Science.gov

Sample records for hydrophobic molecule separations

  1. Bile salt surfactants in micellar electrokinetic capillary chromatography: Application to hydrophobic molecule separations

    SciTech Connect

    Cole, R.O.; Sepaniak, M.J. . Dept. of Chemistry); Hinze, W.L. . Dept. of Chemistry); Gorse, J.; Oldiges, K. . Dept. of Chemistry)

    1990-01-01

    Bile Salt surfactants are used in the micellar electrokinetic capillary chromatography (MECC) separation of various hydrophobic compounds. The use of methanol in the mobile phase allows the separation of previously intractable compounds including polyaromatic hydrocarbons. The effects of methanol on critical micelle concentration is investigated for sodium dodecyl sulfate (SDS) and the bile salt sodium cholate. It is determined that the unique structure of the bile salt micelle is much more tolerant to the addition of organic solvents than SDS, thereby increasing the scope of applications of MECC to include hydrophobic compounds. 30 refs., 9 figs.

  2. Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gentile, Francesco; Coluccio, Maria Laura; Zaccaria, Remo Proietti; Francardi, Marco; Cojoc, Gheorghe; Perozziello, Gerardo; Raimondo, Raffaella; Candeloro, Patrizio; di Fabrizio, Enzo

    2014-06-01

    Super-hydrophobic surfaces are bio-inspired interfaces with a superficial texture that, in its most common evolution, is formed by a periodic lattice of silicon micro-pillars. Similar surfaces reveal superior properties compared to conventional flat surfaces, including very low friction coefficients. In this work, we modified meso-porous silicon micro-pillars to incorporate networks of metal nano-particles into the porous matrix. In doing so, we obtained a multifunctional-hierarchical system in which (i) at a larger micrometric scale, the super-hydrophobic pillars bring the molecules dissolved in an ultralow-concentration droplet to the active sites of the device, (ii) at an intermediate meso-scale, the meso-porous silicon film adsorbs the low molecular weight content of the solution and, (iii) at a smaller nanometric scale, the aggregates of silver nano-particles would measure the target molecules with unprecedented sensitivity. In the results, we demonstrated how this scheme can be utilized to isolate and detect small molecules in a diluted solution in very low abundance ranges. The presented platform, coupled to Raman or other spectroscopy techniques, is a realistic candidate for the protein expression profiling of biological fluids.Super-hydrophobic surfaces are bio-inspired interfaces with a superficial texture that, in its most common evolution, is formed by a periodic lattice of silicon micro-pillars. Similar surfaces reveal superior properties compared to conventional flat surfaces, including very low friction coefficients. In this work, we modified meso-porous silicon micro-pillars to incorporate networks of metal nano-particles into the porous matrix. In doing so, we obtained a multifunctional-hierarchical system in which (i) at a larger micrometric scale, the super-hydrophobic pillars bring the molecules dissolved in an ultralow-concentration droplet to the active sites of the device, (ii) at an intermediate meso-scale, the meso-porous silicon film

  3. Switching phase separation mode by varying the hydrophobicity of polymer additives in solution-processed semiconducting small-molecule/polymer blends

    NASA Astrophysics Data System (ADS)

    He, Zhengran; Li, Dawen; Hensley, Dale K.; Rondinone, Adam J.; Chen, Jihua

    2013-09-01

    Lateral and vertical phase separations play critical roles in the performance of the next-generation organic and hybrid electronic devices. A method is demonstrated here to switch between lateral and vertical phase separations in semiconducting 6,13-bis(triisopropylsilylethynyl) pentacene (TIPSE pentacene)/polymer blend films by simply varying the alkyl length of the polyacrylate polymer component. The phase separation modes depend on intermolecular interactions between small molecule TIPSE pentancene and polymer additives. The blend film with a dominant vertical phase separation exhibits a significant enhancement in average mobility and performance consistency of organic thin-film transistors.

  4. Size selective hydrophobic adsorbent for organic molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Hickey, Gregory S. (Inventor)

    1997-01-01

    The present invention relates to an adsorbent formed by the pyrolysis of a hydrophobic silica with a pore size greater than 5 .ANG., such as SILICALITE.TM., with a molecular sieving polymer precursor such as polyfurfuryl alcohol, polyacrylonitrile, polyvinylidene chloride, phenol-formaldehyde resin, polyvinylidene difluoride and mixtures thereof. Polyfurfuryl alcohol is the most preferred. The adsorbent produced by the pyrolysis has a silicon to carbon mole ratio of between about 10:1 and 1:3, and preferably about 2:1 to 1:2, most preferably 1:1. The pyrolysis is performed as a ramped temperature program between about 100.degree. and 800.degree. C., and preferably between about 100.degree. and 600.degree. C. The present invention also relates to a method for selectively adsorbing organic molecules having a molecular size (mean molecular diameter) of between about 3 and 6 .ANG. comprising contacting a vapor containing the small organic molecules to be adsorbed with the adsorbent composition of the present invention.

  5. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  6. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    SciTech Connect

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J.

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  7. Hydrophobicity of protein surfaces: Separating geometry from chemistry.

    PubMed

    Giovambattista, Nicolas; Lopez, Carlos F; Rossky, Peter J; Debenedetti, Pablo G

    2008-02-19

    To better understand the role of surface chemical heterogeneity in natural nanoscale hydration, we study via molecular dynamics simulation the structure and thermodynamics of water confined between two protein-like surfaces. Each surface is constructed to have interactions with water corresponding to those of the putative hydrophobic surface of a melittin dimer, but is flattened rather than having its native "cupped" configuration. Furthermore, peripheral charged groups are removed. Thus, the role of a rough surface topography is removed, and results can be productively compared with those previously observed for idealized, atomically smooth hydrophilic and hydrophobic flat surfaces. The results indicate that the protein surface is less hydrophobic than the idealized counterpart. The density and compressibility of water adjacent to a melittin dimer is intermediate between that observed adjacent to idealized hydrophobic or hydrophilic surfaces. We find that solvent evacuation of the hydrophobic gap (cavitation) between dimers is observed when the gap has closed to sterically permit a single water layer. This cavitation occurs at smaller pressures and separations than in the case of idealized hydrophobic flat surfaces. The vapor phase between the melittin dimers occupies a much smaller lateral region than in the case of the idealized surfaces; cavitation is localized in a narrow central region between the dimers, where an apolar amino acid is located. When that amino acid is replaced by a polar residue, cavitation is no longer observed.

  8. Polymeric nanopore membranes for hydrophobicity-based separations by conformal initiated chemical vapor deposition.

    PubMed

    Asatekin, Ayse; Gleason, Karen K

    2011-02-09

    High-aspect ratio hydrophobic, cylindrical nanopores having diameters as low as 5 nm are rapidly fabricated using conformal vapor deposition of fluorinated polymeric layers into porous track-etched polycarbonate membranes. The resultant selectivity of these membranes for pairs of small molecules of similar size, but of different hydrophobicity, arises from solute-pore wall interactions emphasized by confinement. Increasing selectivity was observed as pore diameter decreased and as the surface of the pore became more hydrophobic. Cylindrical pores provided higher selectivity than bottleneck-shaped pores having the same minimum diameter. A maximum selectivity of 234 was achieved between mesitylene and phloroglucinol by the best performing membrane. Membranes with small fluorinated pores exhibited an effective cutoff based on the polar surface area of the molecules, with limited correlation with solute size. This technology could lead to a new generation of membrane separations based on specific interactions.

  9. Stable highly hydrophobic and oleophilic meshes for oil water separation

    NASA Astrophysics Data System (ADS)

    Wang, Qingjun; Cui, Zhe; Xiao, Yi; Chen, Qingmin

    2007-09-01

    This paper describes a simple method for fabricating both highly hydrophobic and oleophilic meshes by coating thin fluoro-containing films. The static contact angle of such meshes is greater than 150° for water, and close to 0° for kerosene, xylene and toluene. These meshes can separate water from oil effectively without resorting to any extra power or chemical agent. Moreover, they exhibited stable water resisting, anti-chemical erosion and anti-hot aging properties. It promises as a candidate for the separation of oil and water.

  10. Improved spatial separation of neutral molecules

    NASA Astrophysics Data System (ADS)

    Kienitz, Jens S.; Długołecki, Karol; Trippel, Sebastian; Küpper, Jochen

    2017-07-01

    We have developed and experimentally demonstrated an improved electrostatic deflector for the spatial separation of molecules according to their dipole-moment-to-mass ratio. The device features a very open structure that allows for significantly stronger electric fields as well as for stronger deflection without molecules crashing into the device itself. We have demonstrated its performance using the prototypical carbonyl sulfide molecule and we discuss opportunities regarding improved quantum-state-selectivity for complex molecules and the deflection of unpolar molecules.

  11. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules

    PubMed Central

    Choudhary, Sonam; Gupta, Lokesh; Rani, Sarita; Dave, Kaushalkumar; Gupta, Umesh

    2017-01-01

    Adequate aqueous solubility has been one of the desired properties while selecting drug molecules and other bio-actives for product development. Often solubility of a drug determines its pharmaceutical and therapeutic performance. Majority of newly synthesized drug molecules fail or are rejected during the early phases of drug discovery and development due to their limited solubility. Sufficient permeability, aqueous solubility and physicochemical stability of the drug are important for achieving adequate bioavailability and therapeutic outcome. A number of different approaches including co-solvency, micellar solubilization, micronization, pH adjustment, chemical modification, and solid dispersion have been explored toward improving the solubility of various poorly aqueous-soluble drugs. Dendrimers, a new class of polymers, possess great potential for drug solubility improvement, by virtue of their unique properties. These hyper-branched, mono-dispersed molecules have the distinct ability to bind the drug molecules on periphery as well as to encapsulate these molecules within the dendritic structure. There are numerous reported studies which have successfully used dendrimers to enhance the solubilization of poorly soluble drugs. These promising outcomes have encouraged the researchers to design, synthesize, and evaluate various dendritic polymers for their use in drug delivery and product development. This review will discuss the aspects and role of dendrimers in the solubility enhancement of poorly soluble drugs. The review will also highlight the important and relevant properties of dendrimers which contribute toward drug solubilization. Finally, hydrophobic drugs which have been explored for dendrimer assisted solubilization, and the current marketing status of dendrimers will be discussed. PMID:28559844

  12. Separations method for polar molecules

    DOEpatents

    Thoma, Steven G.; Bonhomme, Francois R.

    2004-07-27

    A method for separating at least one compound from a liquid mixture containing different compounds where anew crystalline manganese phosphate composition with the formula Mn.sub.3 (PO.sub.4).sub.4.2(H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N.6(H.sub.2 O) is dispersed in the liquid mixture, selectively intercalating one or more compounds into the crystalline structure of the Mn.sub.3 (PO.sub.4).sub.4.2(H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N.6(H.sub.2 O).

  13. One-end immobilization of individual DNA molecules on a functional hydrophobic glass surface.

    PubMed

    Matsuura, Shun-ichi; Kurita, Hirofumi; Nakano, Michihiko; Komatsu, Jun; Takashima, Kazunori; Katsura, Shinji; Mizuno, Akira

    2002-12-01

    We demonstrate an effective method for DNA immobilization on a hydrophobic glass surface. The new DNA immobilizing technique is extremely simple compared with conventional techniques that require heterobifunctional crosslinking reagent between DNA and substrate surface that are both modified chemically. In the first process, a coverslip was treated with dichlorodimethylsilane resulting in hydrophobic surface. lambda DNA molecules were ligated with 3'-terminus disulfide-modified 14 mer oligonucleotides at one cohesive end. After reduction of the disulfide to sulfhydryl (thiol) groups the resulting thiol-modified lambda DNA molecules were reacted on silanized coverslip. Fluorescent observation showed that the thiol-modified lambda DNA molecules were anchored specifically to the hydrophobic surface at one terminus, although non-specific binding of the DNA molecules was suppressed. It was observed that the one-end-attached DNA molecule was bound firmly to the surface and stretched reversibly in one direction when a d.c. electric field was applied.

  14. Dextran vesicular carriers for dual encapsulation of hydrophilic and hydrophobic molecules and delivery into cells.

    PubMed

    Pramod, P S; Takamura, Kathryn; Chaphekar, Sonali; Balasubramanian, Nagaraj; Jayakannan, M

    2012-11-12

    Dextran vesicular nanoscaffolds were developed based on polysaccharide and renewable resource alkyl tail for dual encapsulation of hydrophilic and hydrophobic molecules (or drugs) and delivery into cells. The roles of the hydrophobic segments on the molecular self-organization of dextran backbone into vesicles or nanoparticles were investigated in detail. Dextran vesicles were found to be a unique dual carrier in which water-soluble molecules (like Rhodamine-B, Rh-B) and polyaromatic anticancer drug (camptothecin, CPT) were selectively encapsulated in the hydrophilic core and hydrophobic layer, respectively. The dextran vesicles were capable of protecting the plasma-sensitive CPT lactone pharmacophore against the hydrolysis by 10× better than the CPT alone in PBS. The aliphatic ester linkage connecting the hydrophobic tail with dextran was found to be cleaved by esterase under physiological conditions for fast releasing of CPT or Rh-B. Cytotoxicity of the dextran vesicle and its drug conjugate were tested on mouse embryonic fibroblast cells (MEFs) using MTT assay. The dextran vesicular scaffold was found to be nontoxic to living cells. CPT loaded vesicles were found to be 2.5-fold more effective in killing fibroblasts compared to that of CPT alone in PBS. Confocal microscopic images confirmed that both Rh-B and CPT loaded vesicles to be taken up by fibroblasts compared to CPT alone, showing a distinctly perinuclear localization in cells. The custom designed dextran vesicular provides new research opportunities for dual loading and delivering of hydrophilic and hydrophobic drug molecules.

  15. Separation and counting of single molecules through nanofluidics, programmable electrophoresis, and nanoelectrode-gated tunneling and dielectric detection

    DOEpatents

    Lee, James W.; Thundat, Thomas G.

    2006-04-25

    An apparatus for carrying out the separation, detection, and/or counting of single molecules at nanometer scale. Molecular separation is achieved by driving single molecules through a microfluidic or nanofluidic medium using programmable and coordinated electric fields. In various embodiments, the fluidic medium is a strip of hydrophilic material on nonconductive hydrophobic surface, a trough produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base, or a covered passageway produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base together with a nonconductive cover on the parallel strips of hydrophobic nonconductive material. The molecules are detected and counted using nanoelectrode-gated electron tunneling methods, dielectric monitoring, and other methods.

  16. Thermodynamic and Structural Evidence for Reduced Hydrogen Bonding among Water Molecules near Small Hydrophobic Solutes.

    PubMed

    Kim, Jehoon; Tian, Yun; Wu, Jianzhong

    2015-09-10

    The structure of water molecules near a hydrophobic solute remains elusive despite a long history of scrutiny. Here, we re-examine the subtle issue by a combination of thermodynamic analysis for Henry's constants of several nonpolar gases over a broad range of temperatures and molecular dynamic simulations for the water structure in the hydration shell using several popular semiempirical models of liquid water. Both the structural and thermodynamic data indicate that hydrophobic hydration reduces the degree of the hydrogen bonding among water molecules, and the effect becomes more prominent at high temperatures. Hydrogen-bond formation is slightly hindered near a hydrophobic solute due to the restriction of the degree of freedom for water molecules in the solvation shell, and the confinement effect becomes more significant as temperature increases. Reduction in the extent of hydrogen bonding is fully consistent with a positive contribution of a small hydrophobic solute to the solution heat capacity. As predicted by the scaled-particle theory, both Henry's constants and simulation results suggest that the hydration entropy is determined primarily by cavity formation in liquid water, with its magnitude rising with the solute size but declining with temperature.

  17. Rapid Enrichment of Dehalococcoides-Like Bacteria by Partial Hydrophobic Separation

    PubMed Central

    Temme, Hanna R.; Sande, Kipp; Yan, Tao

    2017-01-01

    ABSTRACT Organohalide-respiring bacteria can be difficult to enrich and isolate, which can limit research on these important organisms. The goal of this research was to develop a method to rapidly (minutes to days) enrich these organisms from a mixed community. The method presented is based on the hypothesis that organohalide-respiring bacteria would be more hydrophobic than other bacteria as they dehalogenate hydrophobic compounds. The method developed tests this hypothesis by separating a portion of putative organohalide-respiring bacteria, those phylogenetically related to Dehalococcoides mccartyi, at the interface between a hydrophobic organic solvent and an aqueous medium. This novel partial separation technique was tested with a polychlorinated biphenyl-enriched sediment-free culture, a tetrachloroethene-enriched digester sludge culture, and uncontaminated lake sediment. Significantly higher fractions, up to 20.4 times higher, of putative organohalide-respiring bacteria were enriched at the interface between the medium and either hexadecane or trichloroethene. The selective partial separation of these putative organohalide-respiring bacteria occurred after 20 min, strongly suggesting that the separation was a result of physical-chemical interactions between the cell surface and hydrophobic solvent. Dechlorination activity postseparation was verified by the production of cis-dichloroethene when amended with tetrachloroethene. A longer incubation time of 6 days prior to separation with trichloroethene increased the total number of putative organohalide-respiring bacteria. This method provides a way to quickly separate some of the putative organohalide-respiring bacteria from other bacteria, thereby improving our ability to study multiple and different bacteria of potential interest and improving knowledge of these bacteria. IMPORTANCE Organohalide-respiring bacteria, bacteria capable of respiring chlorinated contaminants, can be difficult to enrich, which can

  18. Dynamic control of protein conformation transition in chromatographic separation based on hydrophobic interactions: molecular dynamics simulation.

    PubMed

    Zhang, Lin; Lu, Diannan; Liu, Zheng

    2009-03-20

    Conformational transitions of a protein in hydrophobic interaction based chromatography, including hydrophobic interaction chromatography (HIC) and reversed-phase liquid chromatography (RPLC), and their impact on the separation process and performance were probed by molecular dynamics simulation of a 46-bead beta-barrel coarse-grained model protein in a confined pore, which represents the porous adsorbent. The transition of the adsorbed protein from the native conformation to an unfolded one occurred as a result of strong hydrophobic interactions with the pore surface, which reduced the formation of protein aggregates. The conformational transition was also displayed in the simulation once an elution buffer characterized by weaker hydrophobicity was introduced to strip protein from pore surface. The discharged proteins that underwent conformational transition were prone to aggregation; thus, an unsatisfactory yield of the native protein was obtained. An orthogonal experiment revealed that in addition to the strengths of the protein-protein and protein-adsorbent hydrophobic interactions, the elution time required to reduce the above-mentioned interactions also determined the yield of native protein by HIC and RPLC. Stepwise elution, characterized by sequential reduction of the hydrophobic interactions between the protein and adsorbent, was presented as a dynamic strategy for tuning conformational transitions to favor the native conformation and reduce the formation of protein aggregates during the elution process. The yield of the native protein obtained by this dynamic operation strategy was higher than that obtained by steady-state elution. The simulation study qualitatively reproduced the experimental observations and provided molecular insight that would be helpful for designing and optimizing HIC and RPLC separation of proteins.

  19. Placement and characterization of pairs of luminescent molecules in spatially separated regions of nanostructured thin films.

    PubMed

    Minoofar, Payam N; Hernandez, Raquel; Chia, Shinye; Dunn, Bruce; Zink, Jeffrey I; Franville, Anne-Christine

    2002-12-04

    Methods of making mesostructured sol-gel silicate thin films containing two different molecules deliberately placed in two different spatially separated regions in a one-step, one-pot preparation are developed and demonstrated. When the structure-directing agent is the surfactant cetyltrimethylammonium bromide, the structure is 2-D hexagonal with lattice spacings between 31.6 and 42.1 angstroms depending on the dopant molecules and their concentrations. The three general strategies that are used to place the molecules are philicity (like dissolves like), bonding, and bifunctionality. These strategies take advantage of the different chemical and physical properties of the regions of the films. These regions are the inorganic silicate framework, the hydrophobic organic interior of the micelles, and the ionic interface between them. Luminescent molecules that possess the physical and chemical properties appropriate for the desired strategies are chosen. Lanthanide and ruthenium complexes with condensable trialkoxysilane groups are incorporated into the silicate framework. 1,4-Naphthoquinone, pyrene, rhodamine 6G and coumarin 540A, and lanthanides with no condensable trialkoxysilanes occupy the hydrophobic core of micelles by virtue of their hydrophobicity. The locations of the molecules are determined by luminescence spectroscopy and by luminescence lifetime measurements. In all cases, the long-range order templated into the thin film is verified by X-ray diffraction. The simultaneous placement of two molecules in the structured film and the maintenance of long-range order require a delicate balance among film preparation methodology, design of the molecules to be incorporated in specific regions, and concentrations of all of the species.

  20. pH-Triggered Release of Hydrophobic Molecules from Self-Assembling Hybrid Nanoscaffolds.

    PubMed

    Lu, Lei; Unsworth, Larry D

    2016-04-11

    Self-assembling peptide based hydrogels have a wide range of applications in the field of tissue repair and tissue regeneration. Because of its physicochemical properties, (RADA)4 has been studied as a potential platform for 3D cell culture, drug delivery, and tissue engineering. Despite some small molecule and protein release studies with this system, there is a lack of work investigating the controlled release of hydrophobic compounds (i.e., anti-inflammatory, anticancer, antibacterial drugs, etc.) that are important for many clinical therapies. Attempts to incorporate hydrophobic compounds into self-assembling matrices usually inhibited nanofiber formation, rather resulting in a peptide-drug complex or microcrystal formation. Herein, a self-assembling chitosan/carboxymethyl-β-cyclodextrin nanoparticle system was used to load dexamethasone, which formed within a self-assembling (RADA)4 nanoscaffold matrix. Nanoparticles dispersed within the matrix were stabilized by the nanofibers within. The in vitro release of dexamethasone from the hybrid system was observed to be pH sensitive. At pH 7, release was observed for more than 8 days, with three distinct kinetic domains in the first 6 days. Data suggest that the deprotonation of chitosan at a solution pH > 6.8 leads to nanoparticle dissociation and ultimately the release of dexamethasone from the hybrid system. This system has the potential to form a multifunctional scaffold that can self-assemble with the ability to control the release of hydrophobic drugs for a wide variety of applications.

  1. Antibody-conjugated soybean oil-filled calcium phosphate nanoshells for targetted delivery of hydrophobic molecules.

    PubMed

    Schmidt, H T; Kroczynski, M; Maddox, J; Chen, Y; Josephs, R; Ostafin, A E

    2006-11-01

    Hollow calcium phosphate nanoparticles capable of encapsulating poorly water-soluble molecules were produced by self-assembly. Previously reported were solid calcium phosphate nanoparticles and water-filled calcium phosphate nanocapsules suited for encapsulating mostly hydrophilic, but not hydrophobic compounds. Here, calcium phosphate was deposited around 100 nm diameter, 1,2-dioleoyl-sn-glycero-3-phosphate stabilized soybean oil nanoemulsions using either calcium chloride or NaOH titrations to achieve shell thickness between 20-70 nm. The surface was functionalized with carboxylic acid via the addition of carboxyethylphosphonic acid to attach Molecular Probes AB-594C antibody using sulpho-n-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride with an efficiency of approximately 70%, while retaining near complete antibody function. Hydrophobic pyrene was encapsulated with an efficiency of 95%, at concentrations much higher than its water solubility limit, and exhibited spectral features characteristic of a hydrophobic environment. These materials can be used in the targeted delivery of many useful, yet poorly water-soluble pharmaceutical and nutraceutical compounds.

  2. A new anion-exchange/hydrophobic monolith as stationary phase for nano liquid chromatography of small organic molecules and inorganic anions.

    PubMed

    Aydoğan, Cemil

    2015-05-01

    In this study, an anion-exchange/hydrophobic polymethacrylate-based stationary phase was prepared for nano-liquid chromatography of small organic molecules and inorganic anions. The stationary phase was synthesized by in situ polymerization of 3-chloro-2-hydroxypropylmethacrylate and ethylene dimethacrylate inside silanized 100 μm i.d. fused silica capillary. The porogen mixture consisted of toluene and dodecanol. The pore size distrubution profiles of the resulting monolith were determined by mercury intrusion porosimetry and the morphology of the prepared monolith was investigated by scanning electron microscope. Good permeability, stability and column efficiency were observed on the monolithic column with nano flow. The produced monolithic column, which contains reactive chloro groups, was then modified by reaction with N,N-dimethyl-N-dodecylamine to obtain an anion-exchange/hydrophobic monolithic stationary phase. The functionalized monolith contained ionizable amine groups and hydrophobic groups that are useful of anion-exchange/hydrophobic mixed-mode chromatography. The final monolithic column performance with respect to anion-exchange and hydrophobic interactions was assesed by the separation of alkylbenzene derivatives, phenolic compounds and inorganic anions, respectively. Theoretical plate numbers up to 23,000 plates/m were successfully achieved in the separation of inorganic anions.

  3. Simultaneous separation of hydrophobic and polar bases using a silica hydride stationary phase.

    PubMed

    Yang, Yuanzhong; Matyska, Maria T; Boysen, Reinhard I; Pesek, Joseph J; Hearn, Milton T W

    2013-04-01

    In this study, the retention behavior of selected hydrophobic and polar bases on a minimally modified silica hydride phase was investigated. From these results and the associated retention plots, significant differences in the chromatographic dependencies of these two classes of basic compounds were evident. The polar bases exhibited strong retention with mobile phases of high organic solvent content, but displayed weak retention with mobile phases of high water content. In contrast, the hydrophobic bases showed "U-shape" retention dependencies, indicative of the interplay of both RP and normal-phase retention characteristics. These studies have demonstrated that hydrophobic and polar bases can be simultaneously separated on the same column either under typical RP-like or aqueous normal-phase-like conditions, respectively, with distinctive selectivity. Finally, the effects of temperature on the RP and aqueous normal phase modality of separations with these analytes were investigated, where discrete changes in retention behavior were also observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Small-Molecule-Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging.

    PubMed

    Gustafson, Jeffrey L; Neklesa, Taavi K; Cox, Carly S; Roth, Anke G; Buckley, Dennis L; Tae, Hyun Seop; Sundberg, Thomas B; Stagg, D Blake; Hines, John; McDonnell, Donald P; Norris, John D; Crews, Craig M

    2015-08-10

    Androgen receptor (AR)-dependent transcription is a major driver of prostate tumor cell proliferation. Consequently, it is the target of several antitumor chemotherapeutic agents, including the AR antagonist MDV3100/enzalutamide. Recent studies have shown that a single AR mutation (F876L) converts MDV3100 action from an antagonist to an agonist. Here we describe the generation of a novel class of selective androgen receptor degraders (SARDs) to address this resistance mechanism. Molecules containing hydrophobic degrons linked to small-molecule AR ligands induce AR degradation, reduce expression of AR target genes and inhibit proliferation in androgen-dependent prostate cancer cell lines. These results suggest that selective AR degradation may be an effective therapeutic prostate tumor strategy in the context of AR mutations that confer resistance to second-generation AR antagonists.

  5. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding.

    PubMed

    Zanetti-Domingues, Laura C; Tynan, Christopher J; Rolfe, Daniel J; Clarke, David T; Martin-Fernandez, Marisa

    2013-01-01

    Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.

  6. Hydrophobic polymer monoliths as novel phase separators: application in continuous liquid-liquid extraction systems.

    PubMed

    Peroni, Daniela; Vanhoutte, Dominique; Vilaplana, Francisco; Schoenmakers, Peter; de Koning, Sjaak; Janssen, Hans-Gerd

    2012-03-30

    Hydrophobic macroporous polymer monoliths are shown to be interesting materials for the construction of "selective solvent gates". With the appropriate surface chemistry and porous properties the monoliths can be made permeable only for apolar organic solvents and not for water. Different poly(butyl methacrylate-co-ethylene dimethacrylate) (BMA-EDMA) and poly(styrene-co-divinylbenzene) (PS-DVB) monoliths prepared with tailored chemistries and porosities were evaluated for this purpose. After extensive characterization, the PS-DVB monoliths were selected due to their higher hydrophobicity and their more suitable flow characteristics. BMA-EDMA monoliths are preferred for mid-polarity solvents such as ethyl acetate, for which they provide efficient separation from water. Breakthrough experiments confirmed that the pressures necessary to generate flow of organic solvents through PS-DVB monoliths were substantially lower than for water. A phase separator was constructed using the monoliths as the flow selector. This device was successfully coupled on-line with a chip-based continuous liquid-liquid-extraction (LLE) system with segmented flow. Efficient separation of different solvents was obtained across a wide range of flow rates (0.5-4.0 mL min(-1)) and aqueous-to-organic flow ratios (β=1-10). Good robustness and long life-time were also confirmed. The suitability of the device to perform simple, cheap, and reliable phase separation in a continuous LLE system prior to gas-chromatographic analysis was proven for some selected real-life applications.

  7. PEGylated protein separation using different hydrophobic interaction supports: Conventional and monolithic supports.

    PubMed

    Mayolo-Deloisa, Karla; González-Valdez, José; Rito-Palomares, Marco

    2016-05-01

    Protein hydrophobicity can be modified after a PEGylation process. However, hydrophobic interaction chromatography (HIC) has been used to separate PEGylation reaction products less frequently than other techniques. In this context, chromatographic monoliths represent a good alternative to continue exploring the separation of PEGylated proteins with HIC. In this work, the separation of PEGylated proteins using C4 A monolith as well as Toyopearl Butyl 650C and Butyl Sepharose was analyzed. Three proteins were used as models: RNase A, β-lactoglobulin, and lysozyme. All proteins were PEGylated in the N-terminal amino groups with 20 kDa methoxy poly(ethylene glycol) propionaldehyde. The concentration of ammonium sulfate (1 M) used was the same for all stationary phases. The results obtained demonstrated that the C4 A monolith could better resolve all protein PEGylation reaction mixtures, since the peaks of mono- and di-PEGylated proteins can be clearly distinguished in the chromatographic profiles. On the contrary, while using Butyl Sepharose media only the PEGylation reaction mixtures of RNase A could be partially separated at 35 and 45 CVs. PEGylated proteins of β-lactoglobulin and lysozyme could not be resolved when Toyopearl Butyl 650C and Butyl Sepharose were used. It is then clear that monoliths are an excellent choice to explore the purification process of PEGylated proteins exploiting the advantages of HIC. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:702-707, 2016. © 2016 American Institute of Chemical Engineers.

  8. How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Kujawski, Wojciech; Bryjak, Marek; Kujawski, Jan

    2016-03-23

    The combination of microscopic (atomic force microscopy and scanning electron microscopy) and goniometric (static and dynamic measurements) techniques, and surface characterization (surface free energy determination, critical surface tension, liquid entry pressure, hydraulic permeability) was implemented to discuss the influence of perfluoroalkylsilanes structure and grafting time on the physicochemistry of the created hydrophobic surfaces on the titania ceramic membranes of 5 kD and 300 kD. The impact of molecular structure of perfluoroalkylsilanes modifiers (possessing from 6 to 12 carbon atoms in the fluorinated part of the alkyl chain) and the time of the functionalization process in the range of 5 to 35 h was studied. Based on the scanning electron microscopy with energy-dispersive X-ray spectroscopy, it was found that the localization of grafting molecules depends on the membrane pore size (5 kD or 300 kD). In the case of 5 kD titania membranes, modifiers are attached mainly on the surface and only partially inside the membrane pores, whereas, for 300 kD membranes, the perfluoroalkylsilanes molecules are present within the whole porous structure of the membranes. The application of 4 various types of PFAS molecules enabled for interesting observations and remarks. It was explained how to obtain ceramic membrane surfaces with controlled material (contact angle, roughness, contact angle hysteresis) and separation properties. Highly hydrophobic surfaces with low values of contact angle hysteresis and low roughness were obtained. These surfaces possessed also low values of critical surface tension, which means that surfaces are highly resistant to wetting. This finding is crucial in membrane applicability in separation processes. The obtained and characterized hydrophobic membranes were subsequently applied in air-gap membrane distillation processes. All membranes were very efficient in MD processes, showing good transport and selective properties (∼99% of Na

  9. Tunable diblock copolypeptide hydrogel depots for local delivery of hydrophobic molecules in healthy and injured central nervous system

    PubMed Central

    Zhang, Shanshan; Anderson, Mark A.; Ao, Yan; Khakh, Baljit S.; Fan, Jessica; Deming, Timothy J.; Sofroniew, Michael V.

    2014-01-01

    Many hydrophobic small molecules are available to regulate gene expression and other cellular functions. Locally restricted application of such molecules in the central nervous system (CNS) would be desirable in many experimental and therapeutic settings, but is limited by a lack of innocuous vehicles able to load and easily deliver hydrophobic cargo. Here, we tested the potential for diblock copolypeptide hydrogels (DCH) to serve as such vehicles. In vitro tests on loading and release were conducted with cholesterol and the anti-cancer agent, temozolomide (TMZ). Loading of hydrophobic cargo modified DCH physical properties such as stiffness and viscosity, but these could readily be tuned to desired ranges by modifying DCH concentration, amino acid composition or chain lengths. Different DCH formulations exhibited different loading capacities and different rates of release. For example, comparison of different DCH with increasing alanine contents showed corresponding increases in both cargo loading capacity and time for cargo release. In vivo tests were conducted with tamoxifen, a small synthetic hydrophobic molecule widely used to regulate transgene expression. Tamoxifen released from DCH depots injected into healthy or injured CNS efficiently activated reporter gene expression in a locally restricted manner in transgenic mice. These findings demonstrate the facile and predictable tunability of DCH to achieve a wide range of loading capacities and release profiles of hydrophobic cargos while retaining CNS compatible physical properties. In addition, the findings show that DCH depots injected into the CNS can efficiently deliver small hydrophobic molecules that regulate gene expression in local cells. PMID:24314556

  10. Muscle-Type Nicotinic Receptor Modulation by 2,6-Dimethylaniline, a Molecule Resembling the Hydrophobic Moiety of Lidocaine

    PubMed Central

    Alberola-Die, Armando; Fernández-Ballester, Gregorio; González-Ros, José M.; Ivorra, Isabel; Morales, Andrés

    2016-01-01

    . Furthermore, it is pointed out that the hydrophobic (DMA) and hydrophilic (DEA) moieties of the lidocaine molecule act differently on nAChRs and that their separate actions taken together account for most of the inhibitory effects of the whole lidocaine molecule on nAChRs. PMID:27932949

  11. Affinity transformation from hydrophilicity to hydrophobicity of water molecules on the basis of adsorption of water in graphitic nanopores.

    PubMed

    Ohba, Tomonori; Kanoh, Hirofumi; Kaneko, Katsumi

    2004-02-11

    The interaction of water with hydrophobic surfaces is quite important in a variety of chemical and biochemical phenomena. The coexistence of water and oil can be realized by introduction of surfactants. In the case of water vapor adsorption on graphitic nanopores, plenty of water can be adsorbed in graphitic nanopores without surfactants, although the graphitic surface is not hydrophilic. Why are water molecules adsorbed in hydrophobic nanopores remarkably? This work can give an explicit insight to water adsorption in hydrophobic graphite nanopores using experimental and theoretical approaches. Water molecules are associated with each other to form the cluster of 1 nm in size, leading to a significant stabilization of the cluster in the graphitic nanopores. This mechanism can be widely applied to interfacial phenomena relating to coexistence of water and nanostructural materials of hydrophobicity.

  12. Effective protein separation by coupling hydrophobic interaction and reverse phase chromatography for top-down proteomics.

    PubMed

    Xiu, Lichen; Valeja, Santosh G; Alpert, Andrew J; Jin, Song; Ge, Ying

    2014-08-05

    One of the challenges in proteomics is the proteome's complexity, which necessitates the fractionation of proteins prior to the mass spectrometry (MS) analysis. Despite recent advances in top-down proteomics, separation of intact proteins remains challenging. Hydrophobic interaction chromatography (HIC) appears to be a promising method that provides high-resolution separation of intact proteins, but unfortunately the salts conventionally used for HIC are incompatible with MS. In this study, we have identified ammonium tartrate as a MS-compatible salt for HIC with comparable separation performance as the conventionally used ammonium sulfate. Furthermore, we found that the selectivity obtained with ammonium tartrate in the HIC mobile phases is orthogonal to that of reverse phase chromatography (RPC). By coupling HIC and RPC as a novel two-dimensional chromatographic method, we have achieved effective high-resolution intact protein separation as demonstrated with standard protein mixtures and a complex cell lysate. Subsequently, the separated intact proteins were identified by high-resolution top-down MS. For the first time, these results have shown the high potential of HIC as a high-resolution protein separation method for top-down proteomics.

  13. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  14. Hydrophobic molecules slow down the hydrogen-bond dynamics of water.

    PubMed

    Bakulin, Artem A; Pshenichnikov, Maxim S; Bakker, Huib J; Petersen, Christian

    2011-03-17

    We study the spectral and orientational dynamics of HDO molecules in solutions of tertiary-butyl-alcohol (TBA), trimethyl-amine-oxide (TMAO), and tetramethylurea (TMU) in isotopically diluted water (HDO:D(2)O and HDO:H(2)O). The spectral dynamics are studied with femtosecond two-dimensional infrared spectroscopy and the orientational dynamics with femtosecond polarization-resolved vibrational pump-probe spectroscopy. We observe a strong slowing down of the spectral diffusion around the central part of the absorption line that increases with increasing solute concentration. At low concentrations, the fraction of water showing slow spectral dynamics is observed to scale with the number of methyl groups, indicating that this effect is due to slow hydrogen-bond dynamics in the hydration shell of the methyl groups of the solute molecules. The slowing down of the vibrational frequency dynamics is strongly correlated with the slowing down of the orientational mobility of the water molecules. This correlation indicates that these effects have a common origin in the effect of hydrophobic molecular groups on the hydrogen-bond dynamics of water.

  15. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability.

    PubMed

    Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo

    2013-02-14

    Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.

  16. Lateral diffusion in model membranes is independent of the size of the hydrophobic region of molecules.

    PubMed Central

    Balcom, B J; Petersen, N O

    1993-01-01

    We have systematically investigated the probe size and shape dependence of lateral diffusion in model dimyristoyl phosphatidylcholine membranes. Linear hydrophobic polymers, which differ in length by an order of magnitude, were used to explore the effect on the lateral diffusion coefficient of hydrodynamic restrictions in the bilayer interior. The polymers employed are isoprenoid alcohols--citronellol, solanesol, and dolichol. Tracer lateral diffusion coefficients were measured by fluorescence photobleaching recovery. Despite the large difference in lengths, the nitrobenzoxadiazole labelled alcohols all diffuse at the rate of lipid self-diffusion (5.0 x 10(-12) m2 s-1, 29 degrees C) in the liquid crystal phase. Companion measurements in isotropic polymer solution, in gel phase lipid membranes and with nonpolar fluorescent polyaromatic hydrocarbons, show a marked dependence of the lateral diffusion coefficient on the probe molecule size. Our results in the liquid crystal phase are in accord with free area theory which asserts that lateral diffusion in the membrane is restricted by the surface-free area. Probe molecules which are significantly longer than the host phospholipid, seven times longer in the case of dolichol, are still restricted in their lateral motion by the surface properties of the bilayer in the liquid crystal phase. Fluorescence quenching experiments indicate that the nitrobenzoxadiazole label does not reside at the aqueous interface, although it must reside in close proximity according to the diffusion measurements. PMID:8218892

  17. Temperature dependence of local solubility of hydrophobic molecules in the liquid-vapor interface of water.

    PubMed

    Abe, Kiharu; Sumi, Tomonari; Koga, Kenichiro

    2014-11-14

    One important aspect of the hydrophobic effect is that solubility of small, nonpolar molecules in liquid water decreases with increasing temperature. We investigate here how the characteristic temperature dependence in liquid water persists or changes in the vicinity of the liquid-vapor interface. From the molecular dynamics simulation and the test-particle insertion method, the local solubility Σ of methane in the liquid-vapor interface of water as well as Σ of nonpolar solutes in the interface of simple liquids are calculated as a function of the distance z from the interface. We then examine the temperature dependence of Σ under two conditions: variation of Σ at fixed position z and that at fixed local solvent density around the solute molecule. It is found that the temperature dependence of Σ at fixed z depends on the position z and the system, whereas Σ at fixed local density decreases with increasing temperature for all the model solutions at any fixed density between vapor and liquid phases. The monotonic decrease of Σ under the fixed-density condition in the liquid-vapor interface is in accord with what we know for the solubility of nonpolar molecules in bulk liquid water under the fixed-volume condition but it is much robust since the solvent density to be fixed can be anything between the coexisting vapor and liquid phases. A unique feature found in the water interface is that there is a minimum in the local solubility profile Σ(z) on the liquid side of the interface. We find that with decreasing temperature the minimum of Σ grows and at the same time the first peak in the oscillatory density profile of water develops. It is likely that the minimum of Σ is due to the layering structure of the free interface of water.

  18. Separation of mAbs molecular variants by analytical hydrophobic interaction chromatography HPLC: overview and applications.

    PubMed

    Haverick, Mark; Mengisen, Selina; Shameem, Mohammed; Ambrogelly, Alexandre

    2014-01-01

    Hydrophobic interaction chromatography-high performance liquid chromatography (HIC-HPLC) is a powerful analytical method used for the separation of molecular variants of therapeutic proteins. The method has been employed for monitoring various post-translational modifications, including proteolytic fragments and domain misfolding in etanercept (Enbrel®); tryptophan oxidation, aspartic acid isomerization, the formation of cyclic imide, and α amidated carboxy terminus in recombinant therapeutic monoclonal antibodies; and carboxy terminal heterogeneity and serine fucosylation in Fc and Fab fragments. HIC-HPLC is also a powerful analytical technique for the analysis of antibody-drug conjugates. Most current analytical columns, methods, and applications are described, and critical method parameters and suitability for operation in regulated environment are discussed, in this review.

  19. Simultaneous separation of hydrophobic and hydrophilic peptides with a silica hydride stationary phase using aqueous normal phase conditions.

    PubMed

    Boysen, Reinhard I; Yang, Yuanzhong; Chowdhury, Jamil; Matyska, Maria T; Pesek, Joseph J; Hearn, Milton T W

    2011-11-04

    The application of a silica hydride modified stationary phase with low organic loading has been investigated as a new type of chromatographic material suitable for the separation and analysis of peptides with electrospray ionization mass spectrometric detection. Retention maps were established to delineate the chromatographic characteristics of a series of peptides with physical properties ranging from strongly hydrophobic to very hydrophilic and encompassing a broad range of pI values (pI 5.5-9.4). The effects of low concentrations of two additives (formic acid and acetic acid) in the mobile phase were also investigated with respect to their contribution to separation selectivity and retention under comparable conditions. Significantly, strong retention of both the hydrophobic and the hydrophilic peptides was observed when high-organic low-aqueous mobile phases were employed, thus providing a new avenue to achieve high resolution peptide separations. For example, simultaneous separation of hydrophobic and hydrophilic peptides was achieved under aqueous normal phase (ANP) chromatographic conditions with linear gradient elution procedures in a single run, whilst further gradient optimization enabled improved peak efficiencies of the more strongly retained hydrophobic and hydrophilic peptides. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. [Beaded molecule imprinted polymer for stereo isomer separation].

    PubMed

    Meng, Z; Wang, J; Zhou, L; Wang, Q; Zhu, D

    1999-07-01

    Beaded molecule imprinted polymer (MIP) was made by suspension polymerization. Particles with the size of 50-70 microns in diameter were collected and evaluated in HPLC mode to separate stereo isomers. Stereo isomers cinchonine and cinchonidine were successfully discriminated with selectivity factor of 2.89 and resolution factor of 0.76. Stereo selectivity of the MIP was found to come from both the interaction between the analyte and carboxyl group on the MIP and the similarity between the stereo structure of imprinted molecule and the MIP. The thermal analysis results showed that the MIP had high thermal stability with initial thermal decomposition temperature of 320 degrees C. The pore volume of the MIP was 0.1849 mL/g, the specific surface area was 126.84 sqm/g and the average pore diameter was 5.8 nanometer. Scanning electron microscopy showed that MIP had perfect spherical morphology.

  1. Superhydrophobic silica wool—a facile route to separating oil and hydrophobic solvents from water

    NASA Astrophysics Data System (ADS)

    Crick, Colin R.; Bhachu, Davinder S.; Parkin, Ivan P.

    2014-12-01

    Silica microfiber wool was systematically functionalized in order to provide an extremely water repellent and oleophilic material. This was carried out using a two-step functionalization that was shown to be a highly effective method for generating an intense water repulsion and attraction for oil. A demonstration of the silica wools application is shown through the highly efficient separation of oils and hydrophobic solvents from water. Water is confined to the extremities of the material, while oil is absorbed into the voids within the wool. The effect of surface functionalization is monitored though observing the interaction of the material with both oils and water, in addition to scanning electron microscope images, x-ray photoelectron spectroscopy and energy dispersive x-ray analysis. The material can be readily utilized in many applications, including the cleaning of oil spills and filtering during industrial processes, as well as further water purification tasks—while not suffering the losses of efficiency observed in current leading polymeric materials.

  2. Superhydrophobic silica wool-a facile route to separating oil and hydrophobic solvents from water.

    PubMed

    Crick, Colin R; Bhachu, Davinder S; Parkin, Ivan P

    2014-12-01

    Silica microfiber wool was systematically functionalized in order to provide an extremely water repellent and oleophilic material. This was carried out using a two-step functionalization that was shown to be a highly effective method for generating an intense water repulsion and attraction for oil. A demonstration of the silica wools application is shown through the highly efficient separation of oils and hydrophobic solvents from water. Water is confined to the extremities of the material, while oil is absorbed into the voids within the wool. The effect of surface functionalization is monitored though observing the interaction of the material with both oils and water, in addition to scanning electron microscope images, x-ray photoelectron spectroscopy and energy dispersive x-ray analysis. The material can be readily utilized in many applications, including the cleaning of oil spills and filtering during industrial processes, as well as further water purification tasks-while not suffering the losses of efficiency observed in current leading polymeric materials.

  3. Effect of time and of precursor molecule on the deposition of hydrophobic nanolayers on ethyelene tetrafluoroethylene-silicon oxide substrates

    NASA Astrophysics Data System (ADS)

    Rossi, Gabriella; Castellano, Piera; Incarnato, Loredana

    2016-10-01

    A method was developed for generating transparent and hydrophobic nanolayers chemisorbed onto flexible substrates of ethylene tetrafluoroethylene-silicon oxide (ETFE-SiOx). In particular, the effect of the deposition time and of the precursor molecule on the nanocoating process was analyzed with the aim of pursuing an optimization of the above method in an industrial application perspective. It was found that precursor molecule of triethoxysilane allowed to obtain better hydrophobic properties on the SiOx surface in shorter times compared to trichlorosilane, reaching the 92 % of final contact angle (CA) value of 106° after only 1 h of deposition. The optical properties and surface morphology were also assessed in function of time, revealing that an initial transparency reduction is followed by a subsequent transmittance increase during the self assembly of fluoroalkylsilanes on the SiOx surface, coherently with the surface roughness analysis data. Encouraging results were also obtained in terms of oleophobic properties improvement of the nanocoated surfaces.

  4. Effect of anionic ion-pairing reagent hydrophobicity on selectivity of peptide separations by reversed-phase liquid chromatography

    PubMed Central

    Shibue, M.; Mant, C.T.; Hodges, R.S.

    2009-01-01

    Despite the continuing dominance of trifluoroacetic acid (TFA) as the anionic ion-pairing reagent of choice for peptide separations by reversed-phase high-performance liquid chromatography (RP-HPLC), we believe that a step-by-step approach to re-examining the relative efficacy of TFA compared to other ion-pairing reagents is worthwhile, particularly for the design of separation protocols for complex peptide mixtures, e.g., in proteomics applications. Thus, we applied RP-HPLC in the presence of different concentrations of anionic ion-pairing reagents – phosphoric acid, TFA, pentafluoropropionic acid (PFPA) and heptafluorobutyric acid (HFBA) – to a mixture of three groups of four 10-residue peptides, these groups containing peptides of +1, +3 or +5 net charge. Overall separation of the 12-peptide mixture improved with increasing reagent hydrophobicity (phosphate− < TFA− < PFPA− < HFBA−) and/or concentration of the anion, with reagent hydrophobicity having a considerably more pronounced effect than reagent concentration. HFBA, in particular, achieved an excellent separation at a concentration of just 10 mM, whereby the peptides were separated by charged groups (+1 < +3 < +5) and hydrophobicity within these groups. There was an essentially equal effect of reagent hydrophobicity and concentration on each positive charge of the peptides, a useful observation for prediction of the effect of varying counterion concentration hydrophobicity and/or concentration during optimization of peptide purification protocols. Peak widths were greater for the more highly charged peptides, although these could be decreased significantly by raising the acid concentration; concomitantly, peptide resolution increased with increasing concentration of ion-pairing reagent. PMID:16013616

  5. Water structure of a hydrophobic protein at atomic resolution: Pentagon rings of water molecules in crystals of crambin

    PubMed Central

    Teeter, M. M.

    1984-01-01

    The water structure has been analyzed for a model of the protein crambin refined against 0.945-Å x-ray diffraction data. Crystals contain 32% solvent by volume, and 77% of the solvent molecules have been located—i.e., 2 ethanol molecules and 64 water molecules with 10-14 alternate positions. Many water oxygen atoms found form chains between polar groups on the surface of the protein. However, a cluster of pentagonal arrays made up of 16 water molecules sits at a hydrophobic, intermolecular cleft and forms a cap around the methyl group of leucine-18. Several waters in the cluster are hydrogen-bonded directly to the protein. Additional closed circular arrays, which include both protein atoms and other water oxygen atoms, form next to the central cluster. This water array stretches in the b lattice direction between groups of three ionic side chains. Images PMID:16593516

  6. Distribution and diffusivity of a hydrophobic probe molecule in the interior of a membrane: theory and simulation.

    PubMed Central

    Huertas, M L; Cruz, V; Cascales, J J; Acuña, A U; García de la Torre, J

    1996-01-01

    We propose a simple model for the distribution of position and orientation and the diffusion of a hydrophobic probe molecule embedded in a membrane. The molecule experiences both a Maier-Saupe orienting potential as well as an enclosing potential of repulsion from the membrane walls. A statistical thermodynamics treatment of the model provides predictions of the location and orientation of the molecule within the membrane. In particular, we evaluate the order parameter of the molecule in terms of the model constants. The diffusivity of the probe is studied by Brownian dynamics simulation. For rotational diffusion, we check an available analytical approximate treatment that allows for the prediction of the dynamics in terms of equilibrium quantities. We also pay attention to quantities related to the initial and mean reorientational rate of the probe. For translational diffusion, we use the simulation results to analyze some general aspects of lateral and transversal diffusion. Images FIGURE 3 FIGURE 6 FIGURE 7 PMID:8874017

  7. New shell crosslinked micelles from dextran with hydrophobic end groups and their interaction with bioactive molecules.

    PubMed

    Mocanu, Georgeta; Nichifor, Marieta; Stanciu, Magdalena C

    2015-03-30

    Micelles formed in aqueous solution by dextran with hydrophobic (alkyl) end-groups were stabilized through divinyl sulfone crosslinking of the dextran shell. The efficacy of the crosslinking reaction was influenced by the divinyl sulfone amount, the pH and micelle concentration. Crosslinked micelles with a moderate crosslinking degree were further functionalized by attachment of 10 and 17 moles% N-(2-hydroxypropyl)-N,N-dimethyl-N-benzylammonium chloride groups along the dextran chain. The size and shape of both crosslinked micelles and their cationic derivatives were analyzed by DLS and TEM. The prepared micelles were able to bind anionic diclofenac (60-370 mg/g), hydrophobic anionic indometacin (70-120 mg/g), and hydrophobic alpha-tocopherol (170-220 mg/g) or ergocalciferol (90-110 mg/g) by hydrophobic or/and electrostatic forces. The release experiments and the antioxidant activity of bound alpha-tocopherol highlighted the potential of the new nano-sized micelles mainly as carriers for prolonged and controlled delivery of hydrophobic drugs.

  8. Surface hydrophobic amino acid residues in cellulase molecules as a structural factor responsible for their high denim-washing performance.

    PubMed

    Gusakov; Sinitsyn; Berlin; Markov; Ankudimova

    2000-11-15

    The denim-washing performance of six purified fungal cellulases (four endo-1,4-beta-D-glucanases and two cellobiohydrolases) was compared using a model microassay. The performance of cellobiohydrolases per mg of protein was much lower than that of endoglucanases. For endoglucanases, it varied up to 5 times between the best and the worst enzyme. Experiments with amino acids immobilized on cross-linked agarose showed that their side chains may bind indigo owing to hydrophobic interactions and formation of hydrogen bonds. The best binding effects provided Tyr and Phe. Analysis of three-dimensional structures of cellulase molecules showed that a certain correlation exists between the washing performance of enzyme and (i) quantity (percentage) of aromatic residues exposed to solvent on the surface of protein globule or (ii) overall percentage of the surface hydrophobic residues. Data presented provide an evidence that the molecules of certain cellulases, which have hydrophobic domains (clusters of closely located non-polar residues) on their surface, may bind indigo and thus act as emulsifiers helping the dye to float out of cellulose fibers to the bulk solution.

  9. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations.

    PubMed

    Urbic, T; Holovko, M F

    2011-10-07

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. © 2011 American Institute of Physics

  10. Deeper insights into the drug defense of glioma cells against hydrophobic molecules.

    PubMed

    Verebova, Valeria; Belej, Dominik; Joniova, Jaroslava; Jurasekova, Zuzana; Miskovsky, Pavol; Kozar, Tibor; Horvath, Denis; Stanicova, Jana; Huntosova, Veronika

    2016-04-30

    By means of fluorescence microscopy the intracellular distribution of fluorescent drugs with different hydrophobicity (quinizarin, emodin and hypericin) was studied. Selective photoactivation of these drugs in precisely defined position (nuclear envelope) allowed moderately hydrophobic emodin enter the nucleus. Highly hydrophobic hypericin was predominantly kept in the membranes with no fluorescence observed in the nucleus. The redistribution of quinizarin, emodin and hypericin between lipids, proteins and DNA was studied in solutions and cells. Based on these results was proposed theoretical model of hydrophobic drugs' nuclear internalization after photo-activation. Molecular docking models showed that hypericin has the strongest affinity to P-glycoprotein involved in the cell detoxification. Presence of 10 μM quinizarin, emodin or hypericin increased P-glycoprotein function in U87 MG cells. Moreover, emodin pretreatment allowed quinizarin nuclear internalization without photo-activation, which was not the case for hypericin. The synergy of such pretreatment and photo-activation should lessen the drug doses with simultaneous increase of drug efficacy triggering cell apoptosis/necrosis.

  11. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.

    PubMed

    Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei

    2012-08-30

    We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid

  12. Glyconanosomes: disk-shaped nanomaterials for the water solubilization and delivery of hydrophobic molecules.

    PubMed

    Assali, Mohyeddin; Cid, Juan-José; Pernía-Leal, Manuel; Muñoz-Bravo, Miguel; Fernández, Inmaculada; Wellinger, Ralf E; Khiar, Noureddine

    2013-03-26

    Herein, we describe the first report on a new class of disk-shaped and quite monodisperse water-soluble nanomaterials that we named glyconanosomes (GNS). GNSs were obtained by sliding out the cylindrical structures formed upon self-organization and photopolymerization of glycolipid 1 on single-walled carbon nanotube (SWCNT) sidewalls. GNSs present a sheltered hydrophobic inner cavity formed by the carbonated tails, surrounded by PEG and lactose moieties. The amphiphilic character of GNSs allows the water solubility of insoluble hydrophobic cargos such as a perylene-bisimide derivative, [60]fullerene, or the anti-carcinogenic drug camptothecin (CPT). GNS/C60 inclusion complexes are able to establish specific interactions between peanut agglutinin (PNA) lectin and the lactose moiety surrounding the complexes, while CPT solubilized by GNS shows higher cytotoxicity toward MCF7-type breast cancer cells than CPT alone. Thus, GNS represents an attractive extension of nanoparticle-based drug delivery systems.

  13. Encapsulation and Residency of a Hydrophobic Dye within the Water-Filled Interior of a PAMAM Dendrimer Molecule.

    PubMed

    Koley, Somnath; Ghosh, Subhadip

    2017-03-02

    Tightly confined water within a small droplet behaves differently from bulk water. This notion is obtained on the basis of several reports showing unusual behaviors of water droplet residing at the core of a reverse micelle. In this study, we have shown a well-known hydrophobic dye, coumarin 153 (C153), which prefers to reside at the water-rich region inside the dendrimer molecule. Optical density (OD) measurement at the absorption peak of C153 shows that it is almost insoluble in bulk water but highly soluble in aqueous dendrimer solution. The OD of C153 increases several times in the latter case as compared to that in the former. We found the most interesting observation when we compared the data from fluorescence correlation spectroscopy (FCS) with the fluorescence anisotropy decay of C153 in aqueous dendrimer solution. The FCS measurement reveals a much slower translational diffusion time (τD) of C153 attached to a dendrimer molecule as compared to that of free C153 in bulk water in the absence of dendrimer. The slower τD in the former case is commensurate with the size of the dendrimer molecule. This is possible only when C153 is encapsulated by the dendrimer molecule. In contrast to the FCS study, the fluorescence anisotropy decay of C153 in water remains largely invariant after addition of the dendrimer. This can happen if a bulk-water-like environment at the C153 surroundings is preserved within the C153-dendrimer complex. This supports our institutive expectation that C153 resides within the water-rich peripheral cavities of the dendrimer molecule. A more expected binding of C153 to the hydrophobic core of dendrimer may not be possible here because of an inadequate size of the dendrimer core.

  14. Development of hydrophobicity and selective separation of hazardous chlorinated plastics by mild heat treatment after PAC coating and froth flotation.

    PubMed

    Thanh Truc, Nguyen Thi; Lee, Chi-Hyeon; Lee, Byeong-Kyu; Mallampati, Srinivasa Reddy

    2017-01-05

    Polyvinyl chloride (PVC) containing chlorine can release highly toxic materials and persistent organic pollutants if improperly disposed of. The combined technique of powder activated carbon (PAC) coating and mild heat treatment has been found to selectively change the surface hydrophobicity of PVC, enhancing its wettability and thereby promoting its separation from heavy plastic mixtures included polycarbonate (PC), polymethyl methacrylate (PMMA), polystyrene (PS) and acrylonitrile butadiene styrene (ABS) by means of froth flotation. The combined treatments helped to rearrange the surface components and make PVC more hydrophobic, while the remaining plastics became more hydrophilic. After the treatments at 150°C for 80s the contact angle of the PVC was greatly increased from 90.5 to 97.9°. The SEM and AFM reveal that the surface morphology and roughness changes on the PVC surface. XPS and FT-IR results further confirmed an increase of hydrophobic functional groups on the PVC surface. At the optimized froth flotation and subsequent mixing at 150rpm, 100% of PVC was recovered from the remaining plastic mixture with 93.8% purity. The combined technique can provide a simple and effective method for the selective separation of PVC from heavy plastics mixtures to facilitate easy industrial recycling.

  15. Single molecule force spectroscopy reveals critical roles of hydrophobic core packing in determining the mechanical stability of protein GB1.

    PubMed

    Bu, Tianjia; Wang, Hui-Chuan Eileen; Li, Hongbin

    2012-08-21

    Understanding molecular determinants of protein mechanical stability is important not only for elucidating how elastomeric proteins are designed and functioning in biological systems but also for designing protein building blocks with defined nanomechanical properties for constructing novel biomaterials. GB1 is a small α/β protein and exhibits significant mechanical stability. It is thought that the shear topology of GB1 plays an important role in determining its mechanical stability. Here, we combine single molecule atomic force microscopy and protein engineering techniques to investigate the effect of side chain reduction and hydrophobic core packing on the mechanical stability of GB1. We engineered seven point mutants and carried out mechanical φ-value analysis of the mechanical unfolding of GB1. We found that three mutations, which are across the surfaces of two subdomains that are to be sheared by the applied stretching force, in the hydrophobic core (F30L, Y45L, and F52L) result in significant decrease in mechanical unfolding force of GB1. The mechanical unfolding force of these mutants drop by 50-90 pN compared with wild-type GB1, which unfolds at around 180 pN at a pulling speed of 400 nm/s. These results indicate that hydrophobic core packing plays an important role in determining the mechanical stability of GB1 and suggest that optimizing hydrophobic interactions across the surfaces that are to be sheared will likely be an efficient method to enhance the mechanical stability of GB1 and GB1 homologues.

  16. Super-hydrophobic fluorine containing aerogels

    DOEpatents

    Coronado, Paul R.; Poco, John F.; Hrubesh, Lawrence W.

    2007-05-01

    An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.

  17. Free flow isoelectric focusing : a method for the separation of both hydrophilic and hydrophobic proteins of rat liver peroxisomes.

    PubMed

    Islinger, Markus; Weber, Gerhard

    2008-01-01

    Peroxisomes take part in various metabolic pathways related to the regulation of lipid homeostasis. Although detailed information on the enzymes involved in the peroxisomal lipid metabolism was acquired in the past, the mechanisms of metabolic exchange between peroxisomes and the cytosol or other organelles still remain an enigma. Therefore, a detailed analysis of the peroxisomal membrane proteome could help identify potential metabolite transporters. However, because of their highly hydrophobic character, membrane proteins tend to precipitate in aqueous media, making their fractionation still a challenging task. To overcome these obstacles, we have elaborated a protocol for the separation of both hydrophilic as well as hydrophobic proteins using free flow isoelectric focusing (FF-IEF). Similar to traditional gel-based isoelectric focusing, a denaturing electrophoresis buffer containing a mixture of urea, thiourea and detergents is applied to keep highly hydrophobic proteins in solution. Electrophoresis is conducted on a BD Free Flow Electrophoresis System with a linear pH gradient from 3 to 10 and sampled into 96 fractions. As a second dimension, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) is used to further separate and visualize the protein pattern of the peroxisomal subfractions of matrix, peripheral and integral membrane proteins. The identification of the known peroxisomal membrane proteins PMP22, PMP70 as well as mGST in the subsequent matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) analysis of the 100 most prominent protein bands has documented the suitability of this new technique for the analysis of hydrophobic proteins.

  18. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil.

    PubMed

    Duan, Bo; Gao, Huimin; He, Meng; Zhang, Lina

    2014-11-26

    A highly hydrophobic and oleophilic chitin sponge was synthesized, for the first time, via a freeze-dried method and then by using a thermal chemical vapor deposition of methyltrichlorosilane (MTCS) at different relative humidity. Fourier-transform infrared, energy-dispersive X-ray spectra, and scanning electron microscopy confirmed that the silanization occurred on the pore wall surface of the chitin sponge. The MTCS-coated chitin sponge had interconnected open-cell structures with the average pore size from 20 to 50 μm, and the MTCS nanofilaments immobilized on the chitin matrix, leading to the high hydrophobicity, as a result of the existence of a solid/air composite rough surface. Cyclic compression test indicated that the hydrophobic chitin sponges exhibited excellent elasticity and high mechanical durability. The sponges could efficiently collect organics both on the surface and bottom from the water with the highest 58 times of their own weight absorption capacities through the combination of the particular wettability and great porosity. Furthermore, the biodegradation kinetics of the chitin sponge forecasted that the chitin could be completely biodegraded within 32 days by the microorganisms in the soil. This work provided a new pathway to prepare the chitin-based materials for highly effective removal of oil from water, showing potential application in the pollutant remediation field.

  19. Entropically favored adsorption of cellulosic molecules onto carbon materials through hydrophobic functionalities.

    PubMed

    Yabushita, Mizuho; Kobayashi, Hirokazu; Hasegawa, Jun-Ya; Hara, Kenji; Fukuoka, Atsushi

    2014-05-01

    Carbon-based materials have attracted interest as high-performance catalysts for the aqueous-phase conversion of cellulose. The adsorption of β-glucans plays a crucial role in the catalytic performance of carbons, although the primary driving force and details of the adsorption process remain unclear. This study demonstrates that adsorption occurs at hydrophobic sites on the carbon surface and that hydrophilic groups are not involved. Analysis of adsorption temperature dependence also reveals that the entropy change associated with adsorption is positive. Our results indicate that adsorption occurs by entropically driven hydrophobic interactions in addition to CH-π hydrogen bonding. These same CH-π hydrogen bonds are also confirmed by DFT calculations. The adsorption of β-glucans on carbons is significantly stronger than the affinity between β-glucans. The adsorption equilibrium constants of β-glucans on carbons increase exponentially with increasing degrees of polymerization, which supports the theory of strong interactions between the carbon and the long β-glucans found in cellulose.

  20. Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles.

    PubMed

    Liu, Dongfei; Bimbo, Luis M; Mäkilä, Ermei; Villanova, Francesca; Kaasalainen, Martti; Herranz-Blanco, Barbara; Caramella, Carla M; Lehto, Vesa-Pekka; Salonen, Jarno; Herzig, Karl-Heinz; Hirvonen, Jouni; Santos, Hélder A

    2013-09-10

    Nanoparticulate drug delivery systems offer remarkable opportunities for clinical treatment. However, there are several challenges when they are employed to deliver multiple cargos/payloads, particularly concerning the synchronous delivery of small molecular weight drugs and relatively larger peptides. Since porous silicon (PSi) nanoparticles (NPs) can easily contain high payloads of drugs with various properties, we evaluated their carrier potential in multi-drug delivery for co-loading of the hydrophobic drug indomethacin and the hydrophilic human peptide YY3-36 (PYY3-36). Sequential loading of these two drugs into the PSi NPs enhanced the drug release rate of each drug and also their amount permeated across Caco-2 and Caco-2/HT29 cell monolayers. Regardless of the loading approach used, dual or single, the drug permeation profiles were in good correlation with their drug release behaviour. Furthermore, the permeation studies indicated the critical role of the mucus intestinal layer and the paracellular resistance in the permeation of the therapeutic compounds across the intestinal wall. Loading with PYY3-36 also greatly improved the cytocompatibility of the PSi NPs. Conformational analysis indicated that the PYY3-36 could still display biological activity after release from the PSi NPs and permeation across the intestinal cell monolayers. These results are the first demonstration of the promising potential of PSi NPs for simultaneous multi-drug delivery of both hydrophobic and hydrophilic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Miniaturized monolithic columns for the electrochromatographic separation and SERS detection of molecules of exobiological interest

    NASA Astrophysics Data System (ADS)

    Carbonnier, Benjamin; Guerrouache, Mohamed

    elegant strategy for preparing multifunctional monoliths through spatially controlled surface functionalization.[9] Photochemical initiation affords spatial control over the reaction site, i.e. site-specific immobilization of ligands on the pore surface of the monolith. Hydrophobic and hydrophilic molecular entities were successfully grafted and the obtained monoliths were applied to electrochromatographic separation application under reversed-phase and hydrophilic interaction electrochromatography modes, respectively. The panel of successfully analyzed analytes ranges from hydrophobic polycyclic aromatic hydrocarbons to life markers such as amino acids and peptides. Our approach was extended to the local design of chelating interface for the site-specific immobilisation of gold nanoparticles. Taking advantage of the unique properties of supported nano-gold, it was possible to perform surface enhanced Raman spectroscopy (SERS) sensing of organic molecules at the sub-nanomolar level. This work is funded by the French Space Agency (CNES) References [1] M.C. Pietrogrande, M.G. Zampolli, F. Dondi, C. Szopa, R. Sternberg, A. Buch, J.F. Raulin, J. Chromatogr. A 1071 (2005) 255. [2] A. M. Stockton, T.M. Chiesl, J.M. Scherer, R. A. Mathies, Anal. Chem. 81 (2009) 790 [3] B. Carbonnier, M. Guerrouache, R. Denoyel, M. C. Millot, J. Sep. Sci. 30 (2007) 3000. [4] J.k. Liu, C.F. Chen, C.W. Chang, D.L. DeVoe, Biosensors Bioelectron. 26 (2010) 182. [5] J. Krenkova, F. Svec, J. Sep. Sci. 32 (2009) 706. [6] F. Svec, J. Chromatogr. B 841 (2004) 52 [7] M. Guerrouache, M. C. Millot, B. Carbonnier, Macromol. Rapid. Commun, 30 (2009) 109. [8] M. Guerrouache, B. Carbonnier, C. Vidal-Madjar, M.C. Millot, J. Chromatogr A, 1149 (2007) 368. [9] M. Guerrouache, S. Mahouche Chergui, M.M. Chehimi, B. Carbonnier. Chem. Commun. 48 (2012) 7486.

  2. Preparation of a weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography stationary phase for protein separation using click chemistry.

    PubMed

    Zhao, Kailou; Yang, Fan; Xia, Hongjun; Wang, Fei; Song, Qingguo; Bai, Quan

    2015-03-01

    In this study, 3-diethylamino-1-propyne was covalently bonded to the azide-silica by a click reaction to obtain a novel dual-function mixed-mode chromatography stationary phase for protein separation with a ligand containing tertiary amine and two ethyl groups capable of electrostatic and hydrophobic interaction functionalities, which can display hydrophobic interaction chromatography character in a high-salt-concentration mobile phase and weak anion exchange character in a low-salt-concentration mobile phase employed for protein separation. As a result, it can be employed to separate proteins with weak anion exchange and hydrophobic interaction modes, respectively. The resolution and selectivity of the stationary phase were evaluated in both hydrophobic interaction and ion exchange modes with standard proteins, respectively, which can be comparable to that of conventional weak anion exchange and hydrophobic interaction chromatography columns. Therefore, the synthesized weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography column can be used to replace two corresponding conventional weak anion exchange and hydrophobic interaction chromatography columns to separate proteins. Based on this mixed-mode chromatography stationary phase, a new off-line two-dimensional liquid chromatography technology using only a single dual-function mixed-mode chromatography column was developed. Nine kinds of tested proteins can be separated completely using the developed method within 2.0 h.

  3. Fabrication and functionalization of single asymmetric nanochannels for electrostatic/hydrophobic association of protein molecules

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Bayer, Veronika; Schiedt, Birgitta; Neumann, Reinhard; Ensinger, Wolfgang

    2008-12-01

    We have developed a facile and reproducible method for surfactant-controlled track-etching and chemical functionalization of single asymmetric nanochannels in PET (polyethylene terephthalate) membranes. Carboxyl groups present on the channel surface were converted into pentafluorophenyl esters using EDC/PFP (N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/pentafluorophenol) coupling chemistry. The resulting amine-reactive esters were further covalently coupled with ethylenediamine or propylamine in order to manipulate the charge polarity and hydrophilicity of the nanochannels, respectively. Characterization of the modified channels was done by measuring their current-voltage (I-V) curves as well as their permselectivity before and after the chemical modification. The electrostatic/hydrophobic association of bovine serum albumin on the channel surface was observed through the change in rectification behaviour upon the variation of pH values.

  4. Combined Hydrophobic/Oleophobic Membrane Separation and Extraction for Fuel Treatment (Briefing Charts)

    DTIC Science & Technology

    2015-03-24

    SEPARATION AND EXTRACTION FOR FUEL TREATMENT 24 March 2015 Presenter: Dr. Andrew Guenthner Air Force Research Laboratory, AFRL/RQRP Ph: 661-275...Repellence Separate Water from Oil DISTRIBUTION A. Approved for public release; distribution unlimited. 7 • Combine two mutually exclusive adherent...Result: a simple apparatus for the gravity driven, continuous separation of oil‐water emulsions, proving that coalescence can be “short circuited” • 1

  5. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules.

    PubMed

    Tortora, Mariarosaria; Cavalieri, Francesca; Mosesso, Pasquale; Ciaffardini, Flavia; Melone, Federica; Crestini, Claudia

    2014-05-12

    Oil-filled microcapsules of kraft lignin were synthesized by first creating an oil in water emulsion followed by a high-intensity, ultrasound-assisted cross-linking of lignin at the water/oil interface. The rationale behind our approach is based on promoting documented lignin hydrophobic interactions within the oil phase, followed by locking the resulting spherical microsystems by covalent cross-linking using a high intensity ultrasound treatment. As further evidence in support of our rationale, confocal and optical microscopies demonstrated the uniformly spherical morphology of the created lignin microparticles. The detailed elucidation of the cross-linking processes was carried out using gel permeation chromatography (GPC) and quantitative (31)P NMR analyses. The ability of lignin microcapsules to incorporate and release Coumarin-6 was evaluated in detail. In vitro studies and confocal laser scanning microscopy analysis were carried out to assess the internalization of capsules into Chinese hamster ovary (CHO) cells. This part of our work demonstrated that the lignin microcapsules are not cytotoxic and readily incorporated in the CHO cells.

  6. Biodegradable Janus nanoparticles for local pulmonary delivery of hydrophilic and hydrophobic molecules to the lungs.

    PubMed

    Garbuzenko, Olga B; Winkler, Jennifer; Tomassone, M Silvina; Minko, Tamara

    2014-11-04

    The aim of the present work is to synthesize, characterize, and test self-assembled anisotropic or Janus particles designed to load anticancer drugs for lung cancer treatment by inhalation. The particles were synthesized using binary mixtures of biodegradable and biocompatible materials. The particles did not demonstrate cyto- and genotoxic effects. Janus particles were internalized by cancer cells and accumulated both in the cytoplasm and nuclei. After inhalation delivery, nanoparticles accumulated preferentially in the lungs of mice and retained there for at least 24 h. Two drugs or other biologically active components with substantially different aqueous solubility can be simultaneously loaded in two-phases (polymer-lipid) of these nanoparticles. In the present proof-of-concept investigation, the particles were loaded with two anticancer drugs: doxorubicin and curcumin as model anticancer drugs with relatively high and low aqueous solubility, respectively. However, there are no obstacles for loading any hydrophobic or hydrophilic chemical agents. Nanoparticles with dual load were used for their local inhalation delivery directly to the lungs of mice with orthotopic model of human lung cancer. In vivo experiments showed that the selected nanoparticles with two anticancer drugs with different mechanisms of action prevented progression of lung tumors. It should be stressed that anticancer effects of the combined treatment with two anticancer drugs loaded in the same nanoparticle significantly exceeded the effect of either drug loaded in similar nanoparticles alone.

  7. Biodegradable Janus Nanoparticles for Local Pulmonary Delivery of Hydrophilic and Hydrophobic Molecules to the Lungs

    PubMed Central

    2015-01-01

    The aim of the present work is to synthesize, characterize, and test self-assembled anisotropic or Janus particles designed to load anticancer drugs for lung cancer treatment by inhalation. The particles were synthesized using binary mixtures of biodegradable and biocompatible materials. The particles did not demonstrate cyto- and genotoxic effects. Janus particles were internalized by cancer cells and accumulated both in the cytoplasm and nuclei. After inhalation delivery, nanoparticles accumulated preferentially in the lungs of mice and retained there for at least 24 h. Two drugs or other biologically active components with substantially different aqueous solubility can be simultaneously loaded in two-phases (polymer-lipid) of these nanoparticles. In the present proof-of-concept investigation, the particles were loaded with two anticancer drugs: doxorubicin and curcumin as model anticancer drugs with relatively high and low aqueous solubility, respectively. However, there are no obstacles for loading any hydrophobic or hydrophilic chemical agents. Nanoparticles with dual load were used for their local inhalation delivery directly to the lungs of mice with orthotopic model of human lung cancer. In vivo experiments showed that the selected nanoparticles with two anticancer drugs with different mechanisms of action prevented progression of lung tumors. It should be stressed that anticancer effects of the combined treatment with two anticancer drugs loaded in the same nanoparticle significantly exceeded the effect of either drug loaded in similar nanoparticles alone. PMID:25300552

  8. Reference interaction site model with hydrophobicity induced density inhomogeneity: An analytical theory to compute solvation properties of large hydrophobic solutes in the mixture of polyatomic solvent molecules.

    PubMed

    Cao, Siqin; Sheong, Fu Kit; Huang, Xuhui

    2015-08-07

    Reference interaction site model (RISM) has recently become a popular approach in the study of thermodynamical and structural properties of the solvent around macromolecules. On the other hand, it was widely suggested that there exists water density depletion around large hydrophobic solutes (>1 nm), and this may pose a great challenge to the RISM theory. In this paper, we develop a new analytical theory, the Reference Interaction Site Model with Hydrophobicity induced density Inhomogeneity (RISM-HI), to compute solvent radial distribution function (RDF) around large hydrophobic solute in water as well as its mixture with other polyatomic organic solvents. To achieve this, we have explicitly considered the density inhomogeneity at the solute-solvent interface using the framework of the Yvon-Born-Green hierarchy, and the RISM theory is used to obtain the solute-solvent pair correlation. In order to efficiently solve the relevant equations while maintaining reasonable accuracy, we have also developed a new closure called the D2 closure. With this new theory, the solvent RDFs around a large hydrophobic particle in water and different water-acetonitrile mixtures could be computed, which agree well with the results of the molecular dynamics simulations. Furthermore, we show that our RISM-HI theory can also efficiently compute the solvation free energy of solute with a wide range of hydrophobicity in various water-acetonitrile solvent mixtures with a reasonable accuracy. We anticipate that our theory could be widely applied to compute the thermodynamic and structural properties for the solvation of hydrophobic solute.

  9. Reference interaction site model with hydrophobicity induced density inhomogeneity: An analytical theory to compute solvation properties of large hydrophobic solutes in the mixture of polyatomic solvent molecules

    SciTech Connect

    Cao, Siqin; Sheong, Fu Kit; Huang, Xuhui

    2015-08-07

    Reference interaction site model (RISM) has recently become a popular approach in the study of thermodynamical and structural properties of the solvent around macromolecules. On the other hand, it was widely suggested that there exists water density depletion around large hydrophobic solutes (>1 nm), and this may pose a great challenge to the RISM theory. In this paper, we develop a new analytical theory, the Reference Interaction Site Model with Hydrophobicity induced density Inhomogeneity (RISM-HI), to compute solvent radial distribution function (RDF) around large hydrophobic solute in water as well as its mixture with other polyatomic organic solvents. To achieve this, we have explicitly considered the density inhomogeneity at the solute-solvent interface using the framework of the Yvon-Born-Green hierarchy, and the RISM theory is used to obtain the solute-solvent pair correlation. In order to efficiently solve the relevant equations while maintaining reasonable accuracy, we have also developed a new closure called the D2 closure. With this new theory, the solvent RDFs around a large hydrophobic particle in water and different water-acetonitrile mixtures could be computed, which agree well with the results of the molecular dynamics simulations. Furthermore, we show that our RISM-HI theory can also efficiently compute the solvation free energy of solute with a wide range of hydrophobicity in various water-acetonitrile solvent mixtures with a reasonable accuracy. We anticipate that our theory could be widely applied to compute the thermodynamic and structural properties for the solvation of hydrophobic solute.

  10. Demonstrating Electrophoretic Separation in a Straight Paper Channel Delimited by a Hydrophobic Wax Barrier

    ERIC Educational Resources Information Center

    Xu, Chunxiu; Lin, Wanqi; Cai, Longfei

    2016-01-01

    A demonstration is described of electrophoretic separation of carmine and sunset yellow with a paper-based device. The channel in the paper device was fabricated by hand with a wax pen. Electrophoretic separation of carmine and sunset yellow was achieved within a few minutes by applying potential on the channel using a simple and inexpensive power…

  11. Demonstrating Electrophoretic Separation in a Straight Paper Channel Delimited by a Hydrophobic Wax Barrier

    ERIC Educational Resources Information Center

    Xu, Chunxiu; Lin, Wanqi; Cai, Longfei

    2016-01-01

    A demonstration is described of electrophoretic separation of carmine and sunset yellow with a paper-based device. The channel in the paper device was fabricated by hand with a wax pen. Electrophoretic separation of carmine and sunset yellow was achieved within a few minutes by applying potential on the channel using a simple and inexpensive power…

  12. Unified Effect of Hydrophobic Hydration on the Dynamics and the Structure of Water Molecules in Lower Alcohol Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Nakada, Masaru; Maruyama, Kenji; Yamamuro, Osamu; Kikuchi, Tatsuya; Misawa, Masakatsu

    2011-04-01

    After the analysis of the quasi-elastic neutron scattering (QENS) spectra of lower alcoholic aqueous solutions, we found that the parameter α, which is the number fraction of hydrophobic hydrating water molecules, has an important role in describing the dynamics and other properties of these solutions. The diffusion coefficient D was obtained from QENS spectra using the relaxing cage model, and D was found to have the same linear relation against α for ethyl alcohol, n-propyl alcohol, i-propyl alcohol, and t-butyl alcohol (with a small deviation) aqueous solutions. The excess molar volume and average hydration number of these solutions could also be expressed with common parameters, which are independent of the alcohol species.

  13. An effective strategy to increase hydroxide-ion conductivity through microphase separation induced by hydrophobic-side chains

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, T. S.

    2016-01-01

    A highly conductive and durable anion exchange membrane (AEM) is an essential component for alkaline electrochemical conversion and storage systems. Contrary to the conventional wisdom that the ionic conductivity can be improved by increasing the ion exchange capacity (IEC) through a cross-linking process, in this work, a new approach to improve the ionic conductivity by enhancing the ionic mobility is adopted. The microstructure of quaternary ammonia poly (2, 6-dimethyl-1, 4-phenylene oxide) (QAPPO) is manipulated through grafting with hydrophobic side chains, which will drive the well-established hydrophilic/hydrophobic domains and nano-phase separated, well-connected ionic channels. As a result, the local hydroxide concentration is enhanced by the novel microstructure, thereby improving the ionic conductivity of the as-prepared ionomers. The as-prepared ionomers, denoted as self-aggregated QAPPO-CF, with an intermediate IEC value achieved an ionic conductivity of 65 mS cm-1 at 80 °C, outperforming the QAPPO with an even higher IEC value. This result suggests that the microphase separation is an effective approach to enhance the ionic conductivity.

  14. Imidazolium-containing, hydrophobic-ionic-hydrophilic ABC triblock copolymers: synthesis, ordered phase-separation, and supported membrane fabrication

    SciTech Connect

    Wiesenauer, EF; Nguyen, PT; Newell, BS; Bailey, TS; Nobleb, RD; Gin, DL

    2013-01-01

    Novel ABC triblock copolymers containing hydrophobic, imidazolium ionic liquid (IL)-based ionic, and non-charged hydrophilic blocks were synthesized by direct sequential, ring-opening metathesis polymerization (ROMP) of three chemically immiscible norborene monomers. The resulting ABC triblock copolymers were found by small-angle X-ray scattering to phase-separate into different nanostructures in their pure melt states, depending on their block sequence and compositions. Supported composite membranes of these triblock copolymers were successfully fabricated with defect-free, <= 20 microns thick top coatings. Preliminary CO2/light gas transport studies demonstrated the potential of this new type of IL-based block copolymer material for gas separation applications.

  15. Adsorption and transport of charged vs. neutral hydrophobic molecules at the membrane of murine erythroleukemia (MEL) cells.

    PubMed

    Zeng, Jia; Eckenrode, Heather M; Dai, Hai-Lung; Wilhelm, Michael J

    2015-03-01

    The adsorption and transport of hydrophobic molecules at the membrane surface of pre- and post-DMSO induced differentiated murine erythroleukemia (MEL) cells were examined by time- and wavelength-resolved second harmonic light scattering. Two medium (<600 Da) hydrophobic molecules, cationic malachite green (MG) and neutral bromocresol purple (BCP), were investigated. While it was observed that the MG cation adsorbs onto the surface of the MEL cell, neutral BCP does not. It is suggested that an electrostatic interaction between the opposite charges of the cation and the MEL cell surface is the primary driving force for adsorption. Comparisons of adsorption density and free energy, measured at different pH and cell morphology, indicate that the interaction is predominantly through sialic acid carboxyl groups. MG cation adsorption densities have been determined as (0.6±0.3)×10(6) μm(-2) on the surface of undifferentiated MEL cells, and (1.8±0.5)×10(7) μm(-2) on differentiated MEL cells, while the deduced adsorption free energies are effectively identical (ca. -10.9±0.1 and -10.8±0.1 kcal mol(-1), respectively). The measured MG densities indicate that the total number of surface carboxyl groups is largely conserved following differentiation, and therefore the density of carboxylic groups is much larger on the differentiated cell surface than the undifferentiated one. Finally, in contrast to synthetic liposomes and bacterial membranes, surface adsorbed MG cations are unable to traverse the MEL cell membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.

    PubMed

    Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira

    2014-03-01

    In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Hydrophobic character of surface regions and total hydrophobicity of four variants of chromosomal class C beta-lactamase from Pseudomonas aeruginosa are identical. Chromatographic comparison of the hydrophobic character of the variants and the effect of focusing buffer composition on the separation of the variants by chromatofocusing with internal and external pH gradients.

    PubMed

    Walther-Rasmussen, J; Høiby, N

    2000-09-15

    The hydrophobic character of class C beta-lactamase molecular variants from Pseudomonas aeruginosa was compared by hydrophobic interaction chromatography and reversed-phase liquid chromatography, respectively. Separation of the variants by hydrophobic interaction chromatography was not achieved by modifying salt and pH of mobile phases. Reversed-phase liquid chromatography of the variants resulted in almost identical retention times. The results showed that the hydrophobic character of surface regions as well as total hydrophobicity of the variants are identical. The resolving power of external, internal and gradient chromatofocusing of the variants on strong and weak anion exchangers using low-molecular-mass buffers was compared to that of commercial ampholytes and showed no difference in separation pattern of the variants. Comparisons of variant isoelectric point (pI) values determined by chromatofocusing and isoelectric focusing showed that pI values determined by gradient chromatofocusing were most similar to the pI values determined by isoelectric focusing.

  18. Adsorption and Gas Separation of Molecules by Carbon Nanohorns.

    PubMed

    Gatica, Silvina M; Nekhai, Anton; Scrivener, Adam

    2016-05-19

    In this paper, we report the results of Monte Carlo simulations of the adsorption of neon, argon, methane and carbon dioxide in carbon nanohorns. We model the nanohorns as an array of carbon cones and obtained adsorption isotherms and isosteric heats. The main sites of adsorption are inside the cones and in the interstices between three cones. We also calculated the selectivity of carbon dioxide/methane, finding that nanohorns are a suitable substrate for gas separation. Our simulations are compared to available experimental data.

  19. An Information Theory of Hydrophobic Effects

    NASA Astrophysics Data System (ADS)

    Pratt, Lawrence R.

    1998-03-01

    The hydrophobic effect is a central concept in rationalizing the structure and stability of proteins in solution. However, a consensus has not been achieved on a molecular scale physical theory explaining the broad array of hydrophobic effects. Here we present an information theory designed to achieve consensus by identifying and limiting the physical information and assumptions sufficient to predict hydrophobic effects. The information theory is based upon the study of the probabilities of occupancy by water molecule centers of molecular scale volumes observed in neat liquid water. Predictions for hydrophobic effects can be extracted from this probability distribution. Simulation results show that this probability distribution is accurately predicted by a maximum entropy model using the two moments that are obtained from the experimental liquid density and the experimental radial distribution of oxygen atoms. We show the role of solvent molecule correlation functions of higher order than pairs. We show that this two moment model predicts known atomic scale hydrophobic effects: hydrophobic solubilities, potentials of mean force, and hydrophobic effects on conformational equilibria. We comment on the kinship between the two moment maximum entropy model and the earlier Pratt-Chandler theory of hydrophobic effects. We show that the model predicts the entropy convergence emphasized by high sensitivity calorimetry on the thermal denaturation of globular proteins and explains why this entropy convergence is insensitive to solute molecular details within the broad category of hydrophobic solutes. Finally, we consider the pressure denaturation of globular proteins and discuss the perspective that emerges from the information theory treatment: increasing pressure squeezes water molecules into the protein globule eventually separating hydrophobic components analogously to the separation of hydrophobic solutes in formation of clathrate hydrates.

  20. A hydrophobic ionic liquid compartmentalized sampling/labeling and its separation techniques in polydimethylsiloxane microchip capillary electrophoresis.

    PubMed

    Quan, Hong Hua; Li, Ming; Huang, Yan; Hahn, Jong Hoon

    2017-01-01

    This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nonempirical range-separated hybrid functionals for solids and molecules

    NASA Astrophysics Data System (ADS)

    Skone, Jonathan H.; Govoni, Marco; Galli, Giulia

    2016-06-01

    Dielectric-dependent hybrid (DDH) functionals were recently shown to yield accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than that of GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. Here we introduce a range-separated (RS) version of DDH functionals where short- and long-range components are matched using system-dependent, nonempirical parameters. We show that RS-DDHs yield accurate electronic properties of inorganic and organic solids, including energy gaps and absolute ionization potentials. Furthermore we show that these functionals may be generalized to finite systems.

  2. Nonempirical range-separated hybrid functionals for solids and molecules

    DOE PAGES

    Skone, Jonathan H.; Govoni, Marco; Galli, Giulia

    2016-06-03

    Dielectric-dependent hybrid (DDH) functionals were recently shown to yield accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than that of GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. Here we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using system dependent, non-empirical parameters. We show that RS DDHs yield accurate electronic properties of inorganic and organic solids, including energy gaps and absolute ionization potentials. Moreover, we show thatmore » these functionals may be generalized to finite systems.« less

  3. Nonempirical range-separated hybrid functionals for solids and molecules

    SciTech Connect

    Skone, Jonathan H.; Govoni, Marco; Galli, Giulia

    2016-06-03

    Dielectric-dependent hybrid (DDH) functionals were recently shown to yield accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than that of GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. Here we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using system dependent, non-empirical parameters. We show that RS DDHs yield accurate electronic properties of inorganic and organic solids, including energy gaps and absolute ionization potentials. Moreover, we show that these functionals may be generalized to finite systems.

  4. Nonempirical range-separated hybrid functionals for solids and molecules.

    SciTech Connect

    Skone, Jonathan H.; Govoni, Marco; Galli, Giulia

    2016-06-03

    Dielectric-dependent hybrid (DDH) functionals were recently shown to yield accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than that of GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. Here we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using system dependent, non-empirical parameters. We show that RS DDHs yield accurate electronic properties of inorganic and organic solids, including energy gaps and absolute ionization potentials. Furthermore we show that these functionals may be generalized to finite systems.

  5. Enthalpy of hydrophobic hydration separately estimated for each -CH2-, -CF2-, and -OCH2CH2- unit component of amphiphiles and of related compounds.

    PubMed

    Seimiya, Tsutomu

    2003-10-15

    The enthalpy of hydrophobic hydration, DeltaH(HH), was separately estimated for each apolar segment of amphiphiles and of related compounds. The specimens analyzed in this study were the homologs and analogs of sodium alkyl sulfate, alkyltrimethylammonium bromide, ammonium perfluoroalkylcarboxylate, and polyethylene glycols. The DeltaH(HH) was calculated from the adiabatic compressibility beta of aqueous solution systematically measured for each homologs at varying concentrations and temperatures. Those data reported in the previous paper were utilized. The DeltaH(HH) estimated for each -CH(2)-, -CF(2)-, and -OCH(2)CH(2)- segments in both hydrophobic and hydrophilic parts of the amphiphiles was found to change depending on its locations in the molecule. The DeltaH(HH) for the first -CH(2)- unit which is adjacent to the head sulfate group of H(CH(2))(n)SO(4)Na was found to be negligibly small; however, it increases gradually as the position of the unit moves apart from the anionic head group and attains as large as -26.5 kcal/mol for the eighth -CH(2)-. The change of DeltaH(HH) of -CF(2)- unit in F(CF(2))(n)COONH(4) shows the similar tendency to H(CH(2))(n)SO(4)Na. The value of DeltaH(HH) is as small as -8 kcal/mol for the first -CF(2)-, however, it increases to -16 kcal/mol for the fifth -CF(2)-, which is 1.5 times larger than that of the fifth -CH(2)- of alkyl sulfate. Contrary to this, all the DeltaH(HH) of the methylenes of cationic surfactant ranging from the second to the eighth -CH(2)- units of H(CH(2))(n)N(CH(3))(3)Br take a similar value around -8 kcal/mol of -CH(2)- irrespective of their positions. The first -CH(2)- unit which is equivalent to that of quaternary ammonium [HCH(2)](4)NBr shows slightly higher value of -9.0 kcal/mol of the first -CH(2)- than those for the second to eighth -CH(2)-. This seems to suggest that the cationic core nitrogen has an enhancing effect on hydrophobic hydration. The hydration enthalpy DeltaH(OEH) of each oxyethylene (OE

  6. Properties of super-hydrophobic copper and stainless steel meshes: Applications in controllable water permeation and organic solvents/water separation

    NASA Astrophysics Data System (ADS)

    Sang, Yu Chen; Albadarin, Ahmad B.; Al-Muhtaseb, Ala'a. H.; Mangwandi, Chirangano; McCracken, John N.; Bell, Steven E. J.; Walker, Gavin M.

    2015-04-01

    The wettability and hydrophobicity of super-hydrophobic (SH) meshes is greatly influenced by their topographic structures, chemical composition and coating process. In this study, the properties of copper and stainless steel meshes, coated with super-hydrophobic electrolessly deposited silver were investigated. A new method to test the pressure resistance of super-hydrophobic mesh was applied to avoid any deformation of mesh. Results showed that SH copper mesh and SH stainless steel meshes with the same pore size have almost the same contact angle and the same hydrophobicity. SH copper mesh with a pore size of 122 μm can resist water pressure of 4900 Pa and a decrease of pore size of mesh can increase the pressure resistance of SH copper mesh. The SH copper mesh modified with 0.1 M HS(CH2)10COOH solution in ethanol has a controllable water permeation property by simply adjusting the pH of water solution. SH copper mesh shows super-oleophilicity with organic solvents and so with a water contact angle of 0° and it can be an effective tool for organic solvents/water separation. The separation efficiency of SH copper mesh for separating mixtures of organic solvent and water can be as high as 99.8%.

  7. Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation.

    PubMed

    Zhao, Cui; Wang, Naixin; Wang, Lin; Huang, Hongliang; Zhang, Rong; Yang, Fan; Xie, Yabo; Ji, Shulan; Li, Jian-Rong

    2014-11-21

    Hybrid membranes composed of porous metal-organic molecule nanocages as fillers embedded in a hyperbranched polymer (Boltorn W3000) were fabricated, which exhibit excellent pervaporation separation performances towards aromatic/aliphatic hydrocarbons. The unique nature of the molecule-based fillers and their good dispersion and compatibility in/with the polymer are responsible for the good membrane properties.

  8. Investigation of localization of DNA molecules using triangular metal electrodes with varying separation

    NASA Astrophysics Data System (ADS)

    Prasad, D. Nagendra; Ghonge, Sudarshan; Banerjee, Souri

    2016-04-01

    In this paper we investigate the effect of separation of triangular metal electrodes with both convex and concave geometries, on the localization of suspended DNA molecules under the combined effect of dielectrophoresis and AC electro-osmosis through simulations using COMSOL Multiphysics. Trapping points are realized within the electrodes which are found to vary with the separation of the electrodes.

  9. Simultaneous delivery of hydrophobic small molecules and siRNA using Sterosomes to direct mesenchymal stem cell differentiation for bone repair.

    PubMed

    Cui, Zhong-Kai; Sun, Justin A; Baljon, Jessalyn J; Fan, Jiabing; Kim, Soyon; Wu, Benjamin M; Aghaloo, Tara; Lee, Min

    2017-08-01

    The use of small molecular drugs with gene manipulation offers synergistic therapeutic efficacy by targeting multiple signaling pathways for combined treatment. Stimulation of mesenchymal stem cells (MSCs) with osteoinductive small molecule phenamil combined with suppression of noggin is a promising therapeutic strategy that increases bone morphogenetic protein (BMP) signaling and bone repair. Our cationic Sterosome formulated with stearylamine (SA) and cholesterol (Chol) is an attractive co-delivery system that not only forms stable complexes with small interfering RNA (siRNA) molecules but also solubilizes hydrophobic small molecules in a single vehicle, for directing stem cell differentiation. Herein, we demonstrate the ability of SA/Chol Sterosomes to simultaneously deliver hydrophobic small molecule phenamil and noggin-directed siRNA to enhance osteogenic differentiation of MSCs both in in vitro two- and three-dimensional settings as well as in a mouse calvarial defect model. These results suggest a novel liposomal platform to simultaneously deliver therapeutic genes and small molecules for combined therapy. Application of phenamil, a small molecular bone morphogenetic protein (BMP) stimulator, combined with suppression of natural BMP antagonists such as noggin is a promising therapeutic strategy to enhance bone regeneration. Here, we present a novel strategy to co-deliver hydrophobic small molecule phenamil and noggin-targeted siRNA via cationic Sterosomes formed with stearylamine (SA) and high content of cholesterol (Chol) to enhance osteogenesis and bone repair. SA/Chol Sterosomes demonstrated high phenamil encapsulation efficiency, supported sustained release of encapsulated drugs, and significantly reduced drug dose requirements to induce osteogenic differentiation of mesenchymal stem cells (MSCs). Simultaneous deliver of phenamil and noggin siRNA in a single vehicle synergistically enhanced MSC osteogenesis and calvarial bone repair. This study suggests

  10. Purification and separation of subsets of human Ia molecules by papain digestion.

    PubMed Central

    Tanigaki, N; Tosi, R; Koyama, K; Pressman, D

    1980-01-01

    Papain digestion of human Ia(-like) molecules was performed under various conditions using 125I-labelled preparation of non-ionic-detergent-solubilized Ia antigens of Daudi cells. The products were examined for their allospecificities by a direct binding reaction with human Ia alloantisera. The Daudi Ia preparation is known to contain Ia molecules of DRw6 specificity, an HLA-DR specificity and also Ia molecules of DC1 specificity, a putative non-HLA-DR specificity. Limited papain digestion cleaved off the hydrophobic portion of human Ia molecules and gave smaller sized Ia products. The cleavage did not affect the Ia alloantigenic determinants and occurred much more readily with molecules of DC1 specificity than with molecules of DRw6 specificity. As a consequence, limited papain digestion of the Daudi Ia pool yielded an Ia preparation with DRw6 specificity but lacking DC1 specificity and another Ia preparation which was enriched in DC1 specificity. The limited papain digestion of the Daudi Ia pool followed by gel filtration and LcH affinity chromatography also produced Ia REPARATIONS OF HIGH PURITY. Extensive papain digestion damaged the Ia alloantigenic determinants but the DC1 determinant was much more resistant than the DRw6 determinant. Thus extensive papain digestion yielded an Ia preparation which was relatively rich in DC1 specificity and essentially devoid of DRw6 specificity. PMID:6155328

  11. The Crystal Structure of OprG from Pseudomonas aeruginosa a Potential Channel for Transport of Hydrophobic Molecules across the Outer Membrane

    SciTech Connect

    D Touw; D Patel; b van den Berg

    2011-12-31

    The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The crystal structure, together with recent biochemical data, suggests that OprG and other OmpW family members form channels that mediate the diffusion of small hydrophobic molecules across the OM by a lateral diffusion mechanism similar to that of E. coli FadL.

  12. Performance comparison of three types of high-speed counter-current chromatographs for the separation of components of hydrophilic and hydrophobic color additives.

    PubMed

    Weisz, Adrian; Ito, Yoichiro

    2011-09-09

    The performance of three types of high-speed counter-current chromatography (HSCCC) instruments was assessed for their use in separating components in hydrophilic and hydrophobic dye mixtures. The HSCCC instruments compared were: (i) a J-type coil planet centrifuge (CPC) system with a conventional multilayer-coil column, (ii) a J-type CPC system with a spiral-tube assembly-coil column, and (iii) a cross-axis CPC system with a multilayer-coil column. The hydrophilic dye mixture consisted of a sample of FD&C Blue No. 2 that contained mainly two isomeric components, 5,5'- and 5,7'-disulfonated indigo, in the ratio of ∼7:1. The hydrophobic dye mixture consisted of a sample of D&C Red No. 17 (mainly Sudan III) and Sudan II in the ratio of ∼4:1. The two-phase solvent systems used for these separations were 1-butanol/1.3M HCl and hexane/acetonitrile. Each of the three instruments was used in two experiments for the hydrophilic dye mixture and two for the hydrophobic dye mixture, for a total of 12 experiments. In one set of experiments, the lower phase was used as the mobile phase, and in the second set of experiments, the upper phase was used as the mobile phase. The results suggest that: (a) use of a J-type instrument with either a multilayer-coil column or a spiral-tube assembly column, applying the lower phase as the mobile phase, is preferable for separating the hydrophilic components of FD&C Blue No. 2; and (b) use of a J-type instrument with multilayer-coil column, while applying either the upper phase or the lower phase as the mobile phase, is preferable for separating the hydrophobic dye mixture of D&C Red No. 17 and Sudan II. Published by Elsevier B.V.

  13. Performance comparison of three types of high-speed counter-current chromatographs for the separation of components of hydrophilic and hydrophobic color additives

    PubMed Central

    Weisz, Adrian; Ito, Yoichiro

    2011-01-01

    The performance of three types of high-speed counter-current chromatography (HSCCC) instruments was assessed for their use in separating components in hydrophilic and hydrophobic dye mixtures. The HSCCC instruments compared were: (i) a J-type coil planet centrifuge (CPC) system with a conventional multilayer-coil column, (ii) a J-type CPC system with a spiral-tube assembly-coil column, and (iii) a cross-axis CPC system with a multilayer-coil column. The hydrophilic dye mixture consisted of a sample of FD&C Blue No. 2 that contained mainly two isomeric components, 5,5'- and 5,7'-disulfonated indigo, in the ratio of ~ 7:1. The hydrophobic dye mixture consisted of a sample of D&C Red No. 17 (mainly Sudan III) and Sudan II in the ratio of ~ 4:1. The two-phase solvent systems used for these separations were 1-butanol/1.3M HCl and hexane/acetonitrile. Each of the three instruments was used in two experiments for the hydrophilic dye mixture and two for the hydrophobic dye mixture, for a total of 12 experiments. In one set of experiments, the lower phase was used as the mobile phase, and in the second set of experiments, the upper phase was used as the mobile phase. The results suggest that: (a) use of a J-type instrument with either a multilayer-coil column or a spiral-tube assembly column, applying the lower phase as the mobile phase, is preferable for separating the hydrophilic components of FD&C Blue No. 2; and (b) use of a J-type instrument with multilayer-coil column, while applying either the upper phase or the lower phase as the mobile phase, is preferable for separating the hydrophobic dye mixture of D&C Red No. 17 and Sudan II. PMID:21215406

  14. Electrochemically etched nanoporous silicon membrane for separation of biological molecules in mixture

    NASA Astrophysics Data System (ADS)

    Burham, Norhafizah; Azlan Hamzah, Azrul; Yunas, Jumril; Yeop Majlis, Burhanuddin

    2017-07-01

    This paper presents a technique for separating biological molecules in mixture using nanoporous silicon membrane. Nanopores were formed using electrochemical etching process (ECE) by etching a prefabricated silicon membrane in hydrofluoric acid (HF) and ethanol, and then directly bonding it with PDMS to form a complete filtration system for separating biological molecules. Tygon S3™ tubings were used as fluid interconnection between PDMS molds and silicon membrane during testing. Electrochemical etching parameters were manipulated to control pore structure and size. In this work, nanopores with sizes of less than 50 nm, embedded on top of columnar structures have been fabricated using high current densities and variable HF concentrations. Zinc oxide was diluted with deionized (DI) water and mixed with biological molecules and non-biological particles, namely protein standard, serum albumin and sodium chloride. Zinc oxide particles were trapped on the nanoporous silicon surface, while biological molecules of sizes up to 12 nm penetrated the nanoporous silicon membrane. The filtered particles were inspected using a Zetasizer Nano SP for particle size measurement and count. The Zetasizer Nano SP results revealed that more than 95% of the biological molecules in the mixture were filtered out by the nanoporous silicon membrane. The nanoporous silicon membrane fabricated in this work is integratable into bio-MEMS and Lab-on-Chip components to separate two or more types of biomolecules at once. The membrane is especially useful for the development of artificial kidney.

  15. Countercurrent Chromatographic Separation of Lipophilic Ascorbic Acid Derivatives and Extract from Kadsura Coccinea Using Hydrophobic Organic-Aqueous Two-Phase Solvent Systems.

    PubMed

    Shinomiya, Kazufusa; Li, Heran; Kitanaka, Susumu; Ito, Yoichiro

    2009-01-01

    Countercurrent chromatographic (CCC) separation of lipophilic ascorbic acid derivatives and the crude extract from Kadsura Coccinea was performed using the type-J multilayer coil planet centrifuge with a hydrophobic organic-aqueous two-phase solvent system composed of n-hexane/ethyl acetate/ethanol/aqueous 0.1% trifluoroacetic acid at the volume ratio of (5 : 5 : 6 : 2). The lipophilic ascorbic acid derivatives were separated in the order of L-ascrobyl 2,6-dibutyrate, L-ascorbyl 6-palmitate and L-ascorbyl 6-stearate by eluting the lower phase as the mobile phase, and L-ascorbyl 2,6-dipalmitate was separated by eluting the upper phase at the opposite direction. The above solvent system was then applied to the CCC separation of the extract prepared from K. coccinea. With lower phase mobile, the extract was mainly separated into two peaks corresponding to lignans and triterpenoids accordingly. The HPLC analysis of the fractions showed that the former peak contained Kadsulignan N, Schizandrin H and Neokadsuranin as lignans, and the latter peak, Micranoic acid A, Neokadsuranic acid B and beta-Sitosterol as triterpenoids. The overall results indicate that the hydrophobic organic-aqueous two-phase solvent system used in the present studies was useful for the CCC separation of lignans and triterpenoids present in the natural products.

  16. Countercurrent Chromatographic Separation of Lipophilic Ascorbic Acid Derivatives and Extract from Kadsura Coccinea Using Hydrophobic Organic-Aqueous Two-Phase Solvent Systems

    PubMed Central

    Shinomiya, Kazufusa; Li, Heran; Kitanaka, Susumu; Ito, Yoichiro

    2009-01-01

    Countercurrent chromatographic (CCC) separation of lipophilic ascorbic acid derivatives and the crude extract from Kadsura Coccinea was performed using the type-J multilayer coil planet centrifuge with a hydrophobic organic-aqueous two-phase solvent system composed of n-hexane/ethyl acetate/ethanol/aqueous 0.1% trifluoroacetic acid at the volume ratio of (5 : 5 : 6 : 2). The lipophilic ascorbic acid derivatives were separated in the order of L-ascrobyl 2,6-dibutyrate, L-ascorbyl 6-palmitate and L-ascorbyl 6-stearate by eluting the lower phase as the mobile phase, and L-ascorbyl 2,6-dipalmitate was separated by eluting the upper phase at the opposite direction. The above solvent system was then applied to the CCC separation of the extract prepared from K. coccinea. With lower phase mobile, the extract was mainly separated into two peaks corresponding to lignans and triterpenoids accordingly. The HPLC analysis of the fractions showed that the former peak contained Kadsulignan N, Schizandrin H and Neokadsuranin as lignans, and the latter peak, Micranoic acid A, Neokadsuranic acid B and beta-Sitosterol as triterpenoids. The overall results indicate that the hydrophobic organic-aqueous two-phase solvent system used in the present studies was useful for the CCC separation of lignans and triterpenoids present in the natural products. PMID:20046934

  17. A model for the separation of large DNA molecules by crossed field gel electrophoresis.

    PubMed

    Southern, E M; Anand, R; Brown, W R; Fletcher, D S

    1987-08-11

    The idea that large DNA molecules adopt a stretched conformation as they pass through gels suggests a simple mechanism for the separation of DNA by crossed field electrophoresis: at each change in field direction a DNA molecule takes off in the new direction of the field by a movement which is led by what was formerly its back end. The effect of this ratcheting motion is to subtract from the DNA molecule's forward movement, at each step, an amount which is proportional to its length. We find that this model explains most of the features of the separation, and we describe experiments, using a novel electrophoresis apparatus, which support the model. The apparatus turns the gel between two preset orientations in a uniform electric field at preset time intervals. This separation method has the practical advantage over some others that the DNA molecules follow straight tracks. A further advantage is that the parameters which determine the separation are readily predicted from the simple theory describing their motion.

  18. Three-dimensional Nanowire Structures for Ultra-Fast Separation of DNA, Protein and RNA Molecules

    PubMed Central

    Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu

    2015-01-01

    Separation and analysis of biomolecules represent crucial processes for biological and biomedical engineering development; however, separation resolution and speed for biomolecules analysis still require improvements. To achieve separation and analysis of biomolecules in a short time, the use of highly-ordered nanostructures fabricated by top-down or bottom-up approaches have been proposed. Here, we reported on the use of three-dimensional (3D) nanowire structures embedded in microchannels fabricated by a bottom-up approach for ultrafast separation of small biomolecules, such as DNA, protein, and RNA molecules. The 3D nanowire structures could analyze a mixture of DNA molecules (50–1000 bp) within 50 s, a mixture of protein molecules (20–340 kDa) within 5 s, and a mixture of RNA molecules (100–1000 bases) within 25 s. And, we could observe the electrophoretic mobility difference of biomolecules as a function of molecular size in the 3D nanowire structures. Since the present methodology allows users to control the pore size of sieving materials by varying the number of cycles for nanowire growth, the 3D nanowire structures have a good potential for use as alternatives for other sieving materials. PMID:26073192

  19. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOEpatents

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-09-09

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  20. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOEpatents

    Abney, Kent D.; Kinkead, Scott A.; Mason, Caroline F. V.; Rais, Jiri

    1997-01-01

    Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  1. Strongly separated pairs of core electrons in computed ground states of small molecules.

    PubMed

    Gottlieb, Alex D; Weishäupl, Rada M

    2013-03-01

    We have performed full configuration interaction computations of the ground states of the molecules Be, BeH2, Li, LiH, B, and BH and verified that the core electrons constitute "separated electron pairs." These separated pairs of core electrons have nontrivial structure; the core pair does not simply occupy a single spatial orbital. Our method of establishing the presence of separated electron pairs is direct and conclusive. We do not fit a separated pair model; we work with the wavefunctions of interest directly. To establish that a given group of spin-orbitals contains a quasi-separated pair, we verify by direct computation that the quantum state of the electrons that occupy those spin-orbitals is nearly a pure 2-electron state.

  2. Molecular Orbital Study of the Formation of Intramolecular Hydrogen Bonding of a Ligand Molecule in a Protein Aromatic Hydrophobic Pocket.

    PubMed

    Koseki, Jun; Gouda, Hiroaki; Hirono, Shuichi

    2016-01-01

    The natural product argadin is a cyclopentapeptide chitinase inhibitor that binds to chitinase B (ChiB) from the pathogenic bacteria Serratia marcescens. N(ω)-Acetyl-L-arginine and L-aminoadipic acid of argadin form intramolecular ionic hydrogen bonds in the aromatic hydrophobic pocket of ChiB. We performed ab initio molecular orbital and density functional theory calculations to elucidate the role of this intramolecular hydrogen bonding on intermolecular interactions between argadin and ChiB. We found that argadin accrues large stabilization energies from the van der Waals dispersion interactions, such as CH-π, π-π, and π-lone pair interactions, in the aromatic hydrophobic pocket of ChiB, although intramolecular hydrogen bonding within argadin might result in loss of entropy. The intramolecular ionic hydrogen bonding formation canceled local molecular charges and provided good van der Waals interactions with surrounding aromatic residues.

  3. Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities.

    PubMed

    Mujawar, Liyakat Hamid; Norde, Willem; van Amerongen, Aart

    2013-01-21

    Non-contact inkjet printing technology is one of the most promising tools for producing microarrays. The quality of the microarray depends on the type of the substrate used for printing biomolecules. Various porous and non-porous substrates have been used in the past, but due to low production cost and easy availability, non-porous substrates like glass and plastic are preferred over porous substrates. On these non-porous substrates, obtaining spot uniformity and a high signal to noise ratio is a big challenge. In our research work, we have modified pristine glass slides using various silanes to produce a range of hydrophobic glass substrates. The hydrophobicities of the slides expressed in the contact angle (θ) of a sessile drop of water were 49°, 61°, 75°, 88° and 103°. Using a non-contact inkjet printer, microarrays of biotinylated biomolecules (BSA and IgG) were produced on these modified glass substrates, pristine (untreated) glass and also on HTA polystyrene slides. The uniformity of the spots, reflecting the distribution of the biomolecules in the spots, was analyzed and compared using confocal laser scanning microscopy (CLSM). The quality of the spots was superior on the glass slide with a contact angle of ∼75°. We also investigated the influence of the hydrophobicity of the substrate on a two-step, real diagnostic antibody assay. This nucleic acid microarray immunoassay (NAMIA) for the detection of Staphylococcus aureus showed that on highly hydrophilic (θ < 10°) and hydrophobic substrates (θ > 100°) the assay signal was low, whereas an excellent signal was obtained on the substrates with intermediate contact angles, θ ∼ 61° and θ ∼ 75°, respectively.

  4. Tuning Hydrophobicity in Abiotic Affinity Reagents: Polymer Hydrogel Affinity Reagents for Molecules with Lipid-like Domains.

    PubMed

    Chou, Beverly; Mirau, Peter; Jiang, Tian; Wang, Szu-Wen; Shea, Kenneth J

    2016-05-09

    Hydrophobic interactions often dominate the associative forces between biomacromolecules. A synthetic affinity reagent must be able to exploit and optimize these interactions. We describe synthesis of abiotic affinity reagents that sequester biomacromolecules with lipid-like domains. NIPAm-based copolymer nanoparticles (NPs) containing C4-C8 hydrophobic groups were evaluated for their affinity for lipopolysaccharides (LPS), the lipophilic component of the outer membrane of Gram-negative bacteria. Optimal affinity was found for NPs incorporating a linear C4 hydrocarbon group. 1D and 2D (1)H NMR studies revealed that in water, the longer chain (C6 and C8) alkyl groups in the hydrogel NPs were engaged in intrachain association, rendering them less available to interact with LPS. Optimal LPS-NP interaction requires maximizing hydrophobicity, while avoiding side chain aggregation. Polymer compositions with high LPS binding were grafted onto agarose beads and evaluated for LPS clearance from solution; samples containing linear C4 groups also showed the highest LPS clearance capacity.

  5. Single molecule fluorescence burst detection of DNA fragments separated by capillary electrophoresis

    SciTech Connect

    Haab, B.B.; Mathies, R.A.

    1995-09-15

    A method has been developed for detecting DNA separated by capillary gel electrophoresis (CGE) using single molecule photon burst counting. A confocal fluorescence microscope was used to observe the fluorescence bursts from single molecules of DNA multiply labeled with the thiazole orange derivative TO6 as they passed through the nearly 2-{mu}m diameter focused laser beam. Amplified photo-electron pulses from the photomultiplier are grouped into bins of 360-450 {mu}s in duration, and the resulting histogram is stored in a computer for analysis. Solutions of M13 DNA were first flowed through the capillary at various concentrations, and the resulting data were used to optimize the parameters for digital filtering using a low-pass Fourier filter, selecting a discriminator level for peak detection, and applying a peak-calling algorithm. The optimized single molecule counting method was then applied to an electrophoretic separation of M13 DNA and to a separation of pBR 322 DNA from pRL 277 DNA. Clusters of discreet fluorescence bursts were observed at the expected appearance time of each DNA band. The auto-correlation function of these data indicated transit times that were consistent with the observed electrophoretic velocity. These separations were easily detected when only 50-100 molecules of DNA per band traveled through the detection region. This new detection technology should lead to the routine analysis of DNA in capillary columns with an on-column sensitivity of nearly 100 DNA molecules/band or better. 45 refs., 10 figs.

  6. Monolithic polymer layer with gradient of hydrophobicity for separation of peptides using two-dimensional thin layer chromatography and MALDI-TOF-MS detection.

    PubMed

    Urbanova, Iva; Svec, Frantisek

    2011-08-01

    Superhydrophobic monolithic porous polymer layers supported onto glass plates with a gradient of hydrophobicity have been prepared and used for 2-D thin layer chromatography of peptides. The 50 μm-thin poly(glycidyl methacrylate-co-ethylene dimethacrylate) layers prepared using UV-initiated polymerization in a simple mold were first hydrolyzed using dilute sulfuric acid and then hydrophilized via two-step grafting of poly(ethylene glycol) methacrylate to obtain superhydrophilic plates. The hydrophobicity was then formed by photografting of lauryl methacrylate. The exposure to UV light that initiates photografting was spatially controlled using moving shutter that enabled forming of the diagonal gradient of hydrophobicity. This new concept enables the solutes to encounter the gradient for each of the two sequential developments. Practical application of our novel plates was demonstrated with a rapid 2-D separation of a mixture of model peptides gly-tyr, val-tyr-val, leucine enkephalin, and oxytocin in dual reversed-phase mode using different mobile phases in each direction. Detection of fluorescent-labeled peptides was achieved through UV light visualization while separation of native leucine enkephalin and oxytocin was monitored directly using MALDI mass spectrometry.

  7. Property evaluations and application for separation of small molecules of a nanodiamond-polymer composite monolithic column.

    PubMed

    Wang, Fengqing; Wei, Aile; Wang, Xixi; Liu, Haiyan; Bai, Ligai; Yan, Hongyuan

    2016-07-01

    A nanodiamond-polymer composite monolithic column was first prepared successfully with modified nanodiamond (ND) as monomer, ethylene glycol dimethacrylate (EDMA) as cross-linker, 1-dodecanol as porogenic agent and benzoyl peroxide/dimethylacetamide (BPO/DMA) as initiator at 35°C for 2.5h. There was a sharp increase of specific surface area with ND added about 22 times from 0mg (3.90m(2)/g) to 7mg (81.2m(2)/g) determined with BET. Characterizations including scanning electron microscopy (SEM), fourier-transform infrared spectra (FIRT) and mercury intrusion porosimetry (MIP) were used to determine the microstructure, group composition, pore size distribution (≃1.56μm) and porosity (≃0.7484μm) of the monolith. An excellent column stability was confirmed by permeability (1.258x10(-10)cm(2)) and good linearity (R(2)=0.998) corresponding to backpressures measured at different flow rates. The highest swelling ability of the composite was about (5%) and classical RPLC of the column obtained occurred with the acetonitrile concentration increasing from 20% to 85% in the mobile phase, above which another retention model of normal-phase chromatography appeared. The items of the eddy dispersion and the absorption-release kinetics were the decisional factors of the composite column compared with the factors of longitudinal diffusion, and the skeleton-eluent mass transfer resistance due to the finite diffusivity. Good separation of neutral and basic small molecules was obtained (24,350 plates/m for neutral molecules and 22,300 plates/m for basic ones) with the hydrophobicity retention mechanism, but not for the acidic ones except to regulate the pH of the mobile phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Doping effect on photoabsorption and charge-separation dynamics in light-harvesting organic molecule

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Tsuruta, Kenji; Shimojo, Fuyuki; Nakano, Aiichiro

    2016-01-01

    Using ab-initio theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC)-triethylene glycol (TEG)-C60 molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D+ and A-) in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells.

  9. Interfacial Cohesion and Assembly of Bioadhesive Molecules for Design of Long-Term Stable Hydrophobic Nanodrugs toward Effective Anticancer Therapy.

    PubMed

    Shen, Guizhi; Xing, Ruirui; Zhang, Ning; Chen, Chengjun; Ma, Guanghui; Yan, Xuehai

    2016-06-28

    The majority of anticancer drugs are poorly water-soluble and thus suffer from rather low bioavailability. Although a variety of delivery carriers have been developed for bioavailability improvement, they are severely limited by low drug loading and undesired side effects. The optimum delivery vehicle would be a biocompatible and biodegradable drug nanoparticle of uniform size with a thin but stable shell, making it soluble, preventing aggregation and enabling targeting. Here, we present a general strategy for the rational design of hydrophobic drug nanoparticles with high drug loading by means of interfacial cohesion and supramolecular assembly of bioadhesive species. We demonstrate that the pathway is capable of effectively suppressing and retarding Ostwald ripening, providing drug nanoparticles with small and uniform size and long-term colloidal stability. The final complex drug nanoparticles provide higher tumor accumulation, negligible toxicity, and enhanced antitumor activity, superior to commercial formulations. Our findings demonstrate that local, on-demand coating of hydrophobic nanoparticles is achievable through cooperation and compromise of interfacial adhesion and assembly.

  10. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics.

    PubMed

    Valeja, Santosh G; Xiu, Lichen; Gregorich, Zachery R; Guner, Huseyin; Jin, Song; Ge, Ying

    2015-01-01

    To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.

  11. Calculations on Isotope Separation by Laser Induced Photodissociation of Polyatomic Molecules. Final Report

    DOE R&D Accomplishments Database

    Lamb, W. E. Jr.

    1978-11-01

    This report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. Newton`s equations of motion were integrated for the atoms of the SF{sub 6} molecule including the laser field interaction. The first year`s work has been largely dedicated to obtaining a suitable interatomic potential valid for arbitrary configurations of the seven particles. This potential gives the correct symmetry of the molecule, the equilibrium configuration, the frequencies of the six distinct normal modes of oscillation and the correct (or assumed) value of the total potential energy of the molecule. Other conditions can easily be imposed in order to obtain a more refined potential energy function, for example, by making allowance for anharmonicity data. A suitable expression was also obtained for the interaction energy between a laser field and the polyatomic molecule. The electromagnetic field is treated classically, and it would be easily possible to treat the cases of time dependent pulses, frequency modulation and noise.

  12. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation.

    PubMed

    Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K

    2014-09-15

    Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOEpatents

    Kansa, Edward J.; Anderson, Brian L.; Wijesinghe, Ananda M.; Viani, Brian E.

    1999-01-01

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

  14. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOEpatents

    Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.

    1999-05-25

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.

  15. Communication: On the locality of Hydrogen bond networks at hydrophobic interfaces

    NASA Astrophysics Data System (ADS)

    Lambeth, Bradley P.; Junghans, Christoph; Kremer, Kurt; Clementi, Cecilia; Delle Site, Luigi

    2010-12-01

    The formation of structured hydrogen bond networks in the solvation shells immediate to hydrophobic solutes is crucial for a large number of water mediated processes. A long lasting debate in this context regards the mutual influence of the hydrophobic solute into the bulk water and the role of the hydrogen bond network of the bulk in supporting the solvation structure around a hydrophobic molecule. In this context we present a molecular dynamics study of the solvation of various hydrophobic molecules where the effect of different regions around the solvent can be analyzed by employing an adaptive resolution method, which can systematically separate local and nonlocal factors in the structure of water around a hydrophobic molecule. A number of hydrophobic solutes of different sizes and two different model potential interactions between the water and the solute are investigated.

  16. Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil-water separation during oil spill cleanup.

    PubMed

    Wu, Min-Nan; Maity, Jyoti Prakash; Bundschuh, Jochen; Li, Che-Feng; Lee, Chin-Rong; Hsu, Chun-Mei; Lee, Wen-Chien; Huang, Chung-Ho; Chen, Chien-Yen

    2017-10-15

    The process of separating oil and water from oil/water mixtures is an attractive strategy to answer the menace caused by industrial oil spills and oily wastewater. In addition, water coproduced during hydrocarbon exploitation, which can be an economic burden and risk for freshwater resources, can become an important freshwater source after suitable water-oil separation. For oil-water separation purposes, considerable attention has been paid to the preparation of hydrophobic-oleophilic materials with modified surface roughness. However, due to issues of thermodynamic instability, costly and complex methods as well as lack of ecofriendly compounds, most of hydrophobic surface modified particles are of limited practical application. The study presents a facile procedure, to synthesize crystalline particles of calcite, which is the most stable polymorph of CaCO3 from industrial CaCO3 using oleic acid as an additive in a one-pot synthesis method. The XRD results show that the synthesized particles were a well-crystallized form of calcite. The FTIR results reflect the appearance of the alkyl groups from the oleic acid in synthesized particles which promotes the production of calcite with 'rice shape' (1.64 μm) (aggregated by spherical nanoparticle of 19.56 nm) morphology with concomitant changes in its surface wettability from hydrophilic to hydrophobic. The synthesized particles exhibited near to super hydrophobicity with ∼99% active ratio and a contact angle of 143.8°. The synthesized hydrophobic calcite particles had an oleophilic nature where waste diesel oil adsorption capacity of synthesized calcium carbonate (HCF) showed a very high (>99%) and fast (7 s) oil removal from oil-water mixture. The functional group of long alkyl chain including of CO bounds may play critical roles for adsorption of diesel oils. Moreover, the thermodynamically stable crystalline polymorph calcite (compared to vaterite) exhibited excellent recyclability. The isothermal study

  17. Symmetry of extremely floppy molecules: Molecular states beyond rotation-vibration separation

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-10-01

    Traditionally, molecules are theoretically described as near-static structures rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in highly fluxional molecules, where all vibrational motions have amplitudes comparable in size to the linear dimensions of the molecule. An example is protonated methane (CH 5+ ) [P. Kumar and D. Marx, Phys. Chem. Chem. Phys. 8, 573 (2006); Z. Jin et al., J. Phys. Chem. A 110, 1569 (2006); and A. S. Petit et al., J. Phys. Chem. A 118, 7206 (2014)]. For these molecules, customary theory fails to simulate reliably even the low-energy spectrum [T. Oka, Science 347, 1313-1314 (2015) and O. Asvany et al., Science 347, 1346-1349 (2015)]. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group [P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC Monograph Publishing Program (NRC Research Press, 2006)]. In this article, we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are isomorphic to subgroups of the special orthogonal group in three dimensions SO(3). This leads to a group theoretical foundation of the technique of equivalent rotations [H. Longuet-Higgins, Mol. Phys. 6, 445 (1963)]. The group G240 (the MS group of protonated methane) represents, to the best of our knowledge, the first example of a MS group which is not isomorphic to a subgroup of SO(3) (nor of O(3) or of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We discuss here the consequences of this. In

  18. Size, separation, structural order, and mass density of molecules packing in water and ice.

    PubMed

    Huang, Yongli; Zhang, Xi; Ma, Zengsheng; Li, Wen; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Sun, Chang Q

    2013-10-21

    The structural symmetry and molecular separation in water and ice remain uncertain. We present herewith a solution to unifying the density, the structure order and symmetry, the size (H-O length dH), and the separation (d(OO) = d(L) + d(H) or the O:H length d(L)) of molecules packing in water and ice in terms of statistic mean. This solution reconciles: i) the d(L) and the d(H) symmetrization of the O:H-O bond in compressed ice, ii) the d(OO) relaxation of cooling water and ice and, iii) the d(OO) expansion of a dimer and between molecules at water surface. With any one of the d(OO), the density ρ(g·cm⁻³), the d(L), and the d(H), as a known input, one can resolve the rest quantities using this solution that is probing conditions or methods independent. We clarified that: i) liquid water prefers statistically the mono-phase of tetrahedrally-coordinated structure with fluctuation, ii) the low-density phase (supersolid phase as it is strongly polarized with even lower density) exists only in regions consisting molecules with fewer than four neighbors and, iii) repulsion between electron pairs on adjacent oxygen atoms dictates the cooperative relaxation of the segmented O:H-O bond, which is responsible for the performance of water and ice.

  19. Pulsed-Field Electrophoresis: Application of a Computer Model to the Separation of Large DNA Molecules

    NASA Astrophysics Data System (ADS)

    Lalande, Marc; Noolandi, Jaan; Turmel, Chantal; Rousseau, Jean; Slater, Gary W.

    1987-11-01

    The biased reptation theory has been applied to the pulsed-field electrophoresis of DNA in agarose gels. A computer simulation of the theoretical model that calculates the mobility of large DNA molecules as a function of agarose pore size, DNA chain properties, and electric field conditions has been used to generate mobility curves for DNA molecules in the size range of the larger yeast chromosomes. Pulsed-field electrophoresis experiments resulting in the establishment of an electrophoretic karyotype for yeast, where the mobility of the DNA fragments is a monotonic function of molecular size for the entire size range that is resolved (200-2200 kilobase pairs), has been compared to the theoretical mobility curves generated by the computer model. The various physical mechanisms and experimental conditions responsible for band inversion and improved electrophoretic separation are identified and discussed in the framework of the model.

  20. Synthesis and characterization of a porous and hydrophobic cellulose-based composite for efficient and fast oil-water separation.

    PubMed

    Wang, Xiangyun; Xu, Shimei; Tan, Yun; Du, Juan; Wang, Jide

    2016-04-20

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, silanized cellulose was prepared by sol-gel reaction between microcrystalline cellulose (MCC) and hexadecyltrimethoxysilane (HDTMS) using for oil-water separation. The silanized cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). A higher mass ratio of HDTMS to MCC made silanized cellulose become looser, and showed lower water absorbency. The silanized cellulose exhibited specific separation performance towards vegetable oil-water mixture (not for mineral oil-water mixture) with separation efficiency of 99.93%. Moreover, the separation was fast with a water flux of 4628.5Lm(-2)h(-1). The separation efficiency still remained at 99.77% even after recycling for 10 times.

  1. The separation between the 5′-3′ ends in long RNA molecules is short and nearly constant

    PubMed Central

    Leija-Martínez, Nehemías; Casas-Flores, Sergio; Cadena-Nava, Rubén D.; Roca, Joan A.; Mendez-Cabañas, José A.; Gomez, Eduardo; Ruiz-Garcia, Jaime

    2014-01-01

    RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states. Despite an ensemble of different structures, it has been theoretically proposed that the separation between the 5′ and 3′ ends of long single-stranded RNA molecules (ssRNA) remains constant, independent of their base content and length. Here, we present the first experimental measurements of the end-to-end separation in long ssRNA molecules. To determine this separation, we use single molecule Fluorescence Resonance Energy Transfer of fluorescently end-labeled ssRNA molecules ranging from 500 to 5500 nucleotides in length, obtained from two viruses and a fungus. We found that the end-to-end separation is indeed short, within 5–9 nm. It is remarkable that the separation of the ends of all RNA molecules studied remains small and similar, despite the origin, length and differences in their secondary structure. This implies that the ssRNA molecules are ‘effectively circularized’ something that might be a general feature of RNAs, and could result in fine-tuning for translation and gene expression regulation. PMID:25428360

  2. The separation between the 5'-3' ends in long RNA molecules is short and nearly constant.

    PubMed

    Leija-Martínez, Nehemías; Casas-Flores, Sergio; Cadena-Nava, Rubén D; Roca, Joan A; Mendez-Cabañas, José A; Gomez, Eduardo; Ruiz-Garcia, Jaime

    2014-12-16

    RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states. Despite an ensemble of different structures, it has been theoretically proposed that the separation between the 5' and 3' ends of long single-stranded RNA molecules (ssRNA) remains constant, independent of their base content and length. Here, we present the first experimental measurements of the end-to-end separation in long ssRNA molecules. To determine this separation, we use single molecule Fluorescence Resonance Energy Transfer of fluorescently end-labeled ssRNA molecules ranging from 500 to 5500 nucleotides in length, obtained from two viruses and a fungus. We found that the end-to-end separation is indeed short, within 5-9 nm. It is remarkable that the separation of the ends of all RNA molecules studied remains small and similar, despite the origin, length and differences in their secondary structure. This implies that the ssRNA molecules are 'effectively circularized' something that might be a general feature of RNAs, and could result in fine-tuning for translation and gene expression regulation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. PHEA-g-PMMA Well-Defined Graft Copolymer: ATRP Synthesis, Self-Assembly, and Synchronous Encapsulation of Both Hydrophobic and Hydrophilic Guest Molecules.

    PubMed

    Ding, Aishun; Xu, Jie; Gu, Guangxin; Lu, Guolin; Huang, Xiaoyu

    2017-10-03

    A series of well-defined amphiphilic graft copolymer bearing a hydrophilic poly(2-hydroxyethyl acrylate) (PHEA) backbone and hydrophobic poly(methyl methacrylate) (PMMA) side chains was synthesized by successive reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) through the grafting-from strategy. A well-defined PHEA-based backbone with Cl-containing ATRP initiating group in every repeated unit (M w/M n = 1.08), poly(2-hydroxyethyl 2-((2-chloropropanoyloxy)methyl)acrylate) (PHECPMA), was first prepared by RAFT homopolymerization of 2-hydroxyethyl 2-((2-chloropropanoyloxy)methyl)acrylate (HECPMA), a Cl-containing trifunctional acrylate. ATRP of methyl methacrylate was subsequently initiated by PHECPMA homopolymer to afford the target well-defined poly(2-hydroxyethyl acrylate)-graft-poly(methyl methacrylate) (PHEA-g-PMMA) graft copolymers (M w/M n ≤ 1.36) with 34 PMMA side chains and 34 pendant hydroxyls in PHEA backbone using CuCl/dHbpy as catalytic system. The critical micelle concentration (cmc) of the obtained graft copolymer was determined by fluorescence spectroscopy using N-phenyl-1-naphthylamine as probe while micellar morphologies in aqueous media were visualized by transmission electron microscopy. Interestingly, PHEA-g-PMMA graft copolymer could self-assemble into large compound micelles rather than common spherical micelles, which can encapsulate hydrophilic rhodamine 6 G and hydrophobic pyrene separately or simultaneously.

  4. Doping effect on photoabsorption and charge-separation dynamics in light-harvesting organic molecule

    SciTech Connect

    Ohmura, Satoshi; Tsuruta, Kenji; Shimojo, Fuyuki; Nakano, Aiichiro

    2016-01-15

    Using ab-initio theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC)-triethylene glycol (TEG)–C{sub 60} molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D{sup +} and A{sup -}) in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells.

  5. Dihydrogen phosphate-water tape and layers vs dihydrogen phosphate layers tuned by hydrophobic isomeric pyridine-diamine functionalized molecules

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Liu, Tong-Peng; Huo, Li-Hua; Deng, Zhao-Peng; Gao, Shan

    2017-01-01

    Assembly of six isomeric pyridine-diamine-based molecules, N,N‧-bis(pyridin-4-ylmethyl)ethane-1,2-diamine (M1), N,N‧-bis(pyridin-3-ylmethyl)ethane-1,2-diamine (M2), N,N‧-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (M3), N,N‧-bis(pyridin-4-ylmethyl)propane-1,3-diamine (M4), N,N‧-bis(pyridin-3-ylmethyl)propane-1,2-diamine (M5), and N,N‧-bis(pyridin-2-ylmethyl)propane-1,3-diamine (M6), with phosphoric acid (H3PO4) in different ratio (1:2 and 1:4), leads to the formation of nine salts, H2M12+·2H2PO4-·4H2O (1), H2M22+·2H2PO4-·2H2O (2), H2M32+·2H2PO4-·2H2O (3), H4M14+·4H2PO4- (4), H4M24+·4H2PO4- (5), H4M34+·4H2PO4- (6), H2M42+·2H2PO4-·3H2O (7), 2H2M52+·4H2PO4-·2H3PO4 (8), and H2M62+·2H2PO4- (9), which have been characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. Structural analyses indicate that hydrogen-bonding patterns of H2PO4- anions, conformation of protonated cations can effectively influence the supramolecular architectures through diverse non-covalent interactions. Hydrous salts 1-3 and 7 present 2D and 3D host-guest supramolecular networks, in which the connection of H2PO4- anions and water molecules generates diverse tape and layer motifs. H2PO4- anions in anhydrous salts 4-6 interconnect with each other through hydrogen bonds to form two types of layers, which are joined by discrete H4M4+ cations into 3D inorganic-organic hybrid supramolecular networks. Salts 8-9 also present 2D and 3D host-guest supramolecular networks where the interconnection of H2PO4- anions and its combination with H3PO4 molecules leads to diverse layers. Luminescent analyses indicate that salts 1-9 exhibit violet and blue emission maximum in the range of 390-467 nm at room temperature.

  6. Separation of large DNA molecules by size exclusion chromatography-based microchip with on-chip concentration structure

    NASA Astrophysics Data System (ADS)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2016-06-01

    The separation of DNA molecules according to their size represents a fundamental bioanalytical procedure. Here, we report the development of a chip-sized device, consisting of micrometer-sized fence structures fabricated in a microchannel, for the separation of large DNA molecules (over 10 kbp) based on the principle of size exclusion chromatography (SEC). In order to achieve separation, two approaches were utilized: first, the DNA samples were concentrated immediately prior to separation using nanoslit structures, with the aim of improving the resolution. Second, a theoretical model of SEC-based separation was established and applied in order to predict the optimal voltage range for separation. In this study, we achieved separation of λ DNA (48.5 kbp) and T4 DNA (166 kbp) using the present SEC-based microchip.

  7. Channel-selective independent sorption and collection of hydrophilic and hydrophobic molecules by Cs2[Cr3O(OOCC2H5)6(H2O)3]2[alpha-SiW12O40] ionic crystal.

    PubMed

    Jiang, Chunjie; Lesbani, Aldes; Kawamoto, Ryosuke; Uchida, Sayaka; Mizuno, Noritaka

    2006-11-08

    An ionic crystal of Cs2[Cr3O(OOCC2H5)6(H2O)3]2[alpha-SiW12O40].4H2O 1a with hydrophilic and hydrophobic channels has been designed and successfully synthesized. The guest-free phase 1b sorbs dichloromethane and water in the hydrophobic and hydrophilic channels, respectively. The rate and equilibrium amount of the dichloromethane sorption into the hydrophobic channel and those of water into the hydrophilic channel were independent of each other. The sorption properties can be applied to the channel-selective sorption and collection of hydrophobic (dichloromethane) and hydrophilic (water) molecules from the mixture.

  8. Aqueous Phase Separation as a Possible Route to Compartmentalization of Biological Molecules

    PubMed Central

    2012-01-01

    How could the incredible complexity of modern cells evolve from something simple enough to have appeared in a primordial soup? This enduring question has sparked the interest of researchers since Darwin first considered his theory of natural selection. Organic molecules, even potentially functional molecules including peptides and nucleotides, can be produced abiotically. Amphiphiles such as surfactants and lipids display remarkable self-assembly processes including the spontaneous formation of vesicles resembling the membranes of living cells. Nonetheless, numerous questions remain. Given the presumably dilute concentrations of macromolecules in the prebiotic pools where the earliest cells are thought to have appeared, how could the necessary components become concentrated and encapsulated within a semipermeable membrane? What would drive the further structural complexity that is a hallmark of modern living systems? The interior of modern cells is subdivided into microcompartments such as the nucleoid of bacteria or the organelles of eukaryotic cells. Even within what at first appears to be a single compartment, for example, the cytoplasm or nucleus, chemical composition is often nonuniform, containing gradients, macromolecular assemblies, and/or liquid droplets. What might the internal structure of intermediate evolutionary forms have looked like? The nonideal aqueous solution chemistry of macromolecules offers an attractive possible answer to these questions. Aqueous polymer solutions will form multiple coexisting thermodynamic phases under a variety of readily accessible conditions. In this Account, we describe aqueous phase separation as a model system for biological compartmentalization in both early and modern cells, with an emphasis on systems that have been encapsulated within a lipid bilayer. We begin with an introduction to aqueous phase separation and discuss how this phenomenon can lead to microcompartmentalization and could facilitate biopolymer

  9. Aqueous phase separation as a possible route to compartmentalization of biological molecules.

    PubMed

    Keating, Christine D

    2012-12-18

    How could the incredible complexity of modern cells evolve from something simple enough to have appeared in a primordial soup? This enduring question has sparked the interest of researchers since Darwin first considered his theory of natural selection. Organic molecules, even potentially functional molecules including peptides and nucleotides, can be produced abiotically. Amphiphiles such as surfactants and lipids display remarkable self-assembly processes including the spontaneous formation of vesicles resembling the membranes of living cells. Nonetheless, numerous questions remain. Given the presumably dilute concentrations of macromolecules in the prebiotic pools where the earliest cells are thought to have appeared, how could the necessary components become concentrated and encapsulated within a semipermeable membrane? What would drive the further structural complexity that is a hallmark of modern living systems? The interior of modern cells is subdivided into microcompartments such as the nucleoid of bacteria or the organelles of eukaryotic cells. Even within what at first appears to be a single compartment, for example, the cytoplasm or nucleus, chemical composition is often nonuniform, containing gradients, macromolecular assemblies, and/or liquid droplets. What might the internal structure of intermediate evolutionary forms have looked like? The nonideal aqueous solution chemistry of macromolecules offers an attractive possible answer to these questions. Aqueous polymer solutions will form multiple coexisting thermodynamic phases under a variety of readily accessible conditions. In this Account, we describe aqueous phase separation as a model system for biological compartmentalization in both early and modern cells, with an emphasis on systems that have been encapsulated within a lipid bilayer. We begin with an introduction to aqueous phase separation and discuss how this phenomenon can lead to microcompartmentalization and could facilitate biopolymer

  10. Magnetic solid sulfonic acid decorated with hydrophobic regulators: a combinatorial and magnetically separable catalyst for the synthesis of α-aminonitriles.

    PubMed

    Mobaraki, Akbar; Movassagh, Barahman; Karimi, Babak

    2014-07-14

    A three-component, Strecker reaction of a series of aldehydes or ketones, amines, and trimethylsilyl cyanide for the synthesis of α-aminonitriles in the presence of a catalytic amount of a magnetic solid sulfonic acid catalyst, Fe3O4@SiO2@Me&Et-PhSO3H under solvent-free conditions have been investigated. This catalyst, with a combination of hydrophobicity and acidity on the Fe3O4@SiO2 core-shell of the magnetic nanobeads, as well as its water-resistant property, enabled easy mass transfer and catalytic activity in the Strecker reaction. The catalyst was easily separated by an external magnet and the recovered catalyst was reused in 6 successive reaction cycles without any significant loss of activity.

  11. Synthetic, structural, and theoretical investigations of alkali metal germanium hydrides--contact molecules and separated ions.

    PubMed

    Teng, Weijie; Allis, Damian G; Ruhlandt-Senge, Karin

    2007-01-01

    The preparation of a series of crown ether ligated alkali metal (M=K, Rb, Cs) germyl derivatives M(crown ether)nGeH3 through the hydrolysis of the respective tris(trimethylsilyl)germanides is reported. Depending on the alkali metal and the crown ether diameter, the hydrides display either contact molecules or separated ions in the solid state, providing a unique structural insight into the geometry of the obscure GeH3- ion. Germyl derivatives displaying M--Ge bonds in the solid state are of the general formula [M([18]crown-6)(thf)GeH3] with M=K (1) and M=Rb (4). The compounds display an unexpected geometry with two of the GeH3 hydrogen atoms closely approaching the metal center, resulting in a partially inverted structure. Interestingly, the lone pair at germanium is not pointed towards the alkali metal, rather two of the three hydrides are approaching the alkali metal center to display M--H interactions. Separated ions display alkali metal cations bound to two crown ethers in a sandwich-type arrangement and non-coordinated GeH3- ions to afford complexes of the type [M(crown ether)2][GeH3] with M=K, crown ether=[15]crown-5 (2); M=K, crown ether=[12]crown-4 (3); and M=Cs, crown ether=[18]crown-6 (5). The highly reactive germyl derivatives were characterized by using X-ray crystallography, 1H and 13C NMR, and IR spectroscopy. Density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) calculations were performed to analyze the geometry of the GeH3- ion in the contact molecules 1 and 4.

  12. Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules.

    PubMed

    Panapitiya, Nimanka P; Wijenayake, Sumudu N; Nguyen, Do D; Huang, Yu; Musselman, Inga H; Balkus, Kenneth J; Ferraris, John P

    2015-08-26

    An immiscible polymer blend comprised of high-performance copolyimide 6FDA-DAM:DABA(3:2) (6FDD) and polybenzimidazole (PBI) was compatibilized using 2-methylimidazole (2-MI), a commercially available small molecule. Membranes were fabricated from blends of 6FDD:PBI (50:50) with and without 2-MI for H2/CO2 separations. The membranes demonstrated a matrix-droplet type microstructure as evident with scanning electron microscopy (SEM) imaging where 6FDD is the dispersed phase and PBI is the continuous phase. In addition, membranes with 2-MI demonstrated a uniform microstructure as observed by smaller and more uniformly dispersed 6FDD domains in contrast to 6FDD:PBI (50:50) blend membranes without 2-MI. This compatibilization effect of 2-MI was attributed to interfacial localization of 2-MI that lowers the interfacial energy similar to a surfactant. Upon the incorporation of 2-MI, the H2/CO2 selectivity improved remarkably, compared to the pure blend, and surpassed the Robeson's upper bound. To our knowledge, this is the first report of the use of a small molecule to compatibilize a high-performance immiscible polymer blend. This approach could afford a novel class of membranes in which immiscible polymer blends can be compatibilized in an economical and convenient fashion.

  13. Chiral organic molecules and enantiomeric separation in the ISM and pre-cometary ices

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Dartois, Emmanuel; Deboffle, Dominique; D'Hendecourt, Louis; Nahon, Laurent; Blanot, Didier; Auger, Geneviève; Barbier, Bernard; Meierhenrich, Uwe

    The MICMOC -- Matière Interstellaire et Cométaire, Molécules Organiques Complexes, -- i.e. Interstellar and Cometary Matter, Complex Organic Molecules experiment aims at studying the photo- and thermochemical evolution of dirty-ice mantles (H2O, CO, CH4, CH3OH, NH3, etc.), known to be present on interstellar grains observed in molecular clouds around protostars and in comets. The first step of our study is to determine the chemical composition of these ices by comparison of the spectra obtained in laboratory experiments with the spectroscopic data from the European infrared space telescope ISO. This firstly allowed us to identify and to quantify simples molecules such as H2O, CO, CO2 and CH4, as well as to understand the shapes of some infrared features (shifts, band widths, splitting) resulting from molecular complexes interactions within the ice structure. The irradiation of these ices with UV light yields species such as CO2, H2CO, NH4+ and OCN-. A part of them have been already identified in astrophysical sources. If we keep on irradiating, more complex molecules are formed. The heating of the sample to room temperature leads to the formation of a residue which can be analyzed by chemaical techniques (GC-MS and HPLC). We thus detected molecules such as glycine, alanine or valine, which are amino acids known to play a role in prebiotic chemistry. The extension of this experiment, Chiral MICMOC, aims at repeting the MICMOC experiment using the synchrotron circularly polarized radiation of the SU5 line in LURE. The purpose is to reveal and study the apparition of an enantiomeric excess for one or two of those amino acids, and then link these results to the excess observed in the organic matter of some primitive meteorites. Preliminary results have shown the validity of our approach with the production of minute amounts of amino acids. Enantiomeric separation has not yet been possible on these too small quantities. Another series of experiments is planned for

  14. Instantaneous inclusion of a polynucleotide and hydrophobic guest molecules into a helical core of cationic beta-1,3-glucan polysaccharide.

    PubMed

    Ikeda, Masato; Hasegawa, Teruaki; Numata, Munenori; Sugikawa, Kouta; Sakurai, Kazuo; Fujiki, Michiya; Shinkai, Seiji

    2007-04-04

    We succeeded in the quantitative and selective introduction of an ammonium cationic group into the C6 position of Curdlan (CUR) by "Click Chemistry", and the obtained cationic Curdlan (CUR-N+) showed good solubility in water. ORD studies suggested that CUR-N+ adopts a single-stranded structure, different from a right-handed, triple-stranded helical structure of beta-1,3-glucan polysaccharides in water. It has been revealed that the polymeric complexes of CUR-N+ with polymeric guest molecules, such as polycytidylic acid (poly(C)), permethyldecasilane (PMDS), and single-walled carbon nanotubes (SWNTs), can be easily obtained by just mixing them in water with sonication. The characterization of the resultant CUR-N+-poly(C) complexes by UV-vis, CD spectroscopic measurements, and AFM and TEM observations revealed that they have stoichiometric, nanosized fibrous structures. From these experimental results as well as our precedent studies (e.g., refs 6 and 23), we propose that the complexation would be driven by the cooperative action of (1) the hydrogen-bonding interaction between the OH group at the C2 position and hydrogen-bonding sites of the cytosine ring (ref 6d), (2) the electrostatic interaction between the ammonium cation and the phosphate anion (ref 23), as well as (3) the background hydrophobic interaction. In addition, the complexed polynucleotide chain showed a strong resistance against enzymatic hydrolysis. Likewise, the dispersion of PMDS and SWNTs in water by CUR-N+ and the fibrous structures of the complexes were confirmed by spectroscopic measurements as well as microscopic observations. These binding properties of CUR-N+, which can proceed spontaneously in water, clearly differ from those of schizophyllan (SPG), which inevitably require a denature-renature process corresponding to a conversion of a triple strand to single strands induced by DMSO or base for inclusion of polymeric guest molecules.

  15. Hydrophobic Compounds Reshape Membrane Domains

    PubMed Central

    Barnoud, Jonathan; Rossi, Giulia; Marrink, Siewert J.; Monticelli, Luca

    2014-01-01

    Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo. PMID:25299598

  16. Preparation of a novel weak cation exchange/hydrophobic interaction chromatography dual-function polymer-based stationary phase for protein separation using "thiol-ene click chemistry".

    PubMed

    Yang, Fan; Bai, Quan; Zhao, Kailou; Gao, Dong; Tian, Lei

    2015-02-01

    A novel dual-function mixed-mode stationary phase based on poly(glycidyl methacrylate-co-ethylene dimethacrylate) microspheres was synthesized by thiol-ene click chemistry and characterized by infrared spectroscopy and elemental analysis. The new system displays both hydrophobic interaction chromatography (HIC) character in a high salt concentration mobile phase, and weak cation exchange (WCX) chromatography character in a low salt concentration mobile phase. It can be used to separate proteins in both ion-exchange chromatography (IEC) mode and HIC mode. The resolution and selectivity of the stationary phase were evaluated in both HIC mode and IEC mode using protein standards. In comparison with the conventional WCX and HIC columns, the results were satisfactory and acceptable. Protein mass and bioactivity recoveries of more than 96% can be achieved in both HIC mode and IEC mode using this column. The results indicate that the novel dual-function mixed-mode column in many cases can replace the use of two individual WCX and HIC columns. In addition, the effects on protein separation of different ligand structures in the dual-function stationary phase and the pH of the mobile phase used were also investigated in detail. The results show that electrostatic interaction of the ligand with proteins must match the hydrophobicity of the ligand, which is an important factor to prepare the dual-function stationary phase. On the basis of this dual-function mixed-mode chromatography column, a new two-dimensional liquid chromatography technology with a single column system was also developed in this study, and was used to renature and purify recombinant human interferon-γ from inclusion bodies. The mass recovery, purity, and specific bioactivity obtained for the purified recombinant human interferon-γ were 87.2%, 92.4%, and 2.8 × 10(7) IU/mg, respectively, in IEC mode, and 83.4%, 95.2%, and 4.3 × 10(7) IU/mg, respectively, in HIC mode. The results indicate that the

  17. Creation of quantum entanglement with two separate diamond nitrogen vacancy centers coupled to a photonic molecule

    SciTech Connect

    Liu, Siping; Yu, Rong; Li, Jiahua; Wu, Ying

    2013-12-28

    We explore the entanglement generation and the corresponding dynamics between two separate nitrogen-vacancy (NV) centers in diamond nanocrystal coupled to a photonic molecule consisting of a pair of coupled photonic crystal (PC) cavities. By calculating the entanglement concurrence with readily available experimental parameters, it is found that the entanglement degree strongly depends on the cavity-cavity hopping strength and the NV-center-cavity detuning. High concurrence peak and long-lived entanglement plateau can be achieved by properly adjusting practical system parameters. Meanwhile, we also discuss the influence of the coupling strength between the NV centers and the cavity modes on the behavior of the concurrence. Such a PC-NV system can be employed for quantum entanglement generation and represents a building block for an integrated nanophotonic network in a solid-state cavity quantum electrodynamics platform. In addition, the present theory can also be applied to other similar systems, such as two single quantum emitters positioned close to a microtoroidal resonator with the whispering-gallery-mode fields propagating inside the resonator.

  18. Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatoraphy, part 2: Optimization of the phase system.

    PubMed

    Cusumano, Alessandra; Guillarme, Davy; Beck, Alain; Fekete, Szabolcs

    2016-03-20

    The goal of this second part was (i) to evaluate the performance of commercially available HIC columns and (ii) to develop a fast and automated "phase system" (i.e. stationary phase and salt type) optimization procedure for the analytical characterization of protein biopharmaceuticals. For this purpose, various therapeutic mAbs (denosumab, palivizumab, pertuzumab, rituximab and bevacizumab) and a cysteine linked ADC (brentuximab-vedotin) were selected as model substances. Several HIC column chemistries (butyl, ether and alkylamide) from different providers were evaluated in four different buffer systems (sodium acetate, sodium chloride, ammonium acetate and ammonium sulfate). As stationary phases, the historical TSK gel Butyl NPR phase and the brand new Thermo MAbPac HIC-10 were found to be the most versatile ones in terms of hydrophobicity, peak capacity and achievable selectivity. As salt types, ammonium sulfate and sodium acetate were found to be particularly well adapted for the analytical characterization of mAbs and ADCs, but it is important to keep in mind that a concentration 2 to 3-times higher of sodium acetate versus ammonium sulfate is required to achieve a similar retention in HIC. After selection of the most appropriate phase systems, the optimization of the separation can be carried out by computer assisted retention modeling in a high throughput manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Optimization of liquid chromatographic method for the separation of nine hydrophilic and hydrophobic components in Salviae miltiorrhizae Radix et Rhizoma (Danshen) using microemulsion as eluent.

    PubMed

    Huang, Hongzhang; Xuan, Xueyi; Xu, Liyuan; Yang, Jianrui; Gao, Chongkai; Li, Ning

    2014-04-01

    In this study, we have proposed and developed a novel, environmental-friendly and simple method for separation of nine hydrophilic and hydrophobic components in Danshen using microemulsion liquid chromatography. The proposed method was optimized via the preliminary screening experiment and the experimental design. The following factors were investigated in preliminary screening experiment: pH of mobile phase, column type, the nature of surfactant, the nature of oil phase and additives. In order to simultaneously optimize resolution and analysis time, the chromatographic optimization function (COF) was adopted to evaluate chromatograms. The central composite design (CCD) was used to create the matrix of experiments for mapping the chromatographic response surface. Finally, the COF values were fitted into a second order polynomial model and the response surface methodology (RSM) was employed to find the optimal eluent constituents. The reliability of the established model was confirmed by the good agreement obtained between experimental data and predictive values. Based on the results from the preliminary screening experiment and the CCD optimization, the optimal mobile phase was identified as a solution consisting of 6.68% (w/w) polyoxyethylene lauryl ether (Brij35), 0.84% (w/w) cyclohexane, 6.92% (w/w) n-butanol, 85.56% (w/w) phosphate buffer (pH 6.60) and 8mM cetyltrimethyl ammonium bromide (CTAB).

  20. Two variables dominating the retention of intact proteins under gradient elution with simultaneous ultrafast high-resolution separation by hydrophobic interaction chromatography.

    PubMed

    Geng, Xindu; Jia, Xiaodan; Liu, Peng; Wang, Fei; Yang, Xiaoming

    2015-10-07

    The retention of intact proteins under gradient elution in hydrophobic interaction chromatography (HIC) was found to be governed by two variables, the steady region (SR) and the migration region (MR). In the SR, the proteins are immobilized by the strong interactions with the stationary phase such that the retention time is independent of the column length. In the MR, the proteins also interact with the stationary phase, but they move normally, thus the retention time depends on their partition coefficients and the column length. The SR can be used as an operation space (OP) for high-throughput protein analysis by 1D-LC using short columns at high flow rates to maintain a high resolution. The OP can also be employed for all assisted operations in online 2D-LC. Based on the steady region/migration region optimization strategy developed in this study, five successive complete separations of seven intact proteins were performed in a HIC cake in less than 5 min, and a crude extract of ribonuclease A from bovine pancreas was purified using online 2D-LC to 95.8% purity with 93.2% mass recovery in 45 min. This approach can be used to expedite the purification of drug-target proteins and should therefore be of interest to the pharmaceutical industry.

  1. Interaction of gas molecules with crystalline polymer separation membranes: Atomic-scale modeling and first-principles calculations

    SciTech Connect

    Sergey N. Rashkeev; Eric S. Peterson

    2011-11-01

    Carbon dioxide (CO2)-induced plasticization can significantly decrease the gas separation performance of membranes in high-temperature or high pressure conditions, such as industrial methane (CH4) separations. In this paper, we investigated the crystalline phase of three polymers (polybenzimidazole (PBI), Bis(isobutylcarboxy)polybenzimidazole (PBI-Butyl), and KaptonTM) and interactions between gas molecules (CO2 and N2) and these polymers. A novel, molecular dynamics (MD) based, computational technique was employed to find unknown crystalline structures of these polymer materials. The interaction of CO2 and N2 gases with these crystals was studied by first-principles calculations and by classical MD simulations. The results showed that the packing structure and the interlayer coupling in polymer crystals determine the permeability and diffusivity of gas molecules. This methodology also allows prediction of plastic swelling in these materials caused by gas molecules absorbed in the polymer matrix.

  2. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    NASA Astrophysics Data System (ADS)

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-11-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.

  3. A highly porous metal-organic framework for large organic molecule capture and chromatographic separation.

    PubMed

    Li, Pei-Zhou; Su, Jie; Liang, Jie; Liu, Jia; Zhang, Yuanyuan; Chen, Hongzhong; Zhao, Yanli

    2017-03-25

    A highly porous metal-organic framework (MOF) with large pores was successfully obtained via solvothermal assembly of a "click"-extended tricarboxylate ligand and Zn(ii) ions. The inherent feature of large-molecule accessible pores endows the MOF with a unique property for utilization toward large guest molecules.

  4. Hydrophobic encapsulation of hydrocarbon gases.

    PubMed

    Leontiev, Alexander V; Saleh, Anas W; Rudkevich, Dmitry M

    2007-04-26

    [reaction: see text] Encapsulation data for hydrophobic hydrocarbon gases within a water-soluble hemicarcerand in aqueous solution are reported. It is concluded that hydrophobic interactions serve as the primary driving force for the encapsulation, which can be used for the design of gas-separating polymers with intrinsic inner cavities.

  5. Fabrication of zeolitic imidazolate framework-8-methacrylate monolith composite capillary columns for fast gas chromatographic separation of small molecules.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah

    2015-08-07

    A composite zeolitic imidazolate framework-8 (ZIF-8) with a butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.) was fabricated to enhance the separation efficiency of methacrylate monoliths toward small molecules using conventional low-pressure gas chromatography in comparison with a neat butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.). The addition of 10mgmL(-1) ZIF-8 micro-particles increased the BET surface area of BuMA-co-EDMA by 3.4-fold. A fast separation of five linear alkanes in 36s with high resolution (Rs≥1.3) was performed using temperature program. Isothermal separation of the same sample also showed a high efficiency (3315platesm(-1) for octane) at 0.89min. Moreover, the column was able to separate skeletal isomers, such as iso-octane/octane and 2-methyl octane/nonane. In addition, an iso-butane/iso-butylene gas mixture was separated at ambient temperature. Comparison with an open tubular TR-5MS column (30m long×250μm i.d.) revealed the superiority of the composite column in separating the five-membered linear alkane mixture with 4-5 times increase in efficiency and a total separation time of 0.89min instead of 4.67min. A paint thinner sample was fully separated using the composite column in 2.43min with a good resolution (Rs≥0.89). The perfect combination between the polymeric monolith, with its high permeability, and ZIF-8, with its high surface area and flexible 0.34nm pore openings, led to the fast separation of small molecules with high efficiency and opened a new horizon in GC applications.

  6. The hydrophobic force: measurements and methods.

    PubMed

    Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R; Chan, Derek Y C

    2014-09-14

    The hydrophobic force describes the attraction between water-hating molecules (and surfaces) that draws them together, causing aggregation, phase separation, protein folding and many other inherent physical phenomena. Attempts have been made to isolate the range and magnitude of this interaction between extended surfaces for more than four decades, with wildly varying results. In this perspective, we critically analyse the application of common force-measuring techniques to the hydrophobic force conundrum. In doing so, we highlight possible interferences to these measurements and provide physical rationalisation where possible. By analysing the most recent measurements, new approaches to establishing the form of this force become apparent, and we suggest potential future directions to further refine our understanding of this vital, physical force.

  7. On the separability of the extended molecule: Constructing the best localized molecular orbitals for an organic molecule bridging two model electrodes.

    PubMed

    Moreira, Rodrigo A; de Melo, Celso P

    2014-09-28

    Based on a quantum chemical valence formalism that allows the rigorous construction of best-localized molecular orbitals on specific parts of an extended system, we examined the separability of individual components of model systems relevant to the description of electron transport in molecular devices. We started by examining how to construct the maximally localized electronic density at the tip of a realistic model of a gold electrode. By varying the number of gold atoms included in the local region where to project the total electronic density, we quantitatively assess how many molecular orbitals are entirely localized in that region. We then considered a 1,4-benzene-di-thiol molecule connected to two model gold electrodes and examined how to localize the electronic density of the total system in the extended molecule, a fractional entity comprising the organic molecule plus an increasing number of the closest metal atoms. We were able to identify in a rigorous manner the existence of three physically different electronic populations, each one corresponding to a distinct set of molecular orbitals. First, there are those entirely localized in the extended molecule, then there is a second group of those completely distributed in the gold atoms external to that region, and, finally, there are those delocalized over the entire system. This latter group can be associated to the shared electronic population between the extended molecule and the rest of the system. We suggest that the treatment here presented could be useful in the theoretical analysis of the electronic transport in nanodevices whenever the use of localized molecular states are required by the physics of the specific problem, such as in cases of weak coupling and super-exchange limits.

  8. On the separability of the extended molecule: Constructing the best localized molecular orbitals for an organic molecule bridging two model electrodes

    SciTech Connect

    Moreira, Rodrigo A.; Melo, Celso P. de

    2014-09-28

    Based on a quantum chemical valence formalism that allows the rigorous construction of best-localized molecular orbitals on specific parts of an extended system, we examined the separability of individual components of model systems relevant to the description of electron transport in molecular devices. We started by examining how to construct the maximally localized electronic density at the tip of a realistic model of a gold electrode. By varying the number of gold atoms included in the local region where to project the total electronic density, we quantitatively assess how many molecular orbitals are entirely localized in that region. We then considered a 1,4-benzene-di-thiol molecule connected to two model gold electrodes and examined how to localize the electronic density of the total system in the extended molecule, a fractional entity comprising the organic molecule plus an increasing number of the closest metal atoms. We were able to identify in a rigorous manner the existence of three physically different electronic populations, each one corresponding to a distinct set of molecular orbitals. First, there are those entirely localized in the extended molecule, then there is a second group of those completely distributed in the gold atoms external to that region, and, finally, there are those delocalized over the entire system. This latter group can be associated to the shared electronic population between the extended molecule and the rest of the system. We suggest that the treatment here presented could be useful in the theoretical analysis of the electronic transport in nanodevices whenever the use of localized molecular states are required by the physics of the specific problem, such as in cases of weak coupling and super-exchange limits.

  9. Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional

    DOE PAGES

    Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; ...

    2017-02-21

    The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. Here, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by constructionmore » captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. This approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.« less

  10. Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Fei; Egger, David A.; Refaely-Abramson, Sivan; Kronik, Leeor; Neaton, Jeffrey B.

    2017-03-01

    The alignment of the frontier orbital energies of an adsorbed molecule with the substrate Fermi level at metal-organic interfaces is a fundamental observable of significant practical importance in nanoscience and beyond. Typical density functional theory calculations, especially those using local and semi-local functionals, often underestimate level alignment leading to inaccurate electronic structure and charge transport properties. In this work, we develop a new fully self-consistent predictive scheme to accurately compute level alignment at certain classes of complex heterogeneous molecule-metal interfaces based on optimally tuned range-separated hybrid functionals. Starting from a highly accurate description of the gas-phase electronic structure, our method by construction captures important nonlocal surface polarization effects via tuning of the long-range screened exchange in a range-separated hybrid in a non-empirical and system-specific manner. We implement this functional in a plane-wave code and apply it to several physisorbed and chemisorbed molecule-metal interface systems. Our results are in quantitative agreement with experiments, the both the level alignment and work function changes. Our approach constitutes a new practical scheme for accurate and efficient calculations of the electronic structure of molecule-metal interfaces.

  11. Multi-Component Ion Modifiers and Arcing Suppressants to Enhance Differential Mobility Spectrometry for Separation of Peptides and Drug Molecules

    NASA Astrophysics Data System (ADS)

    Blagojevic, Voislav; Koyanagi, Gregory K.; Bohme, Diethard K.

    2014-03-01

    The optimization of ion/molecule chemistry in a differential mobility spectrometer (DMS) is shown to result in improved peak capacity, separation, and sensitivity. We have experimented with a modifier composed of multiple components, where each component accomplishes a specific task on mixtures of peptides and small drug molecules. Use of a higher proton affinity modifier (hexanol) provides increased peak capacity and separation. Analyte ion/modifier proton transfer is suppressed by adding a large excess of low proton affinity modifier (water or methanol), significantly increasing signal intensity and sensitivity for low proton affinity analytes. Finally, addition of an electrical arcing suppressant (chloroform) allows the device to operate reliably at higher separation fields, improving peak capacity and separation. We demonstrate a 20 % increase in the device peak capacity without any loss of sensitivity and estimate that further optimization of the modifier composition can increase this to 50 %. Use of 3-, 4-, or even 5-component modifiers offers the opportunity for the user to fine-tune the modifier performance to maximize the device performance, something not possible with a single component modifier.

  12. Hydrophobic interaction membrane chromatography for bioseparation and responsive polymer ligands involved

    NASA Astrophysics Data System (ADS)

    Chen, Jingling; Peng, Rong; Chen, Xiaonong

    2017-09-01

    Hydrophobic interaction chromatography (HIC) is a rapid growing bioseparation technique, which separates biomolecules, such as therapeutic proteins and antibodys, based on the reversible hydrophobic interaction between immobilized hydrophobic ligands on chromatographic resin spheres and non-polar regions of solute molecule. In this review, the fundamental concepts of HIC and the factors that may affect purification efficiency of HIC is summarized, followed by the comparison of HIC with affinity chromatography and ion-exchange chromatography. Hydrophobic interaction membrane chromatography (HIMC) combines the advantages of HIC and membrane process and has showed great potential in bioseparation. For better understanding of HIMC, this review presents an overview of two main concerns about HIMC, i.e. membrane materials and hydrophobic ligands. Specifically, cellulose fiber-based membrane substrate and environment-responsive ligands are emphasized.

  13. Temperature dependence of the evaporation lengthscale for water confined between two hydrophobic plates.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2015-07-01

    Liquid water in a hydrophobic confinement is the object of high interest in physicochemical sciences. Confined between two macroscopic hydrophobic surfaces, liquid water transforms into vapor if the distance between surfaces is smaller than a critical separation, referred to as the evaporation lengthscale. To investigate the temperature dependence of the evaporation lengthscale of water confined between two hydrophobic parallel plates, we use the combination of the density functional theory (DFT) with the probabilistic hydrogen bond (PHB) model for water-water hydrogen bonding. The PHB model provides an analytic expression for the average number of hydrogen bonds per water molecule as a function of its distance to a hydrophobic surface and its curvature. Knowing this expression, one can implement the effect of hydrogen bonding between water molecules on their interaction with the hydrophobe into DFT, which is then employed to determine the distribution of water molecules between two macroscopic hydrophobic plates at various interplate distances and various temperatures. For water confined between hydrophobic plates, our results suggest the evaporation lengthscale to be of the order of several nanometers and a linearly increasing function of temperature from T=293 K to T=333 K, qualitatively consistent with previous results. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The use of small molecule probes to study spatially separated stimulus-induced signaling pathways

    PubMed Central

    Kravchenko, Vladimir V.; Glöckner, Christian; Stowe, G. Neil; Kang, Young J.; Tobias, Peter S.; Mathison, John C.; Ulevitch, Richard J.; Kaufmann, Gunnar F.; Janda, Kim D.

    2012-01-01

    Simultaneous activation of signaling pathways requires dynamic assembly of higher-order protein complexes at the cytoplasmic domains of membrane-associated receptors in a stimulus-specific manner. Here, using the paradigm of cellular activation through cytokine and innate immune receptors, we demonstrate the proof-of-principle application of small molecule probes for the dissection of receptor-proximal signaling processes, such as activation of the transcription factor NF- B and the protein kinase p38. PMID:22300658

  15. Spin-polarized electron transport through magnetic poly-BIPO molecule: the role of soliton-antisoliton separation

    NASA Astrophysics Data System (ADS)

    Sadeghi, N.; Ketabi, S. A.; Shahtahmassebi, N.; Abolhassani, M. R.

    2016-02-01

    Spin-polarized transport through a one-dimensional metal/poly-BIPO/metal model junction with the soliton-antisoliton separation is investigated. Nonlinear spin and charge densities are considered in magnetic poly-BIPO molecule, as a neutral soliton and charged antisoliton with different separations. The calculations are performed based on Su-Schrieffer-Heeger Hamiltonian which is extended with Heisenberg and Hubbard Hamiltonians to include the spin and electron-electron interactions. The spin-dependent transport properties are obtained within the framework of the Landauer-Büttiker formalism based on Green's function theory. This study demonstrates the reduction in current and spin polarization as the separation between soliton and antisoliton centers is increased. We have found that when the soliton-antisoliton separation is less than 14 sites, the spin polarization is almost 100 % plato, over the voltage ranges more than 0.3 V. Also the energy differences between the soliton-antisoliton mid-gap states for up- and down-spin electrons and the Fermi energy of the system are reduced. However, for the soliton-antisoliton separation lengths more than 14 sites, these quantities tend to constant values with enhancement of the distance between the excitation centers.

  16. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    PubMed Central

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-01-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow. PMID:27830697

  17. Enantiomeric separation of complex organic molecules from irradiation of interstellar/circumstellar ice analogs

    NASA Astrophysics Data System (ADS)

    Nuevo, M.; Muñoz Caro, G.; Dartois, E.; D'Hendecourt, L.; Deboffle, D.; Meierhenrich, U.; Thiemann, W.; Bredehöft, J. H.; Nahon, L.

    Our laboratory group aims at studying the photo- and thermochemical evolution of dirty ice mixtures (containing H2O, CO, CH4, CH3OH, NH3, etc.) known to be present on the surface of interstellar grains observed in molecular clouds around protostars and also found in comets. The first step was to determine the chemical composition of these ices by comparison of interstellar ice infrared spectra from the European Infrared Space Observatory (ISO) with the spectra obtained in laboratory experiments. That work allowed us to identify and quantify the abundance of simple molecules such as H2O, CO, CO2 and CH4, as well as to understand the shapes of some infrared features (shifts, band widths, splittings) resulting from interactions within the ice structure due to molecular complexes. The irradiation of these ices with UV light at low temperatures down to 10 K leads to the formation of species such as H2CO, NH4+ and OCN-, which have been already identified in astrophysical sources. If the irradiation is continued, more complex molecules, stable at room temperature, are formed. The refractory residue obtained by warming up the sample to room temperature can be analyzed by chemical techniques such as gas chromatography coupled with mass spectrometry (GC-MS). A lot of complex molecules such as glycine, alanine or glycerol are detected, among them amino acids, known to play an important role in prebiotic chemistry. The extension of this experiment, called Chiral MICMOC (for Matière Interstellaire et Cométaire, Molécules Organiques Complexes, i.e. Interstellar and Cometary Matter, Complex Organic Molecules, repeating the same experiment using circularly polarized UV light has been performed with the synchrotron light of the SU5 beam in LURE. The purpose is to reveal and study the possible apparition of an enantiomeric excess on amino acids formed in such experiments. Our preliminary analyses results show that a possible enantiomeric excess would be small. A careful data

  18. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    SciTech Connect

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. M.; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  19. Enantiomeric separation and determination of absolute stereochemistry of asymmetric molecules in drug discovery: building chiral technology toolboxes.

    PubMed

    McConnell, Oliver; Bach, Alvin; Balibar, Carl; Byrne, Neal; Cai, Yanxuan; Carter, Guy; Chlenov, Michael; Di, Li; Fan, Kristi; Goljer, Igor; He, Yanan; Herold, Don; Kagan, Michael; Kerns, Edward; Koehn, Frank; Kraml, Christina; Marathias, Vasilios; Marquez, Brian; McDonald, Leonard; Nogle, Lisa; Petucci, Christopher; Schlingmann, Gerhard; Tawa, Gregory; Tischler, Mark; Williamson, R Thomas; Sutherland, Alan; Watts, William; Young, Mairead; Zhang, Mei-Yi; Zhang, Yingru; Zhou, Dahui; Ho, Douglas

    2007-09-01

    The application of Chiral Technology, or the (extensive) use of techniques or tools for the determination of absolute stereochemistry and the enantiomeric or chiral separation of racemic small molecule potential lead compounds, has been critical to successfully discovering and developing chiral drugs in the pharmaceutical industry. This has been due to the rapid increase over the past 10-15 years in potential drug candidates containing one or more asymmetric centers. Based on the experiences of one pharmaceutical company, a summary of the establishment of a Chiral Technology toolbox, including the implementation of known tools as well as the design, development, and implementation of new Chiral Technology tools, is provided.

  20. Hydrophobic fluorine mediated switching of the hydrogen bonding site as well as orientation of water molecules in the aqueous mixture of monofluoroethanol: IR, molecular dynamics and quantum chemical studies.

    PubMed

    Mondal, Saptarsi; Biswas, Biswajit; Nandy, Tonima; Singh, Prashant Chandra

    2017-08-31

    The local structures between water-water, alcohol-water and alcohol-alcohol have been investigated for aqueous mixtures of ethanol (ETH) and monofluoroethanol (MFE) by the deconvolution of IR bands in the OH stretching region, molecular dynamics simulation and quantum chemical calculations. It has been found that the addition of a small amount of ETH into the aqueous medium increases the strength of the hydrogen bonds between water molecules. In an aqueous mixture of MFE, the substitution of a single fluorine induces a change in the orientation as well as the hydrogen bonding site of water molecules from the oxygen to the fluorine terminal of MFE. The switching of the hydrogen bonding site of water in the aqueous mixture of MFE results in comparatively strong hydrogen bonds between MFE and water molecules as well as less clustering of water molecules, unlike the case of the aqueous mixture of ETH. These findings about the modification of a hydrogen bond network by the hydrophobic fluorine group probably make fluorinated molecules useful for pharmaceutical as well as biological applications.

  1. Interference effects in above-threshold ionization from diatomic molecules: Determining the internuclear separation

    SciTech Connect

    Hetzheim, H.; Figueira de Morisson Faria, C.; Becker, W.

    2007-08-15

    We calculate angle-resolved above-threshold ionization spectra for diatomic molecules in linearly polarized laser fields, employing the strong-field approximation. The interference structure resulting from the individual contributions of the different scattering scenarios is discussed in detail, with respect to the dependence on the internuclear distance and molecular orientation. We show that, in general, the contributions from the processes in which the electron is freed at one center and rescatters off the other obscure the interference maxima and minima obtained from single-center processes. However, around the boundary of the energy regions for which rescattering has a classical counterpart, such processes play a negligible role and very clear interference patterns are observed. In such energy regions, one is able to infer the internuclear distance from the energy difference between adjacent interference minima.

  2. Simulation of dynamic behavior of surfactants on a hydrophobic surface using periodic-shell boundary molecular dynamics.

    PubMed

    Minami, Daiki; Horikoshi, Satoshi; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    The adsorption and aggregation behaviors of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on a hydrophobic graphite surface were examined using a novel molecular dynamics (MD) simulation with the periodic-shell boundary condition (PSBC). Differences in the adsorption behavior of SDS and CTAB molecules were clearly shown on the hydrophobic surface. Unexpectedly, the SDS molecules approached the graphite surface with their hydrophilic head groups. This unexpected approach mode was thought to be due to the aqueous layer on the graphite surface. The hydrophobic moiety of SDS molecules repeatedly adsorbed and desorbed on the graphite surface. In addition, SDS molecules kept moving on the graphite surface; thus, they did not form a stable adsorption layer. In contrast to SDS, the hydrophobic moiety of CTAB molecules approached the graphite surface at the primary step of adsorption. The hydrophobic moieties of CTAB molecules came close to each other, whereas the hydrophilic groups separated from one another. This result suggests that the CTAB molecules form molecular assemblies with a curved structure. The simulation results were consistent with the experimental observations. A clear difference between the adsorption behavior of SDS and CTAB molecules was revealed by MD simulations with PSBC.

  3. Separation and structure elucidation of coal molecule fragments. Final report, February 1, 1976-August 31, 1979

    SciTech Connect

    Schultz, R V; Jorgenson, J W; Maskarinec, M P; Kump, R L; Marli, F; Novotny, M; Todd, L J

    1980-01-01

    Separation and identification of the polynuclear aromatic and aliphatic fractions of solvent-refined coal and its recycle oil were performed using a combination of solvent partition and chromatographic fractionation procedures with glass-capillary gas chromatography/mass spectrometry. Chromatographic profiles were generated for each fraction and some semiquantitative data were also obtained. In total, 146 polynuclear aromatic components of SRC were tentatively identified by their molecular weights, as indicated by the mass spectra of the gas chromatography peaks. In addition, wherever possible, specific isomers have been indicated, based on comparison of spectral characteristics and retention data. Separation and identification of nitrogen-containing aromatics of the recycle oil of SRC was accomplished with a combination solvent partition and capillary gas chromatography with deactivated glass columns. High-precision retention measurements of known pyridine and quinoline derivatives are reported, utilizing parent aza-arenes as retention standards. Both precisely measured retention data and mass spectral information combined lead to positive identification of some compounds in SRC samples. A total of 48 two-membered or three-membered aza-arenes have been tentatively identified in the recycle oil.

  4. Separation of chromosomal DNA molecules from C.albicans by pulsed field gel electrophoresis.

    PubMed Central

    Snell, R G; Wilkins, R J

    1986-01-01

    Modifications have been made to standard pulse field gel electrophoresis (PFGE) systems to enable very large DNA molecules to be resolved. The single most important modification was to elevate the temperature of electrophoresis to 35 degrees C. This enabled the largest Saccharomyces cerevisiae chromosome to be reproducibly resolved. More impressively, it enabled the DNA of Candida albicans to be clearly resolved into six bands, a feat which was very difficult at lower temperatures. Even so, optimal resolution could only be obtained by carefully adjusting field voltages and switching times. The DNA from the two largest C. albicans chromosomes, which was estimated to be at least 5-10Mbp in size, ran somewhat anomalously, giving fuzzy bands which did not migrate in the direction of the average electric field. That the highest molecular weight band was a distinct chromosome was demonstrated by specific hybridisation to the C. albicans ADE2 gene probe. With further fine tuning, the PFGE system described here should be capable of resolving DNA from the smallest human chromosomes. Images PMID:3520483

  5. Real-time monitoring of hydrophobic aggregation reveals a critical role of cooperativity in hydrophobic effect

    NASA Astrophysics Data System (ADS)

    Jiang, Liguo; Cao, Siqin; Cheung, Peter Pak-Hang; Zheng, Xiaoyan; Leung, Chris Wai Tung; Peng, Qian; Shuai, Zhigang; Tang, Ben Zhong; Yao, Shuhuai; Huang, Xuhui

    2017-05-01

    The hydrophobic interaction drives nonpolar solutes to aggregate in aqueous solution, and hence plays a critical role in many fundamental processes in nature. An important property intrinsic to hydrophobic interaction is its cooperative nature, which is originated from the collective motions of water hydrogen bond networks surrounding hydrophobic solutes. This property is widely believed to enhance the formation of hydrophobic core in proteins. However, cooperativity in hydrophobic interactions has not been successfully characterized by experiments. Here, we quantify cooperativity in hydrophobic interactions by real-time monitoring the aggregation of hydrophobic solute (hexaphenylsilole, HPS) in a microfluidic mixer. We show that association of a HPS molecule to its aggregate in water occurs at sub-microsecond, and the free energy change is -5.8 to -13.6 kcal mol-1. Most strikingly, we discover that cooperativity constitutes up to 40% of this free energy. Our results provide quantitative evidence for the critical role of cooperativity in hydrophobic interactions.

  6. The Hydrophobic Effect.

    ERIC Educational Resources Information Center

    Huque, Entazul M.

    1989-01-01

    Discusses the physical basis and current understanding of hydrophobic effects. The thermodynamic background of the effects, hydrophobic hydration, and hydrophobic interactions are described. Four existing controversies are outlined. (YP)

  7. The Hydrophobic Effect.

    ERIC Educational Resources Information Center

    Huque, Entazul M.

    1989-01-01

    Discusses the physical basis and current understanding of hydrophobic effects. The thermodynamic background of the effects, hydrophobic hydration, and hydrophobic interactions are described. Four existing controversies are outlined. (YP)

  8. Buffer system for the separation of neutral and charged small molecules using micellar electrokinetic chromatography with mass spectrometric detection.

    PubMed

    Goetzinger, Wolfgang K; Cai, Hong

    2005-06-24

    An organic buffer system will be discussed that is suitable for the separation of neutral as well as charged molecules be means of micellar electrokinetic chromatography (MEKC). The buffers are based on the combination of a long chain alkyl acid, such as lauric acid with ammonium hydroxide or an organic base such as tris-hydroxymethylaminomethane (Tris). The resulting buffer system is able to separate neutral compounds based on its micellar properties. These buffers exhibit much reduced conductivity compared to traditional MEKC buffers, such as sodium dodecylsulfate (SDS), which contain inorganic salts. They also have inherent buffer capacity at high pH resulting from the basic buffer component, which in our studies had pK values from about 8-11. The separations that were observed showed high efficiency with plate counts in many cases above 500,000 plates per meter. The reduced conductivity allowed for the application of much higher electric fields, resulting in very fast analysis times. Alternatively, an increase in detection sensitivity could be achieved, as the reduced conductivity allowed for the use of capillaries with lager internal diameters. Combinations of different alkyl acids and organic bases provided for significant flexibility in selectivity tuning. Finally, the fact that the organic micellar buffer systems discussed here do not contain inorganic ions, allows for coupling with mass spectrometric (MS) detection. The possibility of MS detection combined with the high speed in analysis that can be obtained using these organic buffer systems, could make this approach an interesting option for high throughput analysis of combinatorial libraries.

  9. Isolation of monoclonal antibody from a Chinese hamster ovary supernatant. II: dynamics of the integrated separation on ion exchange and hydrophobic interaction chromatography media.

    PubMed

    Marek, Wojciech; Muca, Renata; Woś, Sylwia; Piątkowski, Wojciech; Antos, Dorota

    2013-08-30

    Dynamics of the purification process of a CHO derived monoclonal antibody by ion exchange chromatography (IEC), hydrophobic interaction chromatography (HIC) and their integration has been investigated. To quantify the adsorption behavior of the target protein (IgG1) and impurities contained in the supernatant, their elution course on IEC and HIC columns has been analyzed versus pH and/or the salt concentration in the mobile phase. A short-cut method has been proposed for mathematical modeling and determining underlying kinetic and thermodynamic parameters. The accuracy of the model predictions has been verified by comparing the simulated and experimental band profiles recorded in both chromatographic processes. After verification, the model was used to optimize operating conditions for the column loading and chromatographic elution in the integrated process IEC/HIC. Two alternative loading techniques based on the upstream and downstream feed dilution were taken into account in the optimization routine. In the first one the feed stream was diluted with the loading buffer prior to the column loading, while in the latter one the feed dilution was realized inside the column using the multiple-injection technique. It was shown that the downstream dilution allowed significant reduction of the contact time between the protein and the loading buffer.

  10. Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatography, part 1: optimization of the mobile phase.

    PubMed

    Rodriguez-Aller, Marta; Guillarme, Davy; Beck, Alain; Fekete, Szabolcs

    2016-01-25

    The goal of this work is to provide some recommendations for method development in HIC using monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) as model drug candidates. The effects of gradient steepness, mobile phase pH, salt concentration and type, as well as organic modifier were evaluated for tuning selectivity and retention in HIC. Except the nature of the stationary phase, which was not discussed in this study, the most important parameter for modifying selectivity was the gradient steepness. The addition of organic solvent (up to 15% isopropanol) in the mobile phase was also found to be useful for mAbs analysis, since it could provide some changes in elution order, in some cases. On the contrary, isopropanol was not beneficial with ADCs, since the most hydrophobic DAR species (DAR6 and DAR8) cannot be eluted from the stationary phase under these conditions. This study also illustrates the possibility to perform HIC method development using optimization software, such as Drylab. The optimum conditions suggested by the software were tested using therapeutic mAbs and commercial cysteine linked ADC (brentuximab-vedotin) and the average retention time errors between predicted and experimental retention times were ∼ 1%.

  11. Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Guo, Pan; Tu, Yusong; Yang, Jinrong; Wang, Chunlei; Sheng, Nan; Fang, Haiping

    2015-10-01

    By combining molecular dynamics simulations and quantum mechanics calculations, we show the formation of a composite structure composed of embedded water molecules and the COOH matrix on carboxyl-terminated self-assembled monolayers (COOH SAMs) with appropriate packing densities. This composite structure with an integrated hydrogen bond network inside reduces the hydrogen bonds with the water above. This explains the seeming contradiction on the stability of the surface water on COOH SAMs observed in experiments. The existence of the composite structure at appropriate packing densities results in the two-step distribution of contact angles of water droplets on COOH SAMs, around 0° and 35°, which compares favorably to the experimental measurements of contact angles collected from forty research articles over the past 25 years. These findings provide a molecular-level understanding of water on surfaces (including surfaces on biomolecules) with hydrophilic functional groups.

  12. Enthalpic and Entropic Contributions to Hydrophobicity

    PubMed Central

    2016-01-01

    Hydrophobic hydration plays a key role in a vast variety of biological processes, ranging from the formation of cells to protein folding and ligand binding. Hydrophobicity scales simplify the complex process of hydration by assigning a value describing the averaged hydrophobic character to each amino acid. Previously published scales were not able to calculate the enthalpic and entropic contributions to the hydrophobicity directly. We present a new method, based on Molecular Dynamics simulations and Grid Inhomogeneous Solvation Theory, that calculates hydrophobicity from enthalpic and entropic contributions. Instead of deriving these quantities from the temperature dependence of the free energy of hydration or as residual of the free energy and the enthalpy, we directly obtain these values from the phase space occupied by water molecules. Additionally, our method is able to identify regions with specific enthalpic and entropic properties, allowing to identify so-called “unhappy water” molecules, which are characterized by weak enthalpic interactions and unfavorable entropic constraints. PMID:27442443

  13. Utilization of photoinduced charge-separated state of donor-acceptor-linked molecules for regulation of cell membrane potential and ion transport.

    PubMed

    Numata, Tomohiro; Murakami, Tatsuya; Kawashima, Fumiaki; Morone, Nobuhiro; Heuser, John E; Takano, Yuta; Ohkubo, Kei; Fukuzumi, Shunichi; Mori, Yasuo; Imahori, Hiroshi

    2012-04-11

    The control of ion transport across cell membranes by light is an attractive strategy that allows targeted, fast control of precisely defined events in the biological membrane. Here we report a novel general strategy for the control of membrane potential and ion transport by using charge-separation molecules and light. Delivery of charge-separation molecules to the plasma membrane of PC12 cells by a membranous nanocarrier and subsequent light irradiation led to depolarization of the membrane potential as well as inhibition of the potassium ion flow across the membrane. Photoregulation of the cell membrane potential and ion transport by using charge-separation molecules is highly promising for control of cell functions. © 2012 American Chemical Society

  14. Separation of very hydrophobic analytes by micellar electrokinetic chromatography IV. Modeling of the effective electrophoretic mobility from carbon number equivalents and octanol-water partition coefficients.

    PubMed

    Huhn, Carolin; Pyell, Ute

    2008-07-11

    It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.

  15. Online Capillary IsoElectric Focusing-ElectroSpray Ionization Mass Spectrometry (CIEF-ESI MS) in Glycerol-Water Media for the Separation and Characterization of Hydrophilic and Hydrophobic Proteins.

    PubMed

    Mokaddem, Meriem; d'Orlyé, Fanny; Varenne, Anne

    2016-01-01

    Capillary isoelectric focusing (CIEF) is a high-resolution technique for the separation of ampholytes, such as proteins, according to their isoelectric point. CIEF coupled online with MS is regarded as a promising alternative to 2-D PAGE for fast proteome analysis with high-resolving capabilities and enhanced structural information without the drawbacks of conventional slab-gel electrophoresis. However, online coupling has been rarely described, as it presents some difficulties. A new methodology for the online coupling of CIEF with electrospray ionization mass spectrometry (ESI-MS) has been developed in glycerol-water media. This new integrated methodology provides a mean for the characterization of a large number of hydrophilic and hydrophobic proteins.

  16. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  17. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1992-12-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  18. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.

    1992-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  19. Apparatus for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.

    1995-01-01

    An apparatus is disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal, and minerals so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  20. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1998-09-29

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  1. Apparatus for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1995-03-14

    An apparatus is disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal, and minerals so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  2. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, Roe-Hoan; Adel, Gregory T.; Luttrell, Gerald H.

    1998-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  3. Hydrophobic Gating in Ion Channels

    PubMed Central

    Aryal, Prafulla; Sansom, Mark S.P.; Tucker, Stephen J.

    2016-01-01

    Biological ion channels are nanoscale transmembrane pores. When water and ions are enclosed within the narrow confines of a sub-nanometer hydrophobic pore, they exhibit behavior not evident from macroscopic descriptions. At this nanoscopic level, the unfavorable interaction between the lining of a hydrophobic pore and water may lead to liquid-vapor oscillations. The resultant transient vapor state is ‘dewetted’ i.e. effectively devoid of water molecules within all, or part of the pore, thus leading to an energetic barrier to ion conduction. This process, termed ‘hydrophobic gating’, was first observed in molecular dynamics simulations of model nanopores, where the principles underlying hydrophobic gating (i.e. changes in diameter, polarity, or transmembrane voltage) have now been extensively validated. Computational, structural and functional studies now indicate that biological ion channels may also exploit hydrophobic gating to regulate ion flow within their pores. Here we review the evidence for this process, and propose that this unusual behavior of water represents an increasingly important element in understanding the relationship between ion channel structure and function. PMID:25106689

  4. New approach for separating Bacillus subtilis metalloprotease and alpha-amylase by affinity chromatography and for purifying neutral protease by hydrophobic chromatography.

    PubMed

    Lauer, I; Bonnewitz, B; Meunier, A; Beverini, M

    2000-01-14

    Proteases are commonly used in the biscuit and cracker industry as processing aids. They cause moderate hydrolysis of gluten proteins and improve dough rheology to better control product texture and crunchiness. Commercial bacterial proteases are derived from Bacillus fermentation broth. As filtration and ultrafiltration are carried out as the only recovery steps, these preparations contain also alpha-amylase and beta-glucanase as the main side activities. The aim of this study is to purify and characterize the Bacillus subtilis metalloprotease from a commercial preparation, in order to study separately the impact of the protease activity with regards to its functionality on biscuit properties. Purification was achieved by means of affinity chromatography on Cibacron Blue and HIC as a polishing step. Affinity appeared to be the most appropriate matrix for large scale purification while ion exchange chromatography was inefficient in terms of recovery yields. The crude product was first loaded on a Hi Trap Blue column (34 microm, Pharmacia Biotech); elution was carried out with a gradient of NaCl in the presence of 1 mM ZnCl2. This step was only efficient in the presence of Zn cations, because this salt promoted both protease stabilization resulting in high recovery yields and also complexation of amylase units into dimers resulting in amylase retention on the column and a better separation of the 3 activities. Beta-glucanase was mostly non retained on the column and a part was coeluted with the protease. This protease fraction was then loaded on a Resource Phe column (15 microm, Pharmacia Biotech) in a last step of polishing. Elution was carried out with a linear gradient of 100-0% ammonium sulfate 1.3 M; protease was eluted at the beginning of the gradient and well separated from amylase and glucanase trace impurities. The homogeneity of the purified protease was confirmed by SDS-PAGE, which showed that its MW was about 38. pH and temperature optima were also

  5. Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes

    PubMed Central

    Grdadolnik, Joze; Merzel, Franci; Avbelj, Franc

    2017-01-01

    Hydrophobicity plays an important role in numerous physicochemical processes from the process of dissolution in water to protein folding, but its origin at the fundamental level is still unclear. The classical view of hydrophobic hydration is that, in the presence of a hydrophobic solute, water forms transient microscopic “icebergs” arising from strengthened water hydrogen bonding, but there is no experimental evidence for enhanced hydrogen bonding and/or icebergs in such solutions. Here, we have used the redshifts and line shapes of the isotopically decoupled IR oxygen–deuterium (O-D) stretching mode of HDO water near small purely hydrophobic solutes (methane, ethane, krypton, and xenon) to study hydrophobicity at the most fundamental level. We present unequivocal and model-free experimental proof for the presence of strengthened water hydrogen bonds near four hydrophobic solutes, matching those in ice and clathrates. The water molecules involved in the enhanced hydrogen bonds display extensive structural ordering resembling that in clathrates. The number of ice-like hydrogen bonds is 10–15 per methane molecule. Ab initio molecular dynamics simulations have confirmed that water molecules in the vicinity of methane form stronger, more numerous, and more tetrahedrally oriented hydrogen bonds than those in bulk water and that their mobility is restricted. We show the absence of intercalating water molecules that cause the electrostatic screening (shielding) of hydrogen bonds in bulk water as the critical element for the enhanced hydrogen bonding around a hydrophobic solute. Our results confirm the classical view of hydrophobic hydration. PMID:28028244

  6. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    NASA Astrophysics Data System (ADS)

    Lim, Taekyung; Lee, Jonghun; Ju, Sanghyun

    2016-08-01

    We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA) self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  7. Silica hydride based phases for small molecule separations using automated liquid chromatography-mass spectrometry method development.

    PubMed

    Appulage, Dananjaya K; Schug, Kevin A

    2017-07-21

    Silica hydride, or Type C silica, has been developed as an alternative chromatographic support material for liquid chromatography. There are various bonded phases available with this new support. For four such phases (Cholesterol, Bidentate C18, Diamond Hydride, and Diol), retention and selectivity behavior were investigated using liquid chromatography coupled with triple quadrupole mass spectrometry. A set of small molecules from several chemical classes of interest, and varying in their physicochemical properties, were chromatographed under both reversed-phase and aqueous normal phase modes. To screen the columns, column switching was performed using an automated platform controlled by associated software and an additional valve. A typical scouting gradient was implemented. The separation conditions were not further optimized since the goal was simply to evaluate the variable retention behavior of the phases and selectivity under generic conditions. Further, retention of the analytes were evaluated under isocratic conditions with varying percentages of organic phase to visualize the potential for dual retention modes on the same column for certain analytes. Four analytes (fentanyl, hydrocodone, hydromorphone, and matrine) showed dual mode retention behavior with all four phases. Especially, fentanyl exhibited dramatic "U-shaped" retention profiles on Cholesterol and Bidentate C18 phases. Overall, changes in the retention order between reversed phase and aqueous normal phases emphasized the potential for altered selectivity. Results showed that the Cholesterol phase provided the highest retention for most analytes compared to the other phases. The more polar Diol phase still provided good retention in reversed phase mode. Retention and selectivity were all highly reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    PubMed

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography.

  9. Solvent-induced interactions between hydrophobic and hydrophilic polyatomic sheets in water and hypothetical nonpolar water

    NASA Astrophysics Data System (ADS)

    Koga, Kenichiro; Zeng, X. C.; Tanaka, Hideki

    1997-06-01

    Hydrophobic and hydrophilic interactions are two major intermolecular forces between hydrophobic nonpolar and hydrophilic polar sites of macromolecules or materials surfaces in solvents. To further understand these two interactions at the microscopic level, an idealized polyatomic model is devised, which includes hydrophobic, hydrophilic, and partially hydrophilic polyatomic planar square molecular sheets. The hydrophobic molecular sheet is composed of the Lennard-Jones particles while the hydrophilic molecular sheet consists of positive and negative charge sites. In the framework of the extended reference interaction site model integral equation theory the solvent-induced interactions (or the potential of mean forces) between two parallel molecular sheets in water and in the hypothetical nonpolar water are investigated in a systematic fashion. Such a highly idealized model allows us to isolate and to explore the important effects of molecular size, relative intermolecular position (e.g., in- or out-of-registry configuration), and hydrophilic site distribution on the hydrophobic and hydrophilic interactions in both water and the hypothetical nonpolar water. Significant insight into these effects at the molecular level is obtained. For the hydrophobic planar molecules in water we find solvent separated hydrophobic interaction becomes less favored as sheet size increases. Moreover, the contact hydrophobic interaction between two molecular sheets in the out-of-registry configuration is always most favorable. For the latter case we find it is the van der Waals attraction, rather than the hydrophobic attraction, that dominates the total interaction. We also find that in both water and the hypothetical nonpolar water the solvent-induced interaction between two hydrophobic sheets behaves similarly. One possible explanation is that the hydrophobic hydration originating from the hydrogen bonding network in water plays an insignificant role in the solvent-induced interaction

  10. Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute

    NASA Astrophysics Data System (ADS)

    Sarma, Rahul; Paul, Sandip

    2012-09-01

    Molecular dynamics simulations are performed to study the effects of increasing trimethylamine-N-oxide (TMAO) concentration on the pressure-induced dissolution of hydrophobic solutes immersed in water. Such systems are of interest mainly because pressure increases the dissolution of hydrophobic protein interior causing protein denaturation and TMAO acts to offset the protein denaturing effect of high hydrostatic pressures. In view of this, in this study, methane molecules are considered as model hydrophobic molecules and simulations are performed for four independent TMAO solutions each at four different pressures ranging from 2 to 8 kbar. From potentials of mean force calculations, it is found that application of pressure reduces the free energy difference between contact minimum (CM) and solvent-separated (SSM) minimum of hydrophobic solute, suggesting dissolution at high pressures. TMAO, on the other hand, increases the relative stability of CM state of methane molecules relative to its SSM state. High packing efficiency of water molecules around the hydrophobic solute at high pressure is observed. Also observed are TMAO-induced enhancement of water structure and direct hydrogen-bonding interaction between TMAO and water and the correlated dehydration of hydrophobic solute. From hydrogen bond properties and dynamics calculations, it is observed that pressure increases average number of water-water hydrogen bonds while reduces their life-times. In contrast, TMAO reduces water-water hydrogen bonding but enhances their life-times. These results suggest that TMAO can reduce water penetration into the protein interior by enhancing water structure and also forming hydrogen bonds with water and hence counteracts protein unfolding.

  11. Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute.

    PubMed

    Sarma, Rahul; Paul, Sandip

    2012-09-21

    Molecular dynamics simulations are performed to study the effects of increasing trimethylamine-N-oxide (TMAO) concentration on the pressure-induced dissolution of hydrophobic solutes immersed in water. Such systems are of interest mainly because pressure increases the dissolution of hydrophobic protein interior causing protein denaturation and TMAO acts to offset the protein denaturing effect of high hydrostatic pressures. In view of this, in this study, methane molecules are considered as model hydrophobic molecules and simulations are performed for four independent TMAO solutions each at four different pressures ranging from 2 to 8 kbar. From potentials of mean force calculations, it is found that application of pressure reduces the free energy difference between contact minimum (CM) and solvent-separated (SSM) minimum of hydrophobic solute, suggesting dissolution at high pressures. TMAO, on the other hand, increases the relative stability of CM state of methane molecules relative to its SSM state. High packing efficiency of water molecules around the hydrophobic solute at high pressure is observed. Also observed are TMAO-induced enhancement of water structure and direct hydrogen-bonding interaction between TMAO and water and the correlated dehydration of hydrophobic solute. From hydrogen bond properties and dynamics calculations, it is observed that pressure increases average number of water-water hydrogen bonds while reduces their life-times. In contrast, TMAO reduces water-water hydrogen bonding but enhances their life-times. These results suggest that TMAO can reduce water penetration into the protein interior by enhancing water structure and also forming hydrogen bonds with water and hence counteracts protein unfolding.

  12. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  13. A dual-signal strategy for the solid detection of both small molecules and proteins based on magnetic separation and highly fluorescent copper nanoclusters.

    PubMed

    Cao, Jiepei; Wang, Wei; Bo, Bing; Mao, Xiaoxia; Wang, Keming; Zhu, Xiaoli

    2017-04-15

    Recently, a variety of analytical methods for the detection of small molecules or proteins based on small molecule-protein interaction have been developed. However, these methods often focus on either small molecules or proteins. Few efforts are made to detect both of them in the same system. In this work, a dual-signal strategy for the solid detection of both small molecules and proteins based on small molecule-protein interaction is proposed by using the streptavidin-biotin couple as a model. In our strategy, magnetic nanoparticles (MNPs) are adopted for target separation, and highly fluorescent copper nanoclusters (CuNCs) are synthesized in situ to give signals. In the absence of the targets, CuNCs are associated with the MNPs and present in the precipitate under magnetic field; whereas in the presence of either streptavidin or biotin, the CuNCs will present in the supernate. By monitoring the fluorescent intensity of each, dual-signal can be obtained for the solid detection of either the protein or the small molecule. Results show that sensitive and specific detection of both streptavidin (detection limit: 0.47nM) and biotin (detection limit: 3.1nM) can be achieved. This method can be extended for the detection of other small molecule-protein couples, and thereby has the potential for biomedical and clinical applications.

  14. Why are water-hydrophobic interfaces charged?

    PubMed

    Kudin, Konstantin N; Car, Roberto

    2008-03-26

    We report ab initio molecular dynamics simulations of hydroxide and hydronium ions near a hydrophobic interface, indicating that both ions behave like amphiphilic surfactants that stick to a hydrophobic hydrocarbon surface with their hydrophobic side. We show that this behavior originates from the asymmetry of the molecular charge distribution which makes one end of the ions strongly hydrophobic while the other end is even more hydrophilic than the regular water (H2O) molecules. The effect is more pronounced for the hydroxide than for the hydronium. Our results are consistent with several experimental observations and explain why hydrophobic surfaces in contact with water acquire a net negative charge, a phenomenon that has important implications for biology and polymer science.

  15. Unusual hydrophobic interactions in acidic aqueous solutions.

    PubMed

    Chen, Hanning; Xu, Jianqing; Voth, Gregory A

    2009-05-21

    Hydrophobic interaction, which is believed to be a primary driving force for many fundamental chemical and biological processes such as nanostructure self-assembly, micelle formation, and protein folding, is different in acidic aqueous solutions compared to salt solutions. In this study, the aggregation/dispersion behavior of nonpolar hydrophobic molecules in aqueous solutions with varying acid (HCl) concentrations is investigated using novel molecular dynamics simulations and compared to the hydrophobic behavior in corresponding salt (NaCl) solutions. The formation of unusual weakly bound hydrophobe-hydrated proton solvation structures is observed and can be attributed to the unique "amphiphilic" characteristic of hydrated protons. This molecular-level mechanism for the acid-enhanced dissolution of hydrophobic particles also provides a novel interpretation for the apparent anomaly of the hydronium cation in the Hofmeister series.

  16. Interaction of Hydrophobic Molecules with Heme Proteins

    DTIC Science & Technology

    1988-08-29

    tetracaine are capable of altering the spin state of the iron of myoglobin and cytochrome a3 of cytochrome oxidase. Tetracaine is a powerful...Cytochrome Oxidase Activity . H.J. Harmon and J. Swartz. American Society of Biological Chemists. June 9-12, 1986, Washington, D.C. 1987 Electron...May 2-6, 1988, Las Vegas. Published Articles 1. "Effect of Naphthalene on Cytochrome Oxidase Activity " H. James Harmon. Bull. Environ. Contam

  17. Temperature-responsive chromatography for the separation of biomolecules.

    PubMed

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Molecular Shape and the Hydrophobic Effect

    PubMed Central

    Hillyer, Matthew B.

    2017-01-01

    This review focuses in papers published since 2000 on the topic of the properties of solutes in water. More specifically, it evaluates the state-of-the-art of our understanding of the complex relationship between the shape of a hydrophobe and the Hydrophobic effect. To highlight this a selection of references covering both empirical and molecular dynamics studies of small (molecular-scale) solutes are presented. These include empirical studies of small molecules, synthetic hosts, crystalline monolayers, and proteins, as well as in silico investigations of entities including idealized hard and soft spheres, small solutes, hydrophobic plates, artificial concavity, molecular hosts, carbon nanotubes and spheres, and proteins. PMID:27215816

  19. Molecular Shape and the Hydrophobic Effect

    NASA Astrophysics Data System (ADS)

    Hillyer, Matthew B.; Gibb, Bruce C.

    2016-05-01

    This review focuses on papers published since 2000 on the topic of the properties of solutes in water. More specifically, it evaluates the state of the art of our understanding of the complex relationship between the shape of a hydrophobe and the hydrophobic effect. To highlight this, we present a selection of references covering both empirical and molecular dynamics studies of small (molecular-scale) solutes. These include empirical studies of small molecules, synthetic hosts, crystalline monolayers, and proteins, as well as in silico investigations of entities such as idealized hard and soft spheres, small solutes, hydrophobic plates, artificial concavity, molecular hosts, carbon nanotubes and spheres, and proteins.

  20. Hydrophobic effect at aqueous interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Conceptual basis for hydrophobic effects in bulk water and at aqueous interfaces have similar conceptual basis but often manifests itself differently. Using a wide range of computer simulations as the basis, I will review different forms of hydrophobic effects at a variety of interfaces starting from simple liquid-vapor and water-oil interfaces and progressing to water-membrane interfaces. I will start with discussing how water is organized at different interfaces, stressing both similarities and differences. The main thread is that, as in the bulk liquid, hydrophobic effects have profound influence on conformational equilibria and organization of both small molecules and macromolecules, but the result of this influence is quite different. Specifically, it will be shown that many small, but not necessarily amphiphilic molecules tend to accumulate at the interface and, and this tendency will be explained. Furthermore, I will show that many short peptides that are disordered in water spontaneously fold into well-defined structures in the interfacial environment. Biological implications of this self-organizing effect will be discussed.

  1. Hydrophobic effect at aqueous interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Conceptual basis for hydrophobic effects in bulk water and at aqueous interfaces have similar conceptual basis but often manifests itself differently. Using a wide range of computer simulations as the basis, I will review different forms of hydrophobic effects at a variety of interfaces starting from simple liquid-vapor and water-oil interfaces and progressing to water-membrane interfaces. I will start with discussing how water is organized at different interfaces, stressing both similarities and differences. The main thread is that, as in the bulk liquid, hydrophobic effects have profound influence on conformational equilibria and organization of both small molecules and macromolecules, but the result of this influence is quite different. Specifically, it will be shown that many small, but not necessarily amphiphilic molecules tend to accumulate at the interface and, and this tendency will be explained. Furthermore, I will show that many short peptides that are disordered in water spontaneously fold into well-defined structures in the interfacial environment. Biological implications of this self-organizing effect will be discussed.

  2. Entangled microwaves as a resource for entangling spatially separate solid-state qubits: Superconducting qubits, nitrogen-vacancy centers, and magnetic molecules

    NASA Astrophysics Data System (ADS)

    Gómez, Angela Viviana; Rodríguez, Ferney Javier; Quiroga, Luis; García-Ripoll, Juan José

    2016-06-01

    Quantum correlations present in a broadband two-line squeezed microwave state can induce entanglement in a spatially separated bipartite system consisting of either two single qubits or two-qubit ensembles. By using an appropriate master equation for a bipartite quantum system in contact with two separate but entangled baths, the generating entanglement process in spatially separated quantum systems is thoroughly characterized. Decoherence thermal effects on the entanglement transfer are also discussed. Our results provide evidence that this entanglement transfer by dissipation is feasible, yielding to a steady-state amount of entanglement in the bipartite quantum system which can be optimized for a wide range of realistic physical systems that include state-of-the-art experiments with nitrogen-vacancy centers in diamond, superconducting qubits, or even magnetic molecules embedded in a crystalline matrix.

  3. Hydrophobic pocket targeting probes for enteroviruses

    NASA Astrophysics Data System (ADS)

    Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu

    2015-10-01

    onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content, the probe may be released upon virus uncoating. Our results collectively thus show that the gold and fluorescently labeled probes may be used to track and visualize the studied enteroviruses during the early phases of infection opening new avenues to follow virus uncoating in cells. Electronic supplementary information (ESI) available: Details of the synthesis of the probes, UV-Vis absorption spectra of the probe (2), PAGE separation and the absorption spectra of the gold labeled probe (3), details of the NMR experiments, determination of the cytotoxicity of the studied molecules, TEM micrographs of the gold labeled probe (3) with enteroviruses, live cell imaging of the fluorescent probe (4) in cells, and additional details of modeling of the hydrophobic pockets. See DOI: 10.1039/c5nr04139b

  4. Water transport through functionalized nanotubes with tunable hydrophobicity

    SciTech Connect

    Moskowitz, Ian; Snyder, Mark A.; Mittal, Jeetain

    2014-11-14

    Molecular dynamics simulations are used to study the occupancy and flow of water through nanotubes comprised of hydrophobic and hydrophilic atoms, which are arranged on a honeycomb lattice to mimic functionalized carbon nanotubes (CNTs). We consider single-file motion of TIP3P water through narrow channels of (6,6) CNTs with varying fractions (f) of hydrophilic atoms. Various arrangements of hydrophilic atoms are used to create heterogeneous nanotubes with separate hydrophobic/hydrophilic domains along the tube as well as random mixtures of the two types of atoms. The water occupancy inside the nanotube channel is found to vary nonlinearly as a function of f, and a small fraction of hydrophilic atoms (f ≈ 0.4) are sufficient to induce spontaneous and continuous filling of the nanotube. Interestingly, the average number of water molecules inside the channel and water flux through the nanotube are less sensitive to the specific arrangement of hydrophilic atoms than to the fraction, f. Two different regimes are observed for the water flux dependence on f – an approximately linear increase in flux as a function of f for f < 0.4, and almost no change in flux for higher f values, similar to the change in water occupancy. We are able to define an effective interaction strength between nanotube atoms and water's oxygen, based on a linear combination of interaction strengths between hydrophobic and hydrophilic nanotube atoms and water, that can quantitatively capture the observed behavior.

  5. Preparation of hydrophobic coatings

    DOEpatents

    Branson, Eric D [Albuquerque, NM; Shah, Pratik B [Albuquerque, NM; Singh, Seema [Rio Rancho, NM; Brinker, C Jeffrey [Albuquerque, NM

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  6. Characterization of surface hydrophobicity of engineered nanoparticles.

    PubMed

    Xiao, Yao; Wiesner, Mark R

    2012-05-15

    The surface chemistry of nanoparticles, including their hydrophobicity, is a key determinant of their fate, transport and toxicity. Engineered NPs often have surface coatings that control the surface chemistry of NPs and may dominate the effects of the nanoparticle core. Suitable characterization methods for surface hydrophobicity at the nano-scale are needed. Three types of methods, surface adsorption, affinity coefficient and contact angle, were investigated in this study with seven carbon and metal based NPs with and without coatings. The adsorption of hydrophobic molecules, Rose Bengal dye and naphthalene, on NPs was used as one measure of hydrophobicity and was compared with the relative affinity of NPs for octanol or water phases, analogous to the determination of octanol-water partition coefficients for organic molecules. The sessile drop method was adapted for measuring contact angle of a thin film of NPs. Results for these three methods were qualitatively in agreement. Aqueous-nC(60) and tetrahydrofuran-nC(60) were observed to be more hydrophobic than nano-Ag coated with polyvinylpyrrolidone or gum arabic, followed by nano-Ag or nano-Au with citrate-functionalized surfaces. Fullerol was shown to be the least hydrophobic of seven NPs tested. The advantages and limitations of each method were also discussed.

  7. Evaporation-induced failure of hydrophobicity

    NASA Astrophysics Data System (ADS)

    Luo, H.; Liu, T.; Ma, J.; Wang, P.; Wang, Y.; Leprince-Wang, Y.; Jing, G.

    2016-09-01

    Hydrophobic coatings have tremendous applications in many fields of industries, and their robustness is an important subject of investigation. Here we experimentally demonstrate the detachment of hydrophobic coating and the formation of the residual deposit resulting from an evaporating drop of water. A hydrophobic octadecanethiol (ODT) coating is employed to enhance the hydrophobicity of ZnO nanowire arrays (advancing and receding contact angle of 165° and 128°, respectively). Being a model system of the unique bonding interaction between ODT and ZnO, water drop drying on the structure of ODT/ZnO is examined. Our experimental results showed the significant depression and even failure of the hydrophobicity on this composite surface resulting from collecting the deposits of ODT molecules during the drop drying. By analyzing energy criterion and force balance, surface tension at the moving contact line is identified as a dominating destructive force to unstick the coating molecules. Interestingly, a normal rinsing stream does not damage this coating to alter its hydrophobicity, but rather is overshadowed by the evaporation of the tinny water drop. The drops of rain or condensed water outdoor may thus play the same role to damage the functional coatings after their evaporation. Our findings indicate that more delicate designs are needed to prevent the destructive effects of drop evaporation on superhydrophobic surfaces.

  8. Load-collapse-release cascades of amphiphilic guest molecules in charged dendronized polymers through spatial separation of noncovalent forces.

    PubMed

    Kurzbach, Dennis; Zhang, Xiuqiang; Zhang, Baozhong; Arnold, Philipp; Hinderberger, Dariush

    2013-04-26

    The ability to pack guest molecules into charged dendronized polymers (denpols) and the possibility to release these guest molecules from subsequently densely aggregated denpols in a load-collapse-release cascade is described. Charged denpols, which constitute molecular objects with a persistent, well-defined envelope and interior, are capable of incorporating large amounts of amphiphilic guest molecules. Simultaneously, multivalent ions can coordinate to the surfaces of charged denpols, leading to counterion-induced aggregation of the already guest-loaded host structures. Thus, although the local guest concentration in denpol-based molecular transport might already be initially high due to the dense guest packing inside the dendritic denpol scaffolding, the "local" guest concentration can nonetheless be further increased by packing (through aggregation) of the host-guest complexes themselves. Subsequent release of guest compounds from densely aggregated dendronized polymers is then possible (e.g., through increasing the solution concentration of imidazolium-based ions). Augmented with this release possibility, the concept of twofold packing of guests, firstly through hosting itself and secondly through aggregation of the hosts, gives rise to a load-collapse-release cascade that strikingly displays the high potential of dendronized macromolecules for future molecular transport applications.

  9. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules

    EPA Science Inventory

    Novel magnetically separable TiO2-guanidine-(Ni,Co)Fe2O4 nanomaterials were prepared and characterised by a series of techniques including XRD, SEM, TEM, N2 physisorption as well as XPS and subsequently tested for their photocatalytic activities in the selective transformation of...

  10. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules

    EPA Science Inventory

    Novel magnetically separable TiO2-guanidine-(Ni,Co)Fe2O4 nanomaterials were prepared and characterised by a series of techniques including XRD, SEM, TEM, N2 physisorption as well as XPS and subsequently tested for their photocatalytic activities in the selective transformation of...

  11. Recent progress in understanding hydrophobic interactions

    PubMed Central

    Meyer, Emily E.; Rosenberg, Kenneth J.; Israelachvili, Jacob

    2006-01-01

    We present here a brief review of direct force measurements between hydrophobic surfaces in aqueous solutions. For almost 70 years, researchers have attempted to understand the hydrophobic effect (the low solubility of hydrophobic solutes in water) and the hydrophobic interaction or force (the unusually strong attraction of hydrophobic surfaces and groups in water). After many years of research into how hydrophobic interactions affect the thermodynamic properties of processes such as micelle formation (self-assembly) and protein folding, the results of direct force measurements between macroscopic surfaces began to appear in the 1980s. Reported ranges of the attraction between variously prepared hydrophobic surfaces in water grew from the initially reported value of 80–100 Å to values as large as 3,000 Å. Recent improved surface preparation techniques and the combination of surface force apparatus measurements with atomic force microscopy imaging have made it possible to explain the long-range part of this interaction (at separations >200 Å) that is observed between certain surfaces. We tentatively conclude that only the short-range part of the attraction (<100 Å) represents the true hydrophobic interaction, although a quantitative explanation for this interaction will require additional research. Although our force-measuring technique did not allow collection of reliable data at separations <10 Å, it is clear that some stronger force must act in this regime if the measured interaction energy curve is to extrapolate to the measured adhesion energy as the surface separation approaches zero (i.e., as the surfaces come into molecular contact). PMID:17023540

  12. Hydrophobic and moisture-stable metal–organic frameworks

    SciTech Connect

    Fernandez, Carlos A.; Nune, Satish K.; Annapureddy, Harsha V.; Dang, Liem X.; McGrail, B. Peter; Zheng, Feng; Polikarpov, Evgueni; King, David L.; Freeman, Charles J.; Brooks, Kriston P.

    2015-08-15

    Metal-organic frameworks (MOFs) have proved to be very attractive for applications including gas storage, separation, sensing and catalysis. In particular, CO2 separation from flue gas in post-combustion processes is one of the main focuses of research among the scientific community. One of the major issues that are preventing the successful commercialization of these novel materials (e.g., MgDOBDC and NiDOBDC) is their high affinity towards water that not only compromises gas sorption capacity but also the chemical stability. In this paper, we demonstrate a novel post-synthesis modification approach to modify MOFs towards increasing hydrophobic behavior and chemical stability against moisture without compromising CO2 sorption capacity. Our approach consists of incorporating hydrophobic moieties on the external surface of the MOFs via physical adsorption. The rationale behind this concept is to increase the surface hydrophobicity in the porous materials without the need of introducing bulky functionalities inside the pore which compromises the sorption capacity toward other gases. This allows MOF interaction/sorption of CO2 molecules comparable to unmodified MOFs. We herein report preliminary results on three routinely studied MOF materials [MIL-101(Cr), MgDOBDC and NiDOBDC] demonstrating that the polymer-modified MOFs retain CO2 sorption capacity while reducing the water adsorption up to three times, respect to the un-modified materials, via an equilibrium effect. Furthermore, the water stability of the polymer-functionalized MOFs is significantly higher than the water stability of the bare material. Molecular dynamic simulations demonstrated that this equilibrium effect implies a fundamental and permanent change in the water sorption capacity of MOFs. This approach can also be employed to render moisture stability and selectivity to MOFs that find applications in gas separations, catalysis and sensing where water plays a critical role in compromising MOF

  13. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography.

    PubMed

    Lin, Shu-Ling; Wu, Yu-Ru; Lin, Tzuen-Yeuan; Fuh, Ming-Ren

    2015-04-29

    In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate-MAA ratios were investigated to prepare a series of 30% alkyl methacrylate-MAA-EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column.

  14. Wetting: Intrinsically robust hydrophobicity

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Jiang, Lei

    2013-04-01

    Ceramic surfaces can be rendered hydrophobic by using polymeric modifiers, but these are not robust to harsh environments. A known family of rare-earth oxide ceramics is now found to exhibit intrinsic hydrophobicity, even after exposure to high temperatures and abrasive wear.

  15. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect.

    PubMed

    Hatakeyama, Takuji; Shiren, Kazushi; Nakajima, Kiichi; Nomura, Shintaro; Nakatsuka, Soichiro; Kinoshita, Keisuke; Ni, Jingping; Ono, Yohei; Ikuta, Toshiaki

    2016-04-13

    Ultrapure blue-fluorescent molecules based on thermally activated delayed fluorescence are developed. Organic light-emitting diode (OLED) devices employing the new emitters exhibit a deep blue emission at 467 nm with a full-width at half-maximum of 28 nm, CIE coordinates of (0.12, 0.13), and an internal quantum efficiency of ≈100%, which represent record-setting performance for blue OLED devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules.

    PubMed

    Wouters, Sam; De Vos, Jelle; Dores-Sousa, José Luís; Wouters, Bert; Desmet, Gert; Eeltink, Sebastiaan

    2017-06-01

    The present paper discusses practical aspects of prototyping of microfluidic chips using cyclic olefin copolymer as substrate and the application in high-performance liquid chromatography. The developed chips feature a 60mm long straight separation channel with circular cross section (500μm i.d.) that was created using a micromilling robot. To irreversibly seal the top and bottom chip substrates, a solvent-vapor-assisted bonding approach was optimized, allowing to approximate the ideal circular channel geometry. Four different approaches to establish the micro-to-macro interface were pursued. The average burst pressure of the microfluidic chips in combination with an encasing holder was established at 38MPa and the maximum burst pressure was 47MPa, which is believed to be the highest ever report for these polymer-based microfluidic chips. Porous polymer monolithic frits were synthesized in-situ via UV-initiated polymerization and their locations were spatially controlled by the application of a photomask. Next, high-pressure slurry packing was performed to introduce 3μm silica reversed-phase particles as the stationary phase in the separation channel. Finally, the application of the chip technology is demonstrated for the separation of alkyl phenones in gradient mode yielding baseline peak widths of 6s by applying a steep gradient of 1.8min at a flow rate of 10μL/min. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Development of a membrane-less dynamic field gradient focusing device for the separation of low-molecular-weight molecules

    PubMed Central

    Burke, Jeffrey M.; Smith, Colin D.; Ivory, Cornelius F.

    2010-01-01

    Dynamic field gradient focusing uses an electric field gradient generated by controlling the voltage profile of an electrode array to separate and concentrate charged analytes according to their individual electrophoretic mobilities. This study describes a new instrument in which the electrodes have been placed within the separation channel. The major challenge faced with this device is that when applied voltages to the electrodes are larger than the redox potential of water, electrolysis will occur, producing hydrogen ions (H+) plus oxygen gas on the anodes and hydroxide (OH−) plus hydrogen gas on the cathodes. The resulting gas bubbles and pH excursions can cause problems with system performance and reproducibility. An on-column, degassing system that can remove gas bubbles “on-the-fly” is described. In addition, the use of a high capacity, low-conductivity buffer to address the problem of the pH shift that occurs due to the production of H+ on the anodes is illustrated. Finally, the successful separation of three, low-molecular-weight dyes (amaranth, bromophenol blue and methyl red) is described. PMID:20191553

  18. Development of a membrane-less dynamic field gradient focusing device for the separation of low-molecular-weight molecules.

    PubMed

    Burke, Jeffrey M; Smith, Colin D; Ivory, Cornelius F

    2010-03-01

    Dynamic field gradient focusing uses an electric field gradient generated by controlling the voltage profile of an electrode array to separate and concentrate charged analytes according to their individual electrophoretic mobilities. This study describes a new instrument in which the electrodes have been placed within the separation channel. The major challenge faced with this device is that when applied voltages to the electrodes are larger than the redox potential of water, electrolysis will occur, producing hydrogen ions (H+) plus oxygen gas on the anodes and hydroxide (OH(-)) plus hydrogen gas on the cathodes. The resulting gas bubbles and pH excursions can cause problems with system performance and reproducibility. An on-column, degassing system that can remove gas bubbles "on-the-fly" is described. In addition, the use of a high capacity, low-conductivity buffer to address the problem of the pH shift that occurs due to the production of H+ on the anodes is illustrated. Finally, the successful separation of three, low-molecular-weight dyes (amaranth, bromophenol blue and methyl red) is described.

  19. Interaction between silica and hydrophobic cations.

    PubMed Central

    Depasse, J

    1978-01-01

    The interactions between silica and some molecules which have a high affinity for its surface have been studied. The hydrophobic properties and the positive charge of these molecules are likely to be responsible for their strong adsorption on to silica. These observations should be useful in research into new inhibitors of the effects of silica. One of the cations tested, chloroquine, has been shown to be an effective inhibitor of the haemolytic activity of quartz. PMID:204326

  20. Insights into the Oxidation Mechanism of sp(2)-sp(3) Hybrid Carbon Materials: Preparation of a Water-Soluble 2D Porous Conductive Network and Detectable Molecule Separation.

    PubMed

    Yang, Siwei; Yang, Yucheng; He, Peng; Wang, Gang; Ding, Guqiao; Xie, Xiaoming

    2017-01-31

    A thorough investigation of the oxidation mechanism of sp(2)-sp(3) hybrid carbon materials is helpful for the morphological trimming of graphene. Here, porous graphene (PGN) was obtained via a free radical oxidation process. We further demonstrated the difference between traditional and free radical oxidation processes in sp(2)-sp(3) hybrid carbon materials. The sp(3) part of graphene oxide was oxidized first, and well-crystallized sp(2) domains were reserved, which is different from the oxidation mechanism in a traditional approach. The obtained PGN shows excellent performance in the design of PGN-based detectable molecule separation or other biomedical applications.

  1. Metallophilic interactions in A-frame molecules [S(MPH3)2] (M = Cu, Ag, Au) from range-separated density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Alam, Md Mehboob; Fromager, Emmanuel

    2012-12-01

    Metallophilicity in A-frame molecules [S(MPH3)2] (M = Cu, Ag, Au), which was previously studied by Riedel et al. [S. Riedel, P. Pyykkö, R.A. Mata, H.-J. Werner, Chem. Phys. Lett. 405 (2005) 148], is revisited by means of single- and multi-reference range-separated second-order density-functional perturbation theories. The commonly used μ = 0.4 a.u. range-separation parameter enables to capture the metal-metal attraction and, thus, to treat it within second-order many-body perturbation theory (MBPT2) while 'intramolecular' electron correlation is described within density-functional theory (DFT). When compared to CCSD(T), the hybrid MBPT2-DFT methods perform much better than regular MBPT2 and DFT.

  2. A rapid means of separating A14-/sup 125/I-insulin from heterogeneously labeled insulin molecules for biologic studies

    SciTech Connect

    Stentz, F.B.; Wright, R.K.; Kitabchi, A.E.

    1982-12-01

    We have used two methods for the preparation of a highly homogeneous insulin with high specific activity. After iodination with chloramine T, the labeled peptides were retained on a disposable Sep Pak cartridge and subsequently eluted. The eluted labeled insulins were further purified by either DEAE cellulose or high performance liquid chromatography (HPLC) to separate A14-/sup 125/I- from A19-/sup 125/I-insulin. Both methods of chromatography were effective, but HPLC offered the advantage of better resolution in less time and higher yields of A14-/sup 125/I-insulin, which is suitable for biologic studies in various target tissues.

  3. Incorporation of graphene oxide nanosheets into boronate-functionalized polymeric monolith to enhance the electrochromatographic separation of small molecules.

    PubMed

    Lin, Zian; Wang, Juan; Yu, Ruifang; Yin, Xiaofei; He, Yu

    2015-02-01

    Graphene oxide (GO) nanosheets were incorporated into an organic polymer monolith containing 3-acrylamidophenylboronic acid (AAPBA) and pentaerythritol triacrylate (PETA) to form a novel monolithic stationary phase for CEC. The effects of the mass ratio of AAPBA/PETA, the amount of GO, and the volume of porogen on the morphology, permeability and pore properties of the prepared poly(AAPBA-GO-PETA) monoliths were investigated. A series of test compounds including amides, alkylbenzenes, polycyclic aromatics, phenols, and anilines were used to evaluate and compare the separation performances of the poly(AAPBA-GO-PETA) and the parent poly(AAPBA-co-PETA) monoliths. The results indicated that incorporation of GO into monolithic column exhibited much higher resolutions (>1.5) and column efficiency (62,000 ∼ 110,000 plates/m for toluene, DMF, formamide, and thiourea) than the poly(AAPBA-co-PETA). The successful application in isocratic separation of peptides suggests the potential of the GO incorporated monolithic column in complex sample analysis. In addition, the reproducibility and stability of the prepared poly(AAPBA-GO-PETA) monolith was assessed. The run-to-run, column-to-column and batch-to-batch reproducibilities of this monolith for alkylbenzenes' retention were satisfactory with the RSDs less than 1.8% (n = 5), 3.7% and 5.6% (n = 3), respectively, indicating the effectiveness and practicability of the proposed method.

  4. Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the "hydrophobic wall" of carbonic anhydrase.

    PubMed

    Mecinović, Jasmin; Snyder, Phillip W; Mirica, Katherine A; Bai, Serena; Mack, Eric T; Kwant, Richard L; Moustakas, Demetri T; Héroux, Annie; Whitesides, George M

    2011-09-07

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H(2)NSO(2)C(6)H(4)-CONHCH(2)(CX(2))(n)CX(3), n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and entropic contributions to the

  5. Practical comparison of LC columns packed with different superficially porous particles for the separation of small molecules and medium size natural products.

    PubMed

    Yang, Peilin; McCabe, Terry; Pursch, Matthias

    2011-11-01

    Commercial C(18) columns packed with superficially porous particles of different sizes and shell thicknesses (Ascentis Express, Kinetex, and Poroshell 120) or sub-2-μm totally porous particles (Acquity BEH) were systematically compared using a small molecule mixture and a complex natural product mixture as text probes. Significant efficiency loss was observed on 2.1-mm id columns even with a low dispersion ultra-high pressure liquid chromatography system. The Kinetex 4.6-mm id column packed with 2.6-μm particles exhibited the best overall efficiency for small molecule separations and the Poroshell 120 column showed better performance for mid-size natural product analytes. The Kinetex 2.1-mm id column packed with 1.7-μm particles did not deliver the expected performance and the possible reasons besides extra column effect have been proved to be frictional heating effect and poor column packing quality. Different column retentivities and selectivities have been observed on the four C(18) columns of different brands for the natural product separation. Column batch-to-batch variability that has been previously observed on the Ascentis Express column was also observed on the Kinetex and Poroshell 120 column. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrohydrodynamics near hydrophobic surfaces.

    PubMed

    Maduar, S R; Belyaev, A V; Lobaskin, V; Vinogradova, O I

    2015-03-20

    We show that an electro-osmotic flow near the slippery hydrophobic surface depends strongly on the mobility of surface charges, which are balanced by counterions of the electrostatic diffuse layer. For a hydrophobic surface with immobile charges, the fluid transport is considerably amplified by the existence of a hydrodynamic slippage. In contrast, near the hydrophobic surface with mobile adsorbed charges, it is also controlled by an additional electric force, which increases the shear stress at the slipping interface. To account for this, we formulate electrohydrodynamic boundary conditions at the slipping interface, which should be applied to quantify electro-osmotic flows instead of hydrodynamic boundary conditions. Our theoretical predictions are fully supported by dissipative particle dynamics simulations with explicit charges. These results lead to a new interpretation of zeta potential of hydrophobic surfaces.

  7. Controllable picoliter pipetting using hydrophobic microfluidic valves

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Huang, J.; Qian, X.; Mi, S.; Wang, X.

    2017-06-01

    A picoliter pipetting technique using the microfluidic method is presented. Utilizing the hydrophobic self-assembled monolayer films patterned in microchannels as pressure-controlled valves, a small volume of liquid can be separated by a designed channel trap and then ejected from the channel end at a higher pressure. The liquid trap section is composed of a T-shaped channel junction and a hydrophobic patch. The liquid volume can be precisely controlled by varying the distance of the hydrophobic patch from the T-junction. By this means, liquid less than 100 pl can be separated and pipetted. The developed device is potentially useful for sample dispensing in biological, medical, and chemical applications.

  8. Enhanced ordering of water at hydrophobic surfaces.

    PubMed

    Strazdaite, Simona; Versluis, Jan; Backus, Ellen H G; Bakker, Huib J

    2014-02-07

    We study the properties of water molecules adjacent to a hydrophobic molecular layer with vibrational sum-frequency generation spectroscopy. We find that the water molecules at D2O/hexane, D2O/heptane, and D2O/polydimethylsiloxane interfaces show an enhanced ordering and stronger hydrogen-bond interactions than the water molecules at a D2O/air interface. With increasing temperature (up to 80 °C) the water structure becomes significantly less ordered and the hydrogen bonds become weaker.

  9. Surface analysis of selected hydrophobic materials

    NASA Astrophysics Data System (ADS)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  10. Statistical Analyses of Hydrophobic Interactions: A Mini-Review

    DOE PAGES

    Pratt, Lawrence R.; Chaudhari, Mangesh I.; Rempe, Susan B.

    2016-07-14

    Here this review focuses on the striking recent progress in solving for hydrophobic interactions between small inert molecules. We discuss several new understandings. First, the inverse temperature phenomenology of hydrophobic interactions, i.e., strengthening of hydrophobic bonds with increasing temperature, is decisively exhibited by hydrophobic interactions between atomic-scale hard sphere solutes in water. Second, inclusion of attractive interactions associated with atomic-size hydrophobic reference cases leads to substantial, nontrivial corrections to reference results for purely repulsive solutes. Hydrophobic bonds are weakened by adding solute dispersion forces to treatment of reference cases. The classic statistical mechanical theory for those corrections is not accuratemore » in this application, but molecular quasi-chemical theory shows promise. Lastly, because of the masking roles of excluded volume and attractive interactions, comparisons that do not discriminate the different possibilities face an interpretive danger.« less

  11. Intermolecular Vibrations of Hydrophobic Amino Acids

    NASA Astrophysics Data System (ADS)

    Williams, Michael Roy Casselman

    Hydrophobic amino acids interact with their chemical environment through a combination of electrostatic, hydrogen bonding, dipole, induced dipole, and dispersion forces. These interactions all have their own characteristic energy scale and distance dependence. The low-frequency (0.1-5 THz, 5-150 cm-1) vibrational modes of amino acids in the solid state are a direct indicator of the interactions between the molecules, which include interactions between an amino acid functional group and its surroundings. This information is central to understanding the dynamics and morphology of proteins. The alpha-carbon is a chiral center for all of the hydrophobic amino acids, meaning that they exist in two forms, traditionally referred to as L- and D-enantiomers. This nomenclature indicates which direction the molecule rotates plane-polarized visible light (levorotory and dextrorotory). Chiral a-amino acids in proteins are exclusively the L-variety In the solid state, the crystal lattice of the pure L-enantiomer is the mirror image of the D-enantiomer crystal lattice. These solids are energetically identical. Enantiomers also have identical spectroscopic properties except when the measurement is polarization sensitive. A mixture of equal amounts D- and L-amino acid enantiomers can crystallize into a racemic (DL-) structure that is different from that of the pure enantiomers. Whether a solution of both enantiomers will crystallize into a racemic form or spontaneously resolve into a mixture of separate D- and L-crystals largely depends on the interactions between molecules available in the various possible configurations. This is an active area of research. Low-frequency vibrations with intermolecular character are very sensitive to changes in lattice geometry, and consequently the vibrational spectra of racemic crystals are usually quite distinct from the spectra of the crystals of the corresponding pure enantiomers in the far-infrared (far-IR). THz time-domain spectroscopy (THz

  12. Is Br2 hydration hydrophobic?

    NASA Astrophysics Data System (ADS)

    Alcaraz-Torres, A.; Gamboa-Suárez, A.; Bernal-Uruchurtu, M. I.

    2017-02-01

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  13. Hydrophobically modified polyelectrolytes: Characterization, aggregation and adsorption

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Ferdous

    The focus of our work was to experimentally study the aggregation and adsorption behavior of model HM polyelectrolytes. Hydrophobically modified alkali soluble emulsions (HASE), the model HM polyelectrolytes, were chosen because they had complex architecture yet possessed key variables for systematic study. The HASE polymers have methacrylic acid (MAA) and ethyl acrylate (EA) in the backbone with pendent hydrophobic groups. Characterization of a single molecule is an important first step in understanding the aggregation and adsorption of these polymers. However, characterizations of the HASE polymers using conventional techniques such as gel permeation chromatography or static light scattering were difficult because of the hydrophobic association. In this study, two different approaches have been taken to prevent the hydrophobic association in aqueous solution: (1) hydrolyze the polymer to cleave the hydrophobic constituents, and (2) use methyl beta-cyclodextrin that has a hydrophobic cavity and a hydrophilic outer shell, to shield the hydrophobes from associating. By taking these two approaches and using gel permeation chromatography (GPC), dynamic (DLS) and static (SLS) light scattering techniques, the molecular weight, hydrodynamic radius and radius of gyration of a single molecule were determined. Except for one chemical site, we were able to determine that branching or grafting did not occur in the polymer chain during synthesis. Our aggregation studies showed that, in aqueous solutions, the HASE polymers formed small aggregates (presumably single micelles of single or a few chains) and large aggregates (presumably formed by bridging between micelles). The radii and masses of the larger aggregates, measured using DLS and SLS, were found to increase with an increase in the polymer concentration, indicating an open association process for the HASE polymers. Our SLS results also showed that, at high salt concentration, the aggregates of the HASE polymer with

  14. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    NASA Astrophysics Data System (ADS)

    Makarov, G. N.; Petin, A. N.

    2016-03-01

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF6 and CF3I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF6 molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with a surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation.

  15. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions.

    PubMed

    Sarma, Rahul; Paul, Sandip

    2012-09-07

    To understand the mechanism of protein protection by the osmolyte trimethylamine-N-oxide (TMAO) at high pressure, using molecular dynamics (MD) simulations, solvation of hydrophobic group is probed in aqueous solutions of TMAO over a wide range of pressures relevant to protein denaturation. The hydrophobic solute considered in this study is neopentane which is a considerably large molecule. The concentrations of TMAO range from 0 to 4 M and for each TMAO concentration, simulations are performed at five different pressures ranging from 1 atm to 8000 atm. Potentials of mean force are calculated and the relative stability of solvent-separated state over the associated state of hydrophobic solute are estimated. Results suggest that high pressure reduces association of hydrophobic solutes. From computations of site-site radial distribution function followed by analysis of coordination number, it is found that water molecules are tightly packed around the nonpolar particle at high pressure and the hydration number increases with increasing pressure. On the other hand, neopentane interacts preferentially with TMAO over water and although hydration of neopentane reduces in presence of this osmolyte, TMAO does not show any tendency to prevent the pressure-induced dispersion of neopentane moieties. It is also observed that TMAO molecules prefer a side-on orientation near the neopentane surface, allowing its oxygen atom to form favorable hydrogen bonds with water while maintaining some hydrophobic contacts with neopentane. Analysis of hydrogen-bond properties and solvation characteristics of TMAO reveals that TMAO can form hydrogen bonds with water and it reduces the identical nearest neighbor water molecules caused by high hydrostatic pressures. Moreover, TMAO enhances life-time of water-water hydrogen bonds and makes these hydrogen bonds more attractive. Implication of these results for counteracting effect of TMAO against protein denaturation at high pressures are

  16. Single water entropy: hydrophobic crossover and application to drug binding.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2014-09-11

    Entropy of water plays an important role in both chemical and biological processes e.g. hydrophobic effect, molecular recognition etc. Here we use a new approach to calculate translational and rotational entropy of the individual water molecules around different hydrophobic and charged solutes. We show that for small hydrophobic solutes, the translational and rotational entropies of each water molecule increase as a function of its distance from the solute reaching finally to a constant bulk value. As the size of the solute increases (0.746 nm), the behavior of the translational entropy is opposite; water molecules closest to the solute have higher entropy that reduces with distance from the solute. This indicates that there is a crossover in translational entropy of water molecules around hydrophobic solutes from negative to positive values as the size of the solute is increased. Rotational entropy of water molecules around hydrophobic solutes for all sizes increases with distance from the solute, indicating the absence of crossover in rotational entropy. This makes the crossover in total entropy (translation + rotation) of water molecule happen at much larger size (>1.5 nm) for hydrophobic solutes. Translational entropy of single water molecule scales logarithmically (Str(QH) = C + kB ln V), with the volume V obtained from the ellipsoid of inertia. We further discuss the origin of higher entropy of water around water and show the possibility of recovering the entropy loss of some hypothetical solutes. The results obtained are helpful to understand water entropy behavior around various hydrophobic and charged environments within biomolecules. Finally, we show how our approach can be used to calculate the entropy of the individual water molecules in a protein cavity that may be replaced during ligand binding.

  17. Effect of gradient steepness on the kinetic performance limits and peak compression for reversed-phase gradient separations of small molecules.

    PubMed

    Vaňková, Nikola; De Vos, Jelle; Tyteca, Eva; Desmet, Gert; Edge, Tony; Česlová, Lenka; Česla, Petr; Eeltink, Sebastiaan

    2015-08-28

    The effect of gradient steepness on the kinetic performance limits and peak compression effects has been assessed in gradient mode for the separation of phenol derivatives using columns packed with 2.6μm core-shell particles. The effect of mobile-phase velocity on peak capacity was measured on a column with fixed length while maintaining the retention factor at the moment of elution and the peak-compression factor constant. Next, the performance limits were determined at the maximum system pressure of 100MPa while varying the gradient steepness. For the separation of small molecules applying a linear gradient with a broad span, the best performance limits in terms of peak capacity and analysis time were obtained applying a gradient-time-to-column-dead-time (tG/t0) ratio of 12. The magnitude of the peak-compression factor was assessed by comparing the isocratic performance with that in gradient mode applying different gradient times. Therefore, the retention factors for different analytes were determined in gradient mode and the mobile-phase composition in isocratic mode was tuned such that the difference in retention factor was smaller than 2%. Peak-compression factors were quantitatively determined between 0.95 and 0.65 depending on gradient steepness and the gradient retention factor.

  18. Preparation and characterization of open-tubular capillary column modified with graphene oxide nanosheets for the separation of small organic molecules.

    PubMed

    Xu, Yin-Yin; Niu, Xiao-Ying; Dong, Ya-Lei; Zhang, Hui-Ge; Li, Xi; Chen, Hong-Li; Chen, Xing-Guo

    2013-04-05

    A novel coated capillary was prepared by immobilizing graphene oxide (GO) on the fused-silica capillary (75 μm i.d.) which was derivatized by 3-aminopropyl-trimethoxysilane (APTMS). The bare capillary, APTMS modified capillary (NH2-capillary) and GO coated capillary (GO-capillary) were characterized by streaming potentials (SPs), fluorescence microscope and scanning electron microscope (SEM). The results indicated that the capillary was successfully modified with GO sheets via covalent bonding and electrostatic effect. Compared with bare capillary, greater separation efficiency was achieved by GO-capillary column as a result of the increasing interactions between the small organic molecules and the inner wall of the GO-capillary column originated from the π-π electrostatic stacking. For three consecutive runs, the intra-day relative standard deviations (RSDs) of migration time and peak areas were 0.6-4.3% and 2.8-9.3%, respectively. The inter-day relative standard deviations of migration time and peak areas were 0.2-8.3% and 4.5-9.6%. Additionally, one GO-capillary column could be used for more than 100 runs with no observable changes on the separation efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Preparation of well-controlled three-dimensional skeletal hybrid monoliths via thiol-epoxy click polymerization for highly efficient separation of small molecules in capillary liquid chromatography.

    PubMed

    Lin, Hui; Chen, Lianfang; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-10-16

    Two kinds of hybrid monoliths were first prepared via thiol-epoxy click polymerization using a multi-epoxy monomer, octaglycidyldimethylsilyl POSS (POSS-epoxy), and two multi-thiols, trimethylolpropanetris(3-mercaptopropionate) (TPTM) and pentaerythritoltetrakis(3-mercaptopropionate) (PTM), respectively, as the precursors. The resulting two hybrid monoliths (assigned as POSS-epoxy-TPTM and POSS-epoxy-PTM) not only possessed high thermal, mechanical and chemical stabilities, but also exhibited well-controlled 3D skeletal microstructure and high efficiency in capillary liquid chromatography (cLC) separation of small molecules. The highest column efficiency reached 182,700N/m (for butylbenzene) on the monolith POSS-epoxy-PTM at the velocity of 0.75mm/s. Furthermore, the hybrid monolith POSS-epoxy-PTM was successfully applied for cLC separations of various samples, not only standard compounds such as alkylbenzenes, PAHs, phenols and dipeptides, as well as intact proteins, but also complex samples of EPA 610 and BSA digest.

  20. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  1. The effect of lithium ions on the hydrophobic effect: does lithium affect hydrophobicity differently than other ions?

    PubMed

    Beauchamp, David L; Khajehpour, Mazdak

    2012-04-01

    Ionic species have been shown to significantly perturb the interactions between non-polar solutes in aqueous solution. These perturbations are often analyzed in terms of the interactions existing between hydrophobic surfaces and ions. It has been known for some time, that ions with a high charge density are repelled from hydrophobic surfaces while ions with a low charge density tend to stick to these surfaces. Therefore, from a continuum model standpoint, small monovalent ions promote hydrophobicity by minimizing the exposed hydrophobic surface area, while "sticky" large monovalent ions interact with the hydrophobic surfaces and discourage aggregation. However, the charge-dense lithium ion often exhibits anomalous behaviour different from these predicted trends: instead of enhancing, the addition of lithium ions often seems to weaken the hydrophobic effect and on the contrary help dissolve hydrophobic molecules. This weakening of apparent hydrophobicity is considered to be one of the reasons for the protein denaturing properties of lithium salts. Recent theoretical and experimental results however have shown that lithium cations can interact with a variety of molecular functional groups. This suggests that this apparent lithium-induced lowering of hydrophobicity, that is often reported in the literature may be a result of specific interactions between these molecular functional groups and lithium, rather than weakening the interaction between hydrophobic surfaces. This work examines these possibilities by studying the effect of various cations on the simple hydrophobic interaction existing between methyl and phenyl contact-pairs and demonstrates that the effect of lithium cations on the hydrophobic effect follows the trend predicted by continuum models. In other words, the influence of an ion on the hydrophobic interaction between two non-polar surfaces is a function of the interaction of that ion and each non-polar surface.

  2. Evaporation rate of water in hydrophobic confinement.

    PubMed

    Sharma, Sumit; Debenedetti, Pablo G

    2012-03-20

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  3. Modulation of hydrophobic interactions by proximally immobilized ions.

    PubMed

    Ma, C Derek; Wang, Chenxuan; Acevedo-Vélez, Claribel; Gellman, Samuel H; Abbott, Nicholas L

    2015-01-15

    The structure of water near non-polar molecular fragments or surfaces mediates the hydrophobic interactions that underlie a broad range of interfacial, colloidal and biophysical phenomena. Substantial progress over the past decade has improved our understanding of hydrophobic interactions in simple model systems, but most biologically and technologically relevant structures contain non-polar domains in close proximity to polar and charged functional groups. Theories and simulations exploring such nanometre-scale chemical heterogeneity find it can have an important effect, but the influence of this heterogeneity on hydrophobic interactions has not been tested experimentally. Here we report chemical force microscopy measurements on alkyl-functionalized surfaces that reveal a dramatic change in the surfaces' hydrophobic interaction strengths on co-immobilization of amine or guanidine groups. Protonation of amine groups doubles the strength of hydrophobic interactions, and guanidinium groups eliminate measurable hydrophobic interactions in all pH ranges investigated. We see these divergent effects of proximally immobilized cations also in single-molecule measurements on conformationally stable β-peptides with non-polar subunits located one nanometre from either amine- or guanidine-bearing subunits. Our results demonstrate the importance of nanometre-scale chemical heterogeneity, with hydrophobicity not an intrinsic property of any given non-polar domain but strongly modulated by functional groups located as far away as one nanometre. The judicious placing of charged groups near hydrophobic domains thus provides a strategy for tuning hydrophobic driving forces to optimize molecular recognition or self-assembly processes.

  4. Modulation of hydrophobic interactions by proximally immobilized ions

    NASA Astrophysics Data System (ADS)

    Ma, C. Derek; Wang, Chenxuan; Acevedo-Vélez, Claribel; Gellman, Samuel H.; Abbott, Nicholas L.

    2015-01-01

    The structure of water near non-polar molecular fragments or surfaces mediates the hydrophobic interactions that underlie a broad range of interfacial, colloidal and biophysical phenomena. Substantial progress over the past decade has improved our understanding of hydrophobic interactions in simple model systems, but most biologically and technologically relevant structures contain non-polar domains in close proximity to polar and charged functional groups. Theories and simulations exploring such nanometre-scale chemical heterogeneity find it can have an important effect, but the influence of this heterogeneity on hydrophobic interactions has not been tested experimentally. Here we report chemical force microscopy measurements on alkyl-functionalized surfaces that reveal a dramatic change in the surfaces' hydrophobic interaction strengths on co-immobilization of amine or guanidine groups. Protonation of amine groups doubles the strength of hydrophobic interactions, and guanidinium groups eliminate measurable hydrophobic interactions in all pH ranges investigated. We see these divergent effects of proximally immobilized cations also in single-molecule measurements on conformationally stable β-peptides with non-polar subunits located one nanometre from either amine- or guanidine-bearing subunits. Our results demonstrate the importance of nanometre-scale chemical heterogeneity, with hydrophobicity not an intrinsic property of any given non-polar domain but strongly modulated by functional groups located as far away as one nanometre. The judicious placing of charged groups near hydrophobic domains thus provides a strategy for tuning hydrophobic driving forces to optimize molecular recognition or self-assembly processes.

  5. Hydrophobic Agglomeration of Mineral Fines in Aqueous Suspensions and its Application in Flotation: a Review

    NASA Astrophysics Data System (ADS)

    Yang, Bingqiao; Song, Shaoxian

    2014-05-01

    Hydrophobic agglomeration is originated from the hydrophobic attraction between particles, which is essentially different from electrolyte coagulation and polymer flocculation. It is applied to mineral processing in floc-flotation process to improve the recovery of mineral fines. In this paper, the applications of this phenomenon in mineral fines were summarized, including the origin of hydrophobic agglomeration, the main factors affect hydrophobic agglomeration (particle hydrophobicity, shear rate and duration, nonpolar oil and tank geometry), as well as hydrophobic agglomeration based separation processes (carrier flotation and floc-flotation).

  6. Hydrophobic sugar holograms

    NASA Astrophysics Data System (ADS)

    Mejias-Brizuela, N. Y.; Olivares-Pérez, A.; Páez-Trujillo, G.; Hernández-Garay, M. P.; Fontanilla-Urdaneta, R.; Fuentes-Tapia, I.

    2008-02-01

    The sugar matrix is used to record of phase holograms; it was modified with the purpose of obtaining a hydrophobic material to improve the stability of the registered image and to stimulate the photosensitivity of the sugar. The new material is formed by a sugar, pectin and vanillin dissolution. The diffraction efficiency parameter increases in comparison with only the sugar matrix, obtaining already of 10%.

  7. Generation of a multi-qubit W entangled state through spatially separated semiconductor quantum-dot-molecules in cavity-quantum electrodynamics arrays

    SciTech Connect

    Liu, Siping; Yu, Rong; Li, Jiahua; Wu, Ying

    2014-04-07

    Generating entangled states attract tremendous interest as the most vivid manifestation of nonlocality of quantum mechanics and also for emerging applications in quantum information processing (QIP). Here, we propose theoretically a scheme for the deterministic generation of a three-qubit W sate with three semiconductor quantum-dot-molecules (QDMs) trapped in spatially separated cavities connected by optical fibers. The proposed scheme takes full advantage of the voltage-controlled tunnelling effects in QDMs, which induces the quantum coherence and further controls the generation of the W entangled state. The influences of the system parameters and various decoherence processes including spontaneous decay and photon leakage on the fidelity of the W state are discussed in details. Numerical results indicate that our scheme is not only robust against these decoherence factors but also insensitive to the deviation of the system parameters from the ideal conditions. Furthermore, the present scheme can be directly extended to realize an N-qubit W state. Also, this scheme can be generically transferred to other physical systems, including circuit quantum electrodynamics and photonic crystal cavities. The results obtained here may be useful in real experiments for realizing QIP in a solid-state platform.

  8. High-performance liquid chromatography separation of small molecules on a porous poly (trimethylol propane triacrylate-co-N-isopropylacrylamide-co-ethylene dimethacrylate) monolithic column.

    PubMed

    Liu, Haiyan; Bai, Xiaomei; Wei, Dan; Yang, Gengliang

    2014-01-10

    A porous monolith was prepared by in situ free-radical polymerization using N-isopropylacrylamide (NIPAAm) and trimethylol propane triacrylate (TMPTA) as functional monomers, ethylene dimethacrylate (EDMA) as crosslinking agent. The chemical group of the monolith was assayed by a Fourier transform infrared spectroscopy (FT-IR) method and the morphology of optimized monolithic column was characterized by scanning electron microscopy (SEM). The mechanical strength and permeability have been studied in detail as well. The run-to-run and column-to-column reproducibility of the retention times were less than 0.9% and 3.0%, respectively. Furthermore, the influence of temperature and mobile phase composition on the separation of aromatic compounds was investigated. The results indicated that poly (trimethylol propane triacrylate-co-N-isopropylacrylamide-co-ethylenedimethacrylate) (TMPTA-co-NIPAAm-co-EDMA) monolithic column not only had high porosity and strong rigidity, but also was a promising tool for analyzing small molecule compounds with a short analysis time by controlling the column temperature.

  9. Preparation and Evaluation of Poly(N-isopropylacrylamide-co-hexanediol diacrylate-co-ethylene dimethacrylate) Monolithic Column and its Applications in the Separation of Small Molecules.

    PubMed

    Ma, Yamin; Liu, Haiyan; Wei, Aile; Qin, Junxiao; Zhang, Shiqi; Zhang, Wen; Bai, Ligai

    2016-11-01

    Poly(N-isopropylacrylamide-co-hexanediol diacrylate-co-ethylene dimethacrylate) [poly(NIPAAm-co-HDDA-co-EDMA)] monolithic column was prepared via in situ polymerization reaction. In order to investigate the porous properties of the monoliths prepared, the morphology was characterized by the scanning electron microscopy; the chemical group of the monolithic column was confirmed by a Fourier transform infrared spectroscopy method. The surface area was 39.1 m(2)/g by the nitrogen adsorption-desorption experiment. With methanol as the mobile phase, the permeability of the monolithic column was calculated as 3.2330 × 10(-14) m(2) Then it was used as the stationary phase of high performance liquid chromatography. The results indicted that poly(NIPAAm-co-HDDA-co-EDMA) monolithic column was good to separate small molecules by controlling the temperature. Column efficiency for p-chloronitrobenzene was 4,680 plates/m. Repeatability was defined by determining run-to-run and column-to-column variation of the retention times of aromatic compounds, expressed as relative standard deviation (RSD = standard deviation/mean × 100%), and the values were <0.58% and 3.1%, respectively.

  10. Separators and organics for lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Böhnstedt, Werner

    This review discusses various interactions between organic compounds, brought into the lead-acid battery via the separator, and their subsequent effect on battery performance. Historically, the interrelationship started with certain 'expander' actions on the lead morphology due to lignins, which leached out of the wooden separators of that time. Synthetic separator materials did not show this effect, but gained acceptance as they were far more stable in the hostile battery environment. The partially hydrophobic character of synthetic separators has been overcome by organic surfactants. Other organic compounds have been found to improve further the stability of separators against oxidation. Special organic molecules, namely aldehydes and ketones, have been identified to retard, or even suppress, the adverse effects of metals such as antimony, and thus prolong the cycle-life of traction batteries in heavy-duty applications or reduce water loss from automotive batteries. Knowledge about these interactions has opened ways to improve separators.

  11. Potential of mean force of association of large hydrophobic particles: toward the nanoscale limit.

    PubMed

    Makowski, Mariusz; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A

    2010-01-21

    The potentials of mean force (PMFs) were determined, in both water with the TIP3P water model and in vacuo, for systems involving formation of nonpolar dimers composed of bicyclooctane, adamantane (both an all-atom model and a sphere with the radius of 3.4 A representing adamantane), and fullerene, respectively. A series of umbrella-sampling molecular dynamics simulations with the AMBER force field were carried out for each pair under both environmental conditions. The PMFs were calculated by using the weighted histogram analysis method. The results were compared with our previously determined PMF for neopentane. The shape of the PMFs for dimers of all four nonpolar molecules is characteristic of hydrophobic interactions with contact and solvent-separated minima and desolvation maxima. The positions of all these minima and maxima change with the size of the nonpolar molecule; for larger molecules they shift toward larger distances. Comparison of the PMFs of the bicyclooctane, adamantane, and fullerene dimers in water and in vacuo shows that hydrophobic interactions in each dimer are different from that for the dimer of neopentane. Interactions in the bicyclooctane, adamantane, and fullerene dimers are stronger in vacuo than in water. These dimers cannot be treated as classical, spherical, hydrophobic objects. The solvent contribution to the PMF was also computed by subtracting the PMF determined in vacuo from that in explicit solvent. The solvent contribution to the PMFs of bicyclooctane, adamantane, and fullerene is positive, as opposed to that of neopentane. The water molecules in the first solvation sphere of both adamantane and neopentane dimers are more ordered as compared to bulk water, with their dipole moments pointing away from the surface of the dimers. The average number of hydrogen bonds per water molecule in the first hydration shell of adamantane is smaller compared to that in bulk water, but this shell is thicker for all-atom adamantane than for

  12. Potential of mean force of association of large hydrophobic particles: towards the nanoscale limit

    PubMed Central

    Makowski, Mariusz; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A.

    2010-01-01

    The potentials of mean force (PMFs) were determined, in both water with the TIP3P water model and in vacuo, for systems involving formation of nonpolar dimers composed of bicyclooctane, adamantane (both an all-atom model and a sphere with the radius of 3.4 Å representing adamantane), and fullerene, respectively. A series of umbrella-sampling molecular dynamics simulations with the AMBER force field were carried out for each pair, under both environmental conditions. The PMFs were calculated by using the Weighted Histogram Analysis Method (WHAM). The results were compared with our previously-determined PMF for neopentane. The shape of the PMFs for dimers of all four nonpolar molecules is characteristic of hydrophobic interactions with contact and solvent-separated minima, and desolvation maxima. The positions of all these minima and maxima change with the size of the nonpolar molecule; for larger molecules they shift toward larger distances. Comparison of the PMFs of the bicyclooctane, adamantane, and fullerene dimers in water and in vacuo shows that hydrophobic interactions in each dimer are different from that for the dimer of neopentane. Interactions in the bicyclooctane, adamantane, and fullerene dimers are stronger in vacuo than in water. These dimers cannot be treated as classical spherical hydrophobic objects. The solvent contribution to the PMF was also computed by subtracting the PMF determined in vacuo from that in explicit solvent. The solvent contribution to the PMFs of bicyclooctane, adamantane, and fullerene is positive as opposed to that of neopentane. The water molecules in the first solvation sphere of both adamantane and neopentane dimers are more ordered compared to bulk water, with their dipole moments pointing away from the surface of the dimers. The average number of hydrogen bonds per water molecule in the first hydration shell of adamantane is smaller compared to that in bulk water, but this shell is thicker for all-atom adamantane than for

  13. The search for the hydrophobic force law

    PubMed Central

    Hammer, Malte U.; Anderson, Travers H.; Chaimovich, Aviel; Scott Shell, M.

    2010-01-01

    After nearly 30 years of research on the hydrophobic interaction, the search for the hydrophobic force law is still continuing. Indeed, there are more questions than answers, and the experimental data are often quite different for nominally similar conditions, as well as, apparently, for nano-, micro-, and macroscopic surfaces. This has led to the conclusion that the experimentally observed force–distance relationships are either a combination of different ‘fundamental’ interactions, or that the hydrophobic force-law, if there is one, is complex – depending on numerous parameters. The only unexpectedly strong attractive force measured in all experiments so far has a range of D ≈ 100–200 Å, increasing roughly exponentially down to ~ 10–20 Å and then more steeply down to adhesive contact at D = 0 or, for power-law potentials, effectively at D ≈ 2 Å. The measured forces in this regime (100–200 Å) and especially the adhesive forces are much stronger, and have a different distance-dependence from the continuum VDW force (Lifshitz theory) for non-conducting dielectric media. We suggest a three-regime force-law for the forces observed between hydrophobic surfaces: In the first, from 100–200 Å to thousands of ångstroms, the dominating force is created by complementary electrostatic domains or patches on the apposing surfaces and/or bridging vapour cavities; a ‘pure’ but still not well-understood ‘long-range hydrophobic force’ dominates the second regime from ~ 150 to ~ 15 Å, possibly due to an enhanced Hamaker constant associated with the ‘proton-hopping’ polarizability of water; while below ~ 10–15 Å to contact there is another ‘pure short-range hydrophobic force’ related to water structuring effects associated with surface-induced changes in the orientation and/or density of water molecules and H-bonds at the water–hydrophobic interface. We present recent SFA and other experimental results, as well as a simplified model for

  14. Peptide adsorption on the hydrophobic surface: A free energy perspective

    NASA Astrophysics Data System (ADS)

    Sheng, Yuebiao; Wang, Wei; Chen, P.

    2011-05-01

    Protein adsorption is a very attractive topic which relates to many novel applications in biomaterials, biotechnology and nanotechnology. Ionic complementary peptides are a group of novel nano-biomaterials with many biomedical applications. In this work, molecular dynamics simulations of the ionic-complementary peptide EAK16-II on a hydrophobic graphite surface were performed under neutral, acidic and basic solution conditions. Adsorption free energy contour maps were obtained by analyzing the dynamical trajectories. Hydrophobic interactions were found to govern the adsorption of the first peptide molecule, and both hydrophobic and electrostatic interactions contributed to the adsorption of the second peptide molecule. Especially under acidic and basic solution conditions, interplay existed among chain-chain hydrophobic, chain-surface hydrophobic and chain-chain electrostatic interactions during the adsorption of the second peptide molecule. Non-charged residues were found to lie on the graphite surface, while charged residue side-chains oriented towards the solution after the peptide deposited on the surface. These results provide a basis for understanding peptide adsorption on the hydrophobic surface under different solution conditions, which is useful for novel applications such as bioactive implant devices and drug delivery material design.

  15. Why water reorientation slows without iceberg formation around hydrophobic solutes.

    PubMed

    Laage, Damien; Stirnemann, Guillaume; Hynes, James T

    2009-02-26

    The dynamics of water molecules next to hydrophobic solutes is investigated, specifically addressing the recent controversy raised by the first time-resolved observations, which concluded that some water molecules are immobilized by hydrophobic groups, in strong contrast to previous NMR conclusions. Through molecular dynamics simulations and an analytic jump reorientation model, we identify the water reorientation mechanism next to a hydrophobic solute and provide evidence that no water molecules are immobilized by hydrophobic solutes. Their moderate rotational slowdown compared to bulk water (e.g., by a factor of less than 2 at low solute concentration) is mainly due to slower hydrogen-bond exchange. The slowdown is quantitatively described by a solute excluded volume effect at the transition state for the key hydrogen-bond exchange in the reorientation mechanism. We show that this picture is consistent with both ultrafast anisotropy and NMR experimental results and that the transition state excluded volume theory yields quantitative predictions of the rotational slowdown for diverse hydrophobic solutes of varying size over a wide concentration range. We also explain why hydrophobic groups slow water reorientation less than do some hydrophilic groups.

  16. Diameter-dependent hydrophobicity in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kyakuno, Haruka; Fukasawa, Mamoru; Ichimura, Ryota; Matsuda, Kazuyuki; Nakai, Yusuke; Miyata, Yasumitsu; Saito, Takeshi; Maniwa, Yutaka

    2016-08-01

    Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature T and the SWCNT diameter D. SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature Twd ≈ 220-230 K and above a critical diameter Dc ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs (D > Dc) evaporate and condense into ice Ih outside the SWCNTs at Twd upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below Twd freezes. Molecular dynamics simulations indicate that upon lowering T, the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs (D < Dc) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.

  17. Exploring Hydrophobic Binding Surfaces Using Comfa and Flexible Hydrophobic Ligands

    NASA Astrophysics Data System (ADS)

    Thakkar, Shraddha; Sanchez, Rosa. I.; Bhuveneswaran, Chidambaram; Compadre, Cesar M.

    2011-06-01

    Cysteine proteinases are a very important group of enzymes involved in a variety of physiological and pathological processes including cancer metastasis and rheumatoid arthritis. In this investigation we used 3D-Quantitative Structure Activity Relationships (3D-QSAR) techniques to model the binding of a variety of substrates to two cysteine proteinases, papain, and cathepsin B. The analysis was performed using Comparative Molecular Field Analysis (CoMFA). The molecules were constructed using standard bond angles and lengths, minimized and aligned. Charges were calculated using the PM3 method in MOPAC. The CoMFA models derived for the binding of the studied substrates to the two proteinases were compared with the expected results from the experimental X-ray crystal structures of the same proteinases. The results showed the value of CoMFA modeling of flexible hydrophobic ligands to analyze ligand binding to protein receptors, and could also serve as the basis to design specific inhibitors of cysteine proteinases with potential therapeutic value.

  18. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    SciTech Connect

    Makarov, G N; Petin, A N

    2016-03-31

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF{sub 6} and CF{sub 3}I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF{sub 6} molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with a surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation. (laser separation of isotopes)

  19. Multi-modal applicability of a reversed-phase/weak-anion exchange material in reversed-phase, anion-exchange, ion-exclusion, hydrophilic interaction and hydrophobic interaction chromatography modes.

    PubMed

    Lämmerhofer, Michael; Nogueira, Raquel; Lindner, Wolfgang

    2011-06-01

    We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.

  20. Facile Preparation of Octadecyl Monoliths with Incorporated Carbon Nanotubes and Neutral Monoliths with Coated Carbon Nanotubes Stationary Phases for HPLC of Small and Large Molecules by Hydrophobic and π-π Interactions

    PubMed Central

    Mayadunne, Erandi; Rassi, Ziad El

    2014-01-01

    Two approaches for incorporating carbon nanotubes into monolithic columns for HPLC are described in this report. They pertain to the investigation of carbon nanotubes either (i) as entities to modulate solute retention on monolithic columns bearing well defined retentive ligands or (ii) as entities that constitute the stationary phase responsible for solute retention and separation. Approach (i) involved the incorporation of carbon nanotubes into octadecyl monolithic columns while approach (ii) concerns the preparation and evaluation of an ideal monolithic support and coating it with carbon nanotubes to yield a real “carbon nanotube stationary phase” for the HPLC separation of a wide range of solutes. First, an octadecyl monolithic column based on the in situ polymerization of octadecyl acrylate and trimethylolpropane trimethacrylate was optimized for use in HPLC separations of small and large solutes (e.g., proteins). To further modulate the retention and separation of proteins, small amounts of carbon nanotubes were incorporated into the octadecyl monolith column. In approach (ii), an inert, relatively polar monolith based on the in situ polymerization of glyceryl monomethacrylate (GMM) and ethylene glycol dimethacrylate (EDMA) proved to be the most suitable support for the preparation of “carbon nanotube stationary phase”. This carbon nanotube “coated” monolith proved useful in the HPLC separation of a wide range of small solutes including enantiomers. In approach (ii), a more homogeneous incorporation of carbon nanotubes into the diol monolithic columns (i.e., GMM/EDMA) was achieved when hydroxyl functionalized carbon nanotubes were incorporated into the GMM/EDMA monolithic support. In addition, high power sonication for a short time enhanced further the homogeneity of the monolith incorporated with nanotubes. In all cases, nonpolar and π interactions were responsible for solute retention on the monolith incorporated carbon nanotubes. PMID:25127634

  1. Structural and Spectroscopic Properties of Water Around Small Hydrophobic Solutes

    PubMed Central

    Montagna, Maria; Sterpone, Fabio; Guidoni, Leonardo

    2013-01-01

    We investigated the structural, dynamical and spectroscopic properties of water molecules around a solvated methane by means of Car-Parrinello molecular dynamics simulations. Despite their mobility, in the first-shell water molecules are dynamically displaced in a clathrate-like cage around the hydrophobic solute. No significant differences in water geometrical parameters, in molecular dipole moments or in hydrogen bonding properties are observed between in-shell and out-shell molecules, indicating that liquid water can accommodate a small hydrophobic solute without altering its structural properties. The calculated contribution of the first shell water molecules to the infrared spectra does not show significant differences with respect the bulk signal once the effects of the missing polarization of second-shell molecules has been taken into account. Small fingerprints of the clathrate-like structure appear in the vibrational density of states in the libration and OH stretching regions. PMID:22946539

  2. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    SciTech Connect

    J Mecinovic; P Snyder; K Mirica; S Bai; E Mack; R Kwant; D Moustakas; A Heroux; G Whitesides

    2011-12-31

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H{sub 2}NSO{sub 2}C{sub 6}H{sub 4}-CONHCH{sub 2}(CX{sub 2}){sub n}CX{sub 3}, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and

  3. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    PubMed Central

    Mecinović, Jasmin; Snyder, Phillip W.; Mirica, Katherine A.; Bai, Serena; Mack, Eric T.; Kwant, Richard L.; Moustakas, Demetri T.; Heroux, Annie; Whitesides, George M.

    2011-01-01

    The hydrophobic effect—the free-energetically favorable association of non-polar solutes in water—makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different, but structurally similar hydrophobic groups—aliphatic hydrocarbons and aliphatic fluorocarbons—and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H2NSO2C6H4-CONHCH2(CX2)nCX3, n = 0–4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of non-optimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and entropic contributions to the hydrophobic

  4. Hydrophobic meshes for oil spill recovery devices.

    PubMed

    Deng, Da; Prendergast, Daniel P; MacFarlane, John; Bagatin, Roberto; Stellacci, Francesco; Gschwend, Philip M

    2013-02-01

    Widespread use of petrochemicals often leads to accidental releases in aquatic environments, occasionally with disastrous results. We have developed a hydrophobic and oleophilic mesh that separates oil from water continuously in situ via capillary action, providing a means of recovering spilt oil from surface waters. Steel mesh is dip-coated in a xylene solution of low-density polyethylene, creating a hydrophobic surface with tunable roughness and opening size. The hydrophobic mesh allows oil to pass through the openings while preventing the concomitant passage of water. A bench-top prototype demonstrated the efficacy of such an oil recovery device and allowed us to quantify the factors governing the ability of the mesh to separate oil and water. Preliminary data analysis suggested that the oleophilic openings behave somewhat like capillary tubes: the oil flux is inversely proportional to oil viscosity, and directly proportional to the size of the mesh openings. An unpinned meniscus model was found to predict the water intrusion pressure successfully, which increased as the opening size decreased. The trade-off between water intrusion and oil flow rate suggests an optimal pore size for given oil properties and sea conditions.

  5. Microstructure of Hydrophobically Modified Alkyl Acrylamide Polymers

    NASA Astrophysics Data System (ADS)

    Tian, Jun; Seery, T. A. P.; Weiss, R. A.

    2002-03-01

    Hydrophobically modified water soluble polymers of poly(N,N-dimethylacrylamide-co-2-(N-ethylfluorooctanesulfonamido)ethyl acrylate) (polyDMA/FOSA) with different compositions were prepared by solution free radical polymerization. The molecular weights ranged from Mw/Mn=53000/23000 to 95000/40000. The intrinsic viscosity decreased with the increasing FOSA content. The glass transition temperature of the copolymer decreased with FOSA content, and exhibited positive deviation from that predicted by the Fox equation. Small angle X-ray scattering (SAXS) curves exhibited a peak that indicated the copolymer had a microphase separated structure, presumably due to hydrophobic association of FOSA groups. The SAXS peak position shifted to higher q value with the increasing FOSA content in the dry polymers, while for the water swollen gel, it shifted to lower q value with the increasing water uptake in the gels. These results suggested that the origin of the peak was related to the spacing between hydrophobic microdomains. The failure of time-temperature superposition of the dynamic shear moduli supported the conclusion of a microphase separated structure in the copolymer.

  6. cDNA cloning and sequence of MAL, a hydrophobic protein associated with human T-cell differentiation.

    PubMed Central

    Alonso, M A; Weissman, S M

    1987-01-01

    We have isolated a human cDNA that is expressed in the intermediate and late stages of T-cell differentiation. The cDNA encodes a highly hydrophobic protein, termed MAL, that lacks a hydrophobic leader peptide sequence and contains four potential transmembrane domains separated by short hydrophilic segments. The predicted configuration of the MAL protein resembles the structure of integral proteins that form pores or channels in the plasma membrane and that are believed to act as transporters of water-soluble molecules and ions across the lipid bilayer. The presence of MAL mRNA in a panel of T-cell lines that express both the T-cell receptor and the T11 antigen suggests that MAL may be involved in membrane signaling in T cells activated via either T11 or T-cell receptor pathways. Images PMID:3494249

  7. Water on a Hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  8. Hydrophobic Molecular Similarity from MST Fractional Contributions to the Octanol/water Partition Coefficient

    NASA Astrophysics Data System (ADS)

    Muñoz-Muriedas, Jordi; Perspicace, Samantha; Bech, Nuria; Guccione, Salvatore; Orozco, Modesto; Luque, F. Javier

    2005-06-01

    The use of a recently proposed hydrophobic similarity index for the alignment of molecules and the prediction of their differences in biological activity is described. The hydrophobic similarity index exploits atomic contributions to the octanol/water transfer free energy, which are evaluated by means of the fractional partitioning scheme developed within the framework of the Miertus-Scrocco-Tomasi continuum model. Those contributions are used to define global and local measures of hydrophobic similarity. The suitability of this computational strategy is examined for two series of compounds (ACAT inhibitors and 5-HT3 receptor agonists), which are aligned to maximize the global hydrophobic similarity using a Monte Carlo-simulated protocol. Indeed, the concept of local hydrophobic similarity is used to explore structure-activity relationships in a series of COX-2 inhibitors. Inspection of the 3D distribution of hydrophobic/hydrophilic contributions in the aligned molecules is valuable to identify regions of very similar hydrophobicity, which can define pharmacophoric recognition patterns. Moreover, low similar regions permit to identify structural elements that modulate the differences in activity between molecules. Finally, the quantitative relationships found between the pharmacological activity and the hydrophobic similarity index points out that not only the global hydrophobicity, but its 3D distribution, is important to gain insight into the activity of molecules.

  9. Evaporation rate of water in hydrophobic confinement

    PubMed Central

    Sharma, Sumit; Debenedetti, Pablo G.

    2012-01-01

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm2), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm2) than by the smaller (1 nm2) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube. PMID:22392972

  10. Hydrophobic peptide channels and encapsulated water wires.

    PubMed

    Raghavender, Upadhyayula S; Kantharaju; Aravinda, Subrayashastry; Shamala, Narayanaswamy; Balaram, Padmanabhan

    2010-01-27

    Peptide nanotubes with filled and empty pores and close-packed structures are formed in closely related pentapeptides. Enantiomorphic sequences, Boc-(D)Pro-Aib-Xxx-Aib-Val-OMe (Xxx = Leu, 1; Val, 2; Ala, 3; Phe, 4) and Boc-Pro-Aib-(D)Xxx-Aib-(D)Val-OMe ((D)Xxx = (D)Leu, 5; (D)Val, 6; (D)Ala, 7; (D)Phe, 8), yield molecular structures with a very similar backbone conformation but varied packing patterns in crystals. Peptides 1, 2, 5, and 6 show tubular structures with the molecules self-assembling along the crystallographic six-fold axis (c-axis) and revealing a honeycomb arrangement laterally (ab plane). Two forms of entrapped water wires have been characterized in 2: 2a with d(O...O) = 2.6 A and 2b with d(O...O) = 3.5 A. The latter is observed in 6 (6a) also. A polymorphic form of 6 (6b), grown from a solution of methanol-water, was observed to crystallize in a monoclinic system as a close-packed structure. Single-file water wire arrangements encapsulated inside hydrophobic channels formed by peptide nanotubes could be established by modeling the published structures in the cases of a cyclic peptide and a dipeptide. In all the entrapped water wires, each water molecule is involved in a hydrogen bond with a previous and succeeding water molecule. The O-H group of the water not involved in any hydrogen bond does not seem to be involved in an energetically significant interaction with the nanotube interior, a general feature of the one-dimensional water wires encapsulated in hydrophobic environments. Water wires in hydrophobic channels are contrasted with the single-file arrangements in amphipathic channels formed by aquaporins.

  11. Thermodynamics of hydrophobic interaction between silica surfaces coated with octadecyltrichlorosilane.

    PubMed

    Li, Zuoli; Yoon, Roe-Hoan

    2013-02-15

    Surface force measurements conducted with thiolated gold surfaces showed previously that hydrophobic interaction entails a decrease in excess film entropy, suggesting that hydrophobic force originates from changes in the structure of the medium (water) confined between hydrophobic surfaces. As a follow-up work, surface force measurements have been conducted in the present work using an atomic force microscope (AFM) with silica surfaces coated with octadecyltrichlorosilane (OTS) at temperatures in the range of 10-40°C. A thermodynamic analysis of the results show that both the excess film entropy (ΔS(f)) and excess film enthalpy (ΔH(f)) decrease with decreasing thickness of the water films between the hydrophobic surfaces. It has been found also that |ΔH(f)|>|TΔS(f)|, which represents a necessary condition for the excess free energy change (ΔG(f)) to be negative and hence the hydrophobic interaction be attractive. Thus, the results obtained with both the thiolated and silylated surfaces show that hydrophobic forces originate from the structural changes in the medium. It is believed that the water molecules in the thin liquid films (TLFs) of water form clusters as a means to reduce the free energy when they cannot form H-bonds to neighboring hydrophobic surfaces.

  12. Cellobiohydrolase Hydrolyzes Crystalline Cellulose on Hydrophobic Faces*

    PubMed Central

    Liu, Yu-San; Baker, John O.; Zeng, Yining; Himmel, Michael E.; Haas, Thomas; Ding, Shi-You

    2011-01-01

    Biodegradation of plant biomass is a slow process in nature, and hydrolysis of cellulose is also widely considered to be a rate-limiting step in the proposed industrial process of converting lignocellulosic materials to biofuels. It is generally known that a team of enzymes including endo- and exocellulases as well as cellobiases are required to act synergistically to hydrolyze cellulose to glucose. The detailed molecular mechanisms of these enzymes have yet to be convincingly elucidated. In this report, atomic force microscopy (AFM) is used to image in real-time the structural changes in Valonia cellulose crystals acted upon by the exocellulase cellobiohydrolase I (CBH I) from Trichoderma reesei. Under AFM, single enzyme molecules could be observed binding only to one face of the cellulose crystal, apparently the hydrophobic face. The surface roughness of cellulose began increasing after adding CBH I, and the overall size of cellulose crystals decreased during an 11-h period. Interestingly, this size reduction apparently occurred only in the width of the crystal, whereas the height remained relatively constant. In addition, the measured cross-section shape of cellulose crystal changed from asymmetric to nearly symmetric. These observed changes brought about by CBH I action may constitute the first direct visualization supporting the idea that the exocellulase selectively hydrolyzes the hydrophobic faces of cellulose. The limited accessibility of the hydrophobic faces in native cellulose may contribute significantly to the rate-limiting slowness of cellulose hydrolysis. PMID:21282110

  13. Voltage-Gated Hydrophobic Nanopores

    SciTech Connect

    Lavrik, Nickolay V

    2011-01-01

    Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even though the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered in long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transitions can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.

  14. Changing water affinity from hydrophobic to hydrophilic in hydrophobic channels.

    PubMed

    Ohba, Tomonori; Yamamoto, Shotaro; Kodaira, Tetsuya; Hata, Kenji

    2015-01-27

    The behavior of water at hydrophobic interfaces can play a significant role in determining chemical reaction outcomes and physical properties. Carbon nanotubes and aluminophosphate materials have one-dimensional hydrophobic channels, which are entirely surrounded by hydrophobic interfaces. Unique water behavior was observed in such hydrophobic channels. In this article, changes in the water affinity in one-dimensional hydrophobic channels were assessed using water vapor adsorption isotherms at 303 K and grand canonical Monte Carlo simulations. Hydrophobic behavior of water adsorbed in channels wider than 3 nm was observed for both adsorption and desorption processes, owing to the hydrophobic environment. However, water showed hydrophilic properties in both adsorption and desorption processes in channels narrower than 1 nm. In intermediate-sized channels, the hydrophobic properties of water during the adsorption process were seen to transition to hydrophilic behavior during the desorption process. Hydrophilic properties in the narrow channels for both adsorption and desorption processes are a result of the relatively strong water-channel interactions (10-15 kJ mol(-1)). In the 2-3 nm channels, the water-channel interaction energy of 4-5 kJ mol(-1) was comparable to the thermal translational energy. The cohesive water interaction was approximately 35 kJ mol(-1), which was larger than the others. Thus, the water affinity change in the 2-3 nm channels for the adsorption and desorption processes was attributed to weak water-channel interactions and strong cohesive interactions. These results are inherently important to control the properties of water in hydrophobic environments.

  15. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  16. Air agglomeration of hydrophobic particles

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1995-12-31

    The agglomeration of hydrophobic particles in an aqueous suspension was accomplished by introducing small amounts of air into the suspension while it was agitated vigorously. The extent of aggregation was proportional both to the air to solids ratio and to the hydrophobicity of the solids. For a given air/solids ratio, the extent of aggregation of different materials increased in the following order: graphite, gilsonite, coal coated with heptane, and Teflon. The structure of agglomerates produced from coarse Teflon particles differed noticeably from the structure of bubble-particle aggregates produced from smaller, less hydrophobic particles.

  17. Isotopic separation

    SciTech Connect

    Chen, C.

    1981-03-10

    Method and apparatus for separating isotopes in an isotopic mixture of atoms or molecules by increasing the mass differential among isotopic species. The mixture containing a particular isotope is selectively irradiated so as to selectively excite the isotope. This preferentially excited species is then reacted rapidly with an additional preselected radiation, an electron or another chemical species so as to form a product containing the specific isotope, but having a mass different than the original species initially containing the particular isotope. The product and the remaining balance of the mixture is then caused to flow through a device which separates the product from the mixture based upon the increased mass differential.

  18. Separation of very hydrophobic analytes by micellar electrokinetic chromatography. I. Optimization of the composition of the sample solution for the determination of the aromatic ingredients of sassafras and other essential oils of forensic interest.

    PubMed

    Huhn, Carolin; Pütz, Michael; Holthausen, Ivie; Pyell, Ute

    2008-01-01

    A micellar electrokinetic chromatographic method using UV and (UV)LIF detection in-line was developed for the determination of aromatic constituents, mainly allylbenzenes in essential oils. The method optimization included the optimization of the composition of the separation electrolyte using ACN and urea to reduce retention factors and CaCl(2) to widen the migration time window. In addition, it was necessary to optimize the composition of the sample solution which included the addition of a neutral surfactant at high concentration. With the optimized method, the determination of minor constituents in essential oils was possible despite of the presence of a structurally related compound being in a molar ratio excess of 1000:1. The use of UV and LIF-detection in-line enabled the direct comparison of the two detection traces using an electrophoretic mobility x-axis instead of the normal time-based scale. This simplifies the assignment of signals and enhances repeatability. The method developed was successfully applied to the determination of minor and major constituents in herbal essential oils, some of them being forensically relevant as sources of precursors for synthetic drugs.

  19. Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. I - Optimization of separation conditions.

    PubMed

    Sarrut, Morgan; Corgier, Amélie; Fekete, Szabolcs; Guillarme, Davy; Lascoux, David; Janin-Bussat, Marie-Claire; Beck, Alain; Heinisch, Sabine

    2016-10-01

    Antibody-drug-conjugates (ADCs) manufacturing leads to a mixture of species which needs to be characterized during development and for further quality control. The coupling of on-line HIC x RPLC to high resolution mass spectrometry can be considered as a very efficient analytical method, providing extensive information on ADC sample, within a reduced time scale. Our intention in this first paper is to present the approach used to rationally optimize the numerous conditions that can affect the quality of the 2D-separation. HIC and RPLC conditions were therefore optimized to prevent salt precipitation due to solvent mixing and to enhance sensitivity, while limiting the total analysis time. We demonstrated that adding salt in the sample solvent before HIC injection allows a significant peak shape improvement. The gradient profile was also carefully optimized in both dimensions, leading to a two-step gradient in HIC and bracketed gradient in RPLC. This study shows that on-line HIC x RPLC hyphenated to high resolution mass spectrometry is a useful method to obtain rapid and extensive structural information on the peaks observed in the first HIC dimension, thereby leading, in a single step requiring 75min, to the precise determination of the average drug-to-antibody ratio (DAR) by HIC as well as the knowledge of the drug load distribution for a particular DAR. The structural characterization of ADC fragments by RPLC-QTOF will be discussed in the second part of this two-part series.

  20. 50 years of amino acid hydrophobicity scales: revisiting the capacity for peptide classification.

    PubMed

    Simm, Stefan; Einloft, Jens; Mirus, Oliver; Schleiff, Enrico

    2016-07-04

    Physicochemical properties are frequently analyzed to characterize protein-sequences of known and unknown function. Especially the hydrophobicity of amino acids is often used for structural prediction or for the detection of membrane associated or embedded β-sheets and α-helices. For this purpose many scales classifying amino acids according to their physicochemical properties have been defined over the past decades. In parallel, several hydrophobicity parameters have been defined for calculation of peptide properties. We analyzed the performance of separating sequence pools using 98 hydrophobicity scales and five different hydrophobicity parameters, namely the overall hydrophobicity, the hydrophobic moment for detection of the α-helical and β-sheet membrane segments, the alternating hydrophobicity and the exact ß-strand score. Most of the scales are capable of discriminating between transmembrane α-helices and transmembrane β-sheets, but assignment of peptides to pools of soluble peptides of different secondary structures is not achieved at the same quality. The separation capacity as measure of the discrimination between different structural elements is best by using the five different hydrophobicity parameters, but addition of the alternating hydrophobicity does not provide a large benefit. An in silico evolutionary approach shows that scales have limitation in separation capacity with a maximal threshold of 0.6 in general. We observed that scales derived from the evolutionary approach performed best in separating the different peptide pools when values for arginine and tyrosine were largely distinct from the value of glutamate. Finally, the separation of secondary structure pools via hydrophobicity can be supported by specific detectable patterns of four amino acids. It could be assumed that the quality of separation capacity of a certain scale depends on the spacing of the hydrophobicity value of certain amino acids. Irrespective of the wealth of

  1. Spontaneous formation of hydrophobic domains in isolated peptides.

    PubMed

    Gloaguen, Eric; Loquais, Yohan; Thomas, Jessica A; Pratt, David W; Mons, Michel

    2013-05-02

    Aromatic amino acids are known for their hydrophobicity and the active role they play in protein folding. Here, we investigate the intrinsic propensity of small peptides to form hydrophobic domains in the absence of solvent water molecules. The structures of three aromatic-rich isolated peptides, Ac-Phe-Phe-NH2 (FF), Ac-Trp-Tyr-NH2 (WY), and Ac-Phe-Phe-Phe-NH2 (FFF), all in the gas phase, have been studied by infrared-ultraviolet (IR/UV) double resonance laser spectroscopy, aided by dispersion-corrected density functional theory (DFT-D) calculations. Spontaneous formation of hydrophobic domains is systematically observed, whatever the secondary structure adopted by the backbone. Various types of aromatic-aromatic arrangements have been identified and associated to specific secondary structures, illustrating the interplay between the hydrophobic clusters and the backbone. Backbone NH amide groups surrounded by aromatic rings have also been evidenced and are found to contribute significantly to the stabilization of aromatic pairs. These results suggest that the formation of aromatic clusters involving contiguous residues might be a very efficient process leading to the formation of hydrophobic domains in the early stages of protein folding, well before a hydrophobic collapse into the tertiary structure.

  2. Mechanisms for Enhanced Hydrophobicity by Atomic-Scale Roughness

    PubMed Central

    Katasho, Yumi; Liang, Yunfeng; Murata, Sumihiko; Fukunaka, Yasuhiro; Matsuoka, Toshifumi; Takahashi, Satoru

    2015-01-01

    It is well known that the close-packed CF3-terminated solid surface is among the most hydrophobic surfaces in nature. Molecular dynamic simulations show that this hydrophobicity can be further enhanced by the atomic-scale roughness. Consequently, the hydrophobic gap width is enlarged to about 0.6 nm for roughened CF3-terminated solid surfaces. In contrast, the hydrophobic gap width does not increase too much for a rough CH3-terminated solid surface. We show that the CF3-terminated surface exists in a microscopic Cassie–Baxter state, whereas the CH3-terminated surface exists as a microscopic Wenzel state. This finding elucidates the underlying mechanism for the different widths of the observed hydrophobic gap. The cage structure of the water molecules (with integrated hydrogen bonds) around CH3 terminal assemblies on the solid surface provides an explanation for the mechanism by which the CH3-terminated surface is less hydrophobic than the CF3-terminated surface. PMID:26337567

  3. Hydrophobic ionic liquids

    DOEpatents

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  4. Hydrophobic ionic liquids

    DOEpatents

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  5. Hydrophobic ionic liquids

    SciTech Connect

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  6. Fabrication and evaluation of an organic monolithic column based upon the polymerisation of hexyl methacrylate with 1,6-hexanediol ethoxylate diacrylate for the separation of small molecules by capillary liquid chromatography.

    PubMed

    Alshitari, Wael; Quigley, Cristina Legido; Smith, Norman

    2015-08-15

    This paper describes the fabrication of a new porous monolith, prepared in 100μm i.d. capillaries by the co-polymerisation of hexyl methacrylate with 1,6-hexanediol ethoxylate diacrylate, poly (HMA-co-1,6 HEDA), in the presence of azobisisobutyronitrile, 1, 4-butanediol and 1-propanol were used as porogens for the monoliths; the monoliths were then used as a stationary phase for capillary liquid chromatography. Two cross linkers namely 1,6 HEDA and EDMA were utilised in order to investigate the effects of cross linker length on the separation efficiency of small molecules, and it was found that the efficiency of the separation improved tenfold when using the longer cross linker, 1,6 HEDA. This improvement is associated with the increase in number of methylene groups which resulted in an increased number of mesopores, less than 50nm. The 1,6 HEDA based monolith showed a high porosity (90%) and no evidence of swelling or shrinking with the use of organic solvents. Moreover, the 1,6 HEDA monolith demonstrated high reproducibility for the separation of the retained compounds anisole and naphthalene; these showed retention time RSDs of 1.79% and 2.74% respectively. The fabricated monolith also demonstrated high selectivity for neutral non-polar molecules, weak acids, and basic molecules. The asymmetry factors for basic molecules (nortriptyline and amitriptyline) were 1.5 and 1.3 respectively, indicating slight tailing, which is often noticeable on silica based phases due to secondary interactions between basic moieties and the hydroxyl groups of the silica.

  7. Forces between hydrophobic solids in concentrated aqueous salt solution.

    PubMed

    Mastropietro, Dean J; Ducker, William A

    2012-03-09

    Much research has focused on the discovery and description of long-ranged forces between hydrophobic solids immersed in water. Here we show that the force between high contact-angle solids in concentrated salt solution (1 M KCl) agrees very well with van der Waals forces calculated from Lifshitz theory for separations greater than 5 nm. The hydrophobic solids are octadecyltrichlorosilane-coated glass, with an advancing contact angle of 108°. Thus, in 1 M salt solution, it is unnecessary to invoke the presence of a hydrophobic force at separations greater than 5 nm. Through measurement in salt solution, we avoid the necessity of accounting for large electrostatic forces that frequently occur in pure water and may obscure resolution of other forces.

  8. Method for producing hydrophobic aerogels

    DOEpatents

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    1999-01-01

    A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  9. Wear resistance of hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Martinez, MA; Abenojar, J.; Pantoja, M.; López de Armentia, S.

    2017-05-01

    Nature has been an inspiration source to develop artificial hydrophobic surfaces. During the latest years the development of hydrophobic surfaces has been widely researched due to their numerous ranges of industrial applications. Industrially the use of hydrophobic surfaces is being highly demanded. This is why many companies develop hydrophobic products to repel water, in order to be used as coatings. Moreover, these coating should have the appropriated mechanical properties and wear resistance. In this work wear study of a hydrophobic coating on glass is carried out. Hydrophobic product used was Sika Crystal Dry by Sika S.A.U. (Alcobendas, Spain). This product is currently used on car windshield. To calculate wear resistance, pin-on-disk tests were carried out in dry and water conditions. The test parameters were rate, load and sliding distance, which were fixed to 60 rpm, 5 N and 1000 m respectively. A chamois was used as pin. It allows to simulate a real use. The friction coefficient and loss weight were compared to determinate coating resistance

  10. Hydrophobic core packing and backbone flexibility in coiled coils

    NASA Astrophysics Data System (ADS)

    Plecs, Joseph John

    1999-11-01

    An understanding of the structure and function of protein molecules requires an understanding of how their hydrophobic cores are assembled, including how the peptide backbone can adjust to accommodate different packing arrangements. Using coiled-coil molecules as a model of protein structures, we studied several cases in which the arrangement of packing groups in the hydrophobic core controls the structure of a folded molecule. First, we consider an example of a prosthetic packing group, where the addition of a hydrophobic ligand permits a new packing arrangement that incorporates the ligand, leading to a new overall structure. Second, the crystal structures of two peptides designed to adopt a novel fold, the right-handed coiled coils, reveal how a small change in core packing can discriminate between two different folds. And last, the design of heterodimers based on core-packing complementarity establishes that core packing can convey specificity of association between different molecules, as well as determining the molecular structure. The heterodimer designs also demonstrate the importance of a combination of backbone freedom and restriction in predicting the energetics of folded molecules. In this case, a parametrized coiled- coil backbone with appropriate parameters and restrictions was required to predict stabilities. We conclude that core packing can exert a great deal of control over the structure of proteins, and that many of its effects can be accurately predicted by modeling the molecular interactions in the context of a flexible overall structure.

  11. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures

    NASA Astrophysics Data System (ADS)

    Gentile, Francesco; Ferrara, Lorenzo; Villani, Marco; Bettelli, Manuele; Iannotta, Salvatore; Zappettini, Andrea; Cesarelli, Mario; di Fabrizio, Enzo; Coppedè, Nicola

    2016-01-01

    PEDOT:PSS is a conductive polymer that can be integrated into last generation Organic Electrochemical Transistor (OECT) devices for biological inspection, identification and analysis. While a variety of reports in literature demonstrated the chemical and biological sensitivity of these devices, still their ability in resolving complex mixtures remains controversial. Similar OECT devices display good time dynamics behavior but lack spatial resolution. In this work, we integrated PEDOT:PSS with patterns of super-hydrophobic pillars in which a finite number of those pillars is independently controlled for site-selective measurement of a solution. We obtained a multifunctional, hierarchical OECT device that bridges the micro- to the nano-scales for specific, combined time and space resolved analysis of the sample. Due to super-hydrophobic surface properties, the biological species in the drop are driven by convection, diffusion, and the externally applied electric field: the balance/unbalance between these forces will cause the molecules to be transported differently within its volume depending on particle size thus realizing a size-selective separation. Within this framework, the separation and identification of two different molecules, namely Cetyl Trimethyl Ammonium Bromid (CTAB) and adrenaline, in a biological mixture have been demonstrated, showing that geometrical control at the micro-nano scale impart unprecedented selectivity to the devices.

  12. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures

    PubMed Central

    Gentile, Francesco; Ferrara, Lorenzo; Villani, Marco; Bettelli, Manuele; Iannotta, Salvatore; Zappettini, Andrea; Cesarelli, Mario; Di Fabrizio, Enzo; Coppedè, Nicola

    2016-01-01

    PEDOT:PSS is a conductive polymer that can be integrated into last generation Organic Electrochemical Transistor (OECT) devices for biological inspection, identification and analysis. While a variety of reports in literature demonstrated the chemical and biological sensitivity of these devices, still their ability in resolving complex mixtures remains controversial. Similar OECT devices display good time dynamics behavior but lack spatial resolution. In this work, we integrated PEDOT:PSS with patterns of super-hydrophobic pillars in which a finite number of those pillars is independently controlled for site-selective measurement of a solution. We obtained a multifunctional, hierarchical OECT device that bridges the micro- to the nano-scales for specific, combined time and space resolved analysis of the sample. Due to super-hydrophobic surface properties, the biological species in the drop are driven by convection, diffusion, and the externally applied electric field: the balance/unbalance between these forces will cause the molecules to be transported differently within its volume depending on particle size thus realizing a size-selective separation. Within this framework, the separation and identification of two different molecules, namely Cetyl Trimethyl Ammonium Bromid (CTAB) and adrenaline, in a biological mixture have been demonstrated, showing that geometrical control at the micro-nano scale impart unprecedented selectivity to the devices. PMID:26753611

  13. Sticking polydisperse hydrophobic magnetite nanoparticles to lipid membranes.

    PubMed

    Paulus, Michael; Degen, Patrick; Brenner, Thorsten; Tiemeyer, Sebastian; Struth, Bernd; Tolan, Metin; Rehage, Heinz

    2010-10-19

    The formation of a layer of hydrophobic magnetite (Fe(3)O(4)) nanoparticles stabilized by lauric acid is analyzed by in situ X-ray reflectivity measurements. The data analysis shows that the nanoparticles partially disperse their hydrophobic coating. Consequently, a Langmuir layer was formed by lauric acid molecules that can be compressed into an untilted condensed phase. A majority of the nanoparticles are attached to the Langmuir film integrating lauric acid residue on their surface into the Langmuir film. Hence, the particles at the liquid-gas interface can be identified as so-called Janus beads, which are amphiphilic solids having two sides with different functionality.

  14. How hydrophobic buckminsterfullerene affects surrounding water structure.

    PubMed

    Weiss, Dahlia R; Raschke, Tanya M; Levitt, Michael

    2008-03-13

    The hydrophobic hydration of fullerenes in water is of significant interest as the most common Buckminsterfullerene (C60) is a mesoscale sphere; C60 also has potential in pharmaceutical and nanomaterial applications. We use an all-atom molecular dynamics simulation lasting hundreds of nanoseconds to determine the behavior of a single molecule of C60 in a periodic box of water, and compare this to methane. A C60 molecule does not induce drying at the surface; however, unlike a hard sphere methane, a hard sphere C60 solute does. This is due to a larger number of attractive Lennard-Jones interactions between the carbon atom centers in C60 and the surrounding waters. In these simulations, water is not uniformly arranged but rather adopts a range of orientations in the first hydration shell despite the spherical symmetry of both solutes. There is a clear effect of solute size on the orientation of the first hydration shell waters. There is a large increase in hydrogen-bonding contacts between waters in the C60 first hydration shell. There is also a disruption of hydrogen bonds between waters in the first and second hydration shells. Water molecules in the first hydration shell preferentially create triangular structures that minimize the net water dipole near the surface near both the methane and C60 surface, reducing the total energy of the system. Additionally, in the first and second hydration shells, the water dipoles are ordered to a distance of 8 A from the solute surface. We conclude that, with a diameter of approximately 1 nm, C60 behaves as a large hydrophobic solute.

  15. Development of the selective hydrophobic coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-01-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, Selective Hydrophobic Coagulation (SHC), has been studied since 1986 under the sponsorship of the US Department of Energy. The SHC process differs from oil agglomeration, shear or polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. In most cases, simple pH control is all that is required to (i) induce the coagulation of coal particles and (ii) effectively disperse particles of mineral matter. If the coal is oxidized, a small dosage of reagents can be used to enhance the process. The technical work program was initiated on July 1, 1992. Force-distance curves were generated for DDOA Br-coated mica surfaces in water and used to calculate hydrophobicity constants and decay lengths for this system; and a new device for the measurement of water contact angles, similar to the Wilhelmy plate balance, has been built 225 kg samples of Pittsburgh No. 8 and Elkhom No. 3 seam coals were obtained; a static mixer test facility for the study of coagula growth was set up and was undergoing shakedown tests at the end of the quarter; a bench-scale lamella thickener was being constructed; and preliminary coagula/ mineral separation tests were being conducted in a bench-scale continuous drum filter.

  16. Ion creation, ion focusing, ion/molecule reactions, ion separation, and ion detection in the open air in a small plastic device.

    PubMed

    Baird, Zane; Wei, Pu; Cooks, R Graham

    2015-02-07

    A method is presented in which ions are generated and manipulated in the ambient environment using polymeric electrodes produced with a consumer-grade 3D printer. The ability to focus, separate, react, and detect ions in the ambient environment is demonstrated and the data agree well with simulated ion behaviour.

  17. A novel polymeric monolith prepared with multi-acrylate crosslinker for retention-independent efficient separation of small molecules in capillary liquid chromatography.

    PubMed

    Zhang, Haiyang; Ou, Junjie; Wei, Yinmao; Wang, Hongwei; Liu, Zhongshan; Chen, Lianfang; Zou, Hanfa

    2015-07-09

    Low column efficiency for small molecules in reversed-phase chromatography is a major problem commonly encountered in polymer-based monoliths. Herein, a novel highly crosslinked porous polymeric monolith was in situ prepared by using a multi-acrylate monomer, dipentaerythritol penta-/hexa-acrylate (DPEPA), as crosslinker, which copolymerized with lauryl methacrylate (LMA) as functional monomer in a UV-transparent fused-silica capillary via photo-initiated free-radical polymerization within 5 min. The mechanical stability and permeability of the resulting poly(LMA-co-DPEPA) monolith were characterized in detail. One series of highly crosslinked poly(LMA-co-DPEPA) columns were prepared with relatively higher content of crosslinker (63.3%) in the precursor. Although they exhibited lower permeability, high column efficiency for alkylbenzenes was acquired in cLC, and the minimum plate height (column B) was in the range of 6.04-9.00 μm, corresponding to 111,000-165,000 N m(-1). Meanwhile, another series of poly(LMA-co-DPEPA) columns prepared with relatively lower content of crosslinker (52.7%) in the precursor exhibited higher permeability, but the minimum plate height (column E) was relatively low in the range of 10.75-20.04 μm for alkylbenzenes, corresponding to 50,000-93,000 N m(-1). Compared with common poly(LMA-co-EDMA) columns previously reported, the highly crosslinked poly(LMA-co-DPEPA) columns using a multi-acrylate monomer as crosslinker possessed remarkably high column efficiency for small molecules in cLC. By plotting of plate height (H) of alkylbenzenes versus the linear velocity (u) of mobile phase, the results revealed a retention-independent efficient performance of small molecules in the isocratic elution, indicating that the use of multi-functional crosslinker possibly prevents the generation of gel-like micropores in the poly(LMA-co-DPEPA) monolith, reducing the mass transfer resistance (C-term).

  18. Hydrophobic, Hydrophilic, and Charged Amino Acid Networks within Protein

    PubMed Central

    Aftabuddin, Md.; Kundu, S.

    2007-01-01

    The native three-dimensional structure of a single protein is determined by the physicochemical nature of its constituent amino acids. The 20 different types of amino acids, depending on their physicochemical properties, can be grouped into three major classes: hydrophobic, hydrophilic, and charged. The anatomy of the weighted and unweighted networks of hydrophobic, hydrophilic, and charged residues separately for a large number of proteins were studied. Results showed that the average degree of the hydrophobic networks has a significantly larger value than that of hydrophilic and charged networks. The average degree of the hydrophilic networks is slightly higher than that of the charged networks. The average strength of the nodes of hydrophobic networks is nearly equal to that of the charged network, whereas that of hydrophilic networks has a smaller value than that of hydrophobic and charged networks. The average strength for each of the three types of networks varies with its degree. The average strength of a node in a charged network increases more sharply than that of the hydrophobic and hydrophilic networks. Each of the three types of networks exhibits the “small-world” property. Our results further indicate that the all-amino-acids networks and hydrophobic networks are of assortative type. Although most of the hydrophilic and charged networks are of the assortative type, few others have the characteristics of disassortative mixing of the nodes. We have further observed that all-amino-acids networks and hydrophobic networks bear the signature of hierarchy, whereas the hydrophilic and charged networks do not have any hierarchical signature. PMID:17172302

  19. Water structure around hydrophobic amino acid side chain analogs using different water models

    NASA Astrophysics Data System (ADS)

    Hajari, Timir; Bandyopadhyay, Sanjoy

    2017-06-01

    The water structure around hydrophobic groups governs various biochemical processes. There is an ongoing debate on whether water molecules near hydrophobic groups are more ordered with greater participation in water-water hydrogen bonding with respect to water in the pure bulk state. The water structure around six different hydrophobic amino acid side chain analog molecules has been studied in pure water using molecular dynamics simulations. The analysis of water tetrahedral order parameter and the number of hydrogen bonds formed by the individual water molecules in the first hydration shell of the hydrophobic analogs provide evidence that both ordering and hydrogen bonds involving water molecules are to some extent reduced in the hydrophobic hydration shell. It is revealed that the water tetrahedrality in the outer part of the first hydrophobic hydration shell is equivalent to bulk water for all the water models except for the TIP4P-2005 model which shows marginally higher tetrahedrality. However, irrespective of the model employed, water tetrahedrality has always been found to be reduced in the inner part of the first hydration shell, which eventually makes the overall water tetrahedrality in the first hydrophobic hydration shell marginally lower than that observed for pure bulk water. Importantly, it is noticed that the decrease in water structuring exhibits solute size dependencies. Around a small solute like methane, the water tetrahedral ordering or hydrogen bonding propensity is quite similar to that of the bulk state. The effect, reduction in water structuring, is however more pronounced for relatively larger solutes.

  20. Effect of Hydrophobic Molecules on Mitochondria and Mitochondrial Proteins.

    DTIC Science & Technology

    1991-04-01

    action is via a specific interaction with coenzyme Q10 and not a generalized membrane perturbation. 1I INTRODUCTION Aquatic toxicity testing generally...chloronaphthalene inhibit respiration at coenzyme Q (ubiquinone). 4. Except for benzene, the alteration of the UV absorbance spectrum of ubiquinone is...matrix to the cytoplasmic side of the membrane for every electron; this cycle is shown in Figure 13. Coenzyme Q is present on the matrix side as a

  1. Novel conduction behavior in nanopores coated with hydrophobic molecules

    NASA Astrophysics Data System (ADS)

    Balagurusamy, Venkat; Stolovitzky, Gustavo; Afzali-Ardakani, Ali

    2015-03-01

    We obtain (Bi0.7Pb0.3)Sr2Ca2Cu3O10 nano-crystals by sol-gel improved with acrylamide and microwaves, not reported in the literature. TGA gives an idea of the reaction temperatures (200-550 ° C) for the formation of binary, ternary and unknown materials. SEM and TEM shows morphology and crystal size 30-33 nm. We studied the thermodynamic and kinetic stability of the gel quenching, by varying the temperature and time according to a previous thermal analysis. Starting compounds (bismuth oxide, strontium carbonate, copper acetate, lead nitrate and calcium sulfate) were analyzed by XRD. By AFM we observed the dehydrated gel surface absorbed water from the environment. From the micrographs we measured the size of the fibers, grains and nano-crystals. We found at 560 ° C Bi1.6Pb0.4Sr2Ca2Cu3Ox compound with tetragonal crystal structure, corresponding to the 2:2:2:3 compound, with Tc 110 K. At 860 ° C seen a shift of some reflections corresponding to two phases. Xerogel magnetic measurement shows antiferromagnetic behavior at 63 K.

  2. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  3. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  4. Water's structure around hydrophobic solutes and the iceberg model.

    PubMed

    Galamba, N

    2013-02-21

    The structure of water in the hydration shells of small hydrophobic solutes was investigated through molecular dynamics. The results show that a subset of water molecules in the first hydration shell of a nonpolar solute have a significantly enhanced tetrahedrality and a slightly larger number of hydrogen bonds, relative to the molecules in water at room temperature, consistent with the experimentally observed negative excess entropy and increased heat capacity of hydrophobic solutions at room temperature. This ordering results from the rearrangement of a small number of water molecules near the nonpolar solutes that occupy one to two vertices of the enhanced water tetrahedra. Although this structuring is not nearly like that often associated with a literal interpretation of the term "iceberg" in the Frank and Evans iceberg model, it does support a moderate interpretation of this model. Thus, the tetrahedral orientational order of this ensemble of water molecules is comparable to that of liquid water at ~10 °C, although not accompanied by the small contraction of the O-O distance observed in cold water. Further, we show that the structural changes of water in the vicinity of small nonpolar solutes cannot be inferred from the water radial distribution functions, explaining why this increased ordering is not observed through neutron diffraction experiments. The present results restore a molecular view where the slower translational and reorientational dynamics of water near hydrophobic groups has a structural equivalent resembling water at low temperatures.

  5. Wetting in hydrophobic nanochannels: a challenge of classical capillarity.

    PubMed

    Helmy, Roy; Kazakevich, Yuri; Ni, Chaoying; Fadeev, Alexander Y

    2005-09-14

    We report an investigation of the water-hydrophobic interface in well-defined nanochannels (R approximately 2-4 nm). Wetting in these systems cannot be described by classical (macroscopic) capillary theory: (1) water occupies only a fraction ( approximately 60%) of the pore volume, and (2) the capillary pressures are approximately 60-90% greater than predicted by the Laplace equation. The results suggest the presence of approximately 0.6 nm layer of low-density fluid (vapor) separating water from the hydrophobic solid.

  6. Fabrication of an ionic liquid-based macroporous polymer monolithic column via atom transfer radical polymerization for the separation of small molecules.

    PubMed

    Zhang, Hang; Bai, Ligai; Wei, Zhen; Liu, Sha; Liu, Haiyan; Yan, Hongyuan

    2016-01-01

    A polymer monolithic column was prepared in a stainless steel column (50×4.6mm i.d.) via atom transfer radical polymerization technique using triallyl isocyanurate and ionic liquid (1-allyl-3-methylimidazolium chloride) as co-monomers, ethylene dimethacrylate as cross linking agent, polyethylene glycol 200, 1,4-butanediol, and N, N- dimethylformamide as porogen system, CCl4 as initiator, and FeCl2 as catalyst. The optimized polymer columns were characterized by scanning electron microscope, nitrogen adsorption-desorption instrument, mercury intrusion porosimetry, infrared spectrometer, and thermogravimetric analysis technique. Respectively, all of these factors above could illustrate that the optimized columns had relative uniform macroporous structure and high thermal stability. A series of basic and acidic small molecules, isomers, and homologues were used to evaluate the performance of these monoliths and enhanced column efficiency was obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Chiroptical detection during liquid chromatography 7. The rotation angle/absorbance ratio of chiral molecules. Its possible use for on-line analysis during preparative separations of enantiomers.

    PubMed

    Brandl, F; Pustet, N; Mannschreck, A

    2001-02-16

    The rotation angle/absorbance ratios C+ = alpha+/A+ and C- = a-/A-, determined via detection by a polarimeter and a photometer, were checked for the first time with reference to their use for on-line analysis during preparative separations. For this purpose, (+)-, (-)- and (+/-)-carvones were investigated by liquid chromatography (LC) on microcrystalline tribenzoylcellulose. It turned out that the ratios C+ and C- depend only slightly upon concentration (Table 1). Overlapped peaks of enantiomers were successfully submitted to computer deconvolution (e.g. Fig. 2, bottom). A procedure for on-line analysis during preparative LC is proposed.

  8. Research Directed at Developing a Classical Theory to Describe Isotope Separation of Polyatomic Molecules Illuminated by Intense Infrared Radiation. Final Report for period May 7, 1979 to September 30, 1979; Extension December 31, 1997

    DOE R&D Accomplishments Database

    Lamb, W. E. Jr.

    1981-12-01

    This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.

  9. Hydrophobic liquid/gas separator for heat pipes

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.

    1972-01-01

    Perforated nonwetting plug of material such as polytetrafluoroethylene is mounted in gas reservoir feed tube, preferably at end which extends into heat pipe condenser section, to prevent liquid from entering gas reservoir of passively controlled heat pipe.

  10. Recent experimental advances on hydrophobic interactions at solid/water and fluid/water interfaces.

    PubMed

    Zeng, Hongbo; Shi, Chen; Huang, Jun; Li, Lin; Liu, Guangyi; Zhong, Hong

    2015-03-15

    Hydrophobic effects play important roles in a wide range of natural phenomena and engineering processes such as coalescence of oil droplets in water, air flotation of mineral particles, and folding and assembly of proteins and biomembranes. In this work, the authors highlight recent experimental attempts to reveal the physical origin of hydrophobic effects by directly quantifying the hydrophobic interaction on both solid/water and fluid/water interfaces using state-of-art nanomechanical techniques such as surface forces apparatus and atomic force microscopy (AFM). For solid hydrophobic surfaces of different hydrophobicity, the range of hydrophobic interaction was reported to vary from ∼10 to >100 nm. With various characterization techniques, the very long-ranged attraction (>100 nm) has been demonstrated to be mainly attributed to nonhydrophobic interaction mechanisms such as pre-existing nanobubbles and molecular rearrangement. By ruling out these factors, intrinsic hydrophobic interaction was measured to follow an exponential law with decay length of 1-2 nm with effective range less than 20 nm. On the other hand, hydrophobic interaction measured at fluid interfaces using AFM droplet/bubble probe technique was found to decay with a much shorter length of ∼0.3 nm. This discrepancy of measured decay lengths is proposed to be attributed to inherent physical distinction between solid and fluid interfaces, which impacts the structure of interface-adjacent water molecules. Direct measurement of hydrophobic interaction on a broader range of interfaces and characterization of interfacial water molecular structure using spectroscopic techniques are anticipated to help unravel the origin of this rigidity-related mismatch of hydrophobic interaction and hold promise to uncover the physical nature of hydrophobic effects. With improved understanding of hydrophobic interaction, intrinsic interaction mechanisms of many biological and chemical pathways can be better

  11. Wet foams hydrophobized by amphiphiles to give Al2O3 porous ceramics

    NASA Astrophysics Data System (ADS)

    Pokhrel, Ashish; Park, Jung Gyu; Kim, Ik Jin

    2012-05-01

    Wet chemical method to prepare ceramic foams with antecedent stability using inorganic particles (Al2O3,SiO2 etc.) which are in situ hydrophobized upon adsorption of short-chain amphiphilic molecules in the wet state and heightened mechanical property in the sintered state was developed. These wet foams are stable over several days and show no bubble coarsening nor drainage or creaming. This long-term stability is achieved through the irreversible adsorption of partially hydrophobized colloidal particles to the air-water interface using short-chain amphiphiles to in situ modify the wetting behavior of the particle surface based on the observations of Pickering emulsions. As a result, the suspension is foamed homogeneously throughout its entire volume and porous bulk materials can be produced upon drying and sintering. Wet foams featuring average bubble sizes between 30 and 300μm and sintered foams with porosity from 50 to 85% were obtained by adjusting the amphiphile - particle concentration, and additives in the initial suspension. Cells were mostly closed with an average size of approximately 150 μm. Single cells were separated by walls with minimum thicknesses of 1-3 μm.

  12. Enthalpy-entropy contributions to the potential of mean force of nanoscopic hydrophobic solutes.

    PubMed

    Choudhury, Niharendu; Pettitt, B Montgomery

    2006-04-27

    Entropic and enthalpic contributions to the hydrophobic interaction between nanoscopic hydrophobic solutes, modeled as graphene plates in water, have been calculated using molecular dynamics simulations in the isothermal-isobaric (NPT) ensemble with free energy perturbation methodology. We find the stabilizing contribution to the free energy of association (contact pair formation) to be the favorable entropic part, the enthalpic contribution being highly unfavorable. The desolvation barrier is dominated by the unfavorable enthalpic contribution, despite a fairly large favorable entropic compensation. The enthalpic contributions, incorporating the Lennard-Jones solute-solvent terms, largely determine the stability of the solvent separated configuration. We decompose the enthalpy into a direct solute-solute term, the solute-solvent interactions, and the remainder that contains pressure-volume work as well as contributions due to solvent reorganization. The enthalpic contribution due to changes in water-water interactions arising from solvent reorganization around the solute molecules is shown to have major contribution in the solvent induced enthalpy change.

  13. A biologically inspired hydrophobic membrane for application in pervaporation.

    PubMed

    Jullok, Nora; Martínez, Rodrigo; Wouters, Christine; Luis, Patricia; Sanz, María Teresa; Van der Bruggen, Bart

    2013-02-05

    An artificial polydimethylsiloxane/polyphenylsulfone (PDMS/PPSU) membrane, which emulates the hydrophobic behavior of natural membranes, was synthesized. Hydrophobicity was achieved by coating the membrane surface sublayer using conventional silicon material, which imitates the character of epicuticular wax (EW) of Prunus laurocerasus L. leaves. It was then applied as a separation medium in pervaporation (PV) of diluted mixtures of ethyl acetate and aroma compounds. The membrane's biomimetic characteristics were evaluated using surface morphology analyses, that is, Fourier transform infrared (FTIR), water contact angle measurements, and SEM imaging. A comparison of properties of the membranes synthesized in this work against selected hydrophobic plant leaves indicated a good agreement. PV using these biologically inspired artificial membranes demonstrated preference for the permeation of ethyl acetate. Besides intrinsic characteristics, it was also observed that the chemical potential is highly influential in activating sorption, diffusion, and desorption of a specific compound.

  14. Development of the Selective Hydrophobic Coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-01-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, Selective Hydrophobic Coagulation (SHC), has been studied since 1986 under the sponsorship of the US Department of Energy (Contracts AC22-86PC91221 and AC22-90PC90174). The SHC process differs from oil agglomeration, shear or polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. In most cases, simple pH control is all that is required to (1) induce the coagulation of coal particles and (2) effectively disperse particles of mineral matter. If the coal is oxidized, a small dosage of reagents can be used to enhance the process. During the quarter, the Anutech Mark IV surface force apparatus was used to generate surface force-distance data for the mica/dodecylamine hydrochloride system (Task 2.1.1). Work to characterize the hydrophobicity of this system and the mica/DDOA[sup [minus

  15. Hydrophobic Solvation: Aqueous Methane Solutions

    ERIC Educational Resources Information Center

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  16. Hydrophobic Solvation: Aqueous Methane Solutions

    ERIC Educational Resources Information Center

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  17. Molecular origins of fluorocarbon hydrophobicity

    PubMed Central

    Dalvi, Vishwanath H.; Rossky, Peter J.

    2010-01-01

    We have undertaken atomistic molecular simulations to systematically determine the structural contributions to the hydrophobicity of fluorinated solutes and surfaces compared to the corresponding hydrocarbon, yielding a unified explanation for these phenomena. We have transformed a short chain alkane, n-octane, to n-perfluorooctane in stages. The free-energy changes and the entropic components calculated for each transformation stage yield considerable insight into the relevant physics. To evaluate the effect of a surface, we have also conducted contact-angle simulations of water on self-assembled monolayers of hydrocarbon and fluorocarbon thiols. Our results, which are consistent with experimental observations, indicate that the hydrophobicity of the fluorocarbon, whether the interaction with water is as solute or as surface, is due to its “fatness.” In solution, the extra work of cavity formation to accommodate a fluorocarbon, compared to a hydrocarbon, is not offset by enhanced energetic interactions with water. The enhanced hydrophobicity of fluorinated surfaces arises because fluorocarbons pack less densely on surfaces leading to poorer van der Waals interactions with water. We find that interaction of water with a hydrophobic solute/surface is primarily a function of van der Waals interactions and is substantially independent of electrostatic interactions. This independence is primarily due to the strong tendency of water at room temperature to maintain its hydrogen bonding network structure at an interface lacking hydrophilic sites. PMID:20643968

  18. Random hydrophilic-hydrophobic copolymers

    NASA Astrophysics Data System (ADS)

    Garel, T.; Leibler, L.; Orland, H.

    1994-12-01

    We study a single statistical amphiphilic copolymer chain AB in a selective solvent (e.g. water). Two situations are considered. In the annealed case, hydrophilic (A) and hydrophobic (B) monomers are at local chemical equilibrium and both the fraction of A monomers and their location along the chain can vary, whereas in the quenched case (which is relevant to proteins), the chemical sequence along the chain is fixed by synthesis. In both cases, the physical behaviour depends on the average hydrophobicity of the polymer chain. For a strongly hydrophobic chain (large fraction of B), we find an ordinary continuous θ collapse, with a large conformational entropy in the collapsed phase. For a weakly hydrophobic, or a hydrophilic chain, there is an unusual first-order collapse transition. In particular, for the case of Gaussian disorder, this discontinuous transition is driven by a change of sign of the third virial coefficient. The entropy of this collapsed phase is strongly reduced with respect to the θ collapsed phase. Nous étudions un copolymère aléatoire amphiphile AB dans un solvant sélectif (par exemple, de l'eau). Nous considérons deux cas. Dans le cas du désordre mobile, les monomères hydrophiles (A) et hydrophobes (B) sont à l'équilibre chimique local, et la fraction de monomères A ainsi que leur position dans l'espace peuvent varier, alors que dans le cas du désordre gelé (qui est relié au problème des protéines), la séquence chimique est fixée par synthèse. Dans les deux cas, le comportement de la chaîne depend de son hydrophobicité moyenne. Pour une chaîne fortement hydrophobe (grande fraction de B), on trouve un point d'effondrement θ continu ordinaire, avec une grande entropie conformationnelle. Pour une chaîne faiblement hydrophobe ou hydrophile, on trouve une transition inhabituelle du premier ordre. En particulier, dans le cas du désordre gaussien, cette transition discontinue est pilotée par un changement de signe du troisi

  19. Mechanism of formation of humus coatings on mineral surfaces 2. Attenuated total reflectance spectra of hydrophobic and hydrophilic fractions of organic acids from compost leachate on alumina

    USGS Publications Warehouse

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.; Sperline, R.P.; Song, Y.

    1996-01-01

    Hydrophobic and hydrophilic fractions were isolated from a compost leachate. The adsorption isotherms of both fractions on alumina were measured by attenuated total reflectance infrared spectroscopy. The shapes of the adsorption isotherms of the two fractions were different. The isotherms for the hydrophilic fraction showed little change in surface excess with increasing solution concentration above 4 mg L-1. The isotherms for the hydrophobic fraction, on the other hand, displayed a marked increase in surface excess with increasing solution concentration. This increase is evidence for the formation of aggregates (admicelles or hemimicelles) on the alumina surface. Linear dichroism calculations indicated that more of the carboxylate groups in the adsorbed hydrophobic molecules than in the absorbed hydrophilic fraction were free to rotate. The hindered rotation of the carboxylate groups in the adsorbed hydrophilic-fraction molecules probably indicates that these groups are bound to surface aluminum ions by a bidentate mechanism in which the two oxygen atoms of a single carboxylate group bind to separate aluminum ions.

  20. Influence of hydrophobic groups on thickening and emulsification properties of hydrophobically modified polyacrylamides

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Bian, He; Zhang, Huiming

    2017-09-01

    Hydrophobically modified polyacrylamides can be used to enhance oil recovery in tertiary oil recovery process because they have good thickening and emulsification properties. Hydrophobically modified polyacrylamides with different hydrophobic groups were synthesized using micellar polymerization. Above CAC, elastic polymer gel is formed by the aggregation of hydrophobic groups. Hydrophobicity of hydrophobic groups plays a substantially important role in properties of HMPAMs solutions. Higher hydrophobicity of hydrophobic groups leads to more intensive intermolecular association and thus helps to enhance the apparent viscosity of HMPAMs solutions and form stronger elastic polymer gel network structures in HMPAMs solutions which can enhance the stability of the O/W crude oil emulsions stabilized by HMPAMs.

  1. Preparation and characterization of poly(triallyl isocyanurate-co-trimethylolpropane triacrylate) monolith and its applications in the separation of small molecules by liquid chromatography.

    PubMed

    Zhong, Jing; Hao, Mengbei; Li, Ruo; Bai, Ligai; Yang, Gengliang

    2014-03-14

    A new polymeric monolith was prepared in stainless-steel column and fused-silica capillary, respectively, by atom transfer radical polymerization technique. In the polymerization, triallyl isocyanurate (TAIC) was used as the functional monomer; trimethylolpropane triacrylate (TMPTA) as the crosslinking agent; polyethylene glycol 200 and 1,2-propanediol as the co-porogens; carbon tetrachloride as the initiator and ferrous chloride as the catalyst. The conditions of polymerization were optimized. Morphology of the prepared poly(TAIC-co-TMPTA) monolith was investigated by scanning electron microscopy; pore properties were assayed by mercury porosimetry and nitrogen adsorption. The characterization indicated that the prepared reversed-phase monolith possessed uniform structure, good permeability and mechanical stability. The column was used as the stationary phase of reversed phase high performance liquid chromatography (RP-HPLC) and capillary liquid chromatography (CLC) to separate the mixture of aromatic compounds. The new column performed around 125,000 theoretical plates per meter. The column showed good reproducibility: the relative standard deviation values of the retention factor values for aromatic compounds were less than 1.52% (n=7, column-to-column).

  2. Preparation of a novel porous poly (trimethylol propane triacrylate-co-ethylene dimethacrylate) monolithic column for highly efficient HPLC separations of small molecules.

    PubMed

    Bai, Xiaomei; Liu, Haiyan; Wei, Dan; Yang, Gengliang

    2014-02-01

    A novel poly (trimethylol propane triacrylate-co-ethylene dimethacrylate) [poly (TMPTA-co-EDMA)] monolith was prepared by in situ free-radical polymerization in a 50 mm × 4.6mm i.d. stainless steel column and was investigated for high performance liquid chromatography (HPLC). The porous structure of monolith was optimized by changing the conditions of polymerization. The chemical group of the monolithic column was confirmed by a Fourier transform infrared spectroscopy (FT-IR) method and the morphology of column structure was characterized by scanning electron microscopy (SEM). The mechanical strength and permeability were also studied. Finally, a series of low-molecular-weight organic compounds were utilized to evaluate the retention behaviors of the monolithic column. The result demonstrated that the prepared column exhibited an RP-chromatographic behavior and good separation performance. The method reproducibility was obtained by evaluating the run-to-run and column-to-column with relative standard deviations (RSDs) less than 0.7% (n=6) and 2.9% (n=6), respectively, which indicated that prepared monolithic columns had good reproducibility and stability. © 2013 Elsevier B.V. All rights reserved.

  3. Quantification of small molecules in plasma with direct analysis in real time tandem mass spectrometry, without sample preparation and liquid chromatographic separation.

    PubMed

    Zhao, Yeping; Lam, Michelle; Wu, Danlin; Mak, Rowena

    2008-10-01

    Recently, a new ion source, Direct Analysis in Real Time (DART), has been introduced which allows direct biological sample introduction into a mass spectrometry (MS) system. The elimination of conventionally required sample preparation and separation by high-performance liquid chromatography (HPLC) prior to MS analysis represents a remarkable opportunity to reduce assay turn-around time, environmental impact and capital/manpower investment. This new technology initially was used in various qualitative applications to directly detect chemicals on solid surfaces, in liquids and gases. In this study, a DART source operating under ambient pressure with ground potential was installed onto a Sciex 4000 tandem mass spectrometer and employed in the sample analysis of plasma based on direct introduction into the DART-MS/MS system. Reasonable precision and accuracy (%CV and %Error, both <10%) were achieved of a significant number of compounds tested in biological fluids. In addition, the limit of detection for 80% of the tested compounds reached 5 ng/mL or lower which is sufficient for pharmaceutical drug discovery support. Finally, experimental conditions that significantly impacted assay performance were investigated with respect to optimization and limitation. Because of its simplicity, fast data acquisition (3-5 s) and low cost, DART has the potential to significantly impact quantitative pharmaceutical analysis in biological matrices.

  4. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    NASA Technical Reports Server (NTRS)

    Kumar, Nitin; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid/surfaces. At a hydrophobic surface, the air/hydrophobic solid tension is low, and the solid/aqueous tension is high. A large contact angle forms as the aqueous/air tension acts together with the solid/air tension to balance the large solid/aqueous tension. The aqueous phase, instead of spreading, is held in a meniscus by the large angle. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants (i.e. amphiphiles with a hydrophobic chain of methylene groups attached to a large polar group to give aqueous solubility) do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm or polyethylene. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3)) and an extended ethoxylate (-(OCH2CH2)n-) polar group in the form of a chain with seven or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (lermed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread and can be used in microgravity. We propose that the trisiloxane surfactants superspread when the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross sectional area of the disk is larger than that of the extended ethoxylate chain, the

  5. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    NASA Technical Reports Server (NTRS)

    Kumar, Nitin; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid/surfaces. At a hydrophobic surface, the air/hydrophobic solid tension is low, and the solid/aqueous tension is high. A large contact angle forms as the aqueous/air tension acts together with the solid/air tension to balance the large solid/aqueous tension. The aqueous phase, instead of spreading, is held in a meniscus by the large angle. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants (i.e. amphiphiles with a hydrophobic chain of methylene groups attached to a large polar group to give aqueous solubility) do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm or polyethylene. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3)) and an extended ethoxylate (-(OCH2CH2)n-) polar group in the form of a chain with seven or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (lermed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread and can be used in microgravity. We propose that the trisiloxane surfactants superspread when the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross sectional area of the disk is larger than that of the extended ethoxylate chain, the

  6. The fabrication of monolithic capillary column based on poly (bisphenol A epoxy vinyl ester resin-co-ethylene glycol dimethacrylate) and its applications for the separation of small molecules in high performance liquid chromatography.

    PubMed

    Niu, Wenjing; Wang, Lijuan; Bai, Ligai; Yang, Gengliang

    2013-07-05

    A new polymeric monolith was synthesized in fused-silica capillary by in situ polymerization technique. In the polymerization, bisphenol A epoxy vinyl ester resin (VER) was used as the functional monomer, ethylene glycol dimethacrylate (EDMA) as the crosslinking monomer, 1,4-butanediol, 1-propanol and water as the co-porogens, and azobisisobutyronitrile (AIBN) as the initiator. The conditions of polymerization have been optimized. Morphology of the prepared poly (VER-co-EDMA) monolith was investigated by the scanning electron microscopy (SEM); pore properties were assayed by mercury porosimetry and nitrogen adsorption. The optimized poly (VER-co-EDMA) monolith showed a uniform structure, good permeability and mechanical stability. Then, the column was used as the stationary phase of high performance liquid chromatography (HPLC) to separate the mixture of benzene derivatives. The best column efficiency achieved for phenol was 235790 theoretical plates per meter. Baseline separations of benzene derivatives and halogenated benzene compounds under optimized isocratic mode conditions were achieved with high column efficiency. The column showed good reproducibility: the relative standard deviation (RSD) values based on the retention times (n=3) for run-to-run, column-to-column and batch-to-batch were less than 0.98, 1.68, 5.48%, respectively. Compared with poly (BMA-co-EDMA) monolithic column, the proposed monolith exhibited more efficiency in the separation of small molecules.

  7. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.

    PubMed

    Wang, Xu; Zhou, Bihong; Hu, Weike; Zhao, Qing; Lin, Zhanglin

    2015-06-16

    In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0-7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a "pull-down" tag to produce purified soluble proteins with

  8. Spontaneous association of hydrophobized dextran and poly-beta-cyclodextrin into nanoassemblies. Formation and interaction with a hydrophobic drug.

    PubMed

    Daoud-Mahammed, S; Ringard-Lefebvre, C; Razzouq, N; Rosilio, V; Gillet, B; Couvreur, P; Amiel, C; Gref, R

    2007-03-01

    New nanoassemblies were instantaneously prepared by mixing two aqueous solutions, one containing a beta-cyclodextrin polymer (pbetaCD), and the other a hydrophobically modified by alkyl chains dextran (MD). The formation mechanism and the inner structure of these nanoassemblies were analysed using surface tension measurements and (1)H NMR spectroscopy. The effect of a hydrophobic guest molecule, such as benzophenone (BZ), on the formation and stability of the nanoassemblies was also evaluated. MD exhibited the typical behaviour of a soluble amphiphilic molecule and adsorbed at the air/water interface. Whereas the injection of native beta-CDs in the solution beneath the adsorbed MD monolayer did not produce any change in the surface tension, that of the pbetaCD resulted in an increase in the surface tension, indicating the desorption of the polymer from the interface. This result accounts for a cooperative effect of beta-CDs linked together in the pbetaCD polymer on dextran desorption. The presence of benzophenone in the system hindered the sequestration of dextran alkyl moieties by beta-CD in the polymer without impeding the formation of associative nanoassemblies of 100-200 nm. (1)H NMR investigations demonstrated that, in the BZ-loaded nanoassemblies, the hydrophobic molecule was mainly located into the cyclodextrin cavities.

  9. Hydrophobic and hydrophilic interactions in aqueous mixtures of alcohols at a hydrophobic surface.

    PubMed

    Ballal, Deepti; Chapman, Walter G

    2013-09-21

    Aqueous solutions of alcohols are interesting because of their anomalous behavior that is believed to be due to the molecular structuring of water and alcohol around each other in solution. The interfacial structuring and properties are significant for application in alcohol purification processes and biomolecular structure. Here we study aqueous mixtures of short alcohols (methanol, ethanol, 1-propanol, and 2-propanol) at a hydrophobic surface using interfacial statistical associating fluid theory which is a perturbation density functional theory. The addition of a small amount of alcohol decreases the interfacial tension of water drastically. This trend in interfacial tension can be explained by the structure of water and alcohol next to the surface. The hydrophobic group of an added alcohol preferentially goes to the surface preserving the structure of water in the bulk. For a given bulk alcohol concentration, water mixed with the different alcohols has different interfacial tensions with propanol having a lower interfacial tension than methanol and ethanol. 2-propanol is not as effective in decreasing the interfacial tension as 1-propanol because it partitions poorly to the surface due to its larger excluded volume. But for a given surface alcohol mole fraction, all the alcohol mixtures give similar values for interfacial tension. For separation of alcohol from water, methods that take advantage of the high surface mole fraction of alcohol have advantages compared to separation using the vapor in equilibrium with a water-alcohol liquid.

  10. Large-scale molecular-dynamics simulation of nanoscale hydrophobic interaction and nanobubble formation

    NASA Astrophysics Data System (ADS)

    Koishi, Takahiro; Yasuoka, Kenji; Ebisuzaki, Toshikazu; Yoo, S.; Zeng, X. C.

    2005-11-01

    We performed large-scale molecular-dynamics simulation of nanoscale hydrophobic interaction manifested by the formation of nanobubble between nanometer-sized hydrophobic clusters at constrained equilibrium. Particular attention is placed on the tendency of formation and stability of nanobubbles in between model nanoassemblies which are composed of hydrophobic clusters (or patches) embedded in a hydrophilic substrate. On the basis of physical behavior of nanobubble formation, we observed a change from short-range molecular hydrophobic interaction to midrange nanoscopic interaction when the length scale of hydrophobe approaches to about 1 nm. We investigated the behavior of nanobubble formation with several different patterns of nonpolar-site distribution on the nanoassemblies but always keeping a constant ratio of nonpolar to polar monomer sites. Dynamical properties of confined water molecules in between nanoassemblies are also calculated.

  11. Behavior of aqueous solutions in hydrophobic confinement studied using molecular simulations

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit

    Biological processes, such as formation of cell membranes, vesicles and folding of protein molecules, entail formation of a predominantly hydrophobic interior devoid of water. These processes occur in crowded aqueous environments comprising of amino acids, carbohydrates, ionic species, protein molecules, etc. Kinetics of these processes involve drying of hydrophobic pockets. Previous studies reveal that the kinetics of evaporation of water in hydrophobic confinement significantly slow down as the confinement gap increases. Presumably, the constituents of aqueous environment in biological systems modulate the kinetics of evaporation of confined water. In this work, we employ forward flux sampling in molecular dynamics simulations to study the role of solutes at different concentrations in modulating the kinetics and mechanism of evaporation of water under hydrophobic confinement. The results of these simulations will be useful for understanding optimum conditions for protein folding and other biological self-assembly processes.

  12. Separation techniques: Chromatography

    PubMed Central

    Coskun, Ozlem

    2016-01-01

    Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406

  13. Water repellency in hydrophobic nanocapsules--molecular view on dewetting.

    PubMed

    Müller, Achim; Garai, Somenath; Schäffer, Christian; Merca, Alice; Bögge, Hartmut; Al-Karawi, Ahmed Jasim M; Prasad, Thazhe Kootteri

    2014-05-26

    The hydrophobic effect plays a major role in a variety of important phenomena in chemistry, materials science and biology, for instance in protein folding and protein-ligand interactions. Studies--performed within cavities of the unique metal oxide based porous capsules of the type {(pentagon)12(linker)30}≡{(W)W5}12{Mo2(ligand)}30 with different acetate/water ligand ratios--have provided unprecedented results revealing segregation/repellency of the encapsulated "water" from the internal hydrophobic ligand walls of the capsules, while the disordered water molecules, interacting strongly with each other via hydrogen bonding, form in all investigated cases the same type of spherical shell. The present results can be (formally) compared--but only regarding the repellency effect--with the amazing "action" of the (super)hydrophobic Lotus (Nelumbo) leaves, which are self-cleaning based on water repellency resulting in the formation of water droplets picking up dirt. The present results were obtained by constructing deliberately suitable hydrophobic interiors within the mentioned capsules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Highly efficient hydrophobic titania ceramic membranes for water desalination.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Koter, Stanisław; Kujawski, Wojciech

    2014-08-27

    Hydrophobic titania ceramic membranes (300 kD) were prepared by grafting of C6F13C2H4Si(OC2H5)3 and C12F25C2H4Si(OC2H5)3 molecules and thus applied in membrane distillation (MD) process of NaCl solutions. Grafting efficiency and hydrophobicity were evaluated by contact angle measurement, atomic force microscopy, scanning electron microscopy, nitrogen adsorption/desorption, and liquid entry pressure measurement of water. Desalination of NaCl solutions was performed using the modified hydrophobic membranes in air gap MD (AGMD) and direct contact MD (DCMD) processes in various operating conditions. High values of NaCl retention coefficient (>99%) were reached. The permeate fluxes were in the range 231-3692 g·h(-1)·m(-2), depending on applied experimental conditions. AGMD mode appeared to be more efficient showing higher fluxes and selectivity in desalination. Overall mass transfer coefficients (K) for membranes tested in AGMD were constant over the investigated temperature range. However, K values in DCMD increased at elevated temperature. The hydrophobic layer was also stable after 4 years of exposure to open air.

  15. Biomimetic solution against dewetting in a highly hydrophobic nanopore.

    PubMed

    Picaud, Fabien; Paris, Guillaume; Gharbi, Tijani; Balme, Sébastien; Lepoitevin, Mathilde; Tangaraj, Vidhyadevi; Bechelany, Mikhael; Janot, Jean Marc; Balanzat, Emmanuel; Henn, François

    2016-06-14

    A water molecule is the foundation of life and is the primary compound in every living system. While many of its properties are understood in a bulk solvent, its behavior in a small hydrophobic nanopore still raises fundamental questions. For instance, a wetting/dewetting transition in a hydrophobic solid-state or a polymer nanopore occurs stochastically and can only be prevented by external physical stimuli. Controlling these transitions would be a primary requirement to improve many applications. Some biological channels, such as gramicidin A (gA) proteins, show a high rate of water and ion diffusion in their central subnanochannel while their external surface is highly hydrophobic. The diameter of this channel is significantly smaller than the inner size of the lowest artificial nanopore in which water drying occurs (i.e. 1.4 nm). In this paper, we propose an innovative idea to generate nanopore wetting as a result of which the application of an external field is no longer required. In a nanopore, the drying or wetting of the inner walls occurs randomly (in experiments and in simulations). However, we have shown how the confinement of gA, in a dried hydrophobic nanopore, rapidly generates a stable wetting of the latter. We believe that this simple idea, based on biomimetism, could represent a real breakthrough that could help to improve and develop new nanoscale applications.

  16. Self-assembling of hydrophobic-hydrophilic copolymers in hydrophobic nanocylindrical tubes: formation of channels.

    PubMed

    Feng, Jie; Ruckenstein, Eli

    2008-02-21

    By employing Monte Carlo simulations, the phase behavior of hydrophobic-hydrophilic copolymers confined in hydrophobic nanocylindrical tubes has been investigated by changing the hydrophobic-hydrophilic distribution, the ratio of the hydrophobic to hydrophilic segments, the hydrophobicity of the tube surface, and the tube diameter. The ratio of hydrophobic to hydrophilic segments, the number of blocks in a chain, and the number of segments in a block affected the generation of channels in the central region. Such channels were formed when the hydrophobicity of the tube surface was sufficiently strong for its attraction for the hydrophobic segments to overcome the attraction between the hydrophobic segments. When the numbers of hydrophobic and hydrophilic beads in a chain are constant, the number of blocks has opposite effects in small and large tubes. In the former, the formation of channels is stimulated by a larger number of blocks, while in the latter, it is stimulated by a smaller number of blocks.

  17. I. Hydrophobic nanoporous silica particles for biomedical applications II. Novel approaches to two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Brumaru, Claudiu Stelian

    Many highly effective drugs display serious side-effects. To limit them, one can contain the drug in tiny containers, which are subsequently delivered toward targets inside the body. The entrapment of drug molecules prevents them from coming in contact with and thus causing damage to normal cells. Inherently, it is difficult to reach 100% efficiency of drug trapping and release when employing physical caps to seal the vehicles. Instead, we propose drug trapping inside the nanopores of hydrophobic silica particles by "hydrophobic trapping". This phenomenon is associated with the repulsive "force field" generated inside nanometer-sized hydrophobic channels that completely prevents aqueous solutions from entering the channels. We demonstrate the excellent trapping efficiency using C18-modified silica particles with 10 nm pores and the anticancer drug doxorubicin. The major challenge in using hydrophobic particles in biological applications is their tendency to cluster in aqueous media. To overcome it, we use surfactants as solubilization means. We have developed protocols that effectively solubilize the outer surface of the particles while preventing surfactant micelles from entering nanopores. Consequently, particles become well-dispersible in aqueous solutions, with the pre-loaded drug safely contained inside nanopores. Nanomaterials exhibit heterogeneity on their surfaces that impact their functional applications. Although techniques such as atomic force microscopy are great tools for studying nanomaterials with their excellent spatial resolution, they cannot probe the inner surface of porous structures. We have established a method of single-molecule ratiometric imaging that is currently the only technique able to provide the nanopolarity of adsorption sites located on the pore surface. We analyze the polarity distribution of adsorptions events for the solvatochromic probe Nile Red at the C18/acetonitrile interface and discover at least two different populations

  18. Hydrophobic-Core Microcapsules and Their Formation

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophobic-core microcapsules and methods of their formation are provided. A hydrophobic-core microcapsule may include a shell that encapsulates a hydrophobic substance with a core substance, such as dye, corrosion indicator, corrosion inhibitor, and/or healing agent, dissolved or dispersed therein. The hydrophobic-core microcapsules may be formed from an emulsion having hydrophobic-phase droplets, e.g., containing the core substance and shell-forming compound, dispersed in a hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  19. Effects of the osmolyte TMAO (Trimethylamine-N-oxide) on aqueous hydrophobic contact-pair interactions.

    PubMed

    Macdonald, Ryan D; Khajehpour, Mazdak

    2013-12-31

    Osmolytes are small, soluble organic molecules produced by living organisms for maintaining cell volume. These molecules have also been shown to have significant effects on the stability of proteins. Perhaps one of the most studied osmolytes is Trimethylamine-N-oxide (TMAO). Thermodynamic studies of the effects of TMAO on proteins have shown that this molecule is a strong stabilizer of the protein folded state, thus being able to counteract the effects of protein denaturants such as urea and guanidine hydrochloride. Most studies of TMAO effects on bio-molecular stability have until now been focused on how the osmolyte reduces the solubility of polypeptide backbones, while the effects of TMAO on hydrophobic interactions are still not well understood. In fact, there are few experimental data measuring the effect of TMAO on hydrophobic interactions. This work studies phenyl and alkyl contact pairs as model hydrophobic contact pairs. The formation of these contact pairs is monitored using fluorescence, i.e., through the quenching of phenol fluorescence by carboxylate ions; and a methodology is developed to isolate hydrophobic contributions from other interactions. The data demonstrate that the addition of TMAO to the aqueous solvent destabilizes hydrophobic contact pairs formed between alkyl and phenyl moieties. In other words, TMAO acts as a "denaturant" for hydrophobic interactions.

  20. Phenylalanine functionalized zwitterionic monolith for hydrophobic interaction electrochromatography.

    PubMed

    Wang, Jiabin; Jia, Wenchao; Lin, Xucong; Wu, Xiaoping; Xie, Zenghong

    2013-12-01

    A novel phenylalanine (Phe) functionalized zwitterionic monolith for hydrophobic electrochromatography was prepared by a two-step procedure involving the synthesis of glycidyl methacrylate based polymer monolith and subsequent on-column chemical modification with Phe via ring-opening reaction of epoxides. Benefitting from the hydrophobicity of both methacrylate-based matrix and aromatic group of Phe, this monolith could exhibit good hydrophobic interaction for the separation. Typical RP chromatographic behavior was observed toward various solutes. The well-controlled cathodic or anodic EOF of the prepared column could be facilely switched by altering the pH values of running buffers. The separation mechanism of this Phe functionalized zwitterionic monolith is discussed in detail. Two mixed-mode mechanisms of RP/cation exchange and RP/anion exchange could be further realized on the same monolith in different pH condition of the mobile phase. Versatile separation capabilities of neutral, basic, and acidic analytes have been successfully achieved in this zwitterionic monolith by CEC method.

  1. Dehydration-Driven Solvent Exposure of Hydrophobic Surfaces as a Driving Force in Peptide Folding

    SciTech Connect

    Daidone, Isabella; Ulmschneider, Martin; DiNola, Alfredo; Amadei, Andrea; Smith, Jeremy C

    2007-09-01

    Recent work has shown that the nature of hydration of pure hydrophobic surfaces changes with the length scale considered: water hydrogen-bonding networks adapt to small exposed hydrophobic species, hydrating or 'wetting' them at relatively high densities, whereas larger hydrophobic areas are 'dewetted' [Chandler D (2005), Nature 29:640-647]. Here we determine whether this effect is also present in peptides by examining the folding of a {beta}-hairpin (the 14-residue amyloidogenic prion protein H1 peptide), using microsecond time-scale molecular dynamics simulations. Two simulation models are compared, one explicitly including the water molecules, which may thus adapt locally to peptide configurations, and the other using a popular continuum approximation, the generalized Born/surface area implicit solvent model. The results obtained show that, in explicit solvent, peptide conformers with high solvent-accessible hydrophobic surface area indeed also have low hydration density around hydrophobic residues, whereas a concomitant higher hydration density around hydrophilic residues is observed. This dewetting effect stabilizes the fully folded {beta}-hairpin state found experimentally. In contrast, the implicit solvent model destabilizes the fully folded hairpin, tending to cluster hydrophobic residues regardless of the size of the exposed hydrophobic surface. Furthermore, the rate of the conformational transitions in the implicit solvent simulation is almost doubled with respect to that of the explicit solvent. The results suggest that dehydration-driven solvent exposure of hydrophobic surfaces may be a significant factor determining peptide conformational equilibria.

  2. Is the ether group hydrophilic or hydrophobic?

    PubMed

    Menger, Fredric M; Chlebowski, Mary E

    2005-03-29

    A series of six surfactants, each with two ether oxygens within otherwise all-hydrocarbon chains, were synthesized and examined for their colloidal properties. Since an ether oxygen is sterically and conformationally similar to the methylene group it has replaced, the ether effect on micellization should stem mainly from solvation of the oxygen and, possibly, disrupted hydrophobicity of its adjacent carbons. It was found that critical aggregation values among the surfactants differ only modestly despite the total length of the ether-separated carbon segments ranging from 12 to 18. Shorter ether surfactants with only 12 or 14 total carbons appear to form small, loose aggregates owing, presumably, to a mild hydrophilicity of the ether groups. A surfactant with 18 chain carbons has a greater tendency to associate hydrophobically, but this is counterbalanced by a relatively water-free environment encountered by the ether groups within a more conventional micelle interior. The result is a leveling effect in which the critical aggregation concentration (cac) loses it sensitivity to chain length. Above their cac's, none of the ether surfactants is a good solubilizer of tetramethysilane or mesitylene. This is not necessarily a predictable finding since it was conceivable that the presence of interior ether groups might actually enhance solubilization (much as ether is a better solvent than hexane). Foamability and solid adsorption studies also indicate that the ethers impair surface activity. In response to the question posed in the paper's title, two ether groups are not sufficiently hydrophilic to prevent aggregation, but they do manage to alter the micelles' morphology and properties considerably.

  3. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation.

    PubMed

    Nfor, Beckley K; Hylkema, Nienke N; Wiedhaup, Koenraad R; Verhaert, Peter D E M; van der Wielen, Luuk A M; Ottens, Marcel

    2011-12-09

    Salt-induced protein precipitation and hydrophobic interaction chromatography (HIC) are two widely used methods for protein purification. In this study, salt effects in protein precipitation and HIC were investigated for a broad combination of proteins, salts and HIC resins. Interrelation between the critical thermodynamic salting out parameters in both techniques was equally investigated. Protein precipitation data were obtained by a high-throughput technique employing 96-well microtitre plates and robotic liquid handling technology. For the same protein-salt combinations, isocratic HIC experiments were performed using two or three different commercially available stationary phases-Phenyl Sepharose low sub, Butyl Sepharose and Resource Phenyl. In general, similar salt effects and deviations from the lyotropic series were observed in both separation methods, for example, the reverse Hofmeister effect reported for lysozyme below its isoelectric point and at low salt concentrations. The salting out constant could be expressed in terms of the preferential interaction parameter in protein precipitation, showing that the former is, in effect, the net result of preferential interaction of a protein with water molecules and salt ions in its vicinity. However, no general quantitative interrelation was found between salting out parameters or the number of released water molecules in protein precipitation and HIC. In other words, protein solubility and HIC retention factor could not be quantitatively interrelated, although for some proteins, regular trends were observed across the different resins and salt types.

  4. Hydrophobicity and retention coefficient of selected bile Acid oxo derivatives.

    PubMed

    Poša, Mihalj; Pilipović, Mladena Ana Lalić; Popović, Jovan

    2010-12-01

    Retention coefficients (k) of cholic acid and its keto derivatives are determined by means of Reversed Phase High Pressure Liquid Chromatography at different temperatures (303K, 309K, and 313K). At each studied temperature, retention factor decreases if the hydroxyl group in the cholic acid molecule replaces oxo group. In addition, the change of retention coefficient in a function of temperature (Δk/ΔT) is dominant for the cholic acid while by increasing the number of oxo groups it decreases. Introduction of an oxo group in a bile acid molecule leads to the lower hydrophobicity of the β side of the steroid nucleus. Because of that, less interaction happens between β side of the steroid nucleus and stationary phase. For dehydrocholic acid (three- oxo derivative), the value for Δk/ΔT shows an exception of this explanation. This suggests that in this molecule the planar polarity is disturbed. Partition coefficient K of nitrazepam (probe molecule) in micelles of bile acid salts at the examined temperatures shows a high linear correlation with retention factors of the selected bile acids. This indicates the importance of hydrophobic interactions in mixed micelles between the examined drug and bile acid salts. Haemolytic potential (erythrocyte haemolysis, log (Lys50)) represents measure of membranotoxicity of bile acids. In addition, it is shown that haemolytic potential correlates highly with the retention coefficient. All experiments that we conducted to obtain the values of K and log (Lys50) as well as their correlations with k, contribute to significance of retention coefficient as a measure of hydrophobicity in biopharmaceutical experiments.

  5. Unraveling Hydrophobic Interactions at the Molecular Scale Using Force Spectroscopy and Molecular Dynamics Simulations.

    PubMed

    Stock, Philipp; Monroe, Jacob I; Utzig, Thomas; Smith, David J; Shell, M Scott; Valtiner, Markus

    2017-03-28

    Interactions between hydrophobic moieties steer ubiquitous processes in aqueous media, including the self-organization of biologic matter. Recent decades have seen tremendous progress in understanding these for macroscopic hydrophobic interfaces. Yet, it is still a challenge to experimentally measure hydrophobic interactions (HIs) at the single-molecule scale and thus to compare with theory. Here, we present a combined experimental-simulation approach to directly measure and quantify the sequence dependence and additivity of HIs in peptide systems at the single-molecule scale. We combine dynamic single-molecule force spectroscopy on model peptides with fully atomistic, both equilibrium and nonequilibrium, molecular dynamics (MD) simulations of the same systems. Specifically, we mutate a flexible (GS)5 peptide scaffold with increasing numbers of hydrophobic leucine monomers and measure the peptides' desorption from hydrophobic self-assembled monolayer surfaces. Based on the analysis of nonequilibrium work-trajectories, we measure an interaction free energy that scales linearly with 3.0-3.4 kBT per leucine. In good agreement, simulations indicate a similar trend with 2.1 kBT per leucine, while also providing a detailed molecular view into HIs. This approach potentially provides a roadmap for directly extracting qualitative and quantitative single-molecule interactions at solid/liquid interfaces in a wide range of fields, including interactions at biointerfaces and adhesive interactions in industrial applications.

  6. A comprehensive study to protein retention in hydrophobic interaction chromatography.

    PubMed

    Baca, Martyna; De Vos, Jelle; Bruylants, Gilles; Bartik, Kristin; Liu, Xiaodong; Cook, Ken; Eeltink, Sebastiaan

    2016-10-01

    The effect of different kosmotropic/chaotropic salt systems on retention characteristics of intact proteins has been examined in hydrophobic interaction chromatography (HIC). The performance was assessed using different column chemistries, i.e., polyalkylamide, alkylamine incorporating hydrophobic moieties, and a butyl chemistry. Selectivity in HIC is mainly governed by the salt concentration and by the molal surface tension increment of the salt. Typically, a linear relationship between the natural logarithm of the retention factor and the salt concentration is obtained. Using a 250mm long column packed with 5μm polyalkylamide functionalized silica particles and applying a 30min linear salt gradient, a peak capacity of 78 was achieved, allowing the baseline separation of seven intact proteins. The hydrophobicity index appeared to be a good indicator to predict the elution order of intact proteins in HIC mode. Furthermore, the effect of adding additives in the mobile phase, such as calcium chloride (stabilizing the 3D conformation of α-lactalbumin) and isopropanol, on retention properties has been assessed. Results indicate that HIC retention is also governed by conformational in the proteins which affect the number of accessible hydrophobic moieties.

  7. High-Definition Self-Assemblies driven by the Hydrophobic Effect: Synthesis and Properties of a Supramolecular Nano-Capsule

    PubMed Central

    Liu, Simin

    2008-01-01

    High definition self-assemblies, those that possess order at the molecular level, are most commonly made from subunits possessing metals and metal coordination sites, or groups capable of partaking in hydrogen bonding. In other words, enthalpy is the driving force behind the free energy of assembly. The hydrophobic effect engenders the possibility of (nominally) relying not on enthalpy but entropy to drive assembly. Towards this idea, we describe how template molecules can trigger the dimerization of a cavitand in aqueous solution, and in doing so are encapsulated within the resulting capsule. Although not held together by (enthalpically) strong and directional non-covalent forces, these capsules possess considerable thermodynamic and kinetic stability. As a result, they display unusual and even unique properties. We discuss some of these, including the use of the capsule as a nano-scale reaction chamber and how they can bring about the separation of hydrocarbon gases. PMID:18685753

  8. High-definition self-assemblies driven by the hydrophobic effect: synthesis and properties of a supramolecular nanocapsule.

    PubMed

    Liu, Simin; Gibb, Bruce C

    2008-08-28

    High definition self-assemblies, those that possess order at the molecular level, are most commonly made from subunits possessing metals and metal coordination sites, or groups capable of partaking in hydrogen bonding. In other words, enthalpy is the driving force behind the free energy of assembly. The hydrophobic effect engenders the possibility of (nominally) relying not on enthalpy but entropy to drive assembly. Towards this idea, we describe how template molecules can trigger the dimerization of a cavitand in aqueous solution, and in doing so are encapsulated within the resulting capsule. Although not held together by (enthalpically) strong and directional non-covalent forces, these capsules possess considerable thermodynamic and kinetic stability. As a result, they display unusual and even unique properties. We discuss some of these, including the use of the capsule as a nanoscale reaction chamber and how they can bring about the separation of hydrocarbon gases.

  9. Formation of Ultracold Molecules

    SciTech Connect

    Cote, Robin

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.

  10. Interfacial entropy of water on rigid hydrophobic surfaces.

    PubMed

    Taherian, Fereshte; Leroy, Frédéric; van der Vegt, Nico F A

    2013-08-06

    A simple theoretical model is proposed for computing the interfacial entropy of water at rigid hydrophobic surfaces. The interfacial entropy, which is not considered in mean field models of static wettability, is evaluated from the fluctuations of the water-surface dispersion energy at the single particle level and represents the configurational bias imposed on the fluid molecules by the attractive external potential of a solid wall. A comparison with results obtained from molecular dynamics simulations shows that the model quantitatively describes the entropy loss of water when a water-vapor interface turns to water in contact with hydrophobic surfaces such as graphene, graphite, and diamond, while it overestimates this quantity on hydrophilic surfaces.

  11. Direct Biofluid Analysis Using Hydrophobic Paper Spray Mass Spectrometry.

    PubMed

    Damon, Deidre E; Davis, Kathryn M; Moreira, Camila R; Capone, Patricia; Cruttenden, Riley; Badu-Tawiah, Abraham K

    2016-02-02

    Ambient electrostatic paper spray ionization from a hydrophobic paper occurs when a DC potential is applied to the dry paper triangle. Online liquid/liquid extraction of small organic compounds from a drop of biological fluid present on the dry hydrophobic paper is achieved with an organic spray solvent in under 1 min and utilizes in situ electrostatic-spray ionization for more efficient detection of extracted molecules. Direct analysis of small volumes of biofluids with no sample pretreatment is possible, which is applicable in point-of-care analyses. High sensitivity and quantitative accuracy was achieved for the direct analysis of illicit drugs in 4 μL of raw blood, serum, and whole urine. The study was extended to monitor the activity of alanine transaminase enzyme, a key biomarker for the detection of liver injury in patients (with HIV and tuberculosis) who typically take several medications at once.

  12. How does a hydrocarbon staple affect peptide hydrophobicity?

    PubMed

    Sim, Adelene Y L; Verma, Chandra

    2015-04-15

    Water is essential for the proper folding of proteins and the assembly of protein-protein/ligand complexes. How water regulates complex formation depends on the chemical and topological details of the interface. The dynamics of water in the interdomain region between an E3 ubiquitin ligase (MDM2) and three different peptides derived from the tumor suppressor protein p53 are studied using molecular dynamics. The peptides show bimodal distributions of interdomain water densities across a range of distances. The addition of a hydrocarbon chain to rigidify the peptides (in a process known as stapling) results in an increase in average hydrophobicity of the peptide-protein interface. Additionally, the hydrophobic staple shields a network of water molecules, kinetically stabilizing a water chain hydrogen-bonded between the peptide and MDM2. These properties could result in a decrease in the energy barrier associated with dehydrating the peptide-protein interface, thereby regulating the kinetics of peptide binding.

  13. Hydrophobic interaction and hydrogen-bond network for a methane pair in liquid water

    PubMed Central

    Li, Je-Luen; Car, Roberto; Tang, Chao; Wingreen, Ned S.

    2007-01-01

    We employ fully quantum-mechanical molecular dynamics simulations to evaluate the force between two methanes dissolved in water, as a model for hydrophobic association. A stable configuration is found near the methane–methane contact separation, while a shallow second potential minimum occurs for the solvent-separated configuration. The strength and shape of the potential of mean force are in conflict with earlier classical force-field simulations but agree well with a simple hydrophobic burial model which is based on solubility experiments. Examination of solvent dynamics reveals stable water cages at several specific methane–methane separations. PMID:17299045

  14. Hydrophobic interaction and hydrogen-bond network for a methane pair in liquid water.

    PubMed

    Li, Je-Luen; Car, Roberto; Tang, Chao; Wingreen, Ned S

    2007-02-20

    We employ fully quantum-mechanical molecular dynamics simulations to evaluate the force between two methanes dissolved in water, as a model for hydrophobic association. A stable configuration is found near the methane-methane contact separation, while a shallow second potential minimum occurs for the solvent-separated configuration. The strength and shape of the potential of mean force are in conflict with earlier classical force-field simulations but agree well with a simple hydrophobic burial model which is based on solubility experiments. Examination of solvent dynamics reveals stable water cages at several specific methane-methane separations.

  15. Preparation of hydrophobic organic aeorgels

    DOEpatents

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2004-10-19

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  16. Preparation of hydrophobic organic aeorgels

    DOEpatents

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2007-11-06

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  17. Influence of the surface hydrophobicity on fluorescence correlation spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Boutin, Céline; Jaffiol, Rodolphe; Plain, Jérome; Royer, Pascal

    2007-02-01

    Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique used to analyze the diffusion at the single molecule level in solution. FCS is based on the temporal autocorrelation of fluorescent signal generated by dye molecules diffusing through a small confocal volume. These measurements are mostly carried out in a chambered coverglass, close to the glass substrate. In this report, we discuss how the chemical nature of the glass-water interface may interact with the free diffusion of molecules. Our results reveal a strong influence, up to a few μm from the interface, of the surface hydrophobicity degree. This influence is assessed through the relative weight of the two dimension diffusion process observed at the vicinity of the surface.

  18. Production of hydrophobic amino acids from biobased resources: wheat gluten and rubber seed proteins.

    PubMed

    Widyarani; Sari, Yessie W; Ratnaningsih, Enny; Sanders, Johan P M; Bruins, Marieke E

    2016-09-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent separation. Here, we present methods for selective production of hydrophobic amino acids from proteins. Selectivity can be achieved by selection of starting material, selection of hydrolysis conditions, and separation of achieved hydrolysate. Several protease combinations were applied for hydrolysis of rubber seed protein concentrate, wheat gluten, and bovine serum albumin (BSA). High degree of hydrolysis (>50 %) could be achieved. Hydrophobic selectivity was influenced by the combination of proteases and by the extent of hydrolysis. Combination of Pronase and Peptidase R showed the highest selectivity towards hydrophobic amino acids, roughly doubling the content of hydrophobic amino acids in the products compared to the original substrates. Hydrophobic selectivity of 0.6 mol-hydrophobic/mol-total free amino acids was observed after 6 h hydrolysis of wheat gluten and 24 h hydrolysis of rubber seed proteins and BSA. The results of experiments with rubber seed proteins and wheat gluten suggest that this process can be applied to agro-industrial residues.

  19. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces.

    PubMed

    Burton, Zachary; Bhushan, Bharat

    2006-01-01

    Super-hydrophobic surfaces as well as low adhesion and friction are desirable for various industrial applications. Certain plant leaves are known to be hydrophobic in nature. These leaves are hydrophobic due to the presence of microbumps and a thin wax film on the surface of the leaf. The purpose of this study is to fully characterize the leaf surface and to separate out the effects of the microbumps and the wax on the hydrophobicity. Furthermore, the adhesion and friction properties of the leaves, with and without wax, are studied. Using an optical profiler and an atomic/friction force microscope (AFM/FFM), measurements on the hydrophobic leaves, both with and without wax, were made to fully characterize the leaf surface. Using a model that predicts contact angle as a function of roughness, the roughness factor for the hydrophobic leaves has been calculated, which is used to calculate the contact angle for a flat leaf surface. It is shown that both the microbumps and the wax play an equally important role in the hydrophobic nature as well as adhesion and friction of the leaf. This study will be useful in developing super-hydrophobic surfaces.

  20. Order and correlation contributions to the entropy of hydrophobic solvation

    SciTech Connect

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-21

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom’s test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  1. Order and correlation contributions to the entropy of hydrophobic solvation

    NASA Astrophysics Data System (ADS)

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-01

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom's test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  2. Reversible Hydrophobic to Hydrophilic Transition in Graphene via Water Splitting Induced by UV Irradiation

    PubMed Central

    Xu, Zhemi; Ao, Zhimin; Chu, Dewei; Younis, Adnan; Li, Chang Ming; Li, Sean

    2014-01-01

    Although the reversible wettability transition between hydrophobic and hydrophilic graphene under ultraviolet (UV) irradiation has been observed, the mechanism for this phenomenon remains unclear. In this work, experimental and theoretical investigations demonstrate that the H2O molecules are split into hydrogen and hydroxyl radicals, which are then captured by the graphene surface through chemical binding in an ambient environment under UV irradiation. The dissociative adsorption of H2O molecules induces the wettability transition in graphene from hydrophobic to hydrophilic. Our discovery may hold promise for the potential application of graphene in water splitting. PMID:25245110

  3. Characterisation of nanomaterial hydrophobicity using engineered surfaces

    NASA Astrophysics Data System (ADS)

    Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal

    2017-03-01

    Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.

  4. Expulsion of ions from hydrophobic hydration shells.

    PubMed

    Rankin, Blake M; Ben-Amotz, Dor

    2013-06-19

    Raman spectroscopy is combined with multivariate curve resolution to quantify interactions between ions and molecular hydrophobic groups in water. The molecular solutes in this study all have similar structures, with a trimethyl hydrophobic domain and a polar or charged headgroup. Our results imply that aqueous sodium and fluoride ions are strongly expelled from the first hydration shells of the hydrophobic (methyl) groups, while iodide ions are found to enter the hydrophobic hydration shell, to an extent that depends on the methyl group partial charge. However, our quantitative estimates of the corresponding ion binding equilibrium constants indicate that the iodide concentration in the first hydrophobic hydration shell is generally lower than that in the surrounding bulk water, and so an iodide ion cannot be viewed as having a true affinity for the molecular hydrophobic interface, but rather is less strongly expelled from such an interface than fluoride.

  5. Stability of proteins inside a hydrophobic cavity

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Sharma, Sumit; Kumar, Sanat K.

    2011-03-01

    Previous studies have shown that enclosing a protein in an athermal cavity stabilizes the protein against reversible unfolding by virtue of eliminating many open chain conformations. Examples of such confined spaces include pores in chromatographic columns, Anfinsen's cage in Chaperonins, interiors of Ribosomes or regions of steric occlusion inside cells. However, the situation is more complex inside a hydrophobic cavity. The protein has a tendency to adsorb on the surface of the hydrophobic cavity, but at the same time it loses conformational entropy because of confinement. We study this system using a simple Hydrophobic Polar (HP) lattice protein model. Canonical Monte Carlo (MC) simulations at different temperatures and surface hydrophobicity show that proteins are stabilized at low and moderate hydrophobicity upon adsorption. The range of surface hydrophobicity over which a protein is stable increases with a decrease in radius of the cavity.

  6. Mechanism of oil detachment from hybrid hydrophobic and hydrophilic surface in aqueous solution.

    PubMed

    Zhang, Peili; Xu, Zhen; Liu, Qian; Yuan, Shiling

    2014-04-28

    In this paper, the detachment mechanism of alkane molecules from one hybrid hydrophobic and hydrophilic solid surface was studied by molecular dynamics simulation. First, some alkyl chains were linked through C-O bonds with silica surface to get one half-hydrophobic one, and the other half-hydrophilic area was still same as silica surface, thus one modified hybrid hydrophobic and hydrophilic silica surface was constructed. Second, some alkane molecules were adsorbed on the hybrid surface to get one whole hydrophobic oil layer, and the detachment mechanism of alkane molecules on the surface was discussed in aqueous solution using molecular dynamics. The simulated results showed that the key to the detachment of alkane molecules is the formation of water channel in oil layer between water phase and solid surface. In the detachment process, water molecules can penetrate oil layer to the silica surface through the strong H-bonding interaction among water molecules in water channel, and soon these molecules can form a gel layer along the silica surface by fast diffusion under the H-bonding interaction and electrostatic interaction between water molecules and silica surface. At last, the half-hydrophilic area on hybrid surface becomes hydrophilic again after the oil layer's detachment, and alkane molecules aggregate on the modified surface linked the alkyl chains. For the hybrid surface, some of alkane molecules insert into the interstice among the alkyl chains, and thus the oil drop cannot be dispatched thoroughly from the surface linked alkyl chains in aqueous solution. Our results showed that the detachment mechanism of oil from hybrid surface is different, compared with the whole pure hydrophilic surface.

  7. Theoretical and computational studies of hydrophobic and hydrophilic hydration: Towards a molecular description of the hydration of proteins

    NASA Astrophysics Data System (ADS)

    Garde, Shekhar

    The unique balance of forces underlying biological processes-such as protein folding, aggregation, molecular recognition, and the formation of biological membranes-owes its origin in large part to the surrounding aqueous medium. A quantitative description of fundamental noncovalent interactions, in particular hydrophobic and electrostatic interactions at molecular- scale separations, requires an accurate description of water structure. Thus, the primary goals of our research are to understand the role of water in mediating interactions between molecules and to incorporate this understanding into molecular theories for calculating water-mediated interactions. We have developed a molecular model of hydrophobic interactions that uses methods of information theory to relate hydrophobic effects to the density fluctuations in liquid water. This model provides a quantitative description of small-molecule hydration thermodynamics, as well as insights into the entropies of unfolding globular proteins. For larger molecular solutes, we relate the inhomogeneous water structure in their vicinity to their hydration thermodynamics. We find that the water structure in the vicinity of nonpolar solutes is only locally sensitive to the molecular details of the solute. Water structures predicted using this observation are used to study the association of two neopentane molecules and the conformational equilibria of n-pentane molecule. We have also studied the hydration of a model molecular ionic solute, a tetramethylammonium ion, over a wide range of charge states of the solute. We find that, although the charge dependence of the ion hydration free energy is quadratic, negative ions are more favorably hydrated compared to positive ions. Moreover, this asymmetry of hydration can be reconciled by considering the differences in water organization surrounding positive and negative ions. We have also developed methods for predicting water structure surrounding molecular ions and relating

  8. How specific halide adsorption varies hydrophobic interactions.

    PubMed

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  9. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  10. The physical origin of hydrophobic effects

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2017-03-01

    From the structural studies on water and air/water interface, hydration free energy is derived, and used to investigate the origin of hydrophobic effects. As a solute is dissolved into water, hydration free energy increases, and is divided into initial and hydrophobic solvation processes. In the initial process, hydration free energy is dominated by hydrogen bonding in interfacial water (topmost water layer at solute/water interface). For hydrophobic process, hydration free energy is related to the hydrogen bonding in bulk and interfacial water. Therefore, hydrophobic effects originate from the structural competition between hydrogen bonding in bulk water and that in interfacial water.

  11. Local hydrophobicity stabilizes secondary structures in proteins

    SciTech Connect

    Kanehisa, M.I.; Tsong, T.Y.

    1980-01-01

    The probability of occurrence of helix and ..beta..-sheet residues in 47 globular proteins was determined as a function of local hydrophobicity, which was defined by the sum of the Nozaki-Tanford transfer free energies at two nearest-neighbors on both sides of the amino acid sequence. In general, hydrophilic amino acids favor neither helix nor ..beta..-sheet formations when neighbor residues are also hydrophilic but favor helix formation at higher local hydrophobicity. On the other hand, some hydrophobic amino acids such as Met, Leu, and Ile favor helix formation when neighbor residues are hydrophilic. None of the hydrophobic amino acids favor ..beta..-sheet formation with hydrophilic neighbors, but most of them strongly favor ..beta..-sheet formation at high local hydrophobicity. When the average of 20 amino acids is taken, both helix and ..beta..-sheet residue probabilities are higher at higher local hydrophobicity, although the increase is steeper for ..beta..-sheets. Therefore, ..beta..-sheet formation is more influenced by local hydrophobicity than helix formation. Generally, helices are nearer the surface and tend to have hydrophilic and hydrophobic faces at opposite sides. The tendency of alternating regions of hydrophilic and hydrophobic residues in a helical sequence was revealed by calculating the correlation of the Nozaki-Tanford values. Such amphipathic helices may be important in protein-protein-lipid interactions and in forming hydrophilic channels in the membrane. The choice of 30 nonhomologous proteins as the data set did not alter the above results.

  12. Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals.

    PubMed

    Kimpel, Florian; Schmitt, Joachim J

    2015-11-01

    Milk proteins and milk protein aggregates are among the most important nanovehicles in food technology. Milk proteins have various functional properties that facilitate their ability to carry hydrophobic nutraceutical substances. The main functional transport properties that were examined in the reviewed studies are binding of molecules or ions, surface activity, aggregation, gelation, and interaction with other polymers. Hydrophobic binding has been investigated using caseins and isolated β-casein as well as whey proteins. Surface activity of caseins has been used to create emulsion-based carrier systems. Furthermore, caseins are able to self-assemble into micelles, which can incorporate molecules. Gelation and interaction with other polymers can be used to encapsulate molecules into protein networks. The release of transported substances mainly depends on pH and swelling behavior of the proteins. The targeted use of nanocarrier systems requires specific knowledge about the binding mechanisms between the proteins and the carried substances in a certain food matrix. © 2015 Institute of Food Technologists®

  13. Hydrophobic coatings for MEMS applications

    NASA Astrophysics Data System (ADS)

    Doms, M.; Feindt, H.; Kuipers, W. J.; Shewtanasoontorn, D.; Matar, A. S.; Brinkhues, S.; Welton, R. H.; Mueller, J.

    2008-05-01

    Different kinds of thin-film coatings were investigated with regard to their applicability as hydrophobic coatings for MEMS. The films were deposited onto silicon and borosilicate glass substrates by spincoating of Dyneon™ PTFE and PFA, plasmapolymerization of HMDS-N and C4F8 as well as liquid-phase and vapor-phase coating of SAMs from DDMS, FDTS, FOTS and Geleste Aquaphobe™ CM. The layer properties were analyzed using profilometry, FTIR, SEM and contact angle measurements. Furthermore, the adhesion of the layers to the substrates was determined in an acetone ultrasonic bath. The influence of various deposition process parameters on the properties of the films was investigated. As these layers can be used in microfluidic systems, as water-repellent layers and as anti-stiction coatings, they are suited for versatile fields of application.

  14. Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides.

    PubMed

    Stock, Philipp; Utzig, Thomas; Valtiner, Markus

    2017-02-08

    In all realms of soft matter research a fundamental understanding of the structure/property relationships based on molecular interactions is crucial for developing a framework for the targeted design of soft materials. However, a molecular picture is often difficult to ascertain and yet essential for understanding the many different competing interactions at play, including entropies and cooperativities, hydration effects, and the enormous design space of soft matter. Here, we characterized for the first time the interaction between single hydrophobic molecules quantitatively using atomic force microscopy, and demonstrated that single molecular hydrophobic interaction free energies are dominated by the area of the smallest interacting hydrophobe. The interaction free energy amounts to 3-4 kT per hydrophobic unit. Also, we find that the transition state of the hydrophobic interactions is located at 3 Å with respect to the ground state, based on Bell-Evans theory. Our results provide a new path for understanding the nature of hydrophobic interactions at the single molecular scale. Our approach enables us to systematically vary hydrophobic and any other interaction type by utilizing peptide chemistry providing a strategic advancement to unravel molecular surface and soft matter interactions at the single molecular scale.

  15. Phase Transfer of Polystyrene- b-poly(ethylene oxide) Polymersomes from a Hydrophobic Ionic Liquid to Water

    NASA Astrophysics Data System (ADS)

    So, Soonyong; Lodge, Timothy

    2015-03-01

    The phase transfer of molecules and supramolecular assemblies from one phase to the other in a biphasic system is desirable for various applications such as catalysis, separation, and delivery. Herein, we describe the phase transfer of polystyrene- b-poly(ethylene oxide) (PS-PEO) polymersomes from a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]), into water. The phase transfer behavior of PS-PEO polymersomes was studied systematically by varying the molecular weight of PS and the PEO volume fraction of the PS-PEO. We demonstrate a general boundary for the phase transfer in terms of a reduced tethering density for PEO, which is independent of the molecular weight of the hydrophobic PS. The tethering density can be increased by increasing the block length of PEO and the size of the polymersomes, and the increased tethering density induces the phase transfer. This phase transfer were also analyzed thermodynamically with the free energy difference of the polymersomes in [EMIM][TFSI] and water. Higher grafting density can reduce the interfacial tension between PS and water, and leads the polymersomes to transfer from [EMIM][TFSI] to water at room temperature.

  16. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery.

    PubMed

    Sharma, Varsha; Anandhakumar, Sundaramurthy; Sasidharan, Manickam

    2015-11-01

    In this study, we have examined the encapsulation and release of hydrophilic and hydrophobic drugs in self-degrading niosomes as a unique method for anticancer therapy. Niosomes were prepared by amphiphilic self-assembly of Tween 80 and cholesterol through film hydration method. Encapsulation studies with two active molecules curcumin and doxorubicin hydrochloride (Dox) showed that curcumin is supposed to accumulate in the shell whereas Dox accumulates in the inner aqueous core of the niosome. Confocal studies indicated that nile red adsorbs preferentially to the head group of the Tween 80 and forms two separate layers in the shell. It was also seen that the niosomes undergo self-degradation in PBS through a sequential process, forming interconnected pores followed by complete collapse after 1week. The release profile shows two phases: i) initial Dox release in the first two days, followed by ii) curcumin release over 7days. Enhanced (synergistic) cytotoxicity was observed for dual-drug loaded niosomes against HeLa cell lines. Thus these niosomes are shown to offer a promising delivery system for hydrophobic and hydrophilic drugs collectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Infrared spectral marker bands characterizing a transient water wire inside a hydrophobic membrane protein

    SciTech Connect

    Wolf, Steffen; Gerwert, Klaus; Freier, Erik; Cui, Qiang

    2014-12-14

    Proton conduction along protein-bound “water wires” is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations. A non-hydrogen bonded (“dangling”) O–H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.

  18. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.

    PubMed

    Wan, Rongzheng; Wang, Chunlei; Lei, Xiaoling; Zhou, Guoquan; Fang, Haiping

    2015-11-06

    Using molecular dynamics simulations, we show that the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on any surfaces with uniform wettability. The key to this phenomenon is that, on the patterned surface, the evaporation rate from the hydrophilic region only slightly decreases due to the correspondingly increased water thickness; meanwhile, a considerable number of water molecules evaporate from the hydrophobic region despite the lack of water film. Most of the evaporated water from the hydrophobic region originates from the hydrophilic region by diffusing across the contact lines. Further analysis shows that the evaporation rate from the hydrophobic region is approximately proportional to the total length of the contact lines.

  19. Hydrophobic core/hydrophilic shell structured mesoporous silica nanospheres: enhanced adsorption of organic compounds from water.

    PubMed

    Li, Shuru; Jiao, Xuan; Yang, Hengquan

    2013-01-29

    Inspired by the structure features of micelle, we attempt to synthesize a novel functionalized mesoporous silica nanosphere consisting of a hydrophobic core and a hydrophilic shell. The obtained solid materials were structurally confirmed by N(2) sorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Their compositions were characterized by Fourier transfer infrared spectroscopy (FT-IR), solid state NMR, X-ray photoelectron spectroscopy (XPS), and elemental analysis. Its fundamental properties such as dispersibility in water or organic phase, wettability, and adsorption ability toward hydrophobic organics in water were investigated. It was revealed that these important properties could be facilely adjusted through varying structure and composition. In particular, these materials showed much better adsorption ability toward hydrophobic organic molecules in water than conventional monofunctionalized mesoporous materials, owing to possessing the hydrophobic/hydrophilic domain-segregated and hierarchically functionalized mesoporous structures. The intriguing properties would make mesoporous materials more accessible to many important applications, especially in aqueous systems.

  20. Molecular simulation studies of hydrophobic gating in nanopores and ion channels.

    PubMed

    Trick, Jemma L; Aryal, Prafulla; Tucker, Stephen J; Sansom, Mark S P

    2015-04-01

    Gating in channels and nanopores plays a key role in regulating flow of ions across membranes. Molecular simulations provide a 'computational microscope' which enables us to examine the physical nature of gating mechanisms at the level of the single channel molecule. Water enclosed within the confines of a nanoscale pore may exhibit unexpected behaviour. In particular, if the molecular surfaces lining the pore are hydrophobic this promotes de-wetting of the pore. De-wetting is observed as stochastic liquid-vapour transitions within a pore, and may lead to functional closure of a pore to the flow of ions and/or water. Such behaviour was first observed in simulations of simple model nanopores and referred to as 'hydrophobic gating'. Simulations of both the nicotinic acetylcholine receptor and of TWIK-1 potassium channels (the latter alongside experimental studies) suggest hydrophobic gating may occur in some biological ion channels. Current studies are focused on designing hydrophobic gates into biomimetic nanopores.

  1. Microstructure of Hydrophobically Modified Alkyl Acrylamide Hydrogels

    NASA Astrophysics Data System (ADS)

    Tian, Jun; Seery, Thomas A. P.; Ho, Derek L.; Weiss, R. A.

    2004-03-01

    Hydrophobically modified water-soluble acrylamide polymers have a variety of applications, including viscosity thickeners, microencapsulation, biosensors and controlled drug delivery systems. The microstructure of copolymer hydrogels of N,N-dimethylacrylamide (DMA) or N-isopropylacrylamide(NIPA) modified with 2-(N-ethylfluorooctanesulfonamido)ethyl acrylate, FOSA, was studied by small angle x-ray (SAXS) and neutron scattering (SANS). Swelling and DSC measurements showed that FOSA/NIPA gels exhibited a volume phase transition (VPT), but that FOSA/DMA gels did not. A modified interacting core-shell model was used to explain the SAXS and SANS data for both gels. The crosslink junctions of the gel consisted of nanophase-separated FOSA domains as the core surrounded by a water-poor layer of the alkyl acrylamide. These nanodomains were dispersed in a matrix of water-swollen alkyl acrylamide that had large scale heterogeneities. The average spherical core radius ranged from 1 to 3 nm and the average shell thickness ranged from 1 to 1.5 nm; the aggregation number ranged from 10 to 200.

  2. Periodicity-dependent stiffness of periodic hydrophilic-hydrophobic heteropolymers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish; Stauffer, Dietrich; Strey, Reinhard

    1999-08-01

    From extensive Monte Carlo simulations of a Larson model of perfectly periodic heteropolymers (PHP) in water, a striking stiffening is observed as the period of the alternating hydrophobic and hydrophilic blocks is shortened. At short period and low temperature needlelike conformations are the stable conformations. As temperature is increased thermal fluctuations induce kinks and bends. At large periods compact oligomeric globules are observed. From the generalized Larson prescription, originally developed for modeling surfactant molecules in aqueous solutions, we find that the shorter the period is the more stretched the PHP is. This novel effect is expected to stimulate polymer synthesis and trigger research on the rheology of aqueous periodic heteropolymer solutions.

  3. Preparation and Characterization of a Hydrophobic Metal-Organic Framework Membrane Supported on Thin Porous Metal Sheet

    SciTech Connect

    Liu, Jian; Canfield, Nathan L.; Liu, Wei

    2016-02-29

    A hydrophobic metal-organic framework (MOF) UiO-66-CH3 is prepared and its solvothermal stability is investigated in comparison to UiO-66. It is confirmed that the MOF stability is enhanced by introduction of the two methyl groups, while the water adsorption is reduced. Given its hydrophobicity and stability, UiO-66-CH3 is proposed as an attractive membrane material for gas separation under moisture conditions. The UiO-66-CH3 membrane is prepared on a 50µm-thin porous Ni support sheet for the first time by use of a secondary growth method. It is found that uniform seed coating on the support is necessary to form a continuous membrane. In addition to growth time and temperature, presence of a modulator in the growth solution is found to be useful for controlling hydrothermal membrane growth on the seeded support. A dense, inter-grown membrane layer is formed by 24-h growth over a temperature range from 120 oC to 160 oC. The membrane surface comprises 500 nm octahedral crystals, which are supposed to grow out of the original 100 nm spherical seeding crystals. The separation characteristics of resulting membranes are tested with pure CO2, air, CO2/air mixture, and humid CO2/air mixture. CO2 permeance as high as 1.9E-06 mol/m2/s/Pa at 31oC is obtained. Unlike the hydrophilic zeolite membranes, CO2 permeation through this membrane is not blocked by the presence of water vapor in the feed gas. The results suggest that this MOF framework is a promising membrane material worth to be further investigated for separation of CO2 and other small molecules from humid gas mixtures.

  4. Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility.

    PubMed

    Athawale, Manoj V; Dordick, Jonathan S; Garde, Shekhar

    2005-08-01

    Osmolytes are small organic solutes accumulated at high concentrations by cells/tissues in response to osmotic stress. Osmolytes increase thermodynamic stability of folded proteins and provide protection against denaturing stresses. The mechanism of osmolyte compatibility and osmolyte-induced stability has, therefore, attracted considerable attention in recent years. However, to our knowledge, no quantitative study of osmolyte effects on the strength of hydrophobic interactions has been reported. Here, we present a detailed molecular dynamics simulation study of the effect of the osmolyte trimethylamine-N-oxide (TMAO) on hydrophobic phenomena at molecular and nanoscopic length scales. Specifically, we investigate the effects of TMAO on the thermodynamics of hydrophobic hydration and interactions of small solutes as well as on the folding-unfolding conformational equilibrium of a hydrophobic polymer in water. The major conclusion of our study is that TMAO has almost no effect either on the thermodynamics of hydration of small nonpolar solutes or on the hydrophobic interactions at the pair and many-body level. We propose that this neutrality of TMAO toward hydrophobic interactions-one of the primary driving forces in protein folding-is at least partially responsible for making TMAO a "compatible" osmolyte. That is, TMAO can be tolerated at high concentrations in organisms without affecting nonspecific hydrophobic effects. Our study implies that protein stabilization by TMAO occurs through other mechanisms, such as unfavorable water-mediated interaction of TMAO with the protein backbone, as suggested by recent experimental studies. We complement the above calculations with analysis of TMAO hydration and changes in water structure in the presence of TMAO molecules. TMAO is an amphiphilic molecule containing both hydrophobic and hydrophilic parts. The precise balance of the effects of hydrophobic and hydrophilic segments of the molecule appears to explain the virtual

  5. Composite, nanostructured, super-hydrophobic material

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  6. Hydrophobic Silsesquioxane Nanoparticles and Nanocomposite Surfaces (POSTPRINT)

    DTIC Science & Technology

    2006-05-04

    Fluorinated Polyhedral Oligomeric Silsesquioxanes are hydrophobic nanoparticles. One compound, FD8T8, is ultrahydrophobic, possessing a water contact ... angle of 154 deg. This is believed to be the most hydrophobic and lowest surface tension crystalline substance known. Analysis of the x-ray crystal

  7. Ultrasensitive molecular detection using thermal conductance of a hydrophobic gold-water interface.

    PubMed

    Green, Andrew J; Alaulamie, Arwa A; Baral, Susil; Richardson, Hugh H

    2013-09-11

    The thermal conductance from a hydrophobic gold aqueous interface is measured with increasing solute concentration. A small amount of aqueous solute molecules (1 solute molecule in 550 water molecules) dramatically increases the heat dissipation into the surrounding liquid. This result is consistent with a thermal conductance that is limited by an interface interaction where minority aqueous components significantly alter the surface properties and heat transport through the interface. The increase in heat dissipation can be used to make an extremely sensitive molecular detector that can be scaled to give single molecule detection without amplification or utilizing fluorescence labels.

  8. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping

    NASA Astrophysics Data System (ADS)

    Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.

    2016-12-01

    Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane.

  9. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping

    PubMed Central

    Bongiovanni, Marie N.; Godet, Julien; Horrocks, Mathew H.; Tosatto, Laura; Carr, Alexander R.; Wirthensohn, David C.; Ranasinghe, Rohan T.; Lee, Ji-Eun; Ponjavic, Aleks; Fritz, Joelle V.; Dobson, Christopher M.; Klenerman, David; Lee, Steven F.

    2016-01-01

    Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane. PMID:27929085

  10. Interstellar molecules

    NASA Technical Reports Server (NTRS)

    Townes, C. H.

    1976-01-01

    Progress in the discovery and study of interstellar molecules is summarized. The 36 molecular species thus far identified in interstellar space are listed in several groups which include simple hydrides, oxides, and sulfides, various derivatives of ammonia, molecules involving linear carbon chains, cyanides, and molecules related in structure to formaldehyde, alcohols, or ethers. Several free radicals are described, the discovery of molecules in external galaxies is discussed, and possible mechanisms for molecular formation are noted. Methods for examining relative isotopic abundances by measuring molecules in interstellar clouds are outlined, mechanisms for the excitation of interstellar molecules are reviewed, and values are presented for the C-12/C-13 abundance ratio in a number of interstellar clouds. The detection of interstellar masers is discussed along with pumping mechanisms and masing transitions in H2CO, CH, OH, and SiO. The nature of dense interstellar clouds is examined in terms of several simple and complex cloud models, with emphasis on multiple condensation models.

  11. Understanding the mutual impact of interaction between hydrophobic nanoparticles and pulmonary surfactant monolayer.

    PubMed

    Sachan, Amit K; Galla, Hans-Joachim

    2014-03-26

    Interaction between hydrophobic nanoparticles (NPs) and a pulmonary surfactant (PS) film leads to a shift in molecular packing of surfactant molecules in the PS film around the interacting NPs. The resultant structural arrangement of surfactants around the NPs may be a potential structural factor responsible for their high retention ability within the film. Moreover, during this interaction, surfactant molecules coat the NPs and change their surface properties.

  12. Hydration and hydrogen bond network of water around hydrophobic surface investigated by terahertz spectroscopy.

    PubMed

    Shiraga, K; Suzuki, T; Kondo, N; Ogawa, Y

    2014-12-21

    Water conformation around hydrophobic side chains of four amino acids (glycine, L-alanine, L-aminobutyric acid, and L-norvaline) was investigated via changes in complex dielectric constant in the terahertz (THz) region. Each of these amino acids has the same hydrophilic backbone, with successive additions of hydrophobic straight methylene groups (-CH2-) to the side chain. Changes in the degree of hydration (number of dynamically retarded water molecules relative to bulk water) and the structural conformation of the water hydrogen bond (HB) network related to the number of methylene groups were quantitatively measured. Since dielectric responses in the THz region represent water relaxations and water HB vibrations at a sub-picosecond and picosecond timescale, these measurements characterized the water relaxations and HB vibrations perturbed by the methylene apolar groups. We found each successive straight -CH2- group on the side chain restrained approximately two hydrophobic hydration water molecules. Additionally, the number of non-hydrogen-bonded (NHB) water molecules increased slightly around these hydrophobic side chains. The latter result seems to contradict the iceberg model proposed by Frank and Evans, where water molecules are said to be more ordered around apolar surfaces. Furthermore, we compared the water-hydrophilic interactions of the hydrophilic amino acid backbone with those with the water-hydrophobic interactions around the side chains. As the hydrophobicity of the side chain increased, the ordering of the surrounding water HB network was altered from that surrounding the hydrophilic amino acid backbone, thereby diminishing the fraction of NHB water and ordering the surrounding tetrahedral water HB network.

  13. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  14. Assessing the accuracy of integral equation theories for nano-sized hydrophobic solutes in water

    NASA Astrophysics Data System (ADS)

    Fujita, Takatoshi; Yamamoto, Takeshi

    2017-07-01

    Integral equation theories provide an efficient route for computing the solvation free energy (SFE) of molecular systems in water. The accuracy of those theories is usually tested against small molecules via comparison of SFE with reference data. However, tests against larger molecules in the nanometer regime are scarce in literature despite recent applications to such systems. Here, we thus study the accuracy and validity of a commonly used integral equation theory, namely, a three-dimensional reference interaction site model (3D-RISM), by considering the following problems: (1) solvation of a small to large Lennard-Jones particle, (2) binding of planar hydrophobic systems with varying size and hydrophobicity, and (3) self-assembly of amphiphilic molecules into a nanocapsule. The energy representation method is also utilized for comparison. The results show that the 3D-RISM method works successfully for small molecules, while the accuracy degrades systematically with system size and hydrophobicity. The size-dependent error in SFE does not cancel adequately between two solute configurations, resulting in a substantial error in the free energy difference. It is also shown that the free energy profiles for hydrophobic association exhibit a fictitious high-energy barrier, suggesting that care must be taken for studying such systems. The numerical difficulties observed above are discussed based on the relation between hypernetted-chain approximation, classical density functional theory with quadratic expansion, and the size-dependent error arising from the cavity region of the system.

  15. Controlling wetting and self-assembly dynamics by tailored hydrophobic and oleophobic surfaces.

    PubMed

    Miele, Ermanno; Malerba, Mario; Dipalo, Michele; Rondanina, Eliana; Toma, Andrea; De Angelis, Francesco

    2014-06-25

    Tailored hydrophobic and oleophobic surfaces are exploited for controlling the wetting behaviour and evaporation process of solution dropped on them. This enables molecules and nano-objects that are dissolved in water or organic solvents to be delivered and arranged in a well-defined 2D layout.

  16. Assessing the accuracy of integral equation theories for nano-sized hydrophobic solutes in water.

    PubMed

    Fujita, Takatoshi; Yamamoto, Takeshi

    2017-07-07

    Integral equation theories provide an efficient route for computing the solvation free energy (SFE) of molecular systems in water. The accuracy of those theories is usually tested against small molecules via comparison of SFE with reference data. However, tests against larger molecules in the nanometer regime are scarce in literature despite recent applications to such systems. Here, we thus study the accuracy and validity of a commonly used integral equation theory, namely, a three-dimensional reference interaction site model (3D-RISM), by considering the following problems: (1) solvation of a small to large Lennard-Jones particle, (2) binding of planar hydrophobic systems with varying size and hydrophobicity, and (3) self-assembly of amphiphilic molecules into a nanocapsule. The energy representation method is also utilized for comparison. The results show that the 3D-RISM method works successfully for small molecules, while the accuracy degrades systematically with system size and hydrophobicity. The size-dependent error in SFE does not cancel adequately between two solute configurations, resulting in a substantial error in the free energy difference. It is also shown that the free energy profiles for hydrophobic association exhibit a fictitious high-energy barrier, suggesting that care must be taken for studying such systems. The numerical difficulties observed above are discussed based on the relation between hypernetted-chain approximation, classical density functional theory with quadratic expansion, and the size-dependent error arising from the cavity region of the system.

  17. Separated Shoulder

    MedlinePlus

    Separated shoulder Overview By Mayo Clinic Staff A separated shoulder is an injury to the ligaments that hold your collarbone (clavicle) to your shoulder blade. In a mild separated shoulder, the ligaments ...

  18. Solubility Enhanced Oxidation of Hydrophobic Organic Contaminants

    NASA Astrophysics Data System (ADS)

    Boving, T. B.; Eberle, D. E.; Ball, R.

    2012-12-01

    In-situ chemical oxidation (ISCO) is a remediation technique considered to be effective at overcoming some of the limitations of conventional subsurface treatment processes for volatile and semi-volatile organic contaminants (VOC, SVOC). ISCO reactions occur predominately in the aqueous phase and as a result, contaminant availability is a major limiting factor, i.e. contaminants with higher aqueous solubility's are typically more accessible for oxidation than more hydrophobic, sorbed compounds. The purpose of this study was to determine the feasibility of a new integrated desorption-oxidation process for the remediation of contaminated waters and sediments. Specifically, this study examined the potential of using hydroxypropyl-β-cyclodextrin (HPCD), a modified cyclic sugar, and a blend of oxidants commercially known as OxyZone® (U.S. patent No. 7,667,087) for the remediation of polycyclic aromatic hydrocarbons (PAH). Laboratory scale batch experiments confirmed prior studies that HPCD increases the aqueous concentration of these contaminants, making a greater mass of contaminant available for subsequent oxidation. When exposed to the same amount of oxidant, the mass of PAH destroyed increased linearly with increasing HPCD concentration. Relative to PAH saturated solutions without HPCD, 11 times more PAH mass was destroyed when a PAH saturated 15 g/L HPCD solution was treated with the same mass of oxidant. Destruction of the aqueous phase contaminants followed first order exponential decay kinetics in both deionized water and HPCD solutions. However, the destruction of complexed PAH was slower than for uncomplexed PAH. The cause of this is likely due to the preferential destruction of the HPCD molecule by the oxidant, followed by the subsequent oxidation of the PAH. The destruction of the cyclodextrin was minimized by modifying the oxidant formulation. Overall, these findings establish the potential of utilizing HPCD and OxyZone® as an integrated desorption

  19. How hydrophobic drying forces impact the kinetics of molecular recognition.

    PubMed

    Mondal, Jagannath; Morrone, Joseph A; Berne, B J

    2013-08-13

    A model of protein-ligand binding kinetics, in which slow solvent dynamics results from hydrophobic drying transitions, is investigated. Molecular dynamics simulations show that solvent in the receptor pocket can fluctuate between wet and dry states with lifetimes in each state that are long enough for the extraction of a separable potential of mean force and wet-to-dry transitions. We present a diffusive surface hopping model that is represented by a 2D Markovian master equation. One dimension is the standard reaction coordinate, the ligand-pocket separation, and the other is the solvent state in the region between ligand and binding pocket which specifies whether it is wet or dry. In our model, the ligand diffuses on a dynamic free-energy surface which undergoes kinetic transitions between the wet and dry states. The model yields good agreement with results from explicit solvent molecular dynamics simulation and an improved description of the kinetics of hydrophobic assembly. Furthermore, it is consistent with a "non-Markovian Brownian theory" for the ligand-pocket separation coordinate alone.

  20. Hydrophobic Mismatch and Phase Transition in a Membrane Composed by a Mixture of Linear and Bola Phospholipids

    NASA Astrophysics Data System (ADS)

    Longo, Gabriel; Szleifer, Igal

    2006-03-01

    Archeobacteria are microorganisms that can survive and proliferate in extreme habitats, such as high salt concentration environments, anaerobic conditions, and high or low temperatures. A membrane composed of bolaform phospholipids is what gives these unique survival qualities to the bacteria. The nature and composition of this membrane has not yet been elucidated. In this work, a membrane composed by a mixture of linear and bola phospholipids is studied using a molecular theory. The effect of changing the fraction of bolaform phospholipids, as well as the length of the hydrocarbon chain of the linear lipid are studied. A phase separation in the mixture between a thin bola rich membrane and a thick linear rich membrane is found. The thin membrane is mainly composed by ``spanning'' bola molecules whose polar heads are in opposed hydrophilic regions of the membrane. The phase separation is only present when the hydrocarbon chains of both molecular species have comparable sizes. The driving force for the phase separation is the size matching between the hydrophobic chains of the linear phospholipid and the spanning bola lipid.

  1. Characterisation of nanomaterial hydrophobicity using engineered surfaces.

    PubMed

    Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal

    2017-01-01

    Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors. Graphical abstractDetermination of hydrophobicity character of nanomaterials by measuring their affinity to engineered surfaces.

  2. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  3. Protein interactions in hydrophobic charge induction chromatography (HCIC).

    PubMed

    Ghose, Sanchayita; Hubbard, Brian; Cramer, Steven M

    2005-01-01

    A quantitative understanding of how proteins interact with hydrophobic charge induction chromatographic resins is provided. Selectivity on this mode of chromatography for monoclonal antibodies as compared to other model proteins is probed by means of a linear retention vs pH plot. The pH-dependent adsorption behavior on this mode of chromatography for a hydrophobic, charged solute is described by taking into account the equilibrium between a hydrophobic, charged solute and an ionizable, heterocyclic ligand. By analogy, an equation that is seen to adequately describe macromolecular retention under linear conditions over a range of pH is developed. A preparative, nonlinear isotherm that can capture both pH and salt concentration dependency for proteins is proposed by using an exponentially modified Langmuir isotherm model. This model is seen to successfully simulate adsorption isotherms for a variety of proteins over a range of pHs and mobile phase salt concentrations. Finally, the widely differing retention characteristics of two monoclonal antibodies are used to derive two different strategies for improving separations on this mode of chromatography. A better understanding of protein binding to this class of resins is seen as an important step to future exploitation of this mode of chromatography for industrial scale purification of proteins.

  4. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces.

    PubMed

    Gospodarek, Adrian M; Sun, Weitong; O'Connell, John P; Fernandez, Erik J

    2014-12-05

    In hydrophobic interaction chromatography (HIC), interactions between buried hydrophobic residues and HIC surfaces can cause conformational changes that interfere with separations and cause yield losses. This paper extends our previous investigations of protein unfolding in HIC chromatography by identifying protein structures on HIC surfaces under denaturing conditions and relating them to solution behavior. The thermal unfolding of three model multidomain proteins on three HIC surfaces of differing hydrophobicities was investigated with hydrogen exchange mass spectrometry (HXMS). The data were analyzed to obtain unfolding rates and Gibbs free energies for unfolding of adsorbed proteins. The melting temperatures of the proteins were lowered, but by different amounts, on the different surfaces. In addition, the structures of the proteins on the chromatographic surfaces were similar to the partially unfolded structures produced in the absence of a surface by temperature as well as by chemical denaturants. Finally, it was found that patterns of residue exposure to solvent on different surfaces at different temperatures can be largely superimposed. These findings suggest that protein unfolding on various HIC surfaces might be quantitatively related to protein unfolding in solution and that details of surface unfolding behavior might be generalized.

  5. Greywater-induced soil hydrophobicity.

    PubMed

    Maimon, Adi; Gross, Amit; Arye, Gilboa

    2017-10-01

    Greywater (GW) reuse for irrigation is a common method of reducing domestic consumption of fresh water. Most of the scientific research and legislation efforts have focused on GW's health risks, while less attention has been given to its environmental outcomes. One of the environmental risks of GW irrigation is its possible effect on soil hydraulic properties. This research examined the ability of GW to induce soil hydrophobicity, as well as its degree and persistence. Fresh water (control) and three model GW solutions representing raw, treated and highly treated GW were used to wet fine-grained sand. Every treatment was subjected to five cycles of wetting, incubation (at 5 °C or 30 °C) and drying (60 °C). After each cycle, capillary rise was measured and the contact angle (CA) was calculated. Samples were also tested by the Wilhelmy plate method to retrieve advancing and receding CA and reservoir surface tension. Water repellence of the sand, as implied from the CA, increased with increasing GW concentration and was highest in the sand coated with the model raw GW and incubated at 5 °C. However, none of the treatments resulted in what is considered to be "water-repellent soil". Furthermore, when raw GW-coated sand was immersed in water, its surface tension was significantly reduced relative to the other treatments, implying a release of surface-active compounds from the sand into the water. It was postulated that untreated GW may induce sub-critical water repellence in sand. However, this effect is sensitive to biodegradation and washing processes and is therefore temporary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaporation of droplets on strongly hydrophobic substrates.

    PubMed

    Stauber, Jutta M; Wilson, Stephen K; Duffy, Brian R; Sefiane, Khellil

    2015-03-31

    The manner in which the extreme modes of droplet evaporation (namely, the constant contact radius and the constant contact angle modes) become indistinguishable on strongly hydrophobic substrates is described. Simple asymptotic expressions are obtained which provide good approximations to the evolutions of the contact radius, the contact angle, and the volume of droplets evaporating in the extreme modes for a wide range of hydrophobic substrates. As a consequence, on strongly hydrophobic substrates it is appropriate to use the so-called "2/3 power law" to extrapolate the lifetimes of droplets evaporating in the constant contact radius mode as well as in the constant contact angle mode.

  7. Ice adhesion on super-hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kulinich, S. A.; Farzaneh, M.

    2009-06-01

    In this study, ice adhesion strength on flat hydrophobic and rough super-hydrophobic coatings with similar surface chemistry (based on same fluoropolymer) is compared. Glaze ice, similar to naturally accreted, was prepared on the surfaces by spraying super-cooled water microdroplets at subzero temperature. Ice adhesion was evaluated by spinning the samples at constantly increasing speed until ice delamination occurred. Super-hydrophobic surfaces with different contact angle hysteresis were tested, clearly showing that the latter, along with the contact angle, also influences the ice-solid adhesion strength.

  8. Shear flow on super-hydrophobic surfaces.

    SciTech Connect

    van Swol, Frank B.; Truesdell, Richard; Vorobieff, Peter V.; Challa, Sivakumar R.; Mammoli, Andrea A.

    2007-10-01

    Super-hydrophobic surfaces, which exhibit large contact angles, can give rise to slip flow of aqueous fluids. We present our work on shear flow of atomistic fluids over simple super-hydrophobic surfaces. Molecular dynamic simulations are employed to investigate the flow field of fluid between two parallel surfaces, one of which is moving. Exploring a range of fluid thermodynamic state points, we demonstrate the influence of fluid phase and structure near the surfaces on prevalence, and degree, of slip at the super-hydrophobic surface.

  9. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal

    NASA Astrophysics Data System (ADS)

    Yu, Zhimin

    99.9% coal recovery could be obtained in a one-stage separation by screening the agglomerated product. If a conventional oil agglomeration process is used instead, oil consumption as high as 30% is needed to obtain comparable results. In the tests on filtration and dewatering of ultrafine and fine coals, the effect of chemical additives and coal surface properties was investigated. The tests revealed very significant differences in the filtration of ultrafine (-45 mum) and fine (-500 mum) coals. The moisture contents in the filter cakes in the tests with ultrafine coal were around 40% (irrespective of the coal surface properties), while for the fine coal the moisture content fluctuated around 18% (Ford-4) and 30% (Ford-13). The results revealed that the hydrophobic latex and the emulsified oils could not only successfully beneficiate the ultrafine coal but also significantly increase filtration rate and/or reduce moisture content of the filter cake. Among the chemicals tested, the emulsified oils were found to be the most promising not only for the beneficiation but also for filtration and dewatering processes. Surfactants were found to only slightly affect the filtration of fine coal. However, they can influence filtration very profoundly if utilized to emulsify the oil which is used to agglomerate coal prior to its filtration.

  10. Hydrophobic interactions increase attachment of gum Arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces.

    PubMed

    Song, Jee Eun; Phenrat, Tanapon; Marinakos, Stella; Xiao, Yao; Liu, Jie; Wiesner, Mark R; Tilton, Robert D; Lowry, Gregory V

    2011-07-15

    A fundamental understanding of attachment of surface-coated nanoparticles (NPs) is essential to predict the distribution and potential risks of NPs in the environment. Column deposition studies were used to examine the effect of surface-coating hydrophobicity on NP attachment to collector surfaces in mixtures with varying ratios of octadecylichlorosilane (OTS)-coated (hydrophobic) glass beads and clean silica (hydrophilic) glass beads. Silver nanoparticles (AgNPs) coated with organic coatings of varying hydrophobicity, including citrate, polyvinylpyrrolidone (PVP), and gum arabic (GA), were used. The attachment efficiencies of GA and PVP AgNPs increased by 2- and 4-fold, respectively, for OTS-coated glass beads compared to clean glass beads. Citrate AgNPs showed no substantial change in attachment efficiency for hydrophobic compared to hydrophilic surfaces. The attachment efficiency of PVP-, GA-, and citrate-coated AgNPs to hydrophobic collector surfaces correlated with the relative hydrophobicity of the coatings. The differences in the observed attachment efficiencies among AgNPs could not be explained by classical DLVO, suggesting that hydrophobic interactions between AgNPs and OTS-coated glass beads were responsible for the increase in attachment of surface-coated AgNPs with greater hydrophobicity. This study indicates that the overall attachment efficiency of AgNPs will be influenced by the hydrophobicity of the NP coating and the fraction of hydrophobic surfaces in the environment.

  11. Fabrication of super-hydrophobic duo-structures

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Zhang, F.; Jiang, Y. J.; Wang, Y. Y.; Shi, Z. W.; Peng, C. S.

    2015-04-01

    Recently, super-hydrophobicity has attracted increasing attention due to its huge potential in the practical applications. In this paper, we have presented a duo-structure of the combination of micro-dot-matrix and nano-candle-soot. Polydimethylsiloxane (PDMS) was used as a combination layer between the dot-matrix and the soot particles. Firstly, a period of 9-μm dot-matrix was easily fabricated on the K9 glass using the most simple and mature photolithography process. Secondly, the dot-matrix surface was coated by a thin film of PDMS (elastomer: hardener=10:1) which was diluted by methylbenzene at the volume ratio of 1:8. Thirdly, we held the PDMS modified surface over a candle flame to deposit a soot layer and followed by a gentle water-risen to remove the non-adhered particles. At last, the samples were baked at 85°C for 2 hours and then the duo-structure surface with both micro-size dot-matrix and nano-size soot particles was obtained. The SEM indicated this novel surface morphology was quite like a lotus leaf of the well-know micro-nano-binary structures. As a result, the contact angle meter demonstrated such surface exhibited a perfect super-hydrophobicity with water contact angle of 153° and sliding angle of 3°. Besides, just listed as above, the fabrication process for our structure was quite more easy, smart and low-cost compared with the other production technique for super-hydrophobic surfaces such as the phase separation method, electrochemical deposition and chemical vapor deposition etc. Hence, this super-hydrophobic duo-structure reported in this letter was a great promising candidate for a wide and rapid commercialization in the future.

  12. Ultracapacitor separator

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  13. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk.

    PubMed

    Cheema, M; Mohan, M S; Campagna, S R; Jurat-Fuentes, J L; Harte, F M

    2015-08-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk.

  14. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk

    PubMed Central

    Cheema, M.; Mohan, M. S.; Campagna, S. R.; Jurat-Fuentes, J. L.; Harte, F. M.

    2015-01-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. PMID:26074238

  15. Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces.

    PubMed

    Tian, Yu Shun; Kim, Hyun Jung; Kim, Hyun-Man

    2009-08-28

    Hydrophobic polymers do not offer an adequate scaffold surface for cells to attach, migrate, proliferate, and differentiate. Thus, hydrophobic scaffolds for tissue engineering have traditionally been physicochemically modified to enhance cellular activity. However, modifying the surface by chemical or physical treatment requires supplementary engineering procedures. In the present study, regulation of a cell signal transduction pathway reversed the low cellular activity on a hydrophobic surface without surface modification. Inhibition of Rho-associated kinase (ROCK) by Y-27632 markedly enhanced adhesion, migration, and proliferation of osteoblastic cells cultured on a hydrophobic polystyrene surface. ROCK inhibition regulated cell-cycle-related molecules on the hydrophobic surface. This inhibition also decreased expression of the inhibitors of cyclin-dependent kinases such as p21(cip1) and p27(kip1) and increased expression of cyclin A and D. These results indicate that defective cellular activity on the hydrophobic surface can be reversed by the control of a cell signal transduction pathway without physicochemical surface modification.

  16. Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces

    SciTech Connect

    Tian, Yu Shun; Kim, Hyun Jung; Kim, Hyun-Man

    2009-08-28

    Hydrophobic polymers do not offer an adequate scaffold surface for cells to attach, migrate, proliferate, and differentiate. Thus, hydrophobic scaffolds for tissue engineering have traditionally been physicochemically modified to enhance cellular activity. However, modifying the surface by chemical or physical treatment requires supplementary engineering procedures. In the present study, regulation of a cell signal transduction pathway reversed the low cellular activity on a hydrophobic surface without surface modification. Inhibition of Rho-associated kinase (ROCK) by Y-27632 markedly enhanced adhesion, migration, and proliferation of osteoblastic cells cultured on a hydrophobic polystyrene surface. ROCK inhibition regulated cell-cycle-related molecules on the hydrophobic surface. This inhibition also decreased expression of the inhibitors of cyclin-dependent kinases such as p21{sup cip1} and p27{sup kip1} and increased expression of cyclin A and D. These results indicate that defective cellular activity on the hydrophobic surface can be reversed by the control of a cell signal transduction pathway without physicochemical surface modification.

  17. Liposome transport of hydrophobic drugs: gel phase lipid bilayer permeability and partitioning of the lactone form of a hydrophobic camptothecin, DB-67.

    PubMed

    Joguparthi, Vijay; Xiang, Tian-Xiang; Anderson, Bradley D

    2008-01-01

    The design of liposomal delivery systems for hydrophobic drug molecules having improved encapsulation efficiency and enhanced drug retention would be highly desirable. Unfortunately, the poor aqueous solubility and high membrane binding affinity of hydrophobic drugs necessitates extensive validation of experimental methods to determine both liposome loading and permeability and thus the development of a quantitative understanding of the factors governing the encapsulation and retention/release of such compounds has been slow. This report describes an efflux transport method using dynamic dialysis to study the liposomal membrane permeability of hydrophobic compounds. A mathematical model has been developed to calculate liposomal membrane permeability coefficients of hydrophobic compounds from dynamic dialysis experiments and partitioning experiments using equilibrium dialysis. Also reported is a simple method to study the release kinetics of liposome encapsulated camptothecin lactone in plasma by comparing the hydrolysis kinetics of liposome entrapped versus free drug. DB-67, a novel hydrophobic camptothecin analogue has been used as a model permeant to validate these methods. Theoretical estimates of DB-67 permeability obtained from the bulk solubility diffusion model and the "barrier-domain" solubility diffusion model are compared to the experimentally observed value. The use of dynamic dialysis in drug release studies of liposome and other nanoparticle formulations is further discussed and experimental artifacts that can arise without adequate validation are illustrated through simulations. (c) 2007 Wiley-Liss, Inc.

  18. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a.... It must be of purity suitable for intended use, and it must comply with the following specifications...

  19. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a.... It must be of purity suitable for intended use, and it must comply with the following specifications...

  20. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRINKING WATER OF ANIMALS Listing of Specific Substances Affirmed as GRAS § 584.700 Hydrophobic silicas. (a.... It must be of purity suitable for intended use, and it must comply with the following specifications...

  1. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph

    2015-03-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.

  2. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Mahler, Joseph

    2013-11-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum , we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion. Supported by NSF CBET Award 1067598.

  3. Hydrophobic hydrophilic phenomena in biochemical processes.

    PubMed

    Ben-Naim, Arieh

    2003-09-01

    The evolution of concepts developed in the study of the hydrophobic affect is surveyed, within the more general context of solvent-induced effects. A systematic analysis of the solvent-induced contribution to the driving force for the process of protein folding has led to two important modifications in our understanding of these effects. First, the conventional concepts of hydrophobic solvation and hydrophobic interactions had to be replaced by their respective conditional effects. Second, each of the hydrophobic effects has also a corresponding hydrophilic counterpart. Some of the latter effects could contribute significantly to the total driving force for the process of protein folding, and perhaps even dominate the driving force for biochemical processes.

  4. Preparation and characterization of hydrophobic superparamagnetic gel.

    SciTech Connect

    Liu, X.; Kaminski, M. D.; Guan, Y.; Chen, H.; Liu, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago; Pritzker School of Medicine; Chinese Academy of Sciences

    2006-01-01

    The present study describes the preparation and analysis of a highly concentrated hydrophobic oleic acid-coated magnetite gel. By contrast to conventional techniques to prepare magnetic fluids, herein the oleic acid was introduced as a reactant during the initial crystallization phase of magnetite that was obtained by the co-precipitation of Fe(II) and Fe(III) salts by addition of ammonium hydroxide. The resulting gelatinous hydrophobic magnetite was characterized in terms of morphology, particle size, magnetic properties, crystal structure, and hydrophobicity/hydrophilicity. This magnetic gel exhibited superparamagnetism with a saturation magnetization of 46.0 emu/g at room temperature and could be well dispersed both in polar and nonpolar carrier liquids. This protocol produced highly concentrated hydrophobic magnetic gel for biopolymer encapsulations.

  5. Surface functionalization of magnetic nanoparticles formed by self-associating hydrophobized oxidized dextrans

    NASA Astrophysics Data System (ADS)

    Farber, Shimon; Ickowicz, Diana E.; Melnik, Kristie; Yudovin-Farber, Ira; Recko, Daniel; Rampersaud, Arfaan; Domb, Abraham J.

    2014-06-01

    Magnetic iron oxide nanoparticles surface covered with oleic acid layer followed by a second layer of hydrophobized oxidized dextran aldehyde were prepared and tested for physico-chemical properties and ligand- and cell-specific binding. It was demonstrated that oleic acid-iron oxide nanoparticles coated with an additional layer of hydrophobized oxidized dextran were dispersible in buffer solutions and possess surface aldehyde active groups available for further binding of ligands or markers via imine or amine bond formation. Hydrophobized dextrans were synthesized by periodate oxidation and conjugation of various alkanamines to oxidized dextran by imination. Physico-chemical properties, as separation using magnetic field, magnetite concentration, and particle diameter, of the prepared magnetic samples are reported. The biotin-binding protein, neutravidin, was coupled to the particle surface by a simple reductive amination procedure. The particles were used for specific cell separation with high specificity.

  6. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  7. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  8. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  9. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  10. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  11. Separation of PEGylated variants of ribonuclease A and apo-α-lactalbumin via reversed phase chromatography.

    PubMed

    Cisneros-Ruiz, Mayra; Mayolo-Deloisa, Karla; Rito-Palomares, Marco; Przybycien, Todd M

    2014-09-19

    The covalent attachment of polyethylene glycol (PEG) molecules to pharmaceutical proteins, "PEGylation", often results in a population of conjugate species that includes differing numbers and locations of attached PEG chains. As some portion of this population may be biologically inactive, a challenging separation problem arises. An interesting alternative to the size-based resolution of these conjugates involves the use of reversed phase chromatography (RPC), treating the PEG moieties as hydrophobic purification tags. The use of RPC raises concerns about protein denaturation in the mobile and on the stationary phase. Here, the potential dual role of conjugated PEG chains as both group-specific separation tags and as steric or structural stabilizers in RPC was explored. In this work, RPC with C18-based media was used to resolve PEGylation number variants of ribonuclease A (RNase A) and apo-α-lactalbumin (apo-αLac) in a neutral pH mobile phase. While the attachment of 20kDa PEG molecules did not modify the structures of RNase A and apo-αLac, as confirmed by structural analysis using circular dichroism, exposure to the mobile phase modifier, acetonitrile, and to the C18 media during separation resulted in perturbations to both the secondary and tertiary structures of all species studied. RNase A experienced small perturbations that were mediated to some extent by PEGylation; these results were consistent with activity assays which showed that PEGylated RNase A species retained native-like activity after RPC separation. Apo-αLac, a more hydrophobic and less stable protein than RNase A, experienced extensive structural perturbations regardless of PEGylation state. The temperature of the mobile phase was found to strongly influence chromatographic separation of PEG-conjugates with conjugate species becoming more strongly retained with increasing temperature. This work shows that it is feasible to employ RPC with neutral pH mobile phases to resolve PEG conjugate

  12. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  13. Why Hydrophilic Water can Permeate Hydrophobic Interior of Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Qiao, Baofu; Olvera de La Cruz, Monica

    2014-03-01

    Water molecules as well as some small molecules have long been found to be able to diffuse across lipid membranes. Such permeation is of significant biological and biotechnological importance. For instance, the permeation of water across lipid membrane plays a important role in regulating ionic concentrations inside of cells. Such water permeation without the assistance of proteins embedded in membranes has been found to be a energetically unfavorable process. We, for the first time, explicitly depict the driving force for such an energetically unfavorable process. Atomistic molecular dynamics simulations are employed to investigate water diffusion in both liquid-crystalline and ordered gel phases of membranes containing zwitterionic DPPC or anionic DLPS lipid. The membrane conformation is calculated to have a critical role in water permeation, regardless of the type of lipid. The fluctuations in the potential energy are found to have a significant, if not the exclusive, role in the transportation of water across lipid membranes. Our results are also informative for the diffusion of small molecules of CO2, O2 and drug molecules, the absence of diffusion of ions, and the diffusion of water into the hydrophobic pores of carbon nanotubes. The authors acknowledge the support from the Office of the Director of Defense Research and Engineering (DDR & E) under Award No. FA9550-10-1-0167.

  14. Designing a hydrophobic barrier within biomimetic nanopores.

    PubMed

    Trick, Jemma L; Wallace, E Jayne; Bayley, Hagan; Sansom, Mark S P

    2014-11-25

    Nanopores in membranes have a range of potential applications. Biomimetic design of nanopores aims to mimic key functions of biological pores within a stable template structure. Molecular dynamics simulations have been used to test whether a simple β-barrel protein nanopore can be modified to incorporate a hydrophobic barrier to permeation. Simulations have been used to evaluate functional properties of such nanopores, using water flux as a proxy for ionic conductance. The behavior of these model pores has been characterized as a function of pore size and of the hydrophobicity of the amino acid side chains lining the narrow central constriction of the pore. Potential of mean force calculations have been used to calculate free energy landscapes for water and for ion permeation in selected models. These studies demonstrate that a hydrophobic barrier can indeed be designed into a β-barrel protein nanopore, and that the height of the barrier can be adjusted by modifying the number of consecutive rings of hydrophobic side chains. A hydrophobic barrier prevents both water and ion permeation even though the pore is sterically unoccluded. These results both provide insights into the nature of hydrophobic gating in biological pores and channels, and furthermore demonstrate that simple design features may be computationally transplanted into β-barrel membrane proteins to generate functionally complex nanopores.

  15. Hydrophobicity of silver surfaces with microparticle geometry

    NASA Astrophysics Data System (ADS)

    Macko, Ján; Oriňaková, Renáta; Oriňak, Andrej; Kovaľ, Karol; Kupková, Miriam; Erdélyi, Branislav; Kostecká, Zuzana; Smith, Roger M.

    2016-11-01

    The effect of the duration of the current deposition cycle and the number of current pulses on the geometry of silver microstructured surfaces and on the free surface energy, polarizability, hydrophobicity and thus adhesion force of the silver surfaces has been investigated. The changes in surface hydrophobicity were entirely dependent on the size and density of the microparticles on the surface. The results showed that formation of the silver microparticles was related to number of current pulses, while the duration of one current pulse played only a minor effect on the final surface microparticle geometry and thus on the surface tension and hydrophobicity. The conventional geometry of the silver particles has been transformed to the fractal dimension D. The surface hydrophobicity depended predominantly on the length of the dendrites not on their width. The highest silver surface hydrophobicity was observed on a surface prepared by 30 current pulses with a pulse duration of 1 s, the lowest one when deposition was performed by 10 current pulses with a duration of 0.1 s. The partial surface tension coefficients γDS and polarizability kS of the silver surfaces were calculated. Both parameters can be applied in future applications in living cells adhesion prediction and spectral method selection. Silver films with microparticle geometry showed a lower variability in final surface hydrophobicity when compared to nanostructured surfaces. The comparisons could be used to modify surfaces and to modulate human cells and bacterial adhesion on body implants, surgery instruments and clean surfaces.

  16. Hydrophobic segregation, phase transitions and the anomalous thermodynamics of water/methanol mixtures.

    PubMed

    Pascal, Tod A; Goddard, William A

    2012-11-29

    When water and methanol are mixed, the entropy of mixing decreases, whereas mixing simple liquids normally leads to an increase in entropy. One speculation on the origin of the anomaly involves formation of water icebergs next to the hydrophobic methanol group, while more recent theories point to nanoscale clustering of methanol molecules. To elucidate the origin of this effect, we carried out extensive molecular dynamics calculations on water/methanol mixtures ranging from 0 to 100% and applied the 2PT method to extract the entropy and free energy changes of each component as a function of concentration. We find that water molecules lose at most 1/35 of their liquid entropy in mixtures. Methanol molecules, on the other hand, lose 3 times as much entropy as the water molecules, and their rotational entropy contains the signature of the entropic loss. We find that methanol has a discontinuous specific heat profile in these mixtures with a maximum at 40% methanol. These results do not support the iceberg model of immobilized waters and instead suggests a molecular mechanism of hydrophobic segregation at low methanol concentration where ordering of the methanol molecules bury the hydrophobic group away from the water phase. For higher methanol concentrations, there is insufficient water to accomplish this effect, and the system freely mixes and transitions to one better described as water dissolved into methanol.

  17. Disulfide Bond Bridge Insertion Turns Hydrophobic Anticancer Prodrugs into Self-Assembled Nanomedicines

    PubMed Central

    2015-01-01

    It is commonly observed that hydrophobic molecules alone cannot self-assemble into stable nanoparticles, requiring amphiphilic or ionic materials to support nanoparticle stability and function in vivo. We report herein newly self-assembled nanomedicines through entirely different mechanisms. We present proof-of-concept methodology and results in support of our hypothesis that disulfide-induced nanomedicines (DSINMs) are promoted and stabilized by the insertion of a single disulfide bond into hydrophobic molecules, in order to balance the competition between intermolecular forces involved in the self-assembly of nanomedicines. This hypothesis has been explored through diverse synthetic compounds, which include four first-line chemotherapy drugs (paclitaxel, doxorubicin, fluorouracil, and gemcitabine), two small-molecule natural products and their derivatives, as well as a fluorescent probe. Such an unprecedented and highly reproducible system has the potential to serve as a synthetic platform for a wide array of safe and effective therapeutic and diagnostic nanomedicine strategies. PMID:25188744

  18. Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines.

    PubMed

    Wang, Yongjun; Liu, Dan; Zheng, Qingchuan; Zhao, Qiang; Zhang, Hongjuan; Ma, Yan; Fallon, John K; Fu, Qiang; Haynes, Matthew T; Lin, Guimei; Zhang, Rong; Wang, Dun; Yang, Xinggang; Zhao, Linxiang; He, Zhonggui; Liu, Feng

    2014-10-08

    It is commonly observed that hydrophobic molecules alone cannot self-assemble into stable nanoparticles, requiring amphiphilic or ionic materials to support nanoparticle stability and function in vivo. We report herein newly self-assembled nanomedicines through entirely different mechanisms. We present proof-of-concept methodology and results in support of our hypothesis that disulfide-induced nanomedicines (DSINMs) are promoted and stabilized by the insertion of a single disulfide bond into hydrophobic molecules, in order to balance the competition between intermolecular forces involved in the self-assembly of nanomedicines. This hypothesis has been explored through diverse synthetic compounds, which include four first-line chemotherapy drugs (paclitaxel, doxorubicin, fluorouracil, and gemcitabine), two small-molecule natural products and their derivatives, as well as a fluorescent probe. Such an unprecedented and highly reproducible system has the potential to serve as a synthetic platform for a wide array of safe and effective therapeutic and diagnostic nanomedicine strategies.

  19. How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory.

    PubMed

    Mondal, Jagannath; Halverson, Duncan; Li, Isaac T S; Stirnemann, Guillaume; Walker, Gilbert C; Berne, Bruce J

    2015-07-28

    It is currently the consensus belief that protective osmolytes such as trimethylamine N-oxide (TMAO) favor protein folding by being excluded from the vicinity of a protein, whereas denaturing osmolytes such as urea lead to protein unfolding by strongly binding to the surface. Despite there being consensus on how TMAO and urea affect proteins as a whole, very little is known as to their effects on the individual mechanisms responsible for protein structure formation, especially hydrophobic association. In the present study, we use single-molecule atomic force microscopy and molecular dynamics simulations to investigate the effects of TMAO and urea on the unfolding of the hydrophobic homopolymer polystyrene. Incorporated with interfacial energy measurements, our results show that TMAO and urea act on polystyrene as a protectant and a denaturant, respectively, while complying with Tanford-Wyman preferential binding theory. We provide a molecular explanation suggesting that TMAO molecules have a greater thermodynamic binding affinity with the collapsed conformation of polystyrene than with the extended conformation, while the reverse is true for urea molecules. Results presented here from both experiment and simulation are in line with earlier predictions on a model Lennard-Jones polymer while also demonstrating the distinction in the mechanism of osmolyte action between protein and hydrophobic polymer. This marks, to our knowledge, the first experimental observation of TMAO-induced hydrophobic collapse in a ternary aqueous system.

  20. Reduction of graphene oxide/alginate composite hydrogels for enhanced adsorption of hydrophobic compounds.

    PubMed

    Kim, Semin; Yoo, Youngjae; Kim, Hanbit; Lee, Eunju; Lee, Jae Young

    2015-10-09

    Carbon-based materials, consisting of graphene oxide (GO) or reduced GO (rGO), possess unique abilities to interact with various molecules. In particular, rGO materials hold great promise for adsorption and delivery applications of hydrophobic molecules. However, conventional production and/or usage of rGO in aqueous solution often causes severe aggregation due to its low water solubility and thus difficulties in handling and applications. In our study, to prevent the severe aggregation of GO during reduction and to achieve a high adsorption capacity with hydrophobic compounds, GO/alginate composite hydrogels were first prepared and then reduced in an aqueous ascorbic acid solution at 37 °C. Adsorption studies with a model hydrophobic substance, rhodamine B, revealed that the reduced composite hydrogels are more highly absorbent than the unreduced hydrogels. In addition, the adsorption properties of the composite hydrogels, which are consequences of hydrophobic and ionic interactions, could be modulated by controlling the degree of reduction for the adsorption of different molecules. The composite hydrogels embedding rGO can be very useful in applications related to drug delivery, waste treatment, and biosensing.

  1. Hydrophilization and hydrophobic recovery in polymers obtained by casting of polymer solutions on water surface.

    PubMed

    Bormashenko, Edward; Chaniel, Gilad; Gendelman, Oleg

    2014-12-01

    We demonstrate the possibility of hydrophilization of polymer films in situ under the process of their preparation. The polymer surface is hydrophilized when the polymer solution is spread on the water surface and the solvent is evaporated. Essential hydrophilization of the polymer surface is achieved under this process. We relate the observed hydrophilization of polymer films to the dipole-dipole interaction of the polar moieties of polymer chains with highly polar water molecules. The dipole-dipole interaction between water molecules and polar groups of polymer chains, orienting the polar groups of a polymer, may prevail over the London dispersion forces. The process, reported in the paper, allows to manufacture the films in which the hydrophilic moieties of the polymer molecule are oriented toward the polymer/air interface. It is demonstrated that even such traditionally extremely hydrophobic polymers as polydimethylsiloxane can be markedly hydrophilized. This hydrophilization, however, does not persist forever. After removal from the water surface, hydrophobic recovery was observed, i.e. polymer films restored their hydrophobicity with time. The characteristic time of the hydrophobic recovery is on the order of magnitude of hours.

  2. How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory

    PubMed Central

    Mondal, Jagannath; Halverson, Duncan; Li, Isaac T. S.; Stirnemann, Guillaume; Walker, Gilbert C.; Berne, Bruce J.

    2015-01-01

    It is currently the consensus belief that protective osmolytes such as trimethylamine N-oxide (TMAO) favor protein folding by being excluded from the vicinity of a protein, whereas denaturing osmolytes such as urea lead to protein unfolding by strongly binding to the surface. Despite there being consensus on how TMAO and urea affect proteins as a whole, very little is known as to their effects on the individual mechanisms responsible for protein structure formation, especially hydrophobic association. In the present study, we use single-molecule atomic force microscopy and molecular dynamics simulations to investigate the effects of TMAO and urea on the unfolding of the hydrophobic homopolymer polystyrene. Incorporated with interfacial energy measurements, our results show that TMAO and urea act on polystyrene as a protectant and a denaturant, respectively, while complying with Tanford–Wyman preferential binding theory. We provide a molecular explanation suggesting that TMAO molecules have a greater thermodynamic binding affinity with the collapsed conformation of polystyrene than with the extended conformation, while the reverse is true for urea molecules. Results presented here from both experiment and simulation are in line with earlier predictions on a model Lennard–Jones polymer while also demonstrating the distinction in the mechanism of osmolyte action between protein and hydrophobic polymer. This marks, to our knowledge, the first experimental observation of TMAO-induced hydrophobic collapse in a ternary aqueous system. PMID:26170324

  3. Molecular Dynamics Simulations of Star Polymeric Molecules with Diblock Arms, a Comparative Study.

    PubMed

    Swope, William C; Carr, Amber C; Parker, Amanda J; Sly, Joseph; Miller, Robert D; Rice, Julia E

    2012-10-09

    We have performed all atom explicit solvent molecular dynamics simulations of three different star polymeric systems in water, each star molecule consisting of 16 diblock copolymer arms bound to a small adamantane core. The arms of each system consist of an inner "hydrophobic" block (either polylactide, polyvalerolactone, or polyethylene) and an outer hydrophilic block (polyethylene oxide, PEO). These models exhibit unusual structure very close to the core (clearly an artifact of our model) but which we believe becomes "normal" or bulk-like at relatively short distances from this core. We report on a number of temperature-dependent thermodynamic (structural/energetic) properties as well as kinetic properties. Our observations suggest that under physiological conditions, the hydrophobic regions of these systems may be solid and glassy, with only rare and shallow penetration by water, and that a sharp boundary exists between the hydrophobic cores and either the PEO or water. The PEO in these models is seen to be fully water-solvated at low temperatures but tends to phase separate from water as the temperature is increased, reminiscent of a lower critical solution temperature exhibited by PEO-water mixtures. Water penetration concentration and depth is composition and temperature dependent with greater water penetration for the most ester-rich star polymer.

  4. Positive Charges of Translocating Polypeptide Chain Retrieve an Upstream Marginal Hydrophobic Segment from the Endoplasmic Reticulum Lumen to the Translocon

    PubMed Central

    Fujita, Hidenobu; Kida, Yuichiro; Hagiwara, Masatoshi; Morimoto, Fumiko

    2010-01-01

    Positively charged amino acid residues are well recognized topology determinants of membrane proteins. They contribute to the stop-translocation of a polypeptide translocating through the translocon and to determine the orientation of signal sequences penetrating the membrane. Here we analyzed the function of these positively charged residues during stop-translocation in vitro. Surprisingly, the positive charges facilitated membrane spanning of a marginally hydrophobic segment, even when separated from the hydrophobic segment by 70 residues. In this case, the hydrophobic segment was exposed to the lumen, and then the downstream positive charges triggered the segment to slide back into the membrane. The marginally hydrophobic segment spanned the membrane, but maintained access to the water environment. The positive charges not only fix the hydrophobic segment in the membrane at its flanking position, but also have a much more dynamic action than previously realized. PMID:20427573

  5. Dynamics of hydrophobic organic contaminants in the Baltic proper pelagial

    SciTech Connect

    Axelman, J.; Broman, D.; Naef, C.; Pettersen, H.

    1995-12-31

    Hydrophobic organic contaminants occur in different forms in natural water. Apart from being truly dissolved in water they partition into dissolved organic carbon (DOC) and particles of different sizes including pelagic bacteria, phytoplankton and zooplankton. The distribution between the different forms is dependent on carbon turnover rates in and transport between the different compartments and on the physical and chemical properties of the compound in focus. The water phase, the DOC-phase and two particle size fractions, 0.2--2pm and 2--20 pm representing the base of the pelagic food web, were analyzed for their content of PCBs and PAHs during summer and winter conditions in the open sea in the Baltic proper. New methods for separating truly dissolved from DOC-bound compounds have been developed using a high capacity perfusion adsorbent and large scale gas sparging. The small particle size fraction was sampled using high volume tangential flow filtration. The possibility to separate between these four different compartments has given a more detailed picture of the short term dynamics of hydrophobic organic compounds in the important base of the pelagial food web.

  6. Study on structure and hydrophobicity of PP/EVA co-blending membrane: Quenching rate

    NASA Astrophysics Data System (ADS)

    Tang, Na; Li, Zhao; Hua, Xinxin

    2017-03-01

    Isotactic polypropylene (iPP)/ethylene vinyl acetate (EVA) co-blending hydrophobic microporous membranes for vacuum membrane distillation (VMD) were prepared via thermally induced phase separation (TIPS). In the process of preparation, quenching rate has a great influence on the membrane morphology.

  7. Molecular separation method and apparatus

    DOEpatents

    Villa-Aleman, E.

    1996-04-09

    A method and apparatus are disclosed for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular sieve. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve. 2 figs.

  8. Molecular separation method and apparatus

    DOEpatents

    Villa-Aleman, Eliel

    1996-01-01

    A method and apparatus for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve.

  9. Modulation of graft architectures for enhancing hydrophobic interaction of biomolecules with thermoresponsive polymer-grafted surfaces.

    PubMed

    Idota, Naokazu; Kikuchi, Akihiko; Kobayashi, Jun; Sakai, Kiyotaka; Okano, Teruo

    2012-11-01

    This paper describes the effects of graft architecture of poly(N-isopropylacrylamide) (PIPAAm) brush surfaces on thermoresponsive aqueous wettability changes and the temperature-dependent hydrophobic interaction of steroids in silica capillaries (I.D.: 50 μm). PIPAAm brushes were grafted onto glass substrates by surface-initiated atom transfer radical polymerization (ATRP) that is one of the living radical polymerization techniques. Increases in the graft density and chain length of PIPAAm brushes increased the hydration of polymer brushes, resulting in the increased hydrophilic properties of the surface below the transition temperature of PIPAAm at 32 °C. More hydrophobic surface properties were also observed on surfaces modified with the block copolymers of IPAAm and n-butyl methacrylate (BMA) than that with IPAAm homopolymer-grafted surfaces over the transition temperature. Using PBMA-b-PIPAAm-grafted silica capillaries, the baseline separation of steroids was successfully achieved by only changing temperature. The incorporation of hydrophobic PBMA chains in grafted PIPAAm enhanced the hydrophobic interaction with testosterone above the transition temperature. The surface modification of hydrophobicity-enhanced thermoresponsive polymers is a promising method for the preparation of thermoresponsive biointerfaces that can effectively modulated their biomolecule and cell adsorption with the wide dynamic range of hydrophilic/hydrophobic property change across the transition temperature.

  10. Localization and quantification of hydrophobicity: The molecular free energy density (MolFESD) concept and its application to sweetness recognition

    NASA Astrophysics Data System (ADS)

    Jäger, Robert; Schmidt, Friedemann; Schilling, Bernd; Brickmann, Jürgen

    2000-10-01

    A method for the localization, the quantification, and the analysis of hydrophobicity of a molecule or a molecular fragment is presented. It is shown that the free energy of solvation for a molecule or the transfer free energy from one solvent to another can be represented by a surface integral of a scalar quantity, the molecular free energy surface density (MolFESD), over the solvent accessible surface of that molecule. This MolFESD concept is based on a model approach where the solvent molecules are considered to be small in comparison to the solute molecule, and the solvent can be represented by a continuous medium with a given dielectric constant. The transfer energy surface density for a 1-octanol/water system is empirically determined employing a set of atomic increment contributions and distance dependent membership functions measuring the contribution of the increments to the surface value of the MolFESD. The MolFESD concept can be well used for the quantification of the purely hydrophobic contribution to the binding constants of molecule-receptor complexes. This is demonstrated with the sweeteners sucrose and sucralose and various halogen derivatives. Therein the relative sweetness, which is assumed to be proportional to the binding constant, nicely correlates to the surface integral over the positive, hydrophobic part of the MolFESD, indicating that the sweetness receptor can be characterized by a highly flexible hydrophobic pocket instead of a localized binding site.

  11. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    PubMed Central

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  12. Neptunium separations

    SciTech Connect

    Wild, J.F.

    1983-05-09

    Two procedures for the separation of Np are presented; the first involves separation of /sup 239/Np from irradiated /sup 238/U, and the second involves separation of /sup 237/Np from a solution representing that from a dissolved fuel element.

  13. Contribution of Hydrophobic Interactions to Protein Stability

    PubMed Central

    Pace, C. Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R.; Shirley, Bret A.; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J. Martin; Grimsley, Gerald R.

    2011-01-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin head piece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compare our results with previous studies and reach the following conclusions. 1. Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mole per –CH2– group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per –CH2– group). 2. Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kcal/mol): Phe 18 (3.9), Met 13 (3.1), Phe 7 (2.9), Phe 11 (2.7), and Leu 21 (2.7). 3. Based on Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a –CH2– group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. 4. The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. 5. For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds 40 ± 4% to protein stability. 6. Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominately by hydrophobic interactions. PMID:21377472

  14. Contribution of hydrophobic interactions to protein stability.

    PubMed

    Pace, C Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R; Shirley, Bret A; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J Martin; Grimsley, Gerald R

    2011-05-06

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6±0.3 kcal/mol per -CH(2)- group), than to the stability of a large protein, VlsE (1.6±0.3 kcal/mol per -CH(2)- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH(2)- group on folding contributes, on average, 1.1±0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔG(tr) values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60±4% and hydrogen bonds contribute 40±4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Reduced hydrophobic interaction of polystyrene surfaces by spontaneous segregation of block copolymers with oligo (ethylene glycol) methyl ether methacrylate blocks: force measurements in water using atomic force microscope with hydrophobic probes.

    PubMed

    Zhang, Rui; Seki, Akiko; Ishizone, Takashi; Yokoyama, Hideaki

    2008-05-20

    Reduction of hydrophobic interaction in water is important in biological interfaces. In our previous work, we have found that poly(styrene- b-triethylene glycol methyl ether methacrylate) (PS-PME3MA) segregates the PME3MA block to the surface in hydrophobic environment, such as in air or in a vacuum, and shows remarkable resistance against adsorption or adhesion of proteins, platelets, and cells in water. In this paper, we report that atomic force microscopy (AFM) with hydrophobic probes can directly monitor the reduced hydrophobic interaction of the PS surfaces modified by poly(styrene- b-origoethylene glycol methyl ether methacrylate) (PS-PME NMA), where N is the number of ethylene glycol units. The pull-off forces between the hydrophobic probes that are coated with octyltrichlorosilane (OLTS) and the PS-PME NMA modified polystyrene (PS) surfaces in water were measured. The absolute spring constants and tip-curvatures of the AFM cantilevers were measured to compute the work of adhesion by the Johnson, Kendall, and Roberts (JKR) theory, which relates the pull-off force at which the separation occurs between a hemisphere and a plane to the work of adhesion. The hydrophobic interactions between the hydrophobic tip and polymer surfaces in water were greatly reduced with the segregated PME NMA blocks. The hydrophobic interactions decrease with increasing N of the series of PS-PME NMA and show a correlation with the amount of protein adsorbed.

  16. Water interaction with hydrophobic and hydrophilic soot particles.

    PubMed

    Popovicheva, Olga; Persiantseva, Natalia M; Shonija, Natalia K; DeMott, Paul; Koehler, Kirsten; Petters, Markus; Kreidenweis, Sonia; Tishkova, Victoria; Demirdjian, Benjamin; Suzanne, Jean

    2008-05-07

    The interaction of water with laboratory soots possessing a range of properties relevant for atmospheric studies is examined by two complementary methods: gravimetrical measurement of water uptake coupled with chemical composition and porosity analysis and HTDMA (humidified tandem differential mobility analyzer) inference of water uptake accompanied by separate TEM (transmission electron microscopy) analysis of single particles. The first method clarifies the mechanism of water uptake for bulk soot and allows the classification of soot with respect to its hygroscopicity. The second method highlights the dependence of the soot aerosol growth factor on relative humidity (RH) for quasi-monodisperse particles. Hydrophobic and hydrophilic soot are qualitatively defined by their water uptake and surface polarity: laboratory soot particles are thus classified from very hydrophobic to very hydrophilic. Thermal soot particles produced from natural gas combustion are classified as hydrophobic with a surface of low polarity since water is found to cover only half of the surface. Graphitized thermal soot particles are proposed for comparison as extremely hydrophobic and of very low surface polarity. Soot particles produced from laboratory flame of TC1 aviation kerosene are less hydrophobic, with their entire surface being available for statistical monolayer water coverage at RH approximately 10%. Porosity measurements suggest that, initially, much of this surface water resides within micropores. Consequently, the growth factor increase of these particles to 1.07 at RH > 80% is attributed to irreversible swelling that accompanies water uptake. Hysteresis of adsorption/desorption cycles strongly supports this conclusion. In contrast, aircraft engine soot, produced from burning TC1 kerosene in a gas turbine engine combustor, has an extremely hydrophilic surface of high polarity. Due to the presence of water soluble organic and inorganic material it can be covered by many water

  17. Hydrophobic properties and extraction of Bacillus anthracis spores from liquid foods.

    PubMed

    Leishman, Oriana N; Labuza, Theodore P; Diez-Gonzalez, Francisco

    2010-08-01

    The objectives of this study were to characterize the hydrophobic properties of three strains of Bacillus anthracis using the microbial adherence to hydrocarbons (MATH) assay and determine the recovery of spores by hexadecane extraction from water, milk and orange juice using a modified version of this assay. In water mixtures, the hydrophobicity of B. anthracis spores ranged from 5 to 80% as the concentration of hexadecane and the mixing time increased. Two of the three strains showed significantly different hydrophobicity values. Increased pre-incubation temperature of the spore suspension had inconsistent effects on hydrophobicity across the three strains. The hydrophobicity of spores did not change significantly during storage at 4 degrees C. However, recovery of spores in the hexadecane fraction from aqueous mixtures was always less than 5% even at conditions in which the hydrophobicity values were greater than 40%. The recovery of spores in the hexadecane fraction increased to almost 20% when the hexadecane was mixed with milk or orange juice, although the majority of spores remained in the aqueous phase. The B. anthracis spores were relatively hydrophobic according to the MATH assay, but this test was not a good predictor of the partitioning of B. anthracis spores to hexadecane. The separation of B. anthracis from food matrices using hexadecane extraction was ineffective. Although the modified MATH assay was not able to efficiently extract B. anthracis from various food media, development of methods for rapid concentration and separation of this and other select agents from food remains vital to food defense. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Surface-bubble-modulated liquid chromatography: a new approach for manipulation of chromatographic retention and investigation of solute distribution at water/hydrophobic interfaces.

    PubMed

    Nakamura, Keisuke; Nakamura, Hiroki; Saito, Shingo; Shibukawa, Masami

    2015-01-20

    In this paper, we present a new chromatographic method termed surface-bubble-modulated liquid chromatography (SBMLC), that has a hybrid separation medium incorporated with surface nanobubbles. Nanobubbles or nanoscale gas phases can be fixed at the interface between water and a hydrophobic material by delivering water into a dry column packed with a nanoporous material. The incorporation of a gas phase at the hydrophobic surface leads to the formation of the hybrid separation system consisting of the gas phase, hydrophobic moieties, and the water/hydrophobic interface or the interfacial water. One can change the volume of the gas phase by pressure applied to the column, which in turn alters the area of water/hydrophobic interface or the volume of the interfacial water, while the amount of the hydrophobic moiety remains constant. Therefore, this strategy provides a novel technique not only for manipulating the separation selectivity by pressure but also for elucidating the mechanism of accumulation or retention of solute compounds in aqueous solutions by a hydrophobic material. We evaluate the contributions of the interfacial water at the surface of an octadecyl bonded silica and the bonded layer itself to the retention of various solute compounds in aqueous solutions on the column packed with the material by SBMLC. The results show that the interfacial water formed at the hydrophobic surface has a key role in retention even though its volume is rather small. The manipulation of the separation selectivity of SBMLC for some organic compounds by pressure is demonstrated.

  19. Hydrophobic properties of Candida spp. under the influence of selected essential oils.

    PubMed

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Pęczek, Marlena

    2015-01-01

    Processes of colonization of biotic and abiotic surfaces and biofilm formation depend inter alia on hydrophobic properties of Candida spp. The aim of this research was to determine the effect of tea tree, thyme and clove essential oils on hydrophobic properties of environmental and clinical Candida isolates. The relative cell surface hydrophobicity of strains tested was high, and ranged from 68.7% to 91.2%, with the highest value for a C. rugosa food-borne strain. The effectiveness of essential oils was diversified and depended on the type of essential oil, concentration and yeast strain. Statistically significant decrease of hydrophobicity indexes was observed after application of tea tree oil for C. krusei, clove oil for C. albicans reference strain, and all essential oils tested for C. rugosa. Only in the case of C. famata food-borne strain and C. albicans clinical isolate, solely used essential oils did not affect their hydrophobic properties. To determine the interactions of essential oils, their mixtures (1 MIC:1 MIC, 1 MIC:2 MIC and 2 MIC:1 MIC) were applied. Generally, essential oils used in combinations influenced yeast's hydrophobic properties much more than applied separately. The essential oils' mixtures reduced hydrophobicity of Candida yeasts in the range of 8.2 to 45.1%, depending on combination and strain. The interaction indexes of essential oils used in combinations predominantly indicate their additive effect. The application of tea tree, thyme and clove essential oils, especially in combinations, decreases hydrophobicity of the tested Candida isolates with implications of a probable advantageous limitation of their ability to colonize the food production industry environment.

  20. Mouse Cmu heavy chain immunoglobulin gene segment contains three intervening sequences separating domains.

    PubMed

    Calame, K; Rogers, J; Early, P; Davis, M; Livant, D; Wall, R; Hood, L

    1980-04-03

    The IgM molecule is composed of subunits made up of two light chain and two heavy chain (mu) polypeptides. The mu chain is encoded by several gene segments--variable (V), joining (J) and constant (Cmu). The Cmu gene segment is of particular interest for several reasons. First, the mu chain must exist in two very different environments--as an integral membrane protein in receptor IgM molecules (micrometer) and as soluble serum protein in IgM molecules into the blood (mus). Second, the Cmu region in mus is composed of four homology units or domains (Cmu1, Cmu2, Cmu3 and Cmu4) of approximately 110 amino acid residues plus a C-terminal tail of 19 residues. We asked two questions concerning the organisation of the Cmu gene segment. (1) Are the homology units separated by intervening DNA sequences as has been reported for alpha (ref. 5), gamma 1 (ref. 6) and gamma 2b (ref. 7) heavy chain genes? (2) Is the C-terminal tail separated from the Cmu4 domain by an intervening DNA sequence? If so, DNA rearrangements or RNA splicing could generate hydrophilic and hydrophobic C-terminal tails for the mus and micrometer polypeptides, respectively. We demonstrate here that intervening DNA sequences separate each of the four coding regions for Cmu domains, and that the coding regions for the Cmu4 domains and the C-terminal tail are directly contiguous.

  1. How hydrophobically modified chitosans are stabilized by biocompatible lipid aggregates.

    PubMed

    Ruocco, Nino; Frielinghaus, Heide; Vitiello, Giuseppe; D'Errico, Gerardino; Leal, Leslie G; Richter, Dieter; Ortona, Ornella; Paduano, Luigi

    2015-08-15

    Nanostructured hydrogels composed by biocompatible molecules are formulated and characterized. They are based on a polymer network formed by hydrophobically modified chitosans (HMCHIT or CnCHIT) in which vesicles of monoolein (MO) and oleic acid or sodium oleate (NaO), depending on pH, are embedded. The best conditions for gel formation, in terms of pH, length of the hydrophobic moieties of chitosan, and weight proportion among the three components were estimated by visual inspection of a large number of samples. Among all possible combinations, the system C12CHIT-MO-NaO in the weight proportion (1:1:1) is optimal for the formation of a well-structured gel-like system, which is also confirmed by rheological experiments. Electron paramagnetic resonance (EPR) measurements unambiguously show the presence of lipid bilayers in this mixture, indicating that MO-NaO vesicles are stabilized by C12CHIT even at acid pH. A wide small angle neutron scattering investigation performed on several ternary systems of general formula CnCHIT-MO-NaO shows that the length of the hydrophobic tail Cn is a crucial parameter in stabilizing the polymer network in which lipid vesicles are embedded. Structural parameters for the vesicles are determined by using a multilamellar model that admits the possibility of displacement of the center of each shell. The number of shells tends to be reduced by increasing the polymer content. The thickness and the distance between consecutive lamellae are not influenced by either the polymer or MO-NaO concentration. The hydrogel presented in this work, being fully biocompatible and nanostructured, is well-suited for possible application in drug delivery.

  2. Top-down mass spectrometry of hybrid materials with hydrophobic peptide and hydrophilic or hydrophobic polymer blocks.

    PubMed

    Alalwiat, Ahlam; Grieshaber, Sarah E; Paik, Bradford A; Kiick, Kristi L; Jia, Xinqiao; Wesdemiotis, Chrys

    2015-11-21

    A multidimensional mass spectrometry (MS) methodology is introduced for the molecular level characterization of polymer-peptide (or polymer-protein) copolymers that cannot be crystallized or chromatographically purified. It encompasses electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALDI) coupled with mass analysis, tandem mass spectrometry (MS(2)) and gas-phase separation by ion mobility mass spectrometry (IM-MS). The entire analysis is performed in the mass spectrometer ("top-down" approach) within milliseconds and with high sensitivity, as demonstrated for hybrid materials composed of hydrophobic poly(tert-butyl acrylate) (PtBA) or hydrophilic poly(acrylic acid) (PAA) blocks tethered to the hydrophobic decapeptide VPGVGVPGVG (VG2) via triazole linkages. The composition of the major products can be rapidly surveyed by MALDI-MS and MS(2). For a more comprehensive characterization, the ESI-IM-MS (and MS(2)) combination is more suitable, as it separates the hybrid materials based on their unique charges and shapes from unconjugated polymer and partially hydrolyzed products. Such separation is essential for reducing spectral congestion, deconvoluting overlapping compositions and enabling straightforward structural assignments, both for the hybrid copolymers as well as the polymer and peptide reactants. The IM dimension also permits the measurement of collision cross-sections (CCSs), which reveal molecular architecture. The MS and MS(2) spectra of the mobility separated ions conclusively showed that [PtBA-VG2]m and [PAA-VG2]m chains with the expected compositions and sequences were formed. Single and double copolymer blocks (m = 1-2) could be detected. Further, the CCSs of the hybrids, which were prepared via azide/alkyne cycloadditions, confirmed the formation of macrocyclic structures. The top-down methodology described would be particularly useful for the detection and identification of peptide/protein-polymer conjugates which are

  3. [Separation of purines, pyrimidines, pterins and flavonoids on magnolol-bonded silica gel stationary phase by high performance liquid chromatography].

    PubMed

    Chen, Hong; Li, Laishen; Zhang, Yang; Zhou, Rendan

    2012-10-01

    A new magnolol-bonded silica gel stationary phase (MSP) was used to separate the basic drugs including four purines, eight pyrimidines, four pterins and five flavonoids as polar representative samples by high performance liquid chromatography (HPLC). To clarify the separation mechanism, a commercial ODS column was also tested under the same chromatographic conditions. The high selectivities and fast baseline separations of the above drugs were achieved by using simple mobile phases on MSP. Although there is no end-caped treatment, the peak shapes of basic drugs containing nitrogen such as purines, pyrimidines and pterins were rather symmetrical on MSP, which indicated the the magnolol as ligand with multi-sites could shield the side effect of residual silanol groups on the surface of silica gel. Although somewhat different in the separation resolution, it was found that the elution orders of some drugs were generally similar on both MSP and ODS. The hydrophobic interaction should play a significant role in the separations of the above basic drugs, which was attributed to their reversed-phase property in the nature. However, MSP could provide the additional sites for many polar solutes, which was a rational explanation for the high selectivity of MSP. For example, in the separation of purines, pyrimidines and pterins on MSP, hydrogen-bonding and dipole-dipole interactions played leading roles besides hydrophobic interaction. Some solute molecules (such as mercaptopurine, vitexicarpin) and MSP can form the strong pi-pi stacking in the separation process. All enhanced the retention and improved the separation selectivity of MSP, which facilitated the separation of the basic drugs.

  4. No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene.

    PubMed

    Kimmel, Greg A; Matthiesen, Jesper; Baer, Marcel; Mundy, Christopher J; Petrik, Nikolay G; Smith, R Scott; Dohnálek, Zdenek; Kay, Bruce D

    2009-09-09

    The structure of water at interfaces is crucial for processes ranging from photocatalysis to protein folding. Here, we investigate the structure and lattice dynamics of two-layer crystalline ice films grown on a hydrophobic substrate, graphene on Pt(111), with low energy electron diffraction, reflection-absorption infrared spectroscopy, rare-gas adsorption/desorption, and ab initio molecular dynamics. Unlike hexagonal ice, which consists of stacks of puckered hexagonal "bilayers", this new ice polymorph consists of two flat hexagonal sheets of water molecules in which the hexagons in each sheet are stacked directly on top of each other. Such two-layer ices have been predicted for water confined between hydrophobic walls, but not previously observed experimentally. Our results show that the two-layer ice forms even at zero pressure at a single hydrophobic interface by maximizing the number of hydrogen bonds at the expense of adopting a nontetrahedral geometry with weakened hydrogen bonds.

  5. No Confinement Needed: Observation of a Metastable Hydrophobic Wetting Two-Layer Ice on Graphene

    SciTech Connect

    Kimmel, Gregory A.; Matthiesen, Jesper; Baer, Marcel; Mundy, Christopher J.; Petrik, Nikolay G.; Smith, R. Scott; Dohnalek, Zdenek; Kay, Bruce D.

    2009-09-09

    The structure of water at interfaces is crucial for processes ranging from photocatalysis to protein folding. Here, we investigate the structure and lattice dynamics of two-layer crystalline ice films grown on a hydrophobic substrate - graphene on Pt(111) - with low energy electron diffraction, reflection-absorption infrared spectroscopy, rare-gas adsorption/desorption, and ab-initio molecular dynamics. Unlike hexagonal ice, which consists of stacks of puckered hexagonal "bilayers", this new ice polymorph consists of two flat hexagonal sheets of water molecules in which the hexagons in each sheet are stacked directly on top of each other. Such two-layer ices have been predicted for water confined between hydrophobic slits, but not previously observed. Our results show that the two-layer ice forms even at zero pressure at a single hydrophobic interface by maximizing the number of hydrogen bonds at the expense of adopting a non-tetrahedral geometry with weakened bonds.

  6. Creation of hydrophobic surfaces using a paint containing functionalized oxide particles

    NASA Astrophysics Data System (ADS)

    Sino, Paul Albert L.; Herrera, Marvin U.; Balela, Mary Donnabelle L.

    2017-05-01

    Hydrophobic surfaces were created by coating various substrates (aluminum sheet, soda-lime glass, silicon carbide polishing paper, glass with double-sided adhesive) with paint containing functionalized oxide particles. The paint was created by functionalizing oxide particles (ground ZnO, TiO2 nanoparticles, or TiO2 microparticles) with fluorosilane molecules in absolute ethanol. Water contact angle of samples shows that the coated substrate becomes hydrophobic (water contact angle ≥ 90°). Among the oxides that were used, ground ZnO yielded contact angle exemplifying superhydrophobicity (water contact angle ≥ 150°). Scanning electron micrograph of paint-containing TiO2 nanoparticles shows rough functionalized oxides structures which probably increase the hydrophobicity of the surface.

  7. Supramolecular Complex Antioxidant Consisting of Vitamins C, E and Hydrophilic-Hydrophobic Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Laguta, I. V.; Kuzema, P. O.; Stavinskaya, O. N.; Kazakova, O. A.

    Samples with varied amount of surface trimethylsilyl groups were obtained via gas-phase chemical modification of silica nanoparticles. The biocompatibility tests conducted in erythrocyte suspension have shown that hydrophobization of silica decreases its damaging effect to the cells. Being wettable in aqueous media, partially silylated silicas have higher affinity to hydrophobic bioactive molecules in comparison with the initial silica. Novel antioxidant consisting of vitamins C and E and silica with 40% of surface trimethylsilyl groups was formulated. It was found that supramolecular complexes are formed on the silica surface due to the affinity of water- and fat-soluble antioxidants to hydrophilic silanol and hydrophobic trimethylsilyl groups, respectively. Test reactions (total phenolic index determination, DPPH test) and in vitro studies (spectral analysis of erythrocyte suspensions undergoing UV irradiation) revealed the correlation between antioxidant activity of the complex antioxidant and the vitamins’ content. The antioxidant remained active during long-term storage under standard conditions.

  8. Supramolecular Complex Antioxidant Consisting of Vitamins C, E and Hydrophilic-Hydrophobic Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Laguta, I. V.; Kuzema, P. O.; Stavinskaya, O. N.; Kazakova, O. A.

    Samples with varied amount of surface trimethylsilyl groups were obtained via gas-phase chemical modification of silica nanoparticles. The biocompatibility tests conducted in erythrocyte suspension have shown that hydrophobization of silica decreases its damaging effect to the cells. Being wettable in aqueous media, partially silylated silicas have higher affinity to hydrophobic bioactive molecules in comparison with the initial silica. Novel antioxidant consisting of vitamins C and E and silica with 40% of surface trimethylsilyl groups was formulated. It was found that supramolecular complexes are formed on the silica surface due to the affinity of water- and fat-soluble antioxidants to hydrophilic silanol and hydrophobic trimethylsilyl groups, respectively. Test reactions (total phenolic index determination, DPPH test) and in vitro studies (spectral analysis of erythrocyte suspensions undergoing UV irradiation) revealed the correlation between antioxidant activity of the complex antioxidant and the vitamins' content. The antioxidant remained active during long-term storage under standard conditions.

  9. Plasma jet array treatment to improve the hydrophobicity of contaminated HTV silicone rubber

    NASA Astrophysics Data System (ADS)

    Zhang, Ruobing; Han, Qianting; Xia, Yan; Li, Shuang

    2017-10-01

    An atmospheric-pressure plasma jet array specially designed for HTV silicone rubber treatment is reported in this paper. Stable plasma containing highly energetic active particles was uniformly generated in the plasma jet array. The discharge pattern was affected by the applied voltage. The divergence phenomenon was observed at low gas flow rate and abated when the flow rate increased. Temperature of the plasma plume is close to room temperature which makes it feasible for temperature-sensitive material treatment. Hydrophobicity of contaminated HTV silicone rubber was significantly improved after quick exposure of the plasma jet array, and the effective treatment area reached 120 mm × 50 mm (length × width). Reactive particles in the plasma accelerate accumulation of the hydrophobic molecules, namely low molecular weight silicone chains, on the contaminated surface, which result in a hydrophobicity improvement of the HTV silicone rubber.

  10. Effect of Surfactant Hydrophobicity on the Pathway for Unfolding of Ubiquitin

    PubMed Central

    Shaw, Bryan F.; Schneider, Grégory F.; Whitesides, George M.

    2012-01-01

    This paper describes the interaction between ubiquitin (UBI) and three sodium n-alkyl sulfates (SCnS) that have the same charge (Z = −1), but different hydrophobicity (n = 10, 12 and 14). Increasing the hydrophobicity of the n-alkyl sulfate resulted in: (i) an increase in the number of distinct intermediates (that is, complexes of UBI and surfactant) that form along the pathway of unfolding; (ii) a decrease in the minimum concentrations of surfactant at which intermediates begin to form (i.e., a more negative ΔGbinding of surfactant for UBI), and (iii) an increase in the number of surfactant molecules (p) bound to UBI in each intermediate or complex. These results demonstrate that small changes in the hydrophobicity of a surfactant can significantly alter the binding interactions with a folded or unfolded cytosolic protein. PMID:23095057

  11. Chemotactic separation of enzymes.

    PubMed

    Dey, Krishna Kanti; Das, Sambeeta; Poyton, Matthew F; Sengupta, Samudra; Butler, Peter J; Cremer, Paul S; Sen, Ayusman

    2014-12-23

    We demonstrate a procedure for the separation of enzymes based on their chemotactic response toward an imposed substrate concentration gradient. The separation is observed within a two-inlet, five-outlet microfluidic network, designed to allow mixtures of active (ones that catalyze substrate turnover) and inactive (ones that do not catalyze substrate turnover) enzymes, labeled with different fluorophores, to flow through one of the inlets. Substrate solution prepared in phosphate buffer was introduced through the other inlet of the device at the same flow rate. The steady-state concentration profiles of the enzymes were obtained at specific positions within the outlets of the microchannel using fluorescence microscopy. In the presence of a substrate concentration gradient, active enzyme molecules migrated preferentially toward the substrate channel. The excess migration of the active enzyme molecules was quantified in terms of an enrichment coefficient. Experiments were carried out with different pairs of enzymes. Coupling the physics of laminar flow of liquid and molecular diffusion, multiphysics simulations were carried out to estimate the extent of the chemotactic separation. Our results show that, with appropriate microfluidic arrangement, molecular chemotaxis leads to spontaneous separation of active enzyme molecules from their inactive counterparts of similar charge and size.

  12. Real-time single-molecule observations of proteins at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Langdon, Blake Brianna

    Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the

  13. Stability of triglyceride liquid films on hydrophilic and hydrophobic glasses.

    PubMed

    Vazquez, Rosa; Nogueira, Rui; Orfão, Marta; Mata, José Luís; Saramago, Benilde

    2006-07-01

    Wetting and dewetting of solid surfaces by oily fluids were investigated in terms of the stability of the liquid film formed between an air bubble and the solid surface. With the objective of understanding how molecules with low polarity but relatively complex molecular structure behave at the solid/liquid interface, three liquid triglycerides with different chain length and saturation were chosen, namely, tributyrin, tricaprylin, and triolein. Tributyrin and tricaprylin exist in milkfat while triolein is present in vegetable oils. The stability of the liquid films may be inferred from the shape of the disjoining pressure isotherms, which represent the dependence of the disjoining pressure on the film thickness. Disjoining pressure isotherms for films of the three triglycerides on hydrophilic and hydrophobic glasses were obtained using a recently developed apparatus, based on the interferometric technique. The experimental curves are compared with the theoretical predictions of London-Hamaker. The deviations between theory and experiment are interpreted in terms of a structural component of the disjoining pressure. All triglycerides form metastable films on both hydrophilic and hydrophobic glasses which means that for disjoining pressures higher than a critical value, pi(c), a wetting transition occurs and the film ruptures. The mechanisms for film rupture are discussed and a correlation between film stability and the apolar (Lifshitz-van der Waals) and the polar components of the spreading coefficient is proposed.

  14. Kinetically forbidden transformations of water molecular assemblies in hydrophobic micropores.

    PubMed

    Ohba, Tomonori; Kaneko, Katsumi

    2011-06-21

    Water adsorption hysteresis is one of the most important phenomena observed during the interaction of water with hydrophobic surfaces. Adsorption hysteresis in micropores has strong relevance to the structure of adsorbed water. We used three typical models (cluster, monolayer, and uniform distribution structure models) to determine the structure of the water molecules adsorbed in hydrophobic slit-shaped carbon micropores. In each model, stabilization energy profiles were calculated for various fractional fillings by using the interaction potential theory. Simultaneously, molecular dynamics (MD) simulations of water adsorbed in the micropore of 1.1 nm pore width, which shows significant adsorption hysteresis, were performed to determine the kinetics of the observed structural transformations. The transformations between monolayer and cluster were slow, that is, kinetically forbidden at the fractional filling of 0.2 and 0.6, whereas the cluster-uniform distribution structure and uniform distribution structure-monolayer transformations were kinetically allowed. The kinetically forbidden transformation resulted in the occurrence of metastable structure of adsorbed water and was responsible for the observed adsorption hysteresis.

  15. Hydrophobicity and thermodynamic response for aqueous solutions of amphiphiles

    NASA Astrophysics Data System (ADS)

    Zemánková, Katerina; Troncoso, Jacobo; Cerdeiriña, Claudio A.; Romaní, Luis; Anisimov, Mikhail A.

    2016-06-01

    The anomalous behavior of aqueous solutions of amphiphiles in the water-rich region is analyzed via a phenomenological approach that utilizes the isobaric heat capacity Cp as an experimental probe. We report extensive data for solutions of 14 amphiphiles as a function of temperature at atmospheric pressure. Beyond that, Cp data but also isobaric thermal expansivities and isothermal compressibilities for three solutions of tert-butanol as a function of both temperature and pressure are presented. Results rule out the possibility that the observed phenomenology is associated with the anomalous thermodynamics of pure water. Indeed, our Cp data, quantitatively consistent with recent spectroscopic analyses, suggest that water-mediated interactions between the nonpolar parts of amphiphiles are at the origin of anomalies, with the effects of such "hydrophobic aggregation" being observed at mole fractions as small as 0.01. Physicochemical details like the size, the electronic charge distribution and the geometry of amphiphile molecules as well as third-order derivatives of the Gibbs energy and the associated Koga lines support the above claims while they further contribute to characterizing the role of hydrophobicity in these phenomena. Progress with a view to gain a deeper, more concrete understanding remains.

  16. Separation of molybdenum and technetium

    NASA Astrophysics Data System (ADS)

    Andersson, J. D.; Gagnon, K.; Wilson, J. S.; Romaniuk, J.; Abrams, D. N.; McQuarrie, S. A.

    2012-12-01

    After the production of 99mTc via the 100Mo(p,2n)99mTc reaction, there is a requirement for separating 99mTc from bulk 100Mo. Although a number of separation methods have been demonstrated, the possibility of using a cartridge-based system is particularly attractive for routine use in a good manufacturing practice (GMP) regulatory environment. This study confirmed that hydrophobic interaction chromatography (HIC) solid phase extraction (SPE) with PEG as stationary phase is an efficient and easily automated method for separating molybdate and pertechnetate, and that PEG degradation in the conditions used does not affect the performance of the resin. In addition, reversed phase SPE using Waters Oasis® HLB shows promise for successful separation of molybdenum and technetium and work continues to extend this technology to readily available commercial SPE cartridges.

  17. Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells.

    PubMed

    Vesterkvist, Pia S M; Misiorek, Julia O; Spoof, Lisa E M; Toivola, Diana M; Meriluoto, Jussi A O

    2012-10-25

    Microcystins (MC), cyanobacterial peptide hepatotoxins, comprise more than 100 different variants. They are rather polar molecules but some variants contain hydrophobic amino acid residues in the highly variable parts of the molecule. In MC-LF and MC-LW, the more hydrophobic phenylalanine (F) and tryptophan (W), respectively, have replaced arginine (R) in MC-LR. Depending on the structure, microcystins are expected to have different in vivo toxicity and bioavailability, but only a few studies have considered the toxic properties of the more hydrophobic variants. The present study shows that MC-LF and MC-LW have more pronounced cytotoxic effects on Caco-2 cells as compared to those of MC-LR. Treatment of Caco-2 cells with MC-LW and especially MC-LF showed clear apoptotic features including shrinkage and blebbing, and the cell–cell adhesion was lost. An obvious reduction of cell proliferation and viability, assessed as the activity of mitochondrial dehydrogenases, was observed with MC-LF, followed by MC-LW and MC-LR. Cytotoxicity was quantified by measuring lactate dehydrogenase leakage. The more hydrophobic MC-LW and MC-LF induced markedly enhanced lactate dehydrogenase leakage compared to controls and MC-LR, indicating that the plasma membrane was damaged. All of the three toxins examined inhibited protein phosphatase 1, with MC-LF and MC-LW to a weaker extent compared to MC-LR. The higher toxic potential of the more hydrophobic microcystins could not be explained by the biophysical experiments performed. Taken together, our data show that the more hydrophobic microcystin variants induce higher toxicity in Caco-2 cells.

  18. Comparative Cellular Toxicity of Hydrophilic and Hydrophobic Microcystins on Caco-2 Cells

    PubMed Central

    Vesterkvist, Pia S. M.; Misiorek, Julia O.; Spoof, Lisa E. M.; Toivola, Diana M.; Meriluoto, Jussi A. O.

    2012-01-01

    Microcystins (MC), cyanobacterial peptide hepatotoxins, comprise more than 100 different variants. They are rather polar molecules but some variants contain hydrophobic amino acid residues in the highly variable parts of the molecule. In MC-LF and MC-LW, the more hydrophobic phenylalanine (F) and tryptophan (W), respectively, have replaced arginine (R) in MC-LR. Depending on the structure, microcystins are expected to have different in vivo toxicity and bioavailability, but only a few studies have considered the toxic properties of the more hydrophobic variants. The present study shows that MC-LF and MC-LW have more pronounced cytotoxic effects on Caco-2 cells as compared to those of MC-LR. Treatment of Caco-2 cells with MC-LW and especially MC-LF showed clear apoptotic features including shrinkage and blebbing, and the cell–cell adhesion was lost. An obvious reduction of cell proliferation and viability, assessed as the activity of mitochondrial dehydrogenases, was observed with MC-LF, followed by MC-LW and MC-LR. Cytotoxicity was quantified by measuring lactate dehydrogenase leakage. The more hydrophobic MC-LW and MC-LF induced markedly enhanced lactate dehydrogenase leakage compared to controls and MC-LR, indicating that the plasma membrane was damaged. All of the three toxins examined inhibited protein phosphatase 1, with MC-LF and MC-LW to a weaker extent compared to MC-LR. The higher toxic potential of the more hydrophobic microcystins could not be explained by the biophysical experiments performed. Taken together, our data show that the more hydrophobic microcystin variants induce higher toxicity in Caco-2 cells. PMID:23202304

  19. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    PubMed Central

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  20. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature.

    PubMed

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-02-19

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons.

  1. Hydrophobicity in Lennard-Jones solutions.

    PubMed

    Ishizaki, Mario; Tanaka, Hideki; Koga, Kenichiro

    2011-02-14

    The analogue of the hydrophobic hydration is explored for Lennard-Jones solutions. The free energy of solvation and its temperature derivatives, both in the constant-pressure process and in the constant-volume process, are obtained numerically for a variety of the size and energy parameters for the solute-solvent Lennard-Jones potential. We identify in the parameter space a region in which the solvation is of hydrophobic character, with an understanding that hydrophobicity is characterized by both the solvation free energy being positive and the solvation process being exothermic. Such a region is found in each case of the isobaric and isochoric conditions and the region is seen to be much wider in the isochoric process than in the isobaric one. Its origin and implication are discussed.

  2. Understanding ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Julienne, Paul

    2009-05-01

    The successful production of a dense sample of ultracold ground state KRb polar molecules [1] opens the door to a new era of research with dipolar gases and lattices of such species. This feat was achieved by first associating a K and a Rb atom to make a weakly bound Feshbach molecule and then coherently transferring the population to the ground vibrational level of the molecule. This talk focuses on theoretical issues associated with making and using ultracold polar molecules, using KRb as an example [2]. Full understanding of this species and the processes by which it is made requires taking advantage of accurate molecular potentials [3], ab initio calculations [4], and the properties of the long-range potential. A highly accurate model is available for KRb for all bound states below the ground state separated atom limit and could be constructed for other species. The next step is to develop an understanding of the interactions between polar molecules, and their control in the ultracold domain. Understanding long-range interactions and threshold resonances will be crucial for future work. [1] K.-K. Ni, et al, Science 322, 231(2008). [2] P. S. Julienne, arXiv:0812:1233. [3] Pashov et al., Phys. Rev. A76, 022511 (2007). [4] S. Kotochigova, et al., arXiv:0901.1486.

  3. Integration or segregation: how do molecules behave at oil/water interfaces?

    PubMed

    Moore, F G; Richmond, G L

    2008-06-01

    It has been over 250 years since Benjamin Franklin, fascinated with the wave-stilling effect of oil on water, performed his famous oil-drop experiments; nevertheless, the behavior of water molecules adjacent to hydrophobic surfaces continues to fascinate today. In the 18th century, the calming of the seas seemed the most pertinent application of such knowledge; today, we understand that oil-on-water phenomena underlie a range of important chemical, physical, and biological processes, including micelle and membrane formation, protein folding, chemical separation, oil extraction, nanoparticle formation, and interfacial polymerization. Beyond classical experiments of the oil-water interface, recent interest has focused on deriving a molecular-level picture of this interface or, more generally, of water molecules positioned next to any hydrophobic surface. This Account summarizes more than a decade's work from our laboratories aimed at understanding the nature of the hydrogen bonding occurring between water and a series of organic liquids in contact. Although the common perception is that water molecules and oil molecules positioned at the interface between the immiscible liquids want nothing to do with one another, we have found that weak interactions between these hydrophilic and hydrophobic molecules lead to interesting interfacial behavior, including highly oriented water molecules and layering of the organic medium that extends several molecular layers deep into the bulk organic liquid. For some organic liquids, penetration of oriented water into the organic layer is also apparent, facilitated by molecular interactions established at the molecularly thin region of first contact between the two liquids. The studies involve a combined experimental and computational approach. The primary experimental tool that we have used is vibrational sum frequency spectroscopy (VSFS), a powerful surface-specific vibrational spectroscopic method for measuring the molecular

  4. Isotope separation apparatus and method

    DOEpatents

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  5. Chiral Separations

    NASA Astrophysics Data System (ADS)

    Stalcup, A. M.

    2010-07-01

    The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.

  6. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    NASA Technical Reports Server (NTRS)

    Kumar, Nitin; Couzis, Alex; Maldareili, Charles; Singh, Bhim (Technical Monitor)

    2001-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid surfaces. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants; (i.e., amphiphiles with a hydrophobic moiety consisting of an extended chain of (aliphatic) methylene -CH2- groups attached to a large polar group to give aqueous solubility) are capable of reducing the contact angles on surfaces which are not very hydrophobic, but do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm, polyethylene or self assembled monolayers. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3) and an extended ethoxylate (-(OCH2CH2)a-) polar group in the form of a chain with four or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (termed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread. We propose that the trisiloxane surfactants superspread because their structure allows them to strongly lower the high hydrophobic solid/aqueous tension when they adsorb to the solid surface. When the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross-sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space-filling mat on the surface which

  7. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    NASA Technical Reports Server (NTRS)

    Kumar, Nitin; Couzis, Alex; Maldareili, Charles; Singh, Bhim (Technical Monitor)

    2001-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid surfaces. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants; (i.e., amphiphiles with a hydrophobic moiety consisting of an extended chain of (aliphatic) methylene -CH2- groups attached to a large polar group to give aqueous solubility) are capable of reducing the contact angles on surfaces which are not very hydrophobic, but do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm, polyethylene or self assembled monolayers. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3) and an extended ethoxylate (-(OCH2CH2)a-) polar group in the form of a chain with four or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (termed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread. We propose that the trisiloxane surfactants superspread because their structure allows them to strongly lower the high hydrophobic solid/aqueous tension when they adsorb to the solid surface. When the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross-sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space-filling mat on the surface which

  8. Modification of Deeply Buried Hydrophobic Interfaces by Ionic Surfactants

    SciTech Connect

    Ocko, B.M.; Tamam, L.; Pontoni, D.; Sapir, Z.; Yefet, S.; Sloutskin, E.; Reichert, H.; Deutsch, M.

    2011-04-05

    Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T{sub s}, well above the alkane's bulk freezing temperature, T{sub b}. The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T{sub s}. A solid-solid transition in the frozen monolayer, occurring approximately 3 C below T{sub s}, is discovered and tentatively suggested to be a rotator-to-crystal transition.

  9. Modification of deeply buried hydrophobic interfaces by ionic surfactants

    PubMed Central

    Tamam, Lilach; Pontoni, Diego; Sapir, Zvi; Yefet, Shai; Sloutskin, Eli; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe

    2011-01-01

    Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil–water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at Ts, well above the alkane’s bulk freezing temperature, Tb. The monolayer’s phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer’s structure is measured by high-energy X-ray reflectivity above and below Ts. A solid–solid transition in the frozen monolayer, occurring approximately 3 °C below Ts, is discovered and tentatively suggested to be a rotator-to-crystal transition. PMID:21422287

  10. Modification of Deeply Buried Hydrophobic Interfaces by Ionic Surfactants

    SciTech Connect

    L Tamam; D Pontoni Z Sapir; S Yefet; S Sloutskin; B Ocko; H Reichert; M Deutsch

    2011-12-31

    Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T{sub s}, well above the alkane's bulk freezing temperature, T{sub b}. The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T{sub s}. A solid-solid transition in the frozen monolayer, occurring approximately 3 C below T{sub s}, is discovered and tentatively suggested to be a rotator-to-crystal transition.

  11. Battery separators.

    PubMed

    Arora, Pankaj; Zhang, Zhengming John

    2004-10-01

    The ideal battery separator would be infinitesimally thin, offer no resistance to ionic transport in electrolytes, provide infinite resistance to electronic conductivity for isolation of electrodes, be highly tortuous to prevent dendritic growths, and be inert to chemical reactions. Unfortunately, in the real world the ideal case does not exist. Real world separators are electronically insulating membranes whose ionic resistivity is brought to the desired range by manipulating the membranes thickness and porosity. It is clear that no single separator satisfies all the needs of battery designers, and compromises have to be made. It is ultimately the application that decides which separator is most suitable. We hope that this paper will be a useful tool and will help the battery manufacturers in selecting the most appropriate separators for their batteries and respective applications. The information provided is purely technical and does not include other very important parameters, such as cost of production, availability, and long-term stability. There has been a continued demand for thinner battery separators to increase battery power and capacity. This has been especially true for lithiumion batteries used in portable electronics. However, it is very important to ensure the continued safety of batteries, and this is where the role of the separator is greatest. Thus, it is essential to optimize all the components of battery to improve the performance while maintaining the safety of these cells. Separator manufacturers should work along with the battery manufacturers to create the next generation of batteries with increased reliability and performance, but always keeping safety in mind. This paper has attempted to present a comprehensive review of literature on separators used in various batteries. It is evident that a wide variety of separators are available and that they are critical components in batteries. In many cases, the separator is one of the major factors

  12. Water separator

    NASA Technical Reports Server (NTRS)

    Dunn, W. F.; Austin, I. G. (Inventor)

    1964-01-01

    An apparatus for separating liquids from gases or gaseous fluids is described. Features of the apparatus include: (1) the collection and removal of the moisture in the fluid is not dependent upon, or affected by gravity; (2) all the collected water is cyclically drained from the apparatus irrespective of the attitude of the separator; and (3) a fluid actuator is utilized to remove the collected water from the separator.

  13. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces.

    PubMed

    Jeyachandran, Y L; Mielczarski, E; Rai, B; Mielczarski, J A

    2009-10-06

    We studied the adsorption of bovine serum albumin (BSA) from phosphate-buffered saline (pH 7.4) to hydrophilic and hydrophobic surfaces. Attenuated total reflection Fourier transform infrared spectroscopy, supported by spectral simulation, allowed us to determine with high precision the amount of BSA adsorbed (surface coverage) and its structural composition. The adsorbed BSA molecules had an alpha-helical structure on both hydrophobic and hydrophilic surfaces but had different molecular conformations and adsorption strengths on the two types of surface. Adsorpt