NASA Astrophysics Data System (ADS)
Bin, Wang; Dong, Shiyun; Yan, Shixing; Gang, Xiao; Xie, Zhiwei
2018-03-01
Picosecond laser has ultrashort pulse width and ultrastrong peak power, which makes it widely used in the field of micro-nanoscale fabrication. polydimethylsiloxane (PDMS) is a typical silicone elastomer with good hydrophobicity. In order to further improve the hydrophobicity of PDMS, the picosecond laser was used to fabricate a grid-like microstructure on the surface of PDMS, and the relationship between hydrophobicity of PDMS with surface microstructure and laser processing parameters, such as processing times and cell spacing was studied. The results show that: compared with the unprocessed PDMS, the presence of surface microstructure significantly improved the hydrophobicity of PDMS. When the number of processing is constant, the hydrophobicity of PDMS decreases with the increase of cell spacing. However, when the cell spacing is fixed, the hydrophobicity of PDMS first increases and then decreases with the increase of processing times. In particular, when the times of laser processing is 6 and the cell spacing is 50μm, the contact angle of PDMS increased from 113° to 154°, which reached the level of superhydrophobic.
Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces.
Stanton, Morgan M; Ducker, Robert E; MacDonald, John C; Lambert, Christopher R; McGimpsey, W Grant
2012-02-01
Super-hydrophobic surfaces have been fabricated by casting polydimethylsiloxane (PDMS) on a textured substrate of known surface topography, and were characterized using contact angle, atomic force microscopy, surface free energy calculations, and adhesion measurements. The resulting PDMS has a micro-textured surface with a static contact angle of 153.5° and a hysteresis of 27° when using de-ionized water. Unlike many super-hydrophobic materials, the textured PDMS is highly adhesive, allowing water drops as large as 25.0 μL to be inverted. This high adhesion, super-hydrophobic behavior is an illustration of the "petal effect". This rapid, reproducible technique has promising applications in transport and analysis of microvolume samples. Copyright © 2011 Elsevier Inc. All rights reserved.
Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments.
Larson, B J; Gillmor, S D; Braun, J M; Cruz-Barba, L E; Savage, D E; Denes, F S; Lagally, M G
2013-10-22
Poly(dimethylsiloxane), PDMS, a versatile elastomer, is the polymer of choice for microfluidic systems. It is inexpensive, relatively easy to pattern, and permeable to oxygen. Unmodified PDMS is highly hydrophobic. It is typically exposed to an oxygen plasma to reduce this hydrophobicity. Unfortunately, the PDMS surface soon returns to its original hydrophobic state. We present two alternative plasma treatments that yield long-term modification of the wetting properties of a PDMS surface. An oxygen plasma pretreatment followed by exposure to a SiCl4 plasma and an oxygen-CCl4 mixture plasma both cause a permanent reduction in the hydrophobicity of the PDMS surface. We investigate the properties of the plasma-treated surfaces with X-ray photoelectron spectroscopy (XPS) and contact angle measurements. We propose that the plasma treated PDMS surface is a dynamic mosaic of high- and low-contact-angle functionalities. The SiCl4 and CCl4 plasmas attach polar groups that block coverage of the surface by low-molecular-weight groups that exist in PDMS. We describe an application that benefits from these new plasma treatments, the use of a PDMS stencil to form dense arrays of DNA on a surface.
Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds
NASA Astrophysics Data System (ADS)
Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu
2016-07-01
Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μm and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns.
Clear Castable Polyurethane Elastomer for Fabrication of Microfluidic Devices
Domansky, Karel; Leslie, Daniel C.; McKinney, James; Fraser, Jacob P.; Sliz, Josiah D.; Hamkins-Indik, Tiama; Hamilton, Geraldine A.; Bahinski, Anthony; Ingber, Donald E.
2013-01-01
Polydimethylsiloxane (PDMS) has numerous desirable properties for fabricating microfluidic devices, including optical transparency, flexibility, biocompatibility, and fabrication by casting; however, partitioning of small hydrophobic molecules into the bulk of PDMS hinders industrial acceptance of PDMS microfluidic devices for chemical processing and drug development applications. Here we describe an attractive alternative material that is similar to PDMS in terms of optical transparency, flexibility and castability, but that is also resistant to absorption of small hydrophobic molecules. PMID:23954953
Chung, Sung Hee; Min, Junhong
2009-07-01
Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy results by immunostaining method, human mammary epithelial cells (HMEC) adhered well on irregularly patterned surface without any reagents such as gelatin and collagen, compared to commercial culture dish. It implies PDMS material can be utilized as template for cell-based biochip without any reagents.
Biological implications of polydimethylsiloxane-based microfluidic cell culture†
Regehr, Keil J.; Domenech, Maribella; Koepsel, Justin T.; Carver, Kristopher C.; Ellison-Zelski, Stephanie J.; Murphy, William L.; Schuler, Linda A.; Alarid, Elaine T.; Beebe, David J.
2009-01-01
Polydimethylsiloxane (PDMS) has become a staple of the microfluidics community by virtue of its simple fabrication process and material attributes, such as gas permeability, optical transparency, and flexibility. As microfluidic systems are put toward biological problems and increasingly utilized as cell culture platforms, the material properties of PDMS must be considered in a biological context. Two properties of PDMS were addressed in this study: the leaching of uncured oligomers from the polymer network into microchannel media, and the absorption of small, hydrophobic molecules (i.e. estrogen) from serum-containing media into the polymer bulk. Uncured PDMS oligomers were detectable via MALDI-MS in microchannel media both before and after Soxhlet extraction of PDMS devices in ethanol. Additionally, PDMS oligomers were identified in the plasma membranes of NMuMG cells cultured in PDMS microchannels for 24 hours. Cells cultured in extracted microchannels also contained a detectable amount of uncured PDMS. It was shown that MCF-7 cells seeded directly on PDMS inserts were responsive to hydrophilic prolactin but not hydrophobic estrogen, reflecting its specificity for absorbing small, hydrophobic molecules; and the presence of PDMS floating in wells significantly reduced cellular response to estrogen in a serum-dependent manner. Quantification of estrogen via ELISA revealed that microchannel estrogen partitioned rapidly into the surrounding PDMS to a ratio of approximately 9:1. Pretreatments such as blocking with serum or pre-absorbing estrogen for 24 hours did not affect estrogen loss from PDMS-based microchannels. These findings highlight the importance of careful consideration of culture system properties when determining an appropriate environment for biological experiments. PMID:19606288
Pennisi, Cristian P; Zachar, Vladimir; Gurevich, Leonid; Patriciu, Andrei; Struijk, Johannes J
2010-01-01
Polydimethylsiloxane (PDMS) or silicone rubber is a widely used implant material. Approaches to promote tissue integration to PDMS are desirable to avoid clinical problems associated with sliding and friction between tissue and implant. Plasma-etching is a useful way to control cell behavior on PDMS without additional coatings. In this work, different plasma processing conditions were used to modify the surface properties of PDMS substrates. Surface nanotopography and wettability were measured to study their effect on in vitro growth and morphology of fibroblasts. While fluorinated plasma treatments produced nanorough hydrophobic and superhydrophobic surfaces that had negative or little influences on cellular behavior, water vapor/oxygen plasma produced smooth hydrophillic surfaces that enhanced cell growth.
The synthesis and protein resistance of amphiphilic PDMS-b-(PDMS-g-cysteine) copolymers
NASA Astrophysics Data System (ADS)
Lei, Yufeng; Lin, Yaling; Zhang, Anqiang
2017-10-01
Zwitterionic polymers have been used to cope with nonspecific protein adsorption and bio-fouling problems for a wide range of materials, including biomedical devices, marine coatings and membrane separation. However, direct surface modification with highly water-soluble zwitterionic polymers is rather difficult due to their poor attachment to hydrophobic solid surfaces. In this work, we utilize the hydrophobic interaction to anchor zwitterionic polysiloxanes grafted with cysteine onto surfaces by adding an hydrophobic block of polydimethylsiloxanes, referred as PDMS-b-(PDMS-g-Cys)s. The synthesis involves only three steps of reactions, and the structures of each product were characterized using GPC, FT-IR and 1H NMR. The adsorption and protein resistance of PDMS-b-(PDMS-g-Cys)s on a gold surface are investigated with QCM-D. The results show that the hydrophobic interaction moieties of the additional PDMS blocks help the hydrophilic cysteine-grafted blocks stably attach and then function on the sensor. These findings suggest that the addition of hydrophobic moieties provides an effective approach to construct anti-fouling interfaces with zwitterionic polymers in aqueous solution.
Tong, Liping; Zhou, Wenhua; Zhao, Yuetao; Yu, Xuefeng; Wang, Huaiyu; Chu, Paul K
2016-12-01
Polydimethylsiloxane(PDMS) is a common industrial polymer with advantages such as ease of fabrication, tunable hardness, and other desirable properties, but the basic (-OSi(CH 3 ) 2 -) n structure in PDMS is inherently hydrophobic thereby hampering application to biomedical engineering. In this study, plasma immersion ion implantation (PIII) is conducted on PDMS to improve the biological properties. PIII forms wrinkled "herringbone" patterns and abundant O-containing functional groups on PDMS to alter the surface hydrophilicity. The biocompatibility of the modified PDMS is assessed with Chinese hamster ovarian cells and compared to that of the untreated PDMS. Our results reveal that the PDMS samples after undergoing PIII have better cytocompatibility and lower genotoxicity. PIII which is a non-line-of-sight technique extends the application of PDMS to the biomedical field. Copyright © 2016 Elsevier B.V. All rights reserved.
Poisoning of mixed matrix membranes by fermentation components in pervaporation of ethanol
USDA-ARS?s Scientific Manuscript database
Pervaporation is an alternative to distillation for recovering ethanol produced by fermentation of grains and biomass. Ethanol-selective mixed matrix membranes of the hydrophobic zeolite ZSM-5 in polydimethylsiloxane (PDMS) have superior performance compared to pure PDMS membranes in pervaporation o...
Application of Porous Polydimethylsiloxane (PDMS) in oil absorption
NASA Astrophysics Data System (ADS)
Norfatriah, Abdullah; Syamaizar, Ahmad Sabli Ahmad; Samah Zuruzi, Abu
2018-04-01
Porous polydimethysiloxane (PDMS) displays both hydrophobic and oleophilic behaviour which makes it a suitable material to absorb oil in an aqueous stream. Furthermore, its elastomeric nature means that porous PDMS can be a reusable sorbent for oil. For such application, porous PDMS has to (i) absorb oil from aqueous stream quickly and (ii) discharge oil rapidly when compressed. In this study, porous polydimethylsiloxane (PDMS) has been fabricated using sugar templating method. The ability of porous PDMS to absorb olive, sunflower and vegetable oils with and without vibration was investigated. Small amplitude vibration was found to accelerate the oil uptake process and accelerates the absorption of olive and vegetable oil by 2.5 and 3 times, respectively. Compressive stress-strain curves over compression rates between 2 and 100 mm per min are similar and indicate mechanical property of porous PDMS does not vary significantly and can be rapidly compressed.
Pervaporation is potentially a cost-effective means of recovering biofuels, such as ethanol, from biomass fermentation broths for small- to medium-scale applications (~2 - 20 million liters per year). Hydrophobic zeolite-filled polydimethylsiloxane (PDMS) membranes have been sho...
NASA Astrophysics Data System (ADS)
Zheng, Guikai; Lu, Ming; Rui, Xiaoping
2017-03-01
Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.
NASA Astrophysics Data System (ADS)
Park, J.-S.; Park, J.-H.; Lee, D.-W.
2018-02-01
In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.
Polydimethylsiloxane as dielectric and hydrophobic material in electro-wetting liquid lens
NASA Astrophysics Data System (ADS)
Wang, Liang; Duan, Junping; Zhang, Binzhen; Wang, Wanjun
2016-10-01
An electro-wetting-based variable-focus liquid lens with a spin coated polydimethylsiloxane (PDMS) layer is presented. The PDMS layer acts as both insulation and hydrophobic material of the liquid lens. By changing the applied voltage between the two electrodes, the radius of the water-oil contact curved surface is adjusted to realize the zoom function. In preparation process, at first, the liquid lens is divided into two parts, the PDMS substrate and the cavity, and then two parts of liquid lens are bonding together after surface treatment. After liquid injection and sealing cavity, the whole process was accomplished. The zooming performance of lens is tested, and COMSOL is used to analyze the shape of the water-oil contact curved surface at different voltages, the results shows that with the applied voltage changing from 0V to 120V, the height of meniscus vertex reduced from 2.41mm to 1.67mm, and the focal length changes from -14.3mm to infinity first, and then to 27.1mm.
Synthesis of Macroporous Poly(dimethylsiloxane) Scaffolds for Tissue Engineering Applications
Pedraza, Eileen; Brady, Ann-Christina; Fraker, Christopher A.
2015-01-01
Macroporous, biostable scaffolds with controlled porous architecture were prepared from poly(dimethylsiloxane) (PDMS) using sodium chloride particles (NaCl) and a solvent casting and particulate leaching (SCPL) technique. The effect of particulate size range and overall porosity on the resulting structure was evaluated. Results found 90% v/v scaffolds and particulate ranges above 100 µm to have the most optimal open framework and porosity. Resulting hydrophobic PDMS scaffolds were coated with fibronectin and evaluated as a platform for adherent cell culture using human mesenchymal stem cells. Biocompatibility of PDMS scaffolds was also evaluated in a rodent model, where implants were found to be highly biocompatibile and biostable, with positive extracellular matrix deposition throughout the scaffold. These results demonstrate the suitability of macroporous PDMS scaffolds for tissue engineering applications where strong integration with the host is desired. PMID:23683037
Futrega, Kathryn; Yu, Jianshi; Jones, Jace W; Kane, Maureen A; Lott, William B; Atkinson, Kerry; Doran, Michael R
2016-04-21
Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34(+) cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34(+) haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34(+) cells.
NASA Astrophysics Data System (ADS)
Gowa Oyama, Tomoko; Barba, Bin Jeremiah Duenas; Hosaka, Yuji; Taguchi, Mitsumasa
2018-05-01
We propose a single-step fabrication method for polydimethylsiloxane (PDMS) cell-adhesive microwell arrays with long-lasting (>10 months in aqueous medium) hydrophilic inner surfaces without the need for any chemical treatment such as development. Irradiation of a PDMS film with a low-energy electron beam (55 kV) in air generated a ˜40-μm-thick hydrophilic silica-like layer on the PDMS surface, which was the key to the prolonged hydrophilicity. Moreover, the concomitant compaction of the irradiated area produced dozens-of-micrometers-deep concave wells. The hydrophilic microwells generated on the hydrophobic non-irradiated PDMS surface easily trapped nano-/picoliter droplets and cells/single-cells. In addition, the surfaces of the microwells offered stable and favorable cell-adherent environments. The method presented here can realize stable and reliable lab-on-chips and cater to the expanding demand in biological and medical applications.
Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses
NASA Astrophysics Data System (ADS)
Ferreira, Paula; Carvalho, Álvaro; Ruivo Correia, Tiago; Paiva Antunes, Bernardo; Joaquim Correia, Ilídio; Alves, Patrícia
2013-10-01
The voice is produced by the vibration of vocal cords which are located in the larynx. Therefore, one of the major consequences for patients subjected to laryngectomy is losing their voice. In these cases, a synthetic one-way valve set (voice prosthesis) can be implanted in order to allow restoration of speech. Most voice prostheses are produced with silicone-based materials such as polydimethylsiloxane (PDMS). This material has excellent properties, such as optical transparency, chemical and biological inertness, non-toxicity, permeability to gases and excellent mechanical resistance that are fundamental for its application in the biomedical field. However, PDMS is very hydrophobic and this property causes protein adsorption which is followed by microbial adhesion and biofilm formation. To overcome these problems, surface modification of materials has been proposed in this study. A commercial silicone elastomer, SylgardTM 184 was used to prepare membranes whose surface was modified by grafting 2-hydroxyethylmethacrylate and methacrylic acid by low-pressure plasma treatment. The hydrophilicity, hydrophobic recovery and surface energy of the produced materials were determined. Furthermore, the cytotoxicity and antibacterial activity of the materials were also assessed. The results obtained revealed that the PDMS surface modification performed did not affect the material's biocompatibility, but decreased their hydrophobic character and bacterial adhesion and growth on its surface.
Chuah, Yon Jin; Koh, Yi Ting; Lim, Kaiyang; Menon, Nishanth V.; Wu, Yingnan; Kang, Yuejun
2015-01-01
Polydimethylsiloxane (PDMS) has been extensively exploited to study stem cell physiology in the field of mechanobiology and microfluidic chips due to their transparency, low cost and ease of fabrication. However, its intrinsic high hydrophobicity renders a surface incompatible for prolonged cell adhesion and proliferation. Plasma-treated or protein-coated PDMS shows some improvement but these strategies are often short-lived with either cell aggregates formation or cell sheet dissociation. Recently, chemical functionalization of PDMS surfaces has proved to be able to stabilize long-term culture but the chemicals and procedures involved are not user- and eco-friendly. Herein, we aim to tailor greener and biocompatible PDMS surfaces by developing a one-step bio-inspired polydopamine coating strategy to stabilize long-term bone marrow stromal cell culture on PDMS substrates. Characterization of the polydopamine-coated PDMS surfaces has revealed changes in surface wettability and presence of hydroxyl and secondary amines as compared to uncoated surfaces. These changes in PDMS surface profile contribute to the stability in BMSCs adhesion, proliferation and multipotency. This simple methodology can significantly enhance the biocompatibility of PDMS-based microfluidic devices for long-term cell analysis or mechanobiological studies. PMID:26647719
NASA Astrophysics Data System (ADS)
Bassil, Joelle; Alem, Halima; Henrion, Gérard; Roizard, Denis
2016-04-01
Completely homogenous films formed via the layer-by-layer assembly of poly(diallyldimethylammonium chloride) (PDADMAC) and the poly(styrene sulfonate) were successfully obtained on plasma-treated poly(dimethylsiloxane) (PDMS) substrates. To modify the hydrophobicity of the PDMS surface, a cold plasma treatment was previously applied to the membrane, which led to the creation of hydrophilic groups on the surface of the membrane. PDMS wettability and surface morphology were successfully correlated with the plasma parameters. A combination of contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis was used to demonstrate that homogeneous and hydrophilic surfaces could be achieved on PDMS cold-plasma-treated membranes. The stability of the assembled PEL layer on the PDMS was evaluated using a combination of pull-off testing and X-ray photoelectron spectroscopy (XPS), which confirmed the relevance of a plasma pre-treatment as the adhesion of the polyelectrolyte multilayers was greatly enhanced when the deposition was completed on an activated PDMS surface at 80 W for 5 min.
ADSORPTION AND MEMBRANE SEPARATION MEASUREMENTS WITH MIXTURES OF ETHANOL, ACETIC ACID, AND WATER
Biomass fermentation produces ethanol and other renewable biofuels. Pervaporation using hydrophobic membranes is potentially a cost-effective means of removing biofuels from fermentation broths for small- to medium-scale applications. Silicalite-filled polydimethylsiloxane (PDMS)...
Liu, Han-Bing; Yang, Bing; Xue, Nan-Dong
2016-11-15
A series of hydrophobic-modified (polydimethylsiloxane (PDMS) coating) activated carbons (ACs) were developed to answer a fundamental question: what are the determinants that dominate the adsorption on ACs under humid conditions? Using column experiments, an inter-comparison among bare-AC and PDMS-coated ACs was conducted regarding the association of surface characteristics and adsorption capacity. Primary outcomes occurred in two dominating markers, hydrophobicity and total micropore volume, which played a key role in water adsorption on ACs. However, their contributions to water adsorption on ACs substantially differed under different Pwater/Pair conditions. Hydrophobicity was the only contributor in Pwater/Pair=0.1-0.6, while the two markers contributed equally in Pwater/Pair=0.7-1.0. Furthermore, PDMS-coated AC had a significant increase in benzene adsorption capacities compared to bare-AC at 0-90% relative humidity, while these differences were not significant among PDMS-coated ACs. It is thus presumed that the balance between the two markers can be shifted to favor almost unchanged benzene adsorption capacities among PDMS-coated ACs over a large range of relative humidity. These findings suggest potential benefits of PDMS coating onto ACs in enhancing selective adsorption of hydrophobic volatile organic compounds under high humid conditions. To develop new porous materials with both high total micropore volume and hydrophobicity should thus be considered. Copyright © 2016 Elsevier B.V. All rights reserved.
Yokoyama, Sho; Matsui, Tsubasa S; Deguchi, Shinji
2017-06-19
Microcontact printing (μCPr) is one of the most popular techniques used for cell micropatterning. In conventional μCPr, a polydimethylsiloxane (PDMS) stamp with microfeatures is used to adsorb extracellular matrix (ECM) proteins onto the featured surface and transfer them onto particular areas of a cell culture substrate. However, some types of functional proteins other than ECM have been reported to denature upon direct adsorption to hydrophobic PDMS. Here we describe a detailed protocol of an alternative technique--microcontact peeling (μCPe)--that allows for cell micropatterning while circumventing the step of adsorbing proteins to bare PDMS. This technique employs microfeatured materials with a relatively high surface energy such as copper, instead of using a microfeatured PDMS stamp, to peel off a cell-adhesive layer present on the surface of substrates. Consequently, cell-nonadhesive substrates are exposed at the specific surface that undergoes the physical contact with the microfeatured material. Thus, although μCPe and μCPr are apparently similar, the former does not comprise a process of transferring biomolecules through hydrophobic PDMS. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Ro, Kyung Won; Chang, Woo-Jin; Kim, Ho; Koo, Yoon-Mo; Hahn, Jong Hoon
2003-09-01
Capillary electrochromatography (CEC) and preconcentration of neutral compounds have been realized on poly(dimethylsiloxane) (PDMS) microchips. The channels are coated with polyelectrolyte multilayers to avoid absorption of hydrophobic analytes into PDMS. The structures of a microchip include an injector and a bead chamber with integrated frits, where the particles of the stationary phase are completely retained. Dimensions of the frit structures are 25 micro mx20 micro m, and the space between the structures is 3 micro m. A neutral compound, BODIPY, that is strongly absorbed into native PDMS, is successfully and selectively retained on octadecylsilane-coated silica beads in the bead chamber with a concentration enhancement of up to 100 times and eluted with elution buffer solution containing 70% acetonitrile. Preconcentrations and CEC separations of coumarins have been conducted with the same device and achieved complete separations in less than 50 s.
Gokaltun, Aslihan; Yarmush, Martin L.; Asatekin, Ayse; Usta, O. Berk
2017-01-01
In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly mature stage. These advances have encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. The popularity of this material is the result of its low cost, simple fabrication allowing rapid prototyping, high optical transparency, and gas permeability. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant nonspecific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. Accordingly, here, we focus on recent advances in surface molecular treatments to prevent fouling of PDMS surfaces towards improving its utility and expanding its use cases in biomedical applications. PMID:28695160
Fabrication of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures
NASA Astrophysics Data System (ADS)
Liu, Yurong; Liu, Jia
2016-08-01
The present work was aimed to develop a new kind of stone conservation materials (TEOS/PDMS/F127 hybrid coating) by a facile sol-gel method for the protection of decayed sandstones of Chongqing Dazu stone sculptures in China. The hydrophobic property, surface morphology, water vapor permeability, ultraviolet aging resistance and mechanical properties were measured to evaluate the effectiveness of TEOS/PDMS/F127 hybrid coating as a stone conservation material. The results showed that the addition of hydroxyl-terminated polydimethylsiloxane (PDMS-OH) contributed to improve the hydrophobic properties and incorporation of PEO-PPO-PEO (F127) surfactant resulted in the formation of superficial protrusions with micro- and nanoscopic structures and overall alteration of surface morphology and roughness, thus preventing the coating materials from cracking. After treatment with TEOS/PDMS/F127 hybrid coating materials, the ultraviolet aging resistance and mechanical properties of stone were also improved without the obvious effects on the breathability and color of the stone, indicating promising applications of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures.
NASA Astrophysics Data System (ADS)
Khodakov, Dmitriy A.; Thredgold, Leigh D.; Lenehan, Claire E.; Andersson, Gunther A.; Kobus, Hilton; Ellis, Amanda V.
2011-12-01
Poly(dimethylsiloxane) (PDMS) is an elastomeric material used for microfluidic devices and is especially suited to medical and forensic applications. This is due to its relatively low cost, ease of fabrication, excellent optical transmission characteristics and its ability to support electroosmotic flow, required during electrophoretic separations. These aspects combined with its large range of surface modification chemistries, make PDMS an attractive substrate in microfluidic devices for, in particular, DNA separation. Here, we report the successful wet chemical surface modification of PDMS microchannels using a simple three step method to produce an isothiocyanate-terminated surface. Initially, PDMS was oxygen plasma treated to produce a silanol-terminated surface, this was then reacted with 3-aminopropyltriethoxysilane with subsequent reaction of the now amine-terminated surface with p-phenylenediisothiocyanate. Water contact angle measurements both before and after modification showed a reduction in hydrophobicity from 101o for native PDMS to 94o for the isothiocyante-terminated PDMS. The isothiocyanate-terminated surface was then coupled with an amineterminated single-stranded DNA (ssDNA) oligonucleotide capture probe via a thiourea linkage. Confirmation of capture probe attachment was observed using fluorescent microscopy after hybridization of the capture probes with fluorescently labeled complimentary ssDNA oligonucleotides.
Sulym, Iryna; Goncharuk, Olena; Sternik, Dariusz; Terpilowski, Konrad; Derylo-Marczewska, Anna; Borysenko, Mykola V; Gun'ko, Vladimir M
2017-12-01
SiO 2 @PDMS and CeO 2 -ZrO 2 -SiO 2 @PDMS nanocomposites were prepared and studied using nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), measurements of advancing and receding contact angles with water, and microcalorimetry. The pore size distributions indicate that the textural characteristics change after oxide modification by poly(dimethylsiloxane) (PDMS). Composites are characterized by mainly mesoporosity and macroporosity of aggregates of oxide nanoparticles or oxide@PDMS nanoparticles and their agglomerates. The FT-IR spectra show that PDMS molecules cover well the oxide surface, since the intensity of the band of free silanols at 3748 cm -1 decreases with increasing PDMS concentration and it is absent in the IR spectrum at C PDMS ≥ 20 wt% that occurs due to the hydrogen bonding of the PDMS molecules to the surface hydroxyls. SEM images reveal that the inter-particle voids are gradually filled and aggregates are re-arranged and increase from 20 to 200 nm in size with the increasing polymer concentration. The highest hydrophobicity (contact angle θ = 140° at C PDMS = 20-40 wt%) is obtained for the CeO 2 -ZrO 2 -SiO 2 @PDMS nanocomposites. The heat of composite immersion in water shows a tendency to decrease with increasing PDMS concentration.
Multiple emulsions as soft templates for the synthesis of multifunctional silicone porous particles.
Vilanova, Neus; Kolen'ko, Yury V; Solans, Conxita; Rodríguez-Abreu, Carlos
2015-01-01
Multiple emulsion templating is a versatile strategy for the synthesis of porous particles. The present work addresses the synthesis of multifunctional poly(dimethylsiloxane) porous particles using multiple water-in-oil-in-water emulsions as soft templates with an oil phase constituted by a crosslinkable poly(dimethylsiloxane) (PDMS) oil. Herewith, the impact of the viscosity of PDMS oil (i.e., molecular weight) on the properties of both the emulsion templates and the resulting particles was evaluated. The viscosity of PDMS oil has a strong effect on the size and polydispersity of the emulsion templates as well as on the mechanical properties of the derived particles. The elastic modulus can be tuned by mixing PDMS oils of different viscosities to form bimodal crosslinked networks. Iron oxide nanoparticles can be readily incorporated into the emulsion templates to provide additional functionalities to the silicone particles, such as magnetic separation or magnetic hyperthermia. The synthesized composite magnetic particles were found to be useful as recoverable absorbent materials (e.g., for oil spills) by taking advantage of their high buoyancy and high hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.
Martin, Samuel; Bhushan, Bharat
2017-02-15
Superoleophobic surfaces that exhibit self-cleaning, antifouling, low-drag, and anti-smudge properties with high transparency are of interest in industrial applications including optical devices, solar panels, and self-cleaning windows. In many superoleophobic surfaces created to date, the lack of mechanical durability has been an issue. In this work, for the first time, transparent, wear-resistant, superhydrophobic and superoleophobic surfaces were developed for polydimethylsiloxane (PDMS) using a simple and scalable fabrication technique. PDMS is of importance in biomedical applications as it is biocompatible, chemically stable, and transparent. PDMS was made superhydrophobic either through micropatterning or an applied coating of hydrophobic SiO 2 nanoparticles with a binder of methylphenyl silicone resin. Through the addition of fluorination via fluorosilane, the nanoparticle/binder coating was made superoleophobic. Intermediate steps using ultraviolet-ozone treatment were required for improved deposition and adhesion of the coatings. The effects of surface treatments were examined through contact angle and tilt angle measurements. The coating was found to have re-entrant geometries desirable for superoleophobicity and to exhibit mechanical wear resistance and transparent properties. Copyright © 2016 Elsevier Inc. All rights reserved.
[Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].
Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei
2016-04-15
To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS.
Yu, Ling; Shi, ZhuanZhuan; Gao, LiXia; Li, ChangMing
2015-09-01
In vitro cell-based analysis is strongly affected by material's surface chemical properties. The cell spreading, migration, and proliferation on a substrate surface are initiated and controlled by successful adhesion, particularly for anchor-dependent cells. Unfortunately, polydimethylsiloxane (PDMS), one of the most used polymeric materials for construction of microfluidic and miniaturized biomedical analytic devices, is not a cell-friendly surface because of its inherent hydrophobic property. Herein, a poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] (poly(GMA-co-pEGMA)) polymer brush was synthesized on a PDMS surface through a surface-initiated atom-transfer radical polymerization method. Contact angle and Fourier transform infrared characterization show that the poly (GMA-co-pEGMA) polymer brush functionalization can increase wettability of PDMS and introduce epoxy, hydroxyl, and ether groups into PDMS surface. In vitro cell growth assay demonstrates that cell adhesion and proliferation on poly(GMA-co-pEGMA) polymer brush-functionalized PDMS (poly(GMA-co-pEGMA)@PDMS) are better than on pristine PDMS. Additionally, immobilization of collagen type I (CI) and fibronectin (FN) on poly(GMA-co-pEGMA)@PDMS is better than direct coating of CI and FN on pristine PDMS to promote cell adhesion. Furthermore, increased intracellular reactive oxygen species and cell mitochondrial membrane depolarization, two indicators of cell oxidative stress, are observed from cells growing on pristine PDMS, but not from those on poly(GMA-co-pEGMA)@PDMS. Collectively, we demonstrate that poly(GMA-co-pEGMA) functionalization can enhance cell adhesion and proliferation on PDMS, and thus can be potentially used for microfluidic cell assay devices for cellular physiology study or drug screening. © 2015 Wiley Periodicals, Inc.
A carbon nanotube filled polydimethylsiloxane hybrid membrane for enhanced butanol recovery
Xue, Chuang; Du, Guang-Qing; Chen, Li-Jie; Ren, Jian-Gang; Sun, Jian-Xin; Bai, Feng-Wu; Yang, Shang-Tian
2014-01-01
The carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) hybrid membrane was fabricated to evaluate its potential for butanol recovery from acetone-butanol-ethanol (ABE) fermentation broth. Compared with the homogeneous PDMS membrane, the CNTs filled into the PDMS membrane were beneficial for the improvement of butanol recovery in butanol flux and separation factor. The CNTs acting as sorption-active sites with super hydrophobicity could give an alternative route for mass transport through the inner tubes or along the smooth surface. The maximum total flux and butanol separation factor reached up to 244.3 g/m2·h and 32.9, respectively, when the PDMS membrane filled with 10 wt% CNTs was used to separate butanol from the butanol/water solution at 80°C. In addition, the butanol flux and separation factor increased dramatically as temperature increased from 30°C to 80°C in feed solution since the higher temperature produced more free volumes in polymer chains to facilitate butanol permeation. A similar increase was also observed when butanol titer in solution increased from 10 g/L to 25 g/L. Overall, the CNTs/PDMS hybrid membrane with higher butanol flux and selectivity should have good potential for pervaporation separation of butanol from ABE fermentation broth. PMID:25081019
Leivo, Joni; Virjula, Sanni; Vanhatupa, Sari; Kartasalo, Kimmo; Kreutzer, Joose; Miettinen, Susanna; Kallio, Pasi
2017-07-01
Polydimethylsiloxane (PDMS) is widely used in dynamic biological microfluidic applications. As a highly hydrophobic material, native PDMS does not support cell attachment and culture, especially in dynamic conditions. Previous covalent coating methods use glutaraldehyde (GA) which, however, is cytotoxic. This paper introduces a novel and simple method for binding collagen type I covalently on PDMS using ascorbic acid (AA) as a cross-linker instead of GA. We compare the novel method against physisorption and GA cross-linker-based methods. The coatings are characterized by immunostaining, contact angle measurement, atomic force microscopy and infrared spectroscopy, and evaluated in static and stretched human adipose stem cell (hASC) cultures up to 13 days. We found that AA can replace GA as a cross-linker in the covalent coating method and that the coating is durable after sonication and after 6 days of stretching. Furthermore, we show that hASCs attach and proliferate better on AA cross-linked samples compared with physisorbed or GA-based methods. Thus, in this paper, we provide a new PDMS coating method for studying cells, such as hASCs, in static and dynamic conditions. The proposed method is an important step in the development of PDMS-based devices in cell and tissue engineering applications. © 2017 The Author(s).
Zhao, Wei; Ge, Pei-Yu; Xu, Jing-Juan; Chen, Hong-Yuan
2009-09-01
We report on a pair of highly sensitive amperometric biosensors for organophosphate pesticides (OPs) based on assembling acetylcholinesterase (AChE) on poly(dimethylsiloxane) (PDMS)-poly(diallydimethylemmonium) (PDDA)/gold nanoparticles (AuNPs) composite film. Two AChE immobilization strategies are proposed based on the composite film with hydrophobic and hydrophilic surface tailored by oxygen plasma. The twin biosensors show interesting different electrochemical performances. The hydrophobic surface based PDMS-PDDAN AuNPs/choline oxidase (ChO)/AChE biosensor (biosensor-1) shows excellent stability and unique selectivity to hypertoxic organophosphate. At optimal conditions, this biosensor-1 could measure 5.0 x 10(-10) g/L paraoxon and 1.0 x 10(-9) g/L parathion. As for the hydrophilic surface based biosensor (biosensor-2), it shows no selectivity but can be commonly used for the detection of most OPs. Based on the structure of AChE, it is assumed that via the hydrophobic interaction between enzyme molecules and hydrophobic surface, the enzyme active sites surrounded by hydrophobic amino acids face toward the surface and get better protection from OPs. This assumption may explain the different performances of the twin biosensors and especially the unique selectivity of biosensor-1 to hypertoxic OPs. Real sample detection was performed and the omethoate residue on Cottomrose Hibiscus leaves was detected with biosensor-1.
3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.
Hinton, Thomas J; Hudson, Andrew; Pusch, Kira; Lee, Andrew; Feinberg, Adam W
2016-10-10
Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it. This, in combination with the immiscibility of hydrophobic PDMS in the hydrophilic Carbopol, confines the PDMS prepolymer within the support for curing times up to 72 h while maintaining dimensional stability. After printing and curing, the Carbopol support gel releases the embedded PDMS prints by using phosphate buffered saline solution to reduce the Carbopol yield stress. As proof-of-concept, we used Sylgard 184 PDMS to 3D print linear and helical filaments via continuous extrusion and cylindrical and helical tubes via layer-by-layer fabrication. Importantly, we show that the 3D printed tubes were manifold and perfusable. The results demonstrate that hydrophobic polymers with low viscosity and long cure times can be 3D printed using a hydrophilic support, expanding the range of biomaterials that can be used in additive manufacturing. Further, by implementing the technology using low cost open-source hardware and software tools, the FRE printing technique can be rapidly implemented for research applications.
3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding
2016-01-01
Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it. This, in combination with the immiscibility of hydrophobic PDMS in the hydrophilic Carbopol, confines the PDMS prepolymer within the support for curing times up to 72 h while maintaining dimensional stability. After printing and curing, the Carbopol support gel releases the embedded PDMS prints by using phosphate buffered saline solution to reduce the Carbopol yield stress. As proof-of-concept, we used Sylgard 184 PDMS to 3D print linear and helical filaments via continuous extrusion and cylindrical and helical tubes via layer-by-layer fabrication. Importantly, we show that the 3D printed tubes were manifold and perfusable. The results demonstrate that hydrophobic polymers with low viscosity and long cure times can be 3D printed using a hydrophilic support, expanding the range of biomaterials that can be used in additive manufacturing. Further, by implementing the technology using low cost open-source hardware and software tools, the FRE printing technique can be rapidly implemented for research applications. PMID:27747289
Yan, Y H; Chan-Park, M B; Yue, C Y
2005-09-13
Surface modification of poly(dimethylsiloxane) (PDMS) was carried out via CF4 plasma treatment. The test PDMS used contains significant amounts of quartz and silica fillers, while the control material is the same PDMS with quartz removed by centrifugation. Fluorination accompanied with roughening was produced on both PDMS surfaces. With short plasma times (15 min or less), a macromolecular fluorocarbon layer was formed on the PDMS surfaces because of the dominant fluorination, leading to significant increase in F concentration, decrease of surface energy, and some roughening. With intermediate plasma times (15-30 min), dynamic balance between fluorination and ablation was achieved, leading to a plateau of the surface roughness, fluorine content, and [F-Si]/[F-C] ratio. At our longest investigated plasma time of 45 min, the plasma ablated the fluorinated covering layer on the PDMS surfaces, leading to significant increase in roughness and [F-Si]/[F-C] ratio and decrease of surface F concentration. The effect of additional quartz in the test PDMS on surface F concentration, [F-Si]/[F-C] ratio, and roughness was dramatic only when ablation was significant (i.e., 45 min). The obtained Teflon-like surface displays long-term stability as opposed to hydrophobic recovery of other plasma-treated PDMS surfaces to increase hydrophilicity. On the basis of the optimized plasma treatment time of 15 min, a microstructured PDMS mold was plasma treated and successfully used for multiple high-aspect-ratio (about 8) UV embossing of nonpolar polypropylene glycol diacrylate (PPGDA) resin.
Inkjet-printed microelectrodes on PDMS as biosensors for functionalized microfluidic systems.
Wu, Jianwei; Wang, Ridong; Yu, Haixia; Li, Guijun; Xu, Kexin; Tien, Norman C; Roberts, Robert C; Li, Dachao
2015-02-07
Microfluidic systems based on polydimethylsiloxane (PDMS) have gained popularity in recent years. However, microelectrode patterning on PDMS to form biosensors in microchannels remains a worldwide technical issue due to the hydrophobicity of PDMS and its weak adhesion to metals. In this study, an additive technique using inkjet-printed silver nanoparticles to form microelectrodes on PDMS is presented. (3-Mercaptopropyl)trimethoxysilane (MPTMS) was used to modify the surface of PDMS to improve its surface wettability and its adhesion to silver. The modified surface of PDMS is rendered relatively hydrophilic, which is beneficial for the silver droplets to disperse and thus effectively avoids the coalescence of adjacent droplets. Additionally, a multilevel matrix deposition (MMD) method is used to further avoid the coalescence and yield a homogeneous pattern on the MPTMS-modified PDMS. A surface wettability comparison and an adhesion test were conducted. The resulting silver pattern exhibited good uniformity, conductivity and excellent adhesion to PDMS. A three-electrode electrochemical biosensor was fabricated successfully using this method and sealed in a PDMS microchannel, forming a lab-on-a-chip glucose biosensing system.
Scharin-Mehlmann, Marina; Häring, Aaron; Rommel, Mathias; Dirnecker, Tobias; Friedrich, Oliver; Frey, Lothar; Gilbert, Daniel F.
2018-01-01
Polydimethylsiloxane (PDMS) is a promising biomaterial for generating artificial extracellular matrix (ECM) like patterned topographies, yet its hydrophobic nature limits its applicability to cell-based approaches. Although plasma treatment can enhance the wettability of PDMS, the surface is known to recover its hydrophobicity within a few hours after exposure to air. To investigate the capability of a novel PDMS-type (X-PDMS) for in vitro based assessment of physiological cell properties, we designed and fabricated plane as well as nano- and micrometer-scaled pillar-patterned growth substrates using the elastomer types S-, H- and X-PDMS, which were fabricated from commercially available components. Most importantly, we compared X-PDMS based growth substrates which have not yet been investigated in this context with H- as well as well-known S-PDMS based substrates. Due to its applicability to fabricating nanometer-sized topographic features with high accuracy and pattern fidelity, this material may be of high relevance for specific biomedical applications. To assess their applicability to cell-based approaches, we characterized the generated surfaces using water contact angle (WCA) measurement and atomic force microscopy (AFM) as indicators of wettability and roughness, respectively. We further assessed cell number, cell area and cellular elongation as indirect measures of cellular viability and adhesion by image cytometry and phenotypic profiling, respectively, using Calcein and Hoechst 33342 stained human foreskin fibroblasts as a model system. We show for the first time that different PDMS types are differently sensitive to plasma treatment. We further demonstrate that surface hydrophobicity changes along with changing height of the pillar-structures. Our data indicate that plane and structured X-PDMS shows cytocompatibility and adhesive properties comparable to the previously described elastomer types S- and H-PDMS. We conclude that nanometer-sized structuring of X-PDMS may serve as a powerful method for altering surface properties toward production of biomedical devices for cell-based applications. PMID:29765941
Osteogenic Potential of Poly(Ethylene Glycol)–Poly(Dimethylsiloxane) Hybrid Hydrogels
Munoz-Pinto, Dany J.; Jimenez-Vergara, Andrea Carolina; Hou, Yaping; Hayenga, Heather N.; Rivas, Alejandra; Grunlan, Melissa
2012-01-01
Growth factors have been shown to be potent mediators of osteogenesis. However, their use in tissue-engineered scaffolds not only can be costly but also can induce undesired responses in surrounding tissues. Thus, the ability to specifically induce osteogenic differentiation in the absence of exogenous growth factors through manipulation of scaffold material properties would be desirable for bone regeneration. Previous research indicates that addition of inorganic or hydrophobic components to organic, hydrophilic scaffolds can enhance multipotent stem cell (MSC) osteogenesis. However, the combined impact of scaffold inorganic content and hydrophobicity on MSC behavior has not been systematically explored, particularly in three-dimensional (3D) culture systems. The aim of the present study was therefore to examine the effects of simultaneous increases in scaffold hydrophobicity and inorganic content on MSC osteogenic fate decisions in a 3D culture environment toward the development of intrinsically osteoinductive scaffolds. Mouse 10T½ MSCs were encapsulated in a series of novel scaffolds composed of varying levels of hydrophobic, inorganic poly(dimethylsiloxane) (PDMS) and hydrophilic, organic poly(ethylene glycol) (PEG). After 21 days of culture, increased levels of osteoblast markers, runx2 and osteocalcin, were observed in scaffolds with increased PDMS content. Bone extracellular matrix (ECM) molecules, collagen I and calcium phosphate, were also elevated in formulations with higher PDMS:PEG ratios. Importantly, this osteogenic response appeared to be specific in that markers for chondrocytic, smooth muscle cell, and adipocytic lineages were not similarly affected by variations in scaffold PDMS content. As anticipated, the increase in scaffold hydrophobicity accompanying increasing PDMS levels was associated with elevated scaffold serum protein adsorption. Thus, scaffold inorganic content combined with alterations in adsorbed serum proteins may underlie the observed cell behavior. PMID:22519299
NASA Astrophysics Data System (ADS)
Jiang, Jingxian; Fu, Yuchen; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu
2017-08-01
The traditional nonfouling materials are powerless against bacterial cells attachment, while the hydrophobic bactericidal surfaces always suffer from nonspecific protein adsorption and dead bacterial cells accumulation. Here, amphiphilic polyurethane (PU) networks modified with poly(dimethylsiloxane) (PDMS) and cationic carboxybetaine diol through simple crosslinking reaction were developed, which had an antibacterial efficiency of 97.7%. Thereafter, the hydrolysis of carboxybetaine ester into zwitterionic groups brought about anti-adhesive properties against bacteria and proteins. The surface chemical composition and wettability performance of the PU network surfaces were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The surface distribution of PDMS and zwitterionic segments produced an obvious amphiphilic heterogeneous surface, which was demonstrated by atomic force microscopy (AFM). Enzyme-linked immunosorbent assays (ELISA) were used to test the nonspecific protein adsorption behaviors. With the advantages of the transition from excellent bactericidal performance to anti-adhesion and the combination of fouling resistance and fouling release property, the designed PDMS-based amphiphilic PU network shows great application potential in biomedical devices and marine facilities.
Small molecule absorption by PDMS in the context of drug response bioassays.
van Meer, B J; de Vries, H; Firth, K S A; van Weerd, J; Tertoolen, L G J; Karperien, H B J; Jonkheijm, P; Denning, C; IJzerman, A P; Mummery, C L
2017-01-08
The polymer polydimethylsiloxane (PDMS) is widely used to build microfluidic devices compatible with cell culture. Whilst convenient in manufacture, PDMS has the disadvantage that it can absorb small molecules such as drugs. In microfluidic devices like "Organs-on-Chip", designed to examine cell behavior and test the effects of drugs, this might impact drug bioavailability. Here we developed an assay to compare the absorption of a test set of four cardiac drugs by PDMS based on measuring the residual non-absorbed compound by High Pressure Liquid Chromatography (HPLC). We showed that absorption was variable and time dependent and not determined exclusively by hydrophobicity as claimed previously. We demonstrated that two commercially available lipophilic coatings and the presence of cells affected absorption. The use of lipophilic coatings may be useful in preventing small molecule absorption by PDMS. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Yousefi, Seyedeh Zahra; Tabatabaei-Panah, Pardis-Sadat; Seyfi, Javad
2018-07-01
Improving the bioinertness of materials is of great importance for developing biomedical devices that contact human tissues. The main goal of this study was to establish correlations among surface morphology, roughness and chemistry with hydrophobicity and cell adhesion in polydimethylsiloxane (PDMS) nanocomposites loaded with titanium dioxide (TiO 2 ) nanoparticles. Firstly, wettability results showed that the nanocomposite loaded with 30 wt.% of TiO 2 exhibited a superhydrophobic behavior; however, the morphology and roughness analysis proved that there was no discernible difference between the surface structures of samples loaded with 20 and 30 wt.% of nanoparticles. Both cell culture and MTT assay experiments showed that, despite the similarity between the surface structures, the sample loaded with 30 wt.% nanoparticles exhibits the greatest reduction in the cell viability (80%) as compared with the pure PDMS film. According to the X-ray photoelectron spectroscopy results, the remarkable reduction in cell viability of the superhydrophobic sample could be majorly attributed to the role of surface chemistry. The obtained results emphasize the importance of adjusting the surface properties especially surface chemistry to gain the optimum cell adhesion behavior. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of a dual-axis hybrid-type tactile sensor using PET film
NASA Astrophysics Data System (ADS)
Seonggi, Kim; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyungpil
2013-04-01
In previous work, a dual-axis hybrid-type tactile sensor using PDMS (Polydimethylsiloxane) with a pair of metal electrodes, (which were deposited directly on the PDMS surface), was proposed. The hybrid sensor can measure the normal force and the shear force from the measurement of the change of capacitance and resistance values from the one pair of electrodes. However, the metal is hard to be deposited on the surface of the PDMS because the PDMS is hydrophobic. The hydrophobic surface can be changed to hydrophilic using O2 Plasma treatment or UV treatment. When O2 plasma treatment or UV treatment is used, there is the problem that the processing of the metal deposition and the wiring completed in a very short period of limited time. Also, the deposited metal on the surface of the PDMS is easy to break because the deposited metal is exposed in the air. In this paper, we propose a dual-axis hybrid-type tactile sensor where the PET (polyethylene terephthalate) film is inserted between the PDMS films. The deposited metal is not removed easily from the PET film because the adhesion is strong. Also, the PDMS surrounding the PET film plays the roles of dielectric elastomer and shielding the deposited metal from the external environment at same time. Experimental results verify the effectiveness of the fabricated dual-axis hybrid-type force sensor.
Fu, Jiayin; Chuah, Yon Jin; Ang, Wee Tong; Zheng, Nan; Wang, Dong-An
2017-05-30
Myocardiocyte derived from pluripotent stem cells, such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), is a promising cell source for cardiac tissue engineering. Combined with microfluidic technologies, a heart-on-a-chip is very likely to be developed and function as a platform for high throughput drug screening. Polydimethylsiloxane (PDMS) silicone elastomer is a widely-used biomaterial for the investigation of cell-substrate interactions and biochip fabrication. However, the intrinsic PDMS surface hydrophobicity inhibits cell adhesion on the PDMS surface, and PDMS surface modification is required for effective cell adhesion. Meanwhile, the formulation of PDMS also affects the behaviors of the cells. To fabricate PDMS-based biochips for ESC pluripotency maintenance and cardiac differentiation, PDMS surface modification and formulation were optimized in this study. We found that a polydopamine (PD) with gelatin coating greatly improved the ESC adhesion, proliferation and cardiac differentiation on its surface. In addition, different PDMS substrates varied in their surface properties, which had different impacts on ESCs, with the 40 : 1 PDMS substrate being more favorable for ESC adhesion and proliferation as well as embryoid body (EB) attachment than the other PDMS substrates. Moreover, the ESC pluripotency was best maintained on the 5 : 1 PDMS substrate, while the cardiac differentiation of the ESCs was optimal on the 40 : 1 PDMS substrate. Based on the optimized coating method and PDMS formulation, biochips with two different designs were fabricated and evaluated. Compared to the single channels, the multiple channels on the biochips could provide larger areas and accommodate more nutrients to support improved ESC pluripotency maintenance and cardiac differentiation. These results may contribute to the development of a real heart-on-a-chip for high-throughput drug screening in the future.
One-step surface modification of poly(dimethylsiloxane) by undecylenic acid
NASA Astrophysics Data System (ADS)
Zhou, Jinwen; McInnes, Steven J. P.; Md Jani, Abdul Mutalib; Ellis, Amanda V.; Voelcker, Nicolas H.
2008-12-01
Poly(dimethylsiloxane) (PDMS) is a popular material for microfluidic devices due to its relatively low cost, ease of fabrication, oxygen permeability and optical transmission characteristics. However, its highly hydrophobic surface is still the main factor limiting its wide application, in particular as a material for biointerfaces. A simple and rapid method to form a relatively stable hydrophilised PDMS surface is reported in this paper. The PDMS surface was treated with pure undecylenic acid (UDA) for 10 min, 1 h and 1 day at 80 °C in a sealed container. The effects of the surface modification were investigated using water contact angle (WCA) measurements, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), and streaming zeta-potential analysis. The water contact angle of 1 day UDAmodified PDMS was found to decrease from that of native PDMS (110 °) to 75 °, demonstrating an increase in wettability of the surface. A distinctive peak at 1715 cm-1 in the FTIR-ATR spectra after UDA treatment was representative of carboxylation of the PDMS surface. The measured zeta-potential (ζ) at pH 4 changed from -27 mV for pure PDMS to -19 mV after UDA treatment. In order to confirm carboxylation of the surface visually, Lucifer Yellow CH fluorescence dye was reacted via a condensation reaction to the 1 day UDA modified PDMS surface. Fluorescent microscopy showed Lucifer Yellow CH fluorescence on the carboxylated surface, but not on the pure PDMS surface. Stability experiments were also performed showing that 1 day modified UDA samples were stable in both MilliQ water at 50 °C for 17 h, and in a desiccator at room temperature for 19.5 h.
Jahnke, Annika; Mayer, Philipp
2010-07-16
The partitioning of non-polar analytes into the silicone polydimethylsiloxane (PDMS) is the basis for many analytical approaches such as solid phase microextraction (SPME), stir bar sorptive extraction (SBSE) and environmental passive sampling. Recently, the methods have been applied to increasingly complex sample matrices. The present work investigated the possible effect of complex matrices on the sorptive properties of PDMS. First, SPME fibers with a 30 microm PDMS coating were immersed in 15 different matrices, including sediment, suspensions of soil and humic substances, mayonnaise, meat, fish, olive oil and fish oil. Second, the surface of the fibers was wiped clean, and together with matrix-free control fibers, they were exposed via headspace to 7 non-polar halogenated organic chemicals in spiked olive oil. The fibers were then solvent-extracted, analyzed, and the ratios of the mean concentrations in the matrix-immersed fibers to the control fibers were determined for all matrices. These ratios ranged from 92% to 112% for the four analytes with the highest analytical precision (i.e. polychlorinated biphenyls (PCBs) 3, 28, 52 and brominated diphenyl ether (BDE) 3), and they ranged from 74% to 133% for the other three compounds (i.e. PCBs 101, 105 and gamma-hexachlorocyclohexane (HCH)). We conclude that, for non-polar, hydrophobic chemicals, the sorptive properties of the PDMS were not modified by the diverse investigated media and consequently that PDMS is suited for sampling of these analytes even in highly complex matrices. 2010 Elsevier B.V. All rights reserved.
Xue, Chuang; Du, Guang-Qing; Chen, Li-Jie; Ren, Jian-Gang; Bai, Feng-Wu
2014-10-20
The polydimethylsiloxane-polyvinylidene fluoride (PDMS-PVDF) composite membrane was studied for its pervaporation performance to removal of butanol from butanol/ABE solution, fermentation broth as well as incorporated with acetone-butanol-ethanol (ABE) fermentation. The total flux and butanol titer in permeate through the PDMS-PVDF membrane were up to 769.6 g/m(2)h and 323.5 g/L at 80 °C, respectively. The butanol flux and total flux increased with increasing the feed temperature as well as the feed butanol titer. The butanol separation factor and butanol titer in permeate decreased slightly in the presence of acetone and ethanol in the feed due to their preferential dissolution and competitive permeation through the membrane. In fed-batch fermentation incorporated with pervaporation, butanol titer and flux in permeate maintained at a steady level with the range of 139.9-154.0 g/L and 13.3-16.3 g/m(2)h, respectively, which was attributed to the stable butanol titer in fermentation broth as well as the excellent hydrophobic nature of the PDMS-PVDF matrix. Therefore, the PDMS-PVDF composite membrane had a great potential in the in situ product recovery with ABE fermentation, enabling the economic production of biobutanol. Copyright © 2014 Elsevier B.V. All rights reserved.
High performance hydrophobic solvent, carbon dioxide capture
Nulwala, Hunaid; Luebke, David
2017-05-09
Methods and compositions useful, for example, for physical solvent carbon capture. A method comprising: contacting at least one first composition comprising carbon dioxide with at least one second composition to at least partially dissolve the carbon dioxide of the first composition in the second composition, wherein the second composition comprises at least one siloxane compound which is covalently modified with at least one non-siloxane group comprising at least one heteroatom. Polydimethylsiloxane (PDMS) materials and ethylene-glycol based materials have high carbon dioxide solubility but suffer from various problems. PDMS is hydrophobic but suffers from low selectivity. Ethylene-glycol based systems have good solubility and selectivity, but suffer from high affinity to water. Solvents were developed which keep the desired combinations of properties, and result in a simplified, overall process for carbon dioxide removal from a mixed gas stream.
Nagai, Hidenori; Irie, Takashi; Takahashi, Junko; Wakida, Shin-ichi
2007-04-15
To realize highly integrated micro total analysis systems (microTAS), a simply controlled miniaturized valve should be utilized on microfluidic device. In this paper, we describe the application of photo-induced super-hydrophilicity of titanium dioxide (TiO2) to microfluidic manipulation. In addition, we found a new phenomenon for reversibly converting the surface wettability using a polydimethylsiloxane (PDMS) matrix and the photocatalytic properties of TiO2. While PDMS polymer was irradiated with UV, it was confirmed that hydrophobic material was released from the polymer to air. Several prepolymers were identified as the hydrophobic material with a gas chromatograph and mass spectrometer (GC/MS). Here, we successfully demonstrated the flexible manipulation of microfluid in a branched microchannel using the reversible wettability as micro opto-switching valve (MOS/V). The simultaneous control of MOS/Vs was also demonstrated on a 256-MOS/V integrated disk. The MOS/V promises to be one of the most effective flow switching valves for advanced applications in highly integrated micro/nano fluidics.
Hapsite Gas Chromatography - Mass Spectrometry with Solid Phase Microextraction
2005-07-18
Polydimethylsiloxane /Divinylbenzene (PDMS/DVB) 65um/partially crosslinked*** Polar volatiles 60urn/ partially crosslinked General purpose (for HPLC ... Polydimethylsiloxane (PDMS). The HAPSITE with tri-bed concentrator achieved the lowest detection limits. The HAPSITE and the field portable GCUMS... Polydimethylsiloxane (PDMS). The HAPSITE with tri-bed concentrator achieved the lowest detection limits. The HAPSITE and the field portable GC/MS instrument coupled
Heredia-Guerrero, José A; Ceseracciu, Luca; Guzman-Puyol, Susana; Paul, Uttam C; Alfaro-Pulido, Alejandro; Grande, Chiara; Vezzulli, Luigi; Bandiera, Tiziano; Bertorelli, Rosalia; Russo, Debora; Athanassiou, Athanassia; Bayer, Ilker S
2018-07-15
Ethyl cellulose (EC)/polydimethylsiloxane (PDMS) composite films were prepared at various concentrations of PDMS in the films (0, 5, 10, 15, and 20 wt.%). Morphological and chemical analysis by EDX-SEM and ATR-FTIR showed that EC-rich matrices and PDMS-rich particles were formed, with the two polymers interacting through Hbonds. The number and diameter of particles in the composite depended on the PDMS content and allowed a fine tuning of several properties such as opacity, hydrophobicity, water uptake, and water permeability. Relative low amounts of clove essential oil were also added to the most waterproof composite material (80 wt.% ethyl cellulose and 20 wt.% PDMS). The essential oil increased the flexibility and the antioxidant capacity of the composite. Finally, the antimicrobial properties were tested against common pathogens such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The presence of clove essential oil reduced the biofilm formation on the composites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures.
Zhang, Xiao-Sheng; Zhu, Fu-Yun; Han, Meng-Di; Sun, Xu-Ming; Peng, Xu-Hua; Zhang, Hai-Xia
2013-08-27
This paper reports a novel single-step wafer-level fabrication of superhydrophobic micro/nano dual-scale (MNDS) poly(dimethylsiloxane) (PDMS) films. The MNDS PDMS films were replicated directly from an ultralow-surface-energy silicon substrate at high temperature without any surfactant coating, achieving high precision. An improved deep reactive ion etching (DRIE) process with enhanced passivation steps was proposed to easily realize the ultralow-surface-energy MNDS silicon substrate and also utilized as a post-treatment process to strengthen the hydrophobicity of the MNDS PDMS film. The chemical modification of this enhanced passivation step to the surface energy has been studied by density functional theory, which is also the first investigation of C4F8 plasma treatment at molecular level by using first-principle calculations. From the results of a systematic study on the effect of key process parameters (i.e., baking temperature and time) on PDMS replication, insight into the interaction of hierarchical multiscale structures of polymeric materials during the micro/nano integrated fabrication process is experimentally obtained for the first time. Finite element simulation has been employed to illustrate this new phenomenon. Additionally, hierarchical PDMS pyramid arrays and V-shaped grooves have been developed and are intended for applications as functional structures for a light-absorption coating layer and directional transport of liquid droplets, respectively. This stable, self-cleaning PDMS film with functional micro/nano hierarchical structures, which is fabricated through a wafer-level single-step fabrication process using a reusable silicon mold, shows attractive potential for future applications in micro/nanodevices, especially in micro/nanofluidics.
Modulated release from implantable ocular silicone oil tamponade drug reservoirs.
Cauldbeck, Helen; Le Hellaye, Maude; McDonald, Tom O; Long, Mark; Williams, Rachel L; Rannard, Steve P; Kearns, Victoria R
2018-04-15
Complicated cases of retinal detachment can be treated with silicone oil tamponades. There is the potential for silicone oil tamponades to have adjunctive drug releasing behaviour within the eye, however the lipophilic nature of silicone oil limits the number of drugs that are suitable, and drug release from the hydrophobic reservoir is uncontrolled. Here, a radiometric technique was developed to accurately measure drug solubility in silicone oil and measure release into culture media. All-trans retinoic acid (atRA), a lipophilic drug known to act as an anti-proliferative within the eye, was used throughout this work. Chain-end modification of polydimethylsiloxane with atRA produced a polydimethylsiloxane retinoate (PDMS-atRA), which was used as an additive to silicone oil to modify the solvent environment within the silicone oil and the distribution coefficient. Blends of PDMS-atRA and silicone oil containing different concentrations of free atRA were produced. The presence of PDMS-atRA in silicone oil had a positive effect on atRA solubility and the longevity of release in vitro . The drug release period was independent of atRA starting concentration and dependent on the PDMS-atRA concentration in the blend. A clinically relevant release period of atRA over 7 weeks from a silicone oil blend with PDMS-atRA was observed. © 2018 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56 , 938-946.
Kapridaki, Chrysi; Verganelaki, Anastasia; Dimitriadou, Pipina; Maravelaki-Kalaitzaki, Pagona
2018-04-27
In the conservation of monuments, research on innovative nanocomposites with strengthening, hydrophobic and self-cleaning properties have attracted the interest of the scientific community and promising results have been obtained as a result. In this study, stemming from the need for the compatibility of treatments in terms of nanocomposite/substrate, a three-layered compatible treatment providing strengthening, hydrophobic, and self-cleaning properties is proposed. This conservation approach was implemented treating lithotypes and mortars of different porosity and petrographic characteristics with a three-layered treatment comprising: (a) a consolidant, tetraethoxysilane (TEOS)-nano-Calcium Oxalate; (b) a hydrophobic layer of TEOS-polydimethylsiloxane (PDMS); and (c) a self-cleaning layer of TiO₂ nanoparticles from titanium tetra-isopropoxide with oxalic acid as hole-scavenger. After the three-layered treatment, the surface hydrophobicity was improved due to PDMS and nano-TiO₂ in the interface substrate/atmosphere, as proven by the homogeneity and the Si⁻O⁻Ti hetero-linkages of the blend protective/self-cleaning layers observed by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The aesthetic, microstructural, mechanical and permeabile compatibility of the majority of treated substrates ranged within acceptability limits. The improved photocatalytic activity, as proven by the total discoloration of methylene blue in the majority of cases, was attributed to the anchorage of TiO₂, through the Si⁻O⁻Ti bonds to SiO₂, in the interface with the atmosphere, thus enhancing photoactivation.
Yamada, Ryotaro; Hattori, Koji; Tachikawa, Saoko; Tagaya, Motohiro; Sasaki, Toru; Sugiura, Shinji; Kanamori, Toshiyuki; Ohnuma, Kiyoshi
2014-09-01
Human induced pluripotent stem cells (hiPSCs) are a promising source of cells for medical applications. Recently, the development of polydimethylsiloxane (PDMS) microdevices to control the microenvironment of hiPSCs has been extensively studied. PDMS surfaces are often treated with low-pressure air plasma to facilitate protein adsorption and cell adhesion. However, undefined molecules present in the serum and extracellular matrix used to culture cells complicate the study of cell adhesion. Here, we studied the effects of vitronectin and γ-globulin on hiPSC adhesion to plasma-treated and untreated PDMS surfaces under defined culture conditions. We chose these proteins because they have opposite properties: vitronectin mediates hiPSC attachment to hydrophilic siliceous surfaces, whereas γ-globulin is adsorbed by hydrophobic surfaces and does not mediate cell adhesion. Immunostaining showed that, when applied separately, vitronectin and γ-globulin were adsorbed by both plasma-treated and untreated PDMS surfaces. In contrast, when PDMS surfaces were exposed to a mixture of the two proteins, vitronectin was preferentially adsorbed onto plasma-treated surfaces, whereas γ-globulin was adsorbed onto untreated surfaces. Human iPSCs adhered to the vitronectin-rich plasma-treated surfaces but not to the γ-globulin-rich untreated surfaces. On the basis of these results, we used perforated masks to prepare plasma-patterned PDMS substrates, which were then used to pattern hiPSCs. The patterned hiPSCs expressed undifferentiated-cell markers and did not escape from the patterned area for at least 7 days. The patterned PDMS could be stored for up to 6 days before hiPSCs were plated. We believe that our results will be useful for the development of hiPSC microdevices. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Cheng, Chao-Min; Matsuura, Koji; Wang, I-Jan; Kuroda, Yuka; LeDuc, Philip R; Naruse, Keiji
2009-11-21
Polymeric curved structures are widely used in imaging systems including optical fibers and microfluidic channels. Here, we demonstrate that small-scale, poly(dimethylsiloxane) (PDMS)-based, curved structures can be fabricated through controlling interfacial free energy equilibrium. Resultant structures have a smooth, symmetric, curved surface, and may be convex or concave in form based on surface tension balance. Their curvatures are controlled by surface characteristics (i.e., hydrophobicity and hydrophilicity) of the molds and semi-liquid PDMS. In addition, these structures are shown to be biocompatible for cell culture. Our system provides a simple, efficient and economical method for generating integrateable optical components without costly fabrication facilities.
Jin, Ling; Escher, Beate I; Limpus, Colin J; Gaus, Caroline
2015-11-01
Conventional target analysis of biological samples such as blood limits our ability to understand mixture effects of chemicals. This study aimed to establish a rapid passive sampling technique using the polymer polydimethylsiloxane (PDMS) for exhaustive extraction of mixtures of neutral organic chemicals accumulated in blood of green turtles, in preparation for screening in in vitro bioassays. We designed a PDMS-blood partitioning system based on the partition coefficients of chemicals between PDMS and major blood components. The sampling kinetics of hydrophobic test chemicals (polychlorinated dibenzo-p-dioxins; PCDDs) from blood into PDMS were reasonably fast reaching steady state in <96 h. The geometric mean of the measured PDMS-blood partition coefficients for PCDDs, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) was 14 L blood kg PDMS(-1) and showed little variability (95% confidence interval from 8.4 to 29) across a wide range of hydrophobicity (logKow 5.7-8.3). The mass transfer of these chemicals from 5 mL blood into 0.94 g PDMS was 62-84%, which is similar to analytical recoveries in conventional solvent extraction methods. The validated method was applied to 15 blood samples from green turtles with known concentrations of PCDD/Fs, dioxin-like PCBs, PBDEs and organochlorine pesticides. The quantified chemicals explained most of the dioxin-like activity (69-98%), but less than 0.4% of the oxidative stress response. The results demonstrate the applicability of PDMS-based passive sampling to extract bioaccumulative chemicals from blood as well as the value of in vitro bioassays for capturing the combined effects of unknown and known chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ramaiah, K Pattabhi; Satyasri, D; Sridhar, S; Krishnaiah, A
2013-10-15
Hydrophobic polymer possesses significant potential for selective separation of volatile organic compounds (VOCs) from their aqueous solutions by pervaporation (PV). In the present study mixed matrix hydrophobic membranes of polydimethylsiloxane (PDMS) supported on polyvinylidenefluoride (PVDF) substrate were synthesized by incorporating hydrophobic inorganic ZSM-5 filler. The indigenous membranes were crosslinked with tetraethylorthosilicate (TEOS) for the extraction of volatile chlorinated hydrocarbons such as dichloromethane (DCM), trichloromethane (TCM), 1,2-dichloroethane (DCE), and 1,1,2,2-tetrachloroethane (TeCE), which pose serious environment threat and health hazard. Thermal stability, crosslinking, crystallinity, surface morphology and swelling characteristics of the indigenously developed membranes were determined by TGA, FTIR, XRD, SEM and sorption studies, respectively. Effect of operating parameters such as feed composition and filler concentration on separation performance in terms of flux and selectivity were determined. Flux of DCM, TCM, DCE and TeCE was found to be 0.166, 0.146, 0.141 and 0.06 kg m(-2)h(-1) with selectivity of 541, 1068, 917 and 15,000, respectively, for 20% ZSM-5 filled PDMS membrane for aqueous feeds containing 1.33% (w/v) DCM, 0.8% (w/v) TCM, 0.84% (w/v) DCE and 0.28% (w/v) TeCE in water. The membrane exhibited considerable feasibility for scale-up with significant potential for removal of hazardous chlorinated VOCs from aqueous solutions. Copyright © 2013 Elsevier B.V. All rights reserved.
Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liang, Tao; Feng, Yuchun; Zeng, Xingrong
2017-01-25
Functional surfaces for reversibly switchable wettability and oil-water separation have attracted much interest with pushing forward an immense influence on fundamental research and industrial application in recent years. This article proposed a facile method to fabricate superhydrophobic surfaces on steel substrates via electroless replacement deposition of copper sulfate (CuSO 4 ) and UV curing of vinyl-terminated polydimethylsiloxane (PDMS). PDMS-based superhydrophobic surfaces exhibited water contact angle (WCA) close to 160° and water sliding angle (WSA) lower than 5°, preserving outstanding chemical stability that maintained superhydrophobicity immersing in different aqueous solutions with pH values from 1 to 13 for 12 h. Interestingly, the superhydrophobic surface could dramatically switch to the superhydrophilic state under UV irradiation and then gradually recover to the highly hydrophobic state with WCA at 140° after dark storage. The underlying mechanism was also investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the PDMS-based steel mesh possessed high separation efficiency and excellent reusability in oil-water separation. Our studies provide a simple, fast, and economical fabrication method for wettability-transformable superhydrophobic surfaces and have the potential applications in microfluidics, the biomedical field, and oil spill cleanup.
Ryu, Yong -Sang; Wittenberg, Nathan J.; Suh, Jeng -Hun; ...
2016-05-27
We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed betweenmore » the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Furthermore, our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Yong -Sang; Wittenberg, Nathan J.; Suh, Jeng -Hun
We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed betweenmore » the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Furthermore, our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates.« less
Ryu, Yong-Sang; Wittenberg, Nathan J.; Suh, Jeng-Hun; Lee, Sang-Wook; Sohn, Youngjoo; Oh, Sang-Hyun; Parikh, Atul N.; Lee, Sin-Doo
2016-01-01
We show that the selective localization of cholesterol-rich domains and associated ganglioside receptors prefer to occur in the monolayer across continuous monolayer-bilayer junctions (MBJs) in supported lipid membranes. For the MBJs, glass substrates were patterned with poly(dimethylsiloxane) (PDMS) oligomers by thermally-assisted contact printing, leaving behind 3 nm-thick PDMS patterns. The hydrophobicity of the transferred PDMS patterns was precisely tuned by the stamping temperature. Lipid monolayers were formed on the PDMS patterned surface while lipid bilayers were on the bare glass surface. Due to the continuity of the lipid membranes over the MBJs, essentially free diffusion of lipids was allowed between the monolayer on the PDMS surface and the upper leaflet of the bilayer on the glass substrate. The preferential localization of sphingomyelin, ganglioside GM1 and cholesterol in the monolayer region enabled to develop raft microdomains through coarsening of nanorafts. Our methodology provides a simple and effective scheme of non-disruptive manipulation of the chemical landscape associated with lipid phase separations, which leads to more sophisticated applications in biosensors and as cell culture substrates. PMID:27230411
Quan, Hong Hua; Li, Ming; Huang, Yan; Hahn, Jong Hoon
2017-01-01
This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf 2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microcontact Peeling as a New Method for Cell Micropatterning
Yokoyama, Sho; Matsui, Tsubasa S.; Deguchi, Shinji
2014-01-01
Micropatterning is becoming a powerful tool for studying morphogenetic and differentiation processes of cells. Here we describe a new micropatterning technique, which we refer to as microcontact peeling. Polydimethylsiloxane (PDMS) substrates were treated with oxygen plasma, and the resulting hydrophilic layer of the surface was locally peeled off through direct contact with a peeling stamp made of aluminum, copper, or silicon. A hydrophobic layer of PDMS could be selectively exposed only at the places of the physical contact as revealed by water contact angle measurements and angle-resolved X-ray photoelectron spectroscopy, which thus enabled successful micropatterning of cells with micro-featured peeling stamps. This new micropatterning technique needs no procedure for directly adsorbing proteins to bare PDMS in contrast to conventional techniques using a microcontact printing stamp. Given the several unique characteristics, the present technique based on the peel-off of inorganic materials may become a useful option for performing cell micropatterning. PMID:25062030
Improvements in soft gelatin capsule sample preparation for USP-based simethicone FTIR analysis.
Hargis, Amy D; Whittall, Linda B
2013-02-23
Due to the absence of a significant chromophore, Simethicone raw material and finished product analysis is achieved using a FTIR-based method that quantifies the polydimethylsiloxane (PDMS) component of the active ingredient. The method can be found in the USP monographs for several dosage forms of Simethicone-containing pharmaceutical products. For soft gelatin capsules, the PDMS assay values determined using the procedure described in the USP method were variable (%RSDs from 2 to 9%) and often lower than expected based on raw material values. After investigation, it was determined that the extraction procedure used for sample preparation was causing loss of material to the container walls due to the hydrophobic nature of PDMS. Evaluation revealed that a simple dissolution of the gelatin capsule fill in toluene provided improved assay results (%RSDs≤0.5%) as well as a simplified and rapid sample preparation. Copyright © 2012 Elsevier B.V. All rights reserved.
Shin, Soojeong; Shin, Jeong Eun; Yoo, Young Je
2013-01-01
Although transplantation of microencapsulated islets has been proposed as a therapy for the treatment of diabetes mellitus, limited retrievability of the cells has impeded its medical usage. To achieve retrieval of microencapsulated islets, capsules were attached to polydimethylsiloxane (PDMS) with a biocompatible adhesive. Because the hydrophobic nature of the PDMS surface prevents attachment, surface modification is essential. Alginate microcapsules were attached to modified PDMS sheets, and the mechanical stability of the resulting constructs was determined. Acrylic acid (AA) and acrylamide (AM) mixtures were grafted on the surfaces of PDMS sheets using a two-step oxygen plasma treatment (TSPT). TSPT-PDMS was characterized according to water contact angle and zeta-potential measurements. The contact angle was altered by changing the ratio of AM to AA to generate hydrophilic surface. Evaluation of the surface charge at pH 2, 7, and 12 confirmed the presence of polar groups on the modified surface. Microcapsules were attached to TSPT-PDMS using Histoacryl® and shown to be in a monolayered and half-exposed state. The shear stress resistance of alginate capsules attached to the PDMS sheet indicates the possibility of transplantation of encapsulated cells without scattering in vivo. This method is applicable to retrieve microencapsulated porcine islets when required. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Grant, Sharon; Schacht, Veronika J; Escher, Beate I; Hawker, Darryl W; Gaus, Caroline
2016-03-15
Freely dissolved aqueous concentration and chemical activity are important determinants of contaminant transport, fate, and toxic potential. Both parameters are commonly quantified using Solid Phase Micro-Extraction (SPME) based on a sorptive polymer such as polydimethylsiloxane (PDMS). This method requires the PDMS-water partition constants, KPDMSw, or activity coefficient to be known. For superhydrophobic contaminants (log KOW >6), application of existing methods to measure these parameters is challenging, and independent measures to validate KPDMSw values would be beneficial. We developed a simple, rapid method to directly measure PDMS solubilities of solid contaminants, SPDMS(S), which together with literature thermodynamic properties was then used to estimate KPDMSw and activity coefficients in PDMS. PDMS solubility for the test compounds (log KOW 7.2-8.3) ranged over 3 orders of magnitude (4.1-5700 μM), and was dependent on compound class. For polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs), solubility-derived KPDMSw increased linearly with hydrophobicity, consistent with trends previously reported for less chlorinated congeners. In contrast, subcooled liquid PDMS solubilities, SPDMS(L), were approximately constant within a compound class. SPDMS(S) and KPDMSw can therefore be predicted for a compound class with reasonable robustness based solely on the class-specific SPDMS(L) and a particular congener's entropy of fusion, melting point, and aqueous solubility.
Ciobanu, C S; Groza, A; Iconaru, S L; Popa, C L; Chapon, P; Chifiriuc, M C; Hristu, R; Stanciu, G A; Negrila, C C; Ghita, R V; Ganciu, M; Predoi, D
2015-01-01
The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells.
Ciobanu, C. S.; Groza, A.; Iconaru, S. L.; Popa, C. L.; Chapon, P.; Chifiriuc, M. C.; Hristu, R.; Stanciu, G. A.; Negrila, C. C.; Ghita, R. V.; Ganciu, M.; Predoi, D.
2015-01-01
The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC—American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849
Synthetically Simple, Highly Resilient Hydrogels
Cui, Jun; Lackey, Melissa A.; Madkour, Ahmad E.; Saffer, Erika M.; Griffin, David M.; Bhatia, Surita R.; Crosby, Alfred J.; Tew, Gregory N.
2014-01-01
Highly resilient synthetic hydrogels were synthesized by using the efficient thiol-norbornene chemistry to cross-link hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) polymer chains. The swelling and mechanical properties of the hydrogels were well-controlled by the relative amounts of PEG and PDMS. In addition, the mechanical energy storage efficiency (resilience) was more than 97% at strains up to 300%. This is comparable with one of the most resilient materials known: natural resilin, an elastic protein found in many insects, such as in the tendons of fleas and the wings of dragonflies. The high resilience of these hydrogels can be attributed to the well-defined network structure provided by the versatile chemistry, low cross-link density, and lack of secondary structure in the polymer chains. PMID:22372639
Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
Kim, Jungkyu; Surapaneni, Rajesh; Gale, Bruce K
2009-05-07
Rapid prototyping of microfluidic systems using a combination of double-sided tape and PDMS (polydimethylsiloxane) is introduced. PDMS is typically difficult to bond using adhesive tapes due to its hydrophobic nature and low surface energy. For this reason, PDMS is not compatible with the xurography method, which uses a knife plotter and various adhesive coated polymer tapes. To solve these problems, a PDMS/tape composite was developed and demonstrated in microfluidic applications. The PDMS/tape composite was created by spinning it to make a thin layer of PDMS over double-sided tape. Then the PDMS/tape composite was patterned to create channels using xurography, and bonded to a PDMS slab. After removing the backing paper from the tape, a complete microfluidic system could be created by placing the construct onto nearly any substrate; including glass, plastic or metal-coated glass/silicon substrates. The bond strength was shown to be sufficient for the pressures that occur in typical microfluidic channels used for chemical or biological analysis. This method was demonstrated in three applications: standard microfluidic channels and reactors, a microfluidic system with an integrated membrane, and an electrochemical biosensor. The PDMS/tape composite rapid prototyping technique provides a fast and cost effective fabrication method and can provide easy integration of microfluidic channels with sensors and other components without the need for a cleanroom facility.
Photolithographic surface micromachining of polydimethylsiloxane (PDMS).
Chen, Weiqiang; Lam, Raymond H W; Fu, Jianping
2012-01-21
A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O(2) plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrication of large microfiltration membranes and free-standing beam structures in PDMS.
Photolithographic surface micromachining of polydimethylsiloxane (PDMS)
Chen, Weiqiang; Lam, Raymond H. W.
2014-01-01
A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O2 plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrications of large microfiltration membranes and free-standing beam structures in PDMS. PMID:22089984
Fabrication of super-hydrophobic duo-structures
NASA Astrophysics Data System (ADS)
Zhang, X. Y.; Zhang, F.; Jiang, Y. J.; Wang, Y. Y.; Shi, Z. W.; Peng, C. S.
2015-04-01
Recently, super-hydrophobicity has attracted increasing attention due to its huge potential in the practical applications. In this paper, we have presented a duo-structure of the combination of micro-dot-matrix and nano-candle-soot. Polydimethylsiloxane (PDMS) was used as a combination layer between the dot-matrix and the soot particles. Firstly, a period of 9-μm dot-matrix was easily fabricated on the K9 glass using the most simple and mature photolithography process. Secondly, the dot-matrix surface was coated by a thin film of PDMS (elastomer: hardener=10:1) which was diluted by methylbenzene at the volume ratio of 1:8. Thirdly, we held the PDMS modified surface over a candle flame to deposit a soot layer and followed by a gentle water-risen to remove the non-adhered particles. At last, the samples were baked at 85°C for 2 hours and then the duo-structure surface with both micro-size dot-matrix and nano-size soot particles was obtained. The SEM indicated this novel surface morphology was quite like a lotus leaf of the well-know micro-nano-binary structures. As a result, the contact angle meter demonstrated such surface exhibited a perfect super-hydrophobicity with water contact angle of 153° and sliding angle of 3°. Besides, just listed as above, the fabrication process for our structure was quite more easy, smart and low-cost compared with the other production technique for super-hydrophobic surfaces such as the phase separation method, electrochemical deposition and chemical vapor deposition etc. Hence, this super-hydrophobic duo-structure reported in this letter was a great promising candidate for a wide and rapid commercialization in the future.
Labruyère, Céline; Monteverde, Fabien; Alexandre, Michaël; Dubois, Philippe
2009-04-01
Poly(dimethylsiloxane) (PDMS)/montmorillonite (MMT) composites have been prepared using a newly synthesized omega-ammonium functionalized poly(dimethylsiloxane) compatibilizer coupled with a dispersion technique in water. The organoclay containing the new siloxane surfactant was characterized by TGA and XRD. For the first time, a nanoscopic dispersion of MMT nanoplatelets in the PDMS composite cured by hydrosilylation and a good compatibility between clay layers and matrix were obtained. The beneficial effect of both the surfactant and the water onto clay nanoplatelet dispersion was evaluated by different microscopy techniques and by measuring different properties such as the viscosity of the uncured PDMS/MMT nanodispersions, and the swelling rate and Young's modulus of the cured PDMS/MMT nanocomposites.
Ahmadi, Hamid; Bolinius, Damien Johann; Jahnke, Annika; MacLeod, Matthew
2016-12-01
Plant leaves play an important role in the fate of hydrophobic organic contaminants (HOCs) in the environment. Yet much remains unknown about the permeability of leaves by HOCs. In this pilot study we measured (i) the kinetics of mass transfer of three polycyclic aromatic hydrocarbons (PAHs) and six polychlorinated biphenyls between a spiked and an unspiked sheet of polydimethylsiloxane (PDMS) in direct contact with each other for 24 h and (ii) kinetics of mass transfer of two PAHs through leaves and low-density polyethylene (LDPE) in a passive dosing experiment by inserting these matrices between the two sheets of PDMS for 48 h. The kinetics of mass transfer of fluoranthene between PDMS sheets in direct contact were a factor of 12 slower than those reported in the literature. The kinetics of mass transfer of fluorene and phenanthrene through leaves were within the range of those previously reported for 2,4-dichlorophenoxyacetic acid through isolated cuticles. Our results provide a proof-of-concept demonstration that the passive dosing method applied in this study can be used to measure the mass transfer coefficients of organic chemicals through leaves. Key recommendations for future experiments are to load the PDMS at the highest feasible concentrations to avoid working at analyte levels close to the limit of detection, to keep the leaves moist and to minimize potential pathways for contamination of the PDMS sheets by exposure to laboratory air. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water.
Choi, Sung-Jin; Kwon, Tae-Hong; Im, Hwon; Moon, Dong-Il; Baek, David J; Seol, Myeong-Lok; Duarte, Juan P; Choi, Yang-Kyu
2011-12-01
We present a sugar-templated polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. The process for fabricating the PDMS sponge does not require any intricate synthesis processes or equipment and it is not environmentally hazardous, thus promoting potential in environmental applications. The proposed PDMS sponge can be elastically deformed into any shape, and it can be compressed repeatedly in air or liquids without collapsing. Therefore, absorbed oils and organic solvents can be readily removed and reused by simply squeezing the PDMS sponge, enabling excellent recyclability. Furthermore, through appropriately combining various sugar particles, the absorption capacity of the PDMS sponge is favorably optimized. © 2011 American Chemical Society
Multi-layered Poly-Dimethylsiloxane As A Non-Hermetic Packaging Material For Medical MEMS
Lachhman, S.; Zorman, C.A.; Ko, W.H.
2012-01-01
Poly-dimethylsiloxane (PDMS) is an attractive material for packaging implantable biomedical microdevices owing to its biocompatibility, ease in application, and bio-friendly mechanical properties. Unfortunately, devices encapsulated by PDMS lack the longevity for use in chronic implant applications due to defect-related moisture penetration through the packaging layer. This paper describes an effort to improve the performance of PDMS as packaging material by constructing the encapsulant from multiple, thin layers of PDMS as a part of a polymeric multi-material package PMID:23366225
Novel Encapsulation Method for Flexible Organic Light-Emitting Diodes using Poly(dimethylsiloxane)
NASA Astrophysics Data System (ADS)
Han, Jeong-Min; Han, Jin-Woo; Chun, Ji-Yun; Ok, Chul-Ho; Seo, Dae-Shik
2008-12-01
We have developed a novel encapsulation method for flexible organic light-emitting diodes (OLEDs) using poly(dimethylsiloxane) (PDMS). The new method, which uses polycarbonate film, silicon dioxide, and PDMS, was found to enhance the lifetime of OLEDs in air. Optical measurements of the preservation of calcium films encapsulated with PDMS showed that the water and oxygen permeation rates of the PDMS encapsulation were reduced from a level of 0.57 g m-2 d-1 (bare substrate) to 1×10-7 g m-2 d-1. These results indicate that the PDMS barrier coatings have a good potential for flexible OLED applications.
Li, Panyuan; Wang, Zhi; Li, Wen; Liu, Yanni; Wang, Jixiao; Wang, Shichang
2015-07-22
It is desirable to develop high-performance composite membranes for efficient CO2 separation in CO2 capture process. Introduction of a highly permeable polydimethylsiloxane (PDMS) intermediate layer between a selective layer and a porous support has been considered as a simple but efficient way to enhance gas permeance while maintaining high gas selectivity, because the introduced intermediate layer could benefit the formation of an ultrathin defect-free selective layer owing to the circumvention of pore penetration phenomenon. However, the selection of selective layer materials is unfavorably restricted because of the low surface energy of PDMS. Various highly hydrophilic membrane materials such as amino group-rich polyvinylamine (PVAm), a representative facilitated transport membrane material for CO2 separation, could not be facilely coated over the surface of the hydrophobic PDMS intermediate layer uniformly. Inspired by the hydrophilic nature and strong adhesive ability of polydopamine (PDA), PDA was therefore selected as a versatile molecular bridge between hydrophobic PDMS and hydrophilic PVAm. The PDA coating endows a highly compatible interface between both components with a large surface energy difference via multiple-site cooperative interactions. The resulting multilayer composite membrane with a thin facilitated transport PVAm selective layer exhibits a notably enhanced CO2 permeance (1887 GPU) combined with a slightly improved CO2/N2 selectivity (83), as well as superior structural stability. Similarly, the multilayer composite membrane with a hydrophilic CO2-philic Pebax 1657 selective layer was also developed for enhanced CO2 separation performance.
Study of nano mechanical properties polydimethylsiloxane (PDMS)/MWCNT composites
NASA Astrophysics Data System (ADS)
Murudkar, Vrishali; Gaonkar, Amita; Deshpande, V. D.; Mhaske, S. T.
2018-05-01
Polydimethylsiloxane (PDMS), a clear elastomer, is a common material used in many applications; but has poor mechanical properties. Carbon nano tubes (CNT) exhibit excellent mechanical properties & hence are used as filler in PDMS. It was found that the elastic modulus and strength of the PDMS/MWCNT nano composites were enhanced by adding MWCNT [1]. Through the nano indentation experiment, the hardness (H), the elastic modulus (E), and other mechanical properties can be determined from very small volumes of materials [2]; hence nano indentation is widely used to study mechanical properties. PDMS/MWCNT composites have enhanced mechanical properties over neat PDMS. FTIR analysis shows bonding between MWCNT and PDMS; which affects the mechanical properties. From AFM study it shows decreasing roughness for increasing MWCNT concentration. Surface morphology (SEM) study shows well dispersion of MWCNT into PDMS matrix.
An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.
Mohammadi, Saeed; Maeki, Masatoshi; Mohamadi, Reza M; Ishida, Akihiko; Tani, Hirofumi; Tokeshi, Manabu
2015-10-07
This paper describes a simple and instrument-free screen-printing method to fabricate hydrophilic channels by patterning polydimethylsiloxane (PDMS) onto chromatography paper. Clearly recognizable border lines were formed between hydrophilic and hydrophobic areas. The minimum width of the printed channel to deliver an aqueous sample was 600 μm, as obtained by this method. Fabricated microfluidic paper-based analytical devices (μPADs) were tested for several colorimetric assays of pH, glucose, and protein in both buffer and artificial urine samples and results were obtained in less than 30 min. The limits of detection (LODs) for glucose and bovine serum albumin (BSA) were 5 mM and 8 μM, respectively. Furthermore, the pH values of different solutions were visually recognised with the naked eye by using a sensitive ink. Ultimately, it is expected that this PDMS-screen-printing (PSP) methodology for μPADs can be readily translated to other colorimetric detection and hydrophilic channels surrounded by a hydrophobic polymer can be formed to transport fluids toward target zones.
Persistence of Polydimethylsiloxane Condom Lubricants.
Tottey, Leah S; Coulson, Sally A; Wevers, Gerhard E; Fabian, Laura; McClelland, Heather; Dustin, Mickayla
2018-05-14
Polydimethylsiloxane (PDMS) is commonly used to lubricate condoms. The detection of PDMS on swabs from complainants can be used to support an allegation of sexual assault. Previous research has focused on establishing analytical techniques for detecting PDMS. This research examined the persistence of PDMS on the penis, in the vagina, in the mouth, and on skin. The longest PDMS detection times were 20 h on the penis, 35 h in the vagina, and 52 h on skin. PDMS was detected up to 4 h in the mouth if the participant did not eat or drink and up to 9 h if the participant slept. PDMS was not detected in the mouth after eating or drinking. The presence of biological fluids had no detrimental effect on the analysis. Aqueous extraction of swabs for DNA did not remove any significant amount of PDMS; hence, swab remains could be subsequently analyzed for PDMS. © 2018 American Academy of Forensic Sciences.
Lee, Joo-Hyung; Lee, Hong-Seok; Lee, Byung-Kee; Choi, Won-Seok; Choi, Hwan-Young; Yoon, Jun-Bo
2007-09-15
A simple liquid crystal display (LCD) backlight unit (BLU) comprising only a single-sheet polydimethylsiloxane (PDMS) light-guide plate (LGP) has been developed. The PDMS LGP, having micropatterns with an inverse-trapezoidal cross section, was fabricated by backside 3-D diffuser lithography followed by PDMS-to-PDMS replication. The fabricated BLU showed an average luminance of 2878 cd/m(2) with 73.3% uniformity when mounted in a 5.08 cm backlight module with four side view 0.85cd LEDs. The developed BLU can greatly reduce the cost and thickness of LCDs, and it can be applied to flexible displays as a flexible light source due to the flexible characteristic of the PDMS itself.
Multi-layered poly-dimethylsiloxane as a non-hermetic packaging material for medical MEMS.
Lachhman, S; Zorman, C A; Ko, W H
2012-01-01
Poly-dimethylsiloxane (PDMS) is an attractive material for packaging implantable biomedical microdevices owing to its biocompatibility, ease in application, and bio-friendly mechanical properties. Unfortunately, devices encapsulated solely by PDMS lack the longevity for use in chronic implant applications due to defect-related moisture penetration through the packaging layer caused by conventional deposition processes such as spin coating. This paper describes an effort to improve the performance of PDMS as a packaging material by constructing the encapsulant from multiple, thin roller casted layers of PDMS as a part of a polymeric multi-material package.
Hyun Kim; Sun-Young Yoo; Ji Sung Kim; Zihuan Wang; Woon Hee Lee; Kyo-In Koo; Jong-Mo Seo; Dong-Il Cho
2017-07-01
Inhibition of polydimethylsiloxane (PDMS) polymerization could be observed when spin-coated over vinyl substrates. The degree of polymerization, partially curing or fully curing, depended on the PDMS thickness coated over the vinyl substrate. This characteristic was exploited to achieve simple and fast PDMS patterning method using a vinyl adhesive layer patterned through a cutting plotter. The proposed patterning method showed results resembling PDMS etching. Therefore, patterning PDMS over PDMS, glass, silicon, and gold substrates were tested to compare the results with conventional etching methods. Vinyl stencils with widths ranging from 200μm to 1500μm were used for the procedure. To evaluate the accuracy of the cutting plotter, stencil designed on the AutoCAD software and the actual stencil widths were compared. Furthermore, this method's accuracy was also evaluated by comparing the widths of the actual stencils and etched PDMS results.
Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions.
Markov, Dmitry A; Lillie, Elizabeth M; Garbett, Shawn P; McCawley, Lisa J
2014-02-01
Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results indicate that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a 3-day storage in air, but remained significant for up to 3 weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60 % smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a 3-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems.
Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions
Markov, Dmitry A.; Lillie, Elizabeth M.; Garbett, Shawn P.; McCawley, Lisa J.
2013-01-01
Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results show that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a three-day storage in air, but remained significant for up to three weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60% smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a three-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems. PMID:24065585
Takahashi, Yurika
2016-12-01
The performance of recently developed polydimethylsiloxane (PDMS)-based optical system was tested for measuring optical density of microbial culture. The data showed that PDMS-based spectrometer is superior to "one drop" spectrometers in the accuracy, and has an advantage over conventional spectrometers in measuring dense culture without dilution.
NASA Astrophysics Data System (ADS)
Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi
2017-01-01
A new dipole antenna designed using polydimethylsiloxane-glass microsphere (PDMS-GM) substrate is presented. The PDMS-GM substrate offered a lower permittivity of 1.85 compared to pure PDMS of 2.7. This resulted in a wide operating frequency range from 19 GHz up to more than 45 GHz, indicating a bandwidth of more than 28 GHz. The proposed PDMS-GM antenna featured a gain of up to 13.3 dB compared to pure PDMS which only produced 13 GHz of bandwidth and 5.5 dB gain. Instead of wide bandwidth and high gain, the proposed antenna is capable of becoming water resistant by covering its radiator and SMA connector. Such capabilities of the new PDMS-GM antenna indicated suitability for the fifth-generation (5G) wireless communication systems.
NASA Astrophysics Data System (ADS)
Novak, M.; Jargus, J.; Fajkus, M.; Bednarek, L.; Vasinek, V.
2017-10-01
Polydimethylsiloxane (PDMS) can be used for its optical properties and its composition offers the possibility of use in the dangerous environments. Therefore authors of this article focused on more detailed working with this material. The authors describe the use of PDMS polymer for the light transmission over short distances (up to tens of centimeters). PDMS offers good prerequisites (mechanical properties) for the creating cylindrical lighting waveguide e.g. for the purpose of the automotive industry. The objective is to determine the maximum bending radius of the cylindrical waveguide of polydimethylsiloxane for different wavelengths of the visible spectrum and thus extend the knowledge for subsequent use in lighting. The created cylindrical waveguide consist of a core and a cladding. Cladding was formed by a PDMS having a lower refractive index in order to respect the condition of total reflection.
van Midwoud, Paul M; Janse, Arnout; Merema, Marjolijn T; Groothuis, Geny M M; Verpoorte, Elisabeth
2012-05-01
Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision-cut liver slices, that are not possible with conventional systems. However, PDMS, a silicone rubber material, is very hydrophobic and tends to exhibit significant adsorption and absorption of hydrophobic drugs and their metabolites. Although glass could be used as an alternative, thermoplastics are better from a cost and fabrication perspective. Thermoplastic polymers (plastics) allow easy surface treatment and are generally transparent and biocompatible. This study focuses on the fabrication of biocompatible microfluidic devices with low adsorption properties from the thermoplastics poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and cyclic olefin copolymer (COC) as alternatives for PDMS devices. Thermoplastic surfaces were oxidized using UV-generated ozone or oxygen plasma to reduce adsorption of hydrophobic compounds. Surface hydrophilicity was assessed over 4 weeks by measuring the contact angle of water on the surface. The adsorption of 7-ethoxycoumarin, testosterone, and their metabolites was also determined after UV-ozone treatment. Biocompatibility was assessed by culturing human hepatoma (HepG2) cells on treated surfaces. Comparison of the adsorption properties and biocompatibility of devices in different plastics revealed that only UV-ozone-treated PC and COC devices satisfied both criteria. This paper lays an important foundation that will help researchers make informed decisions with respect to the materials they select for microfluidic cell-based culture experiments.
Rogers, Chad I.; Pagaduan, Jayson V.; Nordin, Gregory P.; Woolley, Adam T.
2011-01-01
Nonspecific adsorption in microfluidic systems can deplete target molecules in solution and prevent analytes, especially those at low concentrations, from reaching the detector. Polydimethylsiloxane (PDMS) is a widely used material for microfluidics, but is prone to nonspecific adsorption, necessitating complex chemical modification processes to address this issue. An alternative material to PDMS that does not require subsequent chemical modification is presented here. Poly(ethylene glycol) diacrylate (PEGDA) mixed with photoinitiator forms on exposure to UV radiation a polymer with inherent resistance to nonspecific adsorption. Optimization of the polymerized PEGDA (poly-PEGDA) formula imbues this material with some of the same properties, including optical clarity, water stability, and low background fluorescence, that make PDMS so popular. Poly-PEGDA demonstrates less nonspecific adsorption than PDMS over a range of concentrations of flowing fluorescently tagged bovine serum albumin solutions, and poly-PEGDA has greater resistance to permeation by small hydrophobic molecules than PDMS. Poly-PEGDA also exhibits long-term (hour scale) resistance to nonspecific adsorption compared to PDMS when exposed to a low (1 µg/mL) concentration of a model adsorptive protein. Electrophoretic separations of amino acids and proteins resulted in symmetrical peaks and theoretical plate counts as high as 4 × 105/m. Poly-PEGDA, which displays resistance to nonspecific adsorption, could have broad use in small volume analysis and biomedical research. PMID:21728310
Chung, Eun-Jae; Jun, Dae-Ryong; Kim, Dong-Wook; Han, Mi-Jung; Kwon, Tack-Kyun; Choi, Sung-Wook; Kwon, Seong Keun
2017-01-01
The use of injectable bulking agents is a feasible alternative procedure for conventional surgical therapy. In this study, poly(dimethylsiloxane) (PDMS) microspheres coated with polydopamine (PDA) were developed as a potential injection agent to prevent migration in vocal fold. Uniform PDMS microspheres are fabricated using a simple fluidic device and then coated with PDA. Cell attachment test reveals that the PDA-coated PDMS (PDA-PDMS) substrate favors cell adhesion and attachment. The injected PDA-PDMS microspheres persist without migration on reconstructed axial CT images, whereas, pristine PDMS locally migrates over a period of 12 weeks. The gross appearance of the implants retrieved at 4, 8, 12 and 34 weeks indicates that the PDA-PDMS group maintained their original position without significant migration until 34 weeks after injection. By contrast, there is diffuse local migration of the pristine PDMS group from 4 weeks after injection. The PDA-coated PDMS microspheres can potentially be used as easily injectable, non-absorbable filler without migration.
Kim, Dong-Wook; Han, Mi-Jung; Kwon, Tack-Kyun; Choi, Sung-Wook
2017-01-01
The use of injectable bulking agents is a feasible alternative procedure for conventional surgical therapy. In this study, poly(dimethylsiloxane) (PDMS) microspheres coated with polydopamine (PDA) were developed as a potential injection agent to prevent migration in vocal fold. Uniform PDMS microspheres are fabricated using a simple fluidic device and then coated with PDA. Cell attachment test reveals that the PDA-coated PDMS (PDA-PDMS) substrate favors cell adhesion and attachment. The injected PDA-PDMS microspheres persist without migration on reconstructed axial CT images, whereas, pristine PDMS locally migrates over a period of 12 weeks. The gross appearance of the implants retrieved at 4, 8, 12 and 34 weeks indicates that the PDA-PDMS group maintained their original position without significant migration until 34 weeks after injection. By contrast, there is diffuse local migration of the pristine PDMS group from 4 weeks after injection. The PDA-coated PDMS microspheres can potentially be used as easily injectable, non-absorbable filler without migration. PMID:29095854
Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers
NASA Astrophysics Data System (ADS)
Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning
2015-10-01
Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.
NASA Astrophysics Data System (ADS)
Park, Donghyun; Shin, Soo Jin; Oh, Tae Sung
2018-01-01
Thin Au films with thickness of 150 nm could be reversibly stretched up to 30% elongation on polydimethylsiloxane (PDMS) substrate with 150-nm-thick Parylene C deposited as intermediate layer instead of a Cr adhesion layer. Prestretching of the Parylene-deposited PDMS was effective to suppress the resistance increase of Au films during their tensile elongation. While the resistance change rate Δ R/ R 0 of the Au film at 30% elongation was 11 without prestretching of the Parylene-deposited PDMS, it was substantially suppressed to 0.4 with 30% prestretching of the Parylene-deposited PDMS.
Control of the wrinkle structure on surface-reformed poly(dimethylsiloxane) via ion-beam bombardment
NASA Astrophysics Data System (ADS)
Park, Hong-Gyu; Jeong, Hae-Chang; Jung, Yoon Ho; Seo, Dae-Shik
2015-07-01
We investigated the surface reformation of poly(dimethylsiloxane) (PDMS) elastomers by means of ion beam bombardment for fabricating wrinkle structures. Oxidation on the PDMS surface formed a silica-like outer layer that interacted with the inner PDMS layer, leading to the formation of wrinkle structures that minimized the combined bending energy of the outer layer and stretching energy of the inner layer. In addition, we controlled the amplitude and period of the wrinkle structures by adjusting the PDMS annealing temperature. As the PDMS annealing temperature was increased, the amplitude and period of the wrinkles formed by IB irradiation changed from 604.35 to 69.01 nm and from 3.07 to 0.80 μm, respectively.
Jeong, Jinmo; Chou, Namsun; Kim, Sohee
2016-06-01
This study investigates the mechanical and long-term electrical properties of parylene-caulked polydimethylsiloxane (PDMS) as a substrate for implantable electrodes. The parylene-caulked PDMS is a structure where particles of parylene fill the porous surface of PDMS. This material is expected to have low water absorption and desirable mechanical properties such as flexibility and elasticity that are beneficial in many biomedical applications. To evaluate the mechanical property and electrical stability of parylene-caulked PDMS for potential in-vivo uses, tensile tests were conducted firstly, which results showed that the mechanical strength of parylene-caulked PDMS was comparable to that of native PDMS. Next, surface electrodes based on parylene-caulked PDMS were fabricated and their impedance was measured in phosphate-buffered saline (PBS) solution at 36.5 °C over seven months. The electrodes based on parylene-caulked PDMS exhibited the improved stability in impedance over time than native PDMS. Thus, with improved electrical stability in wet environment and preserved mechanical properties of PDMS, the electrodes based on parylene-caulked PDMS are expected to be suitable for long-term in-vivo applications.
[Environmental behavior and ecological effect of polydimethylsiloxane: a review].
Yang, Shang-Yuan; Li, Xin; Yang, Jia; Shen, Chao-Feng; Yu, Hua-Dong; Lu, Kang
2012-08-01
Polydimethylsiloxane (PDMS) is widely used in industrial products, medical and health care products, and personal care products. In the treatment process of sewage, PDMS can be hardly biodegraded but enter the environment mainly through the discharge of excess sludge, and only a small amount of PDMS adsorbed on the suspended solids or sludge particle surface is discharged into water body and sediment with treated sewage. There is no enough evidence to verify that PDMS can vertically migrate in sediment. The degradation of PDMS in sediment is very slow, but PDMS can be degraded in different types of soils. PDMS has less risk to aquatic ecosystem, and no apparent acute toxicity to benthos. In soil environment, PDMS and its degradation products have no significant effects on the soil microorganisms, soil animals, and crops. Though a few studies indicated that PDMS and its degradation products have relatively low ecological toxicity in various environments, it is still very important to clarify the potential threat of PDMS to the environment because of the increasingly large number of PDMS being produced and used.
Lopes, Alexandre Leite; Augusto, Fabio
2004-11-12
The applicability of a composite composed of polydimethylsiloxane (PDMS) and poly(vinyl alcohol) (PDMS/PVA) as coating sorbent for SPME fibers is demonstrated here. Fused silica (FS) fibers were coated with PDMS/PVA composite through a sol-gel process, using methyltrimethoxysilane as reticulating agent. The chemical and physical properties of the sol-gel PDMS/PVA composite were determined by infrared spectroscopy and thermogravimetric analysis. Electron scanning microscopy of the prepared fibers, showed that the coating obtained was highly microporous, having a thickness of approximately 5 microm. The fibers were tested for the headspace extraction of several organic compounds (o-xylene, naphthalene, ethyl caprate, p-chlorotoluene and PCB) prior to gas chromatographic analysis. The extractive capacity of the PDMS/PVA coating was found to be superior to that of pure conventional PDMS fibers.
Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding
Tsao, Chia-Wen; Lee, Yueh-Pu
2016-01-01
Abstract In this study, an iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite material was employed to demonstrate a simple high-strength reversible magnetic bonding method. This paper presents the casting of opaque-view (where optical inspection through the microchannels was impossible) and clear-view (where optical inspection through the microchannel was possible) MMPs-PDMS. The influence of the microchannel geometries on the casting of the opaque-view casting was limited, which is similar to standard PDMS casting. Clear-view casting performance was highly associated with the microchannel geometries. The effects of the microchannel layout and the gap between the PDMS cover layer and the micromold substrate were thoroughly investigated. Compared with the native PDMS bonding strength of 31 kPa, the MMPs-PDMS magnetic bonding experiments showed that the thin PDMS film with an MMPs-PDMS layer effectively reduced the surface roughness and enhanced MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated opaque-view MMPs-PDMS device exhibited the greatest bonding strength of 110 kPa, and a clear-view MMPs-PDMS device with a thin PDMS film attained a magnetic bonding strength of 81 kPa. PMID:27877852
Moghaddam, Mohammadreza Salehi; Latifi, H; Shahraki, Hamidreza; Cheri, Mohammad Sadegh
2015-04-01
Microlenses with tunable focal length have wide applications in optofluidic devices. This work presents a numerical and experimental investigation on a tunable electrowetting-based concave lens. Optical properties such as focal length of the lens and visibility of images were investigated numerically and experimentally. A finite element analysis and a ZEMAX simulation were used for determination of surface profile and focal length of the lens. The results show that the theoretical surface profile and focal length of the lens are in good agreement with the experimental ones. The lens has a wide tuning focal length equal to 6.5 (cm). Because the polydimethylsiloxane (PDMS) layer is wedge shaped (as both the dielectric and hydrophobic layers), lower applied voltage is needed. A commercial program was used to find the focal length of the lens from maximum visibility value by tuning the applied voltage.
Li, Zhen; Yang, Jian; Ye, Heng; Ding, Mingming; Luo, Feng; Li, Jianshu; Li, Jiehua; Tan, Hong; Fu, Qiang
2018-06-11
The degradation behaviors including oxidation and hydrolysis of silicone modified polycarbonate urethanes were thoroughly investigated. These polyurethanes were based on polyhexamethylene carbonate (PHMC)/polydimethylsiloxane (PDMS) mixed macrodiols with molar ratio of PDMS ranging from 5% to 30%. It was proved that PDMS tended to migrate toward surface and even a small amount of PDMS could form a silicone-like surface. Macrophages-mediated oxidation process indicated that the PDMS surface layer was desirable to protect the fragile soft PHMC from the attack of degradative species. Hydrolysis process was probed in detail after immersing in boiling buffered water using combined analytical tools. Hydrolytically stable PDMS could act as protective shields for the bulk to hinder the chain scission of polycarbonate carbonyls whereas the hydrolysis of urethane linkages was less affected. Although the promoted phase separation at higher PDMS fractions lead to possible physical defects and mechanical compromise after degradation, simultaneously enhanced oxidation and hydrolysis resistance could be achieved for the polyurethanes with proper PDMS incorporation.
Song, Yun-Yun; Liu, Yan; Jiang, Hao-Bo; Li, Shu-Yi; Kaya, Cigdem; Stegmaier, Thomas; Han, Zhi-Wu; Ren, Lu-Quan
2018-02-22
We designed a type of smart bioinspired wettable surface with tip-shaped patterns by combining polydimethylsiloxane (PDMS) and graphene (PDMS/G). The laser etched porous graphene surface can produce an obvious wettability change between 200 °C and 0 °C due to a change in aperture size and chemical components. We demonstrate that the cooperation of the geometrical structure and the controllable wettability play an important role in water gathering, and surfaces with tip-shaped wettability patterns can quickly drive tiny water droplets toward more wettable regions, so making a great contribution to the improvement of water collection efficiency. In addition, due to the effective cooperation between super hydrophobic and hydrophilic regions of the special tip-shaped pattern, unidirectional water transport on the 200 °C heated PDMS/G surface can be realized. This study offers a novel insight into the design of temperature-tunable materials with interphase wettability that may enhance fog collection efficiency in engineering liquid harvesting equipment, and realize unidirectional liquid transport, which could potentially be applied to the realms of microfluidics, medical devices and condenser design.
Sun, Jiazhen; Jiang, Jieke; Bao, Bin; Wang, Si; He, Min; Zhang, Xingye; Song, Yanlin
2016-01-01
In this work, an effective method was developed to fabricate bendable circuits on a polydimethylsiloxane (PDMS) surface by inkjet printing semi-wrapped structures. It is demonstrated that the precured PDMS liquid film could influence the depositing morphology of coalesced silver precursor inkjet droplets. Accordingly, continuous and uniform lines with a semi-wrapped structure were fabricated on the PDMS surface. When the printed silver precursor was reduced to Ag nanoparticles, the fabricated conductive film exhibited good transparency and high bendability. This work presented a facile way to fabricate flexible patterns on a PDMS surface without any complicated modification or special equipment. Meanwhile, an in situ hydrazine reduction of Ag has been reported using the vapor phase method in the fabricating process. PMID:28773374
Soft Polydimethylsiloxane Elastomers from Architecture-driven Entanglement Free Design
Cai, Li-Heng; Kodger, Thomas E.; Guerra, Rodrigo E.; Pegoraro, Adrian F.; Rubinstein, Michael; Weitz, David A.
2015-01-01
We fabricate soft, solvent-free polydimethylsiloxane (PDMS) elastomers by crosslinking bottlebrush polymers rather than linear polymers. We design the chemistry to allow commercially available linear PDMS precursors to deterministically form bottlebrush polymers, which are simultaneously crosslinked, enabling a one-step synthesis. The bottlebrush architecture prevents the formation of entanglements, resulting in elastomers with precisely controllable elastic moduli from ~1 to ~100 kPa, below the intrinsic lower limit of traditional elastomers. Moreover, the solvent-free nature of the soft PDMS elastomers enables a negligible contact adhesion compared to commercially available silicone products of similar stiffness. The exceptional combination of softness and negligible adhesiveness may greatly broaden the applications of PDMS elastomers in both industry and research. PMID:26259975
Hollow polydimethylsiloxane beads with a porous structure for cell encapsulation.
Oh, Myeong-Jin; Ryu, Tae-Kyoung; Choi, S-W
2013-11-01
Based on a water-in-oil-in-water emulsion system, porous and hollow polydimethylsiloxane (PDMS) beads containing cells using a simple fluidic device with three flow channels are fabricated. Poly(ethylene glycol) (PEG) in the PDMS oil phase is served as a porogen for pore development. The feasibility of the porous PDMS beads prepared with different PEG concentrations (10, 20, and 30 wt%) for cell encapsulation in terms of pore size, protein diffusion, and cell proliferation inside the PDMS beads is evaluated. The PDMS beads prepared with PEG 30 wt% are exhibited a highly porous structure and facilitated fast diffusion of protein from the core domain to the outer phase, eventually leading to enhanced cell proliferation. The results clearly indicate that hollow PDMS beads with a porous structure could provide a favorable microenvironment for cell survival due to the large porous structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS)
Kim, Kyeongseob; Lee, Dongju; Eom, Seunghyun; Lim, Sungjoon
2016-01-01
A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS). To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm) to 6.4 cm. PMID:27077861
Hybrid polymer networks as ultra low `k` dielectric layers
Lewicki, James; Worsley, Marcus A.
2016-02-16
According to one embodiment, a polymeric material includes at least one polydimethylsiloxane (PDMS) polymer, and at least one polyhedral oligomericsilsequioxane (POSS) molecule. According to another embodiment, a method includes providing at least one polydimethylsiloxane (PDMS) polymer, providing at least one polyhedral oligomericsilsequioxane (POSS) molecule, and coupling the at least one PDSM polymer to the at least one POSS molecule to form a hybrid polymeric material.
Crowe, John B; Lanzarotta, Adam; Witkowski, Mark R; Andria, Sara E
2015-07-01
Suspect hypodermic needles and syringes were seized from an unlicensed individual who was allegedly injecting patients with silicone (polydimethylsiloxane [PDMS]) for cosmetic enhancement. Since control syringe barrels and needles often contain an interfering PDMS lubricant, a risk for false positives of foreign PDMS exists. The focus of this report was to minimize this risk and determine a quick and reliable test for the presence of blood in PDMS matrices. Using ATR-FT-IR spectroscopy, the risk for false-positive identification of foreign PDMS was reduced by (i) overfilling the sampling aperture to prevent spectral distortions and (ii) sampling a region of the suspect syringe/needle assembly where manufacturer-applied PDMS is not typically located. Analysis for blood indicated that the Teichman microchemical test was effective for detecting blood in the presence of PDMS. Overall, detecting PDMS established intent and detecting blood established that the needle containing the PDMS had been used for injection. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Zhang, Hongbin; Bian, Chao; Jackson, John K; Khademolhosseini, Farzad; Burt, Helen M; Chiao, Mu
2014-06-25
A durable hydrophilic and protein-resistant surface of polydimethylsiloxane (PDMS) based devices is desirable in many biomedical applications such as implantable and microfluidic devices. This paper describes a stable antifouling hydrogel coating on PDMS surfaces. The coating method combines chemical modification and surface microstructure fabrication of PDMS substrates. Three-(trimethoxysilyl)propyl methacrylates containing C═C groups were used to modify PDMS surfaces with micropillar array structures fabricated by a replica molding method. The micropillar structures increase the surface area of PDMS surfaces, which facilitates secure bonding with a hydrogel coating compared to flat PMDS surfaces. The adhesion properties of the hydrogel coating on PDMS substrates were characterized using bending, stretching and water immersion tests. Long-term hydrophilic stability (maintaining a contact angle of 55° for a month) and a low protein adsorption property (35 ng/cm(2) of adsorbed BSA-FITC) of the hydrogel coated PDMS were demonstrated. This coating method is suitable for PDMS modification with most crosslinkable polymers containing C═C groups, which can be useful for improving the anti-biofouling performance of PDMS-based biomedical microdevices.
Hydrophilic PEO-PDMS for microfluidic applications
NASA Astrophysics Data System (ADS)
Yao, Mingjin; Fang, Ji
2012-02-01
Polydimethylsiloxane (PDMS) is a popularly used nontoxic and biocompatible material in microfluidic systems, which is relatively cheap and does not break easily like glass. The simple fabrication, optical transparency and elastomeric property make PDMS a handy material to work with. In order to develop different applications of PDMS in microfluidics and bioengineering, it is necessary to modify the PDMS surface nature to improve wetting characteristics, and to have a better control in nonspecific binding of proteins and cells, as well as to increase adhesion. At the moment, the hydrophilic surface modification performance of PDMS is known to recover its hydrophobicity shortly after oxidation modification, which is not stable in the long term (Owen and Smith 1994 J. Adhes. Sci. Technol. 8 1063-75). This paper presents a long-term stable hydrophilic surface modification processing of PDMS. The poly(dimethylsiloxane-ethylene oxide polymeric) (PDMS-b-PEO) is used in this project as a surfactant additive to be added into the PDMS base and the curing agent mixture during polymerization and to create hydrophilic PEO-PDMS. The contact angle can be controlled at 21.5-80.9° with the different mixing ratios and the hydrophilicity will remain stable for two months and then slightly varied later. We also investigate the bonding conditions of the modified PDMS to a silicon wafer and a glass wafer. To demonstrate its applications, we designed a device which consists of microchannels on a silicon wafer, and PEO-PDMS is utilized as a cover sheet. The capillary function was investigated under the different contact angles of PED-PDMS and with different aspect ratios of microchannels. All of the processes and testing data are presented in detail. This easy and cost-effective modified PDMS with a good bonding property can be widely used in the capillary device and systems, and microfluidic devices for fluid flow control of the microchannels in biological, chemical, medical applications.
Polydimethylsiloxane Droplets Exhibit Extraordinarily High Antioxidative Effects in Deep-Frying.
Totani, Nagao; Yazaki, Naoko; Yawata, Miho
2017-04-03
The addition of more than about 1 ppm polydimethylsiloxane (PDMS) into oil results in PDMS forming both a layer at the oil-air interface and droplets suspended in the oil. It is widely accepted that the extraordinarily strong and stable antioxidative effects of PDMS are due to the PDMS layer. However, the PDMS layer showed no antioxidative effects when canola oil did not contain droplets but rather was covered with a layer of PDMS, then subjected to heating under high agitation to mimic deep-frying. Furthermore, no antioxidative effect was exhibited by oil-soluble methylphenylsiloxane (PMPS) in canola oil or by PDMS in PDMS-soluble canola oil fatty acid ester during heating, suggesting that PDMS must be insoluble and droplets in oil in order for PDMS to exhibit an antioxidative effect during deep-frying. The zeta potential of PDMS droplets suspended in canola oil was very high and thus the negatively charged PDMS droplets should attract nearby low molecular weight compounds. It was suggested that this attraction disturbed the motion of oxygen molecules and prevented their attack against unsaturated fatty acid moiety. This would be the reason in the deep-frying why PDMS suppressed the oxidation reaction of oil. PDMS droplets also attracted volatile compounds (molecular weight below 125 Da) generated by heating canola oil. Thus, adding PDMS to oil after heating the oil resulted in the heated oil smelling less than heated oil without PDMS.
Jakob, Andreas; Crawford, Elizabeth A; Gross, Jürgen H
2016-04-01
The non-stick properties of parchment papers are achieved by polydimethylsiloxane (PDMS) coatings. During baking, PDMS can thus be extracted from the silicone-coated parchment into the baked goods. Positive-ion direct analysis in real time (DART) mass spectrometry (MS) is highly efficient for the analysis of PDMS. A DART-SVP source was coupled to a quadrupole-time-of-flight mass spectrometer to detect PDMS on the contact surface of baked goods after use of silicone-coated parchment papers. DART spectra from the bottom surface of baked cookies and pizzas exhibited signals because of PDMS ions of the general formula [(C2H6SiO)n + NH4 ](+) in the m/z 800-1900 range. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Danial, N. S.; Ramli, Muhammad. M.; Halin, D. S. C.; Hong, H. C.; Isa, S. Salwa M.; Abdullah, M. M. A. B.; Anhar, N. A. M.; Talip, L. F. A.; Mazlan, N. S.
2017-09-01
Polydimethylsiloxane (PDMS) is an organosilicon polymer that is commonly used to incorporate with other fillers. PDMS in high viscous liquid form is mechanically stirred with reduced graphene oxide (rGO) and mixed with zinc oxide (ZnO) with specific ratio, thus rendering into two types of samples. The mechanical and electrical properties of both samples are characterized. The result shows that PDMS sample with 50 mg rGO has the highest tensile strength with the value of 9.1 MPa. For electrical properties, sample with the lowest resistance is PDMS with 50 mg rGO and ZnO with the value of l.67×l05 Ω. This experiment shows the significant role of conductive fillers like rGO and ZnO incorporated in polymeric material such as PDMS to improve its electrical properties.
Kim, Sun-Jung; Lee, Jae Kyoo; Kim, Jin Won; Jung, Ji-Won; Seo, Kwangwon; Park, Sang-Bum; Roh, Kyung-Hwan; Lee, Sae-Rom; Hong, Yun Hwa; Kim, Sang Jeong; Lee, Yong-Soon; Kim, Sung June; Kang, Kyung-Sun
2008-08-01
Stem cell-based therapy has recently emerged for use in novel therapeutics for incurable diseases. For successful recovery from neurologic diseases, the most pivotal factor is differentiation and directed neuronal cell growth. In this study, we fabricated three different widths of a micro-pattern on polydimethylsiloxane (PDMS; 1, 2, and 4 microm). Surface modification of the PDMS was investigated for its capacity to manage proliferation and differentiation of neural-like cells from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). Among the micro-patterned PDMS fabrications, the 1 microm-patterned PDMS significantly increased cell proliferation and most of the cells differentiated into neuronal cells. In addition, the 1 microm-patterned PDMS induced an increase in cytosolic calcium, while the differentiated cells on the flat and 4 microm-patterned PDMS had no response. PDMS with a 1 microm pattern was also aligned to direct orientation within 10 degrees angles. Taken together, micro-patterned PDMS supported UCB-MSC proliferation and induced neural like-cell differentiation. Our data suggest that micro-patterned PDMS might be a guiding method for stem cell therapy that would improve its therapeutic action in neurological diseases.
NASA Astrophysics Data System (ADS)
Mo, Zhao-Hua; Luo, Zheng; Huang, Qiang; Deng, Jian-Ping; Wu, Yi-Xian
2018-05-01
Grafting single end-tethered polymer chains on the surface of graphene is a conventional way to modify the surface properties of graphene oxide. However, grafting arc-like macromolecular bridges on graphene surfaces has been barely reported. Herein, a novel arc-like polydimethylsiloxane (PDMS) macromolecular bridges grafted graphene sheets (GO-g-Arc PDMS) was successfully synthesized via a confined interface reaction at 90 °C. Both the hydrophilic α- and ω-amino groups of linear hydrophobic NH2-PDMS-NH2 macromolecular chains rapidly reacted with epoxy and carboxyl groups on the surfaces of graphene oxide in water suspension to form arc-like PDMS macromolecular bridges on graphene sheets. The grafting density of arc-like PDMS bridges on graphene sheets can reach up to 0.80 mmol g-1 or 1.32 arc-like bridges per nm2 by this confined interface reaction. The water contact angle (WCA) of the hybrid membrane could be increased with increasing both the grafting density and content of covalent arc-like bridges architecture. The superhydrophobic hybrid membrane with a WCA of 153.4° was prepared by grinding of the above arc-like PDMS bridges grafted graphene hybrid, dispersing in ethanol and filtrating by organic filter membrane. This superhydrophobic hybrid membrane shows good self-cleaning and complete oil-water separation properties, which provides potential applications in anticontamination coating and oil-water separation. To the best of our knowledge, this is the first report on the synthesis of functional hybrid membranes by grafting arc-like PDMS macromolecular bridges on graphene sheets via a confined interface reaction.
The methodology of preparing the end faces of cylindrical waveguide of polydimethylsiloxane
NASA Astrophysics Data System (ADS)
Novak, M.; Nedoma, J.; Jargus, J.; Bednarek, L.; Cvejn, D.; Vasinek, V.
2017-10-01
Polydimethylsiloxane (PDMS) can be used for its optical properties and its composition offers the possibility of use in the dangerous environments. Therefore authors of this article focused on more detailed working with this material. The article describes the methodology of preparing the end faces of the cylindrical waveguide of polymer polydimethylsiloxane (PDMS) to minimize losses during joining. The first method of preparing the end faces of the cylindrical waveguide of polydimethylsiloxane is based on the polishing surface of the sandpaper of different sizes of grains (3 species). The second method using so-called heat smoothing and the third method using aligning end faces by a new layer of polydimethylsiloxane. The outcome of the study is to evaluate the quality of the end faces of the cylindrical waveguide of polymer polydimethylsiloxane based on evaluating the attenuation. For this experiment, it was created a total of 140 samples. The attenuation was determined from both sides of the created samples for three different wavelengths of the visible spectrum.
Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Christine Cardinal; Graham, Alan; Nemer, Martin
Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.
Poly-dimethylsiloxane derivates side chains effect on syntan functionalized Polyamide fabric
NASA Astrophysics Data System (ADS)
Migani, V.; Weiss, H.; Massafra, M. R.; Merlo, A.; Colleoni, C.; Rosace, G.
2011-02-01
Poly-dimethylsiloxane (PDMS) polymers finishing of Polyamide-6,6 (PA66) fabrics involves ionic interactions between reactive groups on the PDMS polymers and the ones of the textile fabric. Such interactions could be strengthened by a pretreatment with a fixing agent to promote either ion-ion and H-bonding and ion-dipole forces. These forces could contribute towards the building of substantial PDMS-PA66 systems and the achieving of better adhesion properties to fabrics. Four different silicone polymers based on PDMS were applied on a synthetic tanning agent (syntan) finished Polyamide-6,6 fabric under acid conditions. Soxhlet extraction method and ATR FT-IR technique were used to investigate the application conditions. The finishing parameters such as pH and temperature together with fastness, mechanical and performance properties of the treated samples were studied and related to PDMS side chains effect on syntan functionalized Polyamide fabric.
Mustajärvi, Lukas; Eriksson-Wiklund, Ann-Kristin; Gorokhova, Elena; Jahnke, Annika; Sobek, Anna
2017-11-15
Environmental mixtures of chemicals consist of a countless number of compounds with unknown identity and quantity. Yet, chemical regulation is mainly built around the assessment of single chemicals. Existing frameworks for assessing the toxicity of mixtures require that both the chemical composition and quantity are known. Quantitative analyses of the chemical composition of environmental mixtures are however extremely challenging and resource-demanding. Bioassays may therefore serve as a useful approach for investigating the combined toxicity of environmental mixtures of chemicals in a cost-efficient and holistic manner. In this study, an unknown environmental mixture of bioavailable semi-hydrophobic to hydrophobic chemicals was sampled from a contaminated sediment in a coastal Baltic Sea area using silicone polydimethylsiloxane (PDMS) as an equilibrium passive sampler. The chemical mixture was transferred to a PDMS-based passive dosing system, and its applicability was demonstrated using green algae Tetraselmis suecica in a cell viability assay. The proportion of dead cells increased significantly with increasing exposure level and in a dose-response manner. At an ambient concentration, the proportion of dead cells in the population was nearly doubled compared to the control; however, the difference was non-significant due to high inter-replicate variability and a low number of replicates. The validation of the test system regarding equilibrium sampling, loading efficiency into the passive dosing polymer, stability of the mixture composition, and low algal mortality in control treatments demonstrates that combining equilibrium passive sampling and passive dosing is a promising tool for investigating the toxicity of bioavailable semi-hydrophobic and hydrophobic chemicals in complex environmental mixtures.
Millare, Brent; Thomas, Marlon; Ferreira, Amy; Xu, Hong; Holesinger, Madison; Vullev, Valentine I
2008-11-18
Treatment with oxygen-containing plasma is an essential step for the fabrication of devices containing components of polydimethylsiloxane (PDMS). Such oxidative treatment chemically modifies the surface of PDMS allowing it to permanently adhere to glass, quartz, PDMS and other silica-based substrates. Overexposure of PDMS to oxidative gas plasma, however, compromises its adhesiveness. Therefore, regulation of the duration and the conditions of the plasma treatment is crucial for achieving sufficient surface activation without overoxidation. Using a semiquantitative ternary approach, we evaluated the quality of adhesion ( QA) between flat PDMS and glass substrates pretreated with oxygen plasma under a range of different conditions. The quality of adhesion manifested good correlation trends with the surface properties of the pretreated PDMS. Examination of the QA dependence on the treatment duration and on the pressure and the RF power of the plasma revealed a range of oxidative conditions that allowed for permanent adhesion with quantitative yields.
Burke, Jeffrey M; Smela, Elisabeth
2012-03-01
A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.
Riehle, Natascha; Götz, Tobias; Kandelbauer, Andreas; Tovar, Günter E M; Lorenz, Günter
2018-06-01
This article contains data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers (PSUs) and is related to the research article entitled "Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application" (Riehle et al., 2018) [1]. These elastomers were prepared by a two-step polyaddition using the aliphatic diisocyanate 4,4'-Methylenbis(cyclohexylisocyanate) (H 12 MDI), a siloxane-based chain extender 1,3-Bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (APTMDS) and amino-terminated polydimethylsiloxanes (PDMS) or polydimethyl-methyl-phenyl-siloxane-copolymers (PDMS-Me,Ph), respectively. (More details about the synthesis procedure and the reaction scheme can be found in the related research article (Riehle et al., 2018) [1]). Amino-terminated polydimethylsiloxanes with varying molecular weights and PDMS-Me,Ph-copolymers were prepared prior by a base-catalyzed ring-chain equilibration of a cyclic siloxane and the endblocker APTMDS. This DiB article contains a procedure for the synthesis of the base catalyst tetramethylammonium-3-aminopropyl-dimethylsilanolate and a generic synthesis procedure for the preparation of a PDMS having a targeted number average molecular weight M ¯ n of 3000 g mol -1 . Molecular weights and the amount of methyl-phenyl-siloxane within the polysiloxane-copolymers were determined by 1 H NMR and 29 Si NMR spectroscopy. The corresponding NMR spectra and data are described in this article. Additionally, this DiB article contains processed data on in line and off line FTIR-ATR spectroscopy, which was used to follow the reaction progress of the polyaddition by showing the conversion of the diisocyanate. All relevant IR band assignments of a polydimethylsiloxane-urea spectrum are described in this article. Finally, data on the tensile properties and the mechanical hysteresis-behaviour at 100% elongation of PDMS-based polyurea-elastomers are shown in dependence to the PDMS molecular weight.
NASA Astrophysics Data System (ADS)
Ohnishi, Inori; Hashimoto, Kazuhito; Tajima, Keisuke
2018-03-01
Linear polydimethylsiloxane (PDMS) was investigated as a solubilizing group for π-conjugated polymers with the aim of combining high solubility in organic solvents with the molecular packing in solid films that is advantageous for charge transport. Diketopyrrolopyrrole-based copolymers with different contents and substitution patterns of the PDMS side chains were synthesized and evaluated for application in organic field-effect transistors. The PDMS side chains greatly increased the solubility of the polymers and led to shorter d-spacings of the π-stacking in the thin films compared with polymers containing conventional branched alkyl side chains.
Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer
Motta, Nunzio; Lee, Soonil
2012-01-01
Summary ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse. PMID:23016139
Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer.
Liu, Jinzhang; Motta, Nunzio; Lee, Soonil
2012-01-01
ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse.
Lampert, David J; Lu, Xiaoxia; Reible, Danny D
2013-03-01
In this paper, the long-term monitoring results for hydrophobic organic compounds, specifically polycyclic aromatic hydrocarbons (PAHs), from a field demonstration of capping contaminated sediments at the Anacostia River in Washington DC are presented and analyzed. In situ pore water concentrations in field-contaminated sediments in the demonstration caps were quantified using a polydimethylsiloxane (PDMS)-based passive sampling device. High resolution vertical pore water concentration profiles were measured using the device and were used to infer fate and transport of polycyclic aromatics hydrocarbons (PAHs) at the site. The derived pore water concentrations were compared with observed bioaccumulation and solid-phase concentration profiles to infer contaminant migration rates and mechanisms. Observed pore water concentrations were found to be a better predictor of bioaccumulation than solid-phase concentrations. Solid-phase concentrations were low in cores which implied containment of contamination; however pore water profiles showed that contaminant migration had occurred in the first few years after cap placement. The discrepancy is the result of the low sorption capacity of the sand. Because of surface re-contamination, low sorption capacity in the demonstration caps and strong tidal pumping effects, steady state contaminant profiles were reached in the caps several years after placement. Despite re-contamination at the surface, steady state concentrations in the capped areas showed decreased contamination levels relative to the control area.
Cha, Kyoung Je; Kim, Dong Sung
2011-10-01
In this paper, we propose a novel portable and disposable pressure pump using a porous polydimethylsiloxane (PDMS) sponge and demonstrate its application to a microfluidic lab-on-a-chip. The porous PDMS sponge was simply fabricated by a sugar leaching technique based on capillary suction of pre-cured PDMS into lumps of sugar, thereby enabling us to achieve the porous PDMS sponge composed of interconnected micropores. To indicate the characteristics of the porous PDMS sponge and pump, we measured the average porosities of them whose values were 0.64 and 0.34, respectively. A stress-strain relationship of the fabricated portable pressure pump represented a linear behavior in the compressive strain range of 0 to 20%. Within this range, a pumping volume of the pressure pump could be linearly controlled by the compressed strain. Finally, the fabricated porous PDMS pump was successfully demonstrated as a portable pressure pump for a disposable microfluidic lab-on-a-chip for efficient detection of agglutination. The proposed portable pressure pump can be potentially applicable to various disposable microfluidic lab-on-a-chip systems.
Chen, Jingwen; Zhang, Hongman; Wei, Ping; Zhang, Lin; Huang, He
2014-02-01
The effects of by-products from ethanol fermentation and hydrolysates of lignocelluloses on ethanol diffusion through polydimethylsiloxane (PDMS) membranes with/without silicalite-1 were investigated. A pervaporation process was integrated with lignocellulosic fermentation to concentrate bioethanol using bare PDMS membranes. Results showed that yeasts, solid particles, and salts increased ethanol flux and selectivity through the membranes (PDMS with/without silicalite-1), whereas glucose exerted negative effects on the performance. On bare PDMS membrane, the performance was not obviously affected by the existence of aliphatic acids. However, on PDMS-silicalite-1 membrane, a remarkable decrease in ethanol selectivity and a rapid growth of total flux in the presence of aliphatic acids were observed. These phenomena were due to the interaction of acids with silanol (Si-OH) groups to break the dense membrane surface. On the PDMS membranes with/without silicalite-1, degradation products of lignocellulosic hydrolysates such as furfural and hydroxyacetone slightly influenced separation performance. These results revealed that an integrated process can effectively eliminate product inhibition, improve ethanol productivity, and enhance the glucose conversion rate.
NASA Astrophysics Data System (ADS)
Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa
2017-08-01
This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO2 permeability and decreased CO2/H2 selectivity, CO2/CH4 selectivity, and CO2/N2 selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO2 permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.
Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems.
Mata, Alvaro; Fleischman, Aaron J; Roy, Shuvo
2005-12-01
Polydimethylsiloxane (PDMS Sylgard 184, Dow Corning Corporation) pre-polymer was combined with increasing amounts of cross-linker (5.7, 10.0, 14.3, 21.4, and 42.9 wt.%) and designated PDMS1, PDMS2, PDMS3, PDMS4, and PDMS5, respectively. These materials were processed by spin coating and subjected to common micro-fabrication, micro-machining, and biomedical processes: chemical immersion, oxygen plasma treatment, sterilization, and exposure to tissue culture media. The PDMS formulations were analyzed by gravimetry, goniometry, tensile testing, nano-indentation, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Spin coating of PDMS was formulation dependent with film thickness ranging from 308 microm on PDMS1 to 171 microm on PDMS5 at 200 revolutions per minute (rpm). Ultimate tensile stress (UTS) increased from 3.9 MPa (PDMS1) to 10.8 MPa (PDMS3), and then decreased down to 4.0 MPa (PDMS5). Autoclave sterilization (AS) increased the storage modulus (sigma) and UTS in all formulations, with the highest increase in UTS exhibited by PDMS5 (218%). PDMS surface hydrophilicity and micro-textures were generally unaffected when exposed to the different chemicals, except for micro-texture changes after immersion in potassium hydroxide and buffered hydrofluoric, nitric, sulfuric, and hydrofluoric acids; and minimal changes in contact angle after immersion in hexane, hydrochloric acid, photoresist developer, and toluene. Oxygen plasma treatment decreased the contact angle of PDMS2 from 109 degrees to 60 degrees. Exposure to tissue culture media resulted in increased PDMS surface element concentrations of nitrogen and oxygen.
NASA Astrophysics Data System (ADS)
Li, Dan; Yao, Jie; Sun, Hao; Liu, Bing; van Agtmaal, Sjack; Feng, Chunhui
2018-01-01
Zeolite (ZSM-5)/polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) hollow fiber composite membrane was prepared by dynamic negative pressure. The influence of ZSM-5 silanization, coating time and concentration of ZSM-5 on the resulting pervaporation (PV) performance of composite membranes was investigated. The contact angle (CA) was used to measure surface hydrophobic property and it was found that the water contact angle of the membrane was increased significantly from 99° to 132° when the concentration of ZSM-5 increased from 0% to 50%. The morphology of the membrane was characterized by scanning electron microscope (SEM) and those SEM images illustrated that the thickness of the separating layer has obvious differences at varying coating times. Furthermore, the membranes were investigated in PV process to recycle phenol from aqueous solutions as feed mixtures. The impact of phenol concentration in feed, temperature and pressure of penetration side on the PV performance of membrane was studied systematically. When the ZSM-5 concentration was 40% and the coating time was 60 min, separation factor and phenol permeability were 4.56 and 5.78 g/(m2 h), respectively. ZSM-5/PDMS/PVDF membrane significantly improved the recovery efficiency of phenols.
Rational design of polymer-based absorbents: application to the fermentation inhibitor furfural.
Nwaneshiudu, Ikechukwu C; Schwartz, Daniel T
2015-01-01
Reducing the amount of water-soluble fermentation inhibitors like furfural is critical for downstream bio-processing steps to biofuels. A theoretical approach for tailoring absorption polymers to reduce these pretreatment contaminants would be useful for optimal bioprocess design. Experiments were performed to measure aqueous furfural partitioning into polymer resins of 5 bisphenol A diglycidyl ether (epoxy) and polydimethylsiloxane (PDMS). Experimentally measured partitioning of furfural between water and PDMS, the more hydrophobic polymer, showed poor performance, with the logarithm of PDMS-to-water partition coefficient falling between -0.62 and -0.24 (95% confidence). In contrast, the fast setting epoxy was found to effectively partition furfural with the logarithm of the epoxy-to-water partition coefficient falling between 0.41 and 0.81 (95% confidence). Flory-Huggins theory is used to predict the partitioning of furfural into diverse polymer absorbents and is useful for predicting these results. We show that Flory-Huggins theory can be adapted to guide the selection of polymer adsorbents for the separation of low molecular weight organic species from aqueous solutions. This work lays the groundwork for the general design of polymers for the separation of a wide range of inhibitory compounds in biomass pretreatment streams.
Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG.
Chen, Chunyan; Wang, Jie; Chen, Zhan
2004-11-09
Surface structures of several different poly(dimethylsiloxane) (PDMS) materials, tetraethoxysilane-cured hydroxy-terminated PDMS (TEOS-PDMS), platinum-cured vinyl-terminated PDMS (Pt-PDMS), platinum-cured vinyl-terminated poly(diphenylsiloxane)-co-poly(dimethylsiloxane) (PDPS-co-PDMS), and PDMS-co-polystyrene (PDMS-co-PS) copolymer in air and water have been investigated by sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra collected from all PDMS surfaces in both air and water are dominated by methyl group stretches, indicating that all the surfaces are mainly covered by methyl groups. Other than surface-dominating methyl groups, some -Si-CH2-CH2- moieties on the Pt-PDMS surface have also been detected in air, which are present at cross-linking points. Information about the average orientation angle and angle distribution of the methyl groups on the PDMS surface has been evaluated. Surface restructuring of the methyl groups has been observed for all PDMS surfaces in water. Upon contacting water, the methyl groups on all PDMS surfaces tilt more toward the surface. The detailed restructuring behaviors of several PDMS surfaces in water and the effects of molecular weight on restructuring behaviors have been investigated. For comparison, in addition to air and water, surface structures of PDMS materials mentioned above in a nonpolar solvent, FC-75, have also been studied. By comparing the different response of phenyl groups to water on both PDPS-co-PDMS and PS-co-PDMS surfaces, we have demonstrated how the restructuring behaviors of surface phenyl groups are affected by the structural flexibility of the molecular chains where they are attached.
Tran, Phong A; Fox, Kate; Tran, Nhiem
2017-01-01
Surface properties such as morphology, roughness and charge density have a strong influence on the interaction of biomaterials and cells. Hierarchical materials with a combination of micron/submicron and nanoscale features for coating of medical implants could therefore have significant potential to modulate cellular responses and eventually improve the performance of the implants. In this study, we report a simple, one pot wet chemistry preparation of a hybrid coating system with hierarchical surface structures consisting of polydimethylsiloxane (PDMS) and tantalum oxide. Medical grade, amine functional PDMS was mixed with tantalum ethoxide which subsequently formed Ta 2 O 5 in situ through hydrolysis and condensation during coating process. The coatings were characterized by SEM, EDS, XPS, confocal scanning microscopy, contact angle measurement and in vitro cell culture. Varying PDMS and tantalum ethoxide ratios resulted in coatings of different surface textures ranging from smooth to submicro- and nano-structured. Strikingly, hierarchical surfaces containing both microscale (1-1.5μm) and nanoscale (86-163nm) particles were found on coatings synthesized with 20% and 40% (v/v) tantalum ethoxide. The coatings were similar in term of hydrophobicity but showed different surface roughness and chemical composition. Importantly, higher cell proliferation was observed on hybrid surface with hierarchical structures compared to pure PDMS or pure tantalum oxide. The coating process is simple, versatile, carried out under ambient condition and requires no special equipment. Copyright © 2016 Elsevier Inc. All rights reserved.
Park, Jaewon; Kim, Hyun Soo; Han, Arum
2009-01-01
A poly(dimethylsiloxane) (PDMS) patterning method based on a photoresist lift-off technique to make an electrical insulation layer with selective openings is presented. The method enables creating PDMS patterns with small features and various thicknesses without any limitation in the designs and without the need for complicated processes or expensive equipments. Patterned PDMS layers were created by spin-coating liquid phase PDMS on top of a substrate having sacrificial photoresist patterns, followed by a photoresist lift-off process. The thickness of the patterned PDMS layers could be accurately controlled (6.5–24 µm) by adjusting processing parameters such as PDMS spin-coating speeds, PDMS dilution ratios, and sacrificial photoresist thicknesses. PDMS features as small as 15 µm were successfully patterned and the effects of each processing parameter on the final patterns were investigated. Electrical resistance tests between adjacent electrodes with and without the insulation layer showed that the patterned PDMS layer functions properly as an electrical insulation layer. Biocompatibility of the patterned PDMS layer was confirmed by culturing primary neuron cells on top of the layer for up to two weeks. An extensive neuronal network was successfully formed, showing that this PDMS patterning method can be applied to various biosensing microdevices. The utility of this fabrication method was further demonstrated by successfully creating a patterned electrical insulation layer on flexible substrates containing multi-electrode arrays. PMID:19946385
Moorcroft, Matthew J.; Meuleman, Wouter R. A.; Latham, Steven G.; Nicholls, Thomas J.; Egeland, Ryan D.; Southern, Edwin M.
2005-01-01
In this paper, we demonstrate in situ synthesis of oligonucleotide probes on poly(dimethylsiloxane) (PDMS) microchannels through use of conventional phosphoramidite chemistry. PDMS polymer was moulded into a series of microchannels using standard soft lithography (micro-moulding), with dimensions <100 μm. The surface of the PDMS was derivatized by exposure to ultraviolet/ozone followed by vapour phase deposition of glycidoxypropyltrimethoxysilane and reaction with poly(ethylene glycol) spacer, resulting in a reactive surface for oligonucleotide coupling. High, reproducible yields were achieved for both 6mer and 21mer probes as assessed by hybridization to fluorescent oligonucleotides. Oligonucleotide surface density was comparable with that obtained on glass substrates. These results suggest PDMS as a stable and flexible alternative to glass as a suitable substrate in the fabrication and synthesis of DNA microarrays. PMID:15870385
Cell behavior on surface modified polydimethylsiloxane (PDMS).
Stanton, Morgan M; Rankenberg, Johanna M; Park, Byung-Wook; McGimpsey, W Grant; Malcuit, Christopher; Lambert, Christopher R
2014-07-01
Designing complex tissue culture systems requires cell alignment and directed extracellular matrix (ECM) and gene expression. Here, a micro-rough, polydimethylsiloxane (PDMS) surface, that also integrates a micro-pattern of 50 µm wide lines of fibronectin (FN) separated by 60 µm wide lines of bovine serum albumin (BSA), is developed. Human fibroblasts cultured on the rough, patterned substrate have aligned growth and a significant change in morphology when compared to cells on a flat, patterned surface. The rough PDMS topography significantly decreases cell area and induces the upregulation of several ECM related genes by two-fold when compared to cells cultured on flat PDMS. This study describes a simple surface engineering procedure for creating surface architecture for scaffolds to design and control the cell-surface interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kai, Dan; Prabhakaran, Molamma P; Chan, Benjamin Qi Yu; Liow, Sing Shy; Ramakrishna, Seeram; Xu, Fujian; Loh, Xian Jun
2016-02-02
A porous shape memory scaffold with biomimetic architecture is highly promising for bone tissue engineering applications. In this study, a series of new shape memory polyurethanes consisting of organic poly(ε-caprolactone) (PCL) segments and inorganic polydimethylsiloxane (PDMS) segments in different ratios (9 : 1, 8 : 2 and 7 : 3) was synthesised. These PCL-PDMS copolymers were further engineered into porous fibrous scaffolds by electrospinning. With different ratios of PCL: PDMS, the fibers showed various fiber diameters, thermal behaviour and mechanical properties. Even after being processed into fibrous structures, these PCL-PDMS copolymers maintained their shape memory properties, and all the fibers exhibited excellent shape recovery ratios of >90% and shape fixity ratios of >92% after 7 thermo-mechanical cycles. Biological assay results corroborated that the fibrous PCL-PDMS scaffolds were biocompatible by promoting osteoblast proliferation, functionally enhanced biomineralization-relevant alkaline phosphatase expression and mineral deposition. Our study demonstrated that the PCL-PDMS fibers with excellent shape memory properties are promising substrates as bioengineered grafts for bone regeneration.
Magnetophoretic manipulation in microsystem using carbonyl iron-polydimethylsiloxane microstructures
Faivre, Magalie; Gelszinnis, Renaud; Degouttes, Jérôme; Terrier, Nicolas; Rivière, Charlotte; Ferrigno, Rosaria; Deman, Anne-Laure
2014-01-01
This paper reports the use of a recent composite material, noted hereafter i-PDMS, made of carbonyl iron microparticles mixed in a PolyDiMethylSiloxane (PDMS) matrix, for magnetophoretic functions such as capture and separation of magnetic species. We demonstrated that this composite which combine the advantages of both components, can locally generate high gradients of magnetic field when placed between two permanent magnets. After evaluating the magnetic susceptibility of the material as a function of the doping ratio, we investigated the molding resolution offered by i-PDMS to obtain microstructures of various sizes and shapes. Then, we implemented 500 μm i-PDMS microstructures in a microfluidic channel and studied the influence of flow rate on the deviation and trapping of superparamagnetic beads flowing at the neighborhood of the composite material. We characterized the attraction of the magnetic composite by measuring the distance from the i-PDMS microstructure, at which the beads are either deviated or captured. Finally, we demonstrated the interest of i-PDMS to perform magnetophoretic functions in microsystems for biological applications by performing capture of magnetically labeled cells. PMID:25332740
NASA Astrophysics Data System (ADS)
Obata, Kotaro; Schonewille, Adam; Slobin, Shayna; Hohnholz, Arndt; Unger, Claudia; Koch, Jürgen; Suttmann, Oliver; Overmeyer, Ludger
2017-09-01
The hybrid technique of aerosol jet printing and ultraviolet (UV) laser direct writing was developed for 2D patterning of thin film UV curable polydimethylsiloxane (PDMS). A dual atomizer module in an aerosol jet printing system generated aerosol jet streams from material components of the UV curable PDMS individually and enables the mixing in a controlled ratio. Precise control of the aerosol jet printing achieved the layer thickness of UV curable PDMS as thin as 1.6 μm. This aerosol jet printing system is advantageous because of its ability to print uniform thin-film coatings of UV curable PDMS on planar surfaces as well as free-form surfaces without the use of solvents. In addition, the hybrid 2D patterning using the combination of UV laser direct writing and aerosol jet printing achieved selective photo-initiated polymerization of the UV curable PDMS layer with an X-Y resolution of 17.5 μm.
NASA Astrophysics Data System (ADS)
Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.
Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.
Kim, Da Som; Lee, Ho Won; Lee, Jong Hyun; Kwon, Hyuck Gi; Lee, Sang Wook; Han, Seung Jin; Jeong, Ok Chan
2018-06-18
Spontaneous wrinkling of a polydimethylsiloxane (PDMS) surface was induced by repeated thermal shrinkage of liquid PDMS coated onto a cured PDMS layer. We investigated and evaluated the potential of the resulting surface as a cell culture substrate by monitoring the viability, spreading area, and proliferation rate of MG-63 cells cultured on native, wrinkled, and poly-L-lysine (PLL)-coated PDMS surfaces. Cells seeded on the wrinkled and PLL-coated PDMS surfaces spread and adhered better than those on native surfaces. The numbers of attached cells growing on wrinkled and PLL-coated PDMS surfaces were higher than those of cells on a native PDMS surface. The spreading area of cells on the wrinkled surface was similar to that of cells on the PLL-coated surface, and was much larger than that on native PDMS. The proliferation rate of cells on the wrinkled surface was more than double that of cells on native PDMS. Reverse-transcription polymerase chain reaction (RT-PCR) analysis of integrin mRNA expression showed that cells on the wrinkled surface were more tightly attached due to higher expression of the protein than exhibited in cells on native PDMS. Thus, the novel findings of this study are that the induction of a wrinkled PDMS surface through a simple curing process produces a suitable cell culture substrate without need of surface modification, and that its effectiveness is comparable to that of a PLL-coated PDMS surface. Copyright © 2018 Elsevier B.V. All rights reserved.
Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Sgorbini, Barbara; David, Frank; Sandra, Pat; Rubiolo, Patrizia
2007-09-14
Dual phase twisters (DP twisters), consisting of a polydimethylsiloxane (PDMS) outer coating and a second complementary (ad)sorbent as inner packing, have recently been shown to extend the applicability of headspace sorptive extraction (HSSE). In comparison to HSSE using PDMS only, the recovery of analytes from the headspace of a solid or liquid matrix is increased by combining the concentration capabilities of two sampling materials operating on different mechanisms (sorption and adsorption). This study compares the performance of DP twisters consisting of different PDMS outer coatings and different packing materials, including Tenax GC, a bisphenol-PDMS copolymer, Carbopack coated with 5% of Carbowax and beta-cyclodextrin, for the analysis of the headspace of roasted Arabica coffee, dried sage leaves and an aqueous test mixture containing compounds with different water solubility, acidity, polarity and volatility as test samples. In general, DP twisters showed a higher concentration capability than the corresponding conventional PDMS twisters for the analytes considered. The highest recoveries were obtained with DP twisters consisting of 0.2mm thick PDMS coating combined with Tenax GC, a bisphenol-PDMS copolymer and Carbopack coated with 5% of Carbowax as inner adsorption phase.
The Antioxidation Mechanism of Polydimethylsiloxane in Oil.
Yawata, Miho; Satoh, Tohru; Iwahashi, Maiko; Hori, Ryuji; Takeuchi, Shigeo; Shiramasa, Hiroshi; Totani, Nagao
2015-01-01
Strong and stable antioxidation effects of polydimethylsiloxane (PDMS) are widely accepted and utilized in commercial frying oil; however, the mechanism is not fully established. On the other hand, canola oil contains about 700 ppm (mg/kg-oil) of the natural antioxidant, tocopherol. Canola oil containing 0, 1 and 10 ppm added PDMS was heated at 180°C for 1 h under stirring, then left for 2-3 days at room temperature; this treatment was repeated 5 times. Compared to pure canola oil, PDMS-containing canola oil exhibited remarkably lower peroxide, p-anisidine and acid values, a lower decrease in tocopherol content but a higher oxygen content during the heating experiments, implicating low oxygen consumption for the oxidation. While PDMS has not been known to exhibit antioxidative effects at ambient temperatures, the present results show that PDMS prevents autoxidation as well as thermal oxidation. In addition, PDMS, not tocopherols, provided the major antioxidative effect during intermittent heating, and the decrease of tocopherols was significantly inhibited by PDMS. Phase contrast microscopy confirmed that PDMS contained in canola oil was suspended as particles. Also, the oxygen content in standing PDMS-containing canola oil decreased as the depth of oil increased, corresponding to the PDMS distribution, which also decreased as the depth of oil increased. Moreover, PDMS had a higher affinity for oxygen than canola oil in a mixture of canola oil/PDMS, 1:1 v/v. Thus, it is suggested that PDMS restricted the behavior of oxygen dissolved in canola oil by attracting oxygen in and around the PDMS particles, which is wholly different from the radical scavenging antioxidation of tocopherol.
Zhang, Hainan; Tran, Hong Hanh; Chung, Bong Hyun; Lee, Nae Yoon
2013-03-21
In this paper, we demonstrate a simple technique for sequentially introducing multiple sample liquids into microchannels driven by centrifugal force combined with a hydrophobic barrier pressure and apply the technique for performing solid-phase based on-chip DNA purification. Three microchannels with varying widths, all equipped with independent sample reservoirs at the inlets, were fabricated on a hydrophobic elastomer, poly(dimethylsiloxane) (PDMS). First, glass beads were packed inside the reaction chamber, and a whole cell containing the DNA extract was introduced into the widest channel by applying centrifugal force for physical adsorption of the DNA onto the glass beads. Next, washing and elution solutions were sequentially introduced into the intermediate and narrowest microchannels, respectively, by gradually increasing the amount of centrifugal force. Through a precise manipulation of the centrifugal force, the DNA adsorbed onto the glass beads was successfully washed and eluted in a continuous manner without the need to introduce each solution manually. A stepwise injection of liquids was successfully demonstrated using multiple ink solutions, the results of which corresponded well with the theoretical analyses. As a practical application, the D1S80 locus of human genomic DNA, which is widely used for forensic purposes, was successfully purified using the microdevice introduced in this study, as demonstrated through successful target amplification. This will pave the way for the construction of a control-free valve system for realizing on-chip DNA purification, which is one of the most labor-intensive and hard-to-miniaturize components, on a greatly simplified and miniaturized platform employing hydrophobic PDMS.
2015-09-24
kapton, Polydimethylsiloxane ( PDMS ), photo-print paper (laminate side) and Corning Willow glass (WG). Guanine was deposited onto graphene that had been...flexible substrates-kapton, PDMS , photo-print paper, and WG were performed to determine whether the graphene-substrate interface effects the graphene...flexible substrates-kapton, PDMS , photo-print paper, and WG. Kapton, PDMS , and photo-print paper were chosen as flexible substrates due to their
Ren, Song; Wu, Ming; Guo, Jiayu; Zhang, Wang; Liu, Xiaohan; Sun, Lili; Holyst, Robert; Hou, Sen; Fang, Yongchun; Feng, Xizeng
2015-01-01
Coating of polydimethylsiloxane (PDMS) surface with a traditional Chinese herb extract chlorogenic acid (CA) solves the contemporary problem of sterilization of PDMS surface. The E. coli grows slower and has a higher death rate on the CA-coated PDMS surfaces. A smoother morphology of these E. coli cell wall is observed by atomic force microscopy (AFM). Unlike the reported mechanism, where CA inhibits bacterial growth by damaging the cell membrane in the bulk solution, we find the CA-coated PDMS surface also decreases the stiffness of the cell wall. A decrease in the Young’s modulus of the cell wall from 3 to 0.8 MPa is reported. Unexpectedly, the CA effect on the swarming ability and the biofilm stability of the bacteria can be still observed, even after they have been removed from the CA environment, indicating a decrease in their resistance to antibiotics for a prolonged time. The CA-coated PDMS surface shows better antibiotic effect against three types of both Gram-positive and Gran-negative bacteria than the gentamicin-coated PDMS surface. Coating of CA on PDMS surface not only solves the problem of sterilization of PDMS surface, but also shines light on the application of Chinese traditional herbs in scientific research. PMID:25993914
Ren, Song; Wu, Ming; Guo, Jiayu; Zhang, Wang; Liu, Xiaohan; Sun, Lili; Holyst, Robert; Hou, Sen; Fang, Yongchun; Feng, Xizeng
2015-05-21
Coating of polydimethylsiloxane (PDMS) surface with a traditional Chinese herb extract chlorogenic acid (CA) solves the contemporary problem of sterilization of PDMS surface. The E. coli grows slower and has a higher death rate on the CA-coated PDMS surfaces. A smoother morphology of these E. coli cell wall is observed by atomic force microscopy (AFM). Unlike the reported mechanism, where CA inhibits bacterial growth by damaging the cell membrane in the bulk solution, we find the CA-coated PDMS surface also decreases the stiffness of the cell wall. A decrease in the Young's modulus of the cell wall from 3 to 0.8 MPa is reported. Unexpectedly, the CA effect on the swarming ability and the biofilm stability of the bacteria can be still observed, even after they have been removed from the CA environment, indicating a decrease in their resistance to antibiotics for a prolonged time. The CA-coated PDMS surface shows better antibiotic effect against three types of both Gram-positive and Gran-negative bacteria than the gentamicin-coated PDMS surface. Coating of CA on PDMS surface not only solves the problem of sterilization of PDMS surface, but also shines light on the application of Chinese traditional herbs in scientific research.
Xu, Linfeng; Lee, Hun; Jetta, Deekshitha; Oh, Kwang W
2015-10-21
Suitable pumping methods for flow control remain a major technical hurdle in the path of biomedical microfluidic systems for point-of-care (POC) diagnostics. A vacuum-driven power-free micropumping method provides a promising solution to such a challenge. In this review, we focus on vacuum-driven power-free microfluidics based on the gas solubility or permeability of polydimethylsiloxane (PDMS); degassed PDMS can restore air inside itself due to its high gas solubility or gas permeable nature. PDMS allows the transfer of air into a vacuum through it due to its high gas permeability. Therefore, it is possible to store or transfer air into or through the gas soluble or permeable PDMS in order to withdraw liquids into the embedded dead-end microfluidic channels. This article provides a comprehensive look at the physics of the gas solubility and permeability of PDMS, a systematic review of different types of vacuum-driven power-free microfluidics, and guidelines for designing solubility-based or permeability-based PDMS devices, alongside existing applications. Advanced topics and the outlook in using micropumping that utilizes the gas solubility or permeability of PDMS will be also discussed. We strongly recommend that microfluidics and lab-on-chip (LOC) communities harness vacuum energy to develop smart vacuum-driven microfluidic systems.
NASA Astrophysics Data System (ADS)
Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen
2018-06-01
Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human–machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.
Gao, Yang; Fang, Xiaoliang; Tan, Jianping; Lu, Ting; Pan, Likun; Xuan, Fuzhen
2018-06-08
Wearable strain sensors based on nanomaterial/elastomer composites have potential applications in flexible electronic skin, human motion detection, human-machine interfaces, etc. In this research, a type of high performance strain sensors has been developed using fragmentized carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. The CNT/PDMS composites were ground into fragments, and a liquid-induced densification method was used to fabricate the strain sensors. The strain sensors showed high sensitivity with gauge factors (GFs) larger than 200 and a broad strain detection range up to 80%, much higher than those strain sensors based on unfragmentized CNT/PDMS composites (GF < 1). The enhanced sensitivity of the strain sensors is ascribed to the sliding of individual fragmentized-CNT/PDMS-composite particles during mechanical deformation, which causes significant resistance change in the strain sensors. The strain sensors can differentiate mechanical stimuli and monitor various human body motions, such as bending of the fingers, human breathing, and blood pulsing.
Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
Cole, Russell H; Tran, Tuan M; Abate, Adam R
2015-12-25
Double emulsions are useful in a number of biological and industrial applications in which it is important to have an aqueous carrier fluid. This paper presents a polydimethylsiloxane (PDMS) microfluidic device capable of generating water/oil/water double emulsions using a coaxial flow focusing geometry that can be fabricated entirely using soft lithography. Similar to emulsion devices using glass capillaries, double emulsions can be formed in channels with uniform wettability and with dimensions much smaller than the channel sizes. Three dimensional flow focusing geometry is achieved by casting a pair of PDMS slabs using two layer soft lithography, then mating the slabs together in a clamshell configuration. Complementary locking features molded into the PDMS slabs enable the accurate registration of features on each of the slab surfaces. Device testing demonstrates formation of double emulsions from 14 µm to 50 µm in diameter while using large channels that are robust against fouling and clogging.
Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device
Cole, Russell H.; Tran, Tuan M.; Abate, Adam R.
2015-01-01
Double emulsions are useful in a number of biological and industrial applications in which it is important to have an aqueous carrier fluid. This paper presents a polydimethylsiloxane (PDMS) microfluidic device capable of generating water/oil/water double emulsions using a coaxial flow focusing geometry that can be fabricated entirely using soft lithography. Similar to emulsion devices using glass capillaries, double emulsions can be formed in channels with uniform wettability and with dimensions much smaller than the channel sizes. Three dimensional flow focusing geometry is achieved by casting a pair of PDMS slabs using two layer soft lithography, then mating the slabs together in a clamshell configuration. Complementary locking features molded into the PDMS slabs enable the accurate registration of features on each of the slab surfaces. Device testing demonstrates formation of double emulsions from 14 µm to 50 µm in diameter while using large channels that are robust against fouling and clogging. PMID:26780079
Kim, Ji-Sik; Kim, Gi-Woo
2017-01-01
This paper provides a preliminary study on the hysteresis compensation of a piezoresistive silicon-based polymer composite, poly(dimethylsiloxane) dispersed with carbon nanotubes (CNTs), to demonstrate its feasibility as a conductive composite (i.e., a force-sensitive resistor) for force sensors. In this study, the potential use of the nanotube/polydimethylsiloxane (CNT/PDMS) as a force sensor is evaluated for the first time. The experimental results show that the electrical resistance of the CNT/PDMS composite changes in response to sinusoidal loading and static compressive load. The compensated output based on the Duhem hysteresis model shows a linear relationship. This simple hysteresis model can compensate for the nonlinear frequency-dependent hysteresis phenomenon when a dynamic sinusoidal force input is applied. PMID:28125046
Huang, Tongtong; Anselme, Karine; Sarrailh, Segolene; Ponche, Arnaud
2016-01-30
The purpose of this study is to evaluate the potential of simple high performance liquid chromatography (HPLC) setup for quantification of adsorbed proteins on various type of plane substrates with limited area (<3 cm(2)). Protein quantification was investigated with a liquid chromatography chain equipped with a size exclusion column or a reversed-phase column. By evaluating the validation of the method according to guidelines of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), all the results obtained by HPLC were reliable. By simple adsorption test at the contact of hydrophilic (glass) and hydrophobic (polydimethylsiloxane: PDMS) surfaces, kinetics of adsorption were determined and amounts of adsorbed bovine serum albumin, myoglobin and lysozyme were obtained: as expected for each protein, the amount adsorbed at the plateau on glass (between 0.15 μg/cm(2) and 0.4 μg/cm(2)) is lower than for hydrophobic PDMS surfaces (between 0.45 μg/cm(2) and 0.8 μg/cm(2)). These results were consistent with bicinchoninic acid protein determination. According to ICH guidelines, both Reversed Phase and Size Exclusion HPLC can be validated for quantification of adsorbed protein. However, we consider the size exclusion approach more interesting in this field because additional informations can be obtained for aggregative proteins. Indeed, monomer, dimer and oligomer of bovine serum albumin (BSA) were observed in the chromatogram. On increasing the temperature, we found a decrease of peak intensity of bovine serum albumin as well as the fraction of dimer and oligomer after contact with PDMS and glass surface. As the surface can act as a denaturation parameter, these informations can have a huge impact on the elucidation of the interfacial behavior of protein and in particular for aggregation processes in pharmaceutical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip.
Moghadas, Hajar; Saidi, Mohammad Said; Kashaninejad, Navid; Nguyen, Nam-Trung
2018-03-01
Thin porous membranes are important components in a microfluidic device, serving as separators, filters, and scaffolds for cell culture. However, the fabrication and the integration of these membranes possess many challenges, which restrict their widespread applications. This paper reports a facile technique to fabricate robust membrane-embedded microfluidic devices. We integrated an electrospun membrane into a polydimethylsiloxane (PDMS) device using the simple plasma-activated bonding technique. To increase the flexibility of the membrane and to address the leakage problem, the electrospun membrane was fabricated with the highest weight ratio of PDMS to polymethylmethacrylate (i.e., 6:1 w/w). The membrane-integrated microfluidic device could withstand a flow rate of up to 50 μ l/min. As a proof of concept, we demonstrated that such a compartmentalized microfluidic platform could be successfully used for cell culture with the capability of providing a more realistic in vivo -like condition. Human lung cancer epithelial cells (A549) were seeded on the membrane from the top microchannel, while the continuous flow of the culture medium through the bottom microchannel provided a shear-free cell culture condition. The tortuous micro-/nanofibers of the membrane immobilized the cells within the hydrophobic micropores and with no need of extracellular matrix for cell adhesion and cell growth. The hydrophobic surface conditions of the membrane were suitable for anchorage-independent cell types. To further extend the application of the device, we qualitatively showed that rinsing the membrane with ethanol prior to cell seeding could temporarily render the membrane hydrophilic and the platform could also be used for anchorage-dependent cells. Due to the three-dimensional (3D) topography of the membranes, three different configurations were observed, including individual single cells, monolayer cells, and 3D cell clusters. This cost-effective and robust compartmentalized microfluidic device may open up new avenues in translational medicine and pharmacodynamics research.
2010-01-01
property variations. The system described here is a simple 4-electrode microfluidic device made of polydimethylsiloxane PDMS [50-53] which is reversibly...through the fluid and heat it.) A more detailed description and analysis of the physics of electroosmotic actuation can be found in [46, 83] In...a control algorithm on a standard personal computer. The micro-fluidic device is made out of a soft polymer ( polydimethylsiloxane (PDMS)) and is
Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate.
Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya
2010-08-01
We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle.
Process Development for Removal of Siloxanes from ISS Atmosphere
NASA Technical Reports Server (NTRS)
Carter, Layne; Perry, Jay; Kayatin, Matthew J.; Wilson, Mark; Gentry, Gregory J.; Bowman, Elizabeth; Monje, Oscar; Rector, Tony; Steele, John
2015-01-01
Dimethylsilanediol (DMSD) has been identified as a problematic organic contaminant aboard the ISS. This contaminant was initially identified in humidity condensate and in the Water Processor Assembly (WPA) product water in 2010 when routine water quality monitoring an increasing total organic carbon (TOC) trend in the WPA product water. Although DMSD is not a crew health hazard at the levels observed in the product water, it can degrade the WPA catalytic reactor's effectiveness and cause early replacement of Multifiltration Beds. DMSD may also degrade the performance of the Oxygen Generation System (OGS) which uses the WPA product water for electrolysis. An investigation into the source of DMSD has determined that polydimethylsiloxane (PDMS) compounds are likely hydrolyzing in the Condensing Heat Exchangers (CHX) to form DMSD. PDMS compounds are prevalent aboard ISS from a variety of sources, including crew hygiene products, adhesives, caulks, lubricants, and various nonmetallic materials. PDMS compounds are also known to contribute to CHX hydrophilic coating degradation by rendering it hydrophobic and therefore adversely affecting its ability to effectively transmit water to the condensate bus. Eventually this loss in performance results in water droplets in the air flow exiting the CHX, which may lead to microbial growth in the air ducts and may impact the performance of downstream systems. Several options have been evaluated to address these concerns. Modifications to the Water Processor Multifiltration Beds and Catalytic Reactor for removal of DMSD were not considered viable, and did not address the issue with PDMS compound degradation of the CHX coating. Design concepts are now in development for removing PDMS compounds from the air stream before they can reach the CHX coating, thus preventing coating degradation and hydrolysis of the PDMS compounds to DMSD. This paper summarizes the current status of the effort to treat these contaminants on ISS.
Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips
Kim, Junbeom; An, Heseong; Seo, Yoojin; Jung, Youngmee; Lee, Jong Suk; Bong, Ki Wan
2017-01-01
Flow Lithography (FL) is the technique used for the synthesis of hydrogel microparticles with various complex shapes and distinct chemical compositions by combining microfluidics with photolithography. Although polydimethylsiloxane (PDMS) has been used most widely as almost the sole material for FL, PDMS microfluidic chips have limitations: (1) undesired shrinkage due to the thermal expansion of masters used for replica molding and (2) interfacial delamination between two thermally cured PDMS layers. Here, we propose the utilization of ultraviolet (UV)-curable PDMS (X-34-4184) for FL as an excellent alternative material of the conventional PDMS. Our proposed utilization of the UV-curable PDMS offers three key advantages, observed in our study: (1) UV-curable PDMS exhibited almost the same oxygen permeability as the conventional PDMS. (2) The almost complete absence of shrinkage facilitated the fabrication of more precise reverse duplication of microstructures. (3) UV-cured PDMS microfluidic chips were capable of much stronger interfacial bonding so that the burst pressure increased to ∼0.9 MPa. Owing to these benefits, we demonstrated a substantial improvement of productivity in synthesizing polyethylene glycol diacrylate microparticles via stop flow lithography, by applying a flow time (40 ms) an order of magnitude shorter. Our results suggest that UV-cured PDMS chips can be used as a general platform for various types of flow lithography and also be employed readily in other applications where very precise replication of structures on micro- or sub-micrometer scales and/or strong interfacial bonding are desirable. PMID:28469763
The ability of homogeneous and mixed matrix membranes prepared using standard silicone rubber, poly(dimethylsiloxane) (PDMS), and fluorosilicone rubber, poly(trifluoropropylmethylsiloxane) (PTFPMS), to dehydrate ethanol by pervaporation was evaluated. Although PDMS is generally c...
Zhang, Kun; Pereira, Alberto S; Martin, Jonathan W
2015-07-21
In this study, the octanol-water distribution ratios (DOW, that is, apparent KOW at pH 8.4) of 2114 organic species in oil sands process-affected water were estimated by partitioning to polydimethylsiloxane (PDMS) coated stir bars and analysis by ultrahigh resolution orbitrap mass spectrometry in electrospray positive ((+)) and negative ((-)) ionization modes. At equilibrium, the majority of species in OSPW showed negligible partitioning to PDMS (i.e., DOW <1), however estimated DOW's for some species ranged up to 100,000. Most organic acids detected in ESI- had negligible partitioning, although some naphthenic acids (O2(-) species) had estimated DOW ranging up to 100. Polar neutral and basic compounds detected in ESI+ generally partitioned to PDMS to a greater extent than organic acids. Among these species, DOW was greatest among 3 groups: up to 1000 for mono-oxygenated species (O(+) species), up to 127,000 for NO(+) species, and up to 203,000 for SO(+) species. A positive relationship was observed between DOW and carbon number, and a negative relationship was observed with the number of double bonds (or rings). The results highlight that nonacidic compounds in OSPW are generally more hydrophobic than naphthenic acids and that some may be highly bioaccumulative and contribute to toxicity.
Modification of silicone elastomer with zwitterionic silane for durable antifouling properties.
Yeh, Shiou-Bang; Chen, Chien-Sheng; Chen, Wen-Yih; Huang, Chun-Jen
2014-09-30
Biofouling on medical devices generally causes adverse complications, such as thrombosis, infection, and pathogenic calcification. Silicone is a widely used material for medical applications. Its surface modification typically encounters undesirable "hydrophobic recovery", leading to deterioration of surface engineering. In this study, we developed a stable superhydrophilic zwitterionic interface on polydimethylsiloxane (PDMS) elastomer by covalent silanization of sulfobetaine silane (SBSi) to resist nonspecific adsorption of bacteria, proteins, and lipids. SBSi is a zwitterionic organosilane assembly, enabling resisting surface reconstruction by forming a cross-linked network and polar segregation. Surface elemental composition was confirmed by X-ray photoelectron spectroscopy (XPS), and the long-term stability of modification was accessed using a contact angle goniometer. The biofouling tests were carried out by exposing substrates to bacterial, protein, and lipid solutions, revealing the excellent bioinertness of SBSi-tailored PDMS, even after 30 day storage in ambient. For the real-world application, we modified commercially available silicone hydrogel contact lenses with developed zwitterionic silane, presenting its antibacterial adhesion property. Moreover, the cytotoxicity of SBSi was accessed with NIH-3T3 fibroblast by the MTT assay, showing negligible cytotoxicity up to a concentration of 5 mM. Consequently, the strategy of surface engineering in this work can effectively retard the "hydrophobic recovery" occurrence and can be applied to other silicone-based medical devices in a facile way.
Arukalam, Innocent O; Oguzie, Emeka E; Li, Ying
2018-02-15
The use of epoxy and polyurethane coatings as marine topcoats, have been influenced by their inherent high surface energy property which increases their affinity to water and microorganisms. Thus, their susceptibility to degradation is enhanced. Because of this defect, recently, nanostructured hydrophobic and superhydrophobic polysiloxane coatings are being preferred as topcoats. But the appropriate nanoparticle size and matrix:filler ratio which provide guide for the design of desired topcoats are scarcely available. In view of this, a series of hydrophobic and superhydrophobic coatings were prepared by sol-gel process based on perfluorodecyltrichlorosilane (FDTS), different nanoZnO particles and poly(dimethylsiloxane) (PDMS):nanoZnO ratios. The liquid repellency, surface morphology and roughness of the coatings were conducted by use of contact angle goniometer, field emission scanning electron microscopy and atomic force microscopy, respectively. Additionally, the electrochemical and salt spray corrosion tests were conducted. According to the results, modifications of the coatings showed that anticorrosion performance was considerably influenced by the surface properties which were dependent on nanoZnO size and PDMS:nanoZnO ratio. Remarkably, the optimum effect was observed on the superhydrophobic coating based on 30 nm ZnO and 1:1 ratio. This displayed highest anticorrosion performance, and is therefore recommended as a guide for the design of marine topcoats. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Biao; Li, Buyin; Jiang, Shenglin
2017-10-01
High-performance piezoresistive materials can detect pressures in the finger-sensing regime (0 kPa to 100 kPa). Piezoresistive nanocomposites of poly(phenylmethylsiloxane) (PPMS)-functionalized graphene nanoplatelets (P-GNPs) as conductive filler and polydimethylsiloxane (PDMS) as polymer matrix have been prepared and their electrical, elastic, and piezoresistive properties investigated. GNPs were π-π stacked with PPMS by noncovalent functionalization, and P-GNPs/PDMS nanocomposites were prepared by solution casting. The results showed that P-GNPs with sandwiched nanostructures (PPMS/GNPs/PPMS) exhibited improved dispersibility and compatibility in the PDMS matrix. Compared with GNPs/PDMS nanocomposites, low percolation threshold (2.96 vol.%) was obtained for the P-GNPs/PDMS nanocomposites. P-GNPs/PDMS nanocomposite with 3.00 vol.% P-GNPs showed remarkable negative piezoresistivity with high sensitivity of -105.22 × 10-3 kPa-1 (0 kPa to 10 kPa), low Young's modulus of 408.26 kPa, and high electrical conductivity of 1.28 × 10-6 S/m. These results demonstrate a simple and low-cost method for preparation of high-performance nanocomposites and facilitate wide application of such piezoresistive materials, especially in cheap and flexible tactile sensors.
NASA Astrophysics Data System (ADS)
Lu, J.-C.; Liao, W.-H.; Tung, Y.-C.
2012-07-01
Polydimethylsiloxane (PDMS) microfluidic device is one of the most essential techniques that advance microfluidics research in recent decades. PDMS is broadly exploited to construct microfluidic devices due to its unique and advantageous material properties. To realize more functionalities, PDMS microfluidic devices with multi-layer architectures, especially those with sandwiched membranes, have been developed for various applications. However, existing alignment methods for device fabrication are mainly based on manual observations, which are time consuming, inaccurate and inconsistent. This paper develops a magnet-assisted alignment method to enhance device-level alignment accuracy and precision without complicated fabrication processes. In the developed alignment method, magnets are embedded into PDMS layers at the corners of the device. The paired magnets are arranged in symmetric positions at each PDMS layer, and the magnetic attraction force automatically pulls the PDMS layers into the aligned position during assembly. This paper also applies the method to construct a practical microfluidic device, a tunable chaotic micromixer. The results demonstrate the successful operation of the device without failure, which suggests the accurate alignment and reliable bonding achieved by the method. Consequently, the fabrication method developed in this paper is promising to be exploited to construct various membrane-sandwiched PDMS microfluidic devices with more integrated functionalities to advance microfluidics research.
Bareiro, O; Santos, L A
2014-03-01
Nanometric hydroxyapatite (HAp) particles were modified with 5 or 10 wt.% tetraethylorthosilicate (TEOS) solutions in order to prepare polydimethylsiloxane/hydroxyapatite (PDMS/HAp) composites. The surface modification of the HAp particles was studied by transmission electron spectroscopy (TEM) and by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) equipment. The dispersion state of the modified particles in the PDMS matrix was also assessed by SEM. The composite phase composition was characterized by X-ray diffraction (XRD). The composite thermodynamic parameters of cross-linking were analyzed by differential scanning calorimetry (DSC). TEM micrographs and EDS spectra indicated evidence of silica-coating formation on the surface of modified HAp particles. SEM results showed that the HAp particles formed agglomerates in the PDMS matrix. It was found that the introduction of HAp particles into the PDMS changed the enthalpy of cross-linking and the temperature of the beginning of the cross-linking reaction. EDS results indicated that the surface modification of HAp produced composites showing thermodynamic parameters that were more similar to those of unfilled PDMS. Copyright © 2013 Elsevier B.V. All rights reserved.
Choi, Jin Ho; Lee, Hyun; Jin, Hee Kyung; Bae, Jae-sung; Kim, Gyu Man
2012-12-07
A new fabrication method of a polydimethylsiloxane (PDMS) stencil embedded microwell plate is proposed and applied to a localized culture of Purkinje neurons (PNs) and neural stem cells (NSCs). A microwell plate combines a PDMS stencil and well plate. The PDMS stencil was fabricated by spin casting from an SU-8 master mold. Gas blowing using nitrogen was adopted to perforate the stencil membrane. An acrylic well plate compartment mold was fabricated using computer numerical control (CNC) machining. By PDMS casting using a stencil placed on an acrylic mold, microwell plates were fabricated without punching or the use of a plasma bonding process. By using the stencil as a physical mask for the cell culture, PNs and NSCs were successfully cultured into micropatterns. The microwell plate could be applied to the localizing and culturing of a cell. The micropatterned NSCs were differentiated into neurons, astrocytes, and oligodendrocytes. The results showed that cells could be cultured and differentiated into micropatterns in a precisely controlled manner in any shape and in specific sizes for bioscience study and bioengineering applications.
Jefimova, J; Irha, N; Mägi, R; Kirso, U
2012-10-01
The solid-phase microextraction (SPME) method was developed to determine PAH free dissolved concentration (C(free)) in field leachates from hazardous waste disposal. SPME technique, involving a 100-μm polydimethylsiloxane (PDMS) fiber coupled to GC-MS was optimized for determination of C(free). The following PAH were found in bioavailable form: acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, with C(free) varying between 2.38 and 62.35 ng/L. Conventional solvent extraction was used for measurement of total concentration (C(total)) in the same samples, and ranging from 1.26 to 77.56 μg/L. Determining C(free) of the hydrophobic toxic pollutants could give useful information for risk assessment of the hazardous waste.
NASA Astrophysics Data System (ADS)
Videnichev, Dmitry A.; Belousova, Inna M.
2014-06-01
The optical limiting (OL) behavior of carbon nanofibers (CNFs) in polydimethylsiloxane (PDMS) was studied and compared with that of CNFs in water, and polyhedral multi-shell fullerene-like nanostructures (PMFNs) also in water. It was shown that when switching from single-shot to pulse-periodic regime of laser pulses (10 Hz), the CNF in PDMS suspension retains its OL characteristics, while in the aqueous suspensions, considerable degradation of OL characteristics is observed. It was also observed that a powerful laser pulse causes the CNF in PDMS suspension to become opaque for at least three seconds, while such a pulse brings out a bleaching effect in aqueous PMFN and CNF suspensions. The processes of OL degradation in aqueous suspensions, bleaching and darkening of the studied materials are discussed herein.
Microfluidic systems with embedded materials and structures and method thereof
Morse, Jeffrey D [Martinez, CA; Rose, Klint A [Boston, MA; Maghribi, Mariam [Livermore, CA; Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA; Graff, Robert T [Modesto, CA; Jankowski, Alan [Livermore, CA
2007-03-06
Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.
Polyurethane-acrylate-based hydrophobic film: Facile fabrication, characterization, and application
NASA Astrophysics Data System (ADS)
Park, Jongsung; Nguyen, Bui Quoc Huy; Kim, Ji-Kwan; Shanmugasundaram, Arunkumar; Lee, Dong-Weon
2018-06-01
Polyurethane-acrylate (PUA) is a versatile UV-curable polymer with a short curing time at room temperature, whose surface structure can be flexibly modified by applying various micropatterns. In this paper, we propose a facile and cost-effective fabrication method for the continuous production of an optically transparent PUA-based superhydrophobic thin film. Poly(dimethylsiloxane) (PDMS) was employed as a soft mold for the fabrication of PUA films through the roll-to-roll technique. In addition, nanosilica was spray-coated onto the PUA surface to further improve the hydrophobicity. The fabricated PUA thin film showed the highest static water contact angle (WCA) of ∼140°. The high durability of the PUA film was also demonstrated through mechanical impacting tests. Furthermore, only ∼2% of voltage loss was observed in the solar panel covered with the PUA-based superhydrophobic film. These obtained results indicate the feasibility of applying the film as a protective layer in applications requiring a high transparency and a self-cleaning effect.
Sunlight-induced self-healing of a microcapsule-type protective coating.
Song, Young-Kyu; Jo, Ye-Hyun; Lim, Ye-Ji; Cho, Sung-Youl; Yu, Hwan-Chul; Ryu, Byung-Cheol; Lee, Sang-In; Chung, Chan-Moon
2013-02-01
Photopolymerization behavior of a methacryloxypropyl-terminated polydimethylsiloxane (MAT-PDMS) healing agent was investigated in the presence of benzoin isobutyl ether (BIE) photoinitiator by Fourier transform infrared (FT-IR) spectroscopy. MAT-PDMS and BIE were microencapsulated with urea-formaldehyde polymer. The surface and shell morphology of the microcapsules was investigated by scanning electron microscopy (SEM). Mean diameter and size distribution of the microcapsules could be controlled by agitation rate. A coating matrix formulation was prepared by sol-gel reaction of tetraethyl orthosilicate (TEOS) in the presence of a polysiloxane and by subsequent addition of an adhesion promoter. The formulation and microcapsules were mixed to give a self-healing coating formulation, which was then sprayed to surface of cellulose-fiber-reinforced-cement (CRC) board or mortar. Contact angle measurements showed that both the polymerized MAT-PDMS and the prepared coating matrix are hydrophobic, and the coating matrix has good wettability with MAT-PDMS. It was confirmed by optical microscopy and SEM that, when the self-healing coating is damaged, the healing agent is released from ruptured microcapsules and fills the damaged region. The self-healing coating was evaluated as protective coating for mortar, and it was demonstrated by water permeability and chloride ion penetration tests that our system has sunlight-induced self-healing capability. Our self-healing coating is the first example of capsule-type photoinduced self-healing system, and offers the advantages of catalyst-free, environmentally friendly, inexpensive, practical healing.
Han, Joong Tark; Kim, Byung Kuk; Woo, Jong Seok; Jang, Jeong In; Cho, Joon Young; Jeong, Hee Jin; Jeong, Seung Yol; Seo, Seon Hee; Lee, Geon-Woong
2017-03-01
Directly printed superhydrophobic surfaces containing conducting nanomaterials can be used for a wide range of applications in terms of nonwetting, anisotropic wetting, and electrical conductivity. Here, we demonstrated that direct-printable and flexible superhydrophobic surfaces were fabricated on flexible substrates via with an ultrafacile and scalable screen printing with carbon nanotube (CNT)-based conducting pastes. A polydimethylsiloxane (PDMS)-polyethylene glycol (PEG) copolymer was used as an additive for conducting pastes to realize the printability of the conducting paste as well as the hydrophobicity of the printed surface. The screen-printed conducting surfaces showed a high water contact angle (WCA) (>150°) and low contact angle hysteresis (WCA < 5°) at 25 wt % PDMS-PEG copolymer in the paste, and they have an electrical conductivity of over 1000 S m -1 . Patterned superhydrophobic surfaces also showed sticky superhydrophobic characteristics and were used to transport water droplets. Moreover, fabricated films on metal meshes were used for an oil/water separation filter, and liquid evaporation behavior was investigated on the superhydrophobic and conductive thin-film heaters by applying direct current voltage to the film.
Yang, Yang; Lan, Ding; Huang, Yan; Li, Yanming; Wang, Yuren; Sun, Lianwen; Fan, Yubo
2014-06-01
Polydimethylsiloxane (PDMS) and hydroxyapatite (HA) were combined in our laboratory to fabricate an elastic porous cell scaffold with pore-forming agent, and then the scaffold was used as culture media for rat bone marrow derived mesenchymal stem cells (rBMSCs). Different porous materials (square and circular in shape) were prepared by different pore-forming agents (NaCl or paraffin spheres) with adjustable porosity (62%-76%). The HA crystals grew on the wall of hole when the material was exposed to SBF solutions, showing its biocompatibility and ability to support the cells to attach on the materials.
Abtahi-Naeini, Bahareh; Faghihi, Gita; Shahmoradi, Zabihollah; Saffaei, Ali
2018-01-07
Polydimethylsiloxane (PDMS), also called liquid silicone, belongs to a group of polymeric compounds that are commonly referred to as silicones. These filling agents have been used as injectable filler for soft tissue augmentation. There are limited experiences about management of the severe complications related to filler migration associated with PDMS injection. We present a 35-year-old female with severe erythema, edema over her cheeks and neck, and multiple irregularities following cosmetic lip augmentation with PDMS. Further studies are required for management of this complicated case of PDMS injection. © 2018 Wiley Periodicals, Inc.
de Campos, Richard Piffer Soares; Yoshida, Inez Valeria Pagotto; Breitkreitz, Márcia Cristina; Poppi, Ronei Jesus; Fracassi da Silva, José Alberto
2013-01-01
Methacryloxypropyl-modified poly(dimethylsiloxane) rubbers were obtained from poly(dimethylsiloxane), PDMS, and methacryloxypropyltrimethoxysilane, MPTMS, by polycondensation reactions. The modified rubbers, prepared with 20 and 30% (v/v) of MPTMS, were used as substrates for microchannel fabrication by the CO(2) laser ablation technique. Raman imaging spectroscopy was used for the surface characterization, showing the homogeneity of the rubbery material, with uniform distribution of the crosslinking centers. Under the experimental conditions used, damage to the rubber from the CO(2) laser radiation used for the channel engraving was not observed. Correlation maps of the surface were obtained in order to spatially evaluate the modification inside and outside the channels. The correlations between the methacryloxypropyl-modified poly(dimethylsiloxane) rubbers and MPTMS (spectral range of 1800-1550 cm(-1)) and PDMS (spectral range of 820-670 cm(-1)) precursors were higher than 0.95 and 0.99, respectively. In addition, Raman imaging spectroscopy allows monitoring the topography of the fabricated microchannel. Copyright © 2012 Elsevier B.V. All rights reserved.
Study on the effect of polydimethylsiloxane from the viewpoint of oxygen content in oil.
Yawata, Miho; Iwahashi, Maiko; Hori, Ryuji; Shiramasa, Hiroshi; Totani, Nagao
2014-01-01
It has been reported that polydimethylsiloxane (PDMS) inhibits oxygen dissolution into oil by forming a monolayer on the surface of the oil, thereby reducing thermal oxidation. In the present study, the distribution of PDMS was determined by the inductively coupled plasma atomic emission spectroscopy in standing PDMS-containing canola oil. PDMS did not disperse in the oil uniformly, but there was a tendency that the PDMS concentration decreased as the depth of oil increased, and the concentration of the bottom part was the lowest. When canola oil was covered with PDMS by dropping it gently on the surface of the oil and kept at 60°C, the oxygen content and oxidation of the oil were lower than those of the control canola oil. PDMS-containing canola oil and canola oil were heated with stirring from room temperature to 180°C, and then allowed to stand while cooling. Oxygen contents of both oils increased up to 120°C then dropped abruptly. While cooling, oxygen contents sharply increased at 100°C and approached the saturation content, although the increase for PDMS-containing canola oil was a little slow. Likewise, the thermal treatment of PDMS-containing canola oil and canola oil at 180°C for 1 h under stirring was repeated 5 times with standing intervals for 2-3 days at room temperature. Oxidation of the former was less than that of the latter in spite of its high oxygen content. In conclusion, the oxygen content of oil with/without PDMS addition increased, but oxidation of PDMS-containing canola oil was inhibited both during heating and standing with intermittent heating. It was suggested that PDMS exerted its antioxidative effect regardless of whether it covered the oil or was dispersed in it.
Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun
2015-01-01
Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.
Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.
2010-01-01
Summary Poly(dimethylsiloxane) (PDMS) is a widely used substrate for microfluidic devices, as it enables facile fabrication and has other distinctive properties. However, for applications requiring highly sensitive nanoelectrospray ionization mass spectrometry (nanoESI-MS) detection, the use of PDMS microdevices has been hindered by a large chemical background in the mass spectra that originates from the leaching of uncross-linked oligomers and other contaminants from the substrate. A more general challenge is that microfluidic devices containing monolithically integrated electrospray emitters are frequently unable to operate stably in the nanoflow regime where the best sensitivity is achieved. In this report, we extracted the contaminants from PDMS substrates using a series of solvents, eliminating the background observed when untreated PDMS microchips are used for nanoESI-MS, such that peptides at concentrations of 1 nM were readily detected. Optimization of the integrated emitter geometry enabled stable operation at flow rates as low as 10 nL/min. PMID:20617264
Random lasing action in a polydimethylsiloxane wrinkle induced disordered structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Zhenhua; Wu, Leilei; Zhu, Shu
This paper presents a chip-scale random lasing action utilizing polydimethylsiloxane (PDMS) wrinkles with random periods as disordered medium. Nanoscale wrinkles with long range disorder structures are formed on the oxidized surface of a PDMS slab and confirmed by atomic force microscopy. Light multiply scattered at each PDMS wrinkle-dye interfaces is optically amplified in the presence of pump gain. The shift of laser emission wavelength when pumping at different regions indicates the randomness of the winkle period. In addition, a relatively low threshold of about 27 μJ/mm{sup 2} is realized, which is comparable with traditional optofluidic dye laser. This is due tomore » the unique sinusoidal Bragg-grating-like random structure. Contrast to conventional microfluidic dye laser that inevitably requires the accurate design and implementation of microcavity to provide optical feedback, the convenience in both fabrication and operation makes PDMS wrinkle based random laser a promising underlying element in lab-on-a-chip systems and integrated microfluidic networks.« less
Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography.
Scharnweber, Tim; Truckenmüller, Roman; Schneider, Andrea M; Welle, Alexander; Reinhardt, Martina; Giselbrecht, Stefan
2011-04-07
Microstructuring of polydimethylsiloxane (PDMS) is a key step for many lab-on-a-chip (LOC) applications. In general, the structure is generated by casting the liquid prepolymer against a master. The production of the master in turn calls for special equipment and know how. Furthermore, a given master only allows the reproduction of the defined structure. We report on a simple, cheap and practical method to produce microstructures in already cured PDMS by direct UV-lithography followed by chemical development. Due to the available options during the lithographic process like multiple exposures, the method offers a high design flexibility granting easy access to complex and stepped structures. Furthermore, no master is needed and the use of pre-cured PDMS allows processing at ambient (light) conditions. Features down to approximately 5 µm and a depth of 10 µm can be realised. As a proof of principle, we demonstrate the feasibility of the process by applying the structures to various established soft lithography techniques.
Chen, Jian; Li, Jiding; Qi, Rongbin; Ye, Hong; Chen, Cuixian
2010-01-01
Cross-linked polydimethylsiloxane (PDMS)-polyetherimide (PEI) composite membranes were prepared, in which asymmetric microporous PEI membrane prepared with phase inversion method was acted as the microporous supporting layer in the flat-plate composite membrane. Membrane characterization was conducted by Fourier transform infrared and scanning electronic microscopy analysis. The composite membranes were employed in pervaporation separation of n-heptane-thiophene mixtures. Effect of amount of PDMS, cross-linking temperature, amount of cross-linking agent, and cross-linking time on the separation efficiency of n-heptane-thiophene mixtures was investigated experimentally. Experiment results demonstrated that 80-100 degrees degrees C of cross-linking temperature was more preferable for practical application, as the amount of cross-linking agent was up to 20 wt.%, and 25 wt.% of PDMS amount was more optimal as far as flux and sulfur enrichment factor were concerned. In addition, the swelling degree of and stableness of composite membrane during long-time operation were studied, which should be significant for practical application.
NASA Astrophysics Data System (ADS)
Zboril, O.; Cubik, J.; Nedoma, J.; Fajkus, M.; Novak, M.; Jargus, J.; Stratil, T.; Vasinek, V.
2017-10-01
The article describes a method for fabrication of polymer optical micro-lenses using polydimethylsiloxane (PDMS) at the end of optical fibers. PDMS is an optically clear substance having a refractive index very similar to the optical fibers. Therefore it is an interesting material for optical purposes. PDMS is characterized by resistance to electromagnetic interference (EMI), enabling the use in electromagnetically noisy environments. These lenses could be used for example for the security applications. For the manufacture of the micro-lenses is used Sylgard silicone elastomer 184. When applied to the end of conventional optical fiber is cured by treatment at 100 °C +/- 5 °C. Authors performed a series of experimental measurements. The optical characteristics of the treated fibers compared with conventional fibers without micro-lenses. The fibers provided with optical lenses made of PDMS may be used for security applications, in the visible light communication (VLC) or as a microprobe.
NASA Astrophysics Data System (ADS)
Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.
2017-11-01
Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.
Fabrication of polydimethylsiloxane (PDMS) - based multielectrode array for neural interface.
Kim, Jun-Min; Oh, Da-Rong; Sanchez, Joaquin; Kim, Shang-Hyub; Seo, Jong-Mo
2013-01-01
Flexible multielectrode arrays (MEAs) are being developed with various materials, and polyimide has been widely used due to the conveniece of process. Polyimide is developed in the form of photoresist. And this enable precise and reproducible fabrication. PDMS is another good candidate for MEA base material, but it has poor surface energy and etching property. In this paper, we proposed a better fabrication process that could modify PDMS surface for a long time and open the site of electrode and pad efficiently without PDMS etching.
Endobronchial Photoacoustic Microscopy for Staging of Lung Cancer
2015-06-01
polydimethylsiloxane ( PDMS ) membrane, which is bio-compatible and can make a seamless contact with the trachea wall. When the tissues receive the pulsed...illustrated in figures 1 (a)-1(e). The mold can be printed by a 3-D printer (Objet Eden 260V). Liquid-phase PDMS is poured into the mold, and after 40...minutes baking at 80 degree Celsius the PDMS can be hardened. Then it is peeled off from the mold and bonded with another piece of PDMS membrane. The
Microfluidic fuel cell systems with embedded materials and structures and method thereof
Morse, Jeffrey D.; Rose, Klint A; Maghribi, Mariam; Benett, William; Krulevitch, Peter; Hamilton, Julie; Graff, Robert T.; Jankowski, Alan
2005-07-26
Described herein is a process for fabricating microfluidic systems with embedded components in which micron-scale features are molded into the polymeric material polydimethylsiloxane (PDMS). Micromachining is used to create a mold master and the liquid precursors for PDMS are poured over the mold and allowed to cure. The PDMS is then removed form the mold and bonded to another material such as PDMS, glass, or silicon after a simple surface preparation step to form sealed microchannels.
Wang, Lingyu; Yu, Linfen; Grist, Samantha; Cheung, Karen C; Chen, David D Y
2017-11-15
Cell culture systems based on polydimethylsiloxane (PDMS) microfluidic devices offer great flexibility because of their simple fabrication and adaptability. PDMS devices also make it straightforward to set up parallel experiments and can facilitate process automation, potentially speeding up the drug discovery process. However, cells grown in PDMS-based systems can develop in different ways to those grown with conventional culturing systems because of the differences in the containers' surfaces. Despite the growing number of studies on microfluidic cell culture devices, the differences in cellular behavior in PDMS-based devices and normal cell culture systems are poorly characterized. In this work, we investigated the proliferation and autophagy of MCF7 cells cultured in uncoated and Parylene-C coated PDMS wells. Using a quantitative method combining solid phase extraction and liquid chromatography mass spectrometry we developed, we showed that Tamoxifen uptake into the surfaces of uncoated PDMS wells can change the drug's effective concentration in the culture medium, affecting the results of Tamoxifen-induced autophagy and cytotoxicity assays. Such changes must be carefully analyzed before transferring in vitro experiments from a traditional culture environment to a PDMS-based microfluidic system. We also found that cells cultured in Parylene-C coated PDMS wells showed similar proliferation and drug response characteristics to cells cultured in standard polystyrene (PS) plates, indicating that Parylene-C deposition offers an easy way of limiting the uptake of small molecules into porous PDMS materials and significantly improves the performance of PDMS-based device for cell related research. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
de Aguiar, Kelen R.; Rischka, Klaus; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Cavalcanti, Welchy Leite; Rodrigues-Filho, Ubirajara P.
2018-01-01
The aim of this work was to synthesize a non-isocyanate poly(dimethylsiloxane) hydroxyurethane with biomimetic terminal catechol moieties, as a candidate for inorganic and metallic surface modification. Such surface modifier is capable to strongly attach onto metallic and inorganic substrates forming layers and, in addition, providing water-repellent surfaces. The non-isocyanate route is based on carbon dioxide cycloaddition into bis-epoxide, resulting in a precursor bis(cyclic carbonate)-polydimethylsiloxane (CCPDMS), thus fully replacing isocyanate in the manufacture process. A biomimetic approach was chosen with the molecular composition being inspired by terminal peptides present in adhesive proteins of mussels, like Mefp (Mytilus edulis foot protein), which bear catechol moieties and are strong adhesives even under natural and saline water. The catechol terminal groups were grafted by aminolysis reaction into a polydimethylsiloxane backbone. The product, PDMSUr-Dopamine, presented high affinity towards inhomogeneous alloy surfaces terminated by native oxide layers as demonstrated by quartz crystal microbalance (QCM-D), as well as stability against desorption by rinsing with ethanol. As revealed by QCM-D, X-ray photoelectron spectroscopy (XPS) and computational studies, the thickness and composition of the resulting nanolayers indicated an attachment of PDMSUr-Dopamine molecules to the substrate through both terminal catechol groups, with the adsorbate exposing the hydrophobic PDMS backbone. This hypothesis was investigated by classical molecular dynamic simulation (MD) of pure PDMSUr-Dopamine molecules on SiO2 surfaces. The computationally obtained PDMSUr-Dopamine assembly is in agreement with the conclusions from the experiments regarding the conformation of PDMSUr-Dopamine towards the surface. The tendency of the terminal catechol groups to approach the surface is in agreement with proposed model for the attachment PDMSUr-Dopamine. Remarkably, the versatile PDMSUr-Dopamine modifier facilitates such functionalization for various substrates such as titanium alloy, steel and ceramic surfaces.
Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent
Koschwanez, John H.; Carlson, Robert H.; Meldrum, Deirdre R.
2009-01-01
Thin polydimethylsiloxane (PDMS) films are frequently used in “lab on a chip” devices as flexible membranes. The common solvent used to dilute the PDMS for thin films is hexane, but hexane can swell the underlying PDMS substrate. A better solvent would be one that dissolves uncured PDMS but doesn't swell the underlying substrate. Here, we present protocols and spin curves for two alternatives to hexane dilution: longer spin times and dilution in tert-butyl alcohol. The thickness of the PDMS membranes under different spin speeds, spin times, and PDMS concentrations was measured using an optical profilometer. The use of tert-butyl alcohol to spin thin PDMS films does not swell the underlying PDMS substrate, and we have used these films to construct multilayer PDMS devices. PMID:19238212
Swollen poly(dimethylsiloxane) (PDMS) as a template for inorganic morphologies.
Brennan, Daniel P; Dobley, Arthur; Sideris, Paul J; Oliver, Scott R J
2005-12-06
We report a series of silica, titania, and zirconia microstructures synthesized within swollen poly(dimethylsiloxane) (PDMS). Voids created by solvent-swelling the polymer are used to template the product. The inorganic morphologies range from spheres to networks, depending upon the nature of the polymer, its degree of swelling, and the synthetic conditions. Organic solvents as well as pure metal alkoxide liquids have been used to swell the polymer. Once the alkoxide precursor is inside the swollen polymer, water is introduced to bring about hydrolysis and condensation polymerization. The product is a textured metal oxide within a PDMS matrix. Scanning electron microscopy (SEM), optical microscopy, nuclear magnetic resonance (NMR), and powder X-ray diffraction (PXRD) were used to characterize the products. Microstructures formed in this manner have potential use as an inexpensive route to catalysts, fillers, capsules, or membranes for separations.
Novel poly(dimethylsiloxane) bonding strategy via room temperature "chemical gluing".
Lee, Nae Yoon; Chung, Bong Hyun
2009-04-09
Here we propose a new scheme for bonding poly(dimethylsiloxane) (PDMS), namely, a "chemical gluing", at room temperature by anchoring chemical functionalities on the surfaces of PDMS. Aminosilane and epoxysilane are anchored separately on the surfaces of two PDMS substrates, the reaction of which are well-known to form a strong amine-epoxy bond, therefore acting as a chemical glue. The bonding is performed for 1 h at room temperature without employing heat. We characterize the surface properties and composition by contact angle measurement, X-ray photoelectron spectroscopy analysis, and fluorescence measurement to confirm the formation of surface functionalities and investigate the adhesion strength by means of pulling, tearing, and leakage tests. As confirmed by the above-mentioned analyses and tests, PDMS surfaces were successfully modified with amine and epoxy functionalities, and a bonding based on the amine-epoxy chemical gluing was successfully realized within 1 h at room temperature. The bonding was sufficiently robust to tolerate intense introduction of liquid whose per minute injection volume was almost 2000 times larger than the total internal volume of the microchannel used. In addition to the bonding of PDMS-PDMS homogeneous assembly, the bonding of the PDMS-poly(ethylene terephthalate) heterogeneous assembly was also examined. We also investigate the potential use of the multifunctionalized walls inside the microchannel, generated as a consequence of the chemical gluing, as a platform for the targeted immobilization.
Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications.
Streque, Jeremy; Rouxel, Didier; Talbi, Abdelkrim; Thomassey, Matthieu; Vincent, Brice
2018-05-01
Polydimethylsiloxane (PDMS) and other related silicon-based polymers are among the most widely employed elastomeric materials in microsystems, owing to their physical and chemical properties. Meanwhile, surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors and filters have been vastly explored for sensing and wireless applications. Many fields could benefit from the combined use of acoustic wave devices, and polydimethylsiloxane-based soft-substrates, microsystems, or packaging elements. The mechanical constants of PDMS strongly depend on frequency, similar to rubber materials. This brings to the exploration of the specific mechanical properties of PDMS encountered at high frequency, required for its exploitation in SAW or BAW devices. First, low-frequency mechanical behavior is confirmed from stress strain measurements, remaining useful for the exploitation of PDMS as a soft substrate or packaging material. The study, then, proposes a temperature-dependent, high-frequency mechanical study of PDMS based on Brillouin spectroscopy to determine the evolution of the longitudinal acoustic velocity in this material, which constitutes the main mechanical parameter for the design of acoustic wave devices. The PDMS glass transition is then retrieved by differential scanning calorimetry in order to confirm the observations made by Brillouin spectroscopy. This paper validates Brillouin spectroscopy as a very suitable characterization technique for the retrieval of longitudinal mechanical properties at low temperature, as a preliminary investigation for the design of acoustic wave devices coupled with soft materials.
Measuring interactions between polydimethylsiloxane and serum proteins at the air-water interface.
Liao, Zhengzheng; Hsieh, Wan-Ting; Baumgart, Tobias; Dmochowski, Ivan J
2013-07-30
The interaction between synthetic polymers and proteins at interfaces is relevant to basic science as well as a wide range of applications in biotechnology and medicine. One particularly common and important interface is the air-water interface (AWI). Due to the special energetics and dynamics of molecules at the AWI, the interplay between synthetic polymer and protein can be very different from that in bulk solution. In this paper, we applied the Langmuir-Blodgett technique and fluorescence microscopy to investigate how the compression state of polydimethylsiloxane (PDMS) film at the AWI affects the subsequent adsorption of serum protein [e.g., human serum albumin (HSA) or immunoglobulin G (IgG)] and the interaction between PDMS and protein. Of particular note is our observation of circular PDMS domains with micrometer diameters that form at the AWI in the highly compressed state of the surface film: proteins were shown to adsorb preferentially to the surface of these circular PDMS domains, accompanied by a greater than 4-fold increase in protein found in the interfacial film. The PDMS-only film and the PDMS-IgG composite film were transferred to cover glass, and platinum-carbon replicas of the transferred films were further characterized by scanning electron microscopy and atomic force microscopy. We conclude that the structure of the PDMS film greatly affects the amount and distribution of protein at the interface.
Wu, Ming; He, Jia; Ren, Xiao; Cai, Wen-Sheng; Fang, Yong-Chun; Feng, Xi-Zeng
2014-04-01
The effect of physicochemical surface properties and chemical structure on the attachment and viability of bacteria and mammalian cells has been extensively studied for the development of biologically relevant applications. In this study, we report a new approach that uses chlorogenic acid (CA) to modify the surface wettability, anti-bacterial activity and cell adhesion properties of polydimethylsiloxane (PDMS). The chemical structure of the surface was obtained by X-ray photoelectron spectroscopy (XPS), the roughness was measured by atomic force microscopy (AFM), and the water contact angle was evaluated for PDMS substrates both before and after CA modification. Molecular modelling showed that the modification was predominately driven by van der Waals and electrostatic interactions. The exposed quinic-acid moiety improved the hydrophilicity of CA-modified PDMS substrates. The adhesion and viability of E. coli and HeLa cells were investigated using fluorescence and phase contrast microscopy. Few viable bacterial cells were found on CA-coated PDMS surfaces compared with unmodified PDMS surfaces. Moreover, HeLa cells exhibited enhanced adhesion and increased spreading on the modified PDMS surface. Thus, CA-coated PDMS surfaces reduced the ratio of viable bacterial cells and increased the adhesion of HeLa cells. These results contribute to the purposeful design of anti-bacterial surfaces for medical device use. Copyright © 2013 Elsevier B.V. All rights reserved.
Interfacial Engineering for Low-Density Graphene Nanocomposites
2014-07-23
structure of polydimethylsiloxane ( PDMS ) to contain pyrene pendant groups such that it would non-covalently bind to graphene. This would allow for...high graphene loadings and conductive strain-sensitivity in PDMS . SEM images of these composites are shown here: 2 The high level of dispersion...allowed for a pristine graphene composite conductivity of 220 S/m; this is after using a membrane to induce separation between graphene-bound PDMS
Zhang, Guijiang; Zang, Xiaohuan; Li, Zhi; Wang, Chun; Wang, Zhi
2014-11-01
In this study, polydimethylsiloxane/metal-organic frameworks (PDMS/MOFs), including PDMS/MIL-101 and PDMS/MOF-199, were immobilized onto a stainless steel wire through sol-gel technique as solid-phase microextraction (SPME) fiber coating. The prepared fibers were used for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatography-mass spectrometry (GC-MS) analysis. Under the optimized experiment conditions, the PDMS/MIL-101 coated fiber exhibited higher extraction efficiency towards PAHs than that of PDMS/MOF-199. Several parameters affecting the extraction of PAHs by SPME with PDMS/MIL-101 fiber, including the extraction temperature, extraction time, sample volume, salt addition and desorption conditions, were investigated. The limits of detection (LODs) were less than 4.0 ng L(-1) and the linearity was observed in the range from 0.01 to 2.0 µg L(-1) with the correlation coefficients (r) ranging from 0.9940 to 0.9986. The recoveries of the method for the PAHs from water samples at spiking levels of 0.05 and 0.2 µg L(-1) ranged from 78.2% to 110.3%. Single fiber repeatability and fiber-to-fiber reproducibility were less than 9.3% and 13.8%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yassaa, N.; Custer, T.; Song, W.; Pech, F.; Kesselmeier, J.; Williams, J.
2010-11-01
A headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) system has been developed for quantifying enantiomeric and nonenantiomeric monoterpenes in plant chamber studies and ambient air. Performance of this system was checked using a capillary diffusion system to produce monoterpene standards. The adsorption efficiency, competitive adsorption and chromatographic peak resolution of monoterpene enantiomer pairs were compared for three SPME fibre coatings: 75 μm Carboxen-PDMS (CAR-PDMS), 50/30 μm divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) and 65 μm divinylbenzene-polydimethylsiloxane (DVB-PDMS). Key parameters such as the linearity and reproducibility of the SPME system have been investigated in this work. The best compromise between the enantiomeric separation of monoterpenes and competitive adsorption of the isoprenoids on the solid SPME fibre coating was found for DVB-PDMS fibres. The optimum conditions using DVB-PDMS fibres were applied to measure the exchange rates of monoterpenes in the emission of Quercus ilex using a laboratory whole plant enclosure under light and dark conditions, as well as in ambient air. With 592 and 223 ng m-2 s-1 respectively, β-myrcene and limonene were the predominant monoterpenes in the emission of Q. ilex. These values were closely comparable to those obtained using a zNose and cartridge GC-FID systems.
Planes, Mikael; Brand, Jérémie; Lewandowski, Simon; Remaury, Stéphanie; Solé, Stéphane; Le Coz, Cédric; Carlotti, Stéphane; Sèbe, Gilles
2016-10-07
This work investigates the possibility of using cellulose nanocrystals (CNCs) as biobased nanoadditives in protective polydimethylsiloxane (PDMS) space coatings, to improve the thermal and optical performances of the material. CNCs produced from wood pulp were functionalized in different conditions with the objective to improve their dispersibility in the PDMS matrix, increase their thermal stability and provide photoactive functions. Polysiloxane, cinnamate, chloroacetate and trifluoroacetate moieties were accordingly anchored at the CNCs surface by silylation, using two different approaches, or acylation with different functional vinyl esters. The modified CNCs were thoroughly characterized by FT-IR spectroscopy, solid-state NMR spectroscopy and thermogravimetric analysis, before being incorporated into a PDMS space coating formulation in low concentration (0.5 to 4 wt %). The cross-linked PDMS films were subsequently investigated with regards to their mechanical behavior, thermal stability and optical properties after photoaging. Results revealed that the CNC additives could significantly improve the thermal stability of the PDMS coating, up to 140 °C, depending on the treatment and CNC concentration, without affecting the mechanical properties and transparency of the material. In addition, the PDMS films loaded with as low as 1 wt % halogenated nanoparticles, exhibited an improved UV-stability after irradiation in geostationary conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Arvind; Czapla, Braden; Narayanaswamy, Arvind, E-mail: arvind.narayanaswamy@columbia.edu
The complex refractive index of polydimethylsiloxane (PDMS) is determined in the wavelength range between 2.5 μm and 16.7 μm. The parameters of a Drude-Lorentz oscillator model (with 15 oscillators) are extracted from Fourier transform infrared spectroscopy reflectance measurements made on both bulk PDMS and thin films of PDMS deposited on the gold coated silicon substrates. It is shown that thin films of PDMS atop gold exhibit selective emission in the 8 μm to 13 μm atmospheric transmittance window, which demonstrates that PDMS, especially due to its ease of deposition, may be a viable material for passive radiative cooling applications.
Sun, Yuan; Lang, Yanhe; Sun, Qian; Liang, Shuang; Liu, Yongkang; Zhang, Zhizhou
2016-09-01
In this paper, two carbon nanotube (CNT) nanofillers, namely the multi-walled carbon nanotubes (MWCNTs) and the carboxyl-modified MWCNTs (cMWCNTs), were introduced into the polydimethylsiloxane (PDMS) matrix respectively, in order to produce the PDMS composites with reinforced anti-biofouling properties. The anti-biofouling capacity of the silicone-based coatings, including the unfilled PDMS (P0), the MWCNTs-filled PDMS (PM) and the cMWCNTs-filled PDMS (PC), was examined via the field assays conducted in Weihai, China. The effect of different silicone-based coatings on the dynamic variations of the pioneer microbial-community diversity was analyzed using the single-strand conformation polymorphism (SSCP) technique. The PM and PC surfaces have exhibited excellent anti-biofouling properties in contrast to that of the PDMS surface, with extremely low attachment of the early colonizers, such as juvenile invertebrates, seaweeds and algae sporelings. The PM and PC surfaces can effectively prevent biofouling for more than 12 weeks. These combined results suggest that the incorporation of MWCNTs or cMWCNTs into the PDMS matrix can dramatically reinforce its anti-biofouling properties. The SSCP analysis reveals that compared with the PDMS surfaces, the PM and PC surfaces have strong modulating effect on the pioneer prokaryotic and eukaryotic communities, particularly on the colonization of pioneer eukaryotic microbes. The significantly reduced pioneer eukaryotic-community diversity may contribute to the weakening of the subsequent colonization of macrofoulers. Copyright © 2016 Elsevier B.V. All rights reserved.
Pedraza, Eileen; Coronel, Maria M.; Fraker, Christopher A.; Ricordi, Camillo; Stabler, Cherie L.
2012-01-01
A major hindrance in engineering tissues containing highly metabolically active cells is the insufficient oxygenation of these implants, which results in dying or dysfunctional cells in portions of the graft. The development of methods to increase oxygen availability within tissue-engineered implants, particularly during the early engraftment period, would serve to allay hypoxia-induced cell death. Herein, we designed and developed a hydrolytically activated oxygen-generating biomaterial in the form of polydimethylsiloxane (PDMS)-encapsulated solid calcium peroxide, PDMS-CaO2. Encapsulation of solid peroxide within hydrophobic PDMS resulted in sustained oxygen generation, whereby a single disk generated oxygen for more than 6 wk at an average rate of 0.026 mM per day. The ability of this oxygen-generating material to support cell survival was evaluated using a β cell line and pancreatic rat islets. The presence of a single PDMS-CaO2 disk eliminated hypoxia-induced cell dysfunction and death for both cell types, resulting in metabolic function and glucose-dependent insulin secretion comparable to that in normoxic controls. A single PDMS-CaO2 disk also sustained enhanced β cell proliferation for more than 3 wk under hypoxic culture conditions. Incorporation of these materials within 3D constructs illustrated the benefits of these materials to prevent the development of detrimental oxygen gradients within large implants. Mathematical simulations permitted accurate prediction of oxygen gradients within 3D constructs and highlighted conditions under which supplementation of oxygen tension would serve to benefit cellular viability. Given the generality of this platform, the translation of these materials to other cell-based implants, as well as ischemic tissues in general, is envisioned. PMID:22371586
A self-healing PDMS polymer with solvatochromic properties.
Jia, Xiao-Yong; Mei, Jin-Feng; Lai, Jian-Cheng; Li, Cheng-Hui; You, Xiao-Zeng
2015-05-28
Coordination bonds are effective for constructing functional self-healing materials due to their tunable bond strength and metal-ion-induced functionalities. In this work, we incorporate a cobalt(II) triazole complex into a polydimethylsiloxane (PDMS) matrix. The resulting polymers show solvatochromic behaviour as well as self-healing properties.
Coulometric Analysis Experiment for the Undergraduate Chemistry Laboratory
ERIC Educational Resources Information Center
Dabke, Rajeev B.; Gebeyehu, Zewdu; Thor, Ryan
2011-01-01
An undergraduate experiment on coulometric analysis of four commercial household products is presented. A special type of coulometry cell made of polydimethylsiloxane (PDMS) polymer is utilized. The PDMS cell consists of multiple analyte compartments and an internal network of salt bridges. Experimental procedure for the analysis of the acid in a…
Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.
Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli
2017-12-15
Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.
Tang, Linzhi; Min, Junhong; Lee, Eun-Cheol; Kim, Jong Sung; Lee, Nae Yoon
2010-02-01
Herein, we introduce the fabrication of polymer micropattern arrays on a chemically inert poly(dimethylsiloxane) (PDMS) surface and employ them for the selective adhesion of cells. To fabricate the micropattern arrays, a mercapto-ester-based photocurable adhesive was coated onto a mercaptosilane-coated PDMS surface and photopolymerized using a photomask to obtain patterned arrays at the microscale level. Robust polymer patterns, 380 microm in diameter, were successfully fabricated onto a PDMS surface, and cells were selectively targeted toward the patterned regions. Next, the performance of the cell adhesion was observed by anchoring cell adhesive linker, an RGD oligopeptide, on the surface of the mercapto-ester-based adhesive-cured layer. The successful anchoring of the RGD linker was confirmed through various surface characterizations such as water contact angle measurement, XPS analysis, FT-IR analysis, and AFM measurement. The micropatterning of a photocurable adhesive onto a PDMS surface can provide high structural rigidity, a highly-adhesive surface, and a physical pathway for selective cell adhesion, while the incorporated polymer micropattern arrays inside a PDMS microfluidic device can serve as a microfluidic platform for disease diagnoses and high-throughput drug screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yimeng; Zhang, Xinping, E-mail: Zhangxinping@bjut.edu.cn; Zhang, Jian
We investigate stretching-induced microscopic deformations spatially distributed in a flexible plate of polydimethylsiloxane (PDMS) and their applications in the broadening of the output spectrum of a femtosecond optical parametric oscillator. The hologram of the stretched PDMS plate was used to evaluate indirectly the microscopic deformations. The experimental results show that these deformations exhibit weak scattering and diffraction of light and induce negligible cavity loss, ensuring practical applications of the PDMS plate as an intracavity device for lasers. In combination with the thickness reduction of the PDMS plate through stretching, the distributed deformations enable smooth tuning of the output spectrum.
Alzobaidi, Shehab; Lee, Jason; Jiries, Summer; Da, Chang; Harris, Justin; Keene, Kaitlin; Rodriguez, Gianfranco; Beckman, Eric; Perry, Robert; Johnston, Keith P; Enick, Robert
2018-09-15
The design of surfactants for CO 2 /oil emulsions has been elusive given the low CO 2 -oil interfacial tension, and consequently, low driving force for surfactant adsorption. Our hypothesis is that waterless, high pressure CO 2 /oil emulsions can be stabilized by hydrophobic comb polymer surfactants that adsorb at the interface and sterically stabilize the CO 2 droplets. The emulsions were formed by mixing with an impeller or by co-injecting CO 2 and oil through a beadpack (CO 2 volume fractions (ϕ) of 0.50-0.90). Emulsions were generated with comb polymer surfactants with a polydimethylsiloxane (PDMS) backbone and pendant linear alkyl chains. The C 30 alkyl chains are CO 2 -insoluble but oil soluble (oleophilic), whereas PDMS with more than 50 repeat units is CO 2 -philic but only partially oleophilic. The adsorbed surfactants sterically stabilized CO 2 droplets against Ostwald ripening and coalescence. The optimum surfactant adsorption was obtained with a PDMS degree of polymerization of ∼88 and seven C 30 side chains. The emulsion apparent viscosity reached 18 cP at a ϕ of 0.70, several orders of magnitude higher than the viscosity of pure CO 2 , with CO 2 droplets in the 10-150 µm range. These environmentally benign waterless emulsions are of interest for hydraulic fracturing, especially in water-sensitive formations. Copyright © 2018 Elsevier Inc. All rights reserved.
Kueseng, Pamornrat; Pawliszyn, Janusz
2013-11-22
A new thin-film, carboxylated multiwalled carbon nanotubes/polydimethylsiloxane (MWCNTs-COOH/PDMS) coating was developed for 96-blade solid-phase microextraction (SPME) system followed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). The method provided good extraction efficiency (64-90%) for three spiked levels, with relative standard deviations (RSD)≤6%, and detection limits between 1 and 2 μg/L for three phenolic compounds. The MWCNTs-COOH/PDMS 96-blade SPME system presents advantages over traditional methods due to its simplicity of use, easy coating preparation, low cost and high sample throughput (2.1 min per sample). The developed coating is reusable for a minimum of 110 extractions with good extraction efficiency. The coating provided higher extraction efficiency (3-8 times greater) than pure PDMS coatings. Copyright © 2013 Elsevier B.V. All rights reserved.
Peng, Yu-Ting; Lo, Kuo-Feng; Juang, Yi-Je
2010-04-06
In this study, a superhydrophobic surface on polydimethylsiloxane (PDMS) substrate was constructed via the proposed vapor-liquid sol-gel process in conjunction with spin coating of dodecyltrichlorosilane (DTS). Unlike the conventional sol-gel process where the reaction takes place in the liquid phase, layers of silica (SiO(2)) particles were formed through the reaction between the reactant spin-coated on the PDMS surface and vapor of the acid solution. This led to the SiO(2) particles inlaid on the PDMS surface. Followed by subsequent spin coating of DTS solution, the wrinkle-like structure was formed, and the static contact angle of the water droplet on the surface could reach 162 degrees with 2 degrees sliding angle and less than 5 degrees contact angle hysteresis. The effect of layers of SiO(2) particles, concentrations of DTS solution and surface topography on superhydrophobicity of the surface is discussed.
Micro-pyramidal structure fabrication on polydimethylsiloxane (PDMS) by Si (100) KOH wet etching
NASA Astrophysics Data System (ADS)
Hwang, Shinae; Lim, Kyungsuk; Shin, Hyeseon; Lee, Seongjae; Jang, Moongyu
2017-10-01
A high degree of accuracy in bulk micromachining is essential to fabricate micro-electro-mechanical systems (MEMS) devices. A series of etching experiments is carried out using 40 wt% KOH solutions at the constant temperature of 70 °C. Before wet etching, SF6 and O2 are used as the dry etching gas to etch the masking layers of a 100 nm thick Si3N4 and SiO2, respectively. The experimental results indicate that (100) silicon wafer form the pyramidal structures with (111) single crystal planes. All the etch profiles are analyzed using Scanning Electron Microscope (SEM) and the wet etch rates depend on the opening sizes. The manufactured pyramidal structures are used as the pattern of silicon mold. After a short hardening of coated polydimethylsiloxane (PDMS) layer, micro pyramidal structures are easily transferred to PDMS layer.
In vitro progesterone release from γ-irradiated cross-linked polydimethylsiloxane
NASA Astrophysics Data System (ADS)
Mashak, Arezou; Taghizadeh, S. Mojtaba
2006-02-01
Instead of conventional method such as thermal cross-linking method, γ-irradiation is used to improve the properties of polydimethylsiloxane (PDMS) as a matrix containing progesterone. The thermal cross-linking of PDMS monolithic systems containing drug is deleterious to the drug. Usually, all drugs are unstable both at high vulcanizing temperature and in the presence of peroxide catalysts. This novel method is found to be effective for the stability of the controlled drug delivery systems. The PDMS (three medical grades) matrices were exposed to γ-irradiation in ambient conditions with total doses of 50, 75 and 100 kGy. The mechanical properties confirmed that the samples are cross-linked. It is found that the progesterone release rate is affected by irradiation treatment. It is deduced, however that there is no significant difference in the release profile of progesterone by increasing the irradiation dose from 50 to 100 kGy.
Improved actuation strain of PDMS-based DEA materials chemically modified with softening agents
NASA Astrophysics Data System (ADS)
Biedermann, Miriam; Blümke, Martin; Wegener, Michael; Krüger, Hartmut
2015-04-01
Dielectric elastomer actuators (DEAs) are smart materials that gained much in interest particularly in recent years. One active field of research is the improvement of their properties by modification of their structural framework. The object of this work is to improve the actuation properties of polydimethylsiloxane (PDMS)-based DEAs by covalent incorporation of mono-vinyl-terminated low-molecular PDMS chains into the PDMS network. These low-molecular units act as a kind of softener within the PDMS network. The loose chain ends interfere with the network formation and lower the network's density. PDMS films with up to 50wt% of low-molecular PDMS additives were manufactured and the chemical, mechanical, electrical, and electromechanical properties of these novel materials were investigated.
Investigation on the mechanism of nitrogen plasma modified PDMS bonding with SU-8
NASA Astrophysics Data System (ADS)
Yang, Chengxin; Yuan, Yong J.
2016-02-01
Polydimethylsiloxane (PDMS) and SU-8 are both widely used for microfluidic system. However, it is difficult to permanently seal SU-8 microfluidic channels using PDMS with conventional methods. Previous efforts of combining these two materials mainly employed oxygen plasma modified PDMS. The nitrogen plasma modification of PDMS bonding with SU-8 is rarely studied in recent years. In this work, the mechanism of nitrogen plasma modified PDMS bonding with SU-8 was investigated. The fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle of a water droplet were used to analyze the nitrogen plasma modified surface and the hydrophilic stability of PDMS samples. Pull-off tests were used for estimating the bonding effect of interface between nitrogen plasma modified PDMS and SU-8.
The permeability coefficients of mixed matrix membranes of polydimethylsiloxane (PDMS) and silicalite crystal are taken as the sum of the permeability coefficients of membrane components each weighted by their associated mass fraction. The permeability coefficient of a membrane c...
Jun Peng; Huilong Zhang; Qifeng Zheng; Craig M. Clemons; Ronald C. Sabo; Shaoqin Gong; Zhenqiang Ma; Lih-Sheng Turng
2017-01-01
A novel polydimethylsiloxane (PDMS)/cellulose nanocrystal flake (CNCF) composite triboelectric nanogenerator (CTG) using CNCFs as effective dielectrics a 10-times-enhanced triboelectric performance compared with its pure PDMS counterpart. Positive charges generated on the surface of the CNCFs during cyclic compression boosted electron transfer and induced extra charges...
Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z. Hugh
2011-01-01
Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541
Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon
2009-04-01
Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.
NASA Astrophysics Data System (ADS)
Fan, Benhui; Liu, Yu; He, Delong; Bai, Jinbo
2018-01-01
Sandwich-structured composites of polydimethylsiloxane/carbon nanotube (PDMS/CNT) bulk between two neat PDMS thin films with different thicknesses are prepared by the spin-coating method. Taking advantage of CNT's percolation behavior, the composite keeps relatively high dielectric constant (ɛ' = 40) at a low frequency (at 100 Hz). Meanwhile, due to the existence of PDMS isolated out-layers which limits the conductivity of the composite, the composite maintains an extremely low dielectric loss (tan δ = 0.01) (at 100 Hz). Moreover, the same matrix of the out-layer and bulk can achieve excellent interfacial adhesion, and the thickness of the coating layer can be controlled by a multi-cycle way. Then, based on the experimental results, the calculation combining the percolation theory and core-shell model is used to analyze the thickness effect of the coating layer on ɛ'. The obtained relationship between the ɛ' of the composite and the thickness of the coating layer can help to optimize the sandwich structure in order to obtain the adjustable ɛ' and the extremely low tan δ.
Okeme, Joseph O; Parnis, J Mark; Poole, Justen; Diamond, Miriam L; Jantunen, Liisa M
2016-08-01
Polydimethylsiloxane (PDMS) shows promise for use as a passive air sampler (PAS) for semi-volatile organic compounds (SVOCs). To use PDMS as a PAS, knowledge of its chemical-specific partitioning behaviour and time to equilibrium is needed. Here we report on the effectiveness of two approaches for estimating the partitioning properties of polydimethylsiloxane (PDMS), values of PDMS-to-air partition ratios or coefficients (KPDMS-Air), and time to equilibrium of a range of SVOCs. Measured values of KPDMS-Air, Exp' at 25 °C obtained using the gas chromatography retention method (GC-RT) were compared with estimates from a poly-parameter free energy relationship (pp-FLER) and a COSMO-RS oligomer-based model. Target SVOCs included novel flame retardants (NFRs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), organophosphate flame retardants (OPFRs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Significant positive relationships were found between log KPDMS-Air, Exp' and estimates made using the pp-FLER model (log KPDMS-Air, pp-LFER) and the COSMOtherm program (log KPDMS-Air, COSMOtherm). The discrepancy and bias between measured and predicted values were much higher for COSMO-RS than the pp-LFER model, indicating the anticipated better performance of the pp-LFER model than COSMO-RS. Calculations made using measured KPDMS-Air, Exp' values show that a PDMS PAS of 0.1 cm thickness will reach 25% of its equilibrium capacity in ∼1 day for alpha-hexachlorocyclohexane (α-HCH) to ∼ 500 years for tris (4-tert-butylphenyl) phosphate (TTBPP), which brackets the volatility range of all compounds tested. The results presented show the utility of GC-RT method for rapid and precise measurements of KPDMS-Air. Copyright © 2016. Published by Elsevier Ltd.
Silicon tetrachloride plasma induced grafting for starch-based composites
NASA Astrophysics Data System (ADS)
Ma, Yonghui C.
Non-modified virgin starch is seldom used directly in industrial applications. Instead, it is often physically and/or chemically modified to achieve certain enhanced properties. For many of the non-food applications, these modifications involve changing its hydrophilicity to create hydrophobic starch. In this study, the hydrophobic starch was produced through silicon tetrachloride (SiCl4) plasma induced graft polymerization, so that it could be used as a renewable and biodegradable component of, or substitute for, the petrochemical-based plastics. It was suggested that this starch graft-copolymer might be used as reinforcing components in silicone-rubber materials for starch-based composites. To make this starch graft-copolymer, the ethyl ether-extracted starch powders were surface functionalized by SiCl4 plasma using a 13.56 MHz radio frequency rotating plasma reactor and subsequently stabilized by either ethylene diamine or dichlorodimethylsilane (DCDMS). The functionalized starch was then graft-polymerized with DCDMS to form polydimethylsiloxane (PDMS) layers around the starch granules. The presence of this PDMS layer was demonstrated by electron spectroscopy for chemical analysis (ESCA/XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), gas chromatography-mass spectroscopy (GC-MS), thermo gravimetry/differential thermal analysis (TG/DTA), and other analyses. It was shown that the surface morphology, thermal properties, swelling characteristic, and hydrophilicity of starch were all changed due to the existence of this protective hydrophobic PDMS layer. Several different procedures to carry out the functionalization and graft polymerization steps were evaluated to improve the effectiveness of the reactions and to prevent the samples from being hydrolyzed by the grafting byproduct HCl. Actinometry, GC-MS, and residual gas analyzer (RGA) were used to investigate the mechanisms of the SiCl4 discharge and to optimize the plasma modification. These plasma diagnostic results showed that, to achieve better plasma modification, higher plasma power and lower SiCl4 vapor pressure would be needed; however, it was found that the efficiency of the modification peaked at a certain point of plasma treatment time (˜10 minutes) and there was not much subsequent improvement with prolonged plasma treatment.
Zheng, Bei; Li, Wentao; Liu, Lin; Wang, Xin; Chen, Chen; Yu, Zhiyong; Li, Hongyan
2017-08-18
A novel nanosilica/polydimethylsiloxane (SiO 2 /PDMS) coated stirring bar was adopted in the sorption extraction (SBSE) of phenols in water, and the high performance liquid chromatography-fourier transform infrared spectroscopy (HPLC-FTIR) was subsequently used to determination of phenol concentration. The SiO 2 /PDMS coating was prepared by sol-gel method and characterized with respect to morphology and specific surface area. The results of field-emission scanning electron microscope (FE-SEM) and N 2 adsorption-desorption as well as phenol adsorption experiments denoted that SiO 2 /PDMS has larger surface area and better adsorption capacity than commercial PDMS. The extraction efficiency of phenol with SiO 2 /PDMS coated stirring bar was optimized in terms of ion strength, flow rate of phenol-involved influent, type of desorption solvent and desorption time. More than 75% of phenol desorption efficiency could be kept even after 50 cycles of extraction, indicating the high stability of the SiO 2 /PDMS coated stirring bar. Approximately 0.16 mg/L 2, 5-dimethylphenol (2, 5-DMP), which was 34-fold more toxic than phenol, was detected in water through HPLC-FTIR. However, 2, 5-DMP could be oxidized to 5-methy-2-hydroxy benzaldehyde after disinfection in drinking water treatment process. Therefore, the proposed method of SiO 2 /PDMS-SBSE-HPLC-FTIR is successfully applied in the analysis of phenols isomers in aqueous environment.
Prieto-Blanco, M C; Jornet-Martínez, N; Moliner-Martínez, Y; Molins-Legua, C; Herráez-Hernández, R; Verdú Andrés, J; Campins-Falcó, P
2015-01-15
This report describes a polydimethylsiloxane (PDMS)-thymol/nitroprusside delivery composite sensor for direct monitoring of ammonium in environmental water samples. The sensor is based on a PDMS support that contains the Berthelot's reaction reagents. To prepare the PDMS-thymol/nitroprusside composite discs, thymol and nitroprusside have been encapsulated in the PDMS matrix, forming a reagent release support which significantly simplifies the analytical measurements, since it avoids the need to prepare derivatizing reagents and sample handling is reduced to the sampling step. When, the PDMS-thymol/nitroprusside composite was introduced in water samples spontaneous release of the chromophore and catalyst was produced, and the derivatization reaction took place to form the indothymol blue. Thus, qualitative analysis of NH4(+) could be carried out by visual inspection, but also, it can be quantified by measuring the absorbance at 690 nm. These portable devices provided good sensitivity (LOD<0.4 mg L(-1)) and reproducibility (RSD <10%) for the rapid detection of ammonium. The PDMS-NH4(+) sensor has been successfully applied to determine ammonium in water samples and in the aqueous extracts of particulate matter PM10 samples. Moreover, the reliability of the method for qualitative analysis has been demonstrated. Finally, the advantages of the PDMS-NH4(+) sensor have been examined by comparing some analytical and complementary characteristics with the properties of well-established ammonium determination methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Roh, Changhyun; Lee, Jaewoong; Kang, Chankyu
2016-06-18
Experimental investigations were conducted to determine the influence of polydimethylsiloxane (PDMS) microfluidic channels containing aligned circular obstacles (with diameters of 172 µm and 132 µm) on the flow velocity and pressure drop under steady-state flow conditions. A significant PDMS bulging was observed when the fluid flow initially contacted the obstacles, but this phenomenon decreased in the 1 mm length of the microfluidic channels when the flow reached a steady-state. This implies that a microfluidic device operating with steady-state flows does not provide fully reliable information, even though less PDMS bulging is observed compared to quasi steady-state flow. Numerical analysis of PDMS bulging using ANSYS Workbench showed a relatively good agreement with the measured data. To verify the influence of PDMS bulging on the pressure drop and flow velocity, theoretical analyses were performed and the results were compared with the experimental results. The measured flow velocity and pressure drop data relatively matched well with the classical prediction under certain circumstances. However, discrepancies were generated and became worse as the microfluidic devices were operated under the following conditions: (1) restricted geometry of the microfluidic channels (i.e., shallow channel height, large diameter of obstacles and a short microchannel length); (2) operation in quasi-steady state flow; (3) increasing flow rates; and (4) decreasing amount of curing agent in the PDMS mixture. Therefore, in order to obtain reliable data a microfluidic device must be operated under appropriate conditions.
NASA Astrophysics Data System (ADS)
Hoang, Michelle V.; Chung, Hyun-Joong; Elias, Anastasia L.
2016-10-01
Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm-1) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of ~0.2 N mm-1 (method 1) and >0.3 N mm-1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication.
Ataollahi, Forough; Pramanik, Sumit; Moradi, Ali; Dalilottojari, Adel; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar; Abu Osman, Noor Azuan
2015-07-01
Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells. © 2014 Wiley Periodicals, Inc.
Zhang, Qiyang; Gong, Maojun
2014-01-01
Integrated microfluidic systems coupled with electrophoretic separations have broad application in biological and chemical analysis. Interfaces for the connection of various functional parts play a major role in the performance of a system. Here we developed a rapid prototyping method to fabricate monolithic poly(dimethylsiloxane) (PDMS) Interfaces for flow-gated injection, online reagent mixing, and tube-to-tube connection in an integrated capillary electrophoresis (CE) system. The basic idea was based on the properties of PDMS: elasticity, transparency, and suitability for prototyping. The molds for these interfaces were prepared by using commercially available stainless steel wires and nylon lines or silica capillaries. A steel wire was inserted through the diameter of a nylon line and a cross format was obtained as the mold for PDMS casting of flow gates and 4-way mixers. These interfaces accommodated tubing connection through PDMS elasticity and provided easy visual trouble shooting. The flow gate used smaller channel diameters thus reducing flow rate by 25 fold for effective gating compared with mechanically machined counterparts. Both PDMS mixers and the tube-to-tube connectors could minimize the sample dead volume by using an appropriate capillary configuration. As a whole, the prototyped PDMS interfaces are reusable, inexpensive, convenient for connection, and robust when integrated with the CE detection system. Therefore, these interfaces could see potential applications in CE and CE-coupled systems. PMID:24331370
Sanli, D; Erkey, C
2013-11-27
Monolithic composites of silica aerogels with hydroxyl-terminated poly(dimethylsiloxane) (PDMS(OH)) were developed with a novel reactive supercritical deposition technique. The method involves dissolution of PDMS(OH) in supercritical CO2 (scCO2) and then exposure of the aerogel samples to this single phase mixture of PDMS(OH)-CO2. The demixing pressures of the PDMS(OH)-CO2 binary mixtures determined in this study indicated that PDMS(OH) forms miscible mixtures with CO2 at a wide composition range at easily accessible pressures. Upon supercritical deposition, the polymer molecules were discovered to react with the hydroxyl groups on the silica aerogel surface and form a conformal coating on the surface. The chemical attachment of the polymer molecules on the aerogel surface were verified by prolonged extraction with pure scCO2, simultaneous deposition with superhydrophobic and hydrophilic silica aerogel samples and ATR-FTIR analysis. All of the deposited silica aerogel samples were obtained as monoliths and retained their transparency up to around 30 wt % of mass uptake. PDMS(OH) molecules were found to penetrate all the way to the center of the monoliths and were distributed homogenously throughout the cylindrical aerogel samples. Polymer loadings as high as 75.4 wt % of the aerogel mass could be attained. It was shown that the polymer uptake increases with increasing exposure time, as well as the initial polymer concentration in the vessel.
[Fabrication and Performance Study of Polydimethylsiloxane Intraocular Lens].
Du, Qiuyue; Yu, Yueqing
2016-10-01
To simplify the production process of intraocular lens(IOL)and to solve the problem of lacking adjustable ability,we proposed a novel soft IOL with large-scale adjustable ability and rigid haptics based on heat-assisted method,and gravity-assisted method.Polydimethylsiloxane(PDMS)and rigid material--polymethyl methacrylate(PMMA)were used as the materials for fabricating optical lens(PDMS)and haptics(PDMS and PMMA)through changing the weight ratio of the solution.A lens-smartphone microscopy system was established to replace the traditional digital microscopy to measure the tiny displacements and shape changes.The PDMS lens has excellent optical property through an experiment in which the maximum optical power was around 273.2D.Experimental results indicated that the maximum optical power of PMMA IOL was 129.3D,and that in PDMS IOL,however,was only 56.0D.Thus,the rigid PMMA-IOL has a larger adjustable range.The production process of PDMS was mold-free,rapid,real-time,and highly repeatable and there was no need for a rigorous experimental environment either.This creative processing technology reduced the manufacturing steps from which an optical lens with high transmittance and high resolution,as well as hatics with accurate dimensions,were obtained.The rigidity of haptics affected more intensely than other factors did for improving the pre-displacement and changing the appearance of PDMS lens.Even though the rigidity of PMMA haptics is large enough for accommodating,there are many drawbacks during manufacturing.It is unavailable to rapid fabricate IOL using PMMA.Thus,further work will be required to alter the weight ratio of PDMS material,increase the rigidity,and enhance the adjustable ability of PDMS IOL.
Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings
NASA Astrophysics Data System (ADS)
Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong
2016-03-01
A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.
Magnetite-doped polydimethylsiloxane (PDMS) for phosphopeptide enrichment.
Sandison, Mairi E; Jensen, K Tveen; Gesellchen, F; Cooper, J M; Pitt, A R
2014-10-07
Reversible phosphorylation plays a key role in numerous biological processes. Mass spectrometry-based approaches are commonly used to analyze protein phosphorylation, but such analysis is challenging, largely due to the low phosphorylation stoichiometry. Hence, a number of phosphopeptide enrichment strategies have been developed, including metal oxide affinity chromatography (MOAC). Here, we describe a new material for performing MOAC that employs a magnetite-doped polydimethylsiloxane (PDMS), that is suitable for the creation of microwell array and microfluidic systems to enable low volume, high throughput analysis. Incubation time and sample loading were explored and optimized and demonstrate that the embedded magnetite is able to enrich phosphopeptides. This substrate-based approach is rapid, straightforward and suitable for simultaneously performing multiple, low volume enrichments.
Versatile transfer of aligned carbon nanotubes with polydimethylsiloxane as the intermediate
NASA Astrophysics Data System (ADS)
Zhu, Yanwu; Lim, Xiaodai; Chea Sim, Mong; Teck Lim, Chwee; Haur Sow, Chorng
2008-08-01
A simple technique to transfer aligned multi-walled carbon nanotubes (MWCNTs) is demonstrated in this work. With polydimethylsiloxane (PDMS) as the transfer medium, as-grown or patterned MWCNT arrays are directly transferred onto a wide variety of Pt-coated substrates such as glossy paper, cloth, polymers, glass slides, and metal foils at low temperatures. The surface of the transferred CNTs is cleaner with better alignment, compared with the as-grown one. Furthermore, the transferred CNTs show strong adhesion and good electric contact with the target substrates. A maximal current density of ~104 A cm-2 has been achieved from the CNT interconnects prepared with this technique. Because of the lower density and open-ended structures, improved field emission performance has been obtained from CNTs transferred on polymers, based on which flexible emitter devices can be fabricated. In addition, the surface of transferred CNTs becomes more hydrophilic, with an averaged contact angle of 93.4 ± 5.8°, in contrast to the super-hydrophobic as-grown CNT surface (contact angle 151.6 ± 5.5°). With versatile properties and flexible applications, the technique provides a simple and cost-effective way towards future nanodevices based on CNTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiubianu, George, E-mail: george.stiubianu@icmpp.ro; Bele, Adrian; Cazacu, Maria
Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles rangedmore » between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.« less
Wang, Tao; Ansai, Toshihiro; Lee, Seung-Woo
2017-01-15
ZSM-5 zeolite-loaded poly(dimethylsiloxane) (PDMS) hybrid thin films were demonstrated for efficient thin-film microextraction (TFME) coupled with gas chromatography-mass spectrometry for analyzing organic volatiles in water. The extraction efficiency for a series of aliphatic alcohols and two aromatic compounds was significantly improved owing to the presence of ZSM-5 zeolites. The extraction efficiency of the hybrid films was increased in proportion to the content of ZSM-5 in the PDMS film, with 20wt% of ZSM-5 showing the best results. The 20wt% ZSM-5/PDMS hybrid film exhibited higher volatile organic content extraction compared with the single-component PDMS film or PDMS hybrid films containing other types of zeolite (e.g., SAPO-34). Limits of detection and limits of quantitation for individual analytes were in the range of 0.0034-0.049ppb and of 0.010-0.15 ppb, respectively. The effects of experimental parameters such as extraction time and temperature were optimized, and the molecular dispersion of the zeolites in/on the hybrid film matrix was confirmed with scanning electron microscopy and atomic force microscopy. Furthermore, the optimized hybrid film was preliminarily tested for the analysis of organic volatiles contained in commercially available soft drinks. Copyright © 2016 Elsevier B.V. All rights reserved.
de Cesaro, Alessandra; da Silva, Suse Botelho; Ayub, Marco Antônio Záchia
2014-09-01
The aims of this study were to evaluate the effects of the addition of metabolic precursors and polydimethylsiloxane (PDMS) as an oxygen carrier to cultures of Bacillus subtilis BL53 during the production of γ-PGA. Kinetics analyses of cultivations of different media showed that B. subtilis BL53 is an exogenous glutamic acid-dependent strain. When the metabolic pathway precursors of γ-PGA synthesis, L-glutamine and a-ketoglutaric acid, were added to the culture medium, production of the biopolymer was increased by 20 % considering the medium without these precursors. The addition of 10 % of the oxygen carrier PDMS to cultures caused a two-fold increase in the volumetric oxygen mass transfer coefficient (kLa), improving γ-PGA production and productivity. Finally, bioreactor cultures of B. subtilis BL53 adopting the combination of optimized medium E, added of glutamine, α-ketoglutaric acid, and PDMS, showed a productivity of 1 g L(-1) h(-1) of g-PGA after only 24 h of cultivation. Results of this study suggest that the use of metabolic pathway precursors glutamine and a-ketolgutaric acid, combined with the addition of PDMS as an oxygen carrier in bioreactors, can improve γ-PGA production and productivity by Bacillus strains .
Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng
2015-02-25
The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.
Fabrication of biomimetic dry-adhesion structures through nanosphere lithography
NASA Astrophysics Data System (ADS)
Kuo, P. C.; Chang, N. W.; Suen, Y.; Yang, S. Y.
2018-03-01
Components with surface nanostructures suitable for biomimetic dry adhesion have a great potential in applications such as gecko tape, climbing robots, and skin patches. In this study, a nanosphere lithography technique with self-assembly nanospheres was developed to achieve effective and efficient fabrication of dry-adhesion structures. Self-assembled monolayer nanospheres with high regularity were obtained through tilted dip-coating. Reactive-ion etching of the self-assembled nanospheres was used to fabricate nanostructures of different shapes and aspect ratios by varying the etching time. Thereafter, nickel molds with inverse nanostructures were replicated using the electroforming process. Polydimethylsiloxane (PDMS) nanostructures were fabricated through a gas-assisted hot-embossing method. The pulling test was performed to measure the shear adhesion on the glass substrate of a sample, and the static contact angle was measured to verify the hydrophobic property of the structure. The enhancement of the structure indicates that the adhesion force increased from 1.2 to 4.05 N/cm2 and the contact angle increased from 118.6° to 135.2°. This columnar structure can effectively enhance the adhesion ability of PDMS, demonstrating the potential of using nanosphere lithography for the fabrication of adhesive structures.
Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics
NASA Astrophysics Data System (ADS)
Kennedy, Gordon T.; Lentsch, Griffin R.; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B.; Durkin, Anthony J.
2017-07-01
Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions.
Evaluating the Relationship between Equilibrium Passive ...
This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-four studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Passive sampling based concentrations resulted in logarithmic predictive relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS and POM were 0.68, 0.76 and 0.58, respectively. For the available raw data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). This review concludes that in many applications passive sampling may serve as a reliable surrogate for biomonitoring organisms when biomonitoring organisms are not available. When applied properly, passive sampling based estimates of bioaccumulation provide useful information for making informed decisions about the bioavailability of HOCs
Evaluating the Relationship between Equilibrium Passive ...
This Critcal Review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-seven studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low-density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Passive sampling based concentrations resulted in log–log predictive relationships, most of which were within one to 2 orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS, and POM were 0.68, 0.76, and 0.58, respectively. For the available raw, untransformed data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Using passive sampling as a surrogate for organism bioaccumulation is viable when biomonitoring organisms are not available. Passive sampling based estimates of bioaccumulation provide useful information for making informed decisions about the bioavailability of HOCs. This review evaluates passive sampler uptake of hydrophobi
Graphene-based inline pressure sensor integrated with microfluidic elastic tube
NASA Astrophysics Data System (ADS)
Inoue, Nagisa; Onoe, Hiroaki
2018-01-01
We propose an inline pressure sensor composed of a polydimethylsiloxane (PDMS) microfluidic tube integrated with graphene sheets. The PDMS tube was fabricated through molding, and a multilayered graphene sheet was transferred on the surface of the PDMS tube. The pressure inside the tube was monitored using the changes in the electrical resistance of the transferred graphene. The proposed pressure sensor could be suitable for precise pressure measurement for a small amount of fluid in microfluidic systems including organ-on-a-chip devices.
Kumada, Yoichi; Otsuki, Ryoko; Sakoda, Yumiko; Akai, Ryota; Matoba, Kazutaka; Katayama, Junko; Kishimoto, Michimasa; Horiuchi, Jun-Ichi
2016-10-20
In this study we focused on identifying and characterizing polydimethylsiloxane-binding peptides (PDMS-tags) that show a strong binding affinity towards a PDMS surface. Three kinds of E. coli host proteins (ELN, OMC and TPA) that were preferentially adsorbed onto a PDMS surface were identified from the E. coli cell lysate via 2-D electrophoresis and MALDI TOF MS. Digestion of these PDMS-binding proteins by 3 types of proteases (trypsin, chymotrypsin and V8 protease) resulted in the production of a wide variety of peptide fragments with different amino acid biases. Nine types of peptide fragments showing binding affinities to a PDMS surface were identified, and they were genetically fused at the C-terminal region of glutathione S-transferase (GST). The adsorption kinetics of peptide-fused GSTs to a PDMS surface were evaluated using a quartz crystal microbalance (QCM) sensor equipped with a sensor chip coated with a PDMS thin film. Consequently, all GSTs fused with the peptides adsorbed at a level higher than that of wild-type GST. In particular, the adsorption levels of GSTs fused with ELN-V81, TPA-V81, and OMC-V81 peptides were 8- to 10-fold higher than that of the wild-type GST. These results indicated that the selected peptides possessed a strong binding affinity towards a PDMS surface even in cases where they were introduced to the C-terminal region of a model protein. The remaining activities of GSTs with PDMS-binding peptides were also greater than that of the wild-type GST. Almost a third (30%) of enzymatic activity was maintained by genetic fusion of the peptide ELN-V81, compared with only 1.5% of wild-type GST in the adsorption state. Thus, the PDMS-binding peptides (PDMS-tags) identified in this study will be considerably useful for the site-specific immobilization of functional proteins to a PDMS surface, which will be a powerful tool in the fabrication of protein-based micro-reactors and biosearation chips. Copyright © 2016 Elsevier B.V. All rights reserved.
Yu, Chunhe; Yao, Zhimin; Hu, Bin
2009-05-08
A "dumbbell-shaped" stir bar was proposed to prevent the friction loss of coating during the stirring process, and thus prolonged the lifetime of stir bars. The effects of the coating components, including polydimethylsiloxane (PDMS), beta-cyclodextrin (beta-CD) and divinylbenzene (DVB) were investigated according to an orthogonal experimental design, using three polycyclic aromatic hydrocarbons (PAHs) and four polycyclic aromatic sulfur heterocycles (PASHs) as model analytes. Four kinds of stir bars coated with PDMS, PDMS/beta-CD, PDMS/DVB and PDMS/beta-CD/DVB were prepared and their extraction efficiencies for the target compounds were compared. It was demonstrated that PDMS/beta-CD/DVB-coated stir bar showed the best affinity to the studied compounds. The preparation reproducibility of PDMS/beta-CD/DVB-coated stir bar ranged from 3.2% to 15.2% (n = 6) in one batch, and 5.2% to 13.4% (n = 6) among batches. The "dumbbell-shaped" stir bar could be used for about 40 times, which were 10 extractions more than a normal stir bar. The prepared PDMS/beta-CD/DVB-coated "dumbbell-shaped" stir bar was used for stir bar sorptive extraction (SBSE) of PAHs and PASHs and the desorbed solution was introduced into HPLC-UV for subsequent analysis. The limits of detection of the proposed method for seven target analytes ranged from 0.007 to 0.103 microg L(-1), the relative standard deviations were in the range of 6.3-12.9% (n = 6, c = 40 microg L(-1)), and the enrichment factors were 19-86. The proposed method was successfully applied to the analysis of seven target analytes in lake water and soil samples.
Hu, Cong; He, Man; Chen, Beibei; Zhong, Cheng; Hu, Bin
2013-10-04
In this work, three kinds of metal-organic frameworks (MOFs), MOF-5, MOF-199 and IRMOF-3, were introduced in stir bar sorptive extraction (SBSE) and novel polydimethylsiloxane (PDMS)/MOFs (including PDMS/MOF-5, PDMS/MOF-199 and PDMS/IRMOF-3) coated stir bars were prepared by sol-gel technique. These PDMS/MOFs coatings were characterized and critically compared for the extraction of seven target estrogens (17-β-estradiol, dienestrol, diethylstilbestrol, estrone, 4-t-octylphenol, bisphenol-A and 17α-ethynylestradiol) by SBSE, and the results showed that PDMS/IRMOF-3 exhibited highest extraction efficiency. Based on the above facts, a novel method of PDMS/IRMOF-3 coating SBSE-high performance liquid chromatography ultraviolet (HPLC-UV) detection was developed for the determination of seven target estrogens in environmental waters. Several parameters affecting extraction of seven target estrogens by SBSE (PDMS/IRMOF-3) including extraction time, stirring rate, pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.15-0.35 μg/L. The linear range was 2-2,500 μg/L for 17α-ethynylestradiol and 1-2,500 μg/L for other estrogens. The relative standard deviations (RSDs) were in the range of 3.7-9.9% (n=8, c=20 μg/L) and the enrichment factors were from 30.3 to 55.6-fold (theoretical enrichment factor was 100-fold). The proposed method was successfully applied to the analysis of estrogens in environmental water samples, and quantitative recoveries were obtained for the spiking experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices
Liang, David Y.; Tentori, Augusto M.; Dimov, Ivan K.; ...
2011-01-01
Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics ofmore » degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL/s and mean flow rates of approximately 1-1.5 nL/s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.« less
NASA Astrophysics Data System (ADS)
Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki
2017-03-01
Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.
Chen, Huang-Han; Hsiao, Yu-Chieh; Li, Jie-Ren; Chen, Shu-Hui
2015-03-20
Polydimethylsiloxane (PDMS) is widely used for microfabrication and bioanalysis; however, its surface functionalization is limited due to the lack of active functional groups and incompatibility with many solvents. We presented a novel approach for in situ fabrication of cleavable peptide arrays on polydimethylsiloxane (PDMS) viatert-butyloxycarbonyl (t-Boc)/trifluoroacetic acid (TFA) chemistry using gold nanoparticles (AuNPs) as the anchor and a disulfide/amine terminated hetero-polyethylene glycol as the cleavable linker. The method was fine tuned to use reagents compatible with the PDMS. Using 5-mer pentapeptide, Trp5, as a model, step-by-step covalent coupling during the reaction cycles was monitored by Attenuated total reflectance-Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), or atomic force microscopy (AFM), and further confirmed by mass spectrometry (MS) detection of the cleaved peptides. Using such a method, heptapeptides of the PKA substrate, LRRASLG (Kemptide), and its point mutated analogs were fabricated in an array format for comparative studies of cAMP-dependent protein kinase (PKA) activity. Based on on-chip detection, Kemptide sequence exhibited the highest phosphorylation activity, which was detected to a 1.5-time lesser extent for the point mutated sequence (LRRGSLG) containing the recognition motif (RRXS), and was nearly undetectable for another point mutated sequence (LRLASLG) that lacked the recognition motif. These results indicate that the reported fabrication method is able to yield highly specific peptide sequences on PDMS, leading to a highly motif-sensitive enzyme activity assay. Copyright © 2015 Elsevier B.V. All rights reserved.
Bioinspired polydimethylsiloxane-based composites with high shear resistance against wet tissue.
Fischer, Sarah C L; Levy, Oren; Kroner, Elmar; Hensel, René; Karp, Jeffrey M; Arzt, Eduard
2016-08-01
Patterned microstructures represent a potential approach for improving current wound closure strategies. Microstructures can be fabricated by multiple techniques including replica molding of soft polymer-based materials. However, polymeric microstructures often lack the required shear resistance with tissue needed for wound closure. In this work, scalable microstructures made from composites based on polydimethylsiloxane (PDMS) were explored to enhance the shear resistance with wet tissue. To achieve suitable mechanical properties, PDMS was reinforced by incorporation of polyethylene (PE) particles into the pre-polymer and by coating PE particle reinforced substrates with parylene. The reinforced microstructures showed a 6-fold enhancement, the coated structures even a 13-fold enhancement in Young׳s modulus over pure PDMS. Shear tests of mushroom-shaped microstructures (diameter 450µm, length 1mm) against chicken muscle tissue demonstrate first correlations that will be useful for future design of wound closure or stabilization implants. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Jiangtao; Tang, Jun; Guo, Hao; Liu, Wenyao; Shen, Chong; Liu, Jun; Qin, Li
2017-10-01
Here, a simple and low-cost fabrication strategy to efficiently construct well-ordered micron and submicron gratings on polymeric substrates by oxygen plasma treatment is reported. The Polydimethylsiloxane (PDMS) substrate is prepared on the polyethylene (PET) by spin-coating method, then the curved PDMS-PET substrates are processed in oxygen plasma. After appropriate surface treatment time in plasma the curved substrates are flattened, and well-ordered wrinkling shape gratings are obtained, due to the mechanical buckling instability. It is also demonstrated that changing the curvature radius of PDMS-PET substrates and the time of plasma treatment, the period of the wrinkling patterns and the amplitude of grating also change accordingly. It is found the period of the wrinkling patterns increased with the radius of curvature; while the amplitude decreased with that. It also shows good optical performance in transmittance diffraction testing experiments. Thus the well-ordered grating approach may further develop portable and economical applications and offer a valuable method to fabricate other optical micro strain gauges devices.
An amorphous mixture of PDMS and multi-cellular fragments of ZSM-5 is brought together to approximate the properties of a mixed matrix membrane of PDMS with ZSM-5. The permeability coefficient of the amorphous mixture for pure water is the product of the diffusion coefficient of...
Kamitakahara, M; Kawashita, M; Miyata, N; Kokubo, T; Nakamura, T
2002-11-01
Polydimethylsiloxane (PDMS)-CaO-SiO(2) hybrids with starting compositions containing PDMS/(Si(OC(2)H(5))(4)+PDMS) weight ratio=0.30, H(2)O/Si(OC(2)H(5))(4) molar ratio=2, and Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratios=0-0.2, were prepared by the sol-gel method. The apatite-forming ability of the hybrids increased with increasing calcium content in the Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio range 0-0.1. The hybrids with a Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio range 0.1-0.2 formed apatite on their surfaces in a simulated body fluid (SBF) within 12 h. The hybrid with a Ca(NO(3))(2)/Si(OC(2)H(5))(4) molar ratio of 0.10 showed an excellent apatite-forming ability in SBF with a low release of silicon into SBF. It also showed mechanical properties analogous to those of human cancellous bones. This hybrid is expected to be useful as a new type of bioactive material.
Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z Hugh
2012-01-01
Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Okeme, Joseph O.; Saini, Amandeep; Yang, Congqiao; Zhu, Jiping; Smedes, Foppe; Klánová, Jana; Diamond, Miriam L.
2016-10-01
Polydimethylsiloxane (PDMS) has seen wide use as the stationary phase of gas chromatographic columns, a passive sampler in water, and recently as a personal exposure sampler, while styrene divinyl-benzene copolymer (XAD) has been used extensively as a passive air sampler outdoors and indoors. We have introduced PDMS and XAD-Pocket as new indoor passive air samplers (PASs). The XAD-Pocket was designed to maximize the surface area-to-volume ratio of XAD and to minimize obstruction of air flow by the sampler housing. Methods were developed to expedite the use of these PASs for measuring phthalates, novel brominated flame-retardants (NFRs) and polybrominated diphenyl ethers (PBDEs) indoors. Sampling rates, Rs, (m3 day-1), were measured during a 7-week calibration study. Variability within and between analyte groups was not statistically significant. As a result, generic values of 0.8 ± 0.4 and 0.5 ± 0.3 m3 day-1 dm-2 are recommended for PDMS and XAD-Pocket for a 50-day deployment time, respectively. PDMS has a higher uptake rate and is easier to use than XAD-Pocket.
Liu, Daojun; Perdue, Robbyn K; Sun, Li; Crooks, Richard M
2004-07-06
This paper describes immobilization of DNA onto the interior walls of poly(dimethylsiloxane) (PDMS) microsystems and its application to an enzyme-amplified electrochemical DNA assay. DNA immobilization was carried out by silanization of the PDMS surface with 3-mercaptopropyltrimethoxysilane to yield a thiol-terminated surface. 5'-acrylamide-modified DNA reacts with the pendant thiol groups to yield DNA-modified PDMS. Surface-immobilized DNA oligos serve as capture probes for target DNA. Biotin-labeled target DNA hybridizes to the PDMS-immobilized capture DNA, and subsequent introduction of alkaline phosphatase (AP) conjugated to streptavidin results in attachment of the enzyme to hybridized DNA. Electrochemical detection of DNA hybridization benefits from enzyme amplification. Specifically, AP converts electroinactive p-aminophenyl phosphate to electroactive p-aminophenol, which is detected using an indium tin oxide interdigitated array (IDA) electrode. The IDA electrode eliminates the need for a reference electrode and provides a steady-state current that is related to the concentration of hybridized DNA. At present, the limit of detection of the DNA target is 1 nM in a volume of 20 nL, which corresponds to 20 attomoles of DNA.
Surface modification of poly(dimethylsiloxane) for microfluidic assay applications
NASA Astrophysics Data System (ADS)
Séguin, Christine; McLachlan, Jessica M.; Norton, Peter R.; Lagugné-Labarthet, François
2010-02-01
The surface of a poly(dimethylsiloxane) (PDMS) film was imparted with patterned functionalities at the micron-scale level. Arrays of circles with diameters of 180 and 230 μm were functionalized using plasma oxidation coupled with aluminum deposition, followed by silanization with solutions of 3-aminopropyltrimethoxy silane (3-APTMS) and 3-mercaptopropyltrimethoxy silane (3-MPTMS), to obtain patterned amine and thiol functionalities, respectively. The modification of the samples was confirmed using X-ray photoelectron spectroscopy (XPS), gold nanoparticle adhesion coupled with optical microscopy, as well as by derivatization with fluorescent dyes. To further exploit the novel surface chemistry of the modified PDMS, samples with surface amine functionalities were used to develop a protein assay as well as an array capable of cellular capture and patterning. The modified substrate was shown to successfully selectively immobilize fluorescently labeled immunoglobulin G (IgG) by tethering Protein A to the surface, and, for the cellular arrays, C2C12 rat endothelial cells were captured. Finally, this novel method of patterning chemical functionalities onto PDMS has been incorporated into microfluidic channels. Finally, we demonstrate the in situ chemical modification of the protected PDMS oxidized surface within a microfluidic device. This emphasizes the potential of our method for applications involving micron-scale assays since the aluminum protective layer permits to functionalize the oxidized PDMS surface several weeks after plasma treatment simply after etching away the metallic thin film.
NASA Astrophysics Data System (ADS)
Dong, Shuai; Wang, Xiaojie
2017-04-01
In this study, various amounts of carbonyl iron particles (CIPs) were cured into polydimethylsiloxane (PDMS) matrix under a magnetic field up to 1.0 T to create anisotropy of conductive composite materials. The electrical resistivity for the longitudinal direction was measured as a function of filler volume fraction to understand the electrical percolation behavior. The electrical percolation threshold (EPT) of CIPs-PDMS composite cured under a magnetic field can be as low as 0.1 vol%, which is much less than most of those studies in particulate composites. Meanwhile, the effects of compressive strain on the electrical properties of CIPs-PDMS composites were also investigated. The strain sensitivity depends on filler volume fraction and decreases with the increasing of compressive strain. It has been found that the composites containing a small amount of CI particles curing under a magnetic field exhibit a high strain sensitivity of over 150. Based on the morphological observation of the composite structures, a two-dimensional stick percolation model for the CIPs-PDMS composites has been established. The Monte Carlo simulation is performed to obtain the percolation probability. The simulation results in prediction of the values of EPTs are close to that of experimental measurements. It demonstrates that the low percolation behavior of CIPs-PDMS composites is due to the average length of particle chains forming by external magnetic field.
Voltage- and temperature- controlled LC:PDMS waveguide channels
NASA Astrophysics Data System (ADS)
Rutkowska, Katarzyna A.; Asquini, Rita; d'Alessandro, Antonio
2017-08-01
In this paper, we present our studies on electrical and thermal tuning of light propagation in waveguide channels, made for the scope from a polydimethylsiloxane (PDMS) substrate infiltrated with nematic liquid crystal (LC). We demonstrated, via numerical simulations, the changes of the waveguide optical parameters when solicited by temperature changes or electric fields. Moreover, the paper goes through the fabrication process of a waveguide channel sample and its characterization, as well as some preliminary experimental trials of sputtering indium tin oxide (ITO) and chromium layers on PDMS substrate to obtain flat electrodes.
Xia, Juan; Zhou, Junyu; Zhang, Ronggui; Jiang, Dechen; Jiang, Depeng
2018-06-04
In this communication, a gold-coated polydimethylsiloxane (PDMS) chip with cell-sized microwells was prepared through a stamping and spraying process that was applied directly for high-throughput electrochemiluminescence (ECL) analysis of intracellular glucose at single cells. As compared with the previous multiple-step fabrication of photoresist-based microwells on the electrode, the preparation process is simple and offers fresh electrode surface for higher luminescence intensity. More luminescence intensity was recorded from cell-retained microwells than that at the planar region among the microwells that was correlated with the content of intracellular glucose. The successful monitoring of intracellular glucose at single cells using this PDMS chip will provide an alternative strategy for high-throughput single-cell analysis. Graphical abstract ᅟ.
Sheikh, Zeeshan; Khan, Abdul Samad; Roohpour, Nima; Glogauer, Michael; Rehman, Ihtesham U
2016-11-01
Periodontal disease if left untreated can result in creation of defects within the alveolar ridge. Barrier membranes are frequently used with or without bone replacement graft materials for achieving periodontal guided tissue regeneration (GTR). Surface properties of barrier membranes play a vital role in their functionality and clinical success. In this study polyetherurethane (PEU) membranes were synthesized by using 4,4'-methylene-diphenyl diisocyanate (MDI), polytetramethylene oxide (PTMO) and 1,4-butane diol (BDO) as a chain extender via solution polymerization. Hydroxyl terminated polydimethylsiloxane (PDMS) due to having inherent surface orientation towards air was used for surface modification of PEU on one side of the membranes. This resulting membranes had one surface being PEU and the other being PDMS coated PEU. The prepared membranes were treated with solutions of bovine serum albumin (BSA) in de-ionized water at 37°C at a pH of 7.2. The surface protein adsorptive potential of PEU membranes was observed using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman spectroscopy and Confocal Raman spectroscopy. The contact angle measurement, tensile strength and modulus of prepared membranes were also evaluated. PEU membrane (89.86±1.62°) exhibited less hydrophobic behavior than PEU-PDMS (105.87±3.16°). The ultimate tensile strength and elastic modulus of PEU (27±1MPa and 14±2MPa) and PEU-PDMS (8±1MPa and 26±1MPa) membranes was in required range. The spectral analysis revealed adsorption of BSA proteins on the surface of non PDMS coated PEU surface. The PDMS modified PEU membranes demonstrated a lack of BSA adsorption. The non PDMS coated side of the membrane which adsorbs proteins could potentially be used facing towards the defect attracting growth factors for periodontal tissue regeneration. Whereas, the PDMS coated side could serve as an occlusive barrier for preventing gingival epithelial cells from proliferating and migrating into the defect space by facing the soft tissue flaps. This study demonstrates the potential of a dual natured PEU barrier membrane for use in periodontal tissue engineering applications and further investigations are required. Copyright © 2016 Elsevier B.V. All rights reserved.
Lievers, Rik; Groot, Astrid T
2016-01-01
In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses.
Effect of pendent chains on the interfacial properties of thin polydimethylsiloxane (PDMS) networks.
Landherr, Lucas J T; Cohen, Claude; Archer, Lynden A
2011-05-17
The interfacial properties of end-linked polydimethylsiloxane (PDMS) films on silicon are examined. Thin cross-linked PDMS films (∼10 μm thick) were synthesized over a self-assembled monolayer supported on a silicon wafer. By systematically varying the concentration of monofunctional PDMS in a mixture with telechelic precursor molecules, structures ranging from near-ideal elastic networks to poorly cross-linked networks composed of a preponderance of dangling/pendent chains were synthesized. Lateral force microscopy (LFM) employing bead probes was used to quantify the effect of network structure on the interfacial friction coefficient and residual force. Indentation measurements employing an AFM in force mode were used to characterize the elastic modulus and the pull-off force for the films as a function of pendent chain content. These measurements were complemented with conventional mechanical rheometry measurements on similar thick network films to determine their bulk rheological properties. All networks studied manifested interfacial friction coefficients substantially lower than that of bare silicon. PDMS networks with the lowest pendent chain content displayed friction coefficients close to 1 order of magnitude lower than that of bare silicon, whereas networks with the highest pendent chain content manifested friction coefficients about 3 times lower than that of bare silicon. At intermediate sliding velocities, a crossover in the interfacial friction coefficient was observed, wherein cross-linked PDMS films with the least amount of pendent chains exhibit the highest friction coefficient. These observations are discussed in terms of the structure of the films and relaxation dynamics of elastic strands and dangling chains in tethered network films.
Zhang, Hongyu; Wang, Yi; Vasilescu, Steven; Gu, Zhibin; Sun, Tao
2017-05-01
An active navigation of self-propelled miniaturized robot along the intestinal tract without injuring the soft tissue remains a challenge as yet. Particularly in this case an effective control of the interfacial friction and adhesion between the material used and the soft tissue is crucial. In the present study, we investigated the frictional and adhesive properties between polydimethylsiloxane (PDMS, microscopically patterned with micro-pillar arrays and non-patterned with a flat surface) and rabbit small intestinal tract using a universal material tester. The friction coefficient-time plot and adhesive force-time plot were recorded during the friction test (sliding speed: 0.25mm/s; normal loading: 0.4N) and adhesion test (preloading: 0.5N; hoisting speed: 2.5×10 -3 mm/s). In addition, biocompatibility of the PDMS samples was characterized in terms of cell morphology (scanning electron microscope) and cell cytotoxicity (alamarBlue assay) using human vascular endothelial cells (HUVECs). The results demonstrated that the interfacial friction (0.27 vs 0.19) and adhesion (34.9mN vs 26.7mN) were greatly increased using microscopically patterned PDMS, in comparison with non-patterned PDMS. HUVECs adhered to and proliferated on non-patterned/microscopically patterned PDMS very well, with a relative cell viability of about 90% following seeding at 1d, 3d, and 5d. The favorable enhancement of the frictional and adhesive properties, along with the excellent biocompatibility of the microscopically patterned PDMS, makes it a propitious choice for clinical application of self-propelled miniaturized robots. Copyright © 2016 Elsevier B.V. All rights reserved.
Lievers, Rik; Groot, Astrid T.
2016-01-01
In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small) groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS) by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses. PMID:27533064
Using AFM Force Curves to Explore Properties of Elastomers
ERIC Educational Resources Information Center
Ferguson, Megan A.; Kozlowski, Joseph J.
2013-01-01
polydimethylsiloxane (PDMS) elastomers. Force curves are used to quantify the stiffness of elastomers prepared with different base-to-curing agent ratios. Trends in observed spring constants of the…
Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting
NASA Astrophysics Data System (ADS)
Migliaccio, Christopher P.; Lazarus, Nathan
2015-10-01
Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.
Norman, James J; Desai, Tejal A
2005-01-01
Parallel channels of various dimensions have been shown to cause a monolayer of cells in culture to align in the direction of the channels. For the engineering of complex organ systems to become a reality, similar control over the cellular microenvironment in three dimensions must be achieved. Using microfabrication, a polydimethylsiloxane (PDMS) scaffold (40 microm wide, 70-microm-deep parallel channels separated by 25-microm-wide walls) was created. A fibroblast-seeded collagen matrix was then molded around this PDMS scaffold. The PDMS scaffold served as an internal skeleton to guide the cells to grow in the prescribed three-dimensional pattern. Organization, aspect ratio, and the z diameter of the cells were analyzed by confocal microscopy. Fibroblasts elongated and organized in the direction of the channels throughout the height of the scaffold. The mean angle of the cells off of the long axis of the channels was 4.3 +/- 0.7 degrees as opposed to 32.6 +/- 2.2 degrees in controls. The morphology of the cells was also affected by the PDMS scaffold. The nuclei were longer (1.25x) and thinner (0.75x) than in control gels; however, no changes in diameter of the cells in the z direction were seen.
Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Azrin Shah, Nabila Farhana; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan
2016-01-01
Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E′: 0.225) and glass transition temperature (Tg: −58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials. PMID:26927116
Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Shah, Nabila Farhana Azrin; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan
2016-02-27
Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E': 0.225) and glass transition temperature (Tg: -58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials.
Johnson, Alicia S.; Mehl, Benjamin T.; Martin, R. Scott
2015-01-01
In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells. PMID:25663849
Czarnobaj, Katarzyna
2015-01-01
The aim of this study was to prepare and examine polymer/oxide xerogels with metronidazole (MT) as delivery systems for the local application of a drug to a bone. The nanoporous SiO2-CaO and PDMS-modified SiO2-CaO xerogel materials with different amounts of the polymer, polydimethylsiloxane (PDMS), were prepared by the sol-gel method. Characterization assays comprised the analysis of the composite materials by using Fourier transform infrared spectroscopy (FTIR), determining the specific surface area of solids (BET), using X-ray powder diffraction (XRD) and scanning electron microscope (SEM) techniques, and further monitoring in the ultraviolet and visible light regions (UV-Vis) of the in vitro release of the drug (metronidazole) over time. According to these results, the bioactive character and chemical stability of PDMS-modified silica xerogels have been proven. The release of MT from xerogels was strongly correlated with the composition of the matrix. In comparison with the pure oxide matrix, PDMS-modified matrices accelerated the release of the drug through its bigger pores, and additionally, on account of weaker interactions with the drug. The obtained results for the xerogel composites suggest that the metronidazole-loaded xerogels could be promising candidates for formulations in local delivery systems particularly to bone. PMID:26839836
NASA Astrophysics Data System (ADS)
Li, Xiangmeng; Shao, Jinyou; Li, Xiangming; Tian, Hongmiao
2015-03-01
In this paper, microlens array with varying focal lengths were fabricated on a single microbowl-array textured substrate. The solid microbowl-arrayed NOA61 (kind of polyurethane-based polymer with UV curablity) surface was resulted from nanoimprinting by polydimethylsiloxane (PDMS) mold. The PDMS mold was replicated from an SU-8 master which was generated by electron beam lithography. Such microbowl-arrayed surfaces demonstrate petal-mimetic highly adhesive hydrophobic wetting properties, which can promote an irreversible electrowetting (EW) effect and a dereased contact angle of water droplets as well as other liquid droplets by applying direct current (DC) voltage. To fabricate a microlens array with varying focal-lengths, liquid NOA61 was supplied from a syringe on the solid NOA61 microtextured film and DC voltage was applied succesively. After removing the DC voltage, these liquid NOA61 microdrops deposited on the solid microtextured NOA61 surface on tin-indium-oxide coated substrate could be solidified via UV irradiation, thus leading to microlens array with uneven numerical apertures on a single substrate. Numerical simulation was also done to verify the EW effect. Finally, optical imaging characterization was performed to confirm the varied focus of the NOA61 microdrops.
Polyisoprene matrix for progesterone release: in vitro and in vivo studies.
Heredia, V; Bianco, I D; Tríbulo, H; Tríbulo, R; Seoane, M Ferro; Faudone, S; Cuffini, S L; Demichelis, N A; Schalliol, H; Beltramo, D M
2009-12-01
Latex, a polyisoprene (PI) hydrophobic elastomer, was evaluated in vitro and in vivo as a matrix for intravaginal steroid hormone delivery. Matrices containing hormone were prepared by swelling latex in chloroform that contained soluble progesterone (P4). In vitro studies demonstrate that P4 release from PI follows a zero order model during at least 100 h and depends on initial load up to 10 mg cm(-2). The release of P4 from a PI matrix was found to be two times faster than from a polydimethylsiloxane (PDMS) matrix. FT-IR and X-ray powder diffraction analysis of P4 polymorphs show that when nucleated in PDMS, the hormone crystallizes only in alpha-form while in latex, crystallizes as a mixture of alpha- and beta-form. In vivo studies show that devices with a PI matrix containing 0.5 g of P4 are effective to reach plasma levels above 1 ng ml(-1) that are needed to synchronize estrous in cattle. Altogether, the results show that PI, a vulcanized polymer with a carbon-carbon backbone, can be used as a new matrix for the intravaginal administration of progesterone with improved release profile than silicone and that the matrix can influence the crystalline state of the hormone.
Evaluating the Relationship between Equilibrium Passive ...
Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Results/Lessons Learned. Passive sampling based concentrations resulted in strong logarithmic regression relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS and POM were 0.68, 0.76 and 0.58, respectively. For the available raw data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Passive sampler uptake and bioaccumulation were not found to be identical (i.e., CPS ≠ CL) but the logarithmic-based relationships between these values were consistently linear and predictive. This review concludes that in many applications passive sampling may serve as a
NASA Astrophysics Data System (ADS)
Fuh, Yiin-Kuen; Lai, Zheng-Hong
2017-02-01
A fast processing route of aspheric polydimethylsiloxane (PDMS) lenses array (APLA) is proposed via the combined effect of inverted gravitational and heat-assisted forces. The fabrication time can be dramatically reduced to 30 s, compared favorably to the traditional duration of 2 hours of repeated cycles of addition-curing processes. In this paper, a low-cost flexible lens can be fabricated by repeatedly depositing, inverting, curing a hanging transparent PDMS elastomer droplet on a previously deposited curved structure. Complex structures with aspheric curve features and various focal lengths can be successfully produced and the fabricated 4 types of APLA have various focal lengths in the range of 7.03 mm, 6.00 mm, 5.33 mm, and 4.43 mm, respectively. Empirically, a direct relationship between the PDMS volume and focal lengths of the lenses can be experimentally deducted. Using these fabricated APLA, an ordinary commercial smartphone camera can be easily transformed to a low-cost, portable digital microscopy (50×magnification) such that point of care diagnostic can be implemented pervasively.
NASA Astrophysics Data System (ADS)
Dunklin, Jeremy R.; Forcherio, Gregory T.; Roper, D. Keith
2015-08-01
Optical properties of polymer films embedded with plasmonic nanoparticles (NPs) are important in many implementations. In this work, optical extinction by polydimethylsiloxane (PDMS) films containing gold (Au) NPs was enhanced at resonance compared to AuNPs in suspensions, Beer-Lambert law, or Mie theory by internal reflection due to optical diffraction in 16 nm AuNP-PDMS films and Mie scattering in 76 nm AuNP-PDMS films. Resonant extinction per AuNP for 16 nm AuNPs with negligible resonant Mie scattering was enhanced up to 1.5-fold at interparticle separation (i.e., Wigner-Seitz radii) comparable to incident wavelength. It was attributable to diffraction through apertures formed by overlapping electric fields of adjacent, resonantly excited AuNPs at Wigner-Seitz radii equal to or less than incident wavelengths. Resonant extinction per AuNP for strongly Mie scattering 76 nm AuNPs was enhanced up to 1.3-fold at Wigner-Seitz radii four or more times greater than incident wavelength. Enhanced light trapping from diffraction and/or scattering is relevant to optoelectronic, biomedical, and catalytic activity of substrates embedded with NPs.
Flexible conformable hydrophobized surfaces for turbulent flow drag reduction
NASA Astrophysics Data System (ADS)
Brennan, Joseph C.; Geraldi, Nicasio R.; Morris, Robert H.; Fairhurst, David J.; McHale, Glen; Newton, Michael I.
2015-05-01
In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces produced using two different methods: Large roughness features were created by electrodeposition on copper meshes; Small roughness features were created by embedding carbon nanoparticles (soot) into Polydimethylsiloxane (PDMS). Both samples were made into cylinders with a diameter under 12 mm. To characterize the samples, scanning electron microscope (SEM) images and confocal microscope images were taken. The confocal microscope images were taken with each sample submerged in water to show the extent of the plastron. The hydrophobized electrodeposited copper mesh cylinders showed drag reductions of up to 32% when comparing the superhydrophobic state with a wetted out state. The soot covered cylinders achieved a 30% drag reduction when comparing the superhydrophobic state to a plain cylinder. These results were obtained for turbulent flows with Reynolds numbers 10,000 to 32,500.
Aymerich, María; Gómez-Varela, Ana I; Álvarez, Ezequiel; Flores-Arias, María T
2016-08-25
A study of PDMS (polydimethylsiloxane) sol-gel-coated channels fabricated using soft lithography and a laser direct writing technique is presented. PDMS is a biocompatible material that presents a high versatility to reproduce several structures. It is widely employed in the fabrication of preclinical devices due to its advantages but it presents a rapid chemical deterioration to organic solvents. The use of sol-gel layers to cover the PDMS overcomes this problem since it provides the robustness of glass for the structures made with PDMS, decreasing its deterioration and changing the biocompatibility of the surface. In this work, PDMS channels are coated with three different kinds of sol-gel compositions (60MTES/40TEOS, 70MTES/30TISP and 80MTES/20TISP). The endothelial cell adhesion to the different coated devices is evaluated in order to determine the most suitable sol-gel preparation conditions to enhance cellular adhesion.
Li, Mei; Zhou, Hai-han; Li, Tao; Li, Cheng-yan; Xia, Zhong-yuan; Duan, Yanwen Y.
2015-01-01
Neural electrodes, the core component of neural prostheses, are usually encapsulated in polydimethylsiloxane (PDMS). However, PDMS can generate a tissue response after implantation. Based on the physicochemical properties and excellent biocompatibility of polyurethane (PU) and poly(vinyl alcohol) (PVA) when used as coating materials, we synthesized PU/PVA hydrogel coatings and coated the surface of PDMS using plasma treatment, and the cytocompatibility to rat pheochromocytoma (PC12) cells was assessed. Protein adsorption tests indicated that the amount of protein adsorption onto the PDMS substrate was reduced by 92% after coating with the hydrogel. Moreover, the PC12 cells on the PU/PVA-coated PDMS showed higher cell density and longer and more numerous neurites than those on the uncoated PDMS. These results indicate that the PU/PVA hydrogel is cytocompatible and a promising coating material for neural electrodes to improve their biocompatibility. PMID:26889197
NASA Astrophysics Data System (ADS)
Mazlan, N.; Jaafar, M.; Aziz, A.; Ismail, H.; Busfield, J. J. C.
2016-10-01
In this work, two different processing techniques were approached to identify the properties of the multi-walled carbon nanotubes (MWCNT) reinforced polydimethylsiloxane (PDMS). The MWCNT was dispersed in the polymer by using the ultrasonic and twin screw extruder mixer. The final composite showed different manner of dispersed tubes in the silicone rubber matrix. High shear twin screw extruder tends to fragment the tubes during processing compound, which can be observed by scanning electron microscope (SEM). Tensile strength of the extrusion MWCNT/PDMS nanocomposites was found to be higher compared to ultrasonic MWCNT/PDMS nanocomposites.
Biocompatible patterning of proteins on wettability gradient surface by thermo-transfer printing.
Kim, Sungho; Ryu, Yong-Sang; Suh, Jeng-Hun; Keum, Chang-Min; Sohn, Youngjoo; Lee, Sin-Doo
2014-08-01
We develop a simple and biocompatible method of patterning proteins on a wettability gradient surface by thermo-transfer printing. The wettability gradient is produced on a poly(dimethylsiloxane) (PDMS)-modified glass substrate through the temperature gradient during thermo-transfer printing. The water contact angle on the PDMS-modified surface is found to gradually increase along the direction of the temperature gradient from a low to a high temperature region. Based on the wettability gradient, the gradual change in the adsorption and immobilization of proteins (cholera toxin B subunit) is achieved in a microfluidic cell with the PDMS-modified surface.
Elastomeric silicone substrates for terahertz fishnet metamaterials
NASA Astrophysics Data System (ADS)
Khodasevych, I. E.; Shah, C. M.; Sriram, S.; Bhaskaran, M.; Withayachumnankul, W.; Ung, B. S. Y.; Lin, H.; Rowe, W. S. T.; Abbott, D.; Mitchell, A.
2012-02-01
In this work, we characterize the electromagnetic properties of polydimethylsiloxane (PDMS) and use this as a free-standing substrate for the realization of flexible fishnet metamaterials at terahertz frequencies. Across the 0.2-2.5 THz band, the refractive index and absorption coefficient of PDMS are estimated as 1.55 and 0-22 cm-1, respectively. Electromagnetic modeling, multi-layer flexible electronics microfabrication, and terahertz time-domain spectroscopy are used in the design, fabrication, and characterization of the metamaterials, respectively. The properties of PDMS add a degree of freedom to terahertz metamaterials, with the potential for tuning by elastic deformation or integrated microfluidics.
Qiang, Zhe; Zhang, Yuanzhong; Groff, Jesse A; Cavicchi, Kevin A; Vogt, Bryan D
2014-08-28
One of the key issues associated with the utilization of block copolymer (BCP) thin films in nanoscience and nanotechnology is control of their alignment and orientation over macroscopic dimensions. We have recently reported a method, solvent vapor annealing with soft shear (SVA-SS), for fabricating unidirectional alignment of cylindrical nanostructures. This method is a simple extension of the common SVA process by adhering a flat, crosslinked poly(dimethylsiloxane) (PDMS) pad to the BCP thin film. The impact of processing parameters, including annealing time, solvent removal rate and the physical properties of the PDMS pad, on the quality of alignment quantified by the Herman's orientational factor (S) is systematically examined for a model system of polystyrene-block-polyisoprene-block-polystyrene (SIS). As annealing time increases, the SIS morphology transitions from isotropic rods to highly aligned cylinders. Decreasing the rate of solvent removal, which impacts the shear rate imposed by the contraction of the PDMS, improves the orientation factor of the cylindrical domains; this suggests the nanostructure alignment is primarily induced by contraction of PDMS during solvent removal. Moreover, the physical properties of the PDMS controlled by the crosslink density impact the orientation factor by tuning its swelling extent during SVA-SS and elastic modulus. Decreasing the PDMS crosslink density increases S; this effect appears to be primarily driven by the changes in the solubility of the SVA-SS solvent in the PDMS. With this understanding of the critical processing parameters, SVA-SS has been successfully applied to align a wide variety of BCPs including polystyrene-block-polybutadiene-block-polystyrene (SBS), polystyrene-block-poly(N,N-dimethyl-n-octadecylammonium p-styrenesulfonate) (PS-b-PSS-DMODA), polystyrene-block-polydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(2-vinlypyridine) (PS-b-P2VP). These results suggest that SVA-SS is a generalizable method for the alignment of BCP thin films.
Characterization of C-PDMS electrodes for electrokinetic applications in microfluidic systems
NASA Astrophysics Data System (ADS)
Deman, A.-L.; Brun, M.; Quatresous, M.; Chateaux, J.-F.; Frenea-Robin, M.; Haddour, N.; Semet, V.; Ferrigno, R.
2011-09-01
This paper reports on the integration of thick carbon-polydimethylsiloxane (C-PDMS) electrodes in microfluidic systems for electrokinetic operations. The C-PDMS material, obtained by mixing carbon nanopowder and PDMS, preserves PDMS processing properties such as O2 plasma activation and soft-lithography patternability in thick or 3D electrodes. Conductivity in the order of 10 S m-1 was reached for a carbon concentration of 25 wt%. To evaluate the adhesion between PDMS and C-PDMS, we prepared bi-material strips and carried out a manual pull test. The cohesion and robustness of C-PDMS were also evaluated by applying a large range of electric field conditions from dc to ac (300 kHz). No damage to the electrodes or release of carbon was noticed. The use of such a material for electrokinetic manipulation was validated on polystyrene particles and cells. Here, we demonstrate that C-PDMS seems to be a valuable technological solution for electrokinetic in microfluidic and particularly for biological applications such as cell electrofusion, lysis and trapping, which are favored by uniform lateral electric fields across the microchannel section.
Kim, Chang-Beom; Chun, Honggu; Chung, JaeHun; Lee, Kwang Ho; Lee, Jeong Hoon; Song, Ki-Bong; Lee, Sang-Hoon
2011-09-15
A tunable process for polydimethylsiloxane (PDMS) nanoslit fabrication is developed for nanofluidic applications. A microcontact printing (μCP) of a laterally spreading self-assembled hexadecanethiol (HDT) layer, combined with in situ curing of a sliding SU-8 droplet, enables precise and independent tuning of a nanoslit-mold width and height using a single μCP master mold. The SU-8 nanoslit-mold is replicated using a hard-soft composite PDMS to prevent channel collapse at low (<0.2) aspect ratio (height over width). The fluidic characteristics as well as dimensions of nanoslits fabricated with various conditions are analyzed using a fluorescein sample and AFM images. Finally, concentration polarization-based sample preconcentration is successfully demonstrated at the nanoslit boundary where an electric double-layer is overlapped.
Ko, Eun-Hye; Kim, Hyo-Joong; Lee, Sang-Mok; Kim, Tae-Woong; Kim, Han-Ki
2017-01-01
We report on semi-transparent stretchable Ag films coated on a wavy-patterned polydimethylsiloxane (PDMS) substrate for use as stretchable electrodes for stretchable and transparent electronics. To improve the mechanical stretchability of the Ag films, we optimized the wavy-pattern of the PDMS substrate as a function of UV-ozone treatment time and pre-strain of the PDMS substrate. In addition, we investigated the effect of the Ag thickness on the mechanical stretchability of the Ag electrode formed on the wavy-patterned PDMS substrate. The semi-transparent Ag films formed on the wavy-patterned PDMS substrate showed better stretchability (strain 20%) than the Ag films formed on a flat PDMS substrate because the wavy pattern effectively relieved strain. In addition, the optical transmittance of the Ag electrode on the wavy-patterned PDMS substrate was tunable based on the degree of stretching for the PDMS substrate. In particular, it was found that the wavy-patterned PDMS with a smooth buckling was beneficial for a precise patterning of Ag interconnectors. Furthermore, we demonstrated the feasibility of semi-transparent Ag films on wavy-patterned PDMS as stretchable electrodes for the stretchable electronics based on bending tests, hysteresis tests, and dynamic fatigue tests. PMID:28436426
Reducing friction and miscibility studies of FEP dispersion/ PDMS fluid blends
NASA Astrophysics Data System (ADS)
Buapool, S.; Thavarungkul, N.; Srisukhumbowornchai, N.
2017-04-01
To develop new polymer blends having reduced friction force of fluorinated ethylene propylene (FEP) dispersion and improved adhesion of polydimethylsiloxane (PDMS) fluid, FEP dispersion was blended with PDMS fluids at different viscosities of 20 cSt and 100 cSt by using solution mixing method. The FEP/PDMS blends were coated on short hollow tubes and examined by penetrating the tubes into the rubber stoppers. It was found that the tubes coated with the blends showed reduced penetration and friction forces and improved adhesion. The tubes coated with the 100 cSt-PDMS blend in the ratio of 5:1.5 demonstrated the penetration and average friction forces as low as 3828 mN and 1524 mN, respectively. The formation of physical blends was characterized and confirmed by FTIR and DSC analyses.
Design and Fabrication of a PDMS Microchip Based Immunoassay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Guocheng; Wang, Wanjun; Wang, Jun
2010-07-01
In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close amore » 200µm wide micro channel with flow rate up to 20µl/min.« less
Keefe, Andrew J; Brault, Norman D; Jiang, Shaoyi
2012-05-14
Poly(dimethyl siloxane) (PDMS) is extensively used for biomedical applications due to its low cost, ease of fabrication, high durability and flexibility, oxygen permeability, and self-healing properties. PDMS, however, has some significant drawbacks. PDMS endures unacceptably high levels of nonspecific protein fouling when used with biological samples due to its superhydrophobic characteristics. Unfortunately, conventional surface modification methods do not work for PDMS due to its low glass transition temperature. This phenomenon has been well-known for years as "hydrophobic regeneration". For the same reason, it is also very difficult to bring functionalities onto PDMS surfaces. Herein, we demonstrate how a superhydrophilic zwitterionic material, poly(carboxybetaine methacrylate) (pCBMA), can provide a highly stable coating with long-term stabilty due to the sharp contrast in hydrophobicity between pCBMA and PDMS. This material is able to suppress nonspecific protein adsorption in complex media and functionalize desired biomolecules needed in applications, such as diagnostics, without sacrificing its nonfouling characteristics.
Keefe, Andrew J.; Brault, Norman D.; Jiang, Shaoyi
2014-01-01
Poly(dimethyl siloxane) (PDMS) is extensively used for biomedical applications due to its low cost, ease of fabrication, high durability and flexibility, oxygen permeability, and self-healing properties. PDMS, however, has some significant drawbacks. PDMS endures unacceptably high levels of non-specific protein fouling when used with biological samples due to its superhydrophobic characteristics. Unfortunately, conventional surface modification methods do not work for PDMS due to its low glass transition temperature. This phenomenon has been well-known for years as “hydrophobic regeneration”. For the same reason, it is also very difficult to bring functionalities onto PDMS surfaces. Herein, we demonstrate how a superhydrophilic zwitterionic material, poly(carboxybetaine methacrylate) (pCBMA), can provide a highly stable coating with long term stabilty due to the sharp contrast in hydrophobicity between pCBMA and PDMS. This material is able to suppress nonspecific protein adsorption in complex media and functionalize desired biomolecules needed in applications, such as diagnostics, without sacrificing its nonfouling characteristics. PMID:22512660
Biomimetic measurement of allelochemical dynamics in the rhizosphere.
Weidenhamer, Jeffrey D
2005-02-01
Polydimethylsiloxane (PDMS) materials were used to quantify levels of the photosynthesis inhibitor sorgoleone in the undisturbed rhizosphere of sorghum plants. The materials used included stir bars coated with PDMS (stir bar sorptive extraction), technical grade optical fiber coated with a thin film of PDMS (matrix-solid phase microextraction), and PDMS tubing. PDMS tubing retained the most sorgoleone. As analyzed by high performance liquid chromatography, amounts of sorgoleone retained on the PDMS materials increased with time. Other materials tested (polyurethane foam plugs, C18 and Tenax disks, and resin capsules) proved less suitable, as they were subject to sometimes extensive penetration by fine root hairs. These results demonstrate the potential for PDMS-based materials to monitor the release of allelochemicals in the undisturbed rhizosphere of allelopathic plants. Unlike extraction procedures that recover all available compounds present in the soil, PDMS functions in a manner more analogous to plant roots in sorbing compounds from soil solution or root exudates. Information on chemical dynamics in the rhizosphere is crucial for evaluating specific hypotheses of allelopathic effects, understanding allelopathic mechanisms, and assessing the importance of allelopathic processes in plant communities.
3D Printing of Transparent and Conductive Heterogeneous Hydrogel-Elastomer Systems.
Tian, Kevin; Bae, Jinhye; Bakarich, Shannon E; Yang, Canhui; Gately, Reece D; Spinks, Geoffrey M; In Het Panhuis, Marc; Suo, Zhigang; Vlassak, Joost J
2017-03-01
A hydrogel-dielectric-elastomer system, polyacrylamide and poly(dimethylsiloxane) (PDMS), is adapted for extrusion printing for integrated device fabrication. A lithium-chloride-containing hydrogel printing ink is developed and printed onto treated PDMS with no visible signs of delamination and geometrically scaling resistance under moderate uniaxial tension and fatigue. A variety of designs are demonstrated, including a resistive strain gauge and an ionic cable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Palchesko, Rachelle N.; Zhang, Ling; Sun, Yan; Feinberg, Adam W.
2012-01-01
Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation. PMID:23240031
Polo, Maria; Garcia-Jares, Carmen; Llompart, Maria; Cela, Rafael
2007-08-01
A solid-phase microextraction method (SPME) followed by gas chromatography with micro electron capture detection for determining trace levels of nitro musk fragrances in residual waters was optimized. Four nitro musks, musk xylene, musk moskene, musk tibetene and musk ketone, were selected for the optimization of the method. Factors affecting the extraction process were studied using a multivariate approach. Two extraction modes (direct SPME and headspace SPME) were tried at different extraction temperatures using two fiber coatings [Carboxen-polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane-divinylbenzene (PDMS/DVB)] selected among five commercial tested fibers. Sample agitation and the salting-out effect were also factors studied. The main effects and interactions between the factors were studied for all the target compounds. An extraction temperature of 100 degrees C and sampling the headspace over the sample, using either CAR/PDMS or PDMS/DVB as fiber coatings, were found to be the experimental conditions that led to a more effective extraction. High sensitivity, with detection limits in the low nanogram per liter range, and good linearity and repeatability were achieved for all nitro musks. Since the method proposed performed well for real samples, it was applied to different water samples, including wastewater and sewage, in which some of the target compounds (musk xylene and musk ketone) were detected and quantified.
Li, Hai-Fang; Lin, Jin-Ming; Su, Rong-Guo; Cai, Zong Wei; Uchiyama, Katsumi
2005-05-01
A protocol of producing multiple polymeric masters from an original glass master mold has been developed, which enables the production of multiple poly(dimethylsiloxane) (PDMS)-based microfluidic devices in a low-cost and efficient manner. Standard wet-etching techniques were used to fabricate an original glass master with negative features, from which more than 50 polymethylmethacrylate (PMMA) positive replica masters were rapidly created using the thermal printing technique. The time to replicate each PMMA master was as short as 20 min. The PMMA replica masters have excellent structural features and could be used to cast PDMS devices for many times. An integration geometry designed for laser-induced fluorescence (LIF) detection, which contains normal deep microfluidic channels and a much deeper optical fiber channel, was successfully transferred into PDMS devices. The positive relief on seven PMMA replica masters is replicated with regard to the negative original glass master, with a depth average variation of 0.89% for 26-microm deep microfluidic channels and 1.16% for the 90 mum deep fiber channel. The imprinted positive relief in PMMA from master-to-master is reproducible with relative standard deviations (RSDs) of 1.06% for the maximum width and 0.46% for depth in terms of the separation channel. The PDMS devices fabricated from the PMMA replica masters were characterized and applied to the separation of a fluorescein isothiocyanate (FITC)-labeled epinephrine sample.
Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles.
Sarkar, Anwesha; Kanti, Farah; Gulotta, Alessandro; Murray, Brent S; Zhang, Shuying
2017-12-26
Aqueous lubrication has emerged as an active research area in recent years due to its prevalence in nature in biotribological contacts and its enormous technological soft-matter applications. In this study, we designed aqueous dispersions of biocompatible whey-protein microgel particles (WPM) (10-80 vol %) cross-linked via disulfide bonding and focused on understanding their rheological, structural and biotribological properties (smooth polydimethylsiloxane (PDMS) contacts, R a < 50 nm, ball-on-disk set up). The WPM particles (D h = 380 nm) displayed shear-thinning behavior and good lubricating performance in the plateau boundary as well as the mixed lubrication regimes. The WPM particles facilitated lubrication between bare hydrophobic PDMS surfaces (water contact angle 108°), leading to a 10-fold reduction in boundary friction force with increased volume fraction (ϕ ≥ 65%), largely attributed to the close packing-mediated layer of particles between the asperity contacts acting as "true surface-separators", hydrophobic moieties of WPM binding to the nonpolar surfaces, and particles employing a rolling mechanism analogous to "ball bearings", the latter supported by negligible change in size and microstructure of the WPM particles after tribology. An ultralow boundary friction coefficient, μ ≤ 0.03 was achieved using WPM between O 2 plasma-treated hydrophilic PDMS contacts coated with bovine submaxillary mucin (water contact angle 47°), and electron micrographs revealed that the WPM particles spread effectively as a layer of particles even at low ϕ∼ 10%, forming a lubricating load-bearing film that prevented the two surfaces from true adhesive contact. However, above an optimum volume fraction, μ increased in HL+BSM surfaces due to the interpenetration of particles that possibly impeded effective rolling, explaining the slight increase in friction. These effects are reflected in the highly shear thinning nature of the WPM dispersions themselves plus the tendency for the apparent viscosity to fall as dispersions are forced to very high volume fractions. The present work demonstrates a novel approach for providing ultralow friction in soft polymeric surfaces using proteinaceous microgel particles that satisfy both load bearing and kinematic requirements. These findings hold great potential for designing biocompatible particles for aqueous lubrication in numerous soft matter applications.
NASA Astrophysics Data System (ADS)
Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli
2018-05-01
It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.
Chen, Jing; Du, Yuzhang; Que, Wenxiu; Xing, Yonglei; Chen, Xiaofeng; Lei, Bo
2015-12-01
Crack-free organic-inorganic hybrid monoliths with controlled biomineralization activity and mechanical property have an important role for highly efficient bone tissue regeneration. Here, biomimetic and crack-free polydimethylsiloxane (PDMS)-modified bioactive glass (BG)-poly(ethylene glycol) (PEG) (PDMS-BG-PEG) hybrids monoliths were prepared by a facile sol-gel technique. Results indicate that under the assist of co-solvents, BG sol and PDMS and PEG could be hybridized at a molecular level, and effects of the PEG molecular weight on the structure, biomineralization activity, and mechanical property of the as-prepared hybrid monoliths were also investigated in detail. It is found that an addition of low molecular weight PEG can significantly prevent the formation of cracks and speed up the gelation of the hybrid monoliths, and the surface microstructure of the hybrid monoliths can be changed from the porous to the smooth as the PEG molecular weight increases. Additionally, the hybrid monoliths with low molecular weight PEG show the high formation of the biological apatite layer, while the hybrids with high molecular weight PEG exhibit negligible biomineralization ability in simulated body fluid (SBF). Furthermore, the PDMS-BG-PEG 600 hybrid monolith has significantly high compressive strength (32 ± 3 MPa) and modulus (153 ± 11 MPa), as well as good cell biocompatibility by supporting osteoblast (MC3T3-E1) attachment and proliferation. These results indicate that the as-prepared PDMS-BG-PEG hybrid monoliths may have promising applications for bone tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Töpper, Tino; Wohlfender, Fabian; Weiss, Florian; Osmani, Bekim; Müller, Bert
2016-04-01
The reduction the operation voltage has been the key challenge to realize of dielectric elastomer actuators (DEA) for many years - especially for the application fields of robotics, lens systems, haptics and future medical implants. Contrary to the approach of manipulating the dielectric properties of the electrically activated polymer (EAP), we intend to realize low-voltage operation by reducing the polymer thickness to the range of a few hundred nanometers. A study recently published presents molecular beam deposition to reliably grow nanometer-thick polydimethylsiloxane (PDMS) films. The curing of PDMS is realized using ultraviolet (UV) radiation with wavelengths from 180 to 400 nm radicalizing the functional side and end groups. The understanding of the mechanical properties of sub-micrometer-thin PDMS films is crucial to optimize DEAs actuation efficiency. The elastic modulus of UV-cured spin-coated films is measured by nano-indentation using an atomic force microscope (AFM) according to the Hertzian contact mechanics model. These investigations show a reduced elastic modulus with increased indentation depth. A model with a skin-like SiO2 surface with corresponding elastic modulus of (2.29 +/- 0.31) MPa and a bulk modulus of cross-linked PDMS with corresponding elastic modulus of (87 +/- 7) kPa is proposed. The surface morphology is observed with AFM and 3D laser microscopy. Wrinkled surface microstructures on UV-cured PDMS films occur for film thicknesses above (510 +/- 30) nm with an UV-irradiation density of 7.2 10-4 J cm-2 nm-1 at a wavelength of 190 nm.
Polydimethylsiloxane SlipChip for mammalian cell culture applications.
Chang, Chia-Wen; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung
2015-11-07
This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications.
Choi, Min Jin; Park, Ju Young; Cha, Kyoung Je; Rhie, Jong-Won; Cho, Dong-Woo; Kim, Dong Sung
2012-12-01
Recently, it was found that the variations of physical environment significantly affect cell behaviors including cell proliferation, migration and differentiation. Through a plastic surface with controlled mechanical properties such as stiffness, one can change the orientation and migration of cells in a particular direction, thereby determining cell behaviors. In this study, we demonstrate a polydimethylsiloxane (PDMS) mold-based hot embossing technique for rapid, simple and low-cost replication of polystyrene (PS) surfaces having micropatterns. The PDMS mold was fabricated by UV-photolithography followed by PDMS casting; the elastomeric properties of PDMS enabled us to obtain conformal contact of the PDMS mold to a PS surface and to create high transcription quality of micropatterns on the PS surface. Two different types of circular micropillar and microwell arrays were successfully replicated on the PS surfaces based on the suggested technique. The micropatterns were designed to have various diameters (2-150 µm), spacings (2-160 µm) and heights (1.4, 2.4, 8.2 and 14.9 µm), so as to generate the gradient of physical properties on the surface. Experimental parametric studies indicated that (1) the embossing temperature became a critical processing parameter as the aspect ratio of micropattern increased and (2) the PDMS mold-based hot embossing could successfully replicate micropatterns, even having an aspect ratio of 2.7 for micropattern diameter of 6 µm, with an optimal processing condition (embossing pressure and temperature of 0.4 MPa and 130 °C, respectively) in this study. We carried out cell experiments with adipose-derived stem cells on the replicated PS surface with the height of 1.4 µm to investigate cellular behaviors in response to the micropattern array with gradient size. Cellular experiment results showed that the micropillar-arrayed surface improved cell proliferation as compared with the microwell-arrayed surface. We could also estimate the ranges of pattern sizes having the desired effects on the cellular behaviors.
Lange, Jeffrey J; Culbertson, Christopher T; Higgins, Daniel A
2008-12-15
Single molecule microscopic and spectroscopic methods are employed to probe the mobility and physical entrapment of dye molecules in dry and solvent-loaded poly(dimethylsiloxane) (PDMS) films. PDMS films of approximately 220 nm thickness are prepared by spin casting dilute solutions of Sylgard 184 onto glass coverslips, followed by low temperature curing. A perylene diimide dye (BPPDI) is used to probe diffusion and molecule-matrix interactions. Two classes of dye-loaded samples are investigated: (i) those incorporating dye dispersed throughout the films ("in film" samples) and (ii) those in which the dye is restricted primarily to the PDMS surface ("on film" samples). Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase. A PDMS-coated quartz-crystal microbalance is employed to monitor solvent loading and drying of the PDMS and to ensure equilibrium conditions are achieved. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. Quantitative methods for counting the fluorescent spots produced by immobile single molecules in optical images of the samples demonstrate that the population of mobile molecules increases nonlinearly with IPA loading. Even under IPA saturated conditions, the population of fixed molecules is found to be greater than zero and is greatest for "in film" samples. Fluorescence correlation spectroscopy is used to measure the apparent diffusion coefficient for the mobile molecules, yielding a mean value of D = 1.4(+/-0.4) x 10(-8) cm(2)/s that is virtually independent of IPA loading and sample class. It is concluded that a nonzero population of dye molecules is physically entrapped within the PDMS matrix under all conditions. The increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly dispersed solvent into the PDMS.
Microfabrication of cavities in polydimethylsiloxane using DRIE silicon molds
Giang, Ut-Binh T.; Lee, Dooyoung; King, Michael R.; DeLouise, Lisa A.
2008-01-01
We present a novel method to create cavities in PDMS that is simple and exhibits wide process latitude allowing control over the radius of curvature to form shallow concave pits or deep spherical cavities. PMID:18030383
EVALUATION OF SOLID PHASE MICROEXTRACTION FOR THE ANALYSIS OF HYDROPHILIC COMPOUNDS
Two commercially available solid phase microextractions (SPME) fibers, polyacrylate and carboxem/polydimethylsiloxane (PDMS), were evaluated for their ability to extract hydrophilic compounds from drinking water. Conditions, such as desorption time, desorption temperature, sample...
Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; ...
2015-10-20
The development of high performance materials for CO 2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO 2 permeability ~ 6800 Barrer and CO 2/N 2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, whichmore » provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less
Fabrication of polymer microlenses on single mode optical fibers for light coupling
NASA Astrophysics Data System (ADS)
Zaboub, Monsef; Guessoum, Assia; Demagh, Nacer-Eddine; Guermat, Abdelhak
2016-05-01
In this paper, we present a technique for producing fibers optics micro-collimators composed of polydimethylsiloxane PDMS microlenses of different radii of curvature. The waist and working distance values obtained enable the optimization of optical coupling between optical fibers, fibers and optical sources, and fibers and detectors. The principal is based on the injection of polydimethylsiloxane (PDMS) into a conical micro-cavity chemically etched at the end of optical fibers. A spherical microlens is then formed that is self-centered with respect to the axis of the fiber. Typically, an optimal radius of curvature of 10.08 μm is obtained. This optimized micro-collimator is characterized by a working distance of 19.27 μm and a waist equal to 2.28 μm for an SMF 9/125 μm fiber. The simulation and experimental results reveal an optical coupling efficiency that can reach a value of 99.75%.
Organosiloxane working fluids for the liquid droplet radiator
NASA Technical Reports Server (NTRS)
Buch, R. R.; Huntress, A. R.
1985-01-01
Siloxane-based working fluids for advanced space radiators requiring direct fluid exposure to the space environment are evaluated. Isolation of five candidate fluids by vacuum distillation from existing siloxane polymers is discussed. The five fluids recovered include a polydimethylsiloxane, three phenyl-containing siloxanes, and a methylhexylsiloxane. Vapor pressures and viscosities for the five fluids are reported over the temperature range of 250 to 400 K. Use of thermal-gravimetric analysis to reliably estimate vapor pressures of 10 to the -8 power Pascals is described. Polydimethylsiloxane (PDMS) and polymethylphenylsiloxane (PMPS) are selected from the five candidate fluids based on favorable vapor pressure and viscosity, as well as perceived stability in low-Earth orbit environments. Characterization of these fluids by infrared spectroscopy, Si-29 NMR, gel-permeation chromatography, and liquid chromatography is presented. Both fluids consist of narrow molecular weight distributions, with average molecular weights of about 2500 for PDMS and 1300 for PMPS.
Garrido, L; Young, V L
1999-09-01
The amount of silicone (polydimethylsiloxane [PDMS]) in capsular tissue surgically removed from women with breast implants was measured by using (29)Si and (1)H magic-angle spinning solid-state NMR spectroscopy. Twelve women having smooth surface silicone gel-filled implants, including a subject with "low-bleed" double-lumen implants, had detectable levels of PDMS ranging from 0. 05 to 9.8% silicon in wet tissue (w/w). No silicon-containing compounds other than PDMS were detected. No correlation was found between the amount of PDMS measured in the capsular tissue and the length of implantation time (Pearson correlation coefficient, r = 0. 22). The results showed no relationship between higher amounts of PDMS and capsular contracture (p = 0.74) or other symptoms (p = 0. 53). Magn Reson Med 42:436-441, 1999. Copyright 1999 Wiley-Liss, Inc.
Studying Cancer Stem Cell Dynamics on PDMS Surfaces for Microfluidics Device Design
Zhang, Weijia; Choi, Dong Soon; Nguyen, Yen H.; Chang, Jenny; Qin, Lidong
2013-01-01
This systematic study clarified a few interfacial aspects of cancer cell phenotypes on polydimethylsiloxane (PDMS) substrates and indicated that the cell phenotypic equilibrium greatly responds to cell-to-surface interactions. We demonstrated that coatings of fibronectin, bovine serum albumin (BSA), or collagen with or without oxygen-plasma treatments of the PDMS surfaces dramatically impacted the phenotypic equilibrium of breast cancer stem cells, while the variations of the PDMS elastic stiffness had much less such effects. Our results showed that the surface coatings of collagen and fibronectin on PDMS maintained breast cancer cell phenotypes to be nearly identical to the cultures on commercial polystyrene Petri dishes. The surface coating of BSA provided a weak cell-substrate adhesion that stimulated the increase in stem-cell-like subpopulation. Our observations may potentially guide surface modification approaches to obtain specific cell phenotypes. PMID:23900274
Pearce, Ryan C; Railsback, Justin G; Anderson, Bryan D; Sarac, Mehmet F; McKnight, Timothy E; Tracy, Joseph B; Melechko, Anatoli V
2013-02-01
Vertically aligned carbon nanofibers (VACNFs) are synthesized on Al 3003 alloy substrates by direct current plasma-enhanced chemical vapor deposition. Chemically synthesized Ni nanoparticles were used as the catalyst for growth. The Si-containing coating (SiN(x)) typically created when VACNFs are grown on silicon was produced by adding Si microparticles prior to growth. The fiber arrays were transferred to PDMS by spin coating a layer on the grown substrates, curing the PDMS, and etching away the Al in KOH. The fiber arrays contain many fibers over 15 μm (long enough to protrude from the PDMS film and penetrate cell membranes) and SiN(x) coatings as observed by SEM, EDX, and fluorescence microscopy. The free-standing array in PDMS was loaded with pVENUS-C1 plasmid and human brain microcapillary endothelial (HBMEC) cells and was successfully impalefected.
Prauzner-Bechcicki, Szymon; Raczkowska, Joanna; Madej, Ewelina; Pabijan, Joanna; Lukes, Jaroslav; Sepitka, Josef; Rysz, Jakub; Awsiuk, Kamil; Bernasik, Andrzej; Budkowski, Andrzej; Lekka, Małgorzata
2015-01-01
A deep understanding of the interaction between cancerous cells and surfaces is particularly important for the design of lab-on-chip devices involving the use of polydimethylsiloxane (PDMS). In our studies, the effect of PDMS substrate stiffness on mechanical properties of cancerous cells was investigated in conditions where the PDMS substrate is not covered with any of extracellular matrix proteins. Two human prostate cancer (Du145 and PC-3) and two melanoma (WM115 and WM266-4) cell lines were cultured on two groups of PDMS substrates that were characterized by distinct stiffness, i.e. 0.75 ± 0.06 MPa and 2.92 ± 0.12 MPa. The results showed the strong effect on cellular behavior and morphology. The detailed analysis of chemical and physical properties of substrates revealed that cellular behavior occurs only due to substrate elasticity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analyzing of chromaticity temperature of novel bulb composed of PDMS and phosphor
NASA Astrophysics Data System (ADS)
Novak, M.; Fajkus, M.; Jargus, J.; Bednarek, L.; Cubik, J.; Cvejn, D.; Vasinek, V.
2017-10-01
The authors of this article focused on the issue of measurement of the chromaticity temperature of proposed bulbs made from polydimethylsiloxane, depending on the temperature of proposed bulbs. The advantage of this solution is the immunity to electromagnetic interference (EMI) and the ability to use, for example in dangerous environments (such as mines, factories, etc.). For the realization of incandescent bulbs was used transparent two-component elastomer Sylgard 184. A mixture of polydimethylsiloxane (PDMS) and a curing agent in a defined ratio (10:1) and admixture with garnet phosphor YAG: Ce was cured in the temperature box at temperature 90°C +/- 3°C in the shape of the bulbs. All experiments were realized with eight different weight ratios of phosphor and Sylgard 184. Optical power (5 W) from a laser with a wavelength of 455 nm was fed to the proposed bulbs using the cylindrical waveguide of polydimethylsiloxane with a diameter of 5 mm. Chromaticity temperature was measured by two temperature sensors for 12h. The outcome of this study is the evaluation of the chromaticity temperature of output light depending on temperature variations of proposed bulbs due to the conversion of optical power into heat.
Xu, Hui; Wang, Shuyu
2012-04-29
In this study, a porous polypropylene frit was coated with polydimethylsiloxane (PDMS) as extraction medium, based on the home-made PDMS-frit, a rapid, simple and sensitive sorptive extraction method was established for analysis of potential biomarkers of lung cancer (hexanal and heptanal) in human serum samples. In the method, derivatization and extraction occurred simultaneously on the PDMS-frit, then the loaded frit was ultrasonically desorbed in acetonitrile. Polymerization, derivatization-extraction and desorption conditions were optimized. Under the optimal conditions, satisfactory results were gained, a wide linear application range was obtained in the range of 0.002-5.0 μmol L(-1) (R>0.997) for two aldehydes, the detection limits (SN(-1)=3) were 0.5 nmol L(-1) for hexanal and 0.4 nmol L(-1) for heptanal. The relative standard deviations (RSDs, n=5) of the method were below 7.9% and the recoveries were above 72.7% for the spiked serum. All these results hint that the proposed method is potential for disease markers analysis in complex biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Uniform integration of gold nanoparticles in PDMS microfluidics with 3D micromixing
NASA Astrophysics Data System (ADS)
SadAbadi, H.; Packirisamy, M.; Wuthrich, R.
2015-09-01
The integration of gold nanoparticles (AuNPs) on the surface of polydimethylsiloxane (PDMS) microfluidics for biosensing applications is a challenging task. In this paper we address this issue by integration of pre-synthesized AuNPs (in a microreactor) into a microfluidic system. This method explored the affinity of AuNPs toward the PDMS surface so that the pre-synthesized particles will be adsorbed onto the channel walls. AuNPs were synthesized inside a microreactor before integration. In order to improve the size uniformity of the synthesized AuNPs and also to provide full mixing of reactants, a 3D-micromixer was designed, fabricated and then integrated with the microreactor in a single platform. SEM and UV/Vis spectroscopy were used to characterize the AuNPs on the PDMS surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Hun; Park, Jeong Young, E-mail: jhjung@inha.ac.kr, E-mail: jeongypark@kaist.ac.kr; Graduate School of EEWS, Korea Advanced Institute of Science and Technology
Study of the triboelectric charging effect has recently gained much attraction by proposing a new potential technical application in the field of energy harvesting. Transparent polydimethylsiloxane (PDMS) has some advantages in employing the triboelectric effect due to good conformity at nanometer scale and the simple fabrication process. In this study, we demonstrate that UV irradiation can enhance the performance of a PDMS-based nanotribogenerator. Contact atomic force microscopy combined with Kelvin probe force microscopy enables an in-depth investigation of the effect of UV illumination on local triboelectric charge generation and its decay in PDMS. We found that UV exposure not onlymore » facilitates triboelectric charge generation but also enhances charge redistribution, which is related to the wettability of the PDMS surface. This study provides insights into the fundamental understanding and design of triboelectric generator devices.« less
Viscoelastic and optical properties of four different PDMS polymers
NASA Astrophysics Data System (ADS)
Deguchi, Shinji; Hotta, Junya; Yokoyama, Sho; Matsui, Tsubasa S.
2015-09-01
Polydimethylsiloxane (PDMS) is the most commonly used silicone elastomer with a wide range of applications including microfluidics and microcontact printing. Various types of PDMS are currently available, and their bulk material properties have been extensively investigated. However, because the properties are rarely compared in a single study, it is often unclear whether the large disparity of the reported data is attributable to the difference in methodology or to their intrinsic characteristics. Here we report on viscoelastic properties and optical properties of four different PDMS polymers, i.e. Sylgard-184, CY52-276, SIM-360, and KE-1606. Our results show that all the PDMSs are highly elastic rather than viscoelastic at the standard base/curing agent ratios, and their quantified elastic modulus, refractive index, and optical cleanness are similar but distinct in magnitude.
A PDMS membrane microvalve with one-dimensional line valve seat for robust microfluidics
NASA Astrophysics Data System (ADS)
Park, Chin-Sung; Hwang, Kyu-Youn; Jung, Wonjong; Namkoong, Kak; Chung, Wonseok; Kim, Joon-Ho; Huh, Nam
2014-02-01
We have developed a monolithic polydimethylsiloxane (PDMS) membrane microvalve with an isotropically etched valve seat for robust microfluidics. In order to avoid bonding or sticking of the PDMS membrane to the valve seat during the bonding process, the valve seat was wet-etched to be a one-dimensional line instead of a plane. The simple wet-etching technique allowed for the fabrication of an anti-bonding architecture in a scalable manner, and it intrinsically prevented contact between the PDMS membrane and valve seat when no external force was applied (i.e., normally open). This approach enables the permanent device assembly so that the microfluidic chip can be operable in a wide range of fluid pressures (e.g., over 200 kPa) without any leakage and sticking problems.
NASA Astrophysics Data System (ADS)
Sugino, Naoto; Nakajima, Shinya; Kameda, Takao; Takei, Satoshi; Hanabata, Makoto
2017-08-01
Silicone elastomers ( polydimethylsiloxane _ PDMS) are widely used in the field of imprint lithography and microcontactprinting (μCP). When performing microcontactprinting, the mechanical properties of the PCMS as a base material have a great influence on the performance of the device. Cellulose nanofibers having features of high strength, high elasticity and low coefficient of linear expansion have attracted attention in recent years due to their characteristics. Therefore, three types of crystalline cellulose having different molecular weights were added to PDMS to prepare a composite material, and dynamic viscoelasticity was measured using a rheometer. The PDMS with the highest molecular weight crystalline cellulose added exhibited smaller storage modulus than PDMS with other molecular weight added in all temperature ranges. Furthermore, when comparing PDMS to which crystalline cellulose was added and PDMS which is not added, the storage modulus of PDMS to which cellulose was added in the low temperature region was higher than that of PDMS to which it was not added, but it was reversed in the high temperature region It was a result. When used in a low temperature range (less than 150 ° C.), it can be said that cellulose can function as a reinforcing material for PDMS.
Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices.
Shiroma, Letícia S; Piazzetta, Maria H O; Duarte-Junior, Gerson F; Coltro, Wendell K T; Carrilho, Emanuel; Gobbi, Angelo L; Lima, Renato S
2016-05-16
This paper outlines a straightforward, fast, and low-cost method to fabricate polydimethylsiloxane (PDMS) chips. Termed sandwich bonding (SWB), this method requires only a laboratory oven. Initially, SWB relies on the reversible bonding of a coverslip over PDMS channels. The coverslip is smaller than the substrate, leaving a border around the substrate exposed. Subsequently, a liquid composed of PDMS monomers and a curing agent is poured onto the structure. Finally, the cover is cured. We focused on PDMS/glass chips because of their key advantages in microfluidics. Despite its simplicity, this method created high-performance microfluidic channels. Such structures featured self-regeneration after leakages and hybrid irreversible/reversible behavior. The reversible nature was achieved by removing the cover of PDMS with acetone. Thus, the PDMS substrate and glass coverslip could be detached for reuse. These abilities are essential in the stages of research and development. Additionally, SWB avoids the use of surface oxidation, half-cured PDMS as an adhesive, and surface chemical modification. As a consequence, SWB allows surface modifications before the bonding, a long time for alignment, the enclosure of sub-micron channels, and the prototyping of hybrid devices. Here, the technique was successfully applied to bond PDMS to Au and Al.
Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices
Shiroma, Letícia S.; Piazzetta, Maria H. O.; Duarte-Junior, Gerson F.; Coltro, Wendell K. T.; Carrilho, Emanuel; Gobbi, Angelo L.; Lima, Renato S.
2016-01-01
This paper outlines a straightforward, fast, and low-cost method to fabricate polydimethylsiloxane (PDMS) chips. Termed sandwich bonding (SWB), this method requires only a laboratory oven. Initially, SWB relies on the reversible bonding of a coverslip over PDMS channels. The coverslip is smaller than the substrate, leaving a border around the substrate exposed. Subsequently, a liquid composed of PDMS monomers and a curing agent is poured onto the structure. Finally, the cover is cured. We focused on PDMS/glass chips because of their key advantages in microfluidics. Despite its simplicity, this method created high-performance microfluidic channels. Such structures featured self-regeneration after leakages and hybrid irreversible/reversible behavior. The reversible nature was achieved by removing the cover of PDMS with acetone. Thus, the PDMS substrate and glass coverslip could be detached for reuse. These abilities are essential in the stages of research and development. Additionally, SWB avoids the use of surface oxidation, half-cured PDMS as an adhesive, and surface chemical modification. As a consequence, SWB allows surface modifications before the bonding, a long time for alignment, the enclosure of sub-micron channels, and the prototyping of hybrid devices. Here, the technique was successfully applied to bond PDMS to Au and Al. PMID:27181918
Aymerich, María; Gómez-Varela, Ana I.; Álvarez, Ezequiel; Flores-Arias, María T.
2016-01-01
A study of PDMS (polydimethylsiloxane) sol-gel–coated channels fabricated using soft lithography and a laser direct writing technique is presented. PDMS is a biocompatible material that presents a high versatility to reproduce several structures. It is widely employed in the fabrication of preclinical devices due to its advantages but it presents a rapid chemical deterioration to organic solvents. The use of sol-gel layers to cover the PDMS overcomes this problem since it provides the robustness of glass for the structures made with PDMS, decreasing its deterioration and changing the biocompatibility of the surface. In this work, PDMS channels are coated with three different kinds of sol-gel compositions (60MTES/40TEOS, 70MTES/30TISP and 80MTES/20TISP). The endothelial cell adhesion to the different coated devices is evaluated in order to determine the most suitable sol-gel preparation conditions to enhance cellular adhesion. PMID:28773848
In situ Synthesis of Metal Nanoparticle Embedded Free Standing Multifunctional PDMS Films.
Goyal, Anubha; Kumar, Ashavani; Patra, Prabir K; Mahendra, Shaily; Tabatabaei, Salomeh; Alvarez, Pedro J J; John, George; Ajayan, Pulickel M
2009-07-01
We demonstrate a simple one-step method for synthesizing noble metal nanoparticle embedded free standing polydimethylsiloxane (PDMS) composite films. The process involves preparing a homogenous mixture of metal salt (silver, gold and platinum), silicone elastomer and the curing agent (hardener) followed by curing. During the curing process, the hardener crosslinks the elastomer and simultaneously reduces the metal salt to form nanoparticles. This in situ method avoids the use of any external reducing agent/stabilizing agent and leads to a uniform distribution of nanoparticles in the PDMS matrix. The films were characterized using UV-Vis spectroscopy, transmission electron microscopy and X-ray photoemission spectroscopy. The nanoparticle-PDMS films have a higher Young's modulus than pure PDMS films and also show enhanced antibacterial properties. The metal nanoparticle-PDMS films could be used for a number of applications such as for catalysis, optical and biomedical devices and gas separation membranes. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ju, Jong Il; Ko, Jung-Moon; Kim, So Hyeon; Baek, Ju Yeoul; Cha, Hyeon-Cheol; Lee, Sang Hoon
2006-08-01
In plant cell culture, the delivery of nutrition and gas (mainly oxygen) to the cells is the most important factor for viability. In this paper, we propose a polydimethylsiloxane (PDMS)-based microculture system that is designed to have good aeration. PDMS is known to have excellent air permeability, and through the experimental method, we investigated the relation between the degree of air delivery and the thickness of the PDMS sheet covering the culture chamber. We determined the proper thickness of the cover sheet, and cultured protoplasts of Nicotiana tabacum in a culture chamber covered with a PDMS sheet having thickness of 400 microm. The cells were successfully divided, and lived well inside the culture chamber for 10 days. In addition, protoplasts were cultured inside the culture chambers covered with the cover glass and the PDMS sheet, respectively, and the microcolonies were formed well inside the PDMS covered chamber after 10 days.
NASA Astrophysics Data System (ADS)
Wang, Yu; Sun, Qingyang; Xiao, Jianliang
2018-02-01
Highly organized hierarchical surface morphologies possess various intriguing properties that could find important potential applications. In this paper, we demonstrate a facile approach to simultaneously form multiscale hierarchical surface morphologies through sequential wrinkling. This method combines surface wrinkling induced by thermal expansion and mechanical strain on a three-layer structure composed of an aluminum film, a hard Polydimethylsiloxane (PDMS) film, and a soft PDMS substrate. Deposition of the aluminum film on hard PDMS induces biaxial wrinkling due to thermal expansion mismatch, and recovering the prestrain in the soft PDMS substrate leads to wrinkling of the hard PDMS film. In total, three orders of wrinkling patterns form in this process, with wavelength and amplitude spanning 3 orders of magnitude in length scale. By increasing the prestrain in the soft PDMS substrate, a hierarchical wrinkling-folding structure was also obtained. This approach can be easily extended to other thin films for fabrication of multiscale hierarchical surface morphologies with potential applications in different areas.
Microfluidic PDMS on paper (POP) devices.
Shangguan, Jin-Wen; Liu, Yu; Pan, Jian-Bin; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan
2016-12-20
In this paper, we propose a generalized concept of microfluidic polydimethylsiloxane (PDMS) on paper (POP) devices, which combines well the merits of paper chips and PDMS chips. First, we optimized the conditions for accurate PDMS spatial patterning on paper, based on screen printing and a high temperature enabled superfast curing technique, which enables PDMS patterning to an accuracy of tens of microns in less than ten seconds. This, in turn, makes it available for seamless, reversible and reliable integration of the resulting paper layer with other PDMS channel structures. The integrated POP devices allow for both porous paper and smooth channels to be spatially defined on the devices, greatly extending the flexibility for designers to be able to construct powerful functional structures. To demonstrate the versatility of this design, a prototype POP device for the colorimetric analysis of liver function markers, serum protein, alkaline phosphatase (ALP) and aspartate aminotransferase (AST), was constructed. On this POP device, quantitative sample loading, mixing and multiplex analysis have all been realized.
Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films.
Yu, Yang; Luo, Shu; Sun, Li; Wu, Yang; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan
2015-06-14
Ultra-stretchable conductors are fabricated by coating super-aligned carbon nanotube (SACNT) films on pre-strained polydimethylsiloxane (PDMS) substrates and forming buckled SACNT structures on PDMS after release of the pre-strain. The parallel SACNT/PDMS conductors demonstrate excellent stability with normalized resistance changes of only 4.1% under an applied strain as high as 200%. The SACNT/PDMS conductors prepared with cross-stacked SACNT films show even lower resistance variation. The parallel SACNT/PDMS conductors exhibit high durability with a resistance increase of less than 5% after 10,000 cycles at 150% strain. In situ microscopic observations demonstrate that the buckled SACNT structures are straightened during the stretching process with reversible morphology evolution and thus the continuous SACNT conductive network can be protected from fracture. Due to the excellent electrical and mechanical properties of SACNT films and the formation of the buckled structure, SACNT/PDMS films exhibit high stretchability and durability, possessing great potential for use as ultra-stretchable conductors for wearable electronics, sensors, and energy storage devices.
Fiorini, D; Boarelli, M C
2016-07-01
When hydrogen is used as carrier gas, carbon-carbon double bonds may be hydrogenated in the hot gas chromatograph (GC) injector if introduced by solid-phase microextraction (SPME). SPME fibers coated with polydimethylsiloxane (PDMS)/carboxen/divinylbenzene (DVB), PDMS/carboxen, polyacrylate, PDMS/DVB and PDMS on fused silica, stableflex or metal alloy core have been tested with fatty acid methyl esters (FAMEs) from olive oil. Using coatings containing DVB, hydrogenation took place with high conversion rates (82.0-92.9%) independently of the core material. With all fibers having a metal core, hydrogenation was observed to a certain extent (27.4-85.3%). PDMS, PDMS/carboxen and polyacrylate coated fibers with a fused silica or stableflex core resulted in negligible hydrogenation (0.2-2.5%). The occurrence of hydrogenation was confirmed also with other substances containing carbon-carbon double bonds (n-alkenes, alkenoic acids, mono- and polyunsaturated fatty acid methyl and ethyl esters). Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiao, Jiajia; Sun, Lili; Guo, Zaiyu; Hou, Sen; Holyst, Robert; Lu, Yun; Feng, Xizeng
2016-12-01
Polydimethylsiloxane (PDMS) is widely used as a cell culture platform to produce micro- and nano-technology based microdevices. However, the native PDMS surface is not suitable for cell adhesion and is always subject to bacterial pollution and cancer cell invasion. Coating the PDMS surface with antibacterial or anticancer materials often causes considerable harm to the non-cancer mammalian cells on it. We have developed a method to fabricate a biocompatible PDMS surface which not only promotes non-cancer mammalian cell growth but also has antibacterial and anticancer activities, by coating the PDMS surface with a Chinese herb extract, paeonol. Coating changes the wettability and the elemental composition of the PDMS surface. Molecular dynamic simulation indicates that the absorption of paeonol onto the PDMS surface is an energy favourable process. The paeonol-coated PDMS surface exhibits good antibacterial activity against both Gram-positive and Gram-negative bacteria. Moreover considerable antibacterial activity is maintained after the coated surface is rinsed or incubated in water. The coated PDMS surface inhibits bacterial growth on the contact surface and promotes non-cancer mammalian cell growth with low cell toxicity; meanwhile the growth of cancer cells is significantly inhibited. Our study will potentially guide PDMS surface modification approaches to produce biomedical devices.
Zhao, Ning; Zhang, Xiaoyan; Zhang, Xiaoli; Xu, Jian
2007-05-14
A simple method is described for controlling the surface chemical composition and topography of the diblock copolymer poly(styrene)-b-poly(dimethylsiloxane)(PS-b-PDMS) by casting the copolymer solutions from solvents with different selectivities. The surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively, and the wetting behavior was studied by water contact angle (CA) and sliding angle (SA) and by CA hysteresis. Chemical composition and morphology of the surface depend on solvent properties, humidity of the air, solution concentration, and block lengths. If the copolymer is cast from a common solvent, the resultant surface is hydrophobic, with a flat morphology, and dominated by PDMS on the air side. From a PDMS-selective solvent, the surface topography depends on the morphology of the micelles. Starlike micelles give rise to a featureless surface nearly completely covered by PDMS, while crew-cut-like micelles lead to a rough surface with a hierarchical structure that consists partly of PDMS. From a PS-selective solvent, however, surface segregation of PDMS was restricted, and the surface morphology can be controlled by vapor-induced phase separation. On the basis of the tunable surface roughness and PDMS concentration on the air side, water repellency of the copolymer surface could be tailored from hydrophobic to superhydrophobic. In addition, reversible switching behavior between hydrophobic and superhydrophobic can be achieved by exposing the surface to solvents with different selectivities.
Yu, Minghao; Zhang, Yangfan; Zeng, Yinxiang; Balogun, Muhammad-Sadeeq; Mai, Kancheng; Zhang, Zishou; Lu, Xihong; Tong, Yexiang
2014-07-16
A kind of multiwalled carbon-nanotube (MWCNT)/polydimethylsiloxane (PDMS) film with excellent conductivity and mechanical properties is developed using a facile and large-scale water surface assisted synthesis method. The film can act as a conductive support for electrochemically active PANI nano fibers. A device based on these PANI/MWCNT/PDMS electrodes shows good and stable capacitive behavior, even under static and dynamic stretching conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
How does the molecular network structure influence PDMS elastomer wettability?
NASA Astrophysics Data System (ADS)
Melillo, Matthew; Genzer, Jan
Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from medical devices to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - microfluidic devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, end-group chemical functionality, and the extent of dilution of the curing mixture on the mechanical and surface properties of end-linked PDMS networks. The gel and sol fractions, storage and loss moduli, liquid swelling ratios, and water contact angles have all been shown to vary greatly based on the aforementioned variables. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have confirmed theories predicting the relationships between modulus and swelling. Furthermore, we have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient microfluidics and other PDMS-based materials that involve the transport of liquids.
NASA Astrophysics Data System (ADS)
Islam, Muhymin; Mahmood, Arif; Bellah, Md.; Kim, Young-Tae; Iqbal, Samir
2014-03-01
Detection of circulating tumor cells (CTCs) in the early stages of cancer is requires very sensitive approach. Nanotextured polydimethylsiloxane (PDMS) substrates were fabricated by micro reactive ion etching (Micro-RIE) to have better control on surface morphology and to improve the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers. The aptamers were specific to epidermal growth factor receptors (EGFR) present in cell membranes, and overexpressed in tumor cells. We also investigated the effect of nano-scale features on cell capturing by implementing various surfaces of different roughnesses. Three different recipes were used to prepare nanotextured PDMS by micro-RIE using oxygen (O2) and carbon tetrafluoride (CF4). The measured average roughness of three nanotextured PDMS surfaces were found to impact average densities of captured cells. In all cases, nanotextured PDMS facilitated cell capturing possibly due to increased effective surface area of roughened substrates at nanoscale. It was also observed that cell capture efficiency was higher for higher surface roughness. The nanotextured PDMS substrates are thus useful for cancer cytology devices.
Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells.
Klemic, Kathryn G; Klemic, James F; Reed, Mark A; Sigworth, Fred J
2002-06-01
The patch clamp method measures membrane currents at very high resolution when a high-resistance 'gigaseal' is established between the glass microelectrode and the cell membrane (Pflugers Arch. 391 (1981) 85; Neuron 8 (1992) 605). Here we describe the first use of the silicone elastomer, poly(dimethylsiloxane) (PDMS), for patch clamp electrodes. PDMS is an attractive material for patch clamp recordings. It has low dielectric loss and can be micromolded (Annu. Rev. Mat. Sci. 28 (1998) 153) into a shape that mimics the tip of the glass micropipette. Also, the surface chemistry of PDMS may be altered to mimic the hydrophilic nature of glass (J. Appl. Polym. Sci. 14 (1970) 2499; Annu. Rev. Mat. Sci. 28 (1998) 153), thereby allowing a high-resistance seal to a cell membrane. We present a planar electrode geometry consisting of a PDMS partition with a small aperture sealed between electrode and bath chambers. We demonstrate that a planar PDMS patch electrode, after oxidation of the elastomeric surface, permits patch clamp recording on Xenopus oocytes. Our results indicate the potential for high-throughput patch clamp recording with a planar array of PDMS electrodes.
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2015-11-01
The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.
Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe; Mayer, Philipp
2016-06-07
Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning as the basis for a deeper insight into partitioning differences of HOCs between polymers, calibrating analytical methods, and consistency checking of existing and calculation of new partition coefficients. Polymer-polymer partition coefficients were determined for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) by equilibrating 13 silicones, including polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) in methanol-water solutions. Methanol as cosolvent ensured that all polymers reached equilibrium while its effect on the polymers' properties did not significantly affect silicone-silicone partition coefficients. However, we noticed minor cosolvent effects on determined polymer-polymer partition coefficients. Polymer-polymer partition coefficients near unity confirmed identical absorption capacities of several PDMS materials, whereas larger deviations from unity were indicated within the group of silicones and between silicones and LDPE. Uncertainty in polymer volume due to imprecise coating thickness or the presence of fillers was identified as the source of error for partition coefficients. New polymer-based (LDPE-lipid, PDMS-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients, recognizing that polymers can serve as a linking third phase for a quantitative understanding of equilibrium partitioning of HOCs between any two phases.
Roach, L Spencer; Song, Helen; Ismagilov, Rustem F
2005-02-01
Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aqueous droplets that are completely surrounded by fluorocarbon oil and do not come into direct contact with the hydrophobic surface of the microchannel. Protein adsorption at the aqueous-fluorous interface was controlled by using surfactants that were soluble in fluorocarbon oil but insoluble in aqueous solutions. Three perfluorinated alkane surfactants capped with different functional groups were used: a carboxylic acid, an alcohol, and a triethylene glycol group that was synthesized from commercially available materials. Using complementary methods of analysis, adsorption was characterized for several proteins (bovine serum albumin (BSA) and fibrinogen), including enzymes (ribonuclease A (RNase A) and alkaline phosphatase). These complementary methods involved characterizing adsorption in microliter-sized droplets by drop tensiometry and in nanoliter plugs by fluorescence microscopy and kinetic measurements of enzyme catalysis. The oligoethylene glycol-capped surfactant prevented protein adsorption in all cases. Adsorption of proteins to the carboxylic acid-capped surfactant in nanoliter plugs could be described by using the Langmuir model and tensiometry results for microliter drops. The microfluidic system was fabricated using rapid prototyping in poly(dimethylsiloxane) (PDMS). Black PDMS microfluidic devices, fabricated by curing a suspension of charcoal in PDMS, were used to measure the changes in fluorescence intensity more sensitively. This system will be useful for microfluidic bioassays, enzymatic kinetics, and protein crystallization, because it does not require surface modification during fabrication to control surface chemistry and protein adsorption.
Bhattacharjee, Nirveek; Parra-Cabrera, Cesar; Kim, Yong Tae; Kuo, Alexandra P; Folch, Albert
2018-05-01
The advantageous physiochemical properties of poly(dimethylsiloxane) (PDMS) have made it an extremely useful material for prototyping in various technological, scientific, and clinical areas. However, PDMS molding is a manual procedure and requires tedious assembly steps, especially for 3D designs, thereby limiting its access and usability. On the other hand, automated digital manufacturing processes such as stereolithography (SL) enable true 3D design and fabrication. Here the formulation, characterization, and SL application of a 3D-printable PDMS resin (3DP-PDMS) based on commercially available PDMS-methacrylate macromers, a high-efficiency photoinitiator and a high-absorbance photosensitizer, is reported. Using a desktop SL-printer, optically transparent submillimeter structures and microfluidic channels are demonstrated. An optimized blend of PDMS-methacrylate macromers is also used to SL-print structures with mechanical properties similar to conventional thermally cured PDMS (Sylgard-184). Furthermore, it is shown that SL-printed 3DP-PDMS substrates can be rendered suitable for mammalian cell culture. The 3DP-PDMS resin enables assembly-free, automated, digital manufacturing of PDMS, which should facilitate the prototyping of devices for microfluidics, organ-on-chip platforms, soft robotics, flexible electronics, and sensors, among others. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Underwater drag-reducing effect of superhydrophobic submarine model.
Zhang, Songsong; Ouyang, Xiao; Li, Jie; Gao, Shan; Han, Shihui; Liu, Lianhe; Wei, Hao
2015-01-01
To address the debates on whether superhydrophobic coatings can reduce fluid drag for underwater motions, we have achieved an underwater drag-reducing effect of large superhydrophobic submarine models with a feature size of 3.5 cm × 3.7 cm × 33.0 cm through sailing experiments of submarine models, modified with and without superhydrophobic surface under similar power supply and experimental conditions. The drag reduction rate reached as high as 15%. The fabrication of superhydrophobic coatings on a large area of submarine model surfaces was realized by immobilizing hydrophobic copper particles onto a precross-linked polydimethylsiloxane (PDMS) surface. The pre-cross-linking time was optimized at 20 min to obtain good superhydrophobicity for the underwater drag reduction effect by investigating the effect of pre-cross-linking on surface wettability and water adhesive property. We do believe that superhydrophobic coatings may provide a promising application in the field of drag-reducing of vehicle motions on or under the water surface.
NASA Astrophysics Data System (ADS)
Hashemi, Azadeh; de Decker, Fanny; Orcheston-Findlay, Louise; Ali, M. Azam; Alkaisi, Maan M.; Nock, Volker
2017-11-01
This work introduces casein microstructures with surface features as a biodegradable biomedical platform technology for enhancing tissue-engineering applications. An optimized fabrication process is presented to reduce the hydrophobicity of intermediate polydimethylsiloxane (PDMS) molds and to transfer high-resolution regular and biomimetic features onto the surface of casein devices. Four different cross-linking reagents, glutaraldehyde, formaldehyde, citric acid and transglutaminase (TG) were investigated to increase the degradation time of casein and their influence on swelling and biocompatibility of the films was studied. TG was found to be the only cross-linker to effectively increase the degradation time and show reduced film swelling after immersion into media, while remaining compatible with cell-culture. The maximum expansion of the films cross-linked via TG was 33% after 24 hours of immersion in cell-culture media. C2C12 cells were successfully cultured on the patterned films for up to 72 hours. The patterned biodegradable casein substrates presented here have promising applications in stem-cell engineering, regenerative medicine, and implantable devices.
Fabrication of Free-Standing, Self-Aligned, High-Aspect-Ratio Synthetic Ommatidia.
Jun, Brian M; Serra, Francesca; Xia, Yu; Kang, Hong Suk; Yang, Shu
2016-11-16
Free-standing, self-aligned, high-aspect-ratio (length to cross-section, up to 15.5) waveguides that mimic insects' ommatidia are fabricated. Self-aligned waveguides under the lenses are created after exposing photoresist SU-8 film through the negative polydimethylsiloxane (PDMS) lens array. Instead of drying from the developer, the waveguides are coated with poly(vinyl alcohol) and then immersed into a mixture of PDMS precursor and diethyl ether. The slow drying of diethyl ether, followed by curing and peeling off PDMS, allows for the fabrication of free-standing waveguides without collapse. We show that the synthetic ommatidia can confine light and propagate it all the way to the tips.
Flexible and wearable 3D graphene sensor with 141 KHz frequency signal response capability
NASA Astrophysics Data System (ADS)
Xu, R.; Zhang, H.; Cai, Y.; Ruan, J.; Qu, K.; Liu, E.; Ni, X.; Lu, M.; Dong, X.
2017-09-01
We developed a flexible force sensor consisting of 3D graphene foam (GF) encapsulated in flexible polydimethylsiloxane (PDMS). Because the 3D GF/PDMS sensor is based on the transformation of an electronic band structure aroused by static mechanical strain or KHz vibration, it can detect frequency signals by both tuning fork tests and piezoelectric ceramic transducer tests, which showed a clear linear response from audio frequencies, including frequencies up to 141 KHz in the ultrasound range. Because of their excellent response with a wide bandwidth, the 3D GF/PDMS sensors are attractive for interactive wearable devices or artificial prosthetics capable of perceiving seismic waves, ultrasonic waves, shock waves, and transient pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Yao, Shurong; Nie, Xu
In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less
Flexible conformable hydrophobized surfaces for turbulent flow drag reduction
Brennan, Joseph C; Geraldi, Nicasio R; Morris, Robert H; Fairhurst, David J; McHale, Glen; Newton, Michael I
2015-01-01
In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces produced using two different methods: Large roughness features were created by electrodeposition on copper meshes; Small roughness features were created by embedding carbon nanoparticles (soot) into Polydimethylsiloxane (PDMS). Both samples were made into cylinders with a diameter under 12 mm. To characterize the samples, scanning electron microscope (SEM) images and confocal microscope images were taken. The confocal microscope images were taken with each sample submerged in water to show the extent of the plastron. The hydrophobized electrodeposited copper mesh cylinders showed drag reductions of up to 32% when comparing the superhydrophobic state with a wetted out state. The soot covered cylinders achieved a 30% drag reduction when comparing the superhydrophobic state to a plain cylinder. These results were obtained for turbulent flows with Reynolds numbers 10,000 to 32,500. PMID:25975704
Desktop aligner for fabrication of multilayer microfluidic devices.
Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping
2015-07-01
Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.
Desktop aligner for fabrication of multilayer microfluidic devices
Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping
2015-01-01
Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Kenneth R.; Mei, Jianguo; Stalder, Romain
The effect of the macromolecular additive, polydimethylsiloxane (PDMS), on the performance of solution processed molecular bulk heterojunction solar cells is investigated, and the addition of PDMS is shown to improve device power conversion efficiency by ~70% and significantly reduce cell-to-cell variation, from a power conversion efficiency of 1.25 ± 0.37% with no PDMS to 2.16 ± 0.09% upon the addition of 0.1 mg/mL PDMS to the casting solution. The cells are based on a thiophene and isoindigo containing oligomer as the electron donor and [6,6]-phenyl-C61 butyric acid methyl ester (PC 61BM) as the electron acceptor. PDMS is shown to havemore » a strong influence on film morphology, with a significant decrease in film roughness and feature size observed. The morphology change leads to improved performance parameters, most notably an increase in the short circuit current density from 4.3 to 6.8 mA/cm 2 upon addition of 0.1 mg/mL PDMS. The use of PDMS is of particular interest, as this additive appears frequently as a lubricant in plastic syringes commonly used in device fabrication; therefore, PDMS may unintentionally be incorporated into device active layers.« less
Hamon, Morgan; Hanada, Sanshiro; Fujii, Teruo; Sakai, Yasuyuki
2012-01-01
Oxygen is a vital nutrient for growth and maturation of in vitro cells (e.g., adult hepatocytes). We previously demonstrated that direct oxygenation through a polydimethylsiloxane (PDMS) membrane increases the oxygen supply to cell cultures and improves hepatocyte functions. In this study, we removed limits on oxygen supply to fetal rat liver cells through the use of direct oxygenation through a PDMS membrane to investigate in vitro growth and maturation. We chose fetal liver cells because they are considered a feasible source of liver progenitor cells for regenerative medicine therapy due to their highly efficient maturation and proliferation. Cells from 17-day-old pregnant rats were cultured under 5% and 21% oxygen atmospheres. Some cells were first cultured under 5% oxygen, and then switched to a 21% oxygen atmosphere. When oxygen supply was enhanced by a PDMS membrane, the rat fetal liver cells organized into a complex tissue composed of an epithelium of hepatocytes above a mesenchyme-like tissue. The thickness of this supportive tissue was directly correlated to oxygen concentration and was thicker under 5% oxygen. When cultures were switched from 5% to 21% oxygen, lumen-containing structures were formed in the thick mesenchymal-like tissue and the albumin secretion rate increased. In addition, cells adapted their glycolytic activity to the oxygen concentrations. This system promoted the formation of a functional and organized thick tissue suitable for use in regenerative medicine.
Wu, Wenming; Loan, Kieu The Loan; Lee, Nae Yoon
2012-05-07
Consistent temperature control in an on-chip flow-through polymerase chain reaction (PCR) employing two or more heaters is one of the main obstacles for device miniaturization and integration when realizing micro total analysis systems (μTAS), and also leads to operational complexity. In this study, we propose a qiandu (right triangular prism)-shaped polydimethylsiloxane (PDMS) microdevice with serpentine microchannels fabricated on its slanted plane, and apply the device for an on-chip flow-through PCR employing a single heater. The inclined nature of the qiandu-shaped microdevice enables the formation of a surface temperature gradient along the slanted plane of the microdevice in a height-dependent manner by the use of a single heater, and enables liquid to traverse over wide ranges of temperatures, including the three temperature zones--denaturation, annealing, and extension temperatures--required in a typical PCR. The feasibility of the qiandu-shaped PDMS microdevice as a versatile platform for performing a flow-through PCR was examined by employing multiple templates and varying the inclination angle of the device. In addition, the potential of performing a multiplex PCR using a single qiandu-shaped PDMS microdevice was explored. A 409 bp long gene fragment effective as a marker for diagnosing lung cancer and a 230 bp long gene fragment from a plasmid vector were simultaneously amplified in less than 25 min on a single microdevice, paving the way for a microscale, multiplex PCR on a single device employing a single heater.
Nanoporous polymeric nanofibers based on selectively etched PS-b-PDMS block copolymers.
Demirel, Gokcen B; Buyukserin, Fatih; Morris, Michael A; Demirel, Gokhan
2012-01-01
One-dimensional nanoporous polymeric nanofibers have been fabricated within an anodic aluminum oxide (AAO) membrane by a facile approach based on selective etching of poly(dimethylsiloxane) (PDMS) domains in polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) block copolymers that had been formed within the AAO template. It was observed that prior to etching, the well-ordered PS-b-PDMS nanofibers are solid and do not have any porosity. The postetched PS nanofibers, on the other hand, had a highly porous structure having about 20-50 nm pore size. The nanoporous polymeric fibers were also employed as a drug carrier for the native, continuous, and pulsatile drug release using Rhodamine B (RB) as a model drug. These studies showed that enhanced drug release and tunable drug dosage can be achieved by using ultrasound irradiation. © 2011 American Chemical Society
Ranjan, Ashwini; Webster, Thomas J
2009-07-29
The success of synthetic vascular grafts is largely determined by their ability to promote vital endothelial cell functions such as adhesion, alignment, proliferation, and extracellular matrix (ECM) deposition. Developing such biomaterials requires the design and fabrication of materials that mimic select properties of native extracellular matrices. Furthermore, cells of the native endothelium have elongated and aligned morphology in the direction of blood flow, yet few materials promote this type of morphology initially, but rather rely on blood flow to orient endothelial cells. Therefore, the objective of this in vitro study was to design a biomaterial that mimics the conditions of the micro- and nano-environment of vascular intima tissue suitable for endothelial cell adhesion and elongation to improve the efficacy of small synthetic vascular grafts. Towards this end, patterned poly(dimethylsiloxane) (PDMS) films consisting of periodic arrays of nano-grooves (500 nm), with spacings ranging from 22 to 80 microm, and alternating nano- and micron roughness were fabricated using a novel electron beam physical vapor deposition method followed by polymer casting. By varying pattern spacing, the area of micron- and nano-rough surface was controlled. In vitro rat aortic endothelial cell adhesion and elongation studies indicated that endothelial cell function was enhanced on patterned PDMS surfaces with the widest spacing and greatest surface area of nano-roughness, as compared to more narrow pattern spacings and non-patterned PDMS surfaces. Specifically, endothelial cells adherent on PDMS patterned films of the widest spacing (greatest nano-rough area) displayed almost twice as much elongation as cells on non-patterned surfaces. For these reasons, the present study highlighted design criteria (the use of micron patterns of nano-features on PDMS) that may contribute to the intelligent design of new-generation vascular grafts.
Sarafraz-Yazdi, Ali; Vatani, Hossein
2013-07-26
Ionic liquid mediated sol-gel sorbents for head-space solid phase microextraction (HS-SPME) were developed for the extraction of benzene, toluene, ethylbenzene and o-xylene (BTEX) compounds from water samples in ultra-trace levels. The analytes were subsequently analyzed with gas chromatography coupled to flame ionization detector (GC-FID). Three different coating fibers were prepared including: poly(dimethylsiloxane) (PDMS), coating prepared from poly(dimethylsiloxane) in the presence of ionic liquid as co-solvent and conditioned at a higher temperature than decomposition temperature of ionic liquid (PDMS-IL-HT) and coating prepared from poly(dimethylsiloxane) in the presence of ionic liquid as co-solvent and conditioned at a lower temperature than decomposition temperature of ionic liquid (PDMS-IL-LT). Prepared fibers demonstrate many advantages such as high thermal and chemical stabilities due to the chemical bonding of the coatings with the silanol groups on the fused-silica surface fiber. These fibers have shown long life time up to 180 extractions. The scanning electron micrographs of the fibers surfaces revealed that addition of ionic liquid into the sol solution during the sol-gel process increases the fiber coating thickness, affects the form of fiber structure and also leaves high pores in the fiber surface that cause high surface area and therefore increases sample capacity of the fibers. The important parameters that affect the extraction efficiency are desorption temperature and time, sample volume, extraction temperature, extraction time, stirring speed and salt effect. Therefore these factors were investigated and optimized. Under optimal conditions, the dynamic linear range with PDMS-IL-HT, PDMS and PDMS-IL-LT fibers were 0.3-200,000; 50-200,000 and 170-150,000pgmL(-1) and the detection limits (S/N=3) were 0.1-2 and 15-200 and 50-500pgmL(-1), and limit of quantifications (S/N=10) were 0.3-8 and 50-700 and 170-1800, respectively. The relative standard deviations (RSD) for one fiber (repeatability) (n=5), were obtained from 3.1 up to 5.4% and between fibers or batch to batch (reproducibility) (n=3) in the range of 3.8-8.5% for three fibers. The developed method was successfully applied to the real water samples while the relative recovery percentages obtained for the spiked water samples at 20pgmL(-1) were from 91.2 to 103.3%. Copyright © 2013 Elsevier B.V. All rights reserved.
Polymeric cantilever integrated with PDMS/graphene composite strain sensor.
Choi, Young-Soo; Gwak, Min-Joo; Lee, Dong-Weon
2016-10-01
This paper describes the mechanical and electrical characteristics of a polydimethylsiloxane (PDMS) cantilever integrated with a high-sensitivity strain sensor. The strain sensor is fabricated using PDMS and graphene flakes that are uniformly distributed in the PDMS. In order to prepare PDMS/graphene composite with uniform resistance, a tetrahydrofuran solution is used to decrease the viscosity of a PDMS base polymer solution. A horn-type sonicator is then used to mix the base polymer with graphene flakes. Low viscosity of the base polymer solution improves the reliability and reproducibility of the PDMS/graphene composite for strain sensor applications. After dicing the composite into the desired sensor shape, a tensile test is performed. The experimental results show that the composite with a concentration of 30 wt.% exhibits a linear response up to a strain rate of 9%. The graphene concentration of the prepared materials affects the gauge factor, which at 20% graphene concentration reaches about 50, and with increasing graphene concentration to 30% decreases to 9. Furthermore, photolithography, PDMS casting, and a stencil process are used to fabricate a PDMS cantilever with an integrated strain sensor. The change in resistance of the integrated PDMS/graphene sensor is characterized with respect to the displacement of the cantilever of within 500 μm. The experimental results confirmed that the prepared PDMS/graphene based sensor has the potential for high-sensitive biosensor applications.
MODELING OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER
A resistance-in-series model was used to study the pervaporation of multiple volatile organic compounds (VOCs)-water mixtures. Permeation experiments were carried out for four membranes: poly(dimethylsiloxane) (PDMS), polyether-block-polyamides (PEBA), polyurethane (PUR) and sil...
Mundry, T; Surmann, P; Schurreit, T
2000-12-01
The siliconization of pharmaceutical glass containers is an industrially frequently applied procedure. It is done by spreading an aqueous silicone oil emulsion film on the inner surface and successive heat curing treatment at temperatures above 300 degrees C for 10-30 min. It was often proposed that a covalent bonding of PDMS to the glass or branching of the linear PDMS occurs during heat treatment. The present study was performed for a detailed investigation of the glass and silicone (polydimethylsiloxane = PDMS) chemical state before and after heat-curing treatment and analysis of the bond nature. Combined X-ray excited photoelectron (XPS) and Auger electron spectroscopy as well as angle resolved XPS-measurements were used for analysis of the glass samples. The silicon surface atoms of the borosilicate container glass were transformed to a quartz-like compound whereas the former linear PDMS had a branched, two-dimensional structure after the heat curing treatment. It was concluded that the branching indicates the formation of new siloxane bonds to the glass surface via hydroxyl groups. Further evidence for the presence of bonded PDMS at the glass surface can be found in the valence band spectra of the siliconized and untreated samples. However, this bond could not be detected directly due to its very similar nature to the siloxane bonds of the glass matrix and the organosilicon backbone of PDMS. Due to the high variation of data from the siliconized samples it was concluded, that the silicone film is not homogeneous. Previously raised theories of reactions during heat-curing glass siliconization are supported by the XPS data of this investigation. Yet, the postulation of fixing or baking the silicone on the glass surface is only partially true since the bonded layer is very thin and most of the silicone originally on the surface after heat curing can be removed by suitable solvents. This fraction can therefore still interact with drug products being in contact to the siliconized container wall.
Janus and Strawberry-like Particles from Azo Molecular Glass and Polydimethylsiloxane Oligomer.
Hsu, Chungen; Du, Yi; Wang, Xiaogong
2017-10-10
This study investigated Janus and strawberry-like particles composed of azo molecular glass and polydimethylsiloxane (PDMS) oligomer, focusing on controllable fabrication and formation mechanism of these unique structures and morphologies. Two materials, the azo molecular glass (IA-Chol) and PDMS oligomer (H 2 pdca-PDMS), were prepared for this purpose. The Janus and strawberry-like particles were obtained from the droplets of a dichloromethane (DCM) solution containing both IA-Chol and H 2 pdca-PDMS, dispersed in water and stabilized by poly(vinyl alcohol). Results show that the structured particles are formed through segregation between the two components induced by gradual evaporation of DCM from the droplets, which is controlled by adding ethylene glycol (EG) into the above dispersion. Without the addition of EG, Janus particles are formed through the full segregation of the two components in the droplets. On the other hand, with the existence of EG in the dispersion, strawberry-like particles instead of Janus particles are formed in the phase separation process. The diffusion of EG molecules from the dispersion medium into the droplets causes the PDMS phase deswelling in the interfacial area due to the poor solvent effect. Caused by the surface coagulation, the coalescence of the isolated IA-Chol domains is jammed in the shell region, which results in the formation of the strawberry-like particles. For the particles separated from the dispersion and dried, the PDMS oligomer phase of the Janus particles can adhere and spread on the substrate to form unique "particle-on-pad" morphology due to its low surface energy and swelling ability, while the strawberry-like particles exist as "standstill" objects on the substrates. Upon irradiation with a linearly polarized laser beam at 488 nm, the azo molecular glass parts in the particles are significantly deformed along the light polarization direction, which show unique and distinct morphologies for these two types of the particles.
Wang, Ming; Zhang, Kai; Dai, Xin-Xin; Li, Yin; Guo, Jiang; Liu, Hu; Li, Gen-Hui; Tan, Yan-Jun; Zeng, Jian-Bing; Guo, Zhanhu
2017-08-10
Formation of highly conductive networks is essential for achieving flexible conductive polymer composites (CPCs) with high force sensitivity and high electrical conductivity. In this study, self-segregated structures were constructed in polydimethylsiloxane/multi-wall carbon nanotube (PDMS/MWCNT) nanocomposites, which then exhibited high piezoresistive sensitivity and low percolation threshold without sacrificing their mechanical properties. First, PDMS was cured and pulverized into 40-60 mesh-sized particles (with the size range of 250-425 μm) as an optimum self-segregated phase to improve the subsequent electrical conductivity. Then, the uncured PDMS/MWCNT base together with the curing agent was mixed with the abovementioned PDMS particles, serving as the segregated phase. Finally, the mixture was cured again to form the PDMS/MWCNT nanocomposites with self-segregated structures. The morphological evaluation indicated that MWCNTs were located in the second cured three-dimensional (3D) continuous PDMS phase, resulting in an ultralow percolation threshold of 0.003 vol% MWCNTs. The nanocomposites with self-segregated structures with 0.2 vol% MWCNTs achieved a high electrical conductivity of 0.003 S m -1 , whereas only 4.87 × 10 -10 S m -1 was achieved for the conventional samples with 0.2 vol% MWCNTs. The gauge factor GF of the self-segregated samples was 7.4-fold that of the conventional samples at 30% compression strain. Furthermore, the self-segregated samples also showed higher compression modulus and strength as compared to the conventional samples. These enhanced properties were attributed to the construction of 3D self-segregated structures, concentrated distribution of MWCNTs, and strong interfacial interaction between the segregated phase and the continuous phase with chemical bonds formed during the second curing process. These self-segregated structures provide a new insight into the fabrication of elastomers with high electrical conductivity and piezoresistive sensitivity for flexible force-sensitive materials.
Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators
NASA Astrophysics Data System (ADS)
Ersen, Ali; Sahin, Mesut
2017-05-01
Neural electrodes and associated electronics are powered either through percutaneous wires or transcutaneous powering schemes with energy harvesting devices implanted underneath the skin. For electrodes implanted in the spinal cord and the brain stem that experience large displacements, wireless powering may be an option to eliminate device failure by the breakage of wires and the tethering of forces on the electrodes. We tested the feasibility of using optically clear polydimethylsiloxane (PDMS) as a waveguide to collect the light in a subcutaneous location and deliver to deeper regions inside the body, thereby replacing brittle metal wires tethered to the electrodes with PDMS-based optical waveguides that can transmit energy without being attached to the targeted electrode. We determined the attenuation of light along the PDMS waveguides as 0.36±0.03 dB/cm and the transcutaneous light collection efficiency of cylindrical waveguides as 44%±11% by transmitting a laser beam through the thenar skin of human hands. We then implanted the waveguides in rats for a month to demonstrate the feasibility of optical transmission. The collection efficiency and longitudinal attenuation values reported here can help others design their own waveguides and make estimations of the waveguide cross-sectional area required to deliver sufficient power to a certain depth in tissue.
Kim, Jeong Hun; Hwang, Ji-Young; Hwang, Ha Ryeon; Kim, Han Seop; Lee, Joong Hoon; Seo, Jae-Won; Shin, Ueon Sang; Lee, Sang-Hoon
2018-01-22
The development of various flexible and stretchable materials has attracted interest for promising applications in biomedical engineering and electronics industries. This interest in wearable electronics, stretchable circuits, and flexible displays has created a demand for stable, easily manufactured, and cheap materials. However, the construction of flexible and elastic electronics, on which commercial electronic components can be mounted through simple and cost-effective processing, remains challenging. We have developed a nanocomposite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) elastomer. To achieve uniform distributions of CNTs within the polymer, an optimized dispersion process was developed using isopropyl alcohol (IPA) and methyl-terminated PDMS in combination with ultrasonication. After vaporizing the IPA, various shapes and sizes can be easily created with the nanocomposite, depending on the mold. The material provides high flexibility, elasticity, and electrical conductivity without requiring a sandwich structure. It is also biocompatible and mechanically stable, as demonstrated by cytotoxicity assays and cyclic strain tests (over 10,000 times). We demonstrate the potential for the healthcare field through strain sensor, flexible electric circuits, and biopotential measurements such as EEG, ECG, and EMG. This simple and cost-effective fabrication method for CNT/PDMS composites provides a promising process and material for various applications of wearable electronics.
Mojsiewicz-Pieńkowska, Krystyna
2012-01-25
The pharmaceutical industry is one of the more important sectors for the use of polydimethylsiloxanes (PDMS), which belong to the organosilicon polymers. In drugs for internal use, they are used as an active pharmaceutical ingredient (API) called dimeticone or simeticone. Due to their specific chemical nature, PDMS can have different degrees of polymerization, which determine the molecular weight and viscosity. The Pharmacopoeial monographs for dimeticone and simeticone, only give the permitted polymerization and viscosity range. It is, however, essential to know also the degree of polymerization or the specific molecular weight of PDMS that are present in pharmaceutical formulations. In the literature there is information about the impact of particle size, and thus molecular weight, on the toxicity, absorption and migration in living organisms. This study focused on the use of a developed method - the exclusion chromatography with evaporative light scattering detector (SEC-ELSD) - for identification and determination of dimeticone and simeticone in various pharmaceutical formulations. The method had a high degree of specificity and was suitable for speciation analysis of these polymers. So far the developed method has not been used in the control of medicinal products containing dimeticone or simeticone. Copyright © 2011 Elsevier B.V. All rights reserved.
Prediction of Partition Coefficients of Organic Compounds between SPME/PDMS and Aqueous Solution
Chao, Keh-Ping; Lu, Yu-Ting; Yang, Hsiu-Wen
2014-01-01
Polydimethylsiloxane (PDMS) is commonly used as the coated polymer in the solid phase microextraction (SPME) technique. In this study, the partition coefficients of organic compounds between SPME/PDMS and the aqueous solution were compiled from the literature sources. The correlation analysis for partition coefficients was conducted to interpret the effect of their physicochemical properties and descriptors on the partitioning process. The PDMS-water partition coefficients were significantly correlated to the polarizability of organic compounds (r = 0.977, p < 0.05). An empirical model, consisting of the polarizability, the molecular connectivity index, and an indicator variable, was developed to appropriately predict the partition coefficients of 61 organic compounds for the training set. The predictive ability of the empirical model was demonstrated by using it on a test set of 26 chemicals not included in the training set. The empirical model, applying the straightforward calculated molecular descriptors, for estimating the PDMS-water partition coefficient will contribute to the practical applications of the SPME technique. PMID:24534804
Wearable polyimide-PDMS electrodes for intrabody communication
NASA Astrophysics Data System (ADS)
Moon, Jin-Hee; Baek, Dong Hyun; Choi, Yoon Young; Lee, Kwang Ho; Kim, Hee Chan; Lee, Sang-Hoon
2010-02-01
In this paper, we introduce a novel wearable electrode for an intra-body area network (I-BAN) by employing the advantages of polyimide (PI) which is a well-known substrate material for flexible electrodes and polydimethylsiloxane (PDMS) which is a biocompatible and representative soft-lithography adaptable material. Electrodes were patterned onto thin and flexible PI substrates and encapsulated in PDMS to enhance skin compatibility. For this purpose, we developed an electrode fabrication process on thin PI substrates and a PDMS encapsulation technique by bonding two PDMS layers on the front and back surfaces of the PI electrode. The mechanical property and communication performance of electrodes were characterized through spectrum analysis to optimize the role as an I-BAN electrode. Skin-compatibility and cyto-toxicity tests using human mesenchymal stem cells (hMSCs) were carried out to demonstrate the non-toxicity of the electrode after continuous wearing. Sinusoidal signals of 45 MHz were successfully transmitted with high fidelity between electrodes separated by 30 cm.
Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation
NASA Astrophysics Data System (ADS)
Farshchian, Bahador; Gatabi, Javad R.; Bernick, Steven M.; Park, Sooyeon; Lee, Gwan-Hyoung; Droopad, Ravindranath; Kim, Namwon
2017-02-01
We demonstrate a facile single step laser treatment process to render a polydimethylsiloxane (PDMS) surface superhydrophobic. By synchronizing a pulsed nanosecond laser source with a motorized stage, superhydrophobic grid patterns were written on the surface of PDMS. Hierarchical micro and nanostructures were formed in the irradiated areas while non-irradiated areas were covered by nanostructures due to deposition of ablated particles. Arrays of droplets form spontaneously on the laser-patterned PDMS with superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water due to different wetting properties of the irradiated and non-irradiated areas. The effects of withdrawal speed and pitch size of superhydrophobic grid on the size of formed droplets were investigated experimentally. The droplet size increases initially with increasing the withdrawal speed and then does not change significantly beyond certain points. Moreover, larger droplets are formed by increasing the pitch size of the superhydrophobic grid. The droplet arrays formed on the laser-patterned PDMS with wettability contrast can be used potentially for patterning of particles, chemicals, and bio-molecules and also for cell screening applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S., E-mail: ron.reiserer@vanderbilt.edu
We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.
Tunable, flexible antireflection layer of ZnO nanowires embedded in PDMS.
Kim, Min Kyu; Yi, Dong Kee; Paik, Ungyu
2010-05-18
In this article, we report the fabrication of ordered hybrid structures composed of ZnO nanowires and a polymeric matrix with a polymer precursor infiltrating the nanowire arrays. The antireflective properties of the resulting ZnO nanowire-embedded polydimethylsiloxane composite (ZPC) were investigated at various ZnO nanowire lengths and ZPC bending angles. Interestingly, we found that whereas the antireflective properties showed a strong dependence on the length of the embedded ZnO nanowires in PDMS, the bending of ZPC has little effect on the antireflective properties.
NASA Astrophysics Data System (ADS)
Fajkus, M.; Nedoma, J.; Martinek, R.; Novak, M.; Jargus, J.; Vasinek, V.
2017-05-01
Authors of the article focused on the possible encapsulation method of fiber Bragg gratings (FBGs) for the needs of dynamic weighing. For monitoring the parameters, we used broad-spectrum light source LED (Light-Emitting Diode) with a central wavelength of 1550 nm and optical spectrum analyzer with sampling rate 300 Hz. For encapsulation of used FBGs was chosen a specific material polymer polydimethylsiloxane (PDMS). A characteristic feature of this material is very high mechanical resistance, chemical resistance and temperature stability in the range of values -60 °C to + 200 °C. The combination of characteristic advantages of optical fibers (electromagnetic immunity) with stated properties of PDMS gives us the innovative type of encapsulated sensor which could be used for example for the needs of dynamic weighing in worsened or potentially hazardous conditions. This type of monitoring weighing is fully dielectric. Experimental measurements were carried out in laboratory conditions in the weight range of 35 up to 180 kg.
A crossed dodecagonal deployable polarizer on textile and polydimethylsiloxane (PDMS) substrates
NASA Astrophysics Data System (ADS)
Mirza, Hidayath; Soh, Ping Jack; Jamlos, Mohd Faizal; Hossain, Toufiq Md; Ramli, Muhammad Nazrin; Al-Hadi, Azremi Abdullah; Sheikh, R. Ahmad; Hassan, Emad S.; Yan, Sen
2018-02-01
This paper presents the design of a flexible using two set of flexible material classes: polymer and textiles. ShieldIt Super conductive fabric and felt are used as the textile material, and its performance is compared with another version designed on a polydimethylsiloxane (PDMS) polymeric substrate. They are both built using a 4 × 4 dodecagonal unit element array backed by a rectangular patch, each sized at 54 × 64 × 3.34 mm3 (0.40 λ × 0.34 λ × 0.02λ) and 62 × 52 × 3.34 mm3 (0.35λ × 0.41λ × 0.02 λ). Both of them are validated to be operational centered at 2.2 GHz with a measured conversion efficiency of more than 90% from 1.578 to 2.578 GHz (48.12%) for the textile prototype. The results of the bending investigations suggest that the deployment mechanism must ensure a flat polarizer condition to enable its optimal performance.
NASA Astrophysics Data System (ADS)
Kim, Chul Min; Byul Lee, Han; Kim, Jong Uk; Kim, Gyu Man
2017-12-01
We present a fabrication method using polydimethylsiloxane (PDMS) stencils and solvent evaporation to prepare microcontainers with a desired shape made from a biodegradable polymer. Poly(lactic-co-glycolic acid) (PLGA) was used for preparing microcontainers, but most polymers are applicable in the proposed method in which solvent evaporation is used to construct microstructures in confined spaces in the stencil. Microcontainers with various shapes were fabricated by controlling the stencil geometry. Furthermore, a porous structure could be prepared in a micromembrane using water porogen. The porous structure was observed using a field emission scanning electron microscope and mass transfer across the porous membrane was examined using a fluorescent dye. The flexibility of the PDMS stencil allowed the fabrication of microcontainers on a curved surface. Finally, it was demonstrated that microcontainers can be used to contain a localized cell culture. The viability and morphology of cultured cells were observed using confocal microscopy over a period of 3 weeks.
Rodrigues, C; Portugal, F C M; Nogueira, J M F
2012-01-30
Static headspace sorptive extraction using polyurethane foams (HSSE(PU)) followed by gas chromatography coupled to mass spectrometry is proposed for volatile analysis. The application of this novel analytical approach to characterize the volatiles profile from roasted coffee samples, selected as model system, revealed remarkable advantages under convenient experimental conditions. The comparison of HSSE(PU) with other well-established procedures, such as headspace sorptive extraction using polydimethylsiloxane (HSSE(PDMS)) and headspace solid phase microextraction using carboxen/polydimethylsiloxane fibers (HS-SPME(CAR/PDMS)), showed that the former presented much higher capacity, sensitivity and even selectivity, where larger abundance and number of roasted coffee volatile compounds (e.g. furans, pyrazines, ketones, acids and pyrroles) could be achieved, under similar experimental conditions. The data presented herein proved, for the first time, that PU foams present great performance for static headspace sorption-based procedures, showing to be an alternative polymeric phase for volatile analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kato, Fumihito; Noguchi, Hiroyuki; Kodaka, Yukinari; Oshida, Naoya; Ogi, Hirotsugu
2018-07-01
We developed a quartz-crystal-microbalance (QCM) biosensor chip that operates wirelessly via electromagnetic waves, using poly(dimethylsiloxane) (PDMS). An AT-cut quartz oscillator (22–30 µm) is packaged in a microchannel, where it is supported by micropillars without mechanical fixing. As a result, the quartz oscillator is little affected by the thermal stress caused by the difference in the thermal expansion coefficients of the components, and the leakage of the vibration energy of the quartz oscillator is reduced. Consequently, high-frequency (∼56 MHz) measurement with a stable baseline (±∼2 ppm) is realized. We succeeded in repeatedly monitoring the binding reaction between immunoglobulin G (IgG) and Staphylococcus aureus protein A (SPA) with the quartz oscillator on which SPA molecules were immobilized nonspecifically. In addition, the affinity between SPA and IgG was calculated from the association and dissociation curves, and the usefulness of our wireless PDMS QCM biosensor was demonstrated.
Tyler, Bonnie J.; Hook, Andrew; Pelster, Andreas; Williams, Paul; Alexander, Morgan; Arlinghaus, Heinrich F.
2017-01-01
Catheter associated urinary tract infections are the most common health related infections worldwide, contributing significantly to patient morbidity and mortality and increased health care costs. To reduce the incidence of these infections, new materials that resist bacterial biofilm formation are needed. A composite catheter material, consisting of bulk poly(dimethylsiloxane) (PDMS) coated with a novel bacterial biofilm resistant polyacrylate [ethylene glycol dicyclopentenyl ether acrylate (EGDPEA)-co-di(ethyleneglycol) methyl ether methacrylate (DEGMA)], has been proposed. The coated material shows excellent bacterial resistance when compared to commercial catheter materials, but delamination of the EGDPEA-co-DEGMA coatings under mechanical stress presents a challenge. In this work, the use of oxygen plasma treatment to improve the wettability and reactivity of the PDMS catheter material and improve adhesion with the EGDPEA-co-DEGMA coating has been investigated. Argon cluster three dimensional-imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to probe the buried adhesive interface between the EGDPEA-co-DEGMA coating and the treated PDMS. ToF-SIMS analysis was performed in both dry and frozen-hydrated states, and the results were compared to mechanical tests. From the ToF-SIMS data, the authors have been able to observe the presence of PDMS, silicates, salt particles, cracks, and water at the adhesive interface. In the dry catheters, low molecular weight PDMS oligomers at the interface were associated with poor adhesion. When hydrated, the hydrophilic silicates attracted water to the interface and led to easy delamination of the coating. The best adhesion results, under hydrated conditions, were obtained using a combination of 5 min O2 plasma treatment and silane primers. Cryo-ToF-SIMS analysis of the hydrated catheter material showed that the bond between the primed PDMS catheter and the EGDPEA-co-DEGMA coating was stable in the presence of water. The resulting catheter material resisted Escherichia coli and Proteus mirabilis biofilm colonization by up to 95% compared with uncoated PDMS after 10 days of continuous bacterial exposure and had the mechanical properties necessary for use as a urinary catheter. PMID:28535686
Mechanically dynamic PDMS substrates to investigate changing cell environments
Yeh, Yi-Cheun; Corbin, Elise A.; Caliari, Steven R.; Ouyang, Liu; Vega, Sebastián L.; Truitt, Rachel; Han, Lin; Margulies, Kenneth B.; Burdick, Jason A.
2018-01-01
Mechanics of the extracellular matrix (ECM) play a pivotal role in governing cell behavior, such as cell spreading and differentiation. ECM mechanics have been recapitulated primarily in elastic hydrogels, including with dynamic properties to mimic complex behaviors (e.g., fibrosis); however, these dynamic hydrogels fail to introduce the viscoelastic nature of many tissues. Here, we developed a two-step crosslinking strategy to first form (via platinum-catalyzed crosslinking) networks of polydimethylsiloxane (PDMS) and then to increase PDMS crosslinking (via thiol-ene click reaction) in a temporally-controlled manner. This photoinitiated reaction increased the compressive modulus of PDMS up to 10-fold within minutes and was conducted under cytocompatible conditions. With stiffening, cells displayed increased spreading, changing from ~1300 to 1900 μm2 and from ~2700 to 4600 μm2 for fibroblasts and mesenchymal stem cells, respectively. In addition, higher myofibroblast activation (from ~2 to 20%) for cardiac fibroblasts was observed with increasing PDMS substrate stiffness. These results indicate a cellular response to changes in PDMS substrate mechanics, along with a demonstration of a mechanically dynamic and photoresponsive PDMS substrate platform to model the dynamic behavior of ECM. PMID:28843064
Mechanically dynamic PDMS substrates to investigate changing cell environments.
Yeh, Yi-Cheun; Corbin, Elise A; Caliari, Steven R; Ouyang, Liu; Vega, Sebastián L; Truitt, Rachel; Han, Lin; Margulies, Kenneth B; Burdick, Jason A
2017-11-01
Mechanics of the extracellular matrix (ECM) play a pivotal role in governing cell behavior, such as cell spreading and differentiation. ECM mechanics have been recapitulated primarily in elastic hydrogels, including with dynamic properties to mimic complex behaviors (e.g., fibrosis); however, these dynamic hydrogels fail to introduce the viscoelastic nature of many tissues. Here, we developed a two-step crosslinking strategy to first form (via platinum-catalyzed crosslinking) networks of polydimethylsiloxane (PDMS) and then to increase PDMS crosslinking (via thiol-ene click reaction) in a temporally-controlled manner. This photoinitiated reaction increased the compressive modulus of PDMS up to 10-fold within minutes and was conducted under cytocompatible conditions. With stiffening, cells displayed increased spreading, changing from ∼1300 to 1900 μm 2 and from ∼2700 to 4600 μm 2 for fibroblasts and mesenchymal stem cells, respectively. In addition, higher myofibroblast activation (from ∼2 to 20%) for cardiac fibroblasts was observed with increasing PDMS substrate stiffness. These results indicate a cellular response to changes in PDMS substrate mechanics, along with a demonstration of a mechanically dynamic and photoresponsive PDMS substrate platform to model the dynamic behavior of ECM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Highly stretchable miniature strain sensor for large dynamic strain measurement
Song, Bo; Yao, Shurong; Nie, Xu; ...
2016-01-01
In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less
Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms
NASA Technical Reports Server (NTRS)
Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.
2009-01-01
Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.
Enhanced adhesion of bioinspired nanopatterned elastomers via colloidal surface assembly
Akerboom, Sabine; Appel, Jeroen; Labonte, David; Federle, Walter; Sprakel, Joris; Kamperman, Marleen
2015-01-01
We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the immersion depth of the particles were tuned by altering the pH and ionic strength of the water. Initially, PDMS completely wetted the air/water interface outside the monolayer, thereby compressing the monolayer as in a Langmuir trough; further application of PDMS subsequently covered the colloidal monolayers. PDMS curing and particle extraction resulted in elastomers patterned with nanodimples. Adhesion and friction of these nanopatterned surfaces with varying dimple depth were studied using a spherical probe as a counter-surface. Compared with smooth surfaces, adhesion of nanopatterned surfaces was enhanced, which is attributed to an energy-dissipating mechanism during pull-off. All nanopatterned surfaces showed a significant decrease in friction compared with smooth surfaces. PMID:25392404
Capillary assisted deposition of carbon nanotube film for strain sensing
NASA Astrophysics Data System (ADS)
Li, Zida; Xue, Xufeng; Lin, Feng; Wang, Yize; Ward, Kevin; Fu, Jianping
2017-10-01
Advances in stretchable electronics offer the possibility of developing skin-like motion sensors. Carbon nanotubes (CNTs), owing to their superior electrical properties, have great potential for applications in such sensors. In this paper, we report a method for deposition and patterning of CNTs on soft, elastic polydimethylsiloxane (PDMS) substrates using capillary action. Micropillar arrays were generated on PDMS surfaces before treatment with plasma to render them hydrophilic. Capillary force enabled by the micropillar array spreads CNT solution evenly on PDMS surfaces. Solvent evaporation leaves a uniform deposition and patterning of CNTs on PDMS surfaces. We studied the effect of the CNT concentration and micropillar gap size on CNT coating uniformity, film conductivity, and piezoresistivity. Leveraging the piezoresistivity of deposited CNT films, we further designed and characterized a device for the contraction force measurement. Our capillary assisted deposition method of CNT films showed great application potential in fabrication of flexible CNT thin films for strain sensing.
A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation.
Wu, Huei-Wen; Hsiao, Yi-Hsing; Chen, Chih-Chen; Yet, Shaw-Fang; Hsu, Chia-Hsien
2016-07-06
The conventional hanging drop technique is the most widely used method for embryoid body (EB) formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS) from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.
Processing of Al2O3/SrTiO3/PDMS Composites With Low Dielectric Loss
NASA Astrophysics Data System (ADS)
Yao, J. L.; Guo, M. J.; Qi, Y. B.; Zhu, H. X.; Yi, R. Y.; Gao, L.
2018-05-01
Polydimethylsiloxane (PDMS) is widely used in the electrical and electronic industries due to its excellent electrical insulation and biocompatible characteristics. However, the dielectric constant of pure PDMS is very low which restricts its applications. Herein, we report a series of PDMS/Al2O3/strontium titanate (ST) composites with high dielectric constant and low loss prepared by a simple experimental method. The composites exhibit high dielectric constant (relative dielectric constant is 4) after the composites are coated with insulated Al2O3 particles, and the dielectric constant gets further improved for composites with ST particles (dielectric constant reaches 15.5); a lower dielectric loss (tanδ= 0.05) is also found at the same time which makes co-filler composites suitable for electrical insulation products, and makes the experimental method more interesting in modern teaching.
Peng, Ran; Li, Dongqing
2016-10-07
The ability to create reproducible and inexpensive nanofluidic chips is essential to the fundamental research and applications of nanofluidics. This paper presents a novel and cost-effective method for fabricating a single nanochannel or multiple nanochannels in PDMS chips with controllable channel size and spacing. Single nanocracks or nanocrack arrays, positioned by artificial defects, are first generated on a polystyrene surface with controllable size and spacing by a solvent-induced method. Two sets of optimal working parameters are developed to replicate the nanocracks onto the polymer layers to form the nanochannel molds. The nanochannel molds are used to make the bi-layer PDMS microchannel-nanochannel chips by simple soft lithography. An alignment system is developed for bonding the nanofluidic chips under an optical microscope. Using this method, high quality PDMS nanofluidic chips with a single nanochannel or multiple nanochannels of sub-100 nm width and height and centimeter length can be obtained with high repeatability.
NASA Astrophysics Data System (ADS)
Ling, Huaxu; Yu, Xiaoxiang; Wang, Shifan; Wang, Xiaohui; Dong, Liming
2018-06-01
In this study, the linear high molecular weight polydimethylsiloxanes(PDMS) were synthesized by ultrasonic-assisted bulk ring-opening polymerization method, with D4 as the raw material, hexamethyldisilane(HMDS) as the capping agent and concentrated sulfuric acid as the catalyst. The mechanism of ring-opening polymerization assisted by ultrasound is discussed in detail, through the ultrasonic time, ultrasonic intensity and reaction temperature and other factors. The results showed that D4 ring-opening polymerization and PDMS depolymerization was a pair of reversible equilibrium reaction. Due to the influence of steric hindrance and viscosity, the ultrasonic action appears as the driving effect of D4 ring opening at the initial reaction, and the chain exchange or depolymerization of PDMS at the end of the reaction. Therefore, ultrasonic irradiation is believed to facilitate the rapid synthesis of high molecular weight PDMS at high monomer concentrations.
The upcoming 3D-printing revolution in microfluidics.
Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert
2016-05-21
In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers.
NASA Astrophysics Data System (ADS)
Osmani, Bekim; Deyhle, Hans; Weiss, Florian M.; Töpper, Tino; Karapetkova, Maria; Leung, Vanessa; Müller, Bert
2016-04-01
Dielectric elastomer actuators (DEA) are often referred to as artificial muscles due to their high specific continuous power, which is comparable to that of human skeletal muscles, and because of their millisecond response time. We intend to use nanometer-thin DEA as medical implant actuators and sensors to be operated at voltages as low as a few tens of volts. The conductivity of the electrode and the impact of its stiffness on the stacked structure are key to the design and operation of future devices. The stiffness of sputtered Au electrodes on polydimethylsiloxane (PDMS) was characterized using AFM nanoindentation techniques. 2500 nanoindentations were performed on 10 x 10 μm2 regions at loads of 100 to 400 nN using a spherical tip with a radius of (522 +/- 2) nm. Stiffness maps based on the Hertz model were calculated using the Nanosurf Flex-ANA system. The low adhesion of Au to PDMS has been reported in the literature and leads to the formation of Au-nanoclusters. The size of the nanoclusters was (25 +/- 10) nm and can be explained by the low surface energy of PDMS leading to a Volmer-Weber growth mode. Therefore, we propose (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive to promote the adhesion between the PDMS and Au electrode. A beneficial side effect of these self-assembling monolayers is the significant improvement of the electrode's conductivity as determined by four-point probe measurements. Therefore, the application of a soft adhesive layer for building a dielectric elastomer actuator appears promising.
Hu, Cong; He, Man; Chen, Beibei; Zhong, Cheng; Hu, Bin
2014-08-22
In this work, metal-organic frameworks (MOFs, Al-MIL-53-NH₂) were synthesized via the hydrothermal method, and novel polydimethylsiloxane/metal-organic framework (PDMS/MOFs, PDMS/Al-MIL-53-NH₂)-coated stir bars were prepared by the sol-gel technique. The preparation reproducibility of the PDMS/MOFs-coated stir bar was good, with relative standard deviations (RSDs) ranging from 4.8% to 14.9% (n=7) within one batch and from 6.2% to 16.9% (n=6) among different batches. Based on this fact, a new method of PDMS/MOFs-coated stir bar sorptive extraction (SBSE) and ultrasonic-assisted liquid desorption (UALD) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD) was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. To obtain the best extraction performance for PAHs, several parameters affecting SBSE, such as extraction time, stirring rate, and extraction temperature, were investigated. Under optimal experimental conditions, wide linear ranges and good RSDs (n=7) were obtained. With enrichment factors (EFs) of 16.1- to 88.9-fold (theoretical EF, 142-fold), the limits of detection (LODs, S/N=3) of the developed method for the target PAHs were found to be in the range of 0.05-2.94 ng/L. The developed method was successfully applied to the analysis of PAHs in Yangtze River and East Lake water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Intra, Janjira; Glasgow, Justin M; Mai, Hoang Q; Salem, Aliasger K
2008-05-08
We demonstrate, for the first time, a robust novel polydimethylsiloxane (PDMS) chip that can provide controlled pulsatile release of DNA based molecules, proteins and oligonucleotides without external stimuli or triggers. The PDMS chip with arrays of wells was constructed by replica molding. Poly(lactic acid-co-glycolic acid) (PLGA) polymer films of varying composition and thickness were used as seals to the wells. The composition, molecular weight and thickness of the PLGA films were all parameters used to control the degradation rate of the seals and therefore the release profiles. Degradation of the films followed the PLGA composition order of 50:50 PLGA>75:25 PLGA>85:15 PLGA at all time-points beyond week 1. Scanning electron microscopy images showed that films were initially smooth, became porous and ruptured as the osmotic pressure pushed the degrading PLGA film outwards. Pulsatile release of DNA was controlled by the composition and thickness of the PLGA used to seal the well. Transfection experiments in a model Human Embryonic Kidney 293 (HEK293) cell line showed that plasmid DNA loaded in the wells was functional after pulsatile release in comparison to control plasmid DNA at all time-points. Thicker films degraded faster than thinner films and could be used to fine-tune the release of DNA over day length periods. Finally the PDMS chip was shown to provide repeated sequential release of CpG oligonucleotides and a model antigen, Ovalbumin (OVA), indicating significant potential for this device for vaccinations or applications that require defined complex release patterns of a variety of chemicals, drugs and biomolecules.
Polydimethylsiloxane Injection Laryngoplasty for Unilateral Vocal Fold Paralysis: Long-Term Results.
Mattioli, Francesco; Bettini, Margherita; Botti, Cecilia; Busi, Giulia; Tassi, Sauro; Malagoli, Andrea; Molteni, Gabriele; Trebbi, Marco; Luppi, Maria Pia; Bergamini, Giuseppe; Presutti, Livio
2017-07-01
To analyze the long-term objective, perceptive, and subjective outcomes after endoscopic polydimethylsiloxane (PDMS) injection laryngoplasty in unilateral vocal fold paralysis. A retrospective study carried out between January 2008 and January 2012. Head and Neck Department, University Hospital of Modena, Modena, Italy. This was a retrospective analysis of 26 patients with unilateral vocal fold paralysis who underwent endoscopic injection of PDMS under general anesthesia. A voice evaluation protocol was performed for all patients, which included videolaryngostroboscopy, maximum phonation time, fundamental frequency, analysis of the harmonic structure of the vowel /a/ and the word /aiuole/, Grade of Dysphonia, Instability, Roughness, Breathiness, Asthenia, and Strain scale, and Voice Handicap Index. The protocol was performed before surgery, in the immediate postoperative period, and at least 3 years after surgery. The mean follow-up period was 73 months (range 39-119 months). The statistical analysis showed a significant improvement (P < 0.01) for all of the objective, perceptive, and subjective parameters by comparison between the preoperative and long-term follow-up data; moreover, no statistically significant difference was found between the postoperative and long-term follow-up data. This indicates that injection laryngoplasty with PDMS guarantees long-lasting effects over time. No complications were reported in our series. Injection laryngoplasty with PDMS can be considered to be a minimally invasive and safe technique for the treatment of unilateral vocal fold paralysis. Moreover, it allows very good and stable results to be obtained over time, avoiding repeated treatments and improving the quality of life of the patients. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia; Sgorbini, Barbara; Sandra, Pat
2005-04-15
This study evaluates concentration capability of headspace sorptive extraction (HSSE) and the influence of sampling conditions on HSSE recovery of an analyte. A standard mixture in water of six high-to-medium volatility analytes (isobutyl methyl ketone, 3-hexanol, isoamyl acetate, 1,8-cineole, linalool and carvone) was used to sample the headspace by HSSE with stir bars coated with different polydimethylsiloxane (PDMS) volumes (20, 40, 55 and 110 microL, respectively), headspace vial volumes (8, 21.2, 40, 250 and 1000 mL), sampling temperatures (25, 50 and 75 degrees C) and sampling times (30, 60 and 120 min, and 4, 8 and 16 h). The concentration factors (CFs) of HSSE versus static headspace (S-HS) were also determined. Analytes sampled by the PDMS stir bars were recovered by thermal desorption (TDS) and analysed by capillary GC-MS. This study demonstrates how analyte recovery depends on its physico-chemical characteristics and affinity for PDMS (octanol-water partition coefficients), sampling temperatures (50 degrees C) and times (60 min), the volumes of headspace (40 mL) and of PDMS (in particular, for high volatility analytes). HSSE is also shown to be very effective for trace analysis. The HSSE CFs calculated versus S-HS with a 1000 mL headspace volumes at 25 degrees C during 4 h sampling ranged between 10(3) and 10(4) times for all analytes investigated while the limits of quantitation determined under the same conditions were in the nmol/L range.
Sorption capacity of plastic debris for hydrophobic organic chemicals.
Lee, Hwang; Shim, Won Joon; Kwon, Jung-Hwan
2014-02-01
The occurrence of microplastics (MPs) in the ocean is an emerging world-wide concern. Due to high sorption capacity of plastics for hydrophobic organic chemicals (HOCs), sorption may play an important role in the transport processes of HOCs. However, sorption capacity of various plastic materials is rarely documented except in the case of those used for environmental sampling purposes. In this study, we measured partition coefficients between MPs and seawater (KMPsw) for 8 polycyclic aromatic hydrocarbons (PAHs), 4 hexachlorocyclohexanes (HCHs) and 2 chlorinated benzenes (CBs). Three surrogate polymers - polyethylene, polypropylene, and polystyrene - were used as model plastic debris because they are the major components of microplastic debris found. Due to the limited solubility of HOCs in seawater and their long equilibration time, a third-phase partitioning method was used for the determination of KMPsw. First, partition coefficients between polydimethylsiloxane (PDMS) and seawater (KPDMSsw) were measured. For the determination of KMPsw, the distribution of HOCs between PDMS or plastics and solvent mixture (methanol:water=8:2 (v/v)) was determined after apparent equilibrium up to 12 weeks. Plastic debris was prepared in a laboratory by physical crushing; the median longest dimension was 320-440 μm. Partition coefficients between polyethylene and seawater obtained using the third-phase equilibrium method agreed well with experimental partition coefficients between low-density polyethylene and water in the literature. The values of KMPsw were generally in the order of polystyrene, polyethylene, and polypropylene for most of the chemicals tested. The ranges of log KMPsw were 2.04-7.87, 2.18-7.00, and 2.63-7.52 for polyethylene, polypropylene, and polystyrene, respectively. The partition coefficients of plastic debris can be as high as other frequently used partition coefficients, such as 1-octanol-water partition coefficients (Kow) and log KMPsw showed good linear correlations with log Kow. High sorption capacity of microplastics implies the importance of MP-associated transport of HOCs in the marine environment. © 2013 Elsevier B.V. All rights reserved.
Zargar, Reyhaneh; Nourmohammadi, Jhamak; Amoabediny, Ghassem
2016-01-01
Nowadays, application of porous polydimethylsiloxane (PDMS) structure in biomedical is becoming widespread, and many methods have been established to create such structure. Although the pores created through these methods are mostly developed on the outer surface of PDMS membrane, this study offers a simple and cost-efficient technique for creating three-dimensional (3D) microporous PDMS structure with appropriate pore size for endothelial cell culture. In this study, combination of gas foaming and particulate leaching methods, with NaHCO3 as effervescent salt and NaCl as progen are used to form a 3D PDMS sponge. The in situ chemical reaction between NaHCO3 and HCl resulted in the formation of small pores and channels. Moreover, soaking the samples in HCl solution temporarily improved the hydrophilicity of PDMS, which then facilitated the penetration of water for further leaching of NaCl. The surface chemical modification process was performed by (3-aminopropyl)triethoxysilane to culture endothelial cells on porous PDMS matrix. The results are an indication of positive response of endothelial cells to the fabricated PDMS sponge. Because of simplicity and practicality of this method for preparing PDMS sponge with appropriate pore size and biological properties, the fabricated matrix can perfectly be applied to future studies in blood-contacting devices. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Ekin, Abdullah; Webster, Dean C
2007-01-01
Libraries of siloxane-polyurethane coatings were designed, formulated, and screened using high-throughput experimentation. Four independent variables that were analyzed were the molecular weight of poly(dimethylsiloxane) (PDMS), presence or absence of poly(epsilon-caprolactone) (PCL) blocks attached to the PDMS backbone, the length of the PCL blocks, and the siloxane polymer level in the coating formulations. In addition to the siloxane libraries (3-aminopropyl-terminated PDMS and poly(epsilon-caprolactone)-poly(dimethylsiloxane)-poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers), the coating formulation included a trifunctional isocyanate crosslinker, trifunctional poly(epsilon-caprolactone) polyol, 2,4-pentanedione (pot-life extender), dibutyltin diacetate (catalyst), and a blend of solvents. The resulting coatings were analyzed for their surface energy and pseudobarnacle adhesion both before and after aging the coatings for 30 days in water. The water and methylene iodide contact angle averages increase with increasing molecular weight of PDMS. Coatings prepared from PCL-PDMS-PCL triblock copolymers have lower surface energies than coatings prepared from 3-aminopropyl-terminated PDMS; however, lower pseudobarnacle adhesion results were obtained for the coatings prepared from 3-aminopropyl-terminated PDMS than coatings prepared from PCL-PDMS-PCL triblock copolymers. The siloxane polymer level in the coating formulations does not have a significant effect on the surface energy of the coatings, but it resulted in higher pseudobarnacle adhesion.
2015-07-01
for the fluid flow controlled MEMS metamaterial with PDMS chamber. (b)-(d) shows the cantilever deformation with respect to increasing fluid flow...Firstly the metamaterial was integrated with a polydimethylsiloxane fluidic channel and the injection flow rate was varied from 0 to 5 ml/min
Novel Organo-Soluble Optically Tunable Chiral Hybrid Gold Nanorods
2014-12-04
in a polydimethylsiloxane film, the area with gold nanoparticles showed significant quenching effect under a UV light but appeared visually...Schematic depiction of the molecular state of PDI molecules mixing with GNP1 in the solution and solid states. Middle: Picture of a PDMS film containing a
AFM study of adsorption of protein A on a poly(dimethylsiloxane) surface
NASA Astrophysics Data System (ADS)
Yu, Ling; Lu, Zhisong; Gan, Ye; Liu, Yingshuai; Li, Chang Ming
2009-07-01
In this paper, the morphology and kinetics of adsorption of protein A on a PDMS surface is studied by AFM. The results of effects of pH, protein concentration and contact time of the adsorption reveal that the morphology of adsorbed protein A is significantly affected by pH and adsorbed surface concentration, in which the pH away from the isoelectric point (IEP) of protein A could produce electrical repulsion to change the protein conformation, while the high adsorbed surface protein volume results in molecular networks. Protein A can form an adsorbed protein film on PDMS with a maximum volume of 2.45 × 10-3 µm3. This work enhances our fundamental understanding of protein A adsorption on PDMS, a frequently used substrate component in miniaturized immunoassay devices.
Electrical isolation and characteristics of permanent magnet-actuated valves for PDMS microfluidics.
Chen, Chang-Yu; Chen, Chang-Hung; Tu, Ting-Yuan; Lin, Cheng-Ming; Wo, Andrew M
2011-02-21
This paper presents a magnetically driven valve via a permanent magnet pressing a spacer against deformable polydimethylsiloxane (PDMS) to fully close a microchannel. Its ability for electrical isolation, time response, and resistance to backpressure are interrogated. Simulation of the valve closing process was commenced along with experimental verification. Effects of PDMS thickness, and dimension and aspect ratio of microchannels were characterized. Up to 10 GΩ electrical isolation was demonstrated, as well as 50-70 ms valve response and ∼200 kPa resistible pressure. On-demand actuation for arbitrary flow patterns further quantifies its utility. With advantages of simple fabrication, flexible valving location, and no external power requirement, the on/off valve could be leveraged for proof-of-concept microfluidic devices and other applications.
Fully Printed Stretchable Thin-Film Transistors and Integrated Logic Circuits.
Cai, Le; Zhang, Suoming; Miao, Jinshui; Yu, Zhibin; Wang, Chuan
2016-12-27
This paper reports intrinsically stretchable thin-film transistors (TFTs) and integrated logic circuits directly printed on elastomeric polydimethylsiloxane (PDMS) substrates. The printed devices utilize carbon nanotubes and a type of hybrid gate dielectric comprising PDMS and barium titanate (BaTiO 3 ) nanoparticles. The BaTiO 3 /PDMS composite simultaneously provides high dielectric constant, superior stretchability, low leakage, as well as good printability and compatibility with the elastomeric substrate. Both TFTs and logic circuits can be stretched beyond 50% strain along either channel length or channel width directions for thousands of cycles while showing no significant degradation in electrical performance. This work may offer an entry into more sophisticated stretchable electronic systems with monolithically integrated sensors, actuators, and displays, fabricated by scalable and low-cost methods for real life applications.
Self-assembled biomimetic antireflection coatings
NASA Astrophysics Data System (ADS)
Linn, Nicholas C.; Sun, Chih-Hung; Jiang, Peng; Jiang, Bin
2007-09-01
The authors report a simple self-assembly technique for fabricating antireflection coatings that mimic antireflective moth eyes. Wafer-scale, nonclose-packed colloidal crystals with remarkable large hexagonal domains are created by a spin-coating technology. The resulting polymer-embedded colloidal crystals exhibit highly ordered surface modulation and can be used directly as templates to cast poly(dimethylsiloxane) (PDMS) molds. Moth-eye antireflection coatings with adjustable reflectivity can then be molded against the PDMS master. The specular reflection of replicated nipple arrays matches the theoretical prediction using a thin-film multilayer model. These biomimetic films may find important technological application in optical coatings and solar cells.
Microfluidic perfusion culture.
Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki
2014-01-01
Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS.
NASA Astrophysics Data System (ADS)
Ahmed, Syed Rahin; Kim, Jeonghyo; Tran, Van Tan; Suzuki, Tetsuro; Neethirajan, Suresh; Lee, Jaebeom; Park, Enoch Y.
2017-03-01
Nanomaterials without chemical linkers or physical interactions that reside on a two-dimensional surface are attractive because of their electronic, optical and catalytic properties. An in situ method has been developed to fabricate gold nanoparticle (Au NP) films on different substrates, regardless of whether they are hydrophilic or hydrophobic surfaces, including glass, 96-well polystyrene plates, and polydimethylsiloxane (PDMS). A mixture of sodium formate (HCOONa) and chloroauric acid (HAuCl4) solution was used to prepare Au NP films at room temperature. An experimental study of the mechanism revealed that film formation is dependent on surface wettability and inter particle attraction. The as-fabricated Au NP films were further applied to the colorimetric detection of influenza virus. The response to the commercial target, New Caledonia/H1N1/1999 influenza virus, was linear in the range from 10 pg/ml to 10 μg/ml and limit of detection was 50.5 pg/ml. In the presence of clinically isolated influenza A virus (H3N2), the optical density of developed color was dependent on the virus concentration (10-50,000 PFU/ml). The limit of detection of this study was 24.3 PFU/ml, a limit 116 times lower than that of conventional ELISA (2824.3 PFU/ml). The sensitivity was also 500 times greater than that of commercial immunochromatography kits.
Ren, Guina; Song, Yuanming; Li, Xiangming; Wang, Bo; Zhou, Yanli; Wang, Yuyan; Ge, Bo; Zhu, Xiaotao
2018-07-15
Development of an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding by a simple method is highly desirable, yet it remains a challenge that current technologies have been unable to fully address. Herein, the original fabric is immersed into the solution containing ZnO nanoparticle and PDMS (polydimethylsiloxane), and the fiber surfaces are uniformly covered by a ZnO-PDMS layer after thermal treatment at 110 °C for 30 min. Droplets of water and corrosive liquids including strong acid, strong alkali, and saturated salt solution display sphere shape on the ZnO-PDMS coated fabric surface. The stable binding of ZnO-PDMS layer onto the fibers allows for the fabric coating with robust superhydrophobicity, and the coated fabric still displays superhydrophobicity after hand twisting, knife scratching, finger touching, and even cycles of sandpaper abrasion. The ZnO-PDMS coated fabric can also keep its superhydrophobic property when exposed to long term UV illumination, demonstrating its UV resistance. Moreover, the uniformly distribution of ZnO nanoparticles on fibers allows the ZnO-PDMS coated fabric to display UV shielding property. Copyright © 2018 Elsevier Inc. All rights reserved.
Nagahara, Yukitoshi; Sekine, Hiroaki; Otaki, Mari; Hayashi, Masakazu; Murase, Norio
2016-02-01
Animal cells are generally cryopreserved in cryovials in a cell suspension state containing 5%-10% v/v dimethyl sulfoxide (DMSO) used as a cryoprotective agent. However, cryopreservation of cells in an attached state has not been intensively studied, and the effective freezing solution remains unknown. Here we determined the suitable DMSO concentration for the cryopreservation of human hepatoma HepG2 cells attached to glass and polydimethylsiloxane (PDMS) matrices coated with poly-l-lysine. With the use of the glass matrix, the rate of cell adhesion increased with the DMSO concentration up to 30% v/v in the freezing solution. In contrast, the cell-adhesion rate remained constant in the case of the PDMS matrix irrespective of the DMSO concentration between 10% v/v and 30% v/v. The viability of post-thawed cells attached to glass or PDMS matrix was also investigated. The viability was highest at the DMSO concentration of 20% v/v in the freezing solution. The DMSO concentration of 30% v/v, however, had a cytotoxic effect on the cell viability. Thus, the 20% v/v DMSO concentration was found to be most suitable for the cryopreservation of HepG2 cells in the attached state. This dose is high compared to the DMSO concentration used for the cryopreservation of cells in the suspended state. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Caifeng; Oh, Sangjin; Lee, Hyun Ah; Kang, Jieun; Jeong, Ki-Jae; Kang, Seon Woo; Hwang, Dae Youn; Lee, Jaebeom
2017-06-01
Carbon nanotubes, with their unique and outstanding properties, such as strong mechanical strength and high electrical conductivity, have become very popular for the repair of tissues, particularly for those requiring electrical stimuli. Polydimethylsiloxane (PDMS)-based elastomers have been used in a wide range of biomedical applications because of their optical transparency, physiological inertness, blood compatibility, non-toxicity, and gas permeability. In present study, most of artificial nerve guidance conduits (ANGCs) are not transparent. It is hard to confirm the position of two stumps of damaged nerve during nerve surgery and the conduits must be cut open again to observe regenerative nerves after surgery. Thus, a novel preparation method was utilized to produce a transparent sheet using PDMS and multiwalled carbon nanotubes (MWNTs) via printing transfer method. Characterization of the PDMS/MWNT (PM) sheets revealed their unique physicochemical properties, such as superior mechanical strength, a certain degree of electrical conductivity, and high transparency. Characterization of the in vitro and in vivo usability was evaluated. PM sheets showed high biocompatibility and adhesive ability. In vivo feasibility tests of rat brain tissue and sciatic nerve revealed the high transparency of PM sheets, suggesting that it can be used in the further development of ANGCs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1736-1745, 2017. © 2017 Wiley Periodicals, Inc.
Fu, Ywu-Jang; Qui, Hsuan-zhi; Liao, Kuo-Sung; Lue, Shingjiang Jessie; Hu, Chien-Chieh; Lee, Kueir-Rarn; Lai, Juin-Yih
2010-03-16
A thin SiO(x) selective surface layer was formed on a series of cross-linked poly(dimethylsiloxane) (PDMS) membranes by exposure to ultraviolet light at room temperature in the presence of ozone. The conversion of the cross-linked polysiloxane to SiO(x) was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX) microanalysis, contact angle analysis, and atomic force microscopy (AFM). The conversion of the cross-linked polysiloxane to SiO(x) increased with UV-ozone exposure time and cross-linking agent content, and the surface possesses highest conversion. The formation of a SiO(x) layer increased surface roughness, but it decreased water contact angle. Gas permeation measurements on the UV-ozone exposure PDMS membranes documented interesting gas separation properties: the O(2) permeability of the cross-linked PDMS membrane before UV-ozone exposure was 777 barrer, and the O(2)/N(2) selectivity was 1.9; after UV-ozone exposure, the permeability decreased to 127 barrer while the selectivity increased to 5.4. The free volume depth profile of the SiO(x) layer was investigated by novel slow positron beam. The results show that free volume size increased with the depth, yet the degree of siloxane conversion to SiO(x) does not affect the amount of free volume.
NASA Astrophysics Data System (ADS)
Wilhelm, Elisabeth; Neumann, Christiane; Sachsenheimer, Kai; Länge, Kerstin; Rapp, Bastian E.
2014-03-01
In this paper we present a fast, low cost bonding technology for combining rigid epoxy components with soft membranes made out of polydimethylsiloxane (PDMS). Both materials are commonly used for microfluidic prototyping. Epoxy resins are often applied when rigid channels are required, that will not deform if exposed to high pressure. PDMS, on the other hand, is a flexible material, which allows integration of membrane valves on the chip. However, the integration of pressure driven components, such as membrane valves and pumps, into a completely flexible device leads to pressure losses. In order to build up pressure driven components with maximum energy efficiency a combination of rigid guiding channels and flexible membranes would be advisable. Stereolithographic (STL) structuring would be an ideal fabrication technique for this purpose, because complex 3D-channels structures can easily be fabricated using this technology. Unfortunately, the STL epoxies cannot be bonded using common bonding techniques. For this reason we propose two UV-light based silanization techniques that enable plasma induced bonding of epoxy components. The entire process including silanization and corona discharge bonding can be carried out within half an hour. Average bond strengths up to 350 kPa (depending on the silane) were determined in ISO-conform tensile testing. The applicability of both techniques for microfluidic applications was proven by hydrolytic stability testing lasting more than 40 hours.
NASA Astrophysics Data System (ADS)
Leeladhar; Raturi, Parul; Kumar, Ajeet; Singh, J. P.
2017-09-01
We demonstrate the fabrication of highly versatile photomechanical actuators based on graphene-polymer/metal bilayers that offers fast, low-cost fabrication, large deflection, reversible actuation under zero applied pre-strain, and wavelength-selective response. The photomechanical actuator consists of a graphene nanoplatelet (GNP)-polydimethylsiloxane (PDMS) nanocomposite with a thin chromium metal coating of 35 nm thickness on the backside of the structure. The photomechanical response of the GNP-PDMS/Cr photomechanical actuator was measured by recording the variation of the bending angle upon infrared (IR) light illumination. The bending in the bilayer actuator is caused by the generation of thermal stress due to the large mismatch (the ratio being 1/20) of the thermal expansion coefficient between the two layers as a result of IR absorption by GNPs and a subsequent increase in the local temperature. The maximum bending angle was found to be about 40 degrees with a corresponding large deflection value of about 6-7 mm within 6 s for IR illumination with an intensity of 550 mW cm-2. The corresponding actuation response and relaxation times were about 1 and 3 s, respectively. The GNP-PDMS/Cr bilayer combination when integrated with the standard surface micromachining technique of micro-electromechanical system fabrication can find useful applications in the realization of micro soft-robotics, controlled drug delivery, and light-driven micro switches i.e. micro-optomechanical systems.
Jirayupat, Chaiyanut; Wongwiriyapan, Winadda; Kasamechonchung, Panita; Wutikhun, Tuksadon; Tantisantisom, Kittipong; Rayanasukha, Yossawat; Jiemsakul, Thanakorn; Tansarawiput, Chookiat; Liangruksa, Monrudee; Khanchaitit, Paisan; Horprathum, Mati; Porntheeraphat, Supanit; Klamchuen, Annop
2018-02-21
Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 μW/cm 2 , which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.
Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites.
Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng
2016-06-06
Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc.
Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites
Niu, Dong; Jiang, Weitao; Liu, Hongzhong; Zhao, Tingting; Lei, Biao; Li, Yonghao; Yin, Lei; Shi, Yongsheng; Chen, Bangdao; Lu, Bingheng
2016-01-01
Photomechanical nanocomposites embedded with light-absorbing nanoparticles show promising applications in photoresponsive actuations. Near infrared (nIR)-responsive nanocomposites based photomechanical soft actuators can offer lightweight functional and underexploited entry into soft robotics, active optics, drug delivery, etc. A novel graphene-based photomechanical soft actuators, constituted by Polydimethylsiloxane (PDMS)/graphene-nanoplatelets (GNPs) layer (PDMS/GNPs) and pristine PDMS layer, have been constructed. Due to the mismatch of coefficient of thermal expansion of two layers induced by dispersion of GNPs, controllable and reversible bendings response to nIR light irradiation are observed. Interestingly, two different bending behaviors are observed when the nIR light comes from different sides, i.e., a gradual single-step photomechanical bending towards PDMS/GNPs layer when irradiation from PDMS side, while a dual-step bending (finally bending to the PDMS/GNPs side but with an strong and fast backlash at the time of light is on/off) when irradiation from PDMS/GNPs side. The two distinctive photomechanical bending behaviors are investigated in terms of heat transfer and thermal expansion, which reveals that the distinctive bending behaviors can be attributed to the differences in temperature gradients along the thickness when irradiation from different sides. In addition, the versatile photomechanical bending properties will provide alternative way for drug-delivery, soft robotics and microswitches, etc. PMID:27265380
Scalable and continuous fabrication of bio-inspired dry adhesives with a thermosetting polymer.
Lee, Sung Ho; Kim, Sung Woo; Kang, Bong Su; Chang, Pahn-Shick; Kwak, Moon Kyu
2018-04-04
Many research groups have developed unique micro/nano-structured dry adhesives by mimicking the foot of the gecko with the use of molding methods. Through these previous works, polydimethylsiloxane (PDMS) has been developed and become the most commonly used material for making artificial dry adhesives. The material properties of PDMS are well suited for making dry adhesives, such as conformal contacts with almost zero preload, low elastic moduli for stickiness, and easy cleaning with low surface energy. From a performance point of view, dry adhesives made with PDMS can be highly advantageous but are limited by its low productivity, as production takes an average of approximately two hours. Given the low productivity of PDMS, some research groups have developed dry adhesives using UV-curable materials, which are capable of continuous roll-to-roll production processes. However, UV-curable materials were too rigid to produce good adhesion. Thus, we established a PDMS continuous-production system to achieve good productivity and adhesion performance. We designed a thermal roll-imprinting lithography (TRL) system for the continuous production of PDMS microstructures by shortening the curing time by controlling the curing temperature (the production speed is up to 150 mm min-1). Dry adhesives composed of PDMS were fabricated continuously via the TRL system.
Viscoelastic Behavior of PDMS Filled with Boron Nitrides
NASA Astrophysics Data System (ADS)
Bian, J. F.; Weinkauf, D. H.; Jeon, H. S.
2004-03-01
The addition of high thermal conductive filler particles such as boron nitride, aluminum nitride, or carbon fiber is an effective way to increase the thermal conductivity of polymeric materials for the industrial applications such as electronic packaging materials, encapsulants, and thermal fluids among others. The effects of particle dispersions, concentrations, and the interactions between BN and polymer matrix on the viscoelastic properties of the boron nitride (BN)/polydimethylsiloxane (PDMS) composites prepared by mechanical mixing are investigated using oscillatory shear rheology. Both untreated and plasma treated boron nitride (BNP) particles with hexafluoropropylene oxide monomers have been used in this study. The addition of the plasma treated BN particles to the PDMS matrix decrease significantly the complex viscosity as well as storage and loss modulus of the composites due to the reduced interfacial energy between the surface of BNP and PDMS chains. For the PDMS/BN and PDMS/BNP composites, the maximum volume packing fraction ( ˜0.4) of the particles has been determined from the complex viscosity as a function of the frequency. Additionally, the shear-induced alignment of the BN particles dispersed in the PDMS matrix decreases the viscoelastic properties of the composites with the irregular oscillations which is related to the network formation of dispersed BN particles at the higher volume fractions (> ˜0.2).
Fujii, Yuji; Henares, Terence G; Kawamura, Kunio; Endo, Tatsuro; Hisamoto, Hideaki
2012-04-21
To enhance sensitivity and facilitate easy sample introduction into a combinable poly(dimethylsiloxane) (PDMS) capillary (CPC) sensor array, PDMS was modified in bulk and on its surface to prepare "black" PDMS coated with a silver layer and self-assembled monolayer (SAM). India ink, a traditional Japanese black ink, was added to the PDMS pre-polymer for bulk modification. The surface was modified by a silver mirror reaction followed by SAM formation using cysteine. These modifications enhanced the fluorescence signals by reflecting them from the surface and reducing background interference. A decrease in the water contact angle led to enhanced sensitivity and easy sample introduction. Furthermore, a CPC sensor array for multiplex detection of serum sample components was prepared that could quantify the analytes glucose, potassium, and alkaline phosphatase (ALP). When serum samples were introduced by capillary action, the CPC sensor array showed fluorescence responses for each analyte and successfully identified the components with elevated concentrations in the serum samples.
Li, Chun-Yi; Liao, Ying-Chih
2016-05-11
In this study, a plasma surface modification with printing process was developed to fabricate printed flexible conductor patterns or devices directly on polydimethylsiloxane (PDMS) surface. An atmospheric plasma treatment was first used to oxidize the PDMS surface and create a hydrophilic silica surface layer, which was confirmed with photoelectron spectra. The plasma operating parameters, such as gas types and plasma powers, were optimized to obtain surface silica layers with the longest lifetime. Conductive paste with epoxy resin was screen-printed on the plasma-treated PDMS surface to fabricate flexible conductive tracks. As a result of the strong binding forces between epoxy resin and the silica surface layer, the printed patterns showed great adhesion on PDMS and were undamaged after several stringent adhesion tests. The printed conductive tracks showed strong mechanical stability and exhibited great electric conductivity under bending, twisting, and stretching conditions. Finally, a printed pressure sensor with good sensitivity and a fast response time was fabricated to demonstrate the capability of this method for the realization of printed electronic devices.
Silver Nanoparticles Impact Biofilm Communities and Mussel Settlement
Yang, Jin-Long; Li, Yi-Feng; Liang, Xiao; Guo, Xing-Pan; Ding, De-Wen; Zhang, Demin; Zhou, Shuxue; Bao, Wei-Yang; Bellou, Nikoleta; Dobretsov, Sergey
2016-01-01
Silver nanoparticles (AgNPs) demonstrating good antimicrobial activity are widely used in many fields. However, the impact of AgNPs on the community structures of marine biofilms that drive biogeochemical cycling processes and the recruitment of marine invertebrate larvae remains unknown. Here, we employed MiSeq sequencing technology to evaluate the bacterial communities of 28-day-old marine biofilms formed on glass, polydimethylsiloxane (PDMS), and PDMS filled with AgNPs and subsequently tested the influence of these marine biofilms on plantigrade settlement by the mussel Mytilus coruscus. AgNP-filled PDMS significantly reduced the dry weight and bacterial density of biofilms compared with the glass and PDMS controls. AgNP incorporation impacted bacterial communities by reducing the relative abundance of Flavobacteriaceae (phylum: Bacteroidetes) and increasing the relative abundance of Vibrionaceae (phylum: Proteobacteria) in 28-day-old biofilms compared to PDMS. The settlement rate of M. coruscus on 28-day-old biofilms developed on AgNPs was lower by >30% compared to settlement on control biofilms. Thus, the incorporation of AgNPs influences biofilm bacterial communities in the marine environment and subsequently inhibits mussel settlement. PMID:27869180
Flexible and transparent strain sensors based on super-aligned carbon nanotube films.
Yu, Yang; Luo, Yufeng; Guo, Alexander; Yan, Lingjia; Wu, Yang; Jiang, Kaili; Li, Qunqing; Fan, Shoushan; Wang, Jiaping
2017-05-25
Highly flexible and transparent strain sensors are fabricated by directly coating super-aligned carbon nanotube (SACNT) films on polydimethylsiloxane (PDMS) substrates. The fabrication process is simple, low cost, and favorable for industrial scalability. The SACNT/PDMS strain sensors present a high sensing range of 400%, a fast response of less than 98 ms, and a low creep of 4% at 400% strain. The SACNT/PDMS strain sensors can withstand 5000 stretching-releasing cycles at 400% strain. Moreover, the SACNT/PDMS strain sensors are transparent with 80% transmittance at 550 nm. In situ microscopic observation clarifies that the surface morphology of the SACNT film exhibits a reversible change during the stretching and releasing processes and thus its electrical conductance is able to fully recover to the original value after the loading-unloading cycles. The SACNT/PDMS strain sensors have the advantages of a wide sensing range, fast response, low creep, transparency, and excellent durability, and thus show great potential in wearable devices to monitor fast and large-scale movements without affecting the appearance of the devices.
Mecker-Pogue, Laura C; Kauffman, John F
2015-02-01
Resolution targets composed of bilayer polydimethylsiloxane (PDMS) devices with buried polyethylene glycol (PEG) channels have been fabricated using traditional photolithographic and micromolding techniques to develop resolution targets that mimic pharmaceutical materials. Raman chemical images of the resulting PEG-in-PDMS devices composed of varying parallel line widths were investigated by imaging the PEG lines through a thin overlayer of PDMS. Additionally, a scattering agent, Al2O3, was introduced at varying concentrations to each layer of the device to explore the effects of scattering materials on Raman images. Features in the resulting chemical images of the PEG lines suggest that reflection at the PEG/PDMS interface contributes to the Raman signal. A model based on geometric optics was developed to simulate the observed image functions of the targets. The results emphasize the influence of refractive index discontinuities at the PEG/PDMS interface on the apparent size and shape of the PEG features. Such findings have an impact on interpretation of Raman images of nonabsorbing, opaque pharmaceutical samples. Published by Elsevier B.V.
Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development.
Bascom, Carlisle S; Wu, Shu-Zon; Nelson, Katherine; Oakey, John; Bezanilla, Magdalena
2016-09-01
Key developmental processes that occur on the subcellular and cellular level or occur in occluded tissues are difficult to access, let alone image and analyze. Recently, culturing living samples within polydimethylsiloxane (PDMS) microfluidic devices has facilitated the study of hard-to-reach developmental events. Here, we show that an early diverging land plant, Physcomitrella patens, can be continuously cultured within PDMS microfluidic chambers. Because the PDMS chambers are bonded to a coverslip, it is possible to image P. patens development at high resolution over long time periods. Using PDMS chambers, we report that wild-type protonemal tissue grows at the same rate as previously reported for growth on solid medium. Using long-term imaging, we highlight key developmental events, demonstrate compatibility with high-resolution confocal microscopy, and obtain growth rates for a slow-growing mutant. By coupling the powerful genetic tools available to P. patens with long-term growth and imaging provided by PDMS microfluidic chambers, we demonstrate the capability to study cellular and subcellular developmental events in plants directly and in real time. © 2016 American Society of Plant Biologists. All rights reserved.
Fully Transparent Quantum Dot Light-Emitting Diode with a Laminated Top Graphene Anode.
Yao, Li; Fang, Xin; Gu, Wei; Zhai, Wenhao; Wan, Yi; Xie, Xixi; Xu, Wanjin; Pi, Xiaodong; Ran, Guangzhao; Qin, Guogang
2017-07-19
A new method to employ graphene as top electrode was introduced, and based on that, fully transparent quantum dot light-emitting diodes (T-QLEDs) were successfully fabricated through a lamination process. We adopted the widely used wet transfer method to transfer bilayer graphene (BG) on polydimethylsiloxane/polyethylene terephthalate (PDMS/PET) substrate. The sheet resistance of graphene reduced to ∼540 Ω/□ through transferring BG for 3 times on the PDMS/PET. The T-QLED has an inverted device structure of glass/indium tin oxide (ITO)/ZnO nanoparticles/(CdSSe/ZnS quantum dots (QDs))/1,1-bis[(di-4-tolylamino)phenyl] cyclohexane (TAPC)/MoO 3 /graphene/PDMS/PET. The graphene anode on PDMS/PET substrate can be directly laminated on the MoO 3 /TAPC/(CdSSe/ZnS QDs)/ZnO nanoparticles/ITO/glass, which relied on the van der Waals interaction between the graphene/PDMS and the MoO 3 . The transmittance of the T-QLED is 79.4% at its main electroluminescence peak wavelength of 622 nm.
The upcoming 3D-printing revolution in microfluidics
Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert
2016-01-01
In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers. PMID:27101171
Waterproof Electronic-Bandage with Tunable Sensitivity for Wearable Strain Sensors.
Jeon, Jun-Young; Ha, Tae-Jun
2016-02-03
We demonstrate high-performance wearable electronic-bandage (E-bandage) based on carbon nanotube (CNT)/silver nanoparticle (AgNP) composites covered with flexible media of fluoropolymer-coated polydimethylsiloxane (PDMS) films. The E-bandage can be used for motion-related sensors by directly attaching them to human skin, which achieves a fast and accurate electric response with high sensitivity according to the bending and stretching movements that induce changes in the conductivity. This advance in the E-bandage is realized as a result of the sensitivity that can be achieved by controlling the concentration of AgNPs in CNT pastes and by modifying the device architecture. The fluoropolymer encapsulation with hydrophobic surface characteristics allows for the E-bandage to operate in water and protects it from physical and chemical contact with the daily life conditions of the human skin. The reliability and scalability of the E-bandage as well as the compatibility with conventional microfabrication allow new possibilities to integrate flexible human-interactive nanoelectronics into mobile health-care monitoring systems combined with Internet of things (IoTs).
Chandrasekaran, Siddarth; Giang, Ut-Binh; King, Michael R.; DeLouise, Lisa A
2011-01-01
The in vivo cellular microenvironment is regulated by a complex interplay of soluble factors and signaling molecules secreted by cells and it plays a critical role in the growth and development of normal and diseased tissues. In vitro systems that can recapitulate the microenvironment at the cellular level are needed to investigate the influence of autocrine signaling and extracellular matrix effects on tissue homeostasis, regeneration, and disease development and progression. In this study we report the use of microbubble technology as a means to culture cells in a controlled microenvironment in which cells can influence their function through autocrine signaling. Microbubbles (MB) are small spherical cavities about 100–300 µm in diameter formed in hydrophobic polymer polydimethylsiloxane (PDMS) with ~60–100 µm circular openings and aspect ratio ~3.5. We demonstrate that the unique architecture of the microbubble compartment is advantaged for cell culture using HaCaT cells, an immortalized keratinocyte cell line. We observe that HaCaT cells, seeded in microbubbles (15–20 cells / MB) and cultured under standard conditions, adopt a compact 3-D spheroidal morphology. Within 2–3 days, the cells transition to a sheeting morphology. Through experimentation and simulation we show that this transition in morphology is due to the unique architecture of the microbubble compartment which enables cells to condition their local microenvironment. The small media volume per cell and the development of shallow concentration gradients allow factors secreted by the cells to rise to bioactive levels. The kinetics of the morphology transition depends on the number of cells seeded per microbubble; higher cell seeding induces a more rapid transition. HaCaT cells seeded onto PDMS cured in 96-well plates also form compact spheroids but they do not transition to a sheeting morphology even after several weeks of culture. The importance of soluble factor accumulation in driving this morphology transition in microbubbles is supported by the observation that spheroids do not form when cells - seeded into microbubbles or onto PDMS cured in 96 well plates - are cultured in media conditioned by HaCaT cells grown in standard tissue culture plate. We observed that the addition of TGF-β1 to the growth media induced cells to proliferate in a sheeting morphology from the onset both on PDMS cured in 96-well plates and in microbubbles. TGF-β1 is a morphogen known to regulate epithelial-to-mesenchymal transition (EMT). Studies of the role of Ca2+ concentration and changes in Ecadherin expression additionally support an EMT-like HaCaT morphology transition. These findings taken together validate the microbubble compartment as a unique cell culture platform that can potentially transform investigative studies in cell biology and in particular the tumor microenvironment. Targeting the tumor microenvironment is an emerging area of anti-cancer therapy. PMID:21724250
Lei, Yun; Chen, Beibei; You, Linna; He, Man; Hu, Bin
2017-12-01
Polydimethylsiloxane (PDMS)/MIL-100(Fe) coated stir bar was prepared by sol gel technique, and good preparation reproducibility was achieved with relative standard deviations (RSDs) ranging from 2.6% to 7.5% (n=7) and 3.6% to 10.8% (n=7) for bar-to-bar and batch-to-batch, respectively. Compared with commercial PDMS coated stir bar (Gerstel) and PEG coated stir bar (Gerstel), the prepared PDMS/MIL-100(Fe) stir bar showed better extraction efficiency for target triazines compounds. It also exhibited relatively fast extraction/desorption kinetics and long lifespan. Based on it, a method of PDMS/MIL-100(Fe) coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detector (HPLC-UV) was developed for the determination of six triazines (simazine, atrazine, prometon, ametryn, prometryne and prebane) in environmental water samples. Several parameters affecting SBSE of six target triazines including extraction time, stirring rate, sample pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.021-0.079μgL -1 . The repeatability RSDs were in the range of 2.3-6.3% (n=7, c=0.5μgL -1 ) and the enrichment factors (EFs) ranged from 51.1 to 102-fold (theoretical EF was 200-fold). The proposed method was applied to the analysis of target triazines in environmental water samples, with recoveries of 98.0-118% and 94.0-107% for spiked East Lake water and local pond water samples, respectively. Copyright © 2017. Published by Elsevier B.V.
Silva, Ana Rita M; Portugal, Fátima C M; Nogueira, J M F
2008-10-31
Stir bar sorptive extraction with polyurethane (PU) and polydimethylsiloxane (PDMS) polymeric phases followed by high-performance liquid chromatography with diode array detection [SBSE(PU or PDMS)/HPLC-DAD] was studied for the determination of six acidic pharmaceuticals [o-acetylsalicylic acid (ACA), ibuprofen (IBU), diclofenac sodium (DIC), naproxen (NAP), mefenamic acid (MEF) and gemfibrozil (GEM)], selected as non-steroidal acidic anti-inflammatory drugs and lipid regulators model compounds in environmental water matrices. The main parameters affecting the efficiency of the proposed methodology are fully discussed. Assays performed on 25 mL of water samples spiked at the 10 microg L(-1) level under optimized experimental conditions, yielded recoveries ranging from 45.3+/-9.0% (ACA) to 90.6+/-7.2% (IBU) by SBSE(PU) and 9.8+/-1.6% (NAP) to 73.4+/-5.0% (GEM) by SBSE(PDMS), where the former polymeric phase presented a better affinity to extract these target analytes from water matrices at the trace level. The methodology showed also excellent linear dynamic ranges for the six acidic pharmaceuticals studied, with correlation coefficients higher than 0.9976, limits of detection and quantification between 0.40-1.7 microg L(-1) and 1.5-5.8 microg L(-1), respectively, and suitable precision (RSD <15%). Moreover, the developed methodology was applied for the determination of these target analytes in several environmental matrices, including river, sea and wastewater samples, having achieved good performance and moderate matrix effects. In short, the PU foams demonstrated to be an excellent alternative for the enrichment of the more polar metabolites from water matrices by SBSE, overcoming the limitations of the conventional PDMS phase.
An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications.
Chabinyc, M L; Chiu, D T; McDonald, J C; Stroock, A D; Christian, J F; Karger, A M; Whitesides, G M
2001-09-15
This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.
Liu, Jikun; Zhao, Jiangqin; Petrochenko, Peter; Zheng, Jiwen; Hewlett, Indira
2016-12-15
In an effort to develop new tools for diagnosing influenza in resource-limited settings, we fabricated a polycarbonate (PC)-polydimethylsiloxane (PDMS) hybrid microchip using a simple epoxy silica sol-gel coating/bonding method and employed it in sensitive detection of influenza virus with Europium nanoparticles (EuNPs). The incorporation of sol-gel material in device fabrication provided functionalized channel surfaces ready for covalent immobilization of primary antibodies and a strong bonding between PDMS substrates and PC supports without increasing background fluorescence. In microchip EuNP immunoassay (µENIA) of inactivated influenza viruses, replacing native PDMS microchips with hybrid microchips allowed the achievement of a 6-fold increase in signal-to-background ratio, a 12-fold and a 6-fold decreases in limit-of-detection (LOD) in influenza A and B tests respectively. Using influenza A samples with known titers, the LOD of influenza µENIA on hybrid microchips was determined to be ~10(4) TCID50 titer/mL and 10(3)-10(4) EID50 titer/mL. A comparison test indicated that the sensitivity of influenza µENIA enhanced using the hybrid microchips even surpassed that of a commercial laboratory influenza ELISA test. In addition to the sensitivity improvement, assay variation was clearly reduced when hybrid microchips instead of native PDMS microchips were used in the µENIA tests. Finally, infectious reference viruses and nasopharyngeal swab patient specimens were successfully tested using μENIA on hybrid microchip platforms, demonstrating the potential of this unique microchip nanoparticle assay in clinical diagnosis of influenza. Meanwhile, the tests showed the necessity of using nucleic acid confirmatory tests to clarify ambiguous test results obtained from prototype or developed point-of-care testing devices for influenza diagnosis. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Behkami, Saber; Frounchi, Javad; Ghaderi Pakdel, Firouz; Stieglitz, Thomas
2017-11-01
Translational research in bioelectronics medicine and neural implants often relies on established material assemblies made of silicone rubber (polydimethylsiloxane-PDMS) and precious metals. Longevity of the compound is of utmost importance for implantable devices in therapeutic and rehabilitation applications. Therefore, secure mechanical fixation can be used in addition to chemical bonding mechanisms to interlock PDMS substrate and insulation layers with metal sheets for interconnection lines and electrodes. One of the best ways to fix metal lines and electrodes in PDMS is to design holes in electrode rims to allow for direct interconnection between top to bottom layer silicone. Hence, the best layouts and sizes of holes (up to 6) which provide sufficient stability against lateral and vertical forces have been investigated with a variety of numbers of hole in line electrodes, which are simulated and fabricated with different layouts, sizes and materials. Best stability was obtained with radii of 100, 72 and 62 µm, respectively, and a single central hole in aluminum, platinum and MP35N foil line electrodes of 400 × 500 µm2 size and of thickness 20 µm. The study showed that the best hole size which provides line electrode immobility (of thickness less than 30 µm) within a central hole is proportional to reverse value of Young’s Modulus of the material used. Thus, an array of line electrodes was designed and fabricated to study this effect. Experimental results were compared with simulation data. Subsequently, an approximation curve was generated as design rule to propose the best radius to fix line electrodes according to the material thickness between 10 and 200 µm using PDMS as substrate material.
Han, Chi-Jui; Chiang, Hsuan-Ping; Cheng, Yun-Chien
2018-02-18
In this study, polydimethylsiloxane (PDMS) and conductive carbon nanoparticles were combined to fabricate a conductive elastomer PDMS (CPDMS). A high sensitive and flexible CPDMS strain sensor is fabricated by using stamping-process based micro patterning. Compared with conventional sensors, flexible strain sensors are more suitable for medical applications but are usually fabricated by photolithography, which suffers from a large number of steps and difficult mass production. Hence, we fabricated flexible strain sensors using a stamping-process with fewer processes than photolithography. The piezoresistive coefficient and sensitivity of the flexible strain sensor were improved by sensor pattern design and thickness change. Micro-patterning is used to fabricate various CPDMS microstructure patterns. The effect of gauge pattern was evaluated with ANSYS simulations. The piezoresistance of the strain gauges was measured and the gauge factor determined. Experimental results show that the piezoresistive coefficient of CPDMS is approximately linear. Gauge factor measurement results show that the gauge factor of a 140.0 μm thick strain gauge with five grids is the highest.
NASA Astrophysics Data System (ADS)
Carlson, Eric D.; Foley, Lee M.; Guzman, Edward; Korblova, Eva D.; Visvanathan, Rayshan; Ryu, SeongHo; Gim, Min-Jun; Tuchband, Michael R.; Yoon, Dong Ki; Clark, Noel A.; Walba, David M.
2017-08-01
The control of the molecular orientation of liquid crystals (LCs) is important in both understanding phase properties and the continuing development of new LC technologies including displays, organic transistors, and electro-optic devices. Many techniques have been developed for successfully inducing alignment of calamitic LCs, though these techniques typically do not translate to the alignment of bent-core liquid crystals (BCLCs). Some techniques have been utilized to align various phases of BCLCs, but these techniques are often unsuccessful for general alignment of multiple materials and/or multiple phases. Here, we demonstrate that glass cells treated with polydimethylsiloxane (PDMS) thin films induce high quality homeotropic alignment of multiple mesophases of four BCLCs. On cooling to the lowest temperature phase the homeotropic alignment is lost, and spherulitic growth is seen in crystal and crystal-like phases including the dark conglomerate (DC) and helical nanofilament (HNF) phases. Evidence of homeotropic alignment is observed using polarized optical microscopy. We speculate that the methyl groups on the surface of the PDMS films strongly interact with the aliphatic tails of each mesogens, resulting in homeotropic alignment.
Thomas, Courtney; Lampert, David; Reible, Danny
2014-03-01
Passive sampling using polydimethylsiloxane (PDMS) profilers was evaluated as a tool to assess the performance of in situ sediment remedies at three locations, Chattanooga Creek (Chattanooga, TN), Eagle Harbor (Bainbridge Island, WA) and Hunter's Point (San Francisco, CA). The remedy at the first two locations was capping over PAH contaminated sediments while at Hunter's Point, the assessment was part of an in situ treatment demonstration led by R. G. Luthy (Stanford University) using activated carbon mixed into PCB contaminated sediments. The implementation and results at these contaminated sediment sites were used to illustrate the utility and usefulness of the passive sampling approach. Two different approaches were employed to evaluate kinetics of uptake onto the sorbent fibers. At the capping sites, the passive sampling approach was employed to measure intermixing during cap placement, contamination migration into the cap post-placement and recontamination over time. At the in situ treatment demonstration site, reductions in porewater concentrations in treated versus untreated sediments were compared to measurements of bioaccumulation of PCBs in Neanthes arenaceodentata.
Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers
NASA Astrophysics Data System (ADS)
Sola, D.; Lavieja, C.; Orera, A.; Clemente, M. J.
2018-07-01
The inscription of diffractive elements in ophthalmic polymers and ocular tissues to induce refractive index changes is of great interest in the fields of Optics and Ophthalmology. In this work fabrication of linear periodic patterns in polydimethylsiloxane (PDMS) intraocular lenses by means of the direct laser interference patterning (DLIP) technique was studied. A Q-Switch Nd:YAG laser coupled to second and third harmonic modules emitting linearly polarized 4 ns pulses at 355 nm with 20 Hz repetition rate was used as the laser source. Laser processing parameters were modified to produce the linear patterns. Processed samples were characterized by means of optical confocal microscopy, Scanning Electron Microscopy SEM, Energy Dispersive X-ray Spectroscopy EDX, Attenuated Total Reflectance-Infrared Spectroscopy ATR-FTIR, and Raman Spectroscopy. Depending on the laser parameters both photo-thermal and photo-chemical damage were observed in the DLIP irradiated areas. Finally, diffractive techniques were used to characterize the diffraction gratings inscribed in the samples resulting in a refractive index change of 1.9 × 10-2 under illumination of a 632.8 nm He-Ne laser.
Eita, Mohamed; El Sayed, Ramy; Muhammed, Mamoun
2012-12-01
Thin films of polydimethylsiloxane (PDMS) and ZnO quantum dots (QDs) were built up as multilayers by spin-coating. The films are characterized by a UV-blocking ability that increases with increasing number of bilayers. Photoluminescence (PL) emission spectra of the thin films occur at 522 nm, which is the PL wavelength of the ZnO QDs dispersion, but with a lower intensity and a quantum yield (QY) less than 1% that of the dispersion. Cross-linking has introduced new features to the absorption spectra in that the absorption peak was absent. These changes were attributed to the morphological and structural changes revealed by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR), respectively. TEM showed that the ZnO particle size in the film increased from 7 (±2.7) nm to 16 (±7.8) upon cross-linking. The FTIR spectra suggest that ZnO QDs are involved in the cross-linking of PDMS and that the surface of the ZnO QDs has been chemically modified. Copyright © 2012 Elsevier Inc. All rights reserved.
Kuo, Ching-Te; Wang, Jong-Yueh; Lin, Yu-Fen; Wo, Andrew M; Chen, Benjamin P C; Lee, Hsinyu
2017-06-29
Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.
Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W
2012-10-23
Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.
Self-Healing Superhydrophobic Materials Showing Quick Damage Recovery and Long-Term Durability.
Wang, Liming; Urata, Chihiro; Sato, Tomoya; England, Matt W; Hozumi, Atsushi
2017-09-26
Superhydrophobic coatings/materials are important for a wide variety of applications, but the majority of these man-made coatings/materials still suffer from poor durability because of their lack of self-healing ability. Here, we report novel superhydrophobic materials which can quickly self-heal from various severe types of damage. In this study, we used poly(dimethylsiloxane) (PDMS) infused with two liquids: trichloropropylsilane, which reacts with ambient moisture to self-assemble into grass-like microfibers (named silicone micro/nanograss) on the surfaces and low-viscosity silicone oil (SO), which remains within the PDMS matrices and acts as a self-healing agent. Because of the silicone micro/nanograss structures on the PDMS surfaces and the effective preserve/protection system of a large quantity of SO within the PDMS matrices, our superhydrophobic materials showed quick superhydrophobic recovery under ambient conditions (within 1-2 h) even after exposure to plasma (24 h), boiling water, chemicals, and outside environments. Such an ability is superior to the best self-healing superhydrophobic coatings/materials reported so far.
NASA Astrophysics Data System (ADS)
Helmer, D.; Voigt, A.; Wagner, S.; Keller, N.; Sachsenheimer, K.; Kotz, F.; Nargang, T. M.; Rapp, B. E.
2018-02-01
Polydimethylsiloxane (PDMS) is one of the most widely used polymers for the generation of microfluidic chips. The standard procedures of soft lithography require the formation of a new master structure for every design which is timeconsuming and expensive. All channel generated by soft lithography need to be consecutively sealed by bonding which is a process that can proof to be hard to control. Channel cross-sections are largely restricted to squares or flat-topped designs and the generation of truly three-dimensional designs is not straightforward. Here we present Suspended Liquid Subtractive Lithography (SLSL) a method for generating microfluidic channels of nearly arbitrary three-dimensional structures in PDMS that do not require master formation or bonding and give circular channel cross sections which are especially interesting for mimicking in vivo environments. In SLSL, an immiscible liquid is introduced into the uncured PDMS by a capillary mounted on a 3D printer head. The liquid forms continuous "threads" inside the matrix thus creating void suspended channel structures.
Torque-actuated valves for microfluidics.
Weibel, Douglas B; Kruithof, Maarten; Potenta, Scott; Sia, Samuel K; Lee, Andrew; Whitesides, George M
2005-08-01
This paper describes torque-actuated valves for controlling the flow of fluids in microfluidic channels. The valves consist of small machine screws (> or =500 microm) embedded in a layer of polyurethane cast above microfluidic channels fabricated in poly(dimethylsiloxane) (PDMS). The polyurethane is cured photochemically with the screws in place; on curing, it bonds to the surrounding layer of PDMS and forms a stiff layer that retains an impression of the threads of the screws. The valves were separated from the ceiling of microfluidic channels by a layer of PDMS and were integrated into channels using a simple procedure compatible with soft lithography and rapid prototyping. Turning the screws actuated the valves by collapsing the PDMS layer between the valve and channel, controlling the flow of fluids in the underlying channels. These valves have the useful characteristic that they do not require power to retain their setting (on/off). They also allow settings between "on" and "off" and can be integrated into portable, disposable microfluidic devices for carrying out sandwich immunoassays.
Effect of printing parameters on gravure patterning with conductive silver ink
NASA Astrophysics Data System (ADS)
Kim, Seunghwan; Sung, Hyung Jin
2015-04-01
Conductive line patterns were printed on a poly-dimethylsiloxane (PDMS) substrate using a gravure printing method with conductive silver ink. A plate-to-roll gravure print was prepared for this experiment. Gravure plates with fine lines 5-25 μm in width and 0-90° in tilted angles were fabricated using photolithography techniques. The printability, defined as the ratio of the real printed area to the ideal printed area, was measured and analyzed with respect to the process parameters and the line pattern designs. The effect of the process parameters on the fine line patterning was discussed, including the wiping condition, the printing pressure and the printing speed. The printability of the high adhesive substrate was examined by preparing a nanostructured PDMS substrate featuring a forest of 200 nm nanopillars using an anodic aluminum oxide (AAO) template. The patterns printed onto the nanostructured PDMS were compared with those printed on a flat PDMS substrate.
Kwon, Jung-Hwan; Escher, Beate I
2008-03-01
Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.
Polydimethyl siloxane based nanocomposites with antibiofilm properties for biomedical applications.
Sankar, G Gomathi; Murthy, P Sriyutha; Das, Arindam; Sathya, S; Nankar, Rakesh; Venugopalan, V P; Doble, Mukesh
2017-07-01
Polydimethyl siloxane (PDMS) is an excellent implant material for biomedical applications, but often fails as it is prone to microbial colonization which forms biofilms. In the present study CuO, CTAB capped CuO, and ZnO nanoparticles were tested as nanofillers to enhance the antibiofilm property of PDMS against Staphylococcus aureus and Escherichia coli. In general S. aurues (Gram positive and more hydrophobic) favor PDMS surface than glass while E. coli (Gram negative and more hydrophilic) behaves in a reverse way. Incorporation of nanofillers renders the PDMS surface antibacterial and reduces the attachment of both bacteria. These surfaces are also not cytotoxic nor show any cell damage. Contact angle of the material and the cell surface hydrophobicity influenced the extent of bacterial attachment. Cell viability in biofilms was dependent on the antimicrobial property of the nanoparticles incorporated in the PDMS matrix. Simple regression relationships were able to predict the bacterial attachment and number of dead cells on these nanocomposites. Among the nanocomposites tested, PDMS incorporated with CTAB (cetyl trimethylammonium bromide)-capped CuO appears to be the best antibacterial material with good cyto-compatibility. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1075-1082, 2017. © 2016 Wiley Periodicals, Inc.
Escher, Beate I; Cowan-Ellsberry, Christina E; Dyer, Scott; Embry, Michelle R; Erhardt, Susan; Halder, Marlies; Kwon, Jung-Hwan; Johanning, Karla; Oosterwijk, Mattheus T T; Rutishauser, Sibylle; Segner, Helmut; Nichols, John
2011-07-18
Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity. © 2011 American Chemical Society
In vitro permeation characterization of repellent picaridin and sunscreen oxybenzone.
Gu, Xiaochen; Chen, Ting
2009-01-01
Picaridin and oxybenzone are two active ingredients found in repellent and sunscreen preparations, respectively. We performed a series of in vitro diffusion studies to evaluate the transmembrane permeation of picaridin and oxybenzone across human epidermis and poly(dimethylsiloxane) (PDMS) membrane. Permeation of picaridin (PCR) and oxybenzone (OBZ) across human epidermis was suppressed when both active ingredients were used concurrently; increasing concentration of the test compounds further reduced the permeation percentage of picaridin and oxybenzone. While permeation characteristics were correlative between human epidermis and PDMS membrane, permeability of PDMS membrane was significantly larger than that of human epidermis. The findings were different from concurrent use of repellent DEET and sunscreen oxybenzone in which a synergistic permeation enhancement was observed. Further comparative studies are therefore needed to understand permeation mechanisms and interactions between picaridin and oxybenzone.
Substrate-Free InGaN/GaN Nanowire Light-Emitting Diodes.
Neplokh, Vladimir; Messanvi, Agnes; Zhang, Hezhi; Julien, Francois H; Babichev, Andrey; Eymery, Joel; Durand, Christophe; Tchernycheva, Maria
2015-12-01
We report on the demonstration of substrate-free nanowire/polydimethylsiloxane (PDMS) membrane light-emitting diodes (LEDs). Metal-organic vapour-phase epitaxy (MOVPE)-grown InGaN/GaN core-shell nanowires were encapsulated into PDMS layer. After metal deposition to p-GaN, a thick PDMS cap layer was spin-coated and the membrane was manually peeled from the sapphire substrate, flipped upside down onto a steel holder, and transparent indium tin oxide (ITO) contact to n-GaN was deposited. The fabricated LEDs demonstrate rectifying diode characteristics. For the electroluminescence (EL) measurements, the samples were manually bonded using silver paint. The EL spectra measured at different applied voltages demonstrate a blue shift with the current increase. This shift is explained by the current injection into the InGaN areas of the active region with different average indium content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jing; Jeong, Young Gyu, E-mail: ygjeong@cnu.ac.kr
High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ∼0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films,more » which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.« less
NASA Astrophysics Data System (ADS)
Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin
2017-06-01
The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.
Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Zhao, Jingbo; Chen, Lijie; Ren, Jiangang; Bai, Fengwu; Yang, Shang-Tian
2016-01-01
Butanol is considered as an advanced biofuel, the development of which is restricted by the intensive energy consumption of product recovery. A novel two-stage gas stripping-pervaporation process integrated with acetone-butanol-ethanol (ABE) fermentation was developed for butanol recovery, with gas stripping as the first-stage and pervaporation as the second-stage using the carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) mixed matrix membrane (MMM). Compared to batch fermentation without butanol recovery, more ABE (27.5 g/L acetone, 75.5 g/L butanol, 7.0 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced in the fed-batch fermentation, with a higher butanol productivity (0.34 g/L · h vs. 0.30 g/L · h) due to reduced butanol inhibition by butanol recovery. The first-stage gas stripping produced a condensate containing 155.6 g/L butanol (199.9 g/L ABE), which after phase separation formed an organic phase containing 610.8 g/L butanol (656.1 g/L ABE) and an aqueous phase containing 85.6 g/L butanol (129.7 g/L ABE). Fed with the aqueous phase of the condensate from first-stage gas stripping, the second-stage pervaporation using the CNTs-PDMS MMM produced a condensate containing 441.7 g/L butanol (593.2 g/L ABE), which after mixing with the organic phase from gas stripping gave a highly concentrated product containing 521.3 g/L butanol (622.9 g/L ABE). The outstanding performance of CNTs-PDMS MMM can be attributed to the hydrophobic CNTs giving an alternative route for mass transport through the inner tubes or along the smooth surface of CNTs. This gas stripping-pervaporation process with less contaminated risk is thus effective in increasing butanol production and reducing energy consumption. © 2015 Wiley Periodicals, Inc.
Li, Juan-Ying; Shi, Wenxuan; Li, Zhenhua; Chen, Yiqin; Shao, Liu; Jin, Ling
2018-03-01
Mariculture product safety in relation to sediment quality has attracted increasing attention because of the accumulation of potentially hazardous chemicals, including pyrethroid insecticides, in sediment. Passive sampling has been widely used to assess the bioavailability of sediment-associated hydrophobic organic contaminants and predict their body residue in benthic organisms. Therefore, in this study, we introduced polydimethylsiloxane (PDMS) polymer as a biomimetic "chemometer" for freely-dissolved concentrations (C free ) to assess the efficacy of different carbon sorbents in reducing the bioavailability of pyrethroids in the process of sediment remediation. Black carbon (BC)-based materials (e.g., charcoal, biochar, and activated carbon) showed the advantageous sorption capacity over humic substance-based peat soil based on both C free and tissue residue in exposed clams. Of the tested BC-type materials, biochar appeared to be an ideal one in the remediation of pyrethroid-contaminated sediment. The predictive value of the PDMS chemometer approach to informing tissue residue was confirmed by a good agreement between the measured lipid-normalized concentrations of pyrethroids in clams and the lipid-based equilibrium concentrations calculated from C free via lipid-water partition coefficients. The quantitative inter-compartmental relationship underlying the laboratory system of sediment-pore water-PDMS-biota was also cross-validated by a mechanistically-based bioaccumulation model, thus confirming the validity of C free as a predictive intermediate to alert for tissue residue and guide sediment remediation. The present study revealed a great promise of sensing C free by polymer-based equilibrium sampling in predicting tissue residue of chemicals applied in mariculture against regulatory guidelines, and, in turn, informing remediation measures when needs arise. In situ demonstration is warranted in the future to ascertain the field applicability of this approach in real mariculture systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Pang, Yu; Tian, He; Tao, Luqi; Li, Yuxing; Wang, Xuefeng; Deng, Ningqin; Yang, Yi; Ren, Tian-Ling
2016-10-03
A mechanical sensor with graphene porous network (GPN) combined with polydimethylsiloxane (PDMS) is demonstrated by the first time. Using the nickel foam as template and chemically etching method, the GPN can be created in the PDMS-nickel foam coated with graphene, which can achieve both pressure and strain sensing properties. Because of the pores in the GPN, the composite as pressure and strain sensor exhibit wide pressure sensing range and highest sensitivity among the graphene foam-based sensors, respectively. In addition, it shows potential applications in monitoring or even recognize the walking states, finger bending degree, and wrist blood pressure.
NASA Astrophysics Data System (ADS)
Shim, Suin; Shardt, Orest; Stone, Howard A.
2017-11-01
We introduce a phenomenon that is observed when deionized (DI) water with suspended charged particles flows through a single microfluidic channel. When an aqueous suspension of amine-modified, positively charged polystyrene particles (volume fraction = 0.01) flows steadily through a serpentine polydimethylsiloxane (PDMS) channel, a pulse of particles is generated, which then flows through the channel at a slower speed than the mean flow velocity. We quantify the results and rationalize the observations by considering the diffusiophoresis of charged particles driven by gas leakage through the permeable PDMS walls. A mathematical model will be compared with the experimental observations.
Pulsed laser triggered high speed microfluidic switch
NASA Astrophysics Data System (ADS)
Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu
2008-10-01
We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.
Moore, Douglas E; Liu, Tina X; Miao, William G; Edwards, Alison; Elliss, Russell
2002-09-05
A reversed-phase liquid chromatographic method has been developed and validated for the determination of the polydimethylsiloxane (PDMS) component of Simethicone, which is used as an anti-foaming agent in pharmaceutical formulations. The method involves acidification to neutralise antacid components of the formulation, then a single extraction of the PDMS with dichloromethane. This is followed by separation with a reversed-phase column using an acetonitrile-chloroform solvent gradient, and quantification by an evaporative light scattering detector. An assay precision of 3% was achieved in intraday and interday determinations. No interference was found from the aluminium and magnesium hydroxide components of antacid formulations.
Feng, Xiangsong; Fu, Ziao; Kaledhonkar, Sandip; Jia, Yuan; Shah, Binita; Jin, Amy; Liu, Zheng; Sun, Ming; Chen, Bo; Grassucci, Robert A; Ren, Yukun; Jiang, Hongyuan; Frank, Joachim; Lin, Qiao
2017-04-04
We describe a spraying-plunging method for preparing cryoelectron microscopy (cryo-EM) grids with vitreous ice of controllable, highly consistent thickness using a microfluidic device. The new polydimethylsiloxane (PDMS)-based sprayer was tested with apoferritin. We demonstrate that the structure can be solved to high resolution with this method of sample preparation. Besides replacing the conventional pipetting-blotting-plunging method, one of many potential applications of the new sprayer is in time-resolved cryo-EM, as part of a PDMS-based microfluidic reaction channel to study short-lived intermediates on the timescale of 10-1,000 ms. Published by Elsevier Ltd.
Wang, Bailiang; Liu, Huihua; Zhang, Binjun; Han, Yuemei; Shen, Chenghui; Lin, Quankui; Chen, Hao
2016-05-01
Infection associated with medical devices is one of the most frequent complications of modern medical biomaterials. Bacteria have a strong ability to attach on solid surfaces, forming colonies and subsequently biofilms. In this work, a novel antibacterial bulk material was prepared through combining poly(dimethyl siloxane) (PDMS) with either hydrophobic or hydrophilic antibiotics (0.1-0.2 wt%). Scanning electron microscopy, water contact angle and UV-vis spectrophotometer were used to measure the changes of surface topography, wettability and optical transmission. For both gentamicin sulfate (GS) and triclosan (TCA), the optical transmission of the PDMS-GS and PDMS-TCA blend films was higher than 90%. Drug release studies showed initial rapid release and later sustained release of GS or TCA under aqueous physiological conditions. The blend films demonstrated excellent bactericidal and sufficient biofilm inhibition functions against Gram-positive bacteria (Staphylococcus aureus, S. aureus) measured by LIVE/DEAD bacterial viability kit staining method. Kirby-Bauer method showed that there was obvious zone of inhibition (7.5-12.5mm). Cytocompatibility assessment against human lens epithelial cells (HLECs) revealed that the PDMS-GS blend films had good cytocompatibility. However, the PDMS-TCA blend films showed certain cytotoxicity against HLECs. The PDMS-0.2 wt% GS blend films were compared to native PDMS in the rabbit subcutaneous S. aureus infection model. The blend films yielded a significantly lower degree of infection than native PDMS at day 7. The achievement of the PDMS-drug bulk materials with high light transmittance, excellent bactericidal function and good cytocompatibility can potentially be widely used as bio-optical materials. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Han, In Ho; Sun, Fangfang; Choi, Yoon Ji; Zou, Fengming; Nam, Kyoung Hyup; Cho, Won Ho; Choi, Byung Kwan; Song, Geun Sung; Koh, Kwangnak; Lee, Jaebeom
2015-11-01
Carbon nanotubes (CNTs) are promising candidates as novel scaffolds for peripheral nerve regeneration. Schwann cells (SCs) are attractive therapeutic targets due to their pivotal role in peripheral nerve regeneration, but primary SCs have limitations for clinical application. However, adipose-derived stem cells (ASCs) may differentiate into Schwann-like cells. The present study assesses the potential applicability of multiwall CNTs (MWNTs) composited with polydimethylsiloxane (PDMS), which were then seeded with differentiated adipose-derived stem cells (dASCs) to promote neuronal differentiation and growth. Aqueous MWNT dispersion was filtered, and the PDMS/MWNT sheets were prepared using a simple printing-transfer method. Characterization of PDMS/MWNT sheets indicated their unique physical properties, such as superior mechanical strength and electroconductivity, compared with bare PDMS sheets. ASCs were differentiated into Schwann-like cells using a mixture of glial growth factors. Dorsal root ganglion (DRG) neurons were co-cultured with SCs and dASCs on PDMS/MWNTs sheets or noncoated dishes. An alamar blue proliferation assay of dASC and SCs showed significantly more dASC and SCs cultured on PDMS/MWNT sheets at 48 h and 72 h than when cultured on noncoated dishes (p < 0.05). Additionally, when DRG were cultured on PDMS/MWNT sheets seeded with dASCs, the proliferation of DRG neurons and the longest neurite outgrowth length per neuron were significantly greater than when DRG were cultured on PDMS/MWNT sheets alone or on noncoated dishes seeded with SCs or dASCs (p < 0.05). Overall, PDMS/MWNT sheets exhibited excellent biocompatibility for culturing Schwann-like cells differentiated from ASCs. Seeding the dASCs on PDMS/MWNT sheets may produce synergistic effects in peripheral nerve regeneration, similarly to SCs. © 2015 Wiley Periodicals, Inc.
Antibacterial and antibiofouling clay nanotube-silicone composite.
Boyer, C J; Ambrose, J; Das, S; Humayun, A; Chappidi, D; Giorno, R; Mills, D K
2018-01-01
Invasive medical devices are used in treating millions of patients each day. Bacterial adherence to their surface is an early step in biofilm formation that may lead to infection, health complications, longer hospital stays, and death. Prevention of bacterial adherence and biofilm development continues to be a major healthcare challenge. Accordingly, there is a pressing need to improve the anti-microbial properties of medical devices. Polydimethylsiloxane (PDMS) was doped with halloysite nanotubes (HNTs), and the PDMS-HNT composite surfaces were coated with PDMS-b-polyethylene oxide (PEO) and antibacterials. The composite material properties were examined using SEM, energy dispersive spectroscopy, water contact angle measurements, tensile testing, UV-Vis spectroscopy, and thermal gravimetric analysis. The antibacterial potential of the PDMS-HNT composites was compared to commercial urinary catheters using cultures of E. coli and S. aureus . Fibrinogen adsorption studies were also performed on the PDMS-HNT-PEO composites. HNT addition increased drug load during solvent swelling without reducing material strength. The hydrophilic properties provided by PEO were maintained after HNT addition, and the composites displayed protein-repelling properties. Additionally, composites showed superiority over commercial catheters at inhibiting bacterial growth. PDMS-HNT composites showed superiority regarding their efficacy at inhibiting bacterial growth, in comparison to commercial antibacterial catheters. Our data suggest that PDMS-HNT composites have potential as a coating material for anti-bacterial invasive devices and in the prevention of institutional-acquired infections.
Antibacterial and antibiofouling clay nanotube–silicone composite
Boyer, CJ; Ambrose, J; Das, S; Humayun, A; Chappidi, D; Giorno, R; Mills, DK
2018-01-01
Introduction Invasive medical devices are used in treating millions of patients each day. Bacterial adherence to their surface is an early step in biofilm formation that may lead to infection, health complications, longer hospital stays, and death. Prevention of bacterial adherence and biofilm development continues to be a major healthcare challenge. Accordingly, there is a pressing need to improve the anti-microbial properties of medical devices. Materials and Methods Polydimethylsiloxane (PDMS) was doped with halloysite nanotubes (HNTs), and the PDMS-HNT composite surfaces were coated with PDMS-b-polyethylene oxide (PEO) and antibacterials. The composite material properties were examined using SEM, energy dispersive spectroscopy, water contact angle measurements, tensile testing, UV-Vis spectroscopy, and thermal gravimetric analysis. The antibacterial potential of the PDMS-HNT composites was compared to commercial urinary catheters using cultures of E. coli and S. aureus. Fibrinogen adsorption studies were also performed on the PDMS-HNT-PEO composites. Results HNT addition increased drug load during solvent swelling without reducing material strength. The hydrophilic properties provided by PEO were maintained after HNT addition, and the composites displayed protein-repelling properties. Additionally, composites showed superiority over commercial catheters at inhibiting bacterial growth. Conclusion PDMS-HNT composites showed superiority regarding their efficacy at inhibiting bacterial growth, in comparison to commercial antibacterial catheters. Our data suggest that PDMS-HNT composites have potential as a coating material for anti-bacterial invasive devices and in the prevention of institutional-acquired infections. PMID:29713206
Tang, Zhenhua; Gao, Ziwei; Jia, Shuhai; Wang, Fei; Wang, Yonglin
2017-05-01
3D structure assembly in advanced functional materials is important for many areas of technology. Here, a new strategy exploits IR light-driven bilayer polymeric composites for autonomic origami assembly of 3D structures. The bilayer sheet comprises a passive layer of poly(dimethylsiloxane) (PDMS) and an active layer comprising reduced graphene oxides (RGOs), thermally expanding microspheres (TEMs), and PDMS. The corresponding fabrication method is versatile and simple. Owing to the large volume expansion of the TEMs, the two layers exhibit large differences in their coefficients of thermal expansion. The RGO-TEM-PDMS/PDMS bilayers can deflect toward the PDMS side upon IR irradiation via the cooperative effect of the photothermal effect of the RGOs and the expansion of the TEMs, and exhibit excellent light-driven, a large bending deformation, and rapid responsive properties. The proposed RGO-TEM-PDMS/PDMS composites with excellent light-driven bending properties are demonstrated as active hinges for building 3D geometries such as bidirectionally folded columns, boxes, pyramids, and cars. The folding angle (ranging from 0° to 180°) is well-controlled by tuning the active hinge length. Furthermore, the folded 3D architectures can permanently preserve the deformed shape without energy supply. The presented approach has potential in biomedical devices, aerospace applications, microfluidic devices, and 4D printing.
Simple Analysis of Lipid Inhibition Activity on an Adipocyte Micro-Cell Pattern Chip.
Kim, Gi Yong; Yeom, Su-Jin; Jang, Sung-Chan; Lee, Chang-Soo; Roh, Changhyun; Jeong, Heon-Ho
2018-06-04
Polydimethyl-siloxane (PDMS) is often applied to fabricate cell chips. In this study, we fabricated an adipocyte microcell pattern chips using PDMS to analyze the inhibition activity of lipid droplets in mouse embryo fibroblast cells (3T3-L1) with anti-obesity agents. To form the PDMS based micropattern, we applied the micro-contact printing technique using PDMS micro-stamps that had been fabricated by conventional soft lithography. This PDMS micro-pattern enabled the selective growth of 3T3-L1 cells onto the specific region by preventing cell adhesion on the PDMS region. It then allowed growth of the 3T3-L1 cells in the chip for 10 days and confirmed that lipid droplets were formed in the 3T3-L1 cells. After treatment of orlistat and quercetin were treated in an adipocyte micro-cell pattern chip with 3T3-L1 cells for six days, we found that orlistat and quercetin exhibited fat inhibition capacities of 19.3% and 24.4% from 0.2 μM of lipid droplets in 3T3-L1 cells. In addition, we conducted a direct quantitative analysis of 3T3-L1 cell differentiation using Oil Red O staining. In conclusion, PDMS-based adipocyte micro-cell pattern chips may contribute to the development of novel bioactive compounds.
Influence of Bulk PDMS Network Properties on Water Wettability
NASA Astrophysics Data System (ADS)
Melillo, Matthew; Walker, Edwin; Klein, Zoe; Efimenko, Kirill; Genzer, Jan
Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine antifouling coatings to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - medical devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, and end-group chemical functionality on the mechanical and surface properties of end-linked PDMS networks. Wettability was investigated through the sessile drop technique, wherein a DI water droplet was placed on the bulk network surface and droplet volume, shape, surface area, and contact angle were monitored as a function of time. Various silicone substrates ranging from incredibly soft and flexible materials (E' 50 kPa) to highly rigid networks (E' 5 MPa) were tested. The dynamic behavior of the droplet on the surfaces demonstrated equilibration times between the droplet and surface on the order of 5 minutes. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient, accurate, and safe PDMS-based medical devices and microfluidic materials that involve aqueous media.
NASA Astrophysics Data System (ADS)
Yassaa, N.; Custer, T.; Song, W.; Pech, F.; Kesselmeier, J.; Williams, J.
2010-08-01
A solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) system has been developed for quantifying enantiomeric and nonenantiomeric monoterpenes in plant chamber studies and ambient air. Performance of this system was checked using a capillary diffusion system to produce monoterpene standards. The adsorption efficiency, competitive adsorption and chromatographic peak resolution of monoterpene enantiomer pairs were compared for three SPME fibre coatings: 75 μm Carboxen-PDMS (CAR-PDMS), 50/30 μm, divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) and 65 μm divinylbenzene-polydimethyl-siloxane (DVB-PDMS). Key parameters such as the linearity and reproducibility of the SPME system have been investigated in this work. The best compromise between the enantiomeric separation of monoterpenes and competitive adsorption of the isoprenoids on the solid SPME fibre coating was found for DVB-PDMS fibres. The optimum conditions using DVB-PDMS fibres were applied to measure the exchange rates of monoterpenes in the emission of Quercus ilex using a laboratory whole plant enclosure under light and dark conditions, as well as in ambient air. With 592 and 223 ng m-2 s-1, respectively, β-myrcene and limonene were the predominant monoterpenes in the emission of Q. ilex. These values were closely comparable to those obtained using a zNose and cartridge GC-FID systems.
Interfacial gas nanobubbles or oil nanodroplets?
Wang, Xingya; Zhao, Binyu; Hu, Jun; Wang, Shuo; Tai, Renzhong; Gao, Xingyu; Zhang, Lijuan
2017-01-04
The existence of nanobubbles at a solid-liquid interface with high stability has been confirmed by myriad experimental studies, and their gaseous nature has also been extensively verified. However, nanodroplets of polydimethylsiloxane (PDMS) recently observed in the atomic force microscopy (AFM) measurement of nanobubbles plague the nanobubble community. It may easily lead to wrong interpretations of the AFM results and thus hinders further application of the already widely used AFM in nanobubble studies. Therefore, finding a direct experimental solution to distinguish nanobubbles from nanodroplets in AFM measurements is a matter of great urgency. Herein, we first developed an effective and reproducible method to produce PDMS nanodroplets at the highly ordered pyrolytic graphite (HOPG)/water interface. From their size, contact angle, and stiffness, the formed PDMS nanodroplets are not distinguishable from nanobubbles. However, the force curves on these two objects are strikingly different from each other, i.e., a peculiar plateau in both the approach and retraction curves was found on nanobubbles whereas they changed linearly between the jump-in and jump-off point on PDMS nanodroplets. Thus, the present study not only provided a simple and effective procedure to generate PDMS nanodroplets but also paved a simple practical and in situ way to discriminate nanobubbles from the PDMS nanodroplets by direct AFM force measurements.
The Effects of Nanotexturing Microfluidic Platforms to Isolate Brain Tumor Cells
NASA Astrophysics Data System (ADS)
Islam, Muhymin; Sajid, Adeel; Kim, Young-Tae; Iqbal, Samir M.
2015-03-01
Detection of tumor cells in the early stages of disease requires sensitive and selective approaches. Nanotextured polydimethylsiloxane (PDMS) substrates were implemented to detect metastatic human glioblastoma (hGBM) cells. RNA aptamers that were specific to epidermal growth factor receptors (EGFR) were used to functionalize the substrates. EGFR is known to be overexpressed on many cancer cells including hGBM. Nanotextured PDMS was prepared by micro reactive ion etching. PDMS surfaces became hydrophilic uponnanotexturing. Nanotextured substrates were incubated in tumor cell solution and density of captured cells was determined. Nanotextured PDMS provided >300% cell capture compared to plain PDMS due to increased effective surface area of roughened substrates at nanoscale as well as mire focal points for cell adhesion. Next, aptamer functionalized nanotextured PDMS was incorporated in microfluidic device to detect tumor cells at different flow velocities. The shear stress introduced by the flow pressure and heterogeneity of the EGFR overexpression on cell membranes of the tumor cells had significant impact on the cell capture efficiency of aptamer anchored nanotextured microfluidic devices. Eventually tumor cells were detected from the mixture of white blood cells at an efficiency of 73% using the microfluidic device. The interplay of binding energies and surface energies was major factor in this system. Support Acknowledged from NSF through ECCS-1407990.
Interfacial friction and adhesion of cross-linked polymer thin films swollen with linear chains.
Zhang, Qing; Archer, Lynden A
2007-07-03
The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.
NASA Astrophysics Data System (ADS)
Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Bednarek, Lukas; Vasinek, Vladimir
2017-05-01
White light is produced by a suitable combination of spectral components RGB (colors) or through exposure excitation of blue light (the blue component of light). This blue part of the light is partly and suitably transformed by luminophore so that the resulting emitted spectrum corresponded to the spectral characteristics of white light with a given correlated color temperature (CCT). This paper deals with the measurement of optical properties of a mixture polydimethylsiloxane (PDMS) and luminophore, which is irradiated by the blue LED (Light-Emitting Diode) to obtain the white color of light. The subject of the investigation is the dependence of CCT on the concentration of the luminophore in a mixture of PDMS and different geometrical parameters of the samples. There are many kinds of PDMS and luminophore. We used PDMS Sylgard 184 and luminophore-labeled U2. More accurately Yttrium Aluminium Oxide: Cerium Y3Al5O12: Ce. From the analyzed data, we determined, which mutual combinations of concentration of the mixture of luminophore and PDMS together with the geometric parameters of the samples of the special optical fibers are suitable for illumination, while we get the desired CCT.
Pham, Phu; Vo, Thanh; Luo, Xiaolong
2017-01-17
Membrane functionality is crucial in microfluidics for realizing operations such as filtration, separation, concentration, signaling among cells and gradient generation. Currently, common methods often sandwich commercially available membranes in multi-layer devices, or use photopolymerization or temperature-induced gelation to fabricate membrane structures in one-layer devices. Biofabrication offers an alternative to forming membrane structures with biomimetic materials and mechanisms in mild conditions. We have recently developed a biofabrication strategy to form parallel biopolymer membranes in gas-permeable polydimethylsiloxane (PDMS) microfluidic devices, which used positive pressure to dissipate air bubbles through PDMS to initiate membrane formation but required careful pressure balancing between two flows. Here, we report a technical innovation by simply placing as needed an add-on PDMS vacuum layer on PDMS microfluidic devices to dissipate air bubbles and guide the biofabrication of biopolymer membranes. Vacuuming through PDMS was simply achieved by either withdrawing a syringe or releasing a squeezed nasal aspirator. Upon vacuuming, air bubbles dissipated within minutes, membranes were effortlessly formed, and the add-on vacuum layer can be removed. Subsequent membrane growth could be robustly controlled with the flows and pH of solutions. This new process is user-friendly and has achieved a 100% success rate in more than 200 trials in membrane biofabrication.
Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment
NASA Astrophysics Data System (ADS)
Zahid, A.; Dai, B.; Hong, R.; Zhang, D.
2017-10-01
In this study, PDMS (polydimethylsiloxane) substrates with a half-plain, half-rough surface were prepared on a plain and rough fused silica glass substrate using a molding technique. The molded PDMS surface morphology was changed into a half-smooth and half-rough surface after peeling. The modified PDMS surfaces’ optical properties were inspected with and without treatment. The treatment is exposed by oxygen plasma (15 W) for 3 min in a vacuum, down to a pressure of six torr, using a vacuum pump. An atomic force microscope (AMF) and interferometer (white light) indicated that the plasma O2 treatment increased the formation of the plain surface and decreased the formation of the rough surface. The optical properties via a spectrophotometer (lambda) show the resonance from 300 nm to 1200 nm on the rough surface, which is considered to be a faithful reproduction for transmittance and reflectance. The Raman spectra and FDTD simulation results are in excellent agreement; not to be confused with metal local surface plasmon resonances (LSPRs). The Raman spectra peaks and hotspot are the results of the PDMS Si-O backbone. The PDMS substrate presented the diversity of the optical properties, which makes the substrate complementary to various optical applications.
Bao, Lian-Jun; Jia, Fang; Crago, J; Zeng, Eddy Y; Schlenk, D; Gan, Jay
2013-09-01
Solid-phase microextraction (SPME) has often been used to estimate the freely dissolved concentration (Cfree ) of organic contaminants in sediments. A significant limitation in the application of SPME for Cfree measurement is the requirement for attaining equilibrium partition, which is often difficult for strongly hydrophobic compounds such as DDT. A method was developed using SPME with stable isotope-labeled analogues as performance reference compounds (PRCs) to measure Cfree of DDT and metabolites (DDTs) in marine sediments. Six (13) C-labeled or deuterated PRCs were impregnated into polydimethylsiloxane (PDMS) fiber before use. Desorption of PRCs from PDMS fibers and absorption of DDTs from sediment were isotropic in a range of sediments evaluated ex situ under well-mixed conditions. When applied to a historically contaminated marine sediment from a Superfund site, the PRC-SPME method yielded Cfree values identical to those found by using a conventional equilibrium SPME approach (Eq-SPME), whereas the time for mixing was reduced from 9 d to only 9 h. The PRC-SPME method was further evaluated against bioaccumulation of DDTs by Neanthes arenaceodentata in the contaminated sediment with or without amendment of activated carbon or sand. Strong correlations were consistently found between the derived equilibrium concentrations on the fiber and lipid-normalized tissue residues for DDTs in the worms. Results from the present study clearly demonstrated the feasibility of coupling PRCs with SPME sampling to greatly shorten sampling time, thus affording much improved flexibility in the use of SPME for bioavailability evaluation. Copyright © 2013 SETAC.
Bao, Lian-Jun; Jia, Fang; Crago, J.; Zeng, Eddy Y.; Schlenk, D.; Gan, Jay
2014-01-01
Solid-phase microextraction (SPME) has often been used to estimate the freely dissolved concentration (Cfree) of organic contaminants in sediments. A significant limitation in the application of SPME for Cfree measurement is the requirement for attaining equilibrium partition, which is often difficult for strongly hydrophobic compounds such as DDT. A method was developed using SPME with stable isotope-labeled analogues as performance reference compounds (PRCs) to measure Cfree of DDT and metabolites (DDTs) in marine sediments. Six 13C-labeled or deuterated PRCs were impregnated into polydimethylsiloxane (PDMS) fiber before use. Desorption of PRCs from PDMS fibers and absorption of DDTs from sediment were isotropic in a range of sediments evaluated ex situ under well-mixed conditions. When applied to a historically contaminated marine sediment from a Superfund site, the PRC-SPME method yielded Cfree values identical to those found by using a conventional equilibrium SPME approach (Eq-SPME), wherease the time for mixing was reduced from 9 d to only 9 h. The PRC-SPME method was further evaluated against bioaccumulation of DDTs by Neanthes arenaceodentata in the contaminated sediment with or without amendment of activated carbon or sand. Strong correlations were consistently found between the derived equilibrium concentrations on the fiber and lipid-normalized tissue residues for DDTs in the worms. Results from the present study clearly demonstrated the feasibility of coupling PRCs with SPME sampling to greatly shorten sampling time, thus affording much improved flexibility in the use of SPME for bioavailability evaluation. Environ Toxicol Chem 2013;32:1946–1953. PMID:23661411
Recently, two papers reported the use of solid-phase microextraction (SPME) with polydimethylsiloxane(PDMS)/Carboxen fibers to determine trace levels of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (tBA) in water. Attempts were made to apply this technique to th...
Ma, Yu-Dong; Chang, Wen-Hsin; Luo, Kang; Wang, Chih-Hung; Liu, Shih-Yuan; Yen, Wen-Hsiang; Lee, Gwo-Bin
2018-01-15
Loop-mediated isothermal amplification (LAMP) is a DNA amplification approach characterized by high sensitivity and specificity. In "digital LAMP", small quantities of both template DNA and reagents are encapsulated within a droplet or microwell, allowing for analysis of precious nucleic acid samples in shorter amounts of time relative to traditional DNA amplification protocols (e.g., PCR) with an improved limit of detection. In this study, an integrated, self-driven microfluidic chip was designed to carry out digital LAMP. The entire quantification process could be automatically performed on this chip via capillary forces enabled through microwells comprised of polydimethylsiloxane (PDMS) surfaces coated with a hydrophilic film; no external pumps were required. Moreover, digitized droplets could be separated from each other by normally-closed microvalves. The contact angle of the hydrophilic film-coated PDMS surface was only 14.3°. This is the first time that a rapid (30min) and simple method has been used to create hydrophilic PDMS surfaces that allow for digital LAMP to be performed in a self-driven microfluidic device. As a proof of concept, amplification of a gene specific to a vancomycin-resistant Enterococcus strain was performed on the developed microfluidic chip within 30min, and the limit of detection was only 11 copies with a volume of 30μL. This device may therefore become a promising tool for clinical diagnosis and point-of-care applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, Heun; Jeong, Yu Ra; Yun, Junyeong; Hong, Soo Yeong; Jin, Sangwoo; Lee, Seung-Jung; Zi, Goangseup; Ha, Jeong Sook
2015-10-27
We report on the facile fabrication of a stretchable array of highly sensitive pressure sensors. The proposed pressure sensor consists of the top layer of Au-deposited polydimethylsiloxane (PDMS) micropillars and the bottom layer of conductive polyaniline nanofibers on a polyethylene terephthalate substrate. The sensors are operated by the changes in contact resistance between Au-coated micropillars and polyaniline according to the varying pressure. The fabricated pressure sensor exhibits a sensitivity of 2.0 kPa(-1) in the pressure range below 0.22 kPa, a low detection limit of 15 Pa, a fast response time of 50 ms, and high stability over 10000 cycles of pressure loading/unloading with a low operating voltage of 1.0 V. The sensor is also capable of noninvasively detecting human-pulse waveforms from carotid and radial artery. A 5 × 5 array of the pressure sensors on the deformable substrate, which consists of PDMS islands for sensors and the mixed thin film of PDMS and Ecoflex with embedded liquid metal interconnections, shows stable sensing of pressure under biaxial stretching by 15%. The strain distribution obtained by the finite element method confirms that the maximum strain applied to the pressure sensor in the strain-suppressed region is less than 0.04% under a 15% biaxial strain of the unit module. This work demonstrates the potential application of our proposed stretchable pressure sensor array for wearable and artificial electronic skin devices.
Design rules for vertical interconnections by reverse offset printing
NASA Astrophysics Data System (ADS)
Kusaka, Yasuyuki; Kanazawa, Shusuke; Ushijima, Hirobumi
2018-03-01
Formation of vertical interconnections by reverse offset printing was investigated, particularly focusing on the transfer step, in which an ink pattern is transferred from a polydimethylsiloxane (PDMS) sheet for the step coverage of contact holes. We systematically examined the coverage of contact holes made of a tapered photoresist layer by varying the hole size, the hole depth, PDMS elasticity, PDMS thickness, printing speed, and printing indentation depth. Successful ink filling was achieved when the PDMS was softer, and the optimal PDMS thickness varied depending on the size of the contact holes. This behaviour is related to the bell-type uplift deformation of incompressible PDMS, which can be described by contact mechanics numerical simulations. Based on direct observation of PDMS/resist-hole contact behaviour, the step coverage of contact holes typically involves two steps of contact area growth: (i) the PDMS first touches the bottom of the holes and then (ii) the contact area gradually and radially widens toward the tapered sidewall. From an engineering perspective, it is pointed out that mechanical synchronisation mismatch in the roll-to-sheet type printing invokes the cracking of ink layers at the edges of contact holes. According to the above design rule, ink filling into a contact hole with thickness of 2.5 µm and radius of 10 µm was achieved. Contact chain patterns with 1386 points of vertical interconnections with the square hole size of up to 10 µm successfully demonstrated the validity of the technique presented herein.
Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow
NASA Astrophysics Data System (ADS)
Holden, Matthew A.; Kumar, Saurabh; Beskok, Ali; Cremer, Paul S.
2003-05-01
The bulging of microfluidic systems during pressure-driven flow is potentially a major consideration for polydimethylsiloxane (PDMS)-based devices. Microchannel cross-sectional areas can change drastically as a function of flow rate and downstream microchannel position. Such geometrical flexibility leads to difficulties in predicting convective/diffusive transport for these systems. We have previously introduced a non-dimensional parameter, kappa, for characterizing convection and diffusion behavior for pressure-driven flow in rigid all-glass systems. This paper describes a modification of that concept for application to non-rigid systems, which is accomplished by incorporating an experimental step to account for the bulging in PDMS/glass microsystems. Specifically, an experimental measurement of channel height by fluorescence microscopy is combined with the aforementioned theory to characterize convective/diffusive behavior at a single location in the device. This allowed the parameter kappa to be determined at that point and applied to predict fluid flow in the subsequent portion of the PDMS microsystem. This procedure was applied to a PDMS/glass microfluidic diffusion dilution (muDD) device designed for generating concentration gradients. Theoretically predicted and experimentally measured distributions of concentrations within the microsystem matched well.
Ice-Templated Bimodal-Porous Silver Nanowire/PDMS Nanocomposites for Stretchable Conductor.
Oh, Jae Young; Lee, Dongju; Hong, Soon Hyung
2018-06-27
A three-dimensional (3D) bimodal-porous silver nanowire (AgNW) nanostructure with superior electrical properties is fabricated by freeze drying of AgNW aqueous dispersion with macrosized ice spheres for bimodal-porous structure. The ice sphere dispersed AgNW solution yields a 3D AgNW network at the surface of ice sphere and formation of macropores by removal of ice sphere during freeze-drying process. The resulting nanostructures exhibit excellent electrical properties due to their low electrical percolation threshold by the formation of macropores, which results in an efficient and dense 3D AgNW network with a small amount of AgNWs. The highly conductive and stretchable AgNW/poly(dimethylsiloxane) (PDMS) nanocomposites are made by impregnating the 3D porous conductive network with highly stretchable poly(dimethylsiloxane) (PDMS) matrix. The AgNW/PDMS nanocomposites exhibit a high conductivity of 42 S/cm with addition of relatively small amount of 2 wt %. The high conductivity is retained when stretched up to 120% elongation even after 100 stretching-releasing cycles. Due to high electrical conductivity and superior stretchability of AgNW/PDMS nanocomposites, these are expected to be used in stretchable electronic devices.
Stress-strain relationship of PDMS micropillar for force measurement application
NASA Astrophysics Data System (ADS)
Johari, Shazlina; Shyan, L. Y.
2017-11-01
There is an increasing interest to use polydimethylsiloxane (PDMS) based materials as bio-transducers for force measurements in the order of micro to nano Newton. The accuracy of these devices relies on appropriate material characterization of PDMS and modelling to convert the micropillar deformations into the corresponding forces. Previously, we have reported on fabricated PDMS micropillar that acts as a cylindrical cantilever and was experimentally used to measure the force of the nematode C. elegans. In this research, similar PDMS micropillars are designed and simulated using ANSYS software. The simulation involves investigating two main factors that is expected to affect the force measurement performance; pillar height and diameter. Results show that the deformation increases when pillar height is increased and the deformation is inversely proportional to the pillar diameter. The maximum deformation obtained is 713 um with pillar diameter of 20 um and pillar height of 100 um. Results of stress and strain show similar pattern, where their values decreases as pillar diameter and height is increased. The simulated results are also compared with the calculated displacement. The trend for both calculated and simulated values are similar with 13% average difference.
Flexible wire-shaped strain sensor from cotton thread for human health and motion detection.
Li, Yuan-Qing; Huang, Pei; Zhu, Wei-Bin; Fu, Shao-Yun; Hu, Ning; Liao, Kin
2017-03-21
In this work, a wire-shaped flexible strain sensor was fabricated by encapsulating conductive carbon thread (CT) with polydimethylsiloxane (PDMS) elastomer. The key strain sensitive material, CT, was prepared by pyrolysing cotton thread in N 2 atmosphere. The CT/PDMS composite wire shows a typical piezo-resistive behavior with high strain sensitivity. The gauge factors (GF) calculated at low strain of 0-4% and high strain of 8-10% are 8.7 and 18.5, respectively, which are much higher than that of the traditional metallic strain sensor (GF around 2). The wire-shaped CT/PDMS composite sensor shows excellent response to cyclic tensile loading within the strain range of 0-10%, the frequency range of 0.01-10 Hz, to up to 2000 cycles. The potential of the wire senor as wearable strain sensor is demonstrated by the finger motion and blood pulse monitoring. Featured by the low costs of cotton wire and PDMS resin, the simple structure and fabrication technique, as well as high performance with miniaturized size, the wire-shaped sensor based on CT/PDMS composite is believed to have a great potential for application in wearable electronics for human health and motion monitoring.
Organosilicon phantom for photoacoustic imaging
NASA Astrophysics Data System (ADS)
Avigo, Cinzia; Di Lascio, Nicole; Armanetti, Paolo; Kusmic, Claudia; Cavigli, Lucia; Ratto, Fulvio; Meucci, Sandro; Masciullo, Cecilia; Cecchini, Marco; Pini, Roberto; Faita, Francesco; Menichetti, Luca
2015-04-01
Photoacoustic imaging is an emerging technique. Although commercially available photoacoustic imaging systems currently exist, the technology is still in its infancy. Therefore, the design of stable phantoms is essential to achieve semiquantitative evaluation of the performance of a photoacoustic system and can help optimize the properties of contrast agents. We designed and developed a polydimethylsiloxane (PDMS) phantom with exceptionally fine geometry; the phantom was tested using photoacoustic experiments loaded with the standard indocyanine green dye and compared to an agar phantom pattern through polyethylene glycol-gold nanorods. The linearity of the photoacoustic signal with the nanoparticle number was assessed. The signal-to-noise ratio and contrast were employed as image quality parameters, and enhancements of up to 50 and up to 300%, respectively, were measured with the PDMS phantom with respect to the agar one. A tissue-mimicking (TM)-PDMS was prepared by adding TiO2 and India ink; photoacoustic tests were performed in order to compare the signal generated by the TM-PDMS and the biological tissue. The PDMS phantom can become a particularly promising tool in the field of photoacoustics for the evaluation of the performance of a PA system and as a model of the structure of vascularized soft tissues.
Modular microfluidic systems using reversibly attached PDMS fluid control modules
NASA Astrophysics Data System (ADS)
Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin
2013-05-01
The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.
Wang, Zhe; Shen, Xiaoping; Qian, Temeng; Wang, Junjie; Sun, Qingfeng; Jin, Chunde
2018-01-01
The disadvantages such as swelling after absorbing water and flammability restrict the widespread applications of lignocellulose composites (LC). Herein, a facile and effective method to fabricate superhydrophobic surfaces with flame retardancy on LC has been investigated by coating polydimethylsiloxane (PDMS) and stearic acid (STA) modified kaolin (KL) particles. The as-prepared coatings on the LC exhibited a good repellency to water (a contact angle = 156°). Owing to the excellent flame retardancy of kaolin particles, the LC coated with PDMS@STA-KL displayed a good flame retardancy during limiting oxygen index and cone calorimeter tests. After the coating treatment, the limiting oxygen index value of the LC increased to 41.0. Cone calorimetry results indicated that the ignition time of the LC coated with PDMS@STA-KL increased by 40 s compared with that of uncoated LC. Moreover, the peak heat release rate (PHRR) and the total heat release (THR) of LC coated with PDMS@STA-KL reduced by 18.7% and 19.2% compared with those of uncoated LC, respectively. This LC coating with improved water repellency and flame retardancy can be considered as a potential alternative to protect the lignocellulose composite. PMID:29751575
A "place n play" modular pump for portable microfluidic applications.
Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong
2012-03-01
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.
A “place n play” modular pump for portable microfluidic applications
Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong
2012-01-01
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device. PMID:22685507
Polymer (PDMS-Fe3O4) magneto-dielectric substrate for a MIMO antenna array
NASA Astrophysics Data System (ADS)
Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Kamarudin, Muhammad Ramlee
2016-01-01
This paper presents the design of a 2 × 4 multiple-input multiple-output (MIMO) antenna array fabricated on a nanocomposite magneto-dielectric polymer substrate. The 10-nm iron oxide (Fe3O4) nanoparticles and polydimethylsiloxane (PDMS) composite is used as substrate to enhance the performance of a MIMO antenna array. The measured results showed up to 40.8 % enhancement in terms of bandwidth, 9.95 dB gain, and 57 % of radiation efficiency. Furthermore, it is found that the proposed magneto-dielectric (PDMS-Fe3O4) composite substrate provides excellent MIMO parameters such as correlation coefficient, diversity gain, and mutual coupling. The prototype of the proposed antenna is transparent, flexible, lightweight, and resistant against dust and corrosion. Measured results indicate that the proposed antenna is suitable for WLAN and ultra-wideband biomedical applications within frequency range of 5.33-7.70 GHz.
Fu, Xiaotong; Mavrogiannis, Nicholas; Ibo, Markela; Crivellari, Francesca; Gagnon, Zachary R
2017-01-01
We present a new type of free-flow electrophoresis (FFE) device for performing on-chip microfluidic isotachophoresis and zone electrophoresis. FFE is performed using metal gallium electrodes, which are isolated from a main microfluidic flow channel using thin micron-scale polydimethylsiloxane/carbon black (PDMS/CB) composite membranes integrated directly into the sidewalls of the microfluidic channel. The thin membrane allows for field penetration and effective electrophoresis, but serves to prevent bubble generation at the electrodes from electrolysis. We experimentally demonstrate the ability to use this platform to perform on-chip free-flow electrophoretic separation and isotachophoretic concentration. Due to the small size and simple fabrication procedure, this PDMS/CB platform could be used as a part of an on-chip upstream sample preparation toolkit for portable microfluidic diagnostic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ahmed, Syed Rahin; Kim, Jeonghyo; Tran, Van Tan; Suzuki, Tetsuro; Neethirajan, Suresh; Lee, Jaebeom; Park, Enoch Y.
2017-01-01
Nanomaterials without chemical linkers or physical interactions that reside on a two-dimensional surface are attractive because of their electronic, optical and catalytic properties. An in situ method has been developed to fabricate gold nanoparticle (Au NP) films on different substrates, regardless of whether they are hydrophilic or hydrophobic surfaces, including glass, 96-well polystyrene plates, and polydimethylsiloxane (PDMS). A mixture of sodium formate (HCOONa) and chloroauric acid (HAuCl4) solution was used to prepare Au NP films at room temperature. An experimental study of the mechanism revealed that film formation is dependent on surface wettability and inter particle attraction. The as-fabricated Au NP films were further applied to the colorimetric detection of influenza virus. The response to the commercial target, New Caledonia/H1N1/1999 influenza virus, was linear in the range from 10 pg/ml to 10 μg/ml and limit of detection was 50.5 pg/ml. In the presence of clinically isolated influenza A virus (H3N2), the optical density of developed color was dependent on the virus concentration (10–50,000 PFU/ml). The limit of detection of this study was 24.3 PFU/ml, a limit 116 times lower than that of conventional ELISA (2824.3 PFU/ml). The sensitivity was also 500 times greater than that of commercial immunochromatography kits. PMID:28290527
Assoumani, A; Margoum, C; Lombard, A; Guillemain, C; Coquery, M
2017-03-01
Passive samplers are theoretically capable of integrating variations of concentrations of micropollutants in freshwater and providing accurate average values. However, this property is rarely verified and quantified experimentally. In this study, we investigated, in controlled conditions, how the polydimethylsiloxane-coated stir bars (passive Twisters) can integrate fluctuating concentrations of 20 moderately hydrophilic to hydrophobic pesticides (2.18 < Log K ow < 5.51). In the first two experiments, we studied the pesticide accumulation in the passive Twisters during high concentration peaks of various durations in tap water. We then followed their elimination from the passive Twisters placed in non-contaminated water (experiment no. 1) or in water spiked at low concentrations (experiment no. 2) for 1 week. In the third experiment, we assessed the accuracy of the time-weighted average concentrations (TWAC) obtained from the passive Twisters exposed for 4 days to several concentration variation scenarios. We observed little to no elimination of hydrophobic pesticides from the passive Twisters placed in non-contaminated water and additional accumulation when placed in water spiked at low concentrations. Moreover, passive Twisters allowed determining accurate TWAC (accuracy, determined by TWAC-average measured concentrations ratios, ranged from 82 to 127 %) for the pesticides with Log K ow higher than 4.2. In contrast, fast and large elimination was observed for the pesticides with Log K ow lower than 4.2 and poorer TWAC accuracy (ranging from 32 to 123 %) was obtained.
Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates
Tang, Jun; Guo, Hao; Zhao, Miaomiao; Yang, Jiangtao; Tsoukalas, Dimitris; Zhang, Binzhen; Liu, Jun; Xue, Chenyang; Zhang, Wendong
2015-01-01
This paper demonstrates a fabrication technology of Ag wrinkled electrodes with application in highly stretchable wireless sensors. Ag wrinkled thin films that were formed by vacuum deposition on top of pre-strained and relaxed polydimethylsiloxane (PDMS) substrates which have been treated using an O2 plasma and a surface chemical functionalization process can reach a strain limit up to 200%, while surface adhesion area can reach 95%. The electrical characteristics of components such as resistors, inductors and capacitors made from such Ag conductors have remained stable under stretching exhibiting low temperature and humidity coefficients. This technology was then demonstrated for wireless wearable electronics using compatible processing with established micro/nano fabrication technology. PMID:26585636
Silicone nanocomposite coatings for fabrics
NASA Technical Reports Server (NTRS)
Lee, Stein S. (Inventor); Ou, Runqing (Inventor); Eberts, Kenneth (Inventor); Singhal, Amit (Inventor)
2011-01-01
A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.
A PDMS Device Coupled with Culture Dish for In Vitro Cell Migration Assay.
Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Pei, WeiHua; Chen, Hongda
2018-04-30
Cell migration and invasion are important factors during tumor progression and metastasis. Wound-healing assay and the Boyden chamber assay are efficient tools to investigate tumor development because both of them could be applied to measure cell migration rate. Therefore, a simple and integrated polydimethylsiloxane (PDMS) device was developed for cell migration assay, which could perform quantitative evaluation of cell migration behaviors, especially for the wound-healing assay. The integrated device was composed of three units, which included cell culture dish, PDMS chamber, and wound generation mold. The PDMS chamber was integrated with cell culture chamber and could perform six experiments under different conditions of stimuli simultaneously. To verify the function of this device, it was utilized to explore the tumor cell migration behaviors under different concentrations of fetal bovine serum (FBS) and transforming growth factor (TGF-β) at different time points. This device has the unique capability to create the "wound" area in parallel during cell migration assay and provides a simple and efficient platform for investigating cell migration assay in biomedical application.
Pan, Jin; Liu, Shiyu; Yang, Yicheng; Lu, Jiangang
2018-06-08
Resistive pressure sensors generally employ microstructures such as pores and pyramids in the active layer or on the electrodes to reduce the Young’s modulus and improve the sensitivity. However, such pressure sensors always exhibit complex fabrication process and have difficulties in controlling the uniformity of microstructures. In this paper, we demonstrated a highly sensitive resistive pressure sensor based on a composite comprising of low-polarity liquid crystal (LPLC), multi-walled carbon nanotube (MWCNT), and polydimethylsiloxane (PDMS) elastomer. The LPLC in the PDMS forms a polymer-dispersed liquid crystal (PDLC) structure which can not only reduce the Young’s modulus but also contribute to the construction of conductive paths in the active layer. By optimizing the concentration of LC in PDMS elastomer, the resistive pressure sensor shows a high sensitivity of 5.35 kPa −1 , fast response (<150 ms), and great durability. Fabrication process is also facile and the uniformity of the microstructures can be readily controlled. The pressure sensor offers great potential for applications in emerging wearable devices and electronic skins.
Fabrication and Characterization of Flexible Electrowetting on Dielectrics (EWOD) Microlens
Li, Chenhui; Jiang, Hongrui
2014-01-01
We present a flexible variable-focus converging microlens actuated by electrowetting on dielectric (EWOD). The microlens is made of two immiscible liquids and a soft polymer, polydimethylsiloxane (PDMS). Parylene intermediate layer is used to produce robust flexible electrode on PDMS. A low-temperature PDMS-compatible fabrication process has been developed to reduce the stress on the lens structure. The lens has been demonstrated to be able to conform to curved surfaces smoothly. The focal length of the microlens is 29–38 mm on a flat surface, and 31–41 mm on a curved surface, varying with the voltage applied. The resolving power of the microlens is 25.39 line pairs per mm by a 1951 United States Air Force (USAF) resolution chart and the lens aberrations are measured by a Shack-Hartmann wavefront sensor. The focal length behavior on a curved surface is discussed and for the current lens demonstrated the focal length is slightly longer on the curved surface as a result of the effect of the curved PDMS substrate. PMID:25360324
NASA Astrophysics Data System (ADS)
Ponnamma, Deepalekshmi; Sadasivuni, Kishor Kumar; Cabibihan, John-John; Yoon, W. Jong; Kumar, Bijandra
2016-04-01
The ongoing revolution in touch panel technology and electronics demands the need for thin films, which are flexible, stretchable, conductive, and highly touch responsive. In this regard, conductive elastomer nanocomposites offer potential solutions for these stipulations; however, viability is limited to the poor dispersion of conductive nanomaterials such as graphene into the matrix. Here, we fabricated a reduced graphene oxide (rGO) and poly(dimethylsiloxane) (PDMS) elastomer based transparent and flexible conductive touch responsive film by dispersing rGO honeycombs uniformly into PDMS elastomer through an ionic liquid (IL) modification. Pursuing a simple, scalable, and safe method of solution casting, this provides a versatile and creative design of a transparent and stretchable rGO/IL-PDMS capacitive touch responsive, where rGO acts as a sensing element. This transparent film with ˜70% transmittance exhibits approximately a five times faster response in comparison to rGO/PDMS film, with negligible degradation over time. The performance of this touch screen film is expected to have applications in the emerging field of foldable electronics.
Rigidity-tuning conductive elastomer
NASA Astrophysics Data System (ADS)
Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel
2015-06-01
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.
Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand
NASA Astrophysics Data System (ADS)
Rocha, Rui Pedro; Alhais Lopes, Pedro; de Almeida, Anibal T.; Tavakoli, Mahmoud; Majidi, Carmel
2018-03-01
We demonstrate fabrication, characterization, and implementation of ‘soft-matter’ pressure and bending sensors for a soft robotic hand. The elastomer-based sensors are embedded in a robot finger composed of a 3D printed endoskeleton and covered by an elastomeric skin. Two types of sensors are evaluated, resistive pressure sensors and capacitive pressure sensors. The sensor is fabricated entirely out of insulating and conductive rubber, the latter composed of polydimethylsiloxane (PDMS) elastomer embedded with a percolating network of structured carbon black (CB). The sensor-integrated fingers have a simple materials architecture, can be fabricated with standard rapid prototyping methods, and are inexpensive to produce. When incorporated into a robotic hand, the CB-PDMS sensors and PDMS carrier medium function as an ‘artificial skin’ for touch and bend detection. Results show improved response with a capacitive sensor architecture, which, unlike a resistive sensor, is robust to electromechanical hysteresis, creep, and drift in the CB-PDMS composite. The sensorized fingers are integrated in an anthropomorphic hand and results for a variety of grasping tasks are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponnamma, Deepalekshmi; Sadasivuni, Kishor Kumar; Cabibihan, John-John
The ongoing revolution in touch panel technology and electronics demands the need for thin films, which are flexible, stretchable, conductive, and highly touch responsive. In this regard, conductive elastomer nanocomposites offer potential solutions for these stipulations; however, viability is limited to the poor dispersion of conductive nanomaterials such as graphene into the matrix. Here, we fabricated a reduced graphene oxide (rGO) and poly(dimethylsiloxane) (PDMS) elastomer based transparent and flexible conductive touch responsive film by dispersing rGO honeycombs uniformly into PDMS elastomer through an ionic liquid (IL) modification. Pursuing a simple, scalable, and safe method of solution casting, this provides amore » versatile and creative design of a transparent and stretchable rGO/IL-PDMS capacitive touch responsive, where rGO acts as a sensing element. This transparent film with ∼70% transmittance exhibits approximately a five times faster response in comparison to rGO/PDMS film, with negligible degradation over time. The performance of this touch screen film is expected to have applications in the emerging field of foldable electronics.« less
NASA Astrophysics Data System (ADS)
Bedogni, Elena; Kaneko, Satoshi; Fujii, Shintaro; Kiguchi, Manabu
2017-03-01
We have fabricated Au nanoparticle arrays on the flexible poly(dimethylsiloxane) (PDMS) film. The nanoparticles were bound to the film via a covalent bond by a ligand exchange reaction. Thanks to the strong chemical bonding, highly stable and uniformly dispersed Au nanoparticle arrays were fixed on the PDMS film. The Au nanoparticle arrays were characterized by the UV-vis, scanning electron microscope (SEM) and surface enhanced Raman scattering (SERS). The UV-vis and SEM measurements showed the uniformity of the surface-dispersed Au nanoparticles, and SERS measurement confirmed the chemistry of the PDMS film. Reflecting the high stability and the uniformity of the Au nanoparticle arrays, the plasmon wavelength of the Au nanoparticles reversely changed with modulation of the interparticle distance, which was induced by the stretching of the PDMS film. The plasmon wavelength linearly decreased from 664 to 591 nm by stretching of 60%. The plasmon wavelength shift can be explained by the change in the strength of the plasmon coupling which is mechanically controlled by the mechanical strain.
Gervasio, Michelle; Lu, Kathy; Davis, Richey
2015-09-15
This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.
Near-infrared light-controlled tunable grating based on graphene/elastomer composites
NASA Astrophysics Data System (ADS)
Wang, Fei; Jia, Shuhai; Wang, Yonglin; Tang, Zhenhua
2018-02-01
A near-infrared (nIR) light actuated tunable transmission optical grating based on graphene nanoplatelet (GNP)/polydimethylsiloxane (PDMS) and PDMS is proposed. A simple fabrication protocol is studied that allows integration of the grating with the actuation mechanism; both components are made from soft elastomers, and this ensure the tunability and the light-driven operation of the grating. The resulting grating structure demonstrates continuous period tunability of 2.7% under an actuation power density of 220 mW cm-2 within a period of 3 s and also demonstrates a time-independent characteristic. The proposed infrared activated grating can be developed for wireless remote light splitting in bio/chemical sensing and optical telecommunications applications.