, Rameshwar K.; Duda, Teresa; Makino, Clint L.

    2016-01-01

    This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.

  11. The Architecture of EssB, an Integral Membrane Component of the Type VII Secretion System

    PubMed Central

    Zoltner, Martin; Norman, David G.; Fyfe, Paul K.; El Mkami, Hassane; Palmer, Tracy; Hunter, William N.

    2013-01-01

    Summary The membrane-bound EssB is an integral and essential component of the bacterial type VII secretion system that can contribute to pathogenicity. The architecture of Geobacillus thermodenitrificans EssB has been investigated by combining crystallographic and EPR spectroscopic methods. The protein forms a dimer that straddles the cytoplasmic membrane. A helical fold is observed for the C-terminal segment, which is positioned on the exterior of the membrane. This segment contributes most to dimer formation. The N-terminal segment displays a structure related to the pseudokinase fold and may contribute to function by recognizing substrates or secretion system partners. The remaining part of EssB may serve as an anchor point for the secretion apparatus, which is embedded in the cytoplasmic membrane with the C-terminal domain protruding out to interact with partner proteins or components of peptidoglycan. PMID:23499020

  12. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling.

    PubMed

    Kock, Christian; Arlt, Henning; Ungermann, Christian; Heinisch, Jürgen J

    2016-09-01

    The cell wall integrity (CWI) pathway of the yeast Saccharomyces cerevisiae relies on the detection of cell surface stress by five sensors (Wsc1, Wsc2, Wsc3, Mid2, Mtl1). Each sensor contains a single transmembrane domain and a highly mannosylated extracellular region, and probably detects mechanical stress in the cell wall or the plasma membrane. We here studied the distribution of the five sensors at the cell surface by using fluorescently tagged variants in conjunction with marker proteins for established membrane compartments. We find that each of the sensors occupies a specific microdomain at the plasma membrane. The novel punctate 'membrane compartment occupied by Wsc1' (MCW) shows moderate overlap with other Wsc-type sensors, but not with those of the Mid-type sensors or other established plasma membrane domains. We further observed that sensor density and formation of the MCW compartment depends on the cysteine-rich head group near the N-terminus of Wsc1. Yet, signalling capacity depends more on the sensor density in the plasma membrane than on clustering within its microcompartment. We propose that the MCW microcompartment provides a quality control mechanism for retaining functional sensors at the plasma membrane to prevent them from endocytosis.

  13. Cell-free Expression and In Meso Crystallisation of an Integral Membrane Kinase for Structure Determination

    PubMed Central

    Shah, Syed Tasadaque Ali; Haberstock, Stefan; Dötsch, Volker; Bernhard, Frank; Caffrey, Martin

    2014-01-01

    Membrane proteins are key elements in cell physiology and drug targeting, but getting a high-resolution structure by crystallographic means is still enormously challenging. Novel strategies are in big demand to facilitate the structure determination process that will ultimately hasten the day when sequence information alone can provide a 3-dimensional model. Cell-free or in vitro expression enables rapid access to large quantities of high quality membrane proteins suitable for an array of applications. Despite its impressive efficiency, to date only two membrane proteins produced by the in vitro approach have yielded crystal structures. Here, we have analysed synergies of cell-free expression and crystallisation in lipidic mesophases for generating an X-ray structure of the integral membrane enzyme diacylglycerol kinase to 2.28 Å resolution. The quality of cellular and cell-free expressed kinase samples have been evaluated systematically by comparing i) spectroscopic properties, ii) purity and oligomer formation, iii) lipid content and iv) functionality. DgkA is the first membrane enzyme crystallised based on cell-free expression. The study provides a basic standard for the crystallisation of cell-free expressed membrane proteins and the methods detailed here should prove generally useful and contribute to accelerating the pace at which membrane protein structures are solved. PMID:25012698

  14. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  15. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier.

    PubMed

    Bera, Swapna; Kar, Rajiv K; Mondal, Susanta; Pahan, Kalipada; Bhunia, Anirban

    2016-09-01

    Cell-penetrating peptides (CPPs) have shown promise in nonpermeable therapeutic drug delivery, because of their ability to transport a variety of cargo molecules across the cell membranes and their noncytotoxicity. Drosophila antennapedia homeodomain-derived CPP penetratin (RQIKIWFQNRRMKWKK), being rich in positively charged residues, has been increasingly used as a potential drug carrier for various purposes. Penetratin can breach the tight endothelial network known as the blood-brain barrier (BBB), permitting treatment of several neurodegenerative maladies, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, a detailed structural understanding of penetratin and its mechanism of action is lacking. This study defines structural features of the penetratin-derived peptide, DK17 (DRQIKIWFQNRRMKWKK), in several model membranes and describes a membrane-induced conformational transition of the DK17 peptide in these environments. A series of biophysical experiments, including high-resolution nuclear magnetic resonance spectroscopy, provides the three-dimensional structure of DK17 in different membranes mimicking the BBB or total brain lipid extract. Molecular dynamics simulations support the experimental results showing preferential binding of DK17 to particular lipids at atomic resolution. The peptide conserves the structure of the subdomain spanning residues Ile6-Arg11, despite considerable conformational variation in different membrane models. In vivo data suggest that the wild type, not a mutated sequence, enters the central nervous system. Together, these data highlight important structural and functional attributes of DK17 that could be utilized in drug delivery for neurodegenerative disorders.

  16. Use of pressure-hold test for sterilizing filter membrane integrity in radiopharmaceutical manufacturing.

    PubMed

    Belanger, Anthony P; Byrne, John F; Paolino, Justin M; DeGrado, Timothy R

    2009-11-01

    The bubble point test is the de facto standard for postproduction filter membrane integrity test in the radiopharmaceutical community. However, the bubble point test depends on a subjective visual assessment of bubbling rate that can be obscured by significant diffusive gas flows below the manufacturer's prescribed bubble point. To provide a more objective means to assess filter membrane integrity, this study evaluates the pressure-hold test as an alternative to the bubble point test. In our application of the pressure-hold test, the nonsterile side of the sterilizing filter is pressurized to 85% of the predetermined bubble point with nitrogen, the filter system is closed off from the pressurizing gas and the pressure is monitored over a prescribed time interval. The drop in pressure, which has a known relationship with diffusive gas flow, is used as a quantitative measure of membrane integrity. Characterization of the gas flow vs. pressure relationship of each filter/solution combination provides an objective and quantitative means for defining a critical value of pressure drop over which the membrane is indicated to be nonintegral. The method is applied to sterilizing filter integrity testing associated with the commonly produced radiopharmaceuticals, [(18)F]FDG and [(11)C]PIB. The method is shown to be robust, practical and amenable to automation in radiopharmaceutical manufacturing environments (e.g., hot cells).

  17. The Combined Effect of Hydrophobic Mismatch and Bilayer Local Bending on the Regulation of Mechanosensitive Ion Channels

    PubMed Central

    Bavi, Omid; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef

    2016-01-01

    The hydrophobic mismatch between the lipid bilayer and integral membrane proteins has well-defined effect on mechanosensitive (MS) ion channels. Also, membrane local bending is suggested to modulate MS channel activity. Although a number of studies have already shown the significance of each individual factor, the combined effect of these physical factors on MS channel activity have not been investigated. Here using finite element simulation, we study the combined effect of hydrophobic mismatch and local bending on the archetypal mechanosensitive channel MscL. First we show how the local curvature direction impacts on MS channel modulation. In the case of MscL, we show inward (cytoplasmic) bending can more effectively gate the channel compared to outward bending. Then we indicate that in response to a specific local curvature, MscL inserted in a bilayer with the same hydrophobic length is more expanded in the constriction pore region compared to when there is a protein-lipid hydrophobic mismatch. Interestingly in the presence of a negative mismatch (thicker lipids), MscL constriction pore is more expanded than in the presence of positive mismatch (thinner lipids) in response to an identical membrane curvature. These results were confirmed by a parametric energetic calculation provided for MscL gating. These findings have several biophysical consequences for understanding the function of MS channels in response to two major physical stimuli in mechanobiology, namely hydrophobic mismatch and local membrane curvature. PMID:26958847

  18. The Combined Effect of Hydrophobic Mismatch and Bilayer Local Bending on the Regulation of Mechanosensitive Ion Channels.

    PubMed

    Bavi, Omid; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef

    2016-01-01

    The hydrophobic mismatch between the lipid bilayer and integral membrane proteins has well-defined effect on mechanosensitive (MS) ion channels. Also, membrane local bending is suggested to modulate MS channel activity. Although a number of studies have already shown the significance of each individual factor, the combined effect of these physical factors on MS channel activity have not been investigated. Here using finite element simulation, we study the combined effect of hydrophobic mismatch and local bending on the archetypal mechanosensitive channel MscL. First we show how the local curvature direction impacts on MS channel modulation. In the case of MscL, we show inward (cytoplasmic) bending can more effectively gate the channel compared to outward bending. Then we indicate that in response to a specific local curvature, MscL inserted in a bilayer with the same hydrophobic length is more expanded in the constriction pore region compared to when there is a protein-lipid hydrophobic mismatch. Interestingly in the presence of a negative mismatch (thicker lipids), MscL constriction pore is more expanded than in the presence of positive mismatch (thinner lipids) in response to an identical membrane curvature. These results were confirmed by a parametric energetic calculation provided for MscL gating. These findings have several biophysical consequences for understanding the function of MS channels in response to two major physical stimuli in mechanobiology, namely hydrophobic mismatch and local membrane curvature. PMID:26958847

  19. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    PubMed

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes.

  20. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    NASA Astrophysics Data System (ADS)

    Wang, Xianghong; Yuan, Shuaishuai; Shi, Dean; Yang, Yingkui; Jiang, Tao; Yan, Shunjie; Shi, Hengchong; Luan, Shifang; Yin, Jinghua

    2016-07-01

    Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  1. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite

    PubMed Central

    Eskandari, Farzaneh; Momeni, Hamid Reza

    2016-01-01

    Background: Exposure to arsenic is associated with impairment of male reproductive function by inducing oxidative stress. Silymarin with an antioxidant property scavenges free radicals. Objective: The aim of this study was to investigate if silymarin can prevent the adverse effects of sodium arsenite on ram sperm plasma membrane and acrosome integrity. Materials and Methods: Ram epidydimal spermatozoa were divided into five groups: spermatozoa at 0 hr, spermatozoa at 180 min (control), spermatozoa treated with silymarin (20 μM) + sodium arsenite (10 μM) for 180 min, spermatozoa treated with sodium arsenite (10 μM) for 180 min and spermatozoa treated with silymarin (20 μM) for 180 min. Double staining of Hoechst and propidium iodide was performed to evaluate sperm plasma membrane integrity, whereas comassie brilliant blue staining was used to assess acrosome integrity. Results: Plasma membrane (p< 0.001) and acrosome integrity (p< 0.05) of the spermatozoa were significantly reduced in sodium arsenite group compared to the control. In silymarin + sodium arsenite group, silymarin was able to significantly (p< 0.001) ameliorate the adverse effects of sodium arsenite on these sperm parameters compared to sodium arsenite group. The incubation of sperm for 180 min (control group) showed a significant (p< 0.001) decrease in acrosome integrity compared to the spermatozoa at 0 hour. The application of silymarin alone for 180 min could also significantly (p< 0.05) increase sperm acrosome integrity compared to the control. Conclusion: Silymarin as a potent antioxidant could compensate the adverse effects of sodium arsenite on the ram sperm plasma membrane and acrosome integrity. PMID:27141548

  2. Interaction of ethanol with biological membranes.

    PubMed

    Goldstein, D B; Chin, J H

    1981-05-15

    Ethanol is among the drugs with anesthetic potency determined by lipid solubility, in accord with the Meyer-Overton hypothesis. Thus, it is likely that ethanol acts in a hydrophobic environment. Using electron paramagnetic resonance with 5-doxylstearic acid as spin label, we find that ethanol disorders mouse cell membranes, making the lipid matrix more fluid. We surmise that consequent disruption of the function of integral membrane proteins may be the cause of ethanol's central actions. When mice are treated for 8 days with ethanol, their membranes become tolerant to the disordering effect of ethanol. This tolerance is accompanied by an increased proportion of cholesterol in the membranes.

  3. Solubilization of native integral membrane proteins in aqueous buffer by non-covalent chelation with monomethoxy polyethylene glycol (mPEG) polymers

    PubMed Central

    Janaratne, Thamara K.; Okach, Linda; Brock, Ansgar; Lesley, Scott A.

    2011-01-01

    Highly hydrophobic integral membrane proteins (IMPs) are typically purified in excess detergent media, often resulting in rapid inactivation and denaturation of the protein. One promising approach to solve this problem is to couple hydrophilic polymers, such as monomethoxypolyethylene glycol (mPEG) to IMPs under mild conditions in place of detergents. However, the broad application of this approach is hampered by poor reaction efficiencies, low tolerance of detergent stabilized membrane proteins to reaction conditions and a lack of proper site-specific reversible approaches. Here we have developed a straightforward, efficient and mild approach to site-specific non-covalent binding of long-chain polymers to recombinant IMPs. This method uses the hexa-histidine tag (His-Tag) often used for purification of recombinant proteins as an attachment site for mPEGs. Solubility studies performed using five different IMPs confirmed that all tested mPEG-bound IMPs were completely soluble and stable in detergent free aqueous buffer compared to their precipitated native proteins under the identical circumstances. Activity assays and circular dichroism (CD) spectroscopy confirmed the structural integrity of modified IMPs. PMID:21740061

  4. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process

    PubMed Central

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René

    2014-01-01

    Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF) in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS) content of 10 g·100 g−1 was pre-concentrated by nanofiltration (NF) up to 32 g TSS 100 g−1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g−1, was performed by using an osmotic distillation (OD) apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g−1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF). The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications. PMID:25116725

  5. Recovery of flavonoids from orange press liquor by an integrated membrane process.

    PubMed

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René

    2014-01-01

    Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF) in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS) content of 10 g·100 g-1 was pre-concentrated by nanofiltration (NF) up to 32 g TSS 100 g-1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g-1, was performed by using an osmotic distillation (OD) apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g-1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF). The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications. PMID:25116725

  6. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    SciTech Connect

    So, Hongyun; Pisano, Albert P.; Cheng, Jim C.

    2013-10-14

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

  7. Influence of ethanolic extract of Tephrosia purpurea Linn. on mast cells and erythrocytes membrane integrity.

    PubMed

    Gokhale, A B; Dikshit, V J; Damre, A S; Kulkarni, K R; Saraf, M N

    2000-08-01

    The ethanolic extract of T. purpurea Linn. was studied for its in vitro effect on rat mast cell degranulation and erythrocyte membrane integrity in vitro. The extract in concentration of 25-200 microg/ml showed a dose-dependant inhibition of rat mast cell degranulation induded by compound 48/80 and egg albumin. T. purpurea extract was found to inhibit haemolysis of erythrocytes induced by hypotonic solution but accelerated haemolysis induced by heat at a concentration of 100 microg/ml. The studies reveal that the ethanolic extract of T. purpurea may inhibit degranulation of mast cells by a mechanism other than membrane stabilization.

  8. Freezing dog semen in presence of the antioxidant butylated hydroxytoluene improves postthaw sperm membrane integrity.

    PubMed

    Neagu, V R; García, B Macías; Sandoval, C Salazar; Rodríguez, A Morillo; Ferrusola, C Ortega; Fernández, L González; Tapia, J A; Peña, F J

    2010-03-15

    In an attempt to evaluate the protective effect of a lipid-soluble antioxidant (butylated hydroxytoluene; BHT), semen from four dogs (Canis familiaris) was frozen in two different extenders (Uppsala or INRA-96 plus glycerol) with or without 1mM BHT. Sperm membrane integrity using flow cytometry and motility using a computerized system were evaluated in each experimental group. The Uppsala extender was superior in all aspects of sperm function. The percentage of sperm membranes was significantly higher in semen samples frozen in presence of BHT. Our results suggest that the Uppsala extender can be improved with the addition of BHT.

  9. Studies on improved integrated membrane-based chromatographic process for bioseparation

    NASA Astrophysics Data System (ADS)

    Xu, Yanke

    To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model

  10. Integration of ceramic membrane and compressed air-assisted solvent extraction (CASX) for metal recovery.

    PubMed

    Li, Chi-Wang; Chiu, Chun-Hao; Lee, Yu-Cheng; Chang, Chia-Hao; Lee, Yu-Hsun; Chen, Yi-Ming

    2010-01-01

    In our previous publications, compressed air-assisted solvent extraction process (CASX) was developed and proved to be kinetically efficient process for metal removal. In the current study, CASX with a ceramic MF membrane integrated for separation of spent solvent was employed to remove and recover metal from wastewater. MF was operated either in crossflow mode or dead-end with intermittent flushing mode. Under crossflow mode, three distinct stages of flux vs. TMP (trans-membrane pressure) relationship were observed. In the first stage, flux increases with increasing TMP which is followed by the stage of stable flux with increasing TMP. After reaching a threshold TMP which is dependent of crossflow velocity, flux increases again with increasing TMP. At the last stage, solvent was pushed through membrane pores as indicated by increasing permeate COD. In dead-end with intermittent flushing mode, an intermittent flushing flow (2 min after a 10-min or a 30-min dead-end filtration) was incorporated to reduce membrane fouling by flush out MSAB accumulated on membrane surface. Effects of solvent concentration and composition were also investigated. Solvent concentrations ranging from 0.1 to 1% (w/w) have no adverse effect in terms of membrane fouling. However, solvent composition, i.e. D(2)EHPA/kerosene ratio, shows impact on membrane fouling. The type of metal extractants employed in CASX has significant impact on both membrane fouling and the quality of filtrate due to the differences in their viscosity and water solubility. Separation of MSAB was the limiting process controlling metal removal efficiency, and the removal efficiency of Cd(II) and Cr(VI) followed the same trend as that for COD.

  11. In vitro evaluation of tissue adhesives composed of hydrophobically modified gelatins and disuccinimidyl tartrate

    NASA Astrophysics Data System (ADS)

    Matsuda, Miyuki; Taguchi, Tetsushi

    2012-12-01

    The effect of the hydrophobic group content in gelatin on the bonding strength of novel tissue-penetrating tissue adhesives was evaluated. The hydrophobic groups introduced into gelatin were the saturated hexanoyl, palmitoyl, and stearoyl groups, and the unsaturated oleoyl group. A collagen casing was employed as an adherend to model soft tissue for the in vitro determination of bonding strength of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. The adhesive composed of stearoyl-modified gelatin (7.4% stearoyl; 10Ste) and disuccinimidyl tartrate showed the highest bonding strength. The bonding strength of the adhesives decreased as the degree of substitution of the hydrophobic groups increased. Cell culture experiments demonstrated that fluorescein isothiocyanate-labeled 10Ste was integrated onto the surface of smooth muscle cells and showed no cytotoxicity. These results suggest that 10Ste interacted with the hydrophobic domains of collagen casings, such as hydrophobic amino acid residues and cell membranes. Therefore, 10Ste-disuccinimidyl tartrate is a promising adhesive for use in aortic dissection.

  12. Research resource: Monitoring endoplasmic reticulum membrane integrity in β-cells at the single-cell level.

    PubMed

    Kanekura, Kohsuke; Ou, Jianhong; Hara, Takashi; Zhu, Lihua J; Urano, Fumihiko

    2015-03-01

    Endoplasmic reticulum (ER) membrane integrity is an emerging target for human chronic diseases associated with ER stress. Despite the underlying importance of compromised ER membrane integrity in disease states, the entire process leading to ER membrane permeabilization and cell death is still not clear due to technical limitations. Here we describe a novel method for monitoring ER membrane integrity at the single-cell level in real time. Using a β-cell line expressing ER-targeted redox sensitive green fluorescent protein, we could identify a β-cell population undergoing ER membrane permeabilization induced by palmitate and could monitor cell fate and ER stress of these cells at the single-cell level. Our method could be used to develop a novel therapeutic modality targeting the ER membrane for ER-associated disorders, including β-cell death in diabetes, neurodegeneration, and Wolfram syndrome.

  13. Integrated CO2, Humidity and Thermal Control by Membrane Gas Absorption, Results of Breadboard Testing

    NASA Astrophysics Data System (ADS)

    van Driel, C.; Eckhard, F.; Feron, P. H. M.; Savage, C. J.

    2002-01-01

    Membrane gas absorption for the removal of CO2 in manned spacecrafts is subject of study by Stork and TNO for many years. The system is based on the combination of membrane separation and gas absorption. The air is fed along one side of a hydrophobic membrane and diffuses through the membrane after which the CO2 is selectively absorbed by an absorption liquid. Great advantage is that the system not only can be used to remove the carbon dioxide but also can be applied to control the relative humidity and temperature of the cabin atmosphere. Absorption of moisture and heat is achieved by cooling the absorption liquid below the dewpoint temperature of the gas stream. In the studies, the Crew Transfer Vehicle is used as a basis. Compared to the planned h/w for this vehicle, an air conditioning system, consisting of a condensing heat exchanger, LiOH cartridges to remove the carbon dioxide and a water evaporator assembly, the MGA/MGD has a large volume and a small mass advantage. The absorption liquid circulates through the spacecraft thermal control loop, replacing the coolant water. This set-up has two advantages. At first, by increasing the absorption liquid temperature the CO2 desorption rate in the desorber is favoured and secondly, should additional heat rejection aside from the basic heat rejection system be required (off nominal case), this can be established by dumping extra water via the desorption module, using the associated heat of vaporisation. Control of the water desorption rate is achieved by adjusting the permeate pressure with the throttle valve. In the nominal case the water absorption rate is equal to the desorption rate. The CO2 absorption capacity of the absorption liquid is restored in a desorption unit. This process is based on pervaporation. On one side of the membrane the absorption liquid is fed, on the other side a reduced pressure is maintained. Due to this pressure difference a driving force for water vapour and CO2 is created. The water

  14. Electrocoagulation-integrated hybrid membrane processes for the treatment of tannery wastewater.

    PubMed

    Keerthi; Vinduja, V; Balasubramanian, N

    2013-10-01

    Three different combinations of treatment techniques, i.e. electrocoagulation combined with microfiltration (EMR), membrane bioreactor (MBR) and electrocoagulation integrated with membrane bioreactor (hybrid MBR, (HMBR)), were analysed and compared for the treatment of tannery wastewater operated for 7 days under the constant trans-membrane pressure of 5 kPa. HMBR was found to be most suitable in performance as well as fouling reduction, with 94 % of chemical oxygen demand (COD) removal, 100 % chromium removal and 8 % improvement in percentage reduction in permeate flux compared to MBR with only 90 % COD removal and 67 % chromium removal. The effect of mixed liquor suspended solids on fouling was also investigated and was found to be insignificant. EMR was capable of elevating the flux but was not as efficient as HMBR and MBR in COD removal. Fouling reduction by HMBR was further confirmed by SEM-EDX and particle size analysis.

  15. Structural and Functional Dynamics of an Integral Membrane Protein Complex Modulated by Lipid Headgroup Charge

    PubMed Central

    Li, Ji; James, Zachary M.; Dong, Xiaoqiong; Karim, Christine B.; Thomas, David D.

    2012-01-01

    We have used membrane surface charge to modulate the structural dynamics of an integral membrane protein, phospholamban (PLB), and thereby its functional inhibition of the sarcoplasmic reticulum Ca-ATPase (SERCA). It was previously shown by EPR, in vesicles of neutral lipids, that the PLB cytoplasmic domain is in equilibrium between an ordered T state and a dynamically disordered R state, and that phosphorylation of PLB increases the R state and relieves SERCA inhibition, suggesting that R is less inhibitory. Here we sought to control the T/R equilibrium by an alternative means – varying the lipid headgroup charge, thus perturbing the electrostatic interaction of PLB’s cationic cytoplasmic domain with the membrane surface. We resolved the T and R states not only by EPR in the absence of SERCA, but also by time-resolved fluorescence resonance energy transfer (TR-FRET) from SERCA to PLB, thus probing directly the SERCA-PLB complex. Compared to neutral lipids, anionic lipids increased both the T population and SERCA inhibition, while cationic lipids had the opposite effects. In contrast to conventional models, decreased inhibition was not accompanied by decreased binding. We conclude that PLB binds to SERCA in two distinct structural states of the cytoplasmic domain, an inhibitory T state that interacts strongly with the membrane surface, and a less inhibitory R state that interacts more strongly with the anionic SERCA cytoplasmic domain. Modulating membrane surface charge provides an effective way of investigating the correlation between structural dynamics and function of integral membrane proteins. PMID:22381409

  16. Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2

    PubMed Central

    Zunke, Friederike; Andresen, Lisa; Wesseler, Sophia; Groth, Johann; Arnold, Philipp; Rothaug, Michelle; Mazzulli, Joseph R.; Krainc, Dimitri; Blanz, Judith; Saftig, Paul; Schwake, Michael

    2016-01-01

    The lysosomal integral membrane protein type-2 (LIMP-2) plays a pivotal role in the delivery of β-glucocerebrosidase (GC) to lysosomes. Mutations in GC result in Gaucher's disease (GD) and are the major genetic risk factor for the development of Parkinson's disease (PD). Variants in the LIMP-2 gene cause action myoclonus-renal failure syndrome and also have been linked to PD. Given the importance of GC and LIMP-2 in disease pathogenesis, we studied their interaction sites in more detail. Our previous data demonstrated that the crystal structure of LIMP-2 displays a hydrophobic three-helix bundle composed of helices 4, 5, and 7, of which helix 5 and 7 are important for ligand binding. Here, we identified a similar helical motif in GC through surface potential analysis. Coimmunoprecipitation and immunofluorescence studies revealed a triple-helical interface region within GC as critical for LIMP-2 binding and lysosomal transport. Based on these findings, we generated a LIMP-2 helix 5-derived peptide that precipitated and activated recombinant wild-type and GD-associated N370S mutant GC in vitro. The helix 5 peptide fused to a cell-penetrating peptide also activated endogenous lysosomal GC and reduced α-synuclein levels, suggesting that LIMP-2–derived peptides can be used to activate endogenous as well as recombinant wild-type or mutant GC efficiently. Our data also provide a structural model of the LIMP-2/GC complex that will facilitate the development of GC chaperones and activators as potential therapeutics for GD, PD, and related synucleinopathies. PMID:27001828

  17. The SH integral membrane protein of the paramyxovirus simian virus 5 is required to block apoptosis in MDBK cells.

    PubMed

    He, B; Lin, G Y; Durbin, J E; Durbin, R K; Lamb, R A

    2001-05-01

    In some cell types the paramyxovirus simian virus 5 (SV5) causes little cytopathic effect (CPE) and infection continues productively for long periods of time; e.g., SV5 can be produced from MDBK cells for up to 40 days with little CPE. SV5 differs from most paramyxoviruses in that it encodes a small (44-amino-acid) hydrophobic integral membrane protein (SH). When MDBK cells were infected with a recombinant SV5 containing a deletion of the SH gene (rSV5DeltaSH), the MDBK cells exhibited an increase in CPE compared to cells infected with wild-type SV5 (recovered from cDNA; rSV5). The increased CPE correlated with an increase in apoptosis in rSV5DeltaSH-infected cells over mock-infected and rSV5-infected cells when assayed for annexin V binding, DNA content (propidium iodide staining), and DNA fragmentation (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay). In rSV5DeltaSH-infected MDBK cells an increase in caspase-2 and caspase-3 activities was observed. By using peptide inhibitors of individual caspases it was found that caspase-2 and caspase-3 were activated separately in rSV5DeltaSH-infected cells. Expression of caspase-2 and -3 in rSV5DeltaSH-infected MDBK cells appeared not to require STAT1 protein, as STAT1 protein could not be detected in SV5-infected MDBK cells. When mutant mice homologous for a targeted disruption of STAT1 were used as a model animal system and infected with the viruses it was found that rSV5DeltaSH caused less mortality than wild-type rSV5, consistent with the notion of clearance of apoptotic cells in a host species.

  18. Membrane Protein Insertion at the Endoplasmic Reticulum

    PubMed Central

    Shao, Sichen; Hegde, Ramanujan S.

    2014-01-01

    Integral membrane proteins of the cell surface and most intracellular compartments of eukaryotic cells are assembled at the endoplasmic reticulum. Two highly conserved and parallel pathways mediate membrane protein targeting to and insertion into this organelle. The classical cotranslational pathway, utilized by most membrane proteins, involves targeting by the signal recognition particle followed by insertion via the Sec61 translocon. A more specialized posttranslational pathway, employed by many tail-anchored membrane proteins, is composed of entirely different factors centered around a cytosolic ATPase termed TRC40 or Get3. Both of these pathways overcome the same biophysical challenges of ferrying hydrophobic cargo through an aqueous milieu, selectively delivering it to one among several intracellular membranes and asymmetrically integrating its transmembrane domain(s) into the lipid bilayer. Here, we review the conceptual and mechanistic themes underlying these core membrane protein insertion pathways, the complexities that challenge our understanding, and future directions to over-come these obstacles. PMID:21801011

  19. Preservation of Supported Lipid Membrane Integrity from Thermal Disruption: Osmotic Effect.

    PubMed

    Zhu, Tao; Jiang, Zhongying; Ma, Yuqiang; Hu, Yong

    2016-03-01

    Preservation of structural integrity under various environmental conditions is one major concern in the development of the supported lipid membrane (SLM)-based devices. It is common for SLMs to experience temperature shifts from manufacture, processing, storage, and transport to operation. In this work, we studied the thermal adaption of the supported membranes on silica substrates. Homogenous SLMs with little defects were formed through the vesicle fusion method. The mass and fluidity of the bilayers were found to deteriorate from a heating process but not a cooling process. Fluorescence characterizations showed that the membranes initially budded as a result of heating-induced lipid lateral area expansion, followed by the possible fates including maintenance, retraction, and fission, among which the last contributes to the irreversible compromise of the SLM integrity and spontaneous release of the interlipid stress accumulated. Based on the mechanism, we developed a strategy to protect SLMs from thermal disruption by increasing the solute concentration in medium. An improved preservation of the membrane mass and fluidity against the heating process was observed, accompanied by a decrease in the retraction and fission of the buds. Theoretical analysis revealed a high osmotic energy penalty for the fission, which accounts for the depressed disruption. This osmotic-based protection strategy is facile, solute nonspecific, and long-term efficient and has little impact on the original SLM properties. The results may help broaden SLM applications and sustain the robustness of SLM-based devices under multiple thermal conditions. PMID:26886864

  20. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane

    SciTech Connect

    Bruce, Lesley J.; Beckmann, Roland; Ribeiro, M. Leticia; Peters, Luanne L.; Chasis, Joel A.; Delaunay, Jean; Mohandas, Narla; Anstee, David J.; Tanner, Michael J.A.

    2003-06-18

    We have studied the membrane proteins of band 3 anion exchanger (AE1)-deficient mouse and human red blood cells. It has been shown previously that proteins of the band 3 complex are reduced or absent in these cells. In this study we show that proteins of the Rh complex are also greatly reduced (Rh-associated glycoprotein, Rh polypeptides, CD47, glycophorin B) or absent (LW). These observations suggest that the Rh complex is associated with the band 3 complex in healthy RBCs. Mouse band 3 RBCs differed from the human band 3-deficient RBCs in that they retained CD47. Aquaporin 1 was reduced, and its glycosylation was altered in mouse and human band 3-deficient RBCs. Proteins of the glycophorin complex, and other proteins with independent cytoskeletal interactions, were present in normal or increased amounts. To obtain direct evidence for the association of the band 3 and the Rh protein complexes in the RBC, we examined whether Rh complex proteins were coimmunoprecipitated with band 3 from membranes. RhAG and Rh were found to be efficiently coimmunoprecipitated with band 3 from deoxycholate-solubilized membranes. Results suggest that band 3 forms the core of a macrocomplex of integral and peripheral RBC membrane proteins. The presence of these proteins in a single structural Macrocomplex makes it likely that they have linked functional or regulatory roles. We speculate that this macrocomplex may function as an integrated CO2/O2 gas exchange unit (metabolon) in the erythrocyte.

  1. Integral Membrane Protein Sorting to Vacuoles in Plant Cells: Evidence for Two Pathways

    PubMed Central

    Jiang, Liwen; Rogers, John C.

    1998-01-01

    Plant cells may contain two functionally distinct vacuolar compartments. Membranes of protein storage vacuoles (PSV) are marked by the presence of α-tonoplast intrinsic protein (TIP), whereas lytic vacuoles (LV) are marked by the presence of γ-TIP. Mechanisms for sorting integral membrane proteins to the different vacuoles have not been elucidated. Here we study a chimeric integral membrane reporter protein expressed in tobacco suspension culture protoplasts whose traffic was assessed biochemically by following acquisition of complex Asn-linked glycan modifications and proteolytic processing, and whose intracellular localization was determined with confocal immunofluorescence. We show that the transmembrane domain of the plant vacuolar sorting receptor BP-80 directs the reporter protein via the Golgi to the LV prevacuolar compartment, and attaching the cytoplasmic tail (CT) of γ-TIP did not alter this traffic. In contrast, the α-TIP CT prevented traffic of the reporter protein through the Golgi and caused it to be localized in organelles separate from ER and from Golgi and LV prevacuolar compartment markers. These organelles had a buoyant density consistent with vacuoles, and α-TIP protein colocalized in them with the α-TIP CT reporter protein when the two were expressed together in protoplasts. These results are consistent with two separate pathways to vacuoles for membrane proteins: a direct ER to PSV pathway, and a separate pathway via the Golgi to the LV. PMID:9832548

  2. Integration of Solid-State Nanopores in Microfluidic Networks via Transfer Printing of Suspended Membranes

    PubMed Central

    Jain, Tarun; Guerrero, Ricardo Jose S.; Aguilar, Carlos A.; Karnik, Rohit

    2013-01-01

    Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping of DNA-binding proteins involved in homologous recombination. While machining nanopores in dielectric membranes provides nanometer-scale precision, the rigid silicon support for the membrane contributes capacitive noise and limits integration with microfluidic networks for sample pre-processing. Herein, we demonstrate a technique to directly transfer solid-state nanopores machined in dielectric membranes from a silicon support into a microfluidic network. The resulting microfluidic-addressable nanopores can sense single DNA molecules at high bandwidths and with low noise, owing to significant reductions in membrane capacitance. This strategy will enable large-scale integration of solid-state nanopores with microfluidic upstream and downstream processing and permit new functions with nanopores such as complex manipulations for multidimensional analysis and parallel sensing in two and three-dimensional architectures. PMID:23347165

  3. Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes.

    PubMed

    Jain, Tarun; Guerrero, Ricardo Jose S; Aguilar, Carlos A; Karnik, Rohit

    2013-04-16

    Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping of DNA-binding proteins involved in homologous recombination. While machining nanopores in dielectric membranes provides nanometer-scale precision, the rigid silicon support for the membrane contributes capacitive noise and limits integration with microfluidic networks for sample preprocessing. Herein, we demonstrate a technique to directly transfer solid-state nanopores machined in dielectric membranes from a silicon support into a microfluidic network. The resulting microfluidic-addressable nanopores can sense single DNA molecules at high bandwidths and with low noise, owing to significant reductions in membrane capacitance. This strategy will enable large-scale integration of solid-state nanopores with microfluidic upstream and downstream processing and permit new functions with nanopores such as complex manipulations for multidimensional analysis and parallel sensing in two and three-dimensional architectures. PMID:23347165

  4. Preservation of Supported Lipid Membrane Integrity from Thermal Disruption: Osmotic Effect.

    PubMed

    Zhu, Tao; Jiang, Zhongying; Ma, Yuqiang; Hu, Yong

    2016-03-01

    Preservation of structural integrity under various environmental conditions is one major concern in the development of the supported lipid membrane (SLM)-based devices. It is common for SLMs to experience temperature shifts from manufacture, processing, storage, and transport to operation. In this work, we studied the thermal adaption of the supported membranes on silica substrates. Homogenous SLMs with little defects were formed through the vesicle fusion method. The mass and fluidity of the bilayers were found to deteriorate from a heating process but not a cooling process. Fluorescence characterizations showed that the membranes initially budded as a result of heating-induced lipid lateral area expansion, followed by the possible fates including maintenance, retraction, and fission, among which the last contributes to the irreversible compromise of the SLM integrity and spontaneous release of the interlipid stress accumulated. Based on the mechanism, we developed a strategy to protect SLMs from thermal disruption by increasing the solute concentration in medium. An improved preservation of the membrane mass and fluidity against the heating process was observed, accompanied by a decrease in the retraction and fission of the buds. Theoretical analysis revealed a high osmotic energy penalty for the fission, which accounts for the depressed disruption. This osmotic-based protection strategy is facile, solute nonspecific, and long-term efficient and has little impact on the original SLM properties. The results may help broaden SLM applications and sustain the robustness of SLM-based devices under multiple thermal conditions.

  5. Identification of Two Novel Endoplasmic Reticulum Body-Specific Integral Membrane Proteins1[W][OA

    PubMed Central

    Yamada, Kenji; Nagano, Atsushi J.; Nishina, Momoko; Hara-Nishimura, Ikuko; Nishimura, Mikio

    2013-01-01

    The endoplasmic reticulum (ER) body, a large compartment specific to the Brassicales, accumulates β-glucosidase and possibly plays a role in the defense against pathogens and herbivores. Although the ER body is a subdomain of the ER, it is unclear whether any ER body-specific membrane protein exists. In this study, we identified two integral membrane proteins of the ER body in Arabidopsis (Arabidopsis thaliana) and termed them MEMBRANE PROTEIN OF ENDOPLASMIC RETICULUM BODY1 (MEB1) and MEB2. In Arabidopsis, a basic helix-loop-helix transcription factor, NAI1, and an ER body component, NAI2, regulate ER body formation. The expression profiles of MEB1 and MEB2 are similar to those of NAI1, NAI2, and ER body β-glucosidase PYK10 in Arabidopsis. The expression of MEB1 and MEB2 was reduced in the nai1 mutant, indicating that NAI1 regulates the expression of MEB1 and MEB2 genes. MEB1 and MEB2 proteins localize to the ER body membrane but not to the ER network, suggesting that these proteins are specifically recruited to the ER body membrane. MEB1 and MEB2 physically interacted with ER body component NAI2, and they were diffused throughout the ER network in the nai2 mutant, which has no ER body. Heterologous expression of MEB1 and MEB2 in yeast (Saccharomyces cerevisiae) suppresses iron and manganese toxicity, suggesting that MEB1 and MEB2 are metal transporters. These results indicate that the membrane of ER bodies has specific membrane proteins and suggest that the ER body is involved in defense against metal stress as well as pathogens and herbivores. PMID:23166355

  6. On the Efficiency of NHS Ester Cross-Linkers for Stabilizing Integral Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Chen, Fan; Gerber, Sabina; Korkhov, Volodymyr M.; Mireku, Samantha; Bucher, Monika; Locher, Kaspar P.; Zenobi, Renato

    2015-03-01

    We have previously presented a straightforward approach based on high-mass matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) to study membrane proteins. In addition, the stoichiometry of integral membrane protein complexes could be determined by MALDI-MS, following chemical cross-linking via glutaraldehyde. However, glutaraldehyde polymerizes in solution and reacts nonspecifically with various functional groups of proteins, limiting its usefulness for structural studies of protein complexes. Here, we investigated the capability of N-hydroxysuccinimide (NHS) esters, which react much more specifically, to cross-link membrane protein complexes such as PglK and BtuC2D2. We present clear evidence that NHS esters are capable of stabilizing membrane protein complexes in situ, in the presence of detergents such as DDM, C12E8, and LDAO. The stabilization efficiency strongly depends on the membrane protein structure (i.e, the number of primary amine groups and the distances between primary amines). A minimum number of primary amine groups is required, and the distances between primary amines govern whether a cross-linker with a specific spacer arm length is able to bridge two amine groups.

  7. Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up.

    PubMed

    Wang, Xinhua; Yuan, Bo; Chen, Yao; Li, Xiufen; Ren, Yueping

    2014-09-01

    The high salinity remains as one of major obstacles of the osmotic membrane bioreactor (OMBR). In this study, a new pathway was explored to prevent the salinity build-up by integrating the micro-filtration (MF) membrane to the OMBR (MF-OMBR). The results indicated that the salinity characterized by conductivity in the MF-OMBR was effectively alleviated and controlled at a lower value of about 5 mS/cm, and the stable flux of forward osmosis (FO) membrane correspondingly increased to approximately 5.5L/(m(2)h). Besides, the addition of MF membrane in the OMBR could increase the total organic carbon (TOC) and ammonium nitrogen (NH3-N) removals due to the activated sludge by improving the microbial activity. The membrane fouling especially the reversible fouling in the MF-OMBR was severer compared to that in the conventional OMBR, which resulted in a lower water flux than the expectation due to the increase of filtration resistance and external concentration polarization.

  8. An integrated membrane sub-harmonic Schottky diode mixers at 340GHz

    NASA Astrophysics Data System (ADS)

    Wang, Junlong; Yang, Dabao; Xing, Dong; Liang, Shixiong; Zhang, Lisen; Zhao, Xiangyang; Feng, Zhihong

    2015-11-01

    This paper presents a sub-harmonic mixer operating over the spectral band 332-348 GHz. The mixers employ integrated GaAs membrane Schottky diode technology. The simulated results show that the conversion loss of the mixer is below dB in the band from 333 GHz to 347 GHz with a local oscillator power requirement of 5mW.The minimum is 8.2dB at 344GHz.

  9. Integration of isolated cell membrane patches in nanomachined apertures for single ion channel recording

    NASA Astrophysics Data System (ADS)

    Niels, Fertig; Behrends, Jan; Blick, Robert

    2001-03-01

    We apply nanostructuring techniques to machine apertures in semiconductor materials with the aim of single channel recording of ion channels in cell membranes. This approach will overcome many limitations of the classical patch-clamp technique. The integration of nanostructured devices 'on-chip' promises novel types of experiments on single ion channels. We investigate the microscopic contact of a cell/semiconductor hybrid and demonstrate single channel recording.

  10. Bat3 promotes the membrane integration of tail-anchored proteins.

    PubMed

    Leznicki, Pawel; Clancy, Anne; Schwappach, Blanche; High, Stephen

    2010-07-01

    The membrane integration of tail-anchored proteins at the endoplasmic reticulum (ER) is post-translational, with different tail-anchored proteins exploiting distinct cytosolic factors. For example, mammalian TRC40 has a well-defined role during delivery of tail-anchored proteins to the ER. Although its Saccharomyces cerevisiae equivalent, Get3, is known to function in concert with at least four other components, Get1, Get2, Get4 and Get5 (Mdy2), the role of additional mammalian proteins during tail-anchored protein biogenesis is unclear. To this end, we analysed the cytosolic binding partners of Sec61beta, a well-defined substrate of TRC40, and identified Bat3 as a previously unknown interacting partner. Depletion of Bat3 inhibits the membrane integration of Sec61beta, but not of a second, TRC40-independent, tail-anchored protein, cytochrome b5. Thus, Bat3 influences the in vitro membrane integration of tail-anchored proteins using the TRC40 pathway. When expressed in Saccharomyces cerevisiae lacking a functional GET pathway for tail-anchored protein biogenesis, Bat3 associates with the resulting cytosolic pool of non-targeted chains and diverts it to the nucleus. This Bat3-mediated mislocalisation is not dependent upon Sgt2, a recently identified component of the yeast GET pathway, and we propose that Bat3 either modulates the TRC40 pathway in higher eukaryotes or provides an alternative fate for newly synthesised tail-anchored proteins.

  11. Different Transmembrane Domains Associate with Distinct Endoplasmic Reticulum Components during Membrane Integration of a Polytopic Protein

    PubMed Central

    Meacock, Suzanna L.; Lecomte, Fabienne J.L.; Crawshaw, Samuel G.; High, Stephen

    2002-01-01

    We have been studying the insertion of the seven transmembrane domain (TM) protein opsin to gain insights into how the multiple TMs of polytopic proteins are integrated at the endoplasmic reticulum (ER). We find that the ER components associated with the first and second TMs of the nascent opsin polypeptide chain are clearly distinct. The first TM (TM1) is adjacent to the α and β subunits of the Sec61 complex, and a novel component, a protein associated with the ER translocon of 10 kDa (PAT-10). The most striking characteristic of PAT-10 is that it remains adjacent to TM1 throughout the biogenesis and membrane integration of the full-length opsin polypeptide. TM2 is also found to be adjacent to Sec61α and Sec61β during its membrane integration. However, TM2 does not form any adducts with PAT-10; rather, a transient association with the TRAM protein is observed. We show that the association of PAT-10 with opsin TM1 does not require the N-glycosylation of the nascent chain and occurs irrespective of the amino acid sequence and transmembrane topology of TM1. We conclude that the precise makeup of the ER membrane insertion site can be distinct for the different transmembrane domains of a polytopic protein. We find that the environment of a particular TM can be influenced by both the “stage” of nascent chain biosynthesis reached, and the TM's relative location within the polypeptide. PMID:12475939

  12. Effect of powdered activated carbon on integrated submerged membrane bioreactor-nanofiltration process for wastewater reclamation.

    PubMed

    Woo, Yun Chul; Lee, Jeong Jun; Shim, Wang-Geun; Shon, Ho Kyong; Tijing, Leonard D; Yao, Minwei; Kim, Han-Seung

    2016-06-01

    The aim of this study was to determine the effect of powdered activated carbon (PAC) on the overall performance of a submerged membrane bioreactor (SMBR) system integrated with nanofiltration (NF) for wastewater reclamation. It was found that the trans-membrane pressure of SMBR increased continuously while that of the SMBR with PAC was more stable, mainly because water could still pass through the PACs and membrane even though foulants adhered on the PAC surface. The presence of PAC was able to mitigate fouling in SMBR as well as in NF. SMBR-NF with PAC obtained a higher flux of 8.1 LMH compared to that without PAC (6.6 LMH). In addition, better permeate quality was obtained with SMBR-NF integrated process added with PAC. The present results suggest that the addition of PAC in integrated SMBR-NF process could possibly lead to satisfying water quality and can be operated for a long-term duration. PMID:26879205

  13. Designing a hydrophobic barrier within biomimetic nanopores.

    PubMed

    Trick, Jemma L; Wallace, E Jayne; Bayley, Hagan; Sansom, Mark S P

    2014-11-25

    Nanopores in membranes have a range of potential applications. Biomimetic design of nanopores aims to mimic key functions of biological pores within a stable template structure. Molecular dynamics simulations have been used to test whether a simple β-barrel protein nanopore can be modified to incorporate a hydrophobic barrier to permeation. Simulations have been used to evaluate functional properties of such nanopores, using water flux as a proxy for ionic conductance. The behavior of these model pores has been characterized as a function of pore size and of the hydrophobicity of the amino acid side chains lining the narrow central constriction of the pore. Potential of mean force calculations have been used to calculate free energy landscapes for water and for ion permeation in selected models. These studies demonstrate that a hydrophobic barrier can indeed be designed into a β-barrel protein nanopore, and that the height of the barrier can be adjusted by modifying the number of consecutive rings of hydrophobic side chains. A hydrophobic barrier prevents both water and ion permeation even though the pore is sterically unoccluded. These results both provide insights into the nature of hydrophobic gating in biological pores and channels, and furthermore demonstrate that simple design features may be computationally transplanted into β-barrel membrane proteins to generate functionally complex nanopores.

  14. Mechanisms of integration of de novo-synthesized polypeptides into membranes: signal-recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b5.

    PubMed

    Anderson, D J; Mostov, K E; Blobel, G

    1983-12-01

    We have investigated the in vitro integration into dog pancreas microsomal membranes of three integral membrane proteins that were synthesized de novo in a wheat germ cell-free translation system: calcium ATPase of rabbit sarcoplasmic reticulum, MP26 of bovine lens fiber plasma membrane, and rat liver cytochrome b5. Biosynthetically these proteins show a common feature in that they are synthesized without a transient NH2-terminal signal sequence. Two of these proteins, ATPase and MP26, were shown to require the recently discovered signal-recognition particle (SRP) [Walter, P. & Blobel, G. (1982) Nature (London) 299, 691-698] for integration. By this criterion, therefore, they each contain at least one uncleaved signal sequence. Surprisingly, however, the uncleaved signal sequence(s) of these two proteins did not induce the characteristic SRP-mediated translation arrest that was previously shown for a cleaved signal sequence. Unlike ATPase and MP26, cytochrome b5 did not require SRP for integration into microsomal membrane. Thus, the distinction between an "insertion" sequence (specifying unassisted and opportunistic integration into any exposed membrane) and a "signal" sequence (directing integration into a specific membrane by a receptor-mediated mechanism) is a valid one. By assaying for SRP dependence, the two mechanisms of integration can now be experimentally distinguished.

  15. Irvalec Inserts into the Plasma Membrane Causing Rapid Loss of Integrity and Necrotic Cell Death in Tumor Cells

    PubMed Central

    Molina-Guijarro, José M.; Macías, Álvaro; García, Carolina; Muñoz, Eva; García-Fernández, Luis F.; David, Miren; Núñez, Lucía; Martínez-Leal, Juan F.; Moneo, Victoria; Cuevas, Carmen; Lillo, M. Pilar; Villalobos Jorge, Carlos; Valenzuela, Carmen; Galmarini, Carlos M.

    2011-01-01

    Irvalec is a marine-derived antitumor agent currently undergoing phase II clinical trials. In vitro, Irvalec induces a rapid loss of membrane integrity in tumor cells, accompanied of a significant Ca2+ influx, perturbations of membrane conductivity, severe swelling and the formation of giant membranous vesicles. All these effects are not observed in Irvalec-resistant cells, or are significantly delayed by pretreating the cells with Zn2+. Using fluorescent derivatives of Irvalec it was demonstrated that the compound rapidly interacts with the plasma membrane of tumor cells promoting lipid bilayer restructuration. Also, FRET experiments demonstrated that Irvalec molecules localize in the cell membrane close enough to each other as to suggest that the compound could self-organize, forming supramolecular structures that likely trigger cell death by necrosis through the disruption of membrane integrity. PMID:21556352

  16. High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity

    PubMed Central

    Park, Mi-Young; Kim, Min Young; Seo, Young Rok; Kim, Jong-Sang; Sung, Mi-Kyung

    2016-01-01

    Background: Excess energy supply induces chronic low-grade inflammation in association with oxidative stress in various tissues including intestinal epithelium. The objective of this study was to investigate the effect of high-fat diet (HFD) on intestinal cell membrane integrity and intestinal tumorigenesis in ApcMin/+ mice. Methods: Mice were fed with either normal diet (ND) or HFD for 12 weeks. The number of intestinal tumors were counted and biomarkers of endotoxemia, oxidative stress, and inflammation were determined. Changes in intestinal integrity was measured by fluorescein isothiocyanate (FITC)-dextran penetration and membrane gap junction protein expression. Results: HFD group had significantly higher number of tumors compared to ND group (P < 0.05). Blood total antioxidant capacity was lower in HFD group, while colonic 8-hydroxy-2′-deoxyguanosine level, a marker of oxidative damage, was higher in HFD group compared to that of ND group (P < 0.05). The penetration of FITC-dextran was substantially increased in HFD group (P < 0.05) while the expressions of membrane gap junction proteins including zonula occludens-1, claudin-1, and occludin were lower in HFD group (P < 0.05) compared to those in ND group. Serum concentration of lipopolysaccharide (LPS) receptor (CD14) and colonic toll-like receptor 4 (a LPS receptor) mRNA expression were significantly higher in HFD group than in ND group (P < 0.05), suggesting that significant endotoxemia may occur in HFD group due to the increased membrane permeability. Serum interleukin-6 concentration and myeloperoxidase activity were also higher in HFD group compared to those of ND group (P < 0.05). Conclusions: HFD increases oxidative stress disrupting intestinal gap junction proteins, thereby accelerating membrane permeability endotoxemia, inflammation, and intestinal tumorigenesis. PMID:27390738

  17. Preparation of hydrophobic coatings

    DOEpatents

    Branson, Eric D.; Shah, Pratik B.; Singh, Seema; Brinker, C. Jeffrey

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  18. Arabidopsis Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability[W

    PubMed Central

    Schapire, Arnaldo L.; Voigt, Boris; Jasik, Jan; Rosado, Abel; Lopez-Cobollo, Rosa; Menzel, Diedrik; Salinas, Julio; Mancuso, Stefano; Valpuesta, Victoriano; Baluska, Frantisek; Botella, Miguel A.

    2008-01-01

    Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca2+-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca2+-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair. Consistent with a role in plasma membrane repair, SYT1 is ubiquitously expressed, is located at the plasma membrane, and shares all domains characteristic of animal synaptotagmins (i.e., an N terminus-transmembrane domain and a cytoplasmic region containing two C2 domains with phospholipid binding activities). Our analyses support that membrane trafficking mediated by SYT1 is important for plasma membrane integrity and plant fitness. PMID:19088329

  19. Krypton Derivatization of an O2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport.

    PubMed

    Kalms, Jacqueline; Schmidt, Andrea; Frielingsdorf, Stefan; van der Linden, Peter; von Stetten, David; Lenz, Oliver; Carpentier, Philippe; Scheerer, Patrick

    2016-04-25

    [NiFe] hydrogenases are metalloenzymes catalyzing the reversible heterolytic cleavage of hydrogen into protons and electrons. Gas tunnels make the deeply buried active site accessible to substrates and inhibitors. Understanding the architecture and function of the tunnels is pivotal to modulating the feature of O2 tolerance in a subgroup of these [NiFe] hydrogenases, as they are interesting for developments in renewable energy technologies. Here we describe the crystal structure of the O2 -tolerant membrane-bound [NiFe] hydrogenase of Ralstonia eutropha (ReMBH), using krypton-pressurized crystals. The positions of the krypton atoms allow a comprehensive description of the tunnel network within the enzyme. A detailed overview of tunnel sizes, lengths, and routes is presented from tunnel calculations. A comparison of the ReMBH tunnel characteristics with crystal structures of other O2 -tolerant and O2 -sensitive [NiFe] hydrogenases revealed considerable differences in tunnel size and quantity between the two groups, which might be related to the striking feature of O2 tolerance.

  20. Krypton Derivatization of an O2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport.

    PubMed

    Kalms, Jacqueline; Schmidt, Andrea; Frielingsdorf, Stefan; van der Linden, Peter; von Stetten, David; Lenz, Oliver; Carpentier, Philippe; Scheerer, Patrick

    2016-04-25

    [NiFe] hydrogenases are metalloenzymes catalyzing the reversible heterolytic cleavage of hydrogen into protons and electrons. Gas tunnels make the deeply buried active site accessible to substrates and inhibitors. Understanding the architecture and function of the tunnels is pivotal to modulating the feature of O2 tolerance in a subgroup of these [NiFe] hydrogenases, as they are interesting for developments in renewable energy technologies. Here we describe the crystal structure of the O2 -tolerant membrane-bound [NiFe] hydrogenase of Ralstonia eutropha (ReMBH), using krypton-pressurized crystals. The positions of the krypton atoms allow a comprehensive description of the tunnel network within the enzyme. A detailed overview of tunnel sizes, lengths, and routes is presented from tunnel calculations. A comparison of the ReMBH tunnel characteristics with crystal structures of other O2 -tolerant and O2 -sensitive [NiFe] hydrogenases revealed considerable differences in tunnel size and quantity between the two groups, which might be related to the striking feature of O2 tolerance. PMID:26913499

  1. Conformational Stability and Pathogenic Misfolding of the Integral Membrane Protein PMP22

    PubMed Central

    2016-01-01

    Despite broad biochemical relevance, our understanding of the physiochemical reactions that limit the assembly and cellular trafficking of integral membrane proteins remains superficial. In this work, we report the first experimental assessment of the relationship between the conformational stability of a eukaryotic membrane protein and the degree to which it is retained by cellular quality control in the secretory pathway. We quantitatively assessed both the conformational equilibrium and cellular trafficking of 12 variants of the α-helical membrane protein peripheral myelin protein 22 (PMP22), the intracellular misfolding of which is known to cause peripheral neuropathies associated with Charcot–Marie–Tooth disease (CMT). We show that the extent to which these mutations influence the energetics of Zn(II)-mediated PMP22 folding is proportional to the observed reduction in cellular trafficking efficiency. Strikingly, quantitative analyses also reveal that the reduction of motor nerve conduction velocities in affected patients is proportional to the extent of the mutagenic destabilization. This finding provides compelling evidence that the effects of these mutations on the energetics of PMP22 folding lie at the heart of the molecular basis of CMT. These findings highlight conformational stability as a key factor governing membrane protein biogenesis and suggest novel therapeutic strategies for CMT. PMID:26102530

  2. Evaluation of hydrogen production and internal resistance in forward osmosis membrane integrated microbial electrolysis cells.

    PubMed

    Lee, Mi-Young; Kim, Kyoung-Yeol; Yang, Euntae; Kim, In S

    2015-01-01

    In order to enhance hydrogen production by facilitated proton transport through a forward osmosis (FO) membrane, the FO membrane was integrated into microbial electrolysis cells (MECs). An improved hydrogen production rate was obtained in the FO-MEC (12.5±1.84×10(-3)m(3)H2/m(3)/d) compared to that of the cation exchange membrane (CEM) - MEC (4.42±0.04×10(-3)m(3)H2/m(3)/d) during batch tests (72h). After an internal resistance analysis, it was confirmed that the enhanced hydrogen production in FO-MEC was attributed to the smaller charge transfer resistance than in the CEM-MEC (90.3Ω and 133.4Ω respectively). The calculation of partial internal resistance concluded that the transport resistance can be substantially reduced by replacing a CEM with a FO membrane; decrease of the resistance from 0.069Ωm(2) to 5.99×10(-4)Ωm(2). PMID:25841189

  3. Evaluation of hydrogen production and internal resistance in forward osmosis membrane integrated microbial electrolysis cells.

    PubMed

    Lee, Mi-Young; Kim, Kyoung-Yeol; Yang, Euntae; Kim, In S

    2015-01-01

    In order to enhance hydrogen production by facilitated proton transport through a forward osmosis (FO) membrane, the FO membrane was integrated into microbial electrolysis cells (MECs). An improved hydrogen production rate was obtained in the FO-MEC (12.5±1.84×10(-3)m(3)H2/m(3)/d) compared to that of the cation exchange membrane (CEM) - MEC (4.42±0.04×10(-3)m(3)H2/m(3)/d) during batch tests (72h). After an internal resistance analysis, it was confirmed that the enhanced hydrogen production in FO-MEC was attributed to the smaller charge transfer resistance than in the CEM-MEC (90.3Ω and 133.4Ω respectively). The calculation of partial internal resistance concluded that the transport resistance can be substantially reduced by replacing a CEM with a FO membrane; decrease of the resistance from 0.069Ωm(2) to 5.99×10(-4)Ωm(2).

  4. Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis.

    PubMed

    Devi, K Pandima; Sakthivel, R; Nisha, S Arif; Suganthy, N; Pandian, S Karutha

    2013-03-01

    Eugenol, a member of the phenylpropanoids class of chemical compounds, is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. The antibacterial activity of eugenol and its mechanism of bactericidal action against Proteus mirabilis were evaluated. Treatment with eugenol at their minimum inhibitory concentration [0.125 % (v/v)] and minimum bactericidal concentration [0.25 % (v/v)] reduced the viability and resulted in complete inhibition of P. mirabilis. A strong bactericidal effect on P. mirabilis was also evident, as eugenol inactivated the bacterial population within 30 min exposure. Chemo-attractant property and the observance of highest antibacterial activity at alkaline pH suggest that eugenol can work more effectively when given in vivo. Eugenol inhibits the virulence factors produced by P. mirabilis as observed by swimming motility, swarming behavior and urease activity. It interacts with cellular membrane of P. mirabilis and makes it highly permeable, forming nonspecific pores on plasma membrane, which in turn directs the release of 260 nm absorbing materials and uptake of more crystal violet from the medium into the cells. SDS-polyacrylamide gel, scanning electron microscopy and Fourier transform infrared analysis further proves the disruptive action of eugenol on the plasma membrane of P. mirabilis. The findings reveal that eugenol shows an excellent bactericidal activity against P. mirabilis by altering the integrity of cell membrane. PMID:23444040

  5. Hydrophobic effect at aqueous interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Conceptual basis for hydrophobic effects in bulk water and at aqueous interfaces have similar conceptual basis but often manifests itself differently. Using a wide range of computer simulations as the basis, I will review different forms of hydrophobic effects at a variety of interfaces starting from simple liquid-vapor and water-oil interfaces and progressing to water-membrane interfaces. I will start with discussing how water is organized at different interfaces, stressing both similarities and differences. The main thread is that, as in the bulk liquid, hydrophobic effects have profound influence on conformational equilibria and organization of both small molecules and macromolecules, but the result of this influence is quite different. Specifically, it will be shown that many small, but not necessarily amphiphilic molecules tend to accumulate at the interface and, and this tendency will be explained. Furthermore, I will show that many short peptides that are disordered in water spontaneously fold into well-defined structures in the interfacial environment. Biological implications of this self-organizing effect will be discussed.

  6. Ethylhexylglycerin Impairs Membrane Integrity and Enhances the Lethal Effect of Phenoxyethanol

    PubMed Central

    Langsrud, Solveig; Steinhauer, Katrin; Lüthje, Sonja; Weber, Klaus; Goroncy-Bermes, Peter; Holck, Askild L.

    2016-01-01

    Preservatives are added to cosmetics to protect the consumers from infections and prevent product spoilage. The concentration of preservatives should be kept as low as possible and this can be achieved by adding potentiating agents. The aim of the study was to investigate the mechanisms behind potentiation of the bactericidal effect of a commonly used preservative, 2-phenoxyethanol (PE), by the potentiating agent ethylhexylglycerin (EHG). Sub-lethal concentrations of EHG (0.075%) and PE (0.675%) in combination led to rapid killing of E. coli (> 5 log reduction of cfu after 30 min), leakage of cellular constituents, disruption of the energy metabolism, morphological deformities of cells and condensation of DNA. Used alone, EHG disrupted the membrane integrity even at low concentrations. In conclusion, sub-lethal concentrations of EHG potentiate the effect of PE through damage of the cell membrane integrity. Thus, adding EHG to PE in a 1:9 ratio has a similar effect on membrane damage and bacterial viability as doubling the concentration of PE. This study provides insight about the mechanism of action of a strong potentiating agent, EHG, which is commonly used in cosmetics together with PE. PMID:27783695

  7. FAD oxidizes the ERO1-PDI electron transfer chain: The role of membrane integrity

    SciTech Connect

    Papp, Eszter; Nardai, Gabor; Mandl, Jozsef; Banhegyi, Gabor; Csermely, Peter . E-mail: csermely@puskin.sote.hu

    2005-12-16

    The molecular steps of the electron transfer in the endoplasmic reticulum from the secreted proteins during their oxidation are relatively unknown. We present here that flavine adenine dinucleotide (FAD) is a powerful oxidizer of the oxidoreductase system, Ero1 and PDI, besides the proteins of rat liver microsomes and HepG2 hepatoma cells. Inhibition of FAD transport hindered the action of FAD. Microsomal membrane integrity was mandatory for all FAD-related oxidation steps downstream of Ero1. The PDI inhibitor bacitracin could inhibit FAD-mediated oxidation of microsomal proteins and PDI, but did not hinder the FAD-driven oxidation of Ero1. Our data demonstrated that Ero1 can utilize FAD as an electron acceptor and that FAD-driven protein oxidation goes through the Ero1-PDI pathway and requires the integrity of the endoplasmic reticulum membrane. Our findings prompt further studies to elucidate the membrane-dependent steps of PDI oxidation and the role of FAD in redox folding.

  8. Nicotinic infertility: assessing DNA and plasma membrane integrity of human spermatozoa.

    PubMed

    Arabi, M

    2004-10-01

    Infertility remains a major problem in society, with recent data suggesting its presence in one of four couples. The objective of the present study was to evaluate the impact of nicotine (0.25, 0.5 and 0.75 mm), as a major component of cigarette smoke, in vitro, on sperm membrane [by spermatocrit and lipoperoxidation (LPO) tests], DNA integrity (by Comet assay), and viability of spermatozoa (by eosin staining) from normozoospermic men. Sperm samples were washed and diluted with phosphate-buffered saline. A drop in spermatocrit values and an increase in thiobarbituric acid-reactive substances/LPO rate was observed with the addition of nicotine, predominantly at a concentration of 0.75 mm, indicating a deleterious effect of nicotine on sperm membrane intactness. There was also a strong negative correlation between LPO rate and percentage viable sperm cell (r = -0.990). Data obtained from Comet assay technique revealed that nicotine could induce double-stranded DNA breaks (11% in 0.75 mm concentration) in the sperm nuclei. The value of r between LPO rate and percentage Comets was found to be +0.976. Taken together, nicotine proved to be a potential oxidant agent in the category of environmental factors to the integrity of sperm plasma membrane and DNA. PMID:15458549

  9. Structure determination of an integral membrane protein at room temperature from crystals in situ

    SciTech Connect

    Axford, Danny; Foadi, James; Hu, Nien-Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  10. Cell-free synthesis, functional refolding, and spectroscopic characterization of bacteriorhodopsin, an integral membrane protein.

    PubMed

    Sonar, S; Patel, N; Fischer, W; Rothschild, K J

    1993-12-21

    Bacteriorhodopsin (bR) is an integral membrane protein which functions as a light-driven proton pump in Halobacterium halobium (also known as Halobacterium salinarium). The cell-free synthesis of bR in quantities sufficient for FTIR and NMR spectroscopy and the ability to selectively isotope label bR using aminoacylated suppressor tRNAs would provide a powerful approach for studying the role of specific amino acid residues. However, no integral membrane protein has yet been expressed in a cell-free system in quantities sufficient for such biophysical studies. We report the cell-free synthesis of bacterioopsin, its purification, its refolding in polar lipids from H. halobium, and its regeneration with all-trans-retinal to yield bacteriorhodopsin in a form functionally similar to bR in purple membrane. Importantly, the yields obtained from in vitro and in vivo expression are comparable. Functionality of the cell-free expressed bR is established using static and time-resolved absorption spectroscopy and FTIR difference spectroscopy.

  11. Effects of cigarette smoking on sperm plasma membrane integrity and DNA fragmentation.

    PubMed

    Belcheva, Antoaneta; Ivanova-Kicheva, Maria; Tzvetkova, Petia; Marinov, Mihail

    2004-10-01

    Cigarette smoking is a serious health problem of our society. It is known that cigarette smoke is a cell mutagen and carcinogen, and that it may affect adversely male fertility. The possible detrimental effects on sperm cells are of great interest but the data available to support this statement are somewhat elusive. To approach this problem we examined conventional semen parameters, plasma membrane translocation of phosphatidylserine (PS) (annexin V/6-CFDA cell staining) and sperm DNA integrity (comet assay) in a group of healthy man smoking cigarettes on a regular basis. The results of the study were compared with the results of the same tests in healthy non-smoking donors. Significant difference in standard sperm parameters between the two groups was not found. Intensive expression of PS on the sperm plasma membrane surface (assayed by annexin V positive staining) was detected in the smokers group. There is a significant increase of population of apoptotic spermatozoa in ejaculates of smokers. Albeit DNA damages (high frequencies of double- and single- stranded DNA breaks) in spermatozoa of smokers are increased compared with non-smokers, but this difference is not statistically significant. Sperm DNA integrity of healthy smokers remains in the normal range, but a clear negative trend is observed, especially in respect of disturbance of plasma membrane phospholipid asymmetry.

  12. Integration of Shaker-type K+ channel, KAT1, into the endoplasmic reticulum membrane: synergistic insertion of voltage-sensing segments, S3-S4, and independent insertion of pore-forming segments, S5-P-S6.

    PubMed

    Sato, Yoko; Sakaguchi, Masao; Goshima, Shinobu; Nakamura, Tatsunosuke; Uozumi, Nobuyuki

    2002-01-01

    KAT1 is a member of the Shaker family of voltage-dependent K(+) channels, which has six transmembrane segments (called S1-S6), including an amphipathic S4 with several positively charged residues and a hydrophobic pore-forming region (called P) between S5 and S6. In this study, we systematically evaluated the function of individual and combined transmembrane segments of KAT1 to direct the final topology in the endoplasmic reticulum membrane by in vitro translation and translocation experiments. The assay with single-transmembrane constructs showed that S1 possesses the type II signal-anchor function, whereas S2 has the stop-transfer function. The properties fit well with the results derived from combined insertion of S1 and S2. S3 and S4 failed to integrate into the membrane by themselves. The inserted glycosylation sequence at the S3-S4 loop neither prevented the translocation of S3 and S4 nor impaired the function of voltage-dependent K(+) transport regardless of the changed length of the S3-S4 loop. S3 and S4 are likely to be posttranslationally integrated into the membrane only when somewhat specific interaction occurs between them. S5 had the ability of translocation reinitiation, and S6 had a strong preference for N(exo)/C(cyt) orientation. The pore region resided outside because of its lack of its transmembrane-spanning property. According to their own topogenic function, combined constructs of S5-P-S6 conferred the membrane-pore-membrane topology. This finding supports the notion that a set of S5-P-S6 can be independently integrated into the membrane. The results in this study provide the fundamental topogenesis mechanism of transmembrane segments involving voltage sensor and pore region in KAT1.

  13. Beclin orthologs: integrative hubs of cell signaling, membrane trafficking, and physiology

    PubMed Central

    Levine, Beth; Liu, Rong; Dong, Xiaonan; Zhong, Qing

    2015-01-01

    The Beclin family, including yeast Atg6 (autophagy related gene 6), its orthologs in higher eukaryotic species, and the more recently characterized mammalian-specific Beclin 2, are essential molecules in autophagy and other membrane-trafficking events. Extensive studies of Beclin orthologs have provided considerable insights into the regulation of autophagy, the diverse roles of autophagy in physiology and disease, and potential new strategies to modulate autophagy in a variety of clinical diseases. In this review we discuss the functions of Beclin 1 orthologs, the regulation of such functions by diverse cellular signaling pathways, and the effects of such regulation on downstream cellular processes including tumor suppression and metabolism. These findings suggest that Beclin orthologs serve as crucial molecules that integrate diverse environmental signals with membrane trafficking events to ensure optimal responses of the cell to stressful stimuli. PMID:26071895

  14. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products

    DOEpatents

    Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel

    2000-01-01

    Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

  15. Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains?

    PubMed

    Kock, Christian; Dufrêne, Yves F; Heinisch, Jürgen J

    2015-02-01

    Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.

  16. Reverse micelles in integral membrane protein structural biology by solution NMR spectroscopy

    PubMed Central

    Kielec, Joseph M.; Valentine, Kathleen G.; Babu, Charles R.; Wand, A. Joshua

    2009-01-01

    SUMMARY Integral membrane proteins remain a significant challenge to structural studies by solution NMR spectroscopy. This is due not only to spectral complexity but also because the effects of slow molecular reorientation are exacerbated by the need to solublize the protein in aqueous detergent micelles. These assemblies can be quite large and require deuteration for use of the TROSY effect. In principle, another approach is to employ reverse micelle encapsulation to solublize the protein in a low viscosity solvent where the rapid tumbling of the resulting particle allows use of standard triple resonance methods. The preparation of such samples of membrane proteins is difficult. Using a 54 kDa construct of the homotetrameric potassium channel KcsA we demonstrate a strategy that employs a hybrid surfactant to transfer the protein to the reverse micelle system. PMID:19278649

  17. Efficient Nanoporous Silicon Membranes for Integrated Microfluidic Separation and Sensing Systems

    SciTech Connect

    Ileri, N; L?tant, S E; Britten, J; Nguyen, H; Larson, C; Zaidi, S; Palazoglu, A; Faller, R; Tringe, J W; Stroeve, P

    2009-04-06

    Nanoporous devices constitute emerging platforms for selective molecule separation and sensing, with great potential for high throughput and economy in manufacturing and operation. Acting as mass transfer diodes similar to a solid-state device based on electron conduction, conical pores are shown to have superior performance characteristics compared to traditional cylindrical pores. Such phenomena, however, remain to be exploited for molecular separation. Here we present performance results from silicon membranes created by a new synthesis technique based on interferometric lithography. This method creates millimeter sized planar arrays of uniformly tapered nanopores in silicon with pore diameter 100 nm or smaller, ideally-suited for integration into a multi-scale microfluidic processing system. Molecular transport properties of these devices are compared against state-of-the-art polycarbonate track etched (PCTE) membranes. Mass transfer rates of up to fifteen-fold greater than commercial sieve technology are obtained. Complementary results from molecular dynamics simulations on molecular transport are reported.

  18. Integrated atomic force microscopy techniques for analysis of biomaterials: Study of membrane proteins

    NASA Astrophysics Data System (ADS)

    Connelly, Laura S.

    Atomic Force Microscopy (AFM) is the prominent techniques for structural studies of biological materials in physiological relevant fluidic environments. AFM has been used to resolve the three-dimensional (3D) surface structure of cells, membranes, and proteins structures. Ion channels, formed by membrane proteins, are the key structures that control the activity of all living systems. This dissertation focuses on the structural evaluation of membrane proteins through atomic force microscopy. In Part I, AFM is utilized to study one of the most prominent medical issues facing our society, Alzheimer's Disease (AD). AD is a misfolded protein disease characterized by the accumulation of beta-amyloid (Abeta) peptide as senile plaques, progressive neurodegeneration, and memory loss. Recent evidence suggests that AD pathology is linked to the destabilization of cellular ionic homeostasis mediated by toxic channel structures composed of Abeta peptides. Selectively engineered sequences of Abeta were examined by AFM to elucidate the substructures and thus activity Abeta channels. Key residues were evaluated with the intent better understand the exact nature by which these pores conduct electrical and molecular signals, which could aid in identifying potential therapeutic targets for the prevention/treatment of AD. Additionally, AFM was used to analyze brain derived Abeta and newly developed pharmacological agents to study membranes and Abeta. Part II, presents a novel technology that incorporates electrophysiology into the AFM interface, enabling simultaneous imaging and complementary conductance measurements. The activity of ion channels is studied by various techniques, including patch clamp, free standing lipid bilayers, droplet interface bilayers, and supported lipid bilayers. However, direct correlation with channel structures has remained a challenge. The integrated atomic force microscopy system presented offers a solution to this challenge. The functionality of the

  19. Low-density Lipoprotein Improves Motility and Plasma Membrane Integrity of Cryopreserved Canine Epididymal Spermatozoa.

    PubMed

    Prapaiwan, N; Tharasanit, T; Punjachaipornpol, S; Yamtang, D; Roongsitthichai, A; Moonarmart, W; Kaeoket, K; Manee-In, S

    2016-05-01

    Cryopreservation of caudal epididymal spermatozoa is an effective technique to conserve genetic potentials of superior dogs when it is not possible to collect ejaculated spermatozoa. Although hen egg yolk is commonly supplemented into the semen extender, active substances within the egg yolk which protect sperm against cryoinjury remain to be discovered. Among its compositions, low-density lipoprotein (LDL) has been reported to have a cryoprotective property for sperm cryopreservation. However, the effects of LDL on dog epididymal spermatozoa during cryopreservation have not yet been investigated. This study aimed to investigate the effects of LDL on epididymal spermatozoa quality following cryopreservation and thawing. After routine castration of 12 dogs, caudal epididymides from individuals were separated from the testes and cut into a few pieces in a Tris-buffer. Spermatozoa recovered from each sample were examined at once for sperm quality and divided into six groups of extender: no LDL, 20% egg yolk, 4%, 8%, 16%, and 24% LDL, before cryopreservation. The sperm aliquots were then equilibrated and conventionally frozen. After thawing, sperm motility, morphology, plasma membrane integrity, and acrosome integrity were evaluated. The results revealed that 4% LDL and 20% egg yolk yielded significantly higher sperm motility (57.69% and 52.69%, respectively, p<0.05) than other LDLs. In addition, 4% LDL yielded the significantly highest plasma membrane integrity (70.54%, p<0.05). In conclusion, the supplementation of 4% LDL in Tris-glucose extender could be applied for cryopreservation of canine epididymal spermatozoa. PMID:26954170

  20. Integrated forward osmosis-membrane distillation process for human urine treatment.

    PubMed

    Liu, Qianliang; Liu, Caihong; Zhao, Lei; Ma, Weichao; Liu, Huiling; Ma, Jun

    2016-03-15

    This study demonstrated a forward osmosis-membrane distillation (FO-MD) hybrid system for real human urine treatment. A series of NaCl solutions at different concentrations were adopted for draw solutions in FO process, which were also the feed solutions of MD process. To establish a stable and continuous integrated FO-MD system, individual FO process with different NaCl concentrations and individual direct contact membrane distillation (DCMD) process with different feed temperatures were firstly investigated separately. Four stable equilibrium conditions were obtained from matching the water transfer rates of individual FO and MD processes. It was found that the integrated system is stable and sustainable when the water transfer rate of FO subsystem is equal to that of MD subsystem. The rejections to main contaminants in human urine were also investigated. Although individual FO process had relatively high rejection to Total Organic Carbon (TOC), Total Nitrogen (TN) and Ammonium Nitrogen (NH4(+)-N) in human urine, these contaminants could also accumulate in draw solution after long term performance. The MD process provided an effective rejection to contaminants in draw solution after FO process and the integrated system revealed nearly complete rejection to TOC, TN and NH4(+)-N. This work provided a potential treatment process for human urine in some fields such as water regeneration in space station and water or nutrient recovery from source-separated urine. PMID:26773483

  1. Integrated forward osmosis-membrane distillation process for human urine treatment.

    PubMed

    Liu, Qianliang; Liu, Caihong; Zhao, Lei; Ma, Weichao; Liu, Huiling; Ma, Jun

    2016-03-15

    This study demonstrated a forward osmosis-membrane distillation (FO-MD) hybrid system for real human urine treatment. A series of NaCl solutions at different concentrations were adopted for draw solutions in FO process, which were also the feed solutions of MD process. To establish a stable and continuous integrated FO-MD system, individual FO process with different NaCl concentrations and individual direct contact membrane distillation (DCMD) process with different feed temperatures were firstly investigated separately. Four stable equilibrium conditions were obtained from matching the water transfer rates of individual FO and MD processes. It was found that the integrated system is stable and sustainable when the water transfer rate of FO subsystem is equal to that of MD subsystem. The rejections to main contaminants in human urine were also investigated. Although individual FO process had relatively high rejection to Total Organic Carbon (TOC), Total Nitrogen (TN) and Ammonium Nitrogen (NH4(+)-N) in human urine, these contaminants could also accumulate in draw solution after long term performance. The MD process provided an effective rejection to contaminants in draw solution after FO process and the integrated system revealed nearly complete rejection to TOC, TN and NH4(+)-N. This work provided a potential treatment process for human urine in some fields such as water regeneration in space station and water or nutrient recovery from source-separated urine.

  2. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  3. Amphipols: Polymers that Keep Membrane Proteins Soluble in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Tribet, Christophe; Audebert, Roland; Popot, Jean-Luc

    1996-12-01

    Amphipols are a new class of surfactants that make it possible to handle membrane proteins in detergent-free aqueous solution as though they were soluble proteins. The strongly hydrophilic backbone of these polymers is grafted with hydrophobic chains, making them amphiphilic. Amphipols are able to stabilize in aqueous solution under their native state four well-characterized integral membrane proteins: (i) bacteriorhodopsin, (ii) a bacterial photosynthetic reaction center, (iii) cytochrome b6f, and (iv) matrix porin.

  4. Molecular cloning of a highly conserved mouse and human integral membrane protein (Itm1) and genetic mapping to mouse chromosome 9

    SciTech Connect

    Hong, Guizhu; Tylzanowski, P.; Deleersnijder, W.

    1996-02-01

    We have isolated and characterized a novel cDNA coding for a highly hydrophobic protein (B5) from a fetal mouse mandibular condyle cDNA library. The full-length mouse B5 cDNA is 3095 nucleotides long and contains a potential open reading frame coding for a protein of 705 amino acids with a calculated molecular weight of 80.5 kDa. The B5 mRNA is differentially polyadenylated, with the most abundant transcript having a length of 2.7 kb. The human homolog of B5 was isolated from a cDNA testis library. The predicted amino acid sequence of the human B5 is 98.5% identical to that of mouse. The most striking feature of the B5 protein is the presence of numerous (10-14) potential transmembrane domains, characteristic of an integral membrane protein. Similarity searches in public databanks reveal that B5 is 58% similar to the T12A2.2 gene of Caenorhabditis elegans and 60% similar to the STT3 gene of Saccharomyces cerevisiae. Futhermore, the report of an EST sequence (Accession No. Z13858) related to the human B5, but identical to the STT3 gene, indicates that B5 belongs to a larger gene family coding for novel putative transmembrane proteins. This family exhibits a remarkable degree of conservation in different species. The gene for B5, designated Itm1 (Integral membrane protein 1), is located on mouse chromosome 9. 28 refs., 4 figs.

  5. An enzymatic immunoassay microfluidics integrated with membrane valves for microsphere retention and reagent mixing.

    PubMed

    Ren, Li; Wang, Jian-Chun; Liu, Wenming; Tu, Qin; Liu, Rui; Wang, Xueqin; Xu, Juan; Wang, Yaolei; Zhang, Yanrong; Li, Li; Wang, Jinyi

    2012-05-15

    The present study presents a new microfluidic device integrated with pneumatic microvalves and a membrane mixer for enzyme-based immunoassay of acute myocardial infarction (AMI) biomarkers, namely, myoglobin, and heart-type fatty acid binding protein (H-FABP). Superparamagnetic microspheres with carboxyl groups on their surfaces were used as antibody solid carriers. A membrane mixer consisting of four ψ-type membrane valves was assembled under the reaction chamber for on-chip performing microsphere trapping and reagent mixing. The entire immunoassay process, including microsphere capture, reagent input, mixing, and subsequent reaction, was accomplished on the device either automatically or manually. The post-reaction substrate resultant was analyzed using a microplate reader. The results show that the average absorbance value is correlated with the concentration of cardiac markers, in agreement with the results obtained using a conventional microsphere-based immunoassay; this indicated that the proposed on-chip immunoassay protocol could be used to detect both myoglobin and H-FABP. The minimum detectable concentration is 5 ng/mL for myoglobin and 1 ng/mL for H-FABP.

  6. Influence of estrogenic pesticides on membrane integrity and membrane transfer of monosaccharide into the human red cell

    SciTech Connect

    Ingermann, R.L. )

    1989-09-01

    Some natural and synthetic estrogens inhibit carrier-mediated transport of glucose into human red blood cells and membrane vesicles from the placenta. The inhibitory action of these estrogens on transport appears to be a direct effect at the membrane and does not involve receptor binding and protein synthesis. It is not clear, however, whether such inhibition is a common feature among estrogenic agents. Several chlorinated hydrocarbon pesticides have been shown to possess estrogenic activity. These pesticides could have inhibitory effects on the human sodium-independent glucose transporter. Owing to the apparent importance of this membrane transporter in human tissues, direct interaction of hormones and xenobiotics with the glucose transporter is of fundamental significance. Some pesticides have been shown to alter membrane structure directly and alter the passive permeability of membranes. Whether the estrogenic pesticides influence passive diffusion of sugars across membranes has not been established. Finally, preliminary observations have suggested that some estrogens and pesticides have lytic effects on intact cells. Consequently, this study focuses on the ability of several estrogens and estrogenic pesticides to disrupt the cell membrane, influence the monosaccharide transporter, and alter the rate of monosaccharide permeation through the membrane by simple diffusion.

  7. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  8. Electrokinetic instability near charge-selective hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Shelistov, V. S.; Demekhin, E. A.; Ganchenko, G. S.

    2014-07-01

    The influence of the texture of a hydrophobic surface on the electro-osmotic slip of the second kind and the electrokinetic instability near charge selective surfaces (permselective membranes, electrodes, or systems of microchannels and nanochannels) is investigated theoretically using a simple model based on the Rubinstein-Zaltzman approach. A simple formula is derived to evaluate the decrease in the instability threshold due to hydrophobicity. The study is complemented by numerical investigations both of linear and nonlinear instabilities near a hydrophobic membrane surface. Theory predicts a significant enhancement of the ion flux to the surface and shows a good qualitative agreement with the available experimental data.

  9. Mammalian plasma membrane proteins as potential biomarkers and drug targets.

    PubMed

    Rucevic, Marijana; Hixson, Douglas; Josic, Djuro

    2011-06-01

    Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented.

  10. Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+.

    PubMed

    Luoto, Heidi H; Baykov, Alexander A; Lahti, Reijo; Malinen, Anssi M

    2013-01-22

    One of the strategies used by organisms to adapt to life under conditions of short energy supply is to use the by-product pyrophosphate to support cation gradients in membranes. Transport reactions are catalyzed by membrane-integral pyrophosphatases (PPases), which are classified into two homologous subfamilies: H(+)-transporting (found in prokaryotes, protists, and plants) and Na(+)-transporting (found in prokaryotes). Transport activities have been believed to require specific machinery for each ion, in accordance with the prevailing paradigm in membrane transport. However, experiments using a fluorescent pH probe and (22)Na(+) measurements in the current study revealed that five bacterial PPases expressed in Escherichia coli have the ability to simultaneously translocate H(+) and Na(+) into inverted membrane vesicles under physiological conditions. Consistent with data from phylogenetic analyses, our results support the existence of a third, dual-specificity bacterial Na(+),H(+)-PPase subfamily, which apparently evolved from Na(+)-PPases. Interestingly, genes for Na(+),H(+)-PPase have been found in the major microbes colonizing the human gastrointestinal tract. The Na(+),H(+)-PPases require Na(+) for hydrolytic and transport activities and are further activated by K(+). Based on ionophore effects, we conclude that the Na(+) and H(+) transport reactions are electrogenic and do not result from secondary antiport effects. Sequence comparisons further disclosed four Na(+),H(+)-PPase signature residues located outside the ion conductance channel identified earlier in PPases using X-ray crystallography. Our results collectively support the emerging paradigm that both Na(+) and H(+) can be transported via the same mechanism, with switching between Na(+) and H(+) specificities requiring only subtle changes in the transporter structure.

  11. Membrane and Integrative Nuclear Fibroblastic Growth Factor Receptor (FGFR) Regulation of FGF-23*

    PubMed Central

    Han, Xiaobin; Xiao, Zhousheng; Quarles, L. Darryl

    2015-01-01

    Fibroblastic growth factor receptor 1 (FGFR1) signaling pathways are implicated in the regulation of FGF-23 gene transcription, but the molecular pathways remain poorly defined. We used low molecular weight (LMW, 18 kDa) FGF-2 and high molecular weight (HMW) FGF-2 isoforms, which, respectively, activate cell surface FGF receptors and intranuclear FGFR1, to determine the roles of membrane FGFRs and integrative nuclear FGFR1 signaling (INFS) in the regulation of FGF-23 gene transcription in osteoblasts. We found that LMW-FGF-2 induced NFAT and Ets1 binding to conserved cis-elements in the proximal FGF-23 promoter and stimulated FGF-23 promoter activity through PLCγ/calcineurin/NFAT and MAPK pathways in SaOS-2 and MC3T3-E1 osteoblasts. In contrast, HMW-FGF-2 stimulated FGF-23 promoter activity in osteoblasts through a cAMP-dependent binding of FGFR1 and cAMP-response element-binding protein (CREB) to a conserved cAMP response element (CRE) contiguous with the NFAT binding site in the FGF-23 promoter. Mutagenesis of the NFAT and CRE binding sites, respectively, inhibited the effects of LMW-FGF-2 and HMW-FGF-23 to stimulate FGF-23 promoter activity. FGF-2 activation of both membrane FGFRs and INFS-dependent FGFR1 pathways may provide a means to integrate systemic and local regulation of FGF-23 transcription under diverse physiological and pathological conditions. PMID:25752607

  12. Hemorrhagic shock impairs myocardial cell volume regulation and membrane integrity in dogs

    SciTech Connect

    Horton, J.W.

    1987-06-01

    An in vitro myocardial slice technique was used to quantitate alterations in cell volume regulation and membrane integrity after 2 h or hemorrhagic shock. After in vitro incubation in Krebs-Ringer-phosphate medium containing trace (/sup 14/C)inulin, values (ml H/sub 2/O/g dry wt) for control nonshocked myocardial slices were 4.03 /plus minus/ 0.11 (SE) for total water, 2.16 /plus minus/ 0.07 for inulin impermeable space, and 1.76 /plus minus/ 0.15 for inulin diffusible space. Shocked myocardial slices showed impaired response to cold incubation. After 2 h of in vivo shock, total tissue water, inulin diffusible space, and inulin impermeable space increased significantly for subendocardium, whereas changes in subepicardium parameters were minimal. Shock-induced cellular swelling was accompanied by an increased total tissue sodium, but no change in tissue potassium. Calcium entry blockade in vivo significantly reduced subendocardial total tissue water as compared with shock-untreated dogs. In addition, calcium entry blockade reduced shock-induced increases in inulin diffusible space. In vitro myocardial slice studies confirm alterations in subendocardial membrane integrity after 2 h of in vivo hemorrhagic shock. Shock-induced abnormalities in myocardial cell volume regulation are reduced by calcium entry blockade in vivo.

  13. Impact of saffron on rat sperm membrane integrity and spermatogenesis status

    PubMed Central

    Vaez, Ahmad; Mardani, Mohammad; Razavi, Shahnaz

    2014-01-01

    Background: Male factor has been considered as a 50% of infertility causes. One of the reasons for poor semen quality is oxidative stress. Saffron and vitamin E as antioxidant agent can be involved in free radical scavenging and improvement of semen quality. Materials and Methods: We divided 30 adult male Wistar rats into saffron (n = 10), vitamin E (n = 10) and control (n = 10) groups randomly. Saffron (100 mg/kg/day), vitamin E (100 mg/kg/day), and distilled water (0.5 ml/day) were fed by gavage to the animals for 60 consecutive days in aforementioned groups. After cervical dislocation, both testes and left epididymis of each animal were removed and the cauda epididymal spermatozoa were aspirated for analysis of sperm parameters. Sperm membrane integrity was assessed by hypo-osmotic swelling test (HOST). In different groups, seminiferous tubule histological assessments were done after Hematoxylin -Eosin staining. Results: The mean percentage of HOST positive sperm was increased in vitamin E and saffron groups as compared to control group. As we can see there was a significant difference among control and experimental groups (P < 0.001); also a significant difference was obtained between vitamin E and saffron groups (P = 0.002). The evaluation of seminiferous tubules has shown no significant differences among groups. Conclusions: The present data suggest that saffron had superior antioxidant properties which can improve sperm parameters and membrane integrity so it can lead to develop fertility potential. PMID:25161993

  14. Vitrification of Sperm from Marine Fishes: Effect on Motility and Membrane Integrity

    PubMed Central

    Cuevas-Uribe, Rafael; Chesney, Edward J.; Daly, Jonathan; Tiersch, Terrence R.

    2013-01-01

    Our goal was to develop a standardized approach for sperm vitrification of marine fishes that can be applied generally in aquatic species. The objectives were to: 1) estimate acute toxicity of cryoprotectants over a range of concentrations; 2) evaluate the properties of vitrification solutions (VS); 3) evaluate different thawing solutions, and 4) evaluate sperm quality after thawing by examination of motility and membrane integrity. Sperm were collected from red snapper (Lutjanus campechanus), spotted seatrout (Cynoscion nebulosus), and red drum (Sciaenops ocellatus). A total of 29 combinations of cryoprotectants were evaluated for toxicity and glass formation. Samples were loaded onto 10-µL polystyrene loops and plunged into liquid nitrogen. There was a significant difference (P < 0.05) in post-thaw motility among VS and among species when using the same VS. The sperm in VS of 15% DMSO + 15% ethylene glycol + 10% glycerol + 1% X-1000™ + 1% Z-1000™ had an average post-thaw motility of 58% and membrane integrity of 19% for spotted seatrout, 38% and 9% for red snapper, and 30% and 19% for red drum. Adaptations by marine fish to high osmotic pressures could explain the survival in the high cryoprotectant concentrations. Vitrification offers an alternative to conventional cryopreservation. PMID:26074721

  15. Electrohydrodynamics Near Hydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Maduar, S. R.; Belyaev, A. V.; Lobaskin, V.; Vinogradova, O. I.

    2015-03-01

    We show that an electro-osmotic flow near the slippery hydrophobic surface depends strongly on the mobility of surface charges, which are balanced by counterions of the electrostatic diffuse layer. For a hydrophobic surface with immobile charges, the fluid transport is considerably amplified by the existence of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges, it is also controlled by an additional electric force, which increases the shear stress at the slipping interface. To account for this, we formulate electrohydrodynamic boundary conditions at the slipping interface, which should be applied to quantify electro-osmotic flows instead of hydrodynamic boundary conditions. Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit charges. These results lead to a new interpretation of zeta potential of hydrophobic surfaces.

  16. Electrohydrodynamics near hydrophobic surfaces.

    PubMed

    Maduar, S R; Belyaev, A V; Lobaskin, V; Vinogradova, O I

    2015-03-20

    We show that an electro-osmotic flow near the slippery hydrophobic surface depends strongly on the mobility of surface charges, which are balanced by counterions of the electrostatic diffuse layer. For a hydrophobic surface with immobile charges, the fluid transport is considerably amplified by the existence of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges, it is also controlled by an additional electric force, which increases the shear stress at the slipping interface. To account for this, we formulate electrohydrodynamic boundary conditions at the slipping interface, which should be applied to quantify electro-osmotic flows instead of hydrodynamic boundary conditions. Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit charges. These results lead to a new interpretation of zeta potential of hydrophobic surfaces.

  17. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  18. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation.

    PubMed

    Tian, Yu; Li, Hui; Li, Lipin; Su, Xinying; Lu, Yaobin; Zuo, Wei; Zhang, Jun

    2015-02-15

    A hollow-fiber membrane bioreactor was integrated with a microbial fuel cell to develop a novel system of MFC-MBR based on the utilization of electricity recovered by the MFC for wastewater treatment improvement and membrane fouling mitigation in the MBR. In this system, a maximum power density of 2.18 W/m(3) and an average voltage output of 0.15 V were achieved at an external resistance of 50 Ω. The removal efficiencies of COD, ammonia nitrogen ( [Formula: see text] ) and total nitrogen (TN) in the MFC-MBR were improved by 4.4%, 1.2% and 10.3%, respectively. It is worth noting that, in addition to reducing the deposition of sludge on the membrane surface by the electric field force, the MFC-MBR also alleviated the membrane fouling by sludge modification. Compared with the control MBR (C-MBR), less loosely bound extracellular polymeric substances (LB-EPS), lower SMPp/SMPc ratio, more homogenized sludge flocs and less filamentous bacteria were obtained in the MFC-MBR, which improved the dewaterability and filterability of the sludge. The cake layer on the membrane formed by the modified sludge was more porous with lower compressibility, significantly enhancing the membrane filterability. A proof of concept of an MFC-MBR was provided and shown to be effective in membrane fouling mitigation with efficient wastewater treatment and energy recovery, demonstrating the feasibility of the minute electricity generated by the MFC for membrane fouling alleviation in the MBR.

  19. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation.

    PubMed

    Tian, Yu; Li, Hui; Li, Lipin; Su, Xinying; Lu, Yaobin; Zuo, Wei; Zhang, Jun

    2015-02-15

    A hollow-fiber membrane bioreactor was integrated with a microbial fuel cell to develop a novel system of MFC-MBR based on the utilization of electricity recovered by the MFC for wastewater treatment improvement and membrane fouling mitigation in the MBR. In this system, a maximum power density of 2.18 W/m(3) and an average voltage output of 0.15 V were achieved at an external resistance of 50 Ω. The removal efficiencies of COD, ammonia nitrogen ( [Formula: see text] ) and total nitrogen (TN) in the MFC-MBR were improved by 4.4%, 1.2% and 10.3%, respectively. It is worth noting that, in addition to reducing the deposition of sludge on the membrane surface by the electric field force, the MFC-MBR also alleviated the membrane fouling by sludge modification. Compared with the control MBR (C-MBR), less loosely bound extracellular polymeric substances (LB-EPS), lower SMPp/SMPc ratio, more homogenized sludge flocs and less filamentous bacteria were obtained in the MFC-MBR, which improved the dewaterability and filterability of the sludge. The cake layer on the membrane formed by the modified sludge was more porous with lower compressibility, significantly enhancing the membrane filterability. A proof of concept of an MFC-MBR was provided and shown to be effective in membrane fouling mitigation with efficient wastewater treatment and energy recovery, demonstrating the feasibility of the minute electricity generated by the MFC for membrane fouling alleviation in the MBR. PMID:25218103

  20. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    Attenuated Internal Reflection (MAIR-IR) and Microscopic Infrared Spectroscopy for organic surface compositional details, light microscopy for wear area quantification, and profilometry for surface roughness estimation and wear depth quantification. Pin-on-disc dynamic Coefficient of Friction (CoF) measurements provided data relevant to forecasts of seal integrity in dry, wet and biofouling-influenced sliding contact. Actual wear of neoprene seal material against uncoated and coated steel surfaces, wet and dry, was monitored after both rotary and linear cyclic wear testing, demonstrating significant reductions in elastomer wear areas and depths (and resultant volumes) when the coating was present. Coating the steel eliminated a 270% increase in neoprene surface area wear and an 11-fold increase in seal abrasive volume loss associated with underwater rusting in rotary experiments. Linear testing results confirm coating efficacy by reducing wear area in both loading regimes by about half. No coating delamination was observed, apparently due to a differential distribution of silicone and epoxy ingredients at the air-exposed vs. steel-bonded interfaces demonstrated by IR and EDS methods. Frictional testing revealed higher Coefficients of Friction (CoF) associated with the low-speed sliding of Neoprene over coated rather than uncoated steel surfaces in a wet environment, indicating better potential seal adhesion between the hydrophobic elastomer and coating than between the elastomer and intrinsically hydrophilic uncoated steel. When zebra mussel biofouling debris was present in the articulating joints, CoF was reduced as a result of a water channel path produced between the articulating surfaces by the retained biological matter. Easier release of the biofouling from the low-CST coated surfaces restored the seal integrity more rapidly with further water rinsing. Rapid sliding diminished these biofouling-related differences, but revealed a significant advantage in reducing the Co

  1. [The study on the characters of membrane protein interaction and its network based on integrated intelligence method].

    PubMed

    Shen, Yizhen; Ding, Yongsheng; Hao, Kuangrong

    2011-08-01

    Membrane protein and its interaction network have become a novel research direction in bioinformatics. In this paper, a novel membrane protein interaction network simulator is proposed for system biology studies by integrated intelligence method including spectrum analysis, fuzzy K-Nearest Neighbor(KNN) algorithm and so on. We consider biological system as a set of active computational components interacting with each other and with the external environment. Then we can use the network simulator to construct membrane protein interaction networks. Based on the proposed approach, we found that the membrane protein interaction network almost has some dynamic and collective characteristics, such as small-world network, scale free distributing, and hierarchical module structure. These properties are similar to those of other extensively studied protein interaction networks. The present studies on the characteristics of the membrane protein interaction network will be valuable for its relatively biological and medical studies. PMID:21936357

  2. Charged gels as orienting media for measurement of residual dipolar couplings in soluble and integral membrane proteins.

    PubMed

    Cierpicki, Tomasz; Bushweller, John H

    2004-12-15

    Measurement of residual dipolar couplings for membrane proteins will dramatically improve the quality of the structures obtainable by solution NMR spectroscopy. While there has been some success in achieving alignment of membrane-bound peptides, there has been very limited success in achieving alignment for functional membrane proteins. Herein, we demonstrate that charged polyacrylamide-based copolymers are suitable for obtaining weak alignment of membrane proteins reconstituted in detergent micelles. Varying the copolymer compositions, we prepared positively, zwitterionic, and negatively charged gels that are very stable at low concentration and can be used for obtaining weak alignment by compression in an NMR tube. Application of this method is demonstrated for the integral membrane protein OmpA in DPC micelles.

  3. Charged gels as orienting media for measurement of residual dipolar couplings in soluble and integral membrane proteins.

    PubMed

    Cierpicki, Tomasz; Bushweller, John H

    2004-12-15

    Measurement of residual dipolar couplings for membrane proteins will dramatically improve the quality of the structures obtainable by solution NMR spectroscopy. While there has been some success in achieving alignment of membrane-bound peptides, there has been very limited success in achieving alignment for functional membrane proteins. Herein, we demonstrate that charged polyacrylamide-based copolymers are suitable for obtaining weak alignment of membrane proteins reconstituted in detergent micelles. Varying the copolymer compositions, we prepared positively, zwitterionic, and negatively charged gels that are very stable at low concentration and can be used for obtaining weak alignment by compression in an NMR tube. Application of this method is demonstrated for the integral membrane protein OmpA in DPC micelles. PMID:15584763

  4. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    Attenuated Internal Reflection (MAIR-IR) and Microscopic Infrared Spectroscopy for organic surface compositional details, light microscopy for wear area quantification, and profilometry for surface roughness estimation and wear depth quantification. Pin-on-disc dynamic Coefficient of Friction (CoF) measurements provided data relevant to forecasts of seal integrity in dry, wet and biofouling-influenced sliding contact. Actual wear of neoprene seal material against uncoated and coated steel surfaces, wet and dry, was monitored after both rotary and linear cyclic wear testing, demonstrating significant reductions in elastomer wear areas and depths (and resultant volumes) when the coating was present. Coating the steel eliminated a 270% increase in neoprene surface area wear and an 11-fold increase in seal abrasive volume loss associated with underwater rusting in rotary experiments. Linear testing results confirm coating efficacy by reducing wear area in both loading regimes by about half. No coating delamination was observed, apparently due to a differential distribution of silicone and epoxy ingredients at the air-exposed vs. steel-bonded interfaces demonstrated by IR and EDS methods. Frictional testing revealed higher Coefficients of Friction (CoF) associated with the low-speed sliding of Neoprene over coated rather than uncoated steel surfaces in a wet environment, indicating better potential seal adhesion between the hydrophobic elastomer and coating than between the elastomer and intrinsically hydrophilic uncoated steel. When zebra mussel biofouling debris was present in the articulating joints, CoF was reduced as a result of a water channel path produced between the articulating surfaces by the retained biological matter. Easier release of the biofouling from the low-CST coated surfaces restored the seal integrity more rapidly with further water rinsing. Rapid sliding diminished these biofouling-related differences, but revealed a significant advantage in reducing the Co

  5. Effects of surface integrity on the fatigue life of thin flexing membranes.

    PubMed

    Sinnott, M M; Hoeppner, D W; Romney, E; Dew, P A

    1989-01-01

    It has been known for some time that surface integrity has an effect on the fatigue life of metals and "brittle" polymers. In cardiovascular applications of polymeric materials, emphasis is placed on elastomers having extended flexure lifetimes (i.e., fatigue life). The effect of surface integrity on the performance properties of Biomer (Ethicon, Inc, Somerville, NJ) a segmented polyurethane used in many blood contacting devices, is being investigated using uniaxial tensile tests in air at room temperature, and biaxial fatigue tests in deionized water at body temperature. Tensile tests were done using ASTM-D-882: Standard Test Methods for Tensile Properties of Thin Plastic Sheeting. No significant differences were noted in the stress-strain curves for specimens with various surface finishes. Fatigue tests were performed using an apparatus developed to allow for the exposure of thin-sheet polymer specimens to fluid at body temperature, while being biaxially strained. Because no standard test method was available, a test protocol was developed with reference to ASTM-D-671-78: Standard Test Methods for the Flexural Fatigue of Plastics by Constant Amplitude of Force. Stress versus life cycle data for specimens with differing surface finishes are being collected. Results to date suggest fatigue life of thin flexing membranes will decrease with increasing order of surface roughness, and fatigue properties are more sensitive to effects of changes in surface integrity than tensile properties measured by monotonic loading.

  6. Spacesuit Water Membrane Evaporator Integration with the ISS Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Margiott, Victoria; Boyle, Robert

    2014-01-01

    NASA has developed a Solid Water Membrane Evaporation (SWME) to provide cooling for the next generation spacesuit. The current spacesuit team has looked at this technology from the standpoint of using the ISS EMU to demonstrate the SWME technology while EVA, and from the standpoint of augmenting EMU cooling in the case of a fouled EMU cooling system. One approach to increasing the TRL of the system is to incorporate this hardware with the existing EMU. Several integration issues were addressed to support a potential demonstration of the SWME with the existing EMU. Systems analysis was performed to assess the capability of the SWME to maintain crewmember cooling and comfort as a replacement for sublimation. The materials of the SWME were reviewed to address compatibility with the EMU. Conceptual system placement and integration with the EMU via an EVA umbilical system to ensure crew mobility and Airlock egress were performed. A concept of operation for EVA use was identified that is compatible with the existing system. This concept is extensible as a means to provide cooling for the existing EMU. The cooling system of one of the EMUs on orbit has degraded, with the root cause undetermined. Should there be a common cause resident on ISS, this integration could provide a means to recover cooling capability for EMUs on orbit.

  7. Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    PubMed Central

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.

    2010-01-01

    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533

  8. Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization

    PubMed Central

    Duval-Terrié, Caroline; Cosette, Pascal; Molle, Gérard; Muller, Guy; Dé, Emmanuelle

    2003-01-01

    The aim of this study was to develop new surfactants for membrane protein solubilization, from a natural, biodegradable polymer: the polysaccharide pullulan. A set of amphiphilic pullulans (HMCMPs), differing in hydrophobic modification ratio, charge ratio, and the nature of the hydrophobic chains introduced, were synthesized and tested in solubilization experiments with outer membranes of Pseudomonas fluorescens. The membrane proteins were precipitated, and then resolubilized with various HMCMPs. The decyl alkyl chain (C10) was the hydrophobic graft that gave the highest level of solubilization. Decyl alkyl chain-bearing HMCMPs were also able to extract integral membrane proteins from their lipid environment. The best results were obtained with an amphiphilic pullulan bearing 18% decyl groups (18C10). Circular dichroism spectroscopy and membrane reconstitution experiments were used to test the structural and functional integrity of 18C10-solubilized proteins (OmpF from Escherichia coli and bacteriorhodopsin from Halobacterium halobium). Whatever their structure type (α or β), 18C10 did not alter either the structure or the function of the proteins analyzed. Thus, HMCMPs appear to constitute a promising new class of polymeric surfactants for membrane protein studies. PMID:12649425

  9. Anti-Candida activity of geraniol involves disruption of cell membrane integrity and function.

    PubMed

    Sharma, Y; Khan, L A; Manzoor, N

    2016-09-01

    Candidiasis is a major problem in immunocompromised patients. Candida, an opportunistic fungal pathogen, is a major health concern today as conventional drugs are highly toxic with undesirable side effects. Their fungistatic nature is responsible for drug resistance in continuously evolving strains. Geraniol, an acyclic monoterpene alcohol, is a component of several plant essential oils. In the present study, an attempt has been made to understand the antifungal activity of geraniol at the cell membrane level in three Candida species. With an MIC of 30-130μg/mL, this natural compound was fungicidal at concentrations 2×MIC. There was complete suppression of fungal growth at MIC values (growth curves) and encouragingly geraniol is non-toxic even at the concentrations approaching 5×MIC (hemolysis assay). Exposed cells showed altered morphology, wherein the cells appeared either broken or shrivelled up (SEM studies). Significant reduction was seen in ergosterol levels at sub-MIC and glucose-induced H(+) efflux at concentrations>MIC values. Our results suggest that geraniol disrupts cell membrane integrity by interfering with ergosterol biosynthesis and inhibiting the very crucial PM-ATPase. It may hence be used in the management and treatment of both superficial and invasive candidiasis but further studies are required to elaborate its mode of action. PMID:27554866

  10. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO.

    PubMed

    Dolar, Davor; Gros, Meritxell; Rodriguez-Mozaz, Sara; Moreno, Jordi; Comas, Joaquim; Rodriguez-Roda, Ignasi; Barceló, Damià

    2012-11-15

    The presence of emerging contaminants in the aquatic environment and their potential effects on living organisms has become an issue of growing concern. Among emerging contaminants, pharmaceuticals may enter the aquatic environment due to their high consumption and their incomplete removal in conventional municipal wastewater treatment plants (WWTPs). The main goal of this study was the assessment of the removal efficiency of pharmaceuticals found in municipal wastewater of a coastal WWTP (Castell-Platja d'Aro, Spain) using an integrated pilot scale membrane system (MBR-RO). Twenty multiple-class pharmaceuticals (including psychiatric drugs, macrolide antibiotics, β-blockers, sulfonamide and fluoroquinolone antibiotics, histamine H2 receptor antagonists, anti-inflammatories, nitroimidazole, β-agonist and antiplatelet agent) were measured in real influent with the lowest average concentration for psychiatric drugs (0.017 μg L(-1)) to the highest for macrolide antibiotics (2.02 μg L(-1)). Although some contaminants were in relatively high concentrations (even up to 2.90 μg L(-1) in the case of ofloxacin). The combination of MBR and RO treatment showed excellent overall removal of target emerging contaminants with removal rates above 99% for all of them. For some compounds (metronidazole, hydrocodone, codein, ranitidine) MBR provided high removal efficiency (up to 95%). Additionally RO membrane showed removal rates always higher than 99%.

  11. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.

  12. Can Ozone Alter the Terpenoid Composition and Membrane Integrity of in vitro Melissa officinalis Shoots?

    PubMed

    D'Angiolillo, Francesca; Tonelli, Mariagrazia; Pellegrini, Elisa; Nali, Cristina; Lorenzini, Giacomo; Pistelli, Luisa; Pistelli, Laura

    2015-06-01

    Ozone affects volatile organic compounds that protect plants from biotic and abiotic stress. In vitro Melissa officinalis shoots were exposed to ozone (200 ppb, 3 h) in controlled environmental conditions: leaf pigments, membrane integrity and headspace composition were assayed during fumigation and after the recovery period (3 h from the beginning of the exposure, FBE). At the end of the exposure, no injury was observed in untreated and treated shoots, although an evident increase in lipid peroxidation was reported (+38.5 and +37.2% of TBARS levels in comparison with controls, respectively after 1 and 3 h FBE). The levels of total carotenoids significantly rose as a normal response mechanism to oxidative stress. SPME-GS-MS analysis showed that, as a consequence of the fumigation, the trends in non-terpenoid compounds increased after 1 and 3 h FBE. This suggests that the concentration and the duration of the treatment were enough to cause a breakdown of cells (as evidenced by increased TBARS levels) and involves an association between volatile products of the lipoxygenase pathway (LOX products) and membrane degradation.

  13. Microfluidic Microdialysis: Spatiotemporal Control over Solution Microenvironments Using Integrated Hydrogel Membrane Microwindows

    NASA Astrophysics Data System (ADS)

    Paustian, Joel S.; Azevedo, Rodrigo Nery; Lundin, Sean-Thomas B.; Gilkey, Matthew J.; Squires, Todd M.

    2013-10-01

    We present a powerful and versatile technique that enables exquisite spatial and temporal control over local solution chemistry in microfluidic devices. Using a microscope and a UV lamp, we use projection lithography to photopolymerize thin (10-25μm) hydrogel membrane “microwindows” (HMMs) into standard microfluidic devices. These microwindows are permeable to solute and solvent diffusion and to electric fields, yet act as rigid walls from the standpoint of fluid flow. Reservoirs of solution may thus be rapidly imposed, switched, and maintained on one side of a HMM using standard microfluidic techniques, provoking changes in solution conditions on the other side without active mixing, stirring, or diluting. We highlight three paradigmatic experimental capabilities enabled by HMMs: (1) rapid dialysis and swapping of solute and/or solvent, (2) stable and convection-free localized concentration gradients, and (3) local electric permeability. The functional versatility of hydrogel microwindow membranes, coupled with the ease and speed of their fabrication and integration into simple microchannels or multilayer devices, will open a variety of novel applications and studies in a broad range of fields.

  14. Consequences of lipidic nanoemulsions on membrane integrity and ultrastructural morphology of Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Singh, Neeru; Manaswita Verma, Saurabh; Singh, Sandeep Kumar; Ranjan Prasad Verma, Priya

    2014-04-01

    The present study divulges the consequences of lipidic nanoemulsions (cationized and non-cationized) on morphology and membrane integrity of Staphylococcus aureus using transmission electron microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Transmission electron microscopic (TEM) images reveal that the cationized lipidic emulsions (CLEs) remained adhered even after the hostile treatment to remove nanoemulsions by centrifugation owing to electrostatic attraction between CLE and negatively charged bacterial surface. TEM images portray the extensive cell lyses owing to the release of cytoplasmic content when treated with both CLE and Non-CLE (NCLE). The AFM analysis of the NCLE and CLE treated S. aureus cells showed the root mean square roughness of 11.3 ± 2.8 nm and 17.7 ± 3.2 nm, respectively. The complete losses of bacterial colonies after 45 min of contact with NCLE were observed. No viable bacterial colonies were noticeable after 10 min of contact when treated with CLE, indicating better rate of killing with respect to NCLE. Similar results were obtained in the zone of inhibition studies. Significant (p < 0.05) increase of cytoplasmic material was observed both in NCLE (0.192 ± 0.003) and CLE (0.308 ± 0.012) as compared to control (0.019 ± 0.002). The present finding illustrates that the NCLE and CLE had caused significant membrane disorganization leading to release of cytoplasmic content causing irreversible cell damage, which is in accordance with the TEM, SEM and AFM studies.

  15. Membrane integrity of Campylobacter jejuni subjected to high pressure is pH-dependent

    NASA Astrophysics Data System (ADS)

    Lerasle, M.; Guillou, S.; Simonin, H.; Laroche, M.; de Lamballerie, M.; Federighi, M.

    2012-03-01

    Our study focuses on a foodborne pathogen, Campylobacter, which is responsible for the most frequent bacterial enteritis worldwide. Membrane integrity of Campylobacter jejuni NCTC 11168 cells treated at high pressure (300 MPa, 20°C, 10 min) at pH 7.0 and pH 5.6 was measured by fluorescence spectroscopy of propidium iodide (PI) uptake. The percentage of membrane-damaged cells by high pressure, in which PI is allowed to penetrate, was determined using two calibration methods based on the PI fluorescence signal obtained with cells killed either by a heat treatment (80°C for 15 min) or by a pressure treatment (400 MPa, 20°C, 10 min). Both calibrations were shown to be statistically different (P<0.05), particularly at acidic pH, suggesting that a difference in the penetration of PI into bacterial cells might depend on the mode of cell inactivation. These results corroborate the fact that the mechanism of microbial inactivation by high pressure is pH-dependent.

  16. Aspergillus carbonarius polygalacturonases purified by integrated membrane process and affinity precipitation for apple juice production.

    PubMed

    Nakkeeran, Ekambaram; Umesh-Kumar, Sukumaran; Subramanian, Rangaswamy

    2011-02-01

    Aspergillus carbonarius, when grown by submerged and solid-state fermentation, produces different molecular forms of polygalacturonase (PG; EC 3.2.1.15), among them a 42 kDa PG with a high specific activity of 7000 U/mg protein. When the enzymes were purified by integrated membrane process (IMP) and alginate affinity precipitation (AAP), the two processes concentrated different forms of the enzyme. The AAP process selectively purified and concentrated the high active PG whereas the IMP yielded different PGs and also amylase and protease. Evaluation of the AAP enzyme preparations for apple juice preparation under conditions usually employed commercially demonstrated that the high activity PG did not result in good juice clarity. With IMP processed enzymes, juice yields and clarity were similar to that obtained with commercial PG from A. niger.

  17. Antimicrobial peptide protonectin disturbs the membrane integrity and induces ROS production in yeast cells.

    PubMed

    Wang, Kairong; Dang, Wen; Xie, Junqiu; Zhu, Ranran; Sun, Mengyang; Jia, Fengjing; Zhao, Yanyan; An, Xiaoping; Qiu, Shuai; Li, Xiaoyuan; Ma, Zelin; Yan, Wenjin; Wang, Rui

    2015-10-01

    Candidiasis is often observed in immunocompromised patients and is the 4th most common cause of bloodstream infections. However, antifungals are limited, so novel antifungal agents are urgently needed. Antimicrobial peptides (AMPs) are considered as potential alternatives of conventional antibiotics. In the present study, antimicrobial peptide protonectin was chemically synthesized and its antifungal activity and mode of action were studied. Our results showed that protonectin has potent antifungal activity and fungicidal activity against the tested fungi cells. Its action mode involved the disruption of the membrane integrity and the inducing of the production of cellular ROS. Furthermore, protonectin could inhibit the formation of biofilm and kill the adherent fungi cells. In conclusion, with the increase of fungal infection, protonectin may offer a new strategy and be considered as a potential therapeutic agent against fungal disease. PMID:26209560

  18. Zipper encodes a putative integral membrane protein required for normal axon patterning during Drosophila neurogenesis.

    PubMed Central

    Zhao, D B; Côté, S; Jähnig, F; Haller, J; Jäckle, H

    1988-01-01

    During the development of the central nervous system, Drosophila embryo axons become organized in a stereo-typed fasciculation pattern. We have found that the zipper (zip) gene, initially identified on the basis of a defective larval cuticle in zip mutant embryos, is possibly involved in the establishment or maintenance of the axon pattern during the late stages of neurogenesis. The zip wild-type gene is expressed in the developing nervous system. It codes for a putative integral membrane protein. Both the molecular features of zipper and its biological effect in the nervous system of mutants suggest that zipper is an essential component for cell surface interactions involved in axon patterning, and that the cuticle phenotype of zip mutants is dependent on the primary defects observed in the nervous system. Images PMID:3402433

  19. Consequences of defective vitamin A transportation on mitochondrial membrane integrity during protein depletion.

    PubMed

    Olowookere, J O

    1986-01-01

    The relationships between the structural integrity and functionality of rat liver mitochondrial membranes, and different levels of dietary protein and vitamin A transportation during protein depletion in animals have been investigated. Although the vitamin A content of the protein-depleted diet was 1680 +/- 35 IU/kg diet, and that of the control diet was 1,650 +/- 30 IU/kg diet, the vitamin A content of the liver of depleted rats was reduced to 16.7% of controls. The hepatic mitochondria of rats fed a protein-depleted diet showed excessive passive swelling (about 3-fold of controls) in isotonic solutions. Whereas a seemingly inverse relationship existed between the vitamin A content of the liver and the osmotic behaviour of hepatic mitochondria of rats fed a protein-depleted diet, there is a direct relationship between their hepatic mitochondrial vitamin A and the respiratory control ratio. The implications of these observations are discussed.

  20. Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors

    PubMed Central

    West, E.L.; Pearson, R.A.; Tschernutter, M.; Sowden, J.C.; MacLaren, R.E.; Ali, R.R.

    2008-01-01

    Retinal degeneration is the leading cause of untreatable blindness in the developed world. Cell transplantation strategies provide a novel therapeutic approach to repair the retina and restore sight. Previously, we have shown that photoreceptor precursor cells can integrate and form functional photoreceptors after transplantation into the subretinal space of the adult mouse. In a clinical setting, however, it is likely that far greater numbers of integrated photoreceptors would be required to restore visual function. We therefore sought to assess whether the outer limiting membrane (OLM), a natural barrier between the subretinal space and the outer nuclear layer (ONL), could be reversibly disrupted and if disruption of this barrier could lead to enhanced numbers of transplanted photoreceptors integrating into the ONL. Transient chemical disruption of the OLM was induced in adult mice using the glial toxin, dl-alpha-aminoadipic acid (AAA). Dissociated early post-natal neural retinal cells were transplanted via subretinal injection at various time-points after AAA administration. At 3 weeks post-injection, the number of integrated, differentiated photoreceptor cells was assessed and compared with those found in the PBS-treated contralateral eye. We demonstrate for the first time that the OLM can be reversibly disrupted in adult mice, using a specific dose of AAA administered by intravitreal injection. In this model, OLM disruption is maximal at 72 h, and recovers by 2 weeks. When combined with cell transplantation, disruption of the OLM leads to a significant increase in the number of photoreceptors integrated within the ONL compared with PBS-treated controls. This effect was only seen in animals in which AAA had been administered 72 h prior to transplantation, i.e. when precursor cells were delivered into the subretinal space at a time coincident with maximal OLM disruption. These findings suggest that the OLM presents a physical barrier to photoreceptor

  1. Hydrophobic Mismatch Drives the Interaction of E5 with the Transmembrane Segment of PDGF Receptor

    PubMed Central

    Windisch, Dirk; Ziegler, Colin; Grage, Stephan L.; Bürck, Jochen; Zeitler, Marcel; Gor’kov, Peter L.; Ulrich, Anne S.

    2015-01-01

    The oncogenic E5 protein from bovine papillomavirus is a short (44 amino acids long) integral membrane protein that forms homodimers. It activates platelet-derived growth factor receptor (PDGFR) β in a ligand-independent manner by transmembrane helix-helix interactions. The nature of this recognition event remains elusive, as numerous mutations are tolerated in the E5 transmembrane segment, with the exception of one hydrogen-bonding residue. Here, we examined the conformation, stability, and alignment of the E5 protein in fluid lipid membranes of substantially varying bilayer thickness, in both the absence and presence of the PDGFR transmembrane segment. Quantitative synchrotron radiation circular dichroism analysis revealed a very long transmembrane helix for E5 of ∼26 amino acids. Oriented circular dichroism and solid-state 15N-NMR showed that the alignment and stability of this unusually long segment depend critically on the membrane thickness. When reconstituted alone in exceptionally thick DNPC lipid bilayers, the E5 helix was found to be inserted almost upright. In moderately thick bilayers (DErPC and DEiPC), it started to tilt and became slightly deformed, and finally it became aggregated in conventional DOPC, POPC, and DMPC membranes due to hydrophobic mismatch. On the other hand, when E5 was co-reconstituted with the transmembrane segment of PDGFR, it was able to tolerate even the most pronounced mismatch and was stabilized by binding to the receptor, which has the same hydrophobic length. As E5 is known to activate PDGFR within the thin membranes of the Golgi compartment, we suggest that the intrinsic hydrophobic mismatch of these two interaction partners drives them together. They seem to recognize each other by forming a closely packed bundle of mutually aligned transmembrane helices, which is further stabilized by a specific pair of hydrogen-bonding residues. PMID:26287626

  2. ¹H-NMR study of the impact of high pressure and thermal processing on cell membrane integrity of onions.

    PubMed

    Gonzalez, Maria E; Barrett, Diane M; McCarthy, Michael J; Vergeldt, Frank J; Gerkema, Edo; Matser, Ariette M; Van As, Henk

    2010-09-01

    Proton nuclear magnetic resonance (¹H-NMR) relaxometry was used to study the effects of high pressure and thermal processing on membrane permeability and cell compartmentalization, important components of plant tissue texture. High pressure treated onions were subjected to pressure levels from 20 to 200 MPa at 5 min hold time at initial temperatures of 5 and 20 °C. Thermally treated onions were exposed for 30 min at temperatures from 40 to 90 °C. Loss of membrane integrity was clearly shown by changes in transverse relaxation time (T(2)) of water at temperatures of 60 °C and above. Destabilization effects on membranes exposed to high pressure were observed at 200 MPa as indicated by T(2) measurements and cryo-scanning electron microscopy (Cryo-SEM). T(2) relaxation successfully discriminated different degrees of membrane damage based on the T(2) shift of the vacuolar component. Analyses of the average water self-diffusion coefficient indicated less restricted diffusion after membrane rupture occurred in cases of severe thermal treatments. Milder processing treatments yielded lower average diffusion coefficients than the controls. ¹H-NMR proved to be an effective method for quantification of cell membrane damage in onions and allowed for the comparison of different food processes based on their impact on tissue integrity.

  3. Effects of high ambient temperature on fish sperm plasma membrane integrity and mitochondrial activity - A flow cytometric study.

    PubMed

    Nagy, Szabolcs Tamás; Kakasi, Balázs; Pál, László; Havasi, Máté; Bercsényi, Miklós; Husvéth, Ferenc

    2016-06-01

    Local extreme climatic conditions occurring as a result of global climate change may interfere with the reproduction of animals. In the present study fish spermatozoa were incubated at different temperatures (20, 25, 30 and 40 °C) for 10 and 30 minutes, respectively and plasma membrane integrity and mitochondrial membrane potential changes were evaluated with flow cytometry using SYBR-14/PI and Mitotracker Deep Red FM fluorescent dyes. No significant differences were found in plasma membrane integrity at either incubation temperatures or time points. Mitotracker Deep Red FM histogram profiles indicating mitochondrial activity showed significant (p < 0.001) alterations in all cases of higher (25, 30 and 40 °C) temperature treatments as compared to the samples incubated at 20 °C. Our results indicate that fish spermatozoa exposed to high temperatures suffer sublethal damage that cannot be detected with conventional, vital staining techniques. PMID:27165524

  4. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  5. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase.

    PubMed

    Piper, P W; Ortiz-Calderon, C; Holyoak, C; Coote, P; Cole, M

    1997-03-01

    Saccharomyces cerevisiae has a single integral plasma membrane heat shock protein (Hsp). This Hsp30 is induced by several stresses, including heat shock, ethanol exposure, severe osmostress, weak organic acid exposure and glucose limitation. Plasma membrane H(+)-ATPase activities of heat shocked and weak acid-adapted, hsp30 mutant and wild-type cells, revealed that Hsp30 induction leads to a downregulation of the stress-stimulation of this H(+)-ATPase. Plasma membrane H(+)-ATPase activity consumes a substantial fraction of the ATP generated by the cell, a usage that will be increased by the H(+)-ATPase stimulation occurring with several Hsp30-inducing stresses. Hsp30 might therefore provide an energy conservation role, limiting excessive ATP consumption by plasma membrane H(+)-ATPase during prolonged stress exposure or glucose limitation. Consistent with the role of Hsp30 being energy conservation, Hsp30 null cultures give lower final biomass yields. They also have lower ATP levels, consistent with higher H(+)-ATPase activity, at the glucose exhaustion stage of batch fermentations (diauxic lag), when Hsp30 is normally induced. Loss of Hsp30 does not affect several stress tolerances but it extends the time needed for cells to adapt to growth under several stressful conditions where the maintenance of homeostasis will demand an unusually high usage of energy, hsp30 is the first yeast gene identified as both weak organic acid-inducible and assisting the adaptation to growth in the presence of these acids.

  6. Formation of lipid bilayer membrane in a poly(dimethylsiloxane) microchip integrated with a stacked polycarbonate membrane support and an on-site nanoinjector

    PubMed Central

    Teng, Wei; Ban, Changill; Hahn, Jong Hoon

    2015-01-01

    This paper describes a new and facile approach for the formation of pore-spanning bilayer lipid membranes (BLMs) within a poly(dimethylsiloxane) (PDMS) microfluidic device. Commercially, readily available polycarbonate (PC) membranes are employed for the support of BLMs. PC sheets with 5 μm, 2 μm, and 0.4 μm pore diameters, respectively, are thermally bonded into a multilayer-stack, reducing the pore density of 0.4 μm-pore PC by a factor of 200. The BLMs on this support are considerably stable (a mean lifetime: 17 h). This multilayer-stack PC (MSPC) membrane is integrated into the PDMS chip by an epoxy bonding method developed to secure durable bonding under the use of organic solvents. The microchip has a special channel for guiding a micropipette in the proximity of the MSPC support. With this on-site injection technique, tens to hundreds of nanoliters of solutions can be directly dispensed to the support. Incorporating gramicidin ion channels into BLMs on the MSPC support has confirmed the formation of single BLMs, which is based on the observation from current signals of 20 pS conductance that is typical to single channel opening. Based on the bilayer capacitance (1.4 pF), about 15% of through pores across the MSPC membrane are estimated to be covered with BLMs. PMID:26015832

  7. Integrating sol-gel with cold plasmas modified porous polycaprolactone membranes for the drug-release of silver-sulfadiazine and ketoprofen

    NASA Astrophysics Data System (ADS)

    Mangindaan, Dave; Chen, Chao-Ting; Wang, Meng-Jiy

    2012-12-01

    A controlled release system composed of surface modified porous polycaprolactone (PCL) membranes combined with a layer of tetraorthosilicate (TEOS)-chitosan sol-gel was reported in this study. PCL is a hydrophobic, semi-crystalline, and biodegradable polymer with a relatively slow degradation rate. The drugs chosen for release experiments were silver-sulfadiazine (AgSD) and ketoprofen which were impregnated in the TEOS-chitosan sol-gel. The surface modification was achieved by O2 plasma and the surfaces were characterized by water contact angle (WCA) measurements, atomic force microscope (AFM), scanning electron microscope and electron spectroscopy for chemical analysis (ESCA). The results showed that the release of AgSD on O2 plasma treated porous PCL membranes was prolonged when compared with the pristine sample. On the contrary, the release rate of ketoprofen revealed no significant difference on pristine and plasma treated PCL membranes. The prepared PCL membranes showed good biocompatibility for the wound dressing biomaterial applications.

  8. 3,6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism.

    PubMed

    Yan, Feilong; Dang, Qifeng; Liu, Chengsheng; Yan, Jingquan; Wang, Teng; Fan, Bing; Cha, Dongsu; Li, Xiaoli; Liang, Shengnan; Zhang, Zhenzhen

    2016-09-20

    A novel chitosan derivative, 3,6-O-[N-(2-aminoethyl)-acetamide-yl]-chitosan (AACS), was successfully prepared to improve water solubility and antibacterial activity of chitosan. AACS had good antibacterial activity, with minimum inhibitory concentrations of 0.25mg/mL, against Escherichia coli and Staphylococcus aureus. Cell membrane integrity, electric conductivity and NPN uptake tests showed that AACS caused quickly increasing the release of intracellular nucleic acids, the uptake of NPN, and the electric conductivity by damaging membrane integrity. On the other hand, hydrophobicity, cell viability and SDS-PAGE experiments indicated that AACS was able to reduce the surface hydrophobicity, the cell viability and the intracellular proteins through increasing membrane permeability. SEM observation further confirmed that AACS could kill bacteria via disrupting their membranes. All results above verified that AACS mainly exerted antibacterial activity by a membrane damage mechanism, and it was expected to be a new food preservative. PMID:27261735

  9. Wet chemistry route to hydrophobic blue fluorescent nanodiamond.

    PubMed

    Mochalin, Vadym N; Gogotsi, Yury

    2009-04-01

    Hydrophobic blue fluorescent nanodiamond was synthesized by covalent linking of octadecylamine to the surface of nanodiamond particles. The material is easily dispersible in hydrophobic solvents, forming a transparent colloidal solution, and can be used in those applications where stable dispersions of nanodiamond in fuels, polymers or oils are required. Bright blue fluorescence of the octadecylamine-modified nanodiamond opens up new avenues for its use as a non-toxic quantum dot analogue for biomedical imaging of cellular membranes and other hydrophobic components of biological systems. Similar surface modification can be used for other carbon nanoparticles.

  10. Transmembrane passage of hydrophobic compounds through a protein channel wall.

    PubMed

    Hearn, Elizabeth M; Patel, Dimki R; Lepore, Bryan W; Indic, Mridhu; van den Berg, Bert

    2009-03-19

    Membrane proteins that transport hydrophobic compounds have important roles in multi-drug resistance and can cause a number of diseases, underscoring the importance of protein-mediated transport of hydrophobic compounds. Hydrophobic compounds readily partition into regular membrane lipid bilayers, and their transport through an aqueous protein channel is energetically unfavourable. Alternative transport models involving acquisition from the lipid bilayer by lateral diffusion have been proposed for hydrophobic substrates. So far, all transport proteins for which a lateral diffusion mechanism has been proposed function as efflux pumps. Here we present the first example of a lateral diffusion mechanism for the uptake of hydrophobic substrates by the Escherichia coli outer membrane long-chain fatty acid transporter FadL. A FadL mutant in which a lateral opening in the barrel wall is constricted, but which is otherwise structurally identical to wild-type FadL, does not transport substrates. A crystal structure of FadL from Pseudomonas aeruginosa shows that the opening in the wall of the beta-barrel is conserved and delineates a long, hydrophobic tunnel that could mediate substrate passage from the extracellular environment, through the polar lipopolysaccharide layer and, by means of the lateral opening in the barrel wall, into the lipid bilayer from where the substrate can diffuse into the periplasm. Because FadL homologues are found in pathogenic and biodegrading bacteria, our results have implications for combating bacterial infections and bioremediating xenobiotics in the environment.

  11. Comparison of two different passive air samplers (PUF-PAS versus SIP-PAS) to determine time-integrated average air concentration of volatile hydrophobic organic pollutants

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Kyu; Park, Jong-Eun

    2014-06-01

    Despite remarkable achievements with r some chemicals, a field-measurement technique has not been advanced for volatile hydrophobic organic chemicals (HOCs) that are the subjects of international concern. This study assesses the applicability of passive air sampling (PAS) by comparing PUF-PAS and its modified SIP-PAS which was made by impregnating XAD-4 powder into PUF, overviewing the principles of PAS, screening sensitive parameters, and determining the uncertainty range of PAS-derived concentration. The PAS air sampling rate determined in this study, corrected by a co-deployed low-volume active air sampler (LAS) for neutral PFCs as model chemicals, was ˜1.2 m3 day-1. Our assessment shows that the improved sorption capacity in a SIP lengthens PAS deployment duration by expanding the linear uptake range and then enlarges the effective air sampling volume and detection frequency of chemicals at trace level. Consequently, volatile chemicals can be collected during sufficiently long times without reaching equilibrium when using SIP, while this is not possible for PUF. The most sensitive parameter to influence PAS-derived CA was an air-side mass transfer coefficient (kA), implying the necessity of spiking depuration chemicals (DCs) because this parameter is strongly related with meteorological conditions. Uncertainty in partition coefficients (KPSM-A or KOA) influences PAS-derived CA to a greater extent with regard to lower KPSM-A chemicals. Also, the PAS-derived CA has an uncertainty range of a half level to a 3-fold higher level of the calculated one. This work is expected to establish solid grounds for the improvement of field measurement technique of HOCs.

  12. Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics.

    SciTech Connect

    Bock KW; D Honys; JM. Ward; S Padmanaban; EP Nawrocki; KD Hirschi; D Twell; H Sze

    2006-01-01

    Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca2+, H+, and K+ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. About 1269 genes encoding classified transporters were collected from the Arabidopsis thaliana genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3 and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9); while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, were developmentally-regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::GUS analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H+ pump AHA3, Ca2+ pump ACA9, and K+ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.

  13. Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38).

    PubMed Central

    Luzio, J P; Brake, B; Banting, G; Howell, K E; Braghetta, P; Stanley, K K

    1990-01-01

    Organelle-specific integral membrane proteins were identified by a novel strategy which gives rise to monospecific antibodies to these proteins as well as to the cDNA clones encoding them. A cDNA expression library was screened with a polyclonal antiserum raised against Triton X-114-extracted organelle proteins and clones were then grouped using antibodies affinity-purified on individual fusion proteins. The identification, molecular cloning and sequencing are described of a type 1 membrane protein (TGN38) which is located specifically in the trans-Golgi network. Images Fig. 1. Fig. 3. PMID:2204342

  14. Structural adaptations of proteins to different biological membranes

    PubMed Central

    Pogozheva, Irina D.; Tristram-Nagle, Stephanie; Mosberg, Henry I.; Lomize, Andrei L.

    2013-01-01

    To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31 Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5 Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22 Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4 Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8 Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds. PMID:23811361

  15. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.

    PubMed

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature.

  16. Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes

    PubMed Central

    Gatimu, E. N.; King, T. L.; Sweedler, J. V.; Bohn, P. W.

    2007-01-01

    The extension of microfluidic devices to three dimensions requires innovative methods to interface fluidic layers. Externally controllable interconnects employing nanocapillary array membranes (NCAMs) have been exploited to produce hybrid three-dimensional fluidic architectures capable of performing linked sequential chemical manipulations of great power and utility. Because the solution Debye length, κ−1, is of the order of the channel diameter, a, in the nanopores, fluidic transfer is controlled through applied bias, polarity and density of the immobile nanopore surface charge, solution ionic strength and the impedance of the nanopore relative to the microfluidic channels. Analyte transport between vertically separated microchannels can be saturated at two stable transfer levels, corresponding to reverse and forward bias. These NCAM-mediated integrated microfluidic architectures have been used to achieve highly reproducible and tunable injections down to attoliter volumes, sample stacking for preconcentration, preparative analyte band collection from an electrophoretic separation, and an actively-tunable size-dependent transport in hybrid structures with grafted polymers displaying thermally-regulated swelling behavior. The synthetic elaboration of the nanopore interior has also been used to great effect to realize molecular separations of high efficiency. All of these manipulations depend critically on the transport properties of individual nanocapillaries, and the study of transport in single nanopores has recently attracted significant attention. Both computation and experimental studies have utilized single nanopores as test beds to understand the fundamental chemical and physical properties of chemistry and fluid flow at nanometer length scales. PMID:19693375

  17. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    PubMed

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal.

  18. Applicability of in vitro methods to study patulin bioaccessibility and its effects on intestinal membrane integrity.

    PubMed

    Assunção, Ricardo; Ferreira, Mariana; Martins, Carla; Diaz, Irene; Padilla, Beatriz; Dupont, Didier; Bragança, Mauro; Alvito, Paula

    2014-01-01

    In human health risk assessment, ingestion of food is considered a major route of exposure to many contaminants, although the total amount of an ingested contaminant (external dose) does not always reflect the quantity available for the body (internal dose). In this study, two in vitro methods were applied to study bioaccessibility and intestinal membrane integrity of cells exposed to patulin, a mycotoxin with significant public health risk. Seven artificially contaminated fruit juices were assayed in the presence or absence of a standard meal, showing a significant difference for bioaccessibility values between contaminated samples alone (mean 27.65 ± 13.50%) and combinations with a standard meal (mean 7.89 ± 4.03%). Different concentrations of patulin (PAT) and cysteine (CYS) (protector agent) were assayed in Caco-2 cells monolayers. At 95 μM, PAT produced a marked decrease in transepithelial electrical resistance (TEER). This effect was significantly reduced when 400 μM and 4000 μM CYS was added to the cells. Combined use of in vitro digestion models with other techniques using intestinal cell lines, such as in vitro intestinal absorption models that use Caco-2 cells, may offer a more comprehensive model of what is occurring during digestion and absorption processes. The study of beneficial effects of protective agents would also be enhanced. PMID:25072729

  19. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control

    PubMed Central

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature. PMID:27571209

  20. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.

    PubMed

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature. PMID:27571209

  1. Hydrophobic sugar holograms

    NASA Astrophysics Data System (ADS)

    Mejias-Brizuela, N. Y.; Olivares-Pérez, A.; Páez-Trujillo, G.; Hernández-Garay, M. P.; Fontanilla-Urdaneta, R.; Fuentes-Tapia, I.

    2008-02-01

    The sugar matrix is used to record of phase holograms; it was modified with the purpose of obtaining a hydrophobic material to improve the stability of the registered image and to stimulate the photosensitivity of the sugar. The new material is formed by a sugar, pectin and vanillin dissolution. The diffraction efficiency parameter increases in comparison with only the sugar matrix, obtaining already of 10%.

  2. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH₄.

    PubMed

    Macháň, Radek; Jurkiewicz, Piotr; Olżyńska, Agnieszka; Olšinová, Marie; Cebecauer, Marek; Marquette, Arnaud; Bechinger, Burkhard; Hof, Martin

    2014-06-01

    Positioning of peptides with respect to membranes is an important parameter for biological and biophysical studies using model systems. Our experiments using five different membrane peptides suggest that the time-dependent fluorescence shift (TDFS) of Laurdan can help when distinguishing between peripheral and integral membrane binding and can be a useful, novel tool for studying the impact of transmembrane peptides (TMP) on membrane organization under near-physiological conditions. This article focuses on LAH4, a model α-helical peptide with high antimicrobial and nucleic acid transfection efficiencies. The predominantly helical peptide has been shown to orient in supported model membranes parallel to the membrane surface at acidic and, in a transmembrane manner, at basic pH. Here we investigate its interaction with fully hydrated large unilamellar vesicles (LUVs) by TDFS and fluorescence correlation spectroscopy (FCS). TDFS shows that at acidic pH LAH4 does not influence the glycerol region while at basic pH it makes acyl groups at the glycerol level of the membrane less mobile. TDFS experiments with antimicrobial peptides alamethicin and magainin 2, which are known to assume transmembrane and peripheral orientations, respectively, prove that changes in acyl group mobility at the glycerol level correlate with the orientation of membrane-associated peptide molecules. Analogous experiments with the TMPs LW21 and LAT show similar effects on the mobility of those acyl groups as alamethicin and LAH4 at basic pH. FCS, on the same neutral lipid bilayer vesicles, shows that the peripheral binding mode of LAH4 is more efficient in bilayer permeation than the transmembrane mode. In both cases, the addition of LAH4 does not lead to vesicle disintegration. The influence of negatively charged lipids on the bilayer permeation is also addressed.

  3. Marine sponge cyclic peptide theonellamide A disrupts lipid bilayer integrity without forming distinct membrane pores.

    PubMed

    Espiritu, Rafael Atillo; Cornelio, Kimberly; Kinoshita, Masanao; Matsumori, Nobuaki; Murata, Michio; Nishimura, Shinichi; Kakeya, Hideaki; Yoshida, Minoru; Matsunaga, Shigeki

    2016-06-01

    Theonellamides (TNMs) are antifungal and cytotoxic bicyclic dodecapeptides derived from the marine sponge Theonella sp. These peptides specifically bind to 3β-hydroxysterols, resulting in 1,3-β-D-glucan overproduction and membrane damage in yeasts. The inclusion of cholesterol or ergosterol in phosphatidylcholine membranes significantly enhanced the membrane affinity of theonellamide A (TNM-A) because of its direct interaction with 3β-hydroxyl groups of sterols. To better understand TNM-induced membrane alterations, we investigated the effects of TNM-A on liposome morphology. (31)P nuclear magnetic resonance (NMR) and dynamic light scattering (DLS) measurements revealed that the premixing of TNM-A with lipids induced smaller vesicle formation. When giant unilamellar vesicles were incubated with exogenously added TNM-A, confocal micrographs showed dynamic changes in membrane morphology, which were more frequently observed in cholesterol-containing than sterol-free liposomes. In conjunction with our previous data, these results suggest that the membrane action of TNM-A proceeds in two steps: 1) TNM-A binds to the membrane surface through direct interaction with sterols and 2) accumulated TNM-A modifies the local membrane curvature in a concentration-dependent manner, resulting in dramatic membrane morphological changes and membrane disruption.

  4. Marine sponge cyclic peptide theonellamide A disrupts lipid bilayer integrity without forming distinct membrane pores.

    PubMed

    Espiritu, Rafael Atillo; Cornelio, Kimberly; Kinoshita, Masanao; Matsumori, Nobuaki; Murata, Michio; Nishimura, Shinichi; Kakeya, Hideaki; Yoshida, Minoru; Matsunaga, Shigeki

    2016-06-01

    Theonellamides (TNMs) are antifungal and cytotoxic bicyclic dodecapeptides derived from the marine sponge Theonella sp. These peptides specifically bind to 3β-hydroxysterols, resulting in 1,3-β-D-glucan overproduction and membrane damage in yeasts. The inclusion of cholesterol or ergosterol in phosphatidylcholine membranes significantly enhanced the membrane affinity of theonellamide A (TNM-A) because of its direct interaction with 3β-hydroxyl groups of sterols. To better understand TNM-induced membrane alterations, we investigated the effects of TNM-A on liposome morphology. (31)P nuclear magnetic resonance (NMR) and dynamic light scattering (DLS) measurements revealed that the premixing of TNM-A with lipids induced smaller vesicle formation. When giant unilamellar vesicles were incubated with exogenously added TNM-A, confocal micrographs showed dynamic changes in membrane morphology, which were more frequently observed in cholesterol-containing than sterol-free liposomes. In conjunction with our previous data, these results suggest that the membrane action of TNM-A proceeds in two steps: 1) TNM-A binds to the membrane surface through direct interaction with sterols and 2) accumulated TNM-A modifies the local membrane curvature in a concentration-dependent manner, resulting in dramatic membrane morphological changes and membrane disruption. PMID:27003125

  5. Methods for Studying Interactions of Detergents and Lipids withα-Helical and β-Barrel Integral Membrane Proteins

    PubMed Central

    Hasan, S. Saif; Baniulis, Danas; Yamashita, Eiki; Zhalnina, Mariya V.; Zakharov, Stanislav D.; Stofleth, Jason T.; Cramer, William A.

    2014-01-01

    Methods for studying interactions of protein with lipids and detergents are described for representatives of two major classes of membrane proteins: (1) the α-helical heterooligomeric integral cytochrome b6f complex of oxygenic photosynthesis from cyanobacteria, and (2) the outer membrane β-barrel proteins BtuB and OmpF from Gram-negative Escherichia coli bacteria. Details are presented on the use of detergents for purification and crystallization of the b6f complex as well as a method for lipid exchange. The positions of detergent and lipid molecules, which define eight potential lipid-binding sites in the b6f complex, are described. Differences in detergent strategies for isolation and crystallization of β-barrel proteins relative to those for oligomeric helical membrane proteins are discussed, and purification and assessment of protein quality by circular dichroism (CD) is presented. PMID:24510648

  6. Effect of integral proteins in the phase stability of a lipid bilayer: Application to raft formation in cell membranes

    NASA Astrophysics Data System (ADS)

    Gómez, Jordi; Sagués, Francesc; Reigada, Ramon

    2010-04-01

    The existence of lipid rafts is a controversial issue. The affinity of cholesterol for saturated lipids is manifested in macroscopic phase separation in model membranes, and is believed to be the thermodynamic driving force for raft formation. However, there is no clear reason to explain the small (nanometric) size of raft domains in cell membranes. In a recent paper Yethiraj and Weisshaar [Biophys. J. 93, 3113 (2007)] proposed that the effect of neutral integral membrane proteins may prevent from the formation of large lipid domains. In this paper we extend this approach by studying the effect of the protein size, as well as the lipid-protein interaction. Depending on these factors, two different mechanisms for nanodomain stabilization are shown to be possible for static proteins. The application of these results to a biological context is discussed.

  7. A Novel Family of Soluble Minimal Scaffolds Provides Structural Insight into the Catalytic Domains of Integral Membrane Metallopeptidases*

    PubMed Central

    López-Pelegrín, Mar; Cerdà-Costa, Núria; Martínez-Jiménez, Francisco; Cintas-Pedrola, Anna; Canals, Albert; Peinado, Juan R.; Marti-Renom, Marc A.; López-Otín, Carlos; Arolas, Joan L.; Gomis-Rüth, F. Xavier

    2013-01-01

    In the search for structural models of integral-membrane metallopeptidases (MPs), we discovered three related proteins from thermophilic prokaryotes, which we grouped into a novel family called “minigluzincins.” We determined the crystal structures of the zymogens of two of these (Pyrococcus abyssi proabylysin and Methanocaldococcus jannaschii projannalysin), which are soluble and, with ∼100 residues, constitute the shortest structurally characterized MPs to date. Despite relevant sequence and structural similarity, the structures revealed two unique mechanisms of latency maintenance through the C-terminal segments previously unseen in MPs as follows: intramolecular, through an extended tail, in proabylysin, and crosswise intermolecular, through a helix swap, in projannalysin. In addition, structural and sequence comparisons revealed large similarity with MPs of the gluzincin tribe such as thermolysin, leukotriene A4 hydrolase relatives, and cowrins. Noteworthy, gluzincins mostly contain a glutamate as third characteristic zinc ligand, whereas minigluzincins have a histidine. Sequence and structural similarity further allowed us to ascertain that minigluzincins are very similar to the catalytic domains of integral membrane MPs of the MEROPS database families M48 and M56, such as FACE1, HtpX, Oma1, and BlaR1/MecR1, which are provided with trans-membrane helices flanking or inserted into a minigluzincin-like catalytic domain. In a time where structural biochemistry of integral-membrane proteins in general still faces formidable challenges, the minigluzincin soluble minimal scaffold may contribute to our understanding of the working mechanisms of these membrane MPs and to the design of novel inhibitors through structure-aided rational drug design approaches. PMID:23733187

  8. Membrane-integrated physico-chemical treatment of coke-oven wastewater: transport modelling and economic evaluation.

    PubMed

    Kumar, Ramesh; Chakrabortty, Sankha; Pal, Parimal

    2015-04-01

    A modelling and simulation study with economic evaluation was carried out for an advanced membrane-integrated hybrid treatment process that ensures reuse of water with recovery of ammoniacal nitrogen as struvite from coke-oven wastewater. Linearized transport model was developed based on extended Nernst-Plank and concentration polarization modulus equation. Effects of pH, transmembrane pressure and cross-flow rate of interest on membrane charge density, solute rejection and solvent flux were investigated. The membrane module was successful in yielding a pure water flux as high as 120 L m(-2) h(-1) removing more than 95 and 96% of the cyanide and phenol, respectively, while permeating more than 90% NH4 (+)-N at a transmembrane pressure of only 15 × 10(2) KPa and at a pH of 10 for a volumetric cross-flow rate of 800 L h(-1). The Fenton's reagents were used to degrade more than 99% of pollutants present in the concentrated stream. The developed model could successfully predict the plant performance as reflected in the very low relative error (0.01-0.12) and overall high correlation coefficient (R(2) > 0.96). Economic analysis indicated that such a membrane-integrated hybrid system could be quite promising in coke wastewater treatment at low cost i.e. $0.934/m(2) of wastewater.

  9. Membrane-integrated physico-chemical treatment of coke-oven wastewater: transport modelling and economic evaluation.

    PubMed

    Kumar, Ramesh; Chakrabortty, Sankha; Pal, Parimal

    2015-04-01

    A modelling and simulation study with economic evaluation was carried out for an advanced membrane-integrated hybrid treatment process that ensures reuse of water with recovery of ammoniacal nitrogen as struvite from coke-oven wastewater. Linearized transport model was developed based on extended Nernst-Plank and concentration polarization modulus equation. Effects of pH, transmembrane pressure and cross-flow rate of interest on membrane charge density, solute rejection and solvent flux were investigated. The membrane module was successful in yielding a pure water flux as high as 120 L m(-2) h(-1) removing more than 95 and 96% of the cyanide and phenol, respectively, while permeating more than 90% NH4 (+)-N at a transmembrane pressure of only 15 × 10(2) KPa and at a pH of 10 for a volumetric cross-flow rate of 800 L h(-1). The Fenton's reagents were used to degrade more than 99% of pollutants present in the concentrated stream. The developed model could successfully predict the plant performance as reflected in the very low relative error (0.01-0.12) and overall high correlation coefficient (R(2) > 0.96). Economic analysis indicated that such a membrane-integrated hybrid system could be quite promising in coke wastewater treatment at low cost i.e. $0.934/m(2) of wastewater. PMID:25380632

  10. Integrated membrane systems incorporating coagulation, activated carbon and ultrafiltration for the removal of toxic cyanobacterial metabolites from Anabaena circinalis.

    PubMed

    Dixon, M B; Richard, Y; Ho, L; Chow, C W K; O'Neill, B K; Newcombe, G

    2011-01-01

    The use of integrated membrane systems (a train of treatment processes incorporating one or more membranes) is increasing globally as the technology is very effective for the production of high quality drinking water. In this investigation a laboratory scale integrated membrane system (IMS) featuring coagulation, powdered activated carbon (PAC) and ultrafiltration (UF) was investigated for the removal of an Australian strain of the cyanobacteria Anabaena circinalis and the cyanotoxin it produced. Three coagulants were compared, aluminium chlorohydrate (ACH), aluminium sulphate (alum) and an engineered aluminium coagulant referred to as high performance aluminium chlorohydrate (HPAC). PAC (Acticarb PS1000) was tested to determine adsorption of extracellular saxitoxin. Removal of A. circinalis cells was 100% by UF alone and the removal of cells prior to the membrane by coagulation reduced fouling attributed to algogenic organic material. Alum was the least efficient coagulant for removal of cells while ACH and HPAC were similar. Saxitoxin removal reached a maximum of 80% using ACH and PAC. The UF-IMS was challenged using a natural bloom of A. circinalis that occurred in the Myponga Reservoir in South Australia. PMID:21508543

  11. Relative Abundance of Integral Plasma Membrane Proteins in Arabidopsis Leaf and Root Tissue Determined by Metabolic Labeling and Mass Spectrometry

    PubMed Central

    Bernfur, Katja; Larsson, Olaf; Larsson, Christer; Gustavsson, Niklas

    2013-01-01

    Metabolic labeling of proteins with a stable isotope (15N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome. PMID:23990937

  12. Positive charges of translocating polypeptide chain retrieve an upstream marginal hydrophobic segment from the endoplasmic reticulum lumen to the translocon.

    PubMed

    Fujita, Hidenobu; Kida, Yuichiro; Hagiwara, Masatoshi; Morimoto, Fumiko; Sakaguchi, Masao

    2010-06-15

    Positively charged amino acid residues are well recognized topology determinants of membrane proteins. They contribute to the stop-translocation of a polypeptide translocating through the translocon and to determine the orientation of signal sequences penetrating the membrane. Here we analyzed the function of these positively charged residues during stop-translocation in vitro. Surprisingly, the positive charges facilitated membrane spanning of a marginally hydrophobic segment, even when separated from the hydrophobic segment by 70 residues. In this case, the hydrophobic segment was exposed to the lumen, and then the downstream positive charges triggered the segment to slide back into the membrane. The marginally hydrophobic segment spanned the membrane, but maintained access to the water environment. The positive charges not only fix the hydrophobic segment in the membrane at its flanking position, but also have a much more dynamic action than previously realized. PMID:20427573

  13. Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H(+)-ATPase.

    PubMed

    Finbow, M E; Eliopoulos, E E; Jackson, P J; Keen, J N; Meagher, L; Thompson, P; Jones, P; Findlay, J B

    1992-01-01

    A 16 kDa protein has been isolated in a homogeneous form as the major component of a paracrystalline paired membrane structure closely resembling the gap junction. The primary structure of this protein from arthropod and vertebrate species has been determined by protein and cDNA sequencing. The amino acid sequences are highly conserved and virtually identical to the amino acid sequence of the proteolipid subunit of the vacuolar H(+)-ATPases. The disposition of the protein in the membrane has been studied using proteases and the N,N'-dicyclohexylcarbodiimide reactive site identified. These data, together with secondary structure predictions, suggest that the 16 kDa protein is for the most part buried in the membrane, arranged in a bundle of four hydrophobic alpha-helices. Using computer graphics, a model has been constructed based on this arrangement and on the electron microscopic images of the paracrystalline arrays.

  14. Effects of two copper compounds on Microcystis aeruginosa cell density, membrane integrity, and microcystin release.

    PubMed

    Tsai, Kuo-Pei

    2015-10-01

    Microcystin release following Microcystis aeruginosa cell lysis after copper-based algaecide treatment is often cited as a concern leading to restricted use of algaecide in restoration of natural water resources. To examine this concern, bench-scale experiments were conducted to study responses of M. aeruginosa to 8-day copper exposures as copper sulfate and copper-ethanolamine (Cu-EA). M. aeruginosa UTEX 2385 was cultured in BG11 medium to cell density of 10(6)cells/mL with total and extracellular microcystin of 93 and 53μg/L, respectively. Exposures of copper concentration ranged from 40 to 1000μgCu/L. Cell membrane integrity was indicated by erythrosine B. In the end of experiment, total microcystin and cell density in untreated control (313μg/L and 10(7)cells/mL) was 3.3 and 10 times greater than pretreatment value, respectively. Minimum amount of copper required to reduce M. aeruginosa population within 8 days was 160μgCu/L as copper sulfate and 80μgCu/L as Cu-EA, where total and extracellular microcystin concentrations (47 and 44μg/L for copper sulfate; 56 and 44μg/L for Cu-EA) were degraded with degradation rate coefficient 0.1 day(-1) and were less than pretreatment values. Given a copper concentration at 80µgCu/L as Cu-EA, M. aeruginosa cells were intact and less microcystin were released compared to treatments at 160-1000µgCu/L, where lysed cells and relatively greater microcystin release were observed. Based on the laboratory results, a minimum amount of copper required for reducing M. aeruginosa population could decrease total microcystin concentration and not compromise cells and minimize microcystin release.

  15. Multifunctional nanoreactor for comprehensive characterization of membrane proteins based on surface functionalized mesoporous foams.

    PubMed

    Fang, Xiaoni; Qiao, Liang; Yan, Guoquan; Yang, Pengyuan; Liu, Baohong

    2015-09-15

    An integrated protocol is proposed here for efficient analysis of membrane proteins based on surface functionalized mesoporous graphene foams (MGF). The inherent hydrophobic nature of MGF and surface modification with hydrophilic chitosan (CS) make it highly suitable for the enrichment of hydrophobic membrane proteins from organic solvent, while remaining well-dispersed in aqueous solution for subsequent proteolysis. Therefore, such a multifunctional reactor ensures a facile solvent adjustment route. Furthermore, as a chitosan modified nanoporous reactor, it also provides a biocompatible nanoenvironment that can maintain the stability and activity of enzymes to realize efficient in situ digestion of the enriched membrane proteins. The concept was first proved with a standard hydrophobic membrane protein, bacteriorhodopsin, where a high number of identified peptides and amino acid sequence coverage were achieved even at extremely low protein concentration. The mesoporous reaction system was further applied to the analysis of complex real-case proteome samples, where 931 membrane proteins were identified in triplicate analyses by 2D LC-MS/MS. In contrast, with in-solution proteolysis, only 73 membrane proteins were identified from the same sample by the same 2D LC-MS/MS. The identified membrane proteins by the MGF-CS protocol include many biomarkers of the cell line. These results suggest that the multifunctional MGF-CS protocol is of great value to facilitate the comprehensive characterization of membrane proteins in the proteome research. PMID:26305297

  16. Pathogen specificity of Treponema pallidum subsp. pallidum integral membrane proteins identified by phase partitioning with Triton X-114.

    PubMed

    Radolf, J D; Norgard, M V

    1988-07-01

    The antigenically conserved proteins of Treponema pallidum subsp. pallidum and four nonpathogenic cultivatable treponemes were investigated by phase partitioning with the nonionic detergent Triton X-114 and immunoblot analysis. None of the T. pallidum integral membrane proteins identified by phase partitioning (detergent-phase proteins) appeared to be antigenically related to proteins of the nonpathogens. Protease-resistant material similar to lipopolysaccharide was identified in the detergent phase from T. phagedenis biotype Reiter but was not detected in T. pallidum.

  17. Effects of air pollution on cell membrane integrity, spectral reflectance and metal and sulfur concentrations in lichens

    SciTech Connect

    Garty, J.; Cohen, Y.; Kloog, N.; Karnieli, A.

    1997-07-01

    The fruticose lichen Ramalina duriaei is generally considered to be sensitive to air pollution. In the present study the authors sought to determine whether thalli of this lichen collected in a remote unpolluted site (the HaZorea Forest, northeast Israel) and transplanted to the Ashdod region (southwest Israel) could provide information on the quality of the air in this area. For this purpose, the concentrations of Pb, Cu, Cd, Ni, Mn, Fe, S, Ca, Mg, Na, and K were determined in in situ thalli collected in the HaZorea Forest in March 1993 and in in situ and transplanted thalli retrieved in June 1993. The concentration of these elements in R. duriaei thalli was analyzed in comparison with physiological parameters such as the integrity of cell membranes, chlorophyll content, and alterations in reflectance responses from lichen thalli. Thalli transplanted to several industrial sites in the town of Ashdod for a period of 100 d accumulated high concentrations of Pb, Cd, Ni, Fe, S, Mg, Na, Ca, and K. The concentration of S in thalli transplanted to the Ashdod region was found to correlate with damage caused to cell membranes and showed and inverse correlation with the chlorophyll content and with the reflectance response of the lichen. The electrical conductivity values corresponding to membrane integrity in the lichen thallus showed an inverse correlation with the ratio of chlorophyll a to pheophytin a, indicating the integrity of the photobiontic chlorophyll and with normalized-difference vegetation index values corresponding to the reflectance response of the thallus. The chlorophyll integrity correlated with the reflectance response. Magnesium accumulated in the lichen thalli in dusty sites and was found to correlate with damage caused to membranes.

  18. Effect of amino acid substitution in the hydrophobic face of amphiphilic peptides on membrane curvature and perturbation: N-terminal helix derived from adenovirus internal protein VI as a model.

    PubMed

    Murayama, Tomo; Pujals, Sílvia; Hirose, Hisaaki; Nakase, Ikuhiko; Futaki, Shiroh

    2016-11-01

    The N-terminal amphipathic helical segment of adenovirus internal protein VI (AdVpVI) plays a critical role in viral infection. Here, we report that the peptide segment corresponding to AdVpVI (positions 33-55) can induce positive membrane curvature together with membrane perturbation. The enhanced perturbation ability of the peptide was observed for membranes containing negatively charged phospholipids. Based on the liposome leakage assay, substitution of leucine at position 40 to other aliphatic (isoleucine) and aromatic (phenylalanine and tryptophan) residues yielded a similar degree of membrane perturbation by the peptides, which was considerably diminished by the substitution to glutamine. Further studies using the wild-type AdVpVI (33-55) (WT) and phenylalanine-substituted peptides (L40F) demonstrated that both peptides have positive membrane-curvature-inducing ability. These peptides showed higher binding affinity to 50-nm large unilamellar vesicles (LUVs) than to 200-nm LUVs. However, no enhanced perturbation by these peptides was observed for 50-nm LUVs compared to 200-nm LUVs, suggesting that both the original membrane curvature and the additional strain due to peptide insertion affect the membrane perturbation ability of these peptides. In the case of L40F, this peptide rather had a lower membrane perturbation ability for 50-nm LUVs than for 200-nm LUVs, which can be attributed to possible shallower binding of L40F on membranes. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 430-439, 2016.

  19. Effect of amino acid substitution in the hydrophobic face of amphiphilic peptides on membrane curvature and perturbation: N-terminal helix derived from adenovirus internal protein VI as a model.

    PubMed

    Murayama, Tomo; Pujals, Sílvia; Hirose, Hisaaki; Nakase, Ikuhiko; Futaki, Shiroh

    2016-11-01

    The N-terminal amphipathic helical segment of adenovirus internal protein VI (AdVpVI) plays a critical role in viral infection. Here, we report that the peptide segment corresponding to AdVpVI (positions 33-55) can induce positive membrane curvature together with membrane perturbation. The enhanced perturbation ability of the peptide was observed for membranes containing negatively charged phospholipids. Based on the liposome leakage assay, substitution of leucine at position 40 to other aliphatic (isoleucine) and aromatic (phenylalanine and tryptophan) residues yielded a similar degree of membrane perturbation by the peptides, which was considerably diminished by the substitution to glutamine. Further studies using the wild-type AdVpVI (33-55) (WT) and phenylalanine-substituted peptides (L40F) demonstrated that both peptides have positive membrane-curvature-inducing ability. These peptides showed higher binding affinity to 50-nm large unilamellar vesicles (LUVs) than to 200-nm LUVs. However, no enhanced perturbation by these peptides was observed for 50-nm LUVs compared to 200-nm LUVs, suggesting that both the original membrane curvature and the additional strain due to peptide insertion affect the membrane perturbation ability of these peptides. In the case of L40F, this peptide rather had a lower membrane perturbation ability for 50-nm LUVs than for 200-nm LUVs, which can be attributed to possible shallower binding of L40F on membranes. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 430-439, 2016. PMID:27271816

  20. Investigation on hydrophobic films from a hydrophobic powder

    NASA Astrophysics Data System (ADS)

    Zhu, Liqun; Hao, Guofang; Chen, Yuan; Chen, Yizhi

    2012-11-01

    A hydrophobic powder was prepared based mainly on an organosiloxane and a corrosion inhibitor with the addition of a reaction promoter. Structure and thermal stability of the hydrophobic powder were characterized by FTIR and TG/DSC, respectively. Hydrophobic property and corrosion resistance of the hydrophobic film formed on phosphatized steel by immersion in 3 wt% NaCl aqueous solution were evaluated together with the electrochemical behavior. Results showed that the skeleton of the hydrophobic powder was composed mainly of sbnd Sisbnd Osbnd Sisbnd which comprises longer and more hydrophobic groups of sbnd Sisbnd R compared with the conventional BH-102 water-repellent agent. A thin hydrophobic film with a thickness of 15-20 μm was formed on surface of the phosphatized steel after immersion in the solution of 5 g/L of the hydrophobic powder in ethanol for 5 min. The hydrophobic film exhibited excellent stability at a temperature below 135 °C. Water contact angle on the film is about 117-132° and it was until 30 h later when a corrosion spot occurred on the film covered on steel which revealed better water-repellent and corrosion resistant properties compared to that of the BH-102.

  1. Integration of biological method and membrane technology in treating palm oil mill effluent.

    PubMed

    Zhang, Yejian; Yan, Li; Qiao, Xiangli; Chi, Lina; Niu, Xiangjun; Mei, Zhijian; Zhang, Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.

  2. Towards integrated operation of membrane bioreactors: effects of aeration on biological and filtration performance.

    PubMed

    Dalmau, M; Monclús, H; Gabarrón, S; Rodriguez-Roda, I; Comas, J

    2014-11-01

    Two experimental studies evaluated the effect of aerobic and membrane aeration changes on sludge properties, biological nutrient removal and filtration processes in a pilot plant membrane bioreactor. The optimal operating conditions were found at an aerobic dissolved oxygen set-point (DO) of 0.5 mg O2 L(-1) and a membrane specific aeration demand (SADm) of 1 m h(-1), where membrane aeration can be used for nitrification. Under these conditions, a total flow reduction of 42% was achieved (75% energy reduction) without compromising nutrient removal efficiencies, maintaining sludge characteristics and controlled filtration. Below these optimal operating conditions, the nutrient removal efficiency was reduced, increasing 20% for soluble microbial products, 14% for capillarity suction time and reducing a 15% for filterability. Below this DO set-point, fouling increased with a transmembrane pressure 75% higher. SADm below 1 m h(-1) doubled the values of transmembrane pressure, without recovery after achieving the initial conditions.

  3. Integrated distillation-membrane process for bio-ethanol and bio-butanol recovery from actual fermentation broths: Separation energy efficiency and fate of secondary fermentation products

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...

  4. Water on a Hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  5. Hydrophobic and hydrophilic control in polyphosphazene materials

    NASA Astrophysics Data System (ADS)

    Steely, Lee Brent

    sensitive phosphoranimine monomer storage, micelle formation in water from triblock copolymers, and single ion conductive membranes with increased hydrophobicity respectively. Although the appendixes examine polyphosphazene hydrophobic relationships they are not specific to surface hydrophobicity of solids and were not placed in the main text. Appendix A involves the optimization of storage conditions for a phosphoranimine monomer. Conditions examined include room temperature to -80 ºC and dilution with a variety of organic solvents. The micelle formation of A-B-A triblock copolymer of poly[bis(2,2,2-trifluoroethoxy)phosphazene]-poly(propylene-glycol)-poly[bis(2,2,2-trifluoroethoxy)phosphazene] was explored in appendix B. It was determined with light scattering and TEM that hairpin folding of our triblock copolymer allowed micelle formation with the two hydrophobic poly[bis(2,2,2-trifluoroethoxy)phosphazene] blocks facing the hydrophobic core of the micelle. Appendix C details the lithium ion conductivity of poly[norbornene-pendent-cyclotriphosphazene] with sulfonimide and methoxyethoxyethoxy groups attached. These results are then compared with unbound lithium counter ion systems.

  6. Hydrophobicity and subunit interactions of rod outer segment proteins investigated using Triton X-114 phase partitioning.

    PubMed

    Justice, J M; Murtagh, J J; Moss, J; Vaughan, M

    1995-07-28

    Triton X-114 phase partitioning, a procedure used for purifying integral membrane proteins, was used to study protein components of the mammalian visual transduction cascade. An integral membrane protein, rhodopsin, and two isoprenylated protein complexes, cyclic GMP phosphodiesterase and Gt beta gamma, partitioned into the detergent-rich phase. Arrestin, a soluble protein, accumulated in the aqueous phase. Gt alpha distributed about equally between phases whether GDP (Gt alpha.GDP) or GTP (Gt alpha.GTP) was bound. Gt beta gamma increased recovery of Gt alpha.GDP but not Gt alpha.GTP in the detergent phase. Trypsin-treated Gt alpha, which lacks the fatty acylated amino-terminal 2-kDa region, accumulated to a greater extent in the aqueous phase than did intact Gt alpha. Trypsinized cGMP phosphodiesterase, which lacks the isoprenyl group, partitioned into the aqueous phase. A carboxyl-terminal truncated mutant (Val-331 stop) of Gt alpha accumulated more in the aqueous phase then did recombinant full-length Gt alpha, supporting the role of the carboxyl terminus in increasing its hydrophobicity. N-Myristoylated recombinant Go alpha was more hydrophobic than recombinant Go alpha without myristate. ADP-ribosylation of Gt alpha catalyzed by NAD:arginine ADP-ribosyltransferase, but not by pertussis toxin, increased hydrophilicity. Triton X-114 phase partitioning can thus semiquantify the hydrophobic nature of proteins and protein domains. It may aid in evaluating changes associated with post-translational protein modification and protein-protein interactions in a defined system.

  7. The Escherichia coli Peripheral Inner Membrane Proteome*

    PubMed Central

    Papanastasiou, Malvina; Orfanoudaki, Georgia; Koukaki, Marina; Kountourakis, Nikos; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Karamanou, Spyridoula; Economou, Anastassios

    2013-01-01

    Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with

  8. Decreased content of integral membrane calcium-binding protein (IMCAL) in tissues of the spontaneously hypertensive rat

    SciTech Connect

    Kowarski, S.; Cowen, L.A.; Schachter, D.

    1986-02-01

    Prior studies report that plasma membranes of the spontaneously hypertensive rat (Okamoto-Aoki strain) bind less calcium than do the corresponding preparations from Wistar Kyoto controls. The possibility that the differences result from a decrease in the content of integral membrane calcium-binding protein (IMCAL) was explored by the application of immunoassays with polyclonal antisera and a mouse monoclonal antibody. IMCAL binds calcium with relatively high affinity, and its content in many rat tissues is regulated by vitamin D and the level of dietary calcium. Radioimmunoassays of tissue IMCAL demonstrate significant reductions in content in the erythrocyte ghost, intestinal mucosa, kidney, heart, testis, and liver of the spontaneously hypertensive rat as compared to the control strains. The decreases are observed both at 4-5 weeks of age, before the onset of severe hypertension and at 8-9 weeks in the presence of severe hypertension. Moreover, the magnitude of the decrease in erythrocyte IMCAL can account for much of the decrease in the calcium-binding capacity of erythrocyte membranes reported by others. The results are especially significant because an abnormality in the membrane binding of calcium and in the regulation of cytosolic calcium ion concentration could underlie the pathogenesis of the hypertension.

  9. Reconstitution of integral membrane proteins into isotropic bicelles with improved sample stability and expanded lipid composition profile.

    PubMed

    Morrison, Emma A; Henzler-Wildman, Katherine A

    2012-03-01

    Reconstitution of integral membrane proteins into membrane mimetic environments suitable for biophysical and structural studies has long been a challenge. Isotropic bicelles promise the best of both worlds-keeping a membrane protein surrounded by a small patch of bilayer-forming lipids while remaining small enough to tumble isotropically and yield good solution NMR spectra. However, traditional methods for the reconstitution of membrane proteins into isotropic bicelles expose the proteins to potentially destabilizing environments. Reconstituting the protein into liposomes and then adding short-chain lipid to this mixture produces bicelle samples while minimizing protein exposure to unfavorable environments. The result is higher yield of protein reconstituted into bicelles and improved long-term stability, homogeneity, and sample-to-sample reproducibility. This suggests better preservation of protein structure during the reconstitution procedure and leads to decreased cost per sample, production of fewer samples, and reduction of the NMR time needed to collect a high quality spectrum. Furthermore, this approach enabled reconstitution of protein into isotropic bicelles with a wider range of lipid compositions. These results are demonstrated with the small multidrug resistance transporter EmrE, a protein known to be highly sensitive to its environment.

  10. Water Fluxes in Polymeric Membranes for Desalination via Membrane Distillation

    NASA Astrophysics Data System (ADS)

    Mannella, G. A.; Brucato, V.; La Carrubba, V.

    2010-06-01

    Membrane distillation is an emerging technique for seawater desalination. Hydrophobic polymeric membranes are used to separate the solute-free water vapour from the hot solution. Vapour fluxes of commercial polymeric membranes were measured in various conditions, i.e. natural and forced convection and vacuum. Vapour fluxes were also predicted with models and compared with experimentals. Higher fluxes were recorded in vacuum conditions.

  11. An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases

    PubMed Central

    Liu, Changchun; Geva, Eran; Mauk, Michael; Qiu, Xianbo; Abrams, William R.; Malamud, Daniel; Curtis, Kelly; Owen, S. Michele; Bau, Haim H.

    2015-01-01

    A simple, point of care, inexpensive, disposable cassette for the detection of nucleic acids extracted from pathogens was designed, constructed, and tested. The cassette utilizes a single reaction chamber for isothermal amplification of nucleic acids. The chamber is equipped with an integrated, flow-through, Flinders Technology Associates (Whatman FTA®) membrane for the isolation, concentration, and purification of DNA and/or RNA. The nucleic acids captured by the membrane are used directly as templates for amplification without elution, thus simplifying the cassette’s flow control. The FTA membrane also serves another critical role—enabling the removal of inhibitors that dramatically reduce detection sensitivity. Thermal control is provided with a thin film heater external to the cassette. The amplification process was monitored in real time with a portable, compact fluorescent reader. The utility of the integrated, single-chamber cassette was demonstrated by detecting the presence of HIV-1 in oral fluids. The HIV RNA was reverse transcribed and subjected to loop-mediated, isothermal amplification (LAMP). A detection limit of less than 10 HIV particles was demonstrated. The cassette is particularly suitable for resource poor regions, where funds and trained personnel are in short supply. The cassette can be readily modified to detect nucleic acids associated with other pathogens borne in saliva, urine, and other body fluids as well as in water and food. PMID:21455542

  12. The cytoplasmic domain is essential for transport function of the integral membrane transport protein SLC4A11.

    PubMed

    Loganathan, Sampath K; Lukowski, Chris M; Casey, Joseph R

    2016-01-15

    Large cytoplasmic domains (CD) are a common feature among integral membrane proteins. In virtually all cases, these CD have a function (e.g., binding cytoskeleton or regulatory factors) separate from that of the membrane domain (MD). Strong associations between CD and MD are rare. Here we studied SLC4A11, a membrane transport protein of corneal endothelial cells, the mutations of which cause genetic corneal blindness. SLC4A11 has a 41-kDa CD and a 57-kDa integral MD. One disease-causing mutation in the CD, R125H, manifests a catalytic defect, suggesting a role of the CD in transport function. Expressed in HEK-293 cells without the CD, MD-SLC4A11 is retained in the endoplasmic reticulum, indicating a folding defect. Replacement of CD-SLC4A11 with green fluorescent protein did not rescue MD-SLC4A11, suggesting some specific role of CD-SLC4A11. Homology modeling revealed that the structure of CD-SLC4A11 is similar to that of the Cl(-)/HCO3(-) exchange protein AE1 (SLC4A1) CD. Fusion to CD-AE1 partially rescued MD-SLC4A11 to the cell surface, suggesting that the structure of CD-AE1 is similar to that of CD-SLC4A11. The CD-AE1-MD-SLC4a11 chimera, however, had no functional activity. We conclude that CD-SLC4A11 has an indispensable role in the transport function of SLC4A11. CD-SLC4A11 forms insoluble precipitates when expressed in bacteria, suggesting that the domain cannot fold properly when expressed alone. Consistent with a strong association between CD-SLC4A11 and MD-SLC4A11, these domains specifically associate when coexpressed in HEK-293 cells. We conclude that SLC4A11 is a rare integral membrane protein in which the CD has strong associations with the integral MD, which contributes to membrane transport function.

  13. Binding of cationic peptides (KX)4K to DPPG bilayers. Increasing the hydrophobicity of the uncharged amino acid X drives formation of membrane bound β-sheets: A DSC and FT-IR study.

    PubMed

    Hädicke, André; Blume, Alfred

    2016-06-01

    The binding of cationic peptides of the sequence (KX)4K to lipid vesicles of negatively charged dipalmitoyl-phosphatidylglycerol (DPPG) was investigated by differential scanning calorimetry (DSC) and temperature dependent Fourier-transformed infrared (FT-IR) spectroscopy. The hydrophobicity of the uncharged amino acid X was changed from G (glycine) over A (alanine), Abu (α-aminobutyric acid), V (valine) to L (leucine). The binding of the peptides caused an increase of the phase transition temperature (Tm) of DPPG by up to 20°C. The shift depended on the charge ratio and on the hydrophobicity of the amino acid X. Unexpectedly, the upward shift of Tm increased with increasing hydrophobicity of X. FT-IR spectroscopy showed a shift of the CH2 stretching vibrations of DPPG to lower frequency, particularly for bilayers in the liquid-crystalline phase, indicating an ordering of the hydrocarbon chains when the peptides were bound. Changes in the lipid C=O vibrational band indicated a dehydration of the lipid headgroup region after peptide binding. (KG)4K was bound in an unordered structure at all temperatures. All other peptides formed intermolecular antiparallel β-sheets, when bound to gel phase DPPG. However, for (KA)4K and (KAbu)4K, the β-sheets converted into an unordered structure above Tm. In contrast, the β-sheet structures of (KV)4K and (KL)4K remained stable even at 80°C when bound to the liquid-crystalline phase of DPPG. Strong aggregation of DPPG vesicles occurred after peptide binding. For the aggregates, we suggest a structure, where aggregated single β-sheets are sandwiched between opposing DPPG bilayers with a dehydrated interfacial region.

  14. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  15. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  16. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    PubMed Central

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  17. Highly integrated hybrid process with ceramic ultrafiltration-membrane for advanced treatment of drinking water: a pilot study.

    PubMed

    Guo, Jianning; Wang, Lingyun; Zhu, Jia; Zhang, Jianguo; Sheng, Deyang; Zhang, Xihui

    2013-01-01

    This article presents a highly integrated hybrid process for the advanced treatment of drinking water in dealing with the micro-polluted raw water. A flat sheet ceramic membrane with the pore size of 50∼60 nm for ultrafiltration (UF) is used to integrate coagulation and ozonation together. At the same time, biological activated carbon filtration (BAC) is used to remove the ammonia and organic pollutants in raw water. A pilot study in the scale of 120 m(3)/d has been conducted in Southern China. The mainly-analyzed parameters include turbidity, particle counts, ammonia, total organic carbon (TOC), UV254, biological dissolved organic carbon (BDOC), dissolved oxygen (DO) as well as trans-membrane pressure (TMP). The experiments demonstrated that ceramic UF-membrane was able to remove most of turbidity and suspended particulate matters. The final effluent turbidity reached to 0.14 NTU on average. BAC was effective in removing ammonia and organic matters. Dissolved oxygen (DO) is necessary for the biodegradation of ammonia at high concentration. The removal efficiencies reached to 90% for ammonia with the initial concentration of 3.6 mg/L and 76% for TOC with the initial concentration of 3.8 mg/L. Ozonation can alter the molecular structure of organics in terms of UV254, reduce membrane fouling, and extend the operation circle. It is believed the hybrid treatment process developed in this article can achieve high performance with less land occupation and lower cost compared with the conventional processes. It is especially suitable for the developing countries in order to obtain high-quality drinking water in a cost-effective way.

  18. Effects of X-ray and carbon ion beam irradiation on membrane permeability and integrity in Saccharomyces cerevisiae cells.

    PubMed

    Cao, Guozhen; Zhang, Miaomiao; Miao, Jianshun; Li, Wenjian; Wang, Jufang; Lu, Dong; Xia, Jiefang

    2015-03-01

    Saccharomyces cerevisiae has served as a eukaryotic model in radiation biology studies of cellular responses to ionizing radiation (IR). Research in this field has thus far mainly been focused on DNA strand breaks, DNA base damage, or inhibition of protein activity. However, the effects of IR on S. cerevisiae cell membranes have barely been studied. Here, we investigated the changes in the permeability and integrity of S. cerevisiae cell membranes induced by high-linear energy transfer carbon ion (CI) beam or low-linear energy transfer X-ray. After CI exposure, protein elution and nucleotide diffusion were more pronounced than after X-ray treatment at the same doses, although these features were most prevalent following irradiation doses of 25-175 Gy. Flow cytometry of forward scatter light versus side scatter light and double-staining with fluorescein diacetate and propidium iodide showed that CI and X-ray irradiation significantly affected S. cerevisiae cell membrane integrity and cellular enzyme activity compared with untreated control cells. The extent of lesions in CI-irradiated cells, which exhibited markedly altered morphology and size, was greater than that in X-ray-irradiated cells. The relationships between permeabilized cells, esterase activity, and non-viable cell numbers furthermore indicated that irradiation-induced increases in cell permeabilization and decreases in esterase activity are dependent on the type of radiation and that these parameters correspond well with cell viability. These results also indicate that the patterns of cell inactivity due to X-ray or CI irradiation may be similar in terms of cell membrane damage.

  19. Towards the molecular mechanism of the integration of peroxisomal membrane proteins☆

    PubMed Central

    Giannopoulou, Evdokia-Anastasia; Emmanouilidis, Leonidas; Sattler, Michael; Dodt, Gabriele; Wilmanns, Matthias

    2016-01-01

    The correct topogenesis of peroxisomal membrane proteins is a crucial step for the formation of functioning peroxisomes. Although this process has been widely studied, the exact mechanism with which it occurs has not yet been fully characterized. Nevertheless, it is generally accepted that peroxisomes employ three proteins – Pex3, Pex19 and Pex16 in mammals – for the insertion of peroxisomal membrane proteins into the peroxisomal membrane. Structural biology approaches have been utilized for the elucidation of the mechanistic questions of peroxisome biogenesis, mainly by providing information on the architecture of the proteins significant for this process. This review aims to summarize, compare and put into perspective the structural knowledge that has been generated mainly for Pex3 and Pex19 and their interaction partners in recent years. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26434995

  20. Ethylene Action and Loss of Membrane Integrity during Petal Senescence in Tradescantia.

    PubMed

    Suttle, J C; Kende, H

    1980-06-01

    Senescence of isolated petals of Tradescantia is accompanied by a large increase in membrane permeability, and application of ethylene hastens the onset of this increase. There is a 1- to 2.5-hour lag between ethylene application and the onset of anthocyanin efflux (an indicator of increased membrane permeability). Simultaneous application of 0.1 millimolar cordycepin or cycloheximide with ethylene abolishes the response to ethylene. Analysis of phospholipid levels in these petals during senescence has shown that the increase in membrane permeability is accompanied by a massive loss of phospholipids. Factors which enhance or retard the rate of anthocyanin efflux exert a corresponding effect on the rate of phospholipid loss. The composition of the phospholipid fraction remains unchanged during senescence. The activity of phospholipase D declines during senescence whereas that of acyl hydrolase remains essentially constant.

  1. Ethylene action and loss of membrane integrity during petal senescence in Tradescantia

    SciTech Connect

    Suttle, J.; Kende, H.

    1980-06-01

    Senescence of isolated petals of Tradescantia is accompanied by a large increase in membrane permeability, and application of ethylene hastens the onset of this increase. There is a 1- to 2.5-hour lag between ethylene application and the onset of anthocyanin efflux (an indicator of increased membrane permeability). Simultaneous application of 0.1 millimolar cordycepin or cycloheximide with ethylene abolishes the response to ethylene. Analysis of phospholipid levels in these petals during senescence has shown that the increase in membrane permeability is accompanied by a massive loss of phospholipids. Factors which enhance or retard the rate of anthocyanin efflux exert a corresponding effect on the rate of phospholipid loss. The composition of the phospholipid fraction remains unchanged during senescence. The activity of phospholipase D declines during senescence whereas that of acyl hydrolase remains essentially constant.

  2. Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice

    PubMed Central

    TANABE, Manabu; TAMURA, Hiroshi; TAKETANI, Toshiaki; OKADA, Maki; LEE, Lifa; TAMURA, Isao; MAEKAWA, Ryo; ASADA, Hiromi; YAMAGATA, Yoshiaki; SUGINO, Norihiro

    2014-01-01

    Melatonin protects luteinized granulosa cells (GCs) from oxidative stress in the follicle during ovulation. However, it is unclear in which cellular components (e.g., nuclei, mitochondria, or plasma membranes) melatonin works as an antioxidant. GCs from immature (3 wks) ICR mice were incubated with hydrogen peroxide (H2O2; 0.01, 0.1, 1, 10 mM) in the presence or absence of melatonin (100 μg/ml) for 2 h. DNA damage was assessed by fluorescence-based immunocytochemistry using specific antibodies for 8-hydroxydeoxyguanosine (8-OHdG), an indicator of oxidative guanine base damage in DNA, and for histone H2AX phosphorylation (γH2AX), a marker of double-strand breaks of DNA. Mitochondrial function was assessed by the fluorescence intensity of MitoTracker Red probes, which diffuse across the membrane and accumulate in mitochondria with active membrane potentials. Lipid peroxidation of plasma membranes was analyzed by measuring hexanoyl-lysine (HEL), a oxidative stress marker for lipid peroxidation. Apoptosis of GCs was assessed by nuclear fragmentation using DAPI staining, and apoptotic activities were evaluated by caspase-3/7 activities. H2O2 treatment significantly increased the fluorescence intensities of 8-OHdG and γH2AX, reduced the intensity of MitoTracker Red in the mitochondria, increased HEL concentrations in GCs, and enhanced the number of apoptotic cells and caspase-3/7 activities. All these changes were significantly decreased by melatonin treatment. Melatonin reduced oxidative stress-induced DNA damage, mitochondrial dysfunction, lipid peroxidation, and apoptosis in GCs, suggesting that melatonin protects GCs by reducing oxidative stress of cellular components including nuclei, mitochondria, and plasma membranes. Melatonin helps to maintain the integrity of GCs as an antioxidant in the preovulatory follicle. PMID:25366368

  3. Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice.

    PubMed

    Tanabe, Manabu; Tamura, Hiroshi; Taketani, Toshiaki; Okada, Maki; Lee, Lifa; Tamura, Isao; Maekawa, Ryo; Asada, Hiromi; Yamagata, Yoshiaki; Sugino, Norihiro

    2015-01-01

    Melatonin protects luteinized granulosa cells (GCs) from oxidative stress in the follicle during ovulation. However, it is unclear in which cellular components (e.g., nuclei, mitochondria, or plasma membranes) melatonin works as an antioxidant. GCs from immature (3 wks) ICR mice were incubated with hydrogen peroxide (H2O2; 0.01, 0.1, 1, 10 mM) in the presence or absence of melatonin (100 μg/ml) for 2 h. DNA damage was assessed by fluorescence-based immunocytochemistry using specific antibodies for 8-hydroxydeoxyguanosine (8-OHdG), an indicator of oxidative guanine base damage in DNA, and for histone H2AX phosphorylation (γH2AX), a marker of double-strand breaks of DNA. Mitochondrial function was assessed by the fluorescence intensity of MitoTracker Red probes, which diffuse across the membrane and accumulate in mitochondria with active membrane potentials. Lipid peroxidation of plasma membranes was analyzed by measuring hexanoyl-lysine (HEL), a oxidative stress marker for lipid peroxidation. Apoptosis of GCs was assessed by nuclear fragmentation using DAPI staining, and apoptotic activities were evaluated by caspase-3/7 activities. H2O2 treatment significantly increased the fluorescence intensities of 8-OHdG and γH2AX, reduced the intensity of MitoTracker Red in the mitochondria, increased HEL concentrations in GCs, and enhanced the number of apoptotic cells and caspase-3/7 activities. All these changes were significantly decreased by melatonin treatment. Melatonin reduced oxidative stress-induced DNA damage, mitochondrial dysfunction, lipid peroxidation, and apoptosis in GCs, suggesting that melatonin protects GCs by reducing oxidative stress of cellular components including nuclei, mitochondria, and plasma membranes. Melatonin helps to maintain the integrity of GCs as an antioxidant in the preovulatory follicle.

  4. Fully automated multidimensional reversed-phase liquid chromatography with tandem anion/cation exchange columns for simultaneous global endogenous tyrosine nitration detection, integral membrane protein characterization, and quantitative proteomics mapping in cerebral infarcts.

    PubMed

    Quan, Quan; Szeto, Samuel S W; Law, Henry C H; Zhang, Zaijun; Wang, Yuqiang; Chu, Ivan K

    2015-10-01

    Protein tyrosine nitration (PTN) is a signature hallmark of radical-induced nitrative stress in a wide range of pathophysiological conditions, with naturally occurring abundances at substoichiometric levels. In this present study, a fully automated four-dimensional platform, consisting of high-/low-pH reversed-phase dimensions with two additional complementary, strong anion (SAX) and cation exchange (SCX), chromatographic separation stages inserted in tandem, was implemented for the simultaneous mapping of endogenous nitrated tyrosine-containing peptides within the global proteomic context of a Macaca fascicularis cerebral ischemic stroke model. This integrated RP-SA(C)X-RP platform was initially benchmarked through proteomic analyses of Saccharomyces cerevisiae, revealing extended proteome and protein coverage. A total of 27 144 unique peptides from 3684 nonredundant proteins [1% global false discovery rate (FDR)] were identified from M. fascicularis cerebral cortex tissue. The inclusion of the S(A/C)X columns contributed to the increased detection of acidic, hydrophilic, and hydrophobic peptide populations; these separation features enabled the concomitant identification of 127 endogenous nitrated peptides and 137 transmembrane domain-containing peptides corresponding to integral membrane proteins, without the need for specific targeted enrichment strategies. The enhanced diversity of the peptide inventory obtained from the RP-SA(C)X-RP platform also improved analytical confidence in isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses. PMID:26335518

  5. Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen.

    PubMed

    Rokitskaya, Tatyana I; Kotova, Elena A; Agapov, Igor I; Moisenovich, Mikhail M; Antonenko, Yuri N

    2014-05-01

    In contrast to expectations that unsaturated fatty acids contribute to oxidative stress by providing a source of lipid peroxides, we demonstrated the protective effect of double bonds in lipids on oxidative damage to membrane proteins. Photodynamic inactivation of gramicidin channels was decreased in unsaturated lipid compared to saturated lipid bilayers. By estimating photosensitizer (boronated chlorine e6 amide) binding to the membrane with the current relaxation technique, the decrease in gramicidin photoinactivation was attributed to singlet oxygen scavenging by double bonds in lipids rather than to the reduction in photosensitizer binding. Gramicidin protection by unsaturated lipids was also observed upon induction of oxidative stress with tert-butyl hydroperoxide.

  6. In vitro synthesis and integration into mitochondria of porin, a major protein of the outer mitochondrial membrane of Saccharomyces cerevisiae.

    PubMed

    Mihara, K; Blobel, G; Sato, R

    1982-12-01

    We have isolated an outer mitochondrial membrane (OMM) fraction from baker's yeast. Saccharomyces cerevisiae, that possesses porin activity and contains a major polypeptide of 29,000 daltons. By analogy to similar data for an OMM fraction from rat liver and mung bean [Zalman, L. S., Nikaido, N. & Kagawa, Y. (1980) J. Biol. Chem. 255, 1771-1774], the 29,000-dalton polypeptide of the isolated yeast OMM fraction has been tentatively identified as porin. Evidence to substantiate this identification was provided by the finding that both the porin activity and the 29,000-dalton polypeptide were entirely resistant when the OMM fraction was exposed to trypsin digestion, with the 29,000-dalton polypeptide being virtually the only polypeptide in the OMM fraction to be unaffected by trypsin digestion. There was no protection when trypsin digestion was carried out in the presence of detergent. Using monospecific antibodies, we have shown that yeast porin is apparently not synthesized as a larger precursor in a cell-free translation system. In vitro-synthesized porin could not be integrated into dog pancreas microsomal vesicles or into an isolated OMM fraction from yeast, either co- or posttranslationally. In vitro-synthesized porin, however, could be integrated posttranslationally into whole isolated mitochondria. This membrane specificity suggests that integration does not proceed by unassisted partitioning. The integration of porin into whole mitochondria occurred with fidelity by the criterion of its resistance to trypsin. Moreover, integration was not inhibited in the presence of the protonophore carbonyl cyanide m-chlorophenyl-hydrazone whereas translocation into the mitochondrial matrix of the in vitro-synthesized gamma subunit of F1-ATPase was inhibited.

  7. Changing water affinity from hydrophobic to hydrophilic in hydrophobic channels.

    PubMed

    Ohba, Tomonori; Yamamoto, Shotaro; Kodaira, Tetsuya; Hata, Kenji

    2015-01-27

    The behavior of water at hydrophobic interfaces can play a significant role in determining chemical reaction outcomes and physical properties. Carbon nanotubes and aluminophosphate materials have one-dimensional hydrophobic channels, which are entirely surrounded by hydrophobic interfaces. Unique water behavior was observed in such hydrophobic channels. In this article, changes in the water affinity in one-dimensional hydrophobic channels were assessed using water vapor adsorption isotherms at 303 K and grand canonical Monte Carlo simulations. Hydrophobic behavior of water adsorbed in channels wider than 3 nm was observed for both adsorption and desorption processes, owing to the hydrophobic environment. However, water showed hydrophilic properties in both adsorption and desorption processes in channels narrower than 1 nm. In intermediate-sized channels, the hydrophobic properties of water during the adsorption process were seen to transition to hydrophilic behavior during the desorption process. Hydrophilic properties in the narrow channels for both adsorption and desorption processes are a result of the relatively strong water-channel interactions (10-15 kJ mol(-1)). In the 2-3 nm channels, the water-channel interaction energy of 4-5 kJ mol(-1) was comparable to the thermal translational energy. The cohesive water interaction was approximately 35 kJ mol(-1), which was larger than the others. Thus, the water affinity change in the 2-3 nm channels for the adsorption and desorption processes was attributed to weak water-channel interactions and strong cohesive interactions. These results are inherently important to control the properties of water in hydrophobic environments.

  8. Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate.

    PubMed

    Nishi, Hidetaka; Fujii, Takuro; Takeda, Koji; Hasebe, Koichi; Kakitsuka, Takaaki; Tsuchizawa, Tai; Yamamoto, Tsuyoshi; Yamada, Koji; Matsuo, Shinji

    2016-08-01

    We demonstrate monolithic integration of a 50-μm-long-cavity membrane distributed-reflector laser with a spot-size converter, consisting of a tapered InP wire waveguide and an SiOx waveguide, on SiO2/Si substrate. The device exhibits 9.4-GHz/mA0.5 modulation efficiency with a 2.2-dB fiber coupling loss. We demonstrate 25.8-Gbit/s direct modulation with a bias current of 2.5 mA, resulting in a low energy cost of 132 fJ/bit.

  9. Contactless microfluidic pumping using microchannel-integrated carbon black composite membranes

    PubMed Central

    Fu, Xiaotong; Gagnon, Zachary

    2015-01-01

    The ability to pump and manipulate fluid at the micron-scale is a basic requirement for microfluidic platforms. Many current manipulation methods, however, require expensive and bulky external supporting equipment, which are not typically compatible for portable applications. We have developed a contactless metal electro-osmotic micropump capable of pumping conductive buffers. The pump operates using two pairs of gallium metal electrodes, which are activated using an external voltage source and separated from a main flow channel by a thin micron-scale polydimethylsiloxane (PDMS) membrane. The thin contactless membrane allows for field penetration and electro-osmotic flow within the microchannel, but eliminates electrode damage and sample contamination commonly associated with traditional DC electro-osmotic pumps that utilize electrodes in direct contact with the working fluid. Our previous work has demonstrated the effectiveness of this method in pumping deionized water. However, due to the high resistivity of PDMS, this method proved difficult to apply towards manipulating conductive buffers. To overcome this limitation, we fabricated conductive carbon black (CB) powder directly into the contactless PDMS membranes. The increased electrical conductivity of the contactless PDMS membrane significantly increased micropump performance. Using a microfluidic T-channel device and an electro-osmotic flow model, we determined the influence that CB has on pump pressure for CB weight percents varying between 0 and 20. The results demonstrate that the CB increases pump pressure by two orders of magnitude and enables effective operations with conductive buffers. PMID:26543514

  10. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater.

    PubMed

    Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2016-12-01

    The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater. PMID:27108849

  11. Integral membrane proteins and free electron lasers - a compatible couple indeed!

    PubMed

    Wiener, Michael C

    2015-07-01

    Several structures of membrane transport proteins in complex with mechanistically-relevant ligands, determined by serial femtosecond crystallography of microcrystals at an X-ray free-electron source source, are presented. These results, including investigation of approaches to data quality assessment and refinement from low-redundancy data, indicate the feasibility of using this approach for ligand screening.

  12. Type II transmembrane domain hydrophobicity dictates the cotranslational dependence for inversion

    PubMed Central

    Dou, Dan; da Silva, Diogo V.; Nordholm, Johan; Wang, Hao; Daniels, Robert

    2014-01-01

    Membrane insertion by the Sec61 translocon in the endoplasmic reticulum (ER) is highly dependent on hydrophobicity. This places stringent hydrophobicity requirements on transmembrane domains (TMDs) from single-spanning membrane proteins. On examining the single-spanning influenza A membrane proteins, we found that the strict hydrophobicity requirement applies to the Nout-Cin HA and M2 TMDs but not the Nin-Cout TMDs from the type II membrane protein neuraminidase (NA). To investigate this discrepancy, we analyzed NA TMDs of varying hydrophobicity, followed by increasing polypeptide lengths, in mammalian cells and ER microsomes. Our results show that the marginally hydrophobic NA TMDs (ΔGapp > 0 kcal/mol) require the cotranslational insertion process for facilitating their inversion during translocation and a positively charged N-terminal flanking residue and that NA inversion enhances its plasma membrane localization. Overall the cotranslational inversion of marginally hydrophobic NA TMDs initiates once ∼70 amino acids past the TMD are synthesized, and the efficiency reaches 50% by ∼100 amino acids, consistent with the positioning of this TMD class in type II human membrane proteins. Inversion of the M2 TMD, achieved by elongating its C-terminus, underscores the contribution of cotranslational synthesis to TMD inversion. PMID:25165139

  13. Side Chain Degradable Cationic-Amphiphilic Polymers with Tunable Hydrophobicity Show in Vivo Activity.

    PubMed

    Uppu, Divakara S S M; Samaddar, Sandip; Hoque, Jiaul; Konai, Mohini M; Krishnamoorthy, Paramanandham; Shome, Bibek R; Haldar, Jayanta

    2016-09-12

    Cationic-amphiphilic antibacterial polymers with optimal amphiphilicity generally target the bacterial membranes instead of mammalian membranes. To date, this balance has been achieved by varying the cationic charge or side chain hydrophobicity in a variety of cationic-amphiphilic polymers. Optimal hydrophobicity of cationic-amphiphilic polymers has been considered as the governing factor for potent antibacterial activity yet minimal mammalian cell toxicity. However, the concomitant role of hydrogen bonding and hydrophobicity with constant cationic charge in the interactions of antibacterial polymers with bacterial membranes is not understood. Also, degradable polymers that result in nontoxic degradation byproducts offer promise as safe antibacterial agents. Here we show that amide- and ester (degradable)-bearing cationic-amphiphilic polymers with tunable side chain hydrophobicity can modulate antibacterial activity and cytotoxicity. Our results suggest that an amide polymer can be a potent antibacterial agent with lower hydrophobicity whereas the corresponding ester polymer needs a relatively higher hydrophobicity to be as effective as its amide counterpart. Our studies reveal that at higher hydrophobicities both amide and ester polymers have similar profiles of membrane-active antibacterial activity and mammalian cell toxicity. On the contrary, at lower hydrophobicities, amide and ester polymers are less cytotoxic, but the former have potent antibacterial and membrane activity compared to the latter. Incorporation of amide and ester moieties made these polymers side chain degradable, with amide polymers being more stable than the ester polymers. Further, the polymers are less toxic, and their degradation byproducts are nontoxic to mice. More importantly, the optimized amide polymer reduces the bacterial burden of burn wound infections in mice models. Our design introduces a new strategy of interplay between the hydrophobic and hydrogen bonding interactions

  14. Characterization of integral membrane proteins of Leishmania major by Triton X-114 fractionation and analysis of vaccination effects in mice.

    PubMed

    Murray, P J; Spithill, T W; Handman, E

    1989-07-01

    The total integral membrane proteins of promastigotes of Leishmania major were extracted by using the Triton X-114 phase separation technique and were characterized by immunoprecipitation, Western blotting (immunoblotting), and lectin chromatography. Of the 40 or more proteins which partitioned into the detergent phase, only about 10 proteins could be surface radioiodinated on live promastigotes, suggesting their surface orientation. The abundance of the gp58-63 antigen varied markedly between two strains of L. major. Sera from patients with visceral leishmaniasis caused by Leishmania donovani chagasi recognized the gp58-63 complex and an additional Mr-42,000 polypeptide shared between L. major and L. donovani chagasi. A subpopulation of six surface proteins, including the abundant gp58-63 antigen and a group of proteins of Mr 81,000 to 105,000, were glycoproteins recognized by antiserum to wheat germ agglutinin- or concanavalin A-binding proteins. The membrane proteins of the LRC-L119 isolate of L. major could successfully vaccinate genetically susceptible mice, thus opening the way for a molecularly defined subunit vaccine composed of glycolipid and membrane protein antigens.

  15. Thermal, High Pressure, and Electric Field Processing Effects on Plant Cell Membrane Integrity and Relevance to Fruit and Vegetable Quality

    PubMed Central

    Gonzalez, Maria E; Barrett, Diane M

    2010-01-01

    Advanced food processing methods that accomplish inactivation of microorganisms but minimize adverse thermal exposure are of great interest to the food industry. High pressure (HP) and pulsed electric field (PEF) processing are commercially applied to produce high quality fruit and vegetable products in the United States, Europe, and Japan. Both microbial and plant cell membranes are significantly altered following exposure to heat, HP, or PEF. Our research group sought to quantify the degree of damage to plant cell membranes that occurs as a result of exposure to heat, HP, or PEF, using the same analytical methods. In order to evaluate whether new advanced processing methods are superior to traditional thermal processing methods, it is necessary to compare them. In this review, we describe the existing state of knowledge related to effects of heat, HP, and PEF on both microbial and plant cells. The importance and relevance of compartmentalization in plant cells as it relates to fruit and vegetable quality is described and various methods for quantification of plant cell membrane integrity are discussed. These include electrolyte leakage, cell viability, and proton nuclear magnetic resonance (1H-NMR). PMID:20492210

  16. Characterization of integral membrane proteins of Leishmania major by Triton X-114 fractionation and analysis of vaccination effects in mice.

    PubMed Central

    Murray, P J; Spithill, T W; Handman, E

    1989-01-01

    The total integral membrane proteins of promastigotes of Leishmania major were extracted by using the Triton X-114 phase separation technique and were characterized by immunoprecipitation, Western blotting (immunoblotting), and lectin chromatography. Of the 40 or more proteins which partitioned into the detergent phase, only about 10 proteins could be surface radioiodinated on live promastigotes, suggesting their surface orientation. The abundance of the gp58-63 antigen varied markedly between two strains of L. major. Sera from patients with visceral leishmaniasis caused by Leishmania donovani chagasi recognized the gp58-63 complex and an additional Mr-42,000 polypeptide shared between L. major and L. donovani chagasi. A subpopulation of six surface proteins, including the abundant gp58-63 antigen and a group of proteins of Mr 81,000 to 105,000, were glycoproteins recognized by antiserum to wheat germ agglutinin- or concanavalin A-binding proteins. The membrane proteins of the LRC-L119 isolate of L. major could successfully vaccinate genetically susceptible mice, thus opening the way for a molecularly defined subunit vaccine composed of glycolipid and membrane protein antigens. Images PMID:2731987

  17. A kinetic model for voltage-gated ion channels in cell membranes based on the path integral method

    NASA Astrophysics Data System (ADS)

    Erdem, Rıza; Ekiz, Cesur

    2005-04-01

    A kinetic model of cell membrane ion channels is proposed based on the path integral method. From the Pauli-type master equations valid on a macroscopic time scale, we derive a first-order differential equation or the kinetic equation which governs temporal evolution of the channel system along the paths of extreme probability. Using known parameters for the batrachotoxin (BTX)-modified sodium channels in squid giant axon, the time dependence of the channel activation and the voltage dependence of the corresponding time constants ( τ) are examined numerically. It is found that the channel activation relaxes to the steady (or equilibrium)-state values for a given membrane potential and the corresponding time constant reaches a maximum at a certain potential and thereafter decreases in magnitude as the membrane potential increases. A qualitative comparison between these results and the results of Hodgkin-Huxley theory, path probability method and thermodynamic models as well as the cut-open axon technique is presented. Good agreement is achieved.

  18. Effect of Substrate and Cell Surface Hydrophobicity on Phosphate Utilization in Bacteria

    PubMed Central

    Lemke, M. J.; Churchill, P. F.; Wetzel, R. G.

    1995-01-01

    We measured the rates of utilization of hydrophobic and hydrophilic phosphate compounds in gram-negative bacteria with different surface hydrophobicities, isolated from wetland habitats. Three hydrophobic and two hydrophilic bacterial species were selected for study by measuring cell adherence to hydrocarbons. The bacteria were grown under phosphorus-limited conditions with P(infi), hydrophilic (beta)-glycerophosphate, or hydrophobic phosphatidic acid as the phosphate source. Hydrophilic bacteria grew most rapidly on P(infi), followed by (beta)-glycerophosphate. Phosphatidic acid did not support growth or did so at a much later time (40 h) than did the other phosphate treatments. Although all hydrophobic species grew well on these substrates, the rate of growth of two Acinetobacter baumannii isolates on phosphatidic acid exceeded the rate of growth on phosphate or (beta)-glycerophosphate. A membrane phospholipid and lipopolysaccharide were used as a source of phosphorus by hydrophobic species, whereas hydrophilic species could not use the membrane phospholipids and used lipopolysaccharide to a lesser extent. Besides hydrophobic interaction between cells and substrate, phosphatase activity, which was cell bound in hydrophilic species but 30 to 50% unbound in hydrophobic species, affected cell growth. Dialyzed culture supernatant containing phosphatase from hydrophobic species increased the phosphate availability to hydrophilic species. Additionally, cellular extracts from a hydrophilic species, when added to hydrophilic cells, permitted growth on hydrophobic phosphate sources. Naturally occurring amphiphilic humic acids affected the utilization of P(infi) and (beta)-glycerophosphate in bacteria with hydrophilic surfaces but did not affect hydrophobic bacteria. Our results indicate that hydrophobic phosphate sources can be used by bacteria isolated from aquatic environments as the sole phosphorus source for growth. This utilization, in part, appears to be related to

  19. Prostasomes of canine seminal plasma - zinc-binding ability and effects on motility characteristics and plasma membrane integrity of spermatozoa.

    PubMed

    Mogielnicka-Brzozowska, M; Strzeżek, R; Wasilewska, K; Kordan, W

    2015-06-01

    Prostasomes are small lipid membrane-confined vesicles that are involved in various fertilization-related processes. The aim of this study was to demonstrate canine seminal plasma prostasomes' ability to bind zinc ions, as well as examining their effects on sperm motility characteristics and plasma membrane integrity during cold storage. Ejaculates, collected from five cross-bred dogs (n = 50), were subjected to ultracentrifugation followed by gel filtration (GF) on a Superose 6 column. Prostasomes appeared as a single fraction in the elution profile. Transmission electron microscopy (TEM) analysis of canine prostasomes revealed the presence of membrane vesicles with diameters ranging from 20.3 to 301 nm. The zinc-affinity chromatography on a Chelating Sepharose Fast Flow - Zn(2 +) showed that from 93 to 100% of the prostasome proteins bind zinc ions (P(+) Zn). SDS-PAGE revealed that canine P(+) Zn comprised four protein bands, with low molecular weights (10.2-12 kDa). We have also shown a positive effect of prostasomes (p < 0.05), especially variant B (2% of total seminal plasma protein) on canine sperm motility parameters after 2 h storage at 5°C (TMOT%, 44.75 ± 5.18) and PMOT%, 12.42 ± 1.59) and VAP, VSL, VCL, when compared with Control (TMOT%, 7.30 ± 1.41 and PMOT%, 1.70 ± 0.42). Higher percentage of spermatozoa with intact plasma membrane (SYBR/PI dual staining) and intact acrosome (Giemsa stained), after 2 h storage at 5°C, was showed, in variant A (1.5% of total seminal plasma protein) and B, when compared with Control and variant C (2.5% of total seminal plasma protein). The prostasomes' effect on motility and plasma membrane integrity of canine cold-stored spermatozoa may be related to their ability to bind zinc ions and regulate their availability to the sperm.

  20. The Usefulness of Selected Physicochemical Indices, Cell Membrane Integrity and Sperm Chromatin Structure in Assessments of Boar Semen Sensitivity

    PubMed Central

    Wysokińska, A.; Kondracki, S.; Iwanina, M.

    2015-01-01

    The present work describes experiments undertaken to evaluate the usefulness of selected physicochemical indices of semen, cell membrane integrity and sperm chromatin structure for the assessment of boar semen sensitivity to processes connected with pre-insemination procedures. The experiments were carried out on 30 boars: including 15 regarded as providers of sensitive semen and 15 regarded as providers of semen that is little sensitive to laboratory processing. The selection of boars for both groups was based on sperm morphology analyses, assuming secondary morphological change incidence in spermatozoa as the criterion. Two ejaculates were manually collected from each boar at an interval of 3 to 4 months. The following analyses were carried out for each ejaculate: sperm motility assessment, sperm pH measurement, sperm morphology assessment, sperm chromatin structure evaluation and cell membrane integrity assessment. The analyses were performed three times. Semen storage did not cause an increase in the incidence of secondary morphological changes in the group of boars considered to provide sperm of low sensitivity. On the other hand, with continued storage there was a marked increase in the incidence of spermatozoa with secondary morphological changes in the group of boars regarded as producing more sensitive semen. Ejaculates of group I boars evaluated directly after collection had an approximately 6% smaller share of spermatozoa with undamaged cell membranes than the ejaculates of boars in group II (p≤0.05). In the process of time the percentage of spermatozoa with undamaged cell membranes decreased. The sperm of group I boars was characterised with a lower sperm motility than the semen of group II boars. After 1 hour of storing diluted semen, the sperm motility of boars producing highly sensitive semen was already 4% lower (p≤0.05), and after 24 hours of storage it was 6.33% lower than that of the boars that produced semen with a low sensitivity. Factors

  1. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  2. Air agglomeration of hydrophobic particles

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1995-12-31

    The agglomeration of hydrophobic particles in an aqueous suspension was accomplished by introducing small amounts of air into the suspension while it was agitated vigorously. The extent of aggregation was proportional both to the air to solids ratio and to the hydrophobicity of the solids. For a given air/solids ratio, the extent of aggregation of different materials increased in the following order: graphite, gilsonite, coal coated with heptane, and Teflon. The structure of agglomerates produced from coarse Teflon particles differed noticeably from the structure of bubble-particle aggregates produced from smaller, less hydrophobic particles.

  3. Fluorescence-Detectino Size-Exclusion Chromatography for Precrystallization Screening of Integral Membrane Proteins

    SciTech Connect

    Kawate,T.; Gouaux, E.

    2006-01-01

    Formation of well-ordered crystals of membrane proteins is a bottleneck for structure determination by X-ray crystallography. Nevertheless, one can increase the probability of successful crystallization by precrystallization screening, a process by which one analyzes the monodispersity and stability of the protein-detergent complex. Traditionally, this has required microgram to milligram quantities of purified protein and a concomitant investment of time and resources. Here, we describe a rapid and efficient precrystallization screening strategy in which the target protein is covalently fused to green fluorescent protein (GFP) and the resulting unpurified protein is analyzed by fluorescence-detection size-exclusion chromatography (FSEC). This strategy requires only nanogram quantities of unpurified protein and allows one to evaluate localization and expression level, the degree of monodispersity, and the approximate molecular mass. We show the application of this precrystallization screening to four membrane proteins derived from prokaryotic or eukaryotic organisms.

  4. Semicontinuous Production of Lactic Acid From Cheese Whey Using Integrated Membrane Reactor

    NASA Astrophysics Data System (ADS)

    Li, Yebo; Shahbazi, Abolghasem; Coulibaly, Sekou; Mims, Michele M.

    Semicontinuous production of lactic acid from cheese whey using free cells of Bifidobacterium longum with and without nanofiltration was studied. For the semicontinuous fermentation without membrane separation, the lactic acid productivity of the second and third runs is much lower than the first run. The semicontinuous fermentation with nanoseparation was run semicontinuously for 72 h with lactic acid to be harvested every 24 h using a nanofiltration membrane unit. The cells and unutilized lactose were kept in the reactor and mixed with newly added cheese whey in the subsequent runs. Slight increase in the lactic acid productivity was observed in the second and third runs during the semicontinuous fermentation with nanofiltration. It can be concluded that nanoseparation could improve the lactic acid productivity of the semicontinuous fermentation process.

  5. Two-Dimensional Crystallization of Integral Membrane Proteins for Electron Crystallography

    PubMed Central

    Stokes, David L.; Rice, William J.; Hu, Minghui; Kim, Changki; Ubarretxena, Iban

    2011-01-01

    Although membrane proteins make up 30% of the proteome and are a common target for therapeutic drugs, determination of their atomic structure remains a technical challenge. Electron crystallography represents an alternative to the conventional methods of X-ray diffraction and NMR and relies on the formation of two-dimensional crystals. These crystals are produced by reconstituting purified, detergent-solubilized membrane proteins back into the native environment of a lipid bilayer. This chapter reviews methods for producing two-dimensional crystals and for screening them by negative stain electron microscopy. In addition, we show examples of the different morphologies that are commonly obtained and describe basic image analysis procedures that can be used to evaluate their promise for structure determination by cryoelectron microsopy. PMID:20665267

  6. Simultaneous topographic and amperometric membrane mapping using an AFM probe integrated biosensor.

    PubMed

    Stanca, Sarmiza Elena; Csaki, Andrea; Urban, Matthias; Nietzsche, Sandor; Biskup, Christoph; Fritzsche, Wolfgang

    2011-02-15

    The investigation of the plasma membrane with intercorrelated multiparameter techniques is a prerequisite for understanding its function. Presented here, is a simultaneous electrochemical and topographic study of the cell membrane using a miniaturized amperometric enzymatic biosensor. The fabrication of this biosensor is also reported. The biosensor combines a scanning force microscopy (AFM) gold-coated cantilever and an enzymatic transducer layer of peroxidases (PODs). When these enzymes are brought in contact with the substrate, the specific redox reaction produces an electric current. The intensity of this current is detected simultaneously with the surface imaging. For sensor characterization, hydroquinone-2-carboxylic acid (HQ) is selected as an intrinsic source of H(2)O(2). HQ has been electrochemically regenerated by the reduction of antraquinone-2-carboxylic acid (AQ). The biosensor reaches the steady state value of the current intensity in 1 ± 0.2s.

  7. Free-standing alumina nanobottles and nanotubes pre-integrated into nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Fang, Jinghua; Levchenko, Igor; (Ken Ostrikov, Kostya

    2014-08-01

    A novel interfacial structure consisting of long (up to 5 μm), thin (about 300 nm), highly-ordered, free-standing, highly-reproducible aluminum oxide nanobottles and long tubular nanocapsules attached to a rigid, thin (less than 1 μm) nanoporous anodic alumina membrane is fabricated by simple, fast, catalyst-free, environmentally friendly voltage-pulse anodization. A growth mechanism is proposed based on the formation of straight channels in alumina membrane by anodization, followed by neck formation due to a sophisticated voltage control during the process. This process can be used for the fabrication of alumina nanocontainers with highly controllable geometrical size and volume, vitally important for various applications such as material and energy storage, targeted drug and diagnostic agent delivery, controlled drug and active agent release, gene and biomolecule reservoirs, micro-biologically protected platforms, nano-bioreactors, tissue engineering and hydrogen storage.

  8. Two-dimensional crystallization of integral membrane proteins for electron crystallography.

    PubMed

    Stokes, David L; Rice, William J; Hu, Minghui; Kim, Changki; Ubarretxena-Belandia, Iban

    2010-01-01

    Although membrane proteins make up 30% of the proteome and are a common target for therapeutic drugs, determination of their atomic structure remains a technical challenge. Electron crystallography represents an alternative to the conventional methods of X-ray diffraction and NMR and relies on the formation of two-dimensional crystals. These crystals are produced by reconstituting purified, detergent-solubilized membrane proteins back into the native environment of a lipid bilayer. This chapter reviews methods for producing two-dimensional crystals and for screening them by negative stain electron microscopy. In addition, we show examples of the different morphologies that are commonly obtained and describe basic image analysis procedures that can be used to evaluate their promise for structure determination by cryoelectron microscopy.

  9. Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling.

    PubMed

    Zhang, T; Rawson, D M; Tosti, L; Carnevali, O

    2008-04-01

    This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling. Stage III oocytes (>0.5mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2M DMSO (both prepared in Hank's medium) for 30min at 22 degrees C before being loaded into 0.5ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10min, and thawed by immersing straws into a 27 degrees C water bath for 10s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 degrees C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4MbetaNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 degrees C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2M DMSO and 2M methanol. Trypan blue staining showed that 63.0+/-11.3% and 72.7+/-5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30min at 22 degrees C, respectively, whilst 14.9+/-2.6% and 1.4+/-0.8% stayed intact after freezing in DMSO and methanol to -196 degrees C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk

  10. Discrepant membrane fouling of partial nitrification and anammox membrane bioreactor operated at the same nitrogen loading rate.

    PubMed

    Niu, Zhao; Zhang, Zuotao; Liu, Sitong; Miyoshi, Taro; Matsuyama, Hideo; Ni, Jinren

    2016-08-01

    In this study, two times more serious membrane fouling was found in anammox membrane bioreactor, compared to partial nitrification membrane bioreactor (PN-MBR) operated at the same nitrogen loading rate. By protein, polysaccharide, amino acids and functional groups analysis, it was found that the discrepancy in membrane fouling was virtually due to the difference in microbial products of nitrifiers and anammox bacteria. Protein and polysaccharide were main foulants on membrane surface; meanwhile theirs content and ratio in the EPS, supernatant and membrane surface were significantly different in PN-MBR and anammox-MBR. The anammox metabolism products contained much more hydrophobic organics, hydrophobic amino acids, and hydrophobic functional groups than nitrifiers. A mass of anammox bacteria as well as hydrophobic metabolism products deposited on the hydrophobic membrane surface and formed serious fouling. In further, hydrophilic modification is more urgently needed to mitigate membrane fouling when running anammox-MBR, than PN-MBR. PMID:27209455

  11. Thermodynamic and kinetic investigations of the release of oxidized phospholipids from lipid membranes and its effect on vascular integrity

    PubMed Central

    Heffern, Charles T.R.; Pocivavsek, Luka; Birukova, Anna A.; Moldobaeva, Nurgul; Bochkov, Valery N.; Lee, Ka Yee C.; Birukov, Konstantin G.

    2013-01-01

    The lipid membrane not only provides a rich interface with an array of receptor signaling complexes with which a cell communicates, but it also serves as a source of lipid derived bioactive molecules. In pathologic conditions of acute lung injury (ALI) associated with activation of oxidative stress, unsaturated phosphatidyl cholines overlooking a luminal space undergo oxidation leading to generation of fragmented phospholipids such as 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPC), or 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) full length oxygenation products (oxPAPC). Using Langmuir monolayers as models of the lipid bilayer, we evaluated the propensity of these phospholipids to solubilize from the cell membrane. The results suggest that lysoPC is rapidly released as it is produced, while oxPAPC has a longer membrane bound lifetime. After being released from cell membranes, these oxidized phospholipids exhibit potent agonist-like effects on neighboring cells. Therefore, we correlate the presence of the two phospholipid groups with the onset and resolution of increased vascular leakiness associated with ALI through testing their effect on vascular endothelial barrier integrity. Our work shows that cells respond differently to these two groups of products of phosphatidyl choline oxidation. LysoPC disrupts cell–cell junctions and increases endothelial permeability while oxPAPC enhances endothelial barrier. These data suggest a model whereby rapid release of lysoPC results in onset of ALI associated vascular leak, and the release of a reserve of oxPAPC as oxidative stress subsides restores the vascular barrier properties. PMID:23911706

  12. The synthetic amphipathic peptidomimetic LTX109 is a potent fungicide that disturbs plasma membrane integrity in a sphingolipid dependent manner.

    PubMed

    Bojsen, Rasmus; Torbensen, Rasmus; Larsen, Camilla Eggert; Folkesson, Anders; Regenberg, Birgitte

    2013-01-01

    The peptidomimetic LTX109 (arginine-tertbutyl tryptophan-arginine-phenylethan) was previously shown to have antibacterial properties. Here, we investigated the activity of this novel antimicrobial peptidomimetic on the yeast Saccharomyces cerevisiae. We found that LTX109 was an efficient fungicide that killed all viable cells in an exponentially growing population as well as a large proportion of cells in biofilm formed on an abiotic surface. LTX109 had similar killing kinetics to the membrane-permeabilizing fungicide amphotericin B, which led us to investigate the ability of LTX109 to disrupt plasma membrane integrity. S. cerevisiae cells exposed to a high concentration of LTX109 showed rapid release of potassium and amino acids, suggesting that LTX109 acted by destabilizing the plasma membrane. This was supported by the finding that cells were permeable to the fluorescent nucleic acid stain SYTOX Green after a few minutes of LTX109 treatment. We screened a haploid S. cerevisiae gene deletion library for mutants resistant to LTX109 to uncover potential molecular targets. Eight genes conferred LTX109 resistance when deleted and six were involved in the sphingolipid biosynthetic pathway (SUR1, SUR2, SKN1, IPT1, FEN1 and ORM2). The involvement of all of these genes in the biosynthetic pathway for the fungal-specific lipids mannosylinositol phosphorylceramide (MIPC) and mannosyl di-(inositol phosphoryl) ceramide (M(IP)2C) suggested that these lipids were essential for LTX109 sensitivity. Our observations are consistent with a model in which LTX109 kills S. cerevisiae by nonspecific destabilization of the plasma membrane through direct or indirect interaction with the sphingolipids.

  13. Proteasome-mediated degradation of integral inner nuclear membrane protein emerin in fibroblasts lacking A-type lamins

    SciTech Connect

    Muchir, Antoine; Massart, Catherine; Engelen, Baziel G. van; Lammens, Martin; Bonne, Gisele; Worman, Howard J. . E-mail: hjw14@columbia.edu

    2006-12-29

    We previously identified and characterized a homozygous LMNA nonsense mutation leading to the absence of A-type lamins in a premature neonate who died at birth. We show here that the absence of A-type lamins is due to degradation of the aberrant mRNA transcript with a premature termination codon. In cultured fibroblasts from the subject with the homozygous LMNA nonsense mutation, there was a decreased steady-state expression of the integral inner nuclear membrane proteins emerin and nesprin-1{alpha} associated with their mislocalization to the bulk endoplasmic reticulum and a hyperphosphorylation of emerin. To determine if decreased emerin expression occurred post-translationally, we treated cells with a selective proteasome inhibitor and observed an increase in expression. Our results show that mislocalization of integral inner nuclear membrane proteins to the endoplasmic reticulum in human cells lacking A-type lamins leads to their degradation and provides the first evidence that their degradation is mediated by the proteasome.

  14. Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows.

    PubMed

    Piracha, Afaq H; Rath, Patrik; Ganesan, Kumaravelu; Kühn, Stefan; Pernice, Wolfram H P; Prawer, Steven

    2016-05-11

    Diamond has emerged as a promising platform for nanophotonic, optical, and quantum technologies. High-quality, single crystalline substrates of acceptable size are a prerequisite to meet the demanding requirements on low-level impurities and low absorption loss when targeting large photonic circuits. Here, we describe a scalable fabrication method for single crystal diamond membrane windows that achieves three major goals with one fabrication method: providing high quality diamond, as confirmed by Raman spectroscopy; achieving homogeneously thin membranes, enabled by ion implantation; and providing compatibility with established planar fabrication via lithography and vertical etching. On such suspended diamond membranes we demonstrate a suite of photonic components as building blocks for nanophotonic circuits. Monolithic grating couplers are used to efficiently couple light between photonic circuits and optical fibers. In waveguide coupled optical ring resonators, we find loaded quality factors up to 66 000 at a wavelength of 1560 nm, corresponding to propagation loss below 7.2 dB/cm. Our approach holds promise for the scalable implementation of future diamond quantum photonic technologies and all-diamond photonic metrology tools. PMID:27111636

  15. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    NASA Astrophysics Data System (ADS)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  16. The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity.

    PubMed

    Hedberg, Jonas; Karlsson, Hanna L; Hedberg, Yolanda; Blomberg, Eva; Odnevall Wallinder, Inger

    2016-05-01

    Copper nanoparticles (Cu NPs) are increasingly used in various biologically relevant applications and products, e.g., due to their antimicrobial and catalytic properties. This inevitably demands for an improved understanding on their interactions and potential toxic effects on humans. The aim of this study was to investigate the corrosion of copper nanoparticles in various biological media and to elucidate the speciation of released copper in solution. Furthermore, reactive oxygen species (ROS) generation and lung cell (A549 type II) membrane damage induced by Cu NPs in the various media were studied. The used biological media of different complexity are of relevance for nanotoxicological studies: Dulbecco's modified eagle medium (DMEM), DMEM(+) (includes fetal bovine serum), phosphate buffered saline (PBS), and PBS+histidine. The results show that both copper release and corrosion are enhanced in DMEM(+), DMEM, and PBS+histidine compared with PBS alone. Speciation results show that essentially no free copper ions are present in the released fraction of Cu NPs in neither DMEM(+), DMEM nor histidine, while labile Cu complexes form in PBS. The Cu NPs were substantially more membrane reactive in PBS compared to the other media and the NPs caused larger effects compared to the same mass of Cu ions. Similarly, the Cu NPs caused much more ROS generation compared to the released fraction only. Taken together, the results suggest that membrane damage and ROS formation are stronger induced by Cu NPs and by free or labile Cu ions/complexes compared with Cu bound to biomolecules.

  17. Estimation of atomic hydrophobicities using molecular dynamics simulation of peptides

    NASA Astrophysics Data System (ADS)

    Held, Marie; Nicolau, Dan V.

    2007-12-01

    The hydrophobic force is one of the main driving forces in protein folding and binding. However, its nature is not yet well understood and consequently there are more than 80 different scales published trying to quantify it. Most of the hydrophobicity scales are amino acid-based, but the interaction between the molecular surface of the proteins (and DNA) and surfaces they are immobilized on, e.g., on biomedical micro/nanodevices, occurs on fractions of, rather than whole amino acids. This fragmented structure of the biomolecular surface requires the derivation of atom-level hydrophobicity. Most attempts for the evaluation of atomic hydrophobicities are derived from amino acid-based values, which ignore dynamic and steric factors. This contribution reports on the Molecular Dynamics simulations that aim to overcome this simplification. The calculations examine various tripeptides in an aqueous solution and the analysis focuses on the distance of the nearest water molecules to the individual atoms in the peptides. Different environments result in a variation of average distances for similar atoms in different tripeptides. Comparison with the atomic hydrophobicities derived from the amino acid-based hydrophobicity obtained from peptide partition in water-octanol (Dgoct) and transport through the membrane interface (Dgwif) shows a similar trend to the calculated distances. The variations are likely due to the steric differences of similar types of atoms in different geometric contexts. Therefore, Molecular Dynamics simulations proved convenient for the evaluation of atomic hydrophobicities and open new research avenues. The atomic hydrophobicities can be used to design surfaces that mimic the biomolecular surfaces and therefore elicit an expected biomolecular activity from the immobilized biomolecules.

  18. Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides

    PubMed Central

    Cartron, Michaël L.; Olsen, John D.; Sener, Melih; Jackson, Philip J.; Brindley, Amanda A.; Qian, Pu; Dickman, Mark J.; Leggett, Graham J.; Schulten, Klaus; Hunter, C. Neil

    2014-01-01

    Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll–protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cytbc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc1 complexes with gold nanobeads, each attached by a Histidine10 (His10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cytbc1 complexes occur as dimers in the membrane. The cytbc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC-LH1-PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC-LH1-PufX complexes tended to co-purify with cytbc1, whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC-LH1-PufX arrays, but not with a fixed, stoichiometric cytbc1-RC-LH1-PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc1, ATP synthase, cytaa3 and cytcbb3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1-RC-PufX dimers & 2 RC-LH1-PufX monomers, 4 cytbc1 dimers and 2 ATP synthases. Simulation of the interconnected energy, electron and proton transfer processes showed a half-maximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities. PMID:24530865

  19. Integrated SDS removal and protein digestion by hollow fiber membrane based device for SDS-assisted proteome analysis.

    PubMed

    Xia, Simin; Yuan, Huiming; Chen, Yuanbo; Liang, Zheng; Zhang, Lihua; Zhang, Yukui

    2015-08-15

    In this work, a novel integrated sample preparation device for SDS-assisted proteome analysis was developed, by which proteins dissolved in 4% (w/v) SDS were first diluted by 50% methanol, and then SDS was online removed by a hollow fiber membrane interface (HFMI) with 50mM ammonium bicarbonate (pH 8.0) as an exchange buffer, finally digested by an immobilized enzyme reactor (IMER). To evaluate the performance of such an integrated device, bovine serum albumin dissolved in 4% (w/v) SDS as a model sample was analyzed; it could be found that similar to that obtained by direct analysis of BSA digests without SDS (the sequence coverage of 60.3±1.0%, n=3), with HFMI as an interface for SDS removal, BSA was identified with the sequence coverage of 61.0±1.0% (n=3). However, without SDS removal by HFMI, BSA could not be digested by the IMER and none peptides could be detected. In addition, such an integrated sample preparation device was also applied for the analysis of SDS extracted proteins from rat brain, compared to those obtained by filter-aided sample preparation (FASP), not only the identified protein group and unique peptide number were increased by 12% and 39% respectively, but also the sample pretreatment time was shortened from 24h to 4h. All these results demonstrated that such an integrated sample preparation device would provide an alternative tool for SDS assisted proteome analysis.

  20. Topological mapping methods for α-helical bacterial membrane proteins – an update and a guide

    PubMed Central

    Islam, Salim T; Lam, Joseph S

    2013-01-01

    Integral membrane proteins with α-helical transmembrane segments (TMS) are known to play important and diverse roles in prokaryotic cell physiology. The net hydrophobicity of TMS directly corresponds to the observed difficulties in expressing and purifying these proteins, let alone producing sufficient yields for structural studies using two-/three-dimensional (2D/3D) crystallographic or nuclear magnetic resonance methods. To gain insight into the function of these integral membrane proteins, topological mapping has become an important tool to identify exposed and membrane-embedded protein domains. This approach has led to the discovery of protein tracts of functional importance and to the proposition of novel mechanistic hypotheses. In this review, we synthesize the various methods available for topological mapping of α-helical integral membrane proteins to provide investigators with a comprehensive reference for choosing techniques suited to their particular topological queries and available resources. PMID:23408725

  1. Method for producing hydrophobic aerogels

    DOEpatents

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    1999-01-01

    A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  2. Enrichment of hydrophobic proteins via Triton X-114 phase partitioning and hydroxyapatite column chromatography for mass spectrometry.

    PubMed

    Wissing, J; Heim, S; Flohé, L; Bilitewski, U; Frank, R

    2000-07-01

    Membrane proteins are the starting point of several signal transduction pathways. Therefore, the separation and identification of these proteins are of great interest in proteome analysis. However, the specific properties of membrane proteins seriously impede their analysis. We present an effective and highly reproducible method for the two-dimensional separation of extremely hydrophobic proteins and demonstrate the advantages of special preseparation procedures for the identification of proteins which have very similar Mr and p/. Using the example of the integral membrane protein very low density lipoprotein (VLDL) receptor (NCBI Acc. # 1730111) and the soluble heat shock protein (HSP) 90 (NCBI Acc. # 386786) we present the applicability of a phase-separation system with Triton X-114. Using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) of the protein spots after 2-D separation of the hydrophilic and the strongly hydrophobic protein fraction of human endothelial cells (ECV cell line), we were able to distinguish both proteins.

  3. Direct Measurement of Cyclic Current-Voltage Responses of Integral Membrane Proteins at a Self-Assembled Lipid-Bilayer-Modified Electrode: Cytochrome f and Cytochrome c Oxidase

    NASA Astrophysics Data System (ADS)

    Salamon, Z.; Hazzard, J. T.; Tollin, G.

    1993-07-01

    Direct cyclic voltage-current responses, produced in the absence of redox mediators, for two detergent-solubilized integral membrane proteins, spinach cytochrome f and beef heart cytochrome c oxidase, have been obtained at an optically transparent indium oxide electrode modified with a self-assembled lipid-bilayer membrane. The results indicate that both proteins interact with the lipid membrane so as to support quasi-reversible electron transfer redox reactions at the semiconductor electrode. The redox potentials that were obtained from analysis of the cyclic "voltammograms," 365 mV for cytochrome f and 250 and 380 mV for cytochrome c oxidase (vs. normal hydrogen electrode), compare quite well with the values reported by using conventional titration methods. The ability to obtain direct electrochemical measurements opens up another approach to the investigation of the properties of integral membrane redox proteins.

  4. Direct measurement of cyclic current-voltage responses of integral membrane proteins at a self-assembled lipid-bilayer-modified electrode: Cytochrome f and cytochrome c oxidase

    SciTech Connect

    Salamon, Z.; Hazzard, J.T.; Tollin, G. )

    1993-07-15

    Direct cyclic voltage-current responses, produced in the absence of redox mediators, for two detergent-solubilized integral membrane proteins, spinach cytochrome f and beef heart cytochrome c oxidase, have been obtained at an optically transparent indium oxide electrode modified with a self-assembled lipid-bilayer membrane. The results indicate that both proteins interact with the lipid membrane so as to support quasi-reversible electron transfer redox reactions at the semiconductor electrode. The redox potentials that were obtained from analysis of the cyclic [open quotes]voltammograms,[close quotes] 365 mV for cytochrome f and 250 and 380 mV for cytochrome c oxidase (vs. normal hydrogen electrode), compare quite well with the values reported by using conventional titration methods. The ability to obtain direct electrochemical measurements opens up another approach to the investigation of the properties of integral membrane redox proteins. 63 refs., 2 figs., 1 tab.

  5. The Cell-Free Integration of a Polytopic Mitochondrial Membrane Protein into Liposomes Occurs Cotranslationally and in a Lipid-Dependent Manner

    PubMed Central

    Long, Ashley R.; O'Brien, Catherine C.; Alder, Nathan N.

    2012-01-01

    The ADP/ATP Carrier (AAC) is the most abundant transporter of the mitochondrial inner membrane. The central role that this transporter plays in cellular energy production highlights the importance of understanding its structure, function, and the basis of its pathologies. As a means of preparing proteoliposomes for the study of membrane proteins, several groups have explored the use of cell-free translation systems to facilitate membrane protein integration directly into preformed unilamellar vesicles without the use of surfactants. Using AAC as a model, we report for the first time the detergent-free reconstitution of a mitochondrial inner membrane protein into liposomes using a wheat germ-based in vitro translation system. Using a host of independent approaches, we demonstrate the efficient integration of AAC into vesicles with an inner membrane-mimetic lipid composition and, more importantly, that the integrated AAC is functionally active in transport. By adding liposomes at different stages of the translation reaction, we show that this direct integration is obligatorily cotranslational, and by synthesizing stable ribosome-bound nascent chain intermediates, we show that the nascent AAC polypeptide interacts with lipid vesicles while ribosome-bound. Finally, we show that the presence of the phospholipid cardiolipin in the liposomes specifically enhances AAC translation rate as well as the efficiency of vesicle association and integration. In light of these results, the possible mechanisms of liposome-assisted membrane protein integration during cell-free translation are discussed with respect to the mode of integration and the role of specific lipids. PMID:23050015

  6. The true hydrophobicity of microsomal cytochrome P-450 in the rat: size dependence of the free energy of binding of a series of hydrocarbon substrates from the aqueous phase to the enzyme and to the membrane as derived from spectral binding data

    SciTech Connect

    Backes, W.L.; Hogaboom, M.; Canady, W.J.

    1982-04-25

    The associations of some hydrophobic substrates with cytochrome P-450 and with the microsomal membrane were studied. A series of aromatic hydrocarbons of increasing molecular size were used as a probe of the type I site of cytochrome P-450. The size dependence of the free energy (..delta..G/sup 0/) of binding was compared with the size dependence of transfer of the same compounds between the bulk solvent octanol and water. Similar size dependences were observed for the partition process (-0.68 kcal/mol/methylene group) and the binding of hydrocarbons to the type I binding site of cytochrome P-450 in both phenobarbital treated (-0.77 kcal/mol/methylene group) and untreated (-0.63 kcal/mol/methylene group) male rats. This is in contrast to earlier studies which did not take the dependence of the apparent binding constant upon enzyme concentration into account. Microsomal partitioning of the hydrocarbon substrates was quite different from the partitioning of those substrates between water and octanol. The size dependence of microsomal partitioning was found to be -0.27 kcal/mol/methylene group and -0.29 kcal/mol/methylene group in microsomes from untreated and phenobarbital-treated rats, respectively, indicating that the distribution of a substrate between water and a bulk organic solvent such as octanol is not a suitable model for an hepatic microsomal membrane, but that in certain ways it is an adequate model for enzyme-substrate complex formation. (JMT)

  7. The characterization of plasma membrane-bound tubulin of cauliflower using Triton X-114 fractionation.

    PubMed

    Sonesson, A; Berglund, M; Staxén, I; Widell, S

    1997-11-01

    The cortical microtubules determine how cellulose microfibrils are deposited in the plant cell wall and are thus important for the control of cell expansion. To understand how microtubules can control microfibril deposition, the components that link the microtubules to the plasma membrane (PM) of plant cells must be isolated. To obtain information on the properties of the tubulin-membrane associations, cauliflower (Brassica oleracea) PM was subjected to Triton X-114 fractionation, and the distribution of alpha- and beta-tubulin was analyzed using immunoblotting. Approximately one-half of the PM-associated tubulin was solubilized by Triton X-114 and 10 to 15% of both alpha- and beta-tubulin was recovered in the detergent phase (indicative of hydrophobic properties) and 30 to 40% was recovered in the aqueous phase. The hydrophobic tubulin could be released from the membrane by high pH extraction with preserved hydrophobicity. A large part of the PM-associated tubulin was found in the Triton-insoluble fraction. When this insoluble material was extracted a second time, a substantial amount of hydrophobic tubulin was released if the salt concentration was increased, suggesting that the hydrophobic tubulin was linked to a high-salt-sensitive protein aggregate that probably includes other components of the cytoskeleton. The hydrophobicity of a fraction of PM-associated tubulin could reflect a direct or indirect interaction of this tubulin with the lipid bilayer or with an integral membrane protein and may represent the anchoring of the cortical microtubules to the PM, a key element in the regulation of cell expansion.

  8. Cristae remodeling causes acidification detected by integrated graphene sensor during mitochondrial outer membrane permeabilization

    PubMed Central

    Pham, Ted D.; Pham, Phi Q.; Li, Jinfeng; Letai, Anthony G.; Wallace, Douglas C.; Burke, Peter J.

    2016-01-01

    The intrinsic apoptotic pathway and the resultant mitochondrial outer membrane permeabilization (MOMP) via BAK and BAX oligomerization, cytochrome c (cytc) release, and caspase activation are well studied, but their effect on cytosolic pH is poorly understood. Using isolated mitochondria, we show that MOMP results in acidification of the surrounding medium. BAK conformational changes associated with MOMP activate the OMA1 protease to cleave OPA1 resulting in remodeling of the cristae and release of the highly concentrated protons within the cristae invaginations. This was revealed by utilizing a nanomaterial graphene as an optically clear and ultrasensitive pH sensor that can measure ionic changes induced by tethered mitochondria. With this platform, we have found that activation of mitochondrial apoptosis is accompanied by a gradual drop in extra-mitochondrial pH and a decline in membrane potential, both of which can be rescued by adding exogenous cytc. These findings have importance for potential pharmacological manipulation of apoptosis, in the treatment of cancer. PMID:27786282

  9. A major integral protein of the plant plasma membrane binds flavin.

    PubMed

    Lorenz, Astrid; Kaldenhoff, Ralf; Hertel, Rainer

    2003-05-01

    Abundant flavin binding sites have been found in membranes of plants and fungi. With flavin mononucleotide-agarose affinity columns, riboflavin-binding activity from microsomes of Cucurbita pepoL. hypocotyls was purified and identified as a specific PIP1-homologous protein of the aquaporin family. Sequences such as gi|2149955 in Phaseolus vulgaris, PIP1b of Arabidopsis thaliana, and NtAQP1 of tobacco are closely related. The identification as a riboflavin-binding protein was confirmed by binding tests with an extract of Escherichia coli cells expressing the tobacco NtAQP1 as well as leaves of transgenic tobacco plants that overexpress NtAQP1 or were inhibited in PIP1 expression by antisense constructs. When binding was assayed in the presence of dithionite, the reduced flavin formed a relatively stable association with the protein. Upon dilution under oxidizing conditions, the adduct was resolved, and free flavin reappeared with a half time of about 30 min. Such an association can also be induced photochemically, with oxidized flavin by blue light at 450 nm, in the presence of an electron donor. Several criteria, localization in the plasma membrane, high abundance, affinity to roseoflavin, and photochemistry, argue for a role of the riboflavin-binding protein PIP1 as a photoreceptor. PMID:12768338

  10. Interfacing Zwitterionic Liposomes with Inorganic Nanomaterials: Surface Forces, Membrane Integrity, and Applications.

    PubMed

    Liu, Juewen

    2016-05-10

    Zwitterionic phosphocholine (PC) lipids are the main constituent of the mammalian cell membrane. PC bilayers are known for their antifouling properties, yet they are adsorbed by all tested inorganic nanoparticles. This feature article is focused on the developments in my laboratory in the past few years on this topic. The main experimental techniques include fluorescence-based liposome leakage assays, adsorption and desorption, and cryo-TEM. Different materials interact with PC liposomes differently. PC liposomes adsorb on SiO2, followed by membrane fusion with the surface forming supported lipid bilayers. TiO2 and other metal oxides adsorb only intact PC liposomes via lipid phosphate bonding; the steric effect from the choline group hinders subsequent liposome fusion onto the particles. Citrate-capped AuNPs are adsorbed very strongly via van der Waals forces, inducing local gelation. The result is transient liposome leakage upon AuNP adsorption or desorption and AuNP aggregation on the liposome surface. All carbon-based nanomaterials (graphene oxides, carbon nanotubes, and nanodiamond) are adsorbed mainly via hydrogen bonding. The oxidation level of graphene oxide strongly influences the outcome of the final hybrid material. In the context of inorganic nanoparticle adsorption, insights are given regarding the lack of protein adsorption by PC bilayers. These inorganic/lipid hybrid materials can be used for controlled release, drug delivery, and fundamental studies. A few examples of application are covered toward the end, and future perspectives are given. PMID:27093351

  11. Using proximity biotinylation to detect herpesvirus entry glycoprotein interactions: Limitations for integral membrane glycoproteins.

    PubMed

    Lajko, Michelle; Haddad, Alexander F; Robinson, Carolyn A; Connolly, Sarah A

    2015-09-01

    Herpesvirus entry into cells requires coordinated interactions among several viral transmembrane glycoproteins. Viral glycoproteins bind to receptors and interact with other glycoproteins to trigger virus-cell membrane fusion. Details of these glycoprotein interactions are not well understood because they are likely transient and/or low affinity. Proximity biotinylation is a promising protein-protein interaction assay that can capture transient interactions in live cells. One protein is linked to a biotin ligase and a second protein is linked to a short specific acceptor peptide (AP). If the two proteins interact, the ligase will biotinylate the AP, without requiring a sustained interaction. To examine herpesvirus glycoprotein interactions, the ligase and AP were linked to herpes simplex virus 1 (HSV1) gD and Epstein Barr virus (EBV) gB. Interactions between monomers of these oligomeric proteins (homotypic interactions) served as positive controls to demonstrate assay sensitivity. Heterotypic combinations served as negative controls to determine assay specificity, since HSV1 gD and EBV gB do not interact functionally. Positive controls showed strong biotinylation, indicating that viral glycoprotein proximity can be detected. Unexpectedly, the negative controls also showed biotinylation. These results demonstrate the special circumstances that must be considered when examining interactions among glycosylated proteins that are constrained within a membrane.

  12. Ice-induced partial unfolding and aggregation of an integral membrane protein.

    PubMed

    Garber Cohen, Iona P; Castello, Pablo R; González Flecha, F Luis

    2010-11-01

    Although the deleterious effects of ice on water-soluble proteins are well established, little is known about the freeze stability of membrane proteins. Here we explore this issue through a combined kinetic and spectroscopic approach using micellar-purified plasma membrane calcium pump as a model. The ATPase activity of this protein significantly diminished after freezing using a slow-cooling procedure, with the decrease in the activity being an exponential function of the storage time at 253K, with t(½)=3.9±0.6h. On the contrary, no significant changes on enzyme activity were detected when a fast cooling procedure was performed. Regardless of the cooling rate, successive freeze-thaw cycles produced an exponential decrease in the Ca(2+)-ATPase activity, with the number of cycles at which the activity was reduced to half being 9.2±0.3 (fast cooling) and 3.7±0.2 (slow cooling). PAGE analysis showed that neither degradation nor formation of SDS-stable aggregates of the protein takes place during protein inactivation. Instead, the inactivation process was found to be associated with the irreversible partial unfolding of the polypeptide chain, as assessed by Trp fluorescence, far UV circular dichroism, and 1-anilino-naphtalene-8-sulfonate binding. This inactive protein undergoes, in a later stage, a further irreversible transformation leading to large aggregates.

  13. Zinc protection against aluminium induced altered lipid profile and membrane integrity.

    PubMed

    Singla, Neha; Dhawan, D K

    2013-05-01

    The aim of the present study was to investigate the effects of Zinc (Zn) supplementation on lipid profile and fluidity of cerebrum and cerebellum membranes of rats treated with aluminium (Al). Sprague dawley male rats were divided into four different treatment groups viz: Control, aluminium treated, zinc treated and aluminium+zinc treated. Aluminium (AlCl3) was administered orally at a dose of 100mg/kgb.wt./day (dissolved in drinking water). Zinc as zinc sulphate was supplemented to rats at a dose of 227mg/l in drinking water. A significant decrease in the levels of total lipids, glycolipids, phospholipids, cholesterol and gangliosides contents were observed in both the cerebrum and cerebellum following Al exposure, which were found to be significantly increased following Zn supplementation. On the contrary, Al treatment caused a significant increase in the formation of conjugated dienes, which were observed to be reduced on Zn co-treatment. Further, Al treatment significantly elevated the fluorescence polarization, anisotropy and order parameter, which however were normalized upon Zn co-administration. Hence, the present study depicts the potential of Zn in moderating the changes caused by Al on membrane composition and fluidity in rat brain.

  14. CARBONIC ANHYDRASE ACTIVITY OF INTEGRAL-FUNCTIONAL COMPLEXES OF THYLAKOID MEMBRANES OF SPINACH CHLOROPLASTS.

    PubMed

    Semenihin, A V; Zolotareva, O K

    2015-01-01

    Isolated thylakoid membranes were disrupted by treatment with nonionic detergents digitonin or dodecyl maltoside. Solubilized polypeptide complexes were separated by native gel charge shift electrophoresis. The position of ATP-synthase complex and its isolated catalytic part (CF1) within gel was determined using the color reaction for ATPase activity. Due to the presence of cytochromes, the red band in unstained gels corresponded to the cytochrome b6f complex. Localization of the cytochrome b6f complex, ATP synthase and coupling CF1 in the native gel was confirmed by their subunit composition determined after SDS-electrophoretic analysis. Carbonic anhydrase (CA) activity in polypeptide zones of PS II, cytochrome b6f complex, and ATP-synthase CF1 was identified in native gels using indicator bromothymol blue. CA activity of isolated CF1 in solution was determined by infrared gas analysis as the rate of bicarbonate dehydration. The water-soluble acetazolamide, an inhibitor of CA, unlike lipophilic ethoxyzolamide inhibited CA activity of CF1 Thus, it was shown for the first time that ATP-synthase has a component which is capable of catalyzing the interconversion of forms of carbonic acid associated with proton exchange. The data obtained suggest the presence of multiple forms of carbonic anhydrase in the thylakoid membranes of spinach chloroplasts and confirm their involvement in the proton transfer to the ATP synthase. PMID:26502699

  15. Interfacing Zwitterionic Liposomes with Inorganic Nanomaterials: Surface Forces, Membrane Integrity, and Applications.

    PubMed

    Liu, Juewen

    2016-05-10

    Zwitterionic phosphocholine (PC) lipids are the main constituent of the mammalian cell membrane. PC bilayers are known for their antifouling properties, yet they are adsorbed by all tested inorganic nanoparticles. This feature article is focused on the developments in my laboratory in the past few years on this topic. The main experimental techniques include fluorescence-based liposome leakage assays, adsorption and desorption, and cryo-TEM. Different materials interact with PC liposomes differently. PC liposomes adsorb on SiO2, followed by membrane fusion with the surface forming supported lipid bilayers. TiO2 and other metal oxides adsorb only intact PC liposomes via lipid phosphate bonding; the steric effect from the choline group hinders subsequent liposome fusion onto the particles. Citrate-capped AuNPs are adsorbed very strongly via van der Waals forces, inducing local gelation. The result is transient liposome leakage upon AuNP adsorption or desorption and AuNP aggregation on the liposome surface. All carbon-based nanomaterials (graphene oxides, carbon nanotubes, and nanodiamond) are adsorbed mainly via hydrogen bonding. The oxidation level of graphene oxide strongly influences the outcome of the final hybrid material. In the context of inorganic nanoparticle adsorption, insights are given regarding the lack of protein adsorption by PC bilayers. These inorganic/lipid hybrid materials can be used for controlled release, drug delivery, and fundamental studies. A few examples of application are covered toward the end, and future perspectives are given.

  16. Osmotic stress and cryoinjury of koala sperm: an integrative study of the plasma membrane, chromatin stability and mitochondrial function.

    PubMed

    Johnston, S D; Satake, N; Zee, Y; López-Fernández, C; Holt, W V; Gosálvez, J

    2012-06-01

    This study investigated whether cryopreservation-induced injury to koala spermatozoa could be explained using an experimental model that mimics the structural and physiological effects of osmotic flux. DNA labelling after in situ nick translation of thawed cryopreserved spermatozoa revealed a positive correlation (r=0.573; P<0.001; n=50) between the area of relaxed chromatin in the nucleus and the degree of nucleotide labelling. While the chromatin of some spermatozoa increased more than eight times its normal size, not all sperm nuclei with relaxed chromatin showed evidence of nucleotide incorporation. Preferential staining associated with sperm DNA fragmentation (SDF) was typically located in the peri-acrosomal and peripheral regions of the sperm head and at the base of the spermatozoa where it appear to be 'hot spots' of DNA damage following cryopreservation. Results of the comparative effects of anisotonic media and cryopreservation on the integrity of koala spermatozoa revealed that injury induced by exposure to osmotic flux, essentially imitated the results found following cryopreservation. Plasma membrane integrity, chromatin relaxation and SDF appeared particularly susceptible to extreme hypotonic environments. Mitochondrial membrane potential (MMP), while susceptible to extreme hypo- and hypertonic environments, showed an ability to rebound from hypertonic stress when returned to isotonic conditions. Koala spermatozoa exposed to 64 mOsm/kg media showed an equivalent, or more severe, degree of structural and physiological injury to that of frozen-thawed spermatozoa, supporting the hypothesis that cryoinjury is principally associated with a hypo-osmotic effect. A direct comparison of SDF of thawed cryopreserved spermatozoa and those exposed to a 64 mOsm/kg excursion showed a significant correlation (r=0.878; P<0.05; n=5); however, no correlation was found when the percentage of sperm with relaxed chromatin was compared. While a cryo-induced osmotic

  17. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers

    DOEpatents

    McGrath, James E.; Park, Ho Bum; Freeman, Benny D.

    2011-10-04

    The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.

  18. High-fidelity simulation and reduced-order modelling of integrally-actuated membrane wings with feedback control

    NASA Astrophysics Data System (ADS)

    Buoso, Stefano; Palacios, Rafael

    2016-04-01

    This work presents a numerical framework for the simulation and design of integrally actuated membrane wings with feedback control. The performance of the aeroelastic system are evaluated using a high-fidelity model. It consists in a fluid solver based on the direct numerical integration of the unsteady Navier-Stokes equations implicitly coupled with a geometrically non-linear dynamic structural model which has been calibrated using experimental data. The rate-dependent constitutive law for the dielectric elastomer considered for the integral wing actuation is based on a non-linear formulation. The framework also includes a methodology for the model reduction of the fully-coupled system. The resulting low-order description showed to retain the main system dynamics, and can therefore be used for the design of the control scheme for the wing. Results highlights the potential to achieve on-demand aerodynamics using the actuation concept proposed. In particular, it is shown that the wing aerodynamic performance is noticeably enhanced through the actuation and the disturbances on the lift in case of gusts can be reduced up to 60%.

  19. Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications

    NASA Astrophysics Data System (ADS)

    Lotrič, A.; Sekavčnik, M.; Hočevar, S.

    2014-12-01

    Efficiently combining proton exchange membrane fuel cell (PEMFC) stack with methanol steam reformer (MSR) into a small portable system is still quite a topical issue. Using methanol as a fuel in PEMFC stack includes a series of chemical processes where each proceeds at a unique temperature. In a combined MSR-PEMFC-stack system with integrated auxiliary fuel processors (vaporizer, catalytic combustor, etc.) the processes are both endothermic and exothermic hence their proper thermal integration can help raising the system efficiency. A concept of such fully integrated and compact system is proposed in this study. Three separate systems are designed based on different PEMFC stacks and MSR. Low-temperature (LT) and conventional high-temperature (cHT) PEMFC stack characteristics are based on available data from suppliers. Also, a novel high-temperature (nHT) PEMFC stack is proposed because its operating temperature coincides with that of MSR. A comparative study of modelled systems is performed using a mass and energy balances zero-dimensional model, which is interdependently coupled to a physical model based on finite element method (FEM). The results indicate that a system with nHT PEMFC stack is feasible and has the potential to reach higher system efficiencies than systems with LT or cHT PEMFC stacks.

  20. Mechanisms of neuronal membrane sealing following mechanical trauma.

    PubMed

    Hendricks, Benjamin K; Shi, Riyi

    2014-08-01

    Membrane integrity is crucial for maintaining the intricate signaling and chemically-isolated intracellular environment of neurons; disruption risks deleterious effects, such as unregulated ionic flux, neuronal apoptosis, and oxidative radical damage as observed in spinal cord injury and traumatic brain injury. This paper, in addition to a discussion of the current understanding of cellular tactics to seal membranes, describes two major factors involved in membrane repair. These are line tension, the hydrophobic attractive force between two lipid free-edges, and membrane tension, the rigidity of the lipid bilayer with respect to the tethered cortical cytoskeleton. Ca(2+), a major mechanistic trigger for repair processes, increases following flux through a membrane injury site, and activates phospholipase enzymes, calpain-mediated cortical cytoskeletal proteolysis, protein kinase cascades, and lipid bilayer microdomain modification. The membrane tension appears to be largely modulated through vesicle dynamics, cytoskeletal organization, membrane curvature, and phospholipase manipulation. Dehydration of the phospholipid gap edge and modification of membrane packaging, as in temperature variation, experimentally impact line tension. Due to the time-sensitive nature of axonal sealing, increasing the efficacy of axolemmal sealing through therapeutic modification would be of great clinical value, to deter secondary neurodegenerative effects. Better therapeutic enhancement of membrane sealing requires a complete understanding of its intricate underlying neuronal mechanism. PMID:24993771

  1. Bioinformatic Analyses of Integral Membrane Transport Proteins Encoded Within the Genome of the Planctomycetes species, Rhodopirellula baltica

    PubMed Central

    Paparoditis, Philipp; Vastermark, Ake; Le, Andrew J.; Fuerst, John A.; Saier, Milton H.

    2013-01-01

    Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Database (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a high degree of confidence, and these fell into several different classes. R. baltica encodes in its genome channels (12%), secondary carriers (33%), and primary active transport proteins (41%) in addition to classes represented in smaller numbers. Relative to most non-marine bacteria, R. baltica possesses a larger number of sodium-dependent symporters but fewer proton-dependent symporters, and it has dimethylsulfoxide (DMSO) and trimethyl-amine-oxide (TMAO) reductases, consistent with its Na+-rich marine environment. R. baltica also possesses a Na+-translocating NADH:quinone dehydrogenase (Na+-NDH), a Na+ efflux decarboxylase, two Na+-exporting ABC pumps, two Na+-translocating F-type ATPases, two Na+:H+ antiporters and two K+:H+ antiporters. Flagellar motility probably depends on the sodium electrochemical gradient. Surprisingly, R. baltica also has a complete set of H+-translocating electron transport complexes similar to those present in β-proteobacteria and eukaryotic mitochondria. The transport proteins identified proved to be typical of the bacterial domain with little or no indication of the presence of eukaryotic-type transporters. However, novel functionally uncharacterized multispanning membrane proteins were identified, some of which are found only in Rhodopirellula species, but others of which are widely distributed in bacteria. The analyses lead to predictions regarding the physiology, ecology and evolution of R. baltica. PMID:23969110

  2. Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins

    PubMed Central

    Gasanov, Sardar E.; Shrivastava, Indira H.; Israilov, Firuz S.; Kim, Aleksandr A.; Rylova, Kamila A.; Zhang, Boris; Dagda, Ruben K.

    2015-01-01

    Cobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques. Phosphorus-31 nuclear magnetic resonance (31P-NMR) spectroscopy data suggest that both cytotoxins bind to isolated mitochondrial fractions and promote the formation of aberrant non-bilayer structures. We then hypothesized that CTI and CTII bind to cardiolipin (CL) to disrupt mitochondrial membranes. Collectively, 31P-NMR, electron paramagnetic resonance (EPR), proton NMR (1H-NMR), deuterium NMR (2H-NMR) spectroscopy, differential scanning calorimetry, and erythrosine phosphorescence assays suggest that CTI and CTII bind to CL to generate non-bilayer structures and promote the permeabilization, dehydration and fusion of large unilamellar phosphatidylcholine (PC) liposomes enriched with CL. On the other hand, CTII but not CTI caused biophysical alterations of large unilamellar PC liposomes enriched with phosphatidylserine (PS). Mechanistically, single molecule docking simulations identified putative CL, PS and PC binding sites in CTI and CTII. While the predicted binding sites for PS and PC share a high number of interactive amino acid residues in CTI and CTII, the CL biding sites in CTII and CTI are more divergent as it contains additional interactive amino acid residues. Overall, our data suggest that cytotoxins physically associate with mitochondrial membranes by binding to CL to disrupt mitochondrial structural integrity. PMID:26091109

  3. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family.

    PubMed Central

    Preston, G M; Agre, P

    1991-01-01

    CHIP28 is a 28-kDa integral membrane protein with similarities to membrane channels and is found in erythrocytes and renal tubules. A cDNA for CHIP28 was isolated from human fetal liver cDNA template by a three-step polymerase chain reaction (PCR) cloning strategy, starting with degenerate oligonucleotide primers corresponding to the N-terminal amino acid sequence determined from purified CHIP28 protein. Using the third-step PCR product as a probe, we isolated a recombinant from a human bone marrow cDNA library. The combined sequence of the PCR products and bone marrow cDNA contains 38 base pairs of 5' untranslated nucleotide sequence, an 807-bp open reading frame, and approximately 2 kilobases of 3' untranslated sequence containing a polyadenylation signal. This corresponds to the 3.1-kilobase transcript identified by RNA blot-hybridization analysis. Authenticity of the deduced amino acid sequence of the CHIP28 protein C terminus was confirmed by expression and immunoblotting. Analysis of the deduced amino acid sequence suggests that CHIP28 protein contains six bilayer-spanning domains, two exofacial potential N-glycosylation sites, and intracellular N and C termini. Search of the DNA sequence data base revealed a strong homology with the major intrinsic protein of bovine lens, which is the prototype of an ancient but recently recognized family of membrane channels. These proteins are believed to form channels permeable to water and possibly other small molecules. CHIP28 shares homology with all known members of this channel family, and it is speculated that CHIP28 has a similar function. Images PMID:1722319

  4. Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica.

    PubMed

    Paparoditis, Philipp; Västermark, Ake; Le, Andrew J; Fuerst, John A; Saier, Milton H

    2014-01-01

    Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Database (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a high degree of confidence, and these fell into several different classes. R. baltica encodes in its genome channels (12%), secondary carriers (33%), and primary active transport proteins (41%) in addition to classes represented in smaller numbers. Relative to most non-marine bacteria, R. baltica possesses a larger number of sodium-dependent symporters but fewer proton-dependent symporters, and it has dimethylsulfoxide (DMSO) and trimethyl-amine-oxide (TMAO) reductases, consistent with its Na(+)-rich marine environment. R. baltica also possesses a Na(+)-translocating NADH:quinone dehydrogenase (Na(+)-NDH), a Na(+) efflux decarboxylase, two Na(+)-exporting ABC pumps, two Na(+)-translocating F-type ATPases, two Na(+):H(+) antiporters and two K(+):H(+) antiporters. Flagellar motility probably depends on the sodium electrochemical gradient. Surprisingly, R. baltica also has a complete set of H(+)-translocating electron transport complexes similar to those present in α-proteobacteria and eukaryotic mitochondria. The transport proteins identified proved to be typical of the bacterial domain with little or no indication of the presence of eukaryotic-type transporters. However, novel functionally uncharacterized multispanning membrane proteins were identified, some of which are found only in Rhodopirellula species, but others of which are widely distributed in bacteria. The analyses lead to predictions regarding the physiology, ecology and evolution of R. baltica. PMID:23969110

  5. N-terminal domain of the V-ATPase a2-subunit displays integral membrane protein properties.

    PubMed

    Merkulova, Maria; McKee, Mary; Dip, Phat Vinh; Grüber, Gerhard; Marshansky, Vladimir

    2010-10-01

    V-ATPase is a multisubunit membrane complex that functions as nanomotor coupling ATP hydrolysis with proton translocation across biological membranes. Recently, we uncovered details of the mechanism of interaction between the N-terminal tail of the V-ATPase a2-subunit isoform (a2N(1-402)) and ARNO, a GTP/GDP exchange factor for Arf-family small GTPases. Here, we describe the development of two methods for preparation of the a2N(1-402) recombinant protein in milligram quantities sufficient for further biochemical, biophysical, and structural studies. We found two alternative amphiphilic chemicals that were required for protein stability and solubility during purification: (i) non-detergent sulfobetaine NDSB-256 and (ii) zwitterionic detergent FOS-CHOLINE®12 (FC-12). Moreover, the other factors including mild alkaline pH, the presence of reducing agents and the absence of salt were beneficial for stabilization and solubilization of the protein. A preparation of a2N(1-402) in NDSB-256 was successfully used in pull-down and BIAcore™ protein-protein interaction experiments with ARNO, whereas the purity and quality of the second preparation in FC-12 was validated by size-exclusion chromatography and CD spectroscopy. Surprisingly, the detergent requirement for stabilization and solubilization of a2N(1-402) and its cosedimentation with liposomes were different from peripheral domains of other transmembrane proteins. Thus, our data suggest that in contrast to current models, so called "cytosolic" tail of the a2-subunit might actually be embedded into and/or closely associated with membrane phospholipids even in the absence of any obvious predicted transmembrane segments. We propose that a2N(1-402) should be categorized as an integral monotopic domain of the a2-subunit isoform of the V-ATPase.

  6. Charge equilibration force fields for molecular dynamics simulations of lipids, bilayers, and integral membrane protein systems.

    PubMed

    Lucas, Timothy R; Bauer, Brad A; Patel, Sandeep

    2012-02-01

    With the continuing advances in computational hardware and novel force fields constructed using quantum mechanics, the outlook for non-additive force fields is promising. Our work in the past several years has demonstrated the utility of polarizable force fields, those based on the charge equilibration formalism, for a broad range of physical and biophysical systems. We have constructed and applied polarizable force fields for lipids and lipid bilayers. In this review of our recent work, we discuss the formalism we have adopted for implementing the charge equilibration (CHEQ) method for lipid molecules. We discuss the methodology, related issues, and briefly discuss results from recent applications of such force fields. Application areas include DPPC-water monolayers, potassium ion permeation free energetics in the gramicidin A bacterial channel, and free energetics of permeation of charged amino acid analogs across the water-bilayer interface. This article is part of a Special Issue entitled: Membrane protein structure and function.

  7. Effects of Lewisite on cell membrane integrity and energy metabolism in human keratinocytes and SCL II cells.

    PubMed

    Kehe, K; Flohé, S; Krebs, G; Kreppel, H; Reichl, F X; Liebl, B; Szinicz, L

    2001-06-21

    Lewisite is a highly toxic arsenic compound which can cause skin damage. In the present study effects of Lewisite on cell membrane integrity and energy metabolism as well as antidotal effects of DL-2,3-dimercaptopropanesulfonate (DMPS), and meso-2,3-dimercaptosuccinic acid (m-DMSA) were investigated in a keratinocyte derived cell line (SCL II) and primary human keratinocytes (HK). Cells were incubated in Lewisite (60 microM) containing medium for 5 min. During the following 6 h lactate dehydrogenase (LDH) activity in the supernatant, intracellular ATP content, tetrazolium reduction, glucose consumption and lactate formation were measured. Glucose consumption and lactate production were decreased in both cell lines after Lewisite exposure. In SCL II cells an increase of LDH activity in the supernatant, a decrease of ATP content, and an impaired ability to reduce tetrazolium was found 3 h after Lewisite exposure. In HK cultures tetrazolium reduction was significantly decreased already after 2 h, whereas LDH increase in the supernatant and ATP content decrease occurred only at 6 h after Lewisite exposure. When DMPS or m-DMSA was added directly after Lewisite exposure to SCL II cells, glucose consumption and lactate formation were restored and LDH leakage was prevented. SCL II cells might be more prone to membrane damage whereas in keratinocytes mitochondrial impairment seems to be the predominant effect of Lewisite.

  8. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  9. Structural basis of the signalling through a bacterial membrane receptor HasR deciphered by an integrative approach

    PubMed Central

    Wojtowicz, Halina; Prochnicka-Chalufour, Ada; deAmorim, Gisele Cardoso; Roudenko, Olga; Simenel, Catherine; Malki, Idir; Pehau-Arnaudet, Gérard; Gubellini, Francesca; Koutsioubas, Alexandros; Pérez, Javier; Delepelaire, Philippe; Delepierre, Muriel; Fronzes, Rémi; Izadi-Pruneyre, Nadia

    2016-01-01

    Bacteria use diverse signalling pathways to adapt gene expression to external stimuli. In Gram-negative bacteria, the binding of scarce nutrients to membrane transporters triggers a signalling process that up-regulates the expression of genes of various functions, from uptake of nutrient to production of virulence factors. Although proteins involved in this process have been identified, signal transduction through this family of transporters is not well understood. In the present study, using an integrative approach (EM, SAXS, X-ray crystallography and NMR), we have studied the structure of the haem transporter HasR captured in two stages of the signalling process, i.e. before and after the arrival of signalling activators (haem and its carrier protein). We show for the first time that the HasR domain responsible for signal transfer: (i) is highly flexible in two stages of signalling; (ii) extends into the periplasm at approximately 70–90 Å (1 Å=0.1 nm) from the HasR β-barrel; and (iii) exhibits local conformational changes in response to the arrival of signalling activators. These features would favour the signal transfer from HasR to its cytoplasmic membrane partners. PMID:27208170

  10. Design, purification and characterization of a soluble variant of the integral membrane protein MotB for structural studies

    PubMed Central

    Andrews, Daniel A.; Xie, Meng; Hughes, Victoria; Wilce, Matthew C.; Roujeinikova, Anna

    2013-01-01

    The bacterial flagellar motor is an intricate nanomachine powered by a transmembrane electrochemical gradient. Rotation is driven by the cumulative action of several peptidoglycan-anchored stator complexes on the rotor. In proton-motive force-driven motors, the stator complex is composed of a motility protein B (MotB) dimer surrounded by four copies of MotA, where both MotA and MotB are integral membrane proteins. The lack of full-length MotA and MotB structures hinders understanding of the mechanism of torque generation. Given the low levels of expression and low stability of detergent-solubilized MotB, a soluble chimaeric variant was engineered, where the two transmembrane helices of the MotB dimer were replaced by a leucine zipper. The biochemical and biophysical analysis of the resultant protein showed that it was properly folded, stable, behaved as a monodisperse dimer at low pH, had molecular dimensions close to those expected for native MotB and yielded reproducible crystals. The chimaeric protein is, therefore, a good candidate for structural studies. This ‘solubilization by design’ approach may be generally applicable to the production of soluble forms of other dimeric, trimeric and tetrameric single-span membrane proteins for functional and structural studies. PMID:23193105

  11. Integrated thermophilic submerged aerobic membrane bioreactor and electrochemical oxidation for pulp and paper effluent treatment--towards system closure.

    PubMed

    Qu, X; Gao, W J; Han, M N; Chen, A; Liao, B Q

    2012-07-01

    A novel integrated thermophilic submerged aerobic membrane bioreactor (TSAMBR) and electrochemical oxidation (EO) technology was developed for thermomechanical pulping pressate treatment with the aim of system closure. The TSAMBR was able to achieve a chemical oxygen demand (COD) removal efficiency of 88.6 ± 1.9-92.3 ± 0.7% under the organic loading rate of 2.76 ± 0.13-3.98 ± 0.23 kg COD/(m(3) d). An optimal hydraulic retention time (HRT) of 1.1 ± 0.1d was identified for COD removal. Cake formation was identified as the dominant mechanism of membrane fouling. The EO of the TSAMBR permeate was performed using a Ti/SnO(2)-Sb(2)O(5)-IrO(2) electrode. After 6-h EO, a complete decolourization was achieved and the COD removal efficiency was increased to 96.2 ± 1.2-98.2 ± 0.3%. The high-quality effluent produced by the TSAMBR-EO system can be reused as process water for system closure in pulp and paper mill.

  12. Controlled Architecture of Dual-Functional Block Copolymer Brushes on Thin-Film Composite Membranes for Integrated "Defending" and "Attacking" Strategies against Biofouling.

    PubMed

    Ye, Gang; Lee, Jongho; Perreault, François; Elimelech, Menachem

    2015-10-21

    We report a new macromolecular architecture of dual functional block copolymer brushes on commercial thin-film composite (TFC) membranes for integrated "defending" and "attacking" strategies against biofouling. Mussel-inspired catechol chemistry is used for a convenient immobilization of initiator molecules to the membrane surface with the aid of polydopamine (PDA). Zwitterionic polymer brushes with strong hydration capacity and quaternary ammonium salt (QAS) polymer brushes with bactericidal ability are sequentially grafted on TFC membranes via activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP), an environmentally benign and controlled polymerization method. Measurement of membrane intrinsic transport properties in reverse osmosis experiments shows that the modified TFC membrane maintains the same water permeability and salt selectivity as the pristine TFC membrane. Chemical force microscopy and protein/bacterial adhesion studies are carried out for a comprehensive evaluation of the biofouling resistance and antimicrobial ability, demonstrating low biofouling propensity and excellent bacterial inactivation for the modified TFC membrane. We conclude that this polymer architecture, with complementary "defending" and "attacking" capabilities, can effectively prevent the attachment of biofoulants and formation of biofilms and thereby significantly mitigate biofouling on TFC membranes. PMID:26378606

  13. Controlled Architecture of Dual-Functional Block Copolymer Brushes on Thin-Film Composite Membranes for Integrated "Defending" and "Attacking" Strategies against Biofouling.

    PubMed

    Ye, Gang; Lee, Jongho; Perreault, François; Elimelech, Menachem

    2015-10-21

    We report a new macromolecular architecture of dual functional block copolymer brushes on commercial thin-film composite (TFC) membranes for integrated "defending" and "attacking" strategies against biofouling. Mussel-inspired catechol chemistry is used for a convenient immobilization of initiator molecules to the membrane surface with the aid of polydopamine (PDA). Zwitterionic polymer brushes with strong hydration capacity and quaternary ammonium salt (QAS) polymer brushes with bactericidal ability are sequentially grafted on TFC membranes via activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP), an environmentally benign and controlled polymerization method. Measurement of membrane intrinsic transport properties in reverse osmosis experiments shows that the modified TFC membrane maintains the same water permeability and salt selectivity as the pristine TFC membrane. Chemical force microscopy and protein/bacterial adhesion studies are carried out for a comprehensive evaluation of the biofouling resistance and antimicrobial ability, demonstrating low biofouling propensity and excellent bacterial inactivation for the modified TFC membrane. We conclude that this polymer architecture, with complementary "defending" and "attacking" capabilities, can effectively prevent the attachment of biofoulants and formation of biofilms and thereby significantly mitigate biofouling on TFC membranes.

  14. Essential factors of an integrated moving bed biofilm reactor-membrane bioreactor: Adhesion characteristics and microbial community of the biofilm.

    PubMed

    Tang, Bing; Yu, Chunfei; Bin, Liying; Zhao, Yiliang; Feng, Xianfeng; Huang, Shaosong; Fu, Fenglian; Ding, Jiewei; Chen, Cuiqun; Li, Ping; Chen, Qianyu

    2016-07-01

    This work aims at revealing the adhesion characteristics and microbial community of the biofilm in an integrated moving bed biofilm reactor-membrane bioreactor, and further evaluating their variations over time. With multiple methods, the adhesion characteristics and microbial community of the biofilm on the carriers were comprehensively illuminated, which showed their dynamic variation along with the operational time. Results indicated that: (1) the roughness of biofilm on the carriers increased very quickly to a maximum value at the start-up stage, then, decreased to become a flat curve, which indicated a layer of smooth biofilm formed on the surface; (2) the tightly-bound protein and polysaccharide was the most important factor influencing the stability of biofilm; (3) the development of biofilm could be divided into three stages, and Gammaproteobacteria were the most dominant microbial species in class level at the last stage, which occupied the largest ratio (51.48%) among all microbes.

  15. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  16. Protein-induced bilayer perturbations: Lipid ordering and hydrophobic coupling.

    PubMed

    Petersen, Frederic N R; Laursen, Ib; Bohr, Henrik; Nielsen, Claus Hélix

    2009-10-01

    The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to -6kJ/mol; thus not strongly favored over lipid-lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid<-->gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few A results in up to 10-fold increased exchange rates as compared to the 'optimal' match situation pointing to the regulatory role of hydrophobic coupling in lipid-protein interactions.

  17. Protein-induced bilayer perturbations: Lipid ordering and hydrophobic coupling

    SciTech Connect

    Petersen, Frederic N.R.; Laursen, Ib; Bohr, Henrik; Nielsen, Claus Helix

    2009-10-02

    The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to -6 kJ/mol; thus not strongly favored over lipid-lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid {r_reversible} gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few A results in up to 10-fold increased exchange rates as compared to the 'optimal' match situation pointing to the re