Science.gov

Sample records for hydroponic solution bioavailability

  1. Reuse of hydroponic waste solution.

    PubMed

    Kumar, Ramasamy Rajesh; Cho, Jae Young

    2014-01-01

    Attaining sustainable agriculture is a key goal in many parts of the world. The increased environmental awareness and the ongoing attempts to execute agricultural practices that are economically feasible and environmentally safe promote the use of hydroponic cultivation. Hydroponics is a technology for growing plants in nutrient solutions with or without the use of artificial medium to provide mechanical support. Major problems for hydroponic cultivation are higher operational cost and the causing of pollution due to discharge of waste nutrient solution. The nutrient effluent released into the environment can have negative impacts on the surrounding ecosystems as well as the potential to contaminate the groundwater utilized by humans for drinking purposes. The reuse of non-recycled, nutrient-rich hydroponic waste solution for growing plants in greenhouses is the possible way to control environmental pollution. Many researchers have successfully grown several plant species in hydroponic waste solution with high yield. Hence, this review addresses the problems associated with the release of hydroponic waste solution into the environment and possible reuse of hydroponic waste solution as an alternative resource for agriculture development and to control environmental pollution.

  2. Solution Culture Hydroponics: History and Inexpensive Equipment.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1994-01-01

    Describes historical accounts dating back to as early as 604-562 BC of the various uses of hydroponics. Throughout the article, diagrams and simple instructions are provided to aid in classroom use of hydroponics. (ZWH)

  3. Solution Culture Hydroponics: History and Inexpensive Equipment.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1994-01-01

    Describes historical accounts dating back to as early as 604-562 BC of the various uses of hydroponics. Throughout the article, diagrams and simple instructions are provided to aid in classroom use of hydroponics. (ZWH)

  4. Laboratory Evaluation of Ion-Selective Electrodes for Simultaneous Analysis of Macronutrients in Hydroponic Solution

    USDA-ARS?s Scientific Manuscript database

    Automated sensing of macronutrients in hydroponic solution would allow more efficient management of nutrients for crop growth in closed hydroponic systems. Ion-selective microelectrode technology requires an ion-selective membrane or a solid metal material that responds selectively to one analyte in...

  5. Sterilisation of Hydroponic Culture Solution Contaminated by Fungi using an Atmospheric Pressure Corona Discharge

    NASA Astrophysics Data System (ADS)

    Mizukami, Kohji; Satoh, Kohki; Kanayama, Hiroshi; Itoh, Hidenori; Tagashira, Hiroaki; Shimozuma, Mitsuo; Okamoto, Hiroyuki; Takasaki, Satoko; Kinoshita, Muneshige

    The hydroponic culture solution contaminated by fungi is sterilised by a DC corona discharge, and the sterilisation characteristics are investigated in this work. A DC streamer corona discharge is generated at atmospheric pressure in air between needle clusters and a water bath containing contaminated solution by fungus such as Fusarium oxysporum f. sp. spinaciae or Fusarium sp.. It is found that the fungi are killed by the exposure of the corona discharge, and that the death rates of the fungi chiefly depend on the concentration of the hydroponic culture solutions. It is also found that the number densities of the fungi decrease exponentially with the energy expenditure of the corona discharge, and that damping coefficients of the fungi densities depend on the concentration of the hydroponic culture solutions. This suggests that the fungi are chiefly inactivated by electroporation.

  6. The effects of nutrient solution sterilization on the growth and yield of hydroponically grown lettuce

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.; Dudzinski, D.; Minners, R. S.

    1987-01-01

    Two methods of removing bacteria from hydroponic nutrient solution [ultraviolet (UV) radiation and submicronic filter] were evaluated for efficiency and for their effects on lettuce (Lactuca sativa L.) production. Both methods were effective in removing bacteria; but, at high intensity, the ultraviolet sterilizer significantly inhibited the production of plants grown in the treated solution. Bacterial removal by lower intensity UV or a submicronic filter seemed to promote plant growth slightly, but showed no consistent, statistically significant effect.

  7. The effects of nutrient solution sterilization on the growth and yield of hydroponically grown lettuce

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.; Dudzinski, D.; Minners, R. S.

    1987-01-01

    Two methods of removing bacteria from hydroponic nutrient solution [ultraviolet (UV) radiation and submicronic filter] were evaluated for efficiency and for their effects on lettuce (Lactuca sativa L.) production. Both methods were effective in removing bacteria; but, at high intensity, the ultraviolet sterilizer significantly inhibited the production of plants grown in the treated solution. Bacterial removal by lower intensity UV or a submicronic filter seemed to promote plant growth slightly, but showed no consistent, statistically significant effect.

  8. The effects of nutrient solution sterilization on the growth and yield of hydroponically grown lettuce.

    PubMed

    Schwartzkopf, S H; Dudzinski, D; Minners, R S

    1987-10-01

    Two methods of removing bacteria from hydroponic nutrient solution [ultraviolet (UV) radiation and submicronic filter] were evaluated for efficiency and for their effects on lettuce (Lactuca sativa L.) production. Both methods were effective in removing bacteria; but, at high intensity, the ultraviolet sterilizer significantly inhibited the production of plants grown in the treated solution. Bacterial removal by lower intensity UV or a submicronic filter seemed to promote plant growth slightly, but showed no consistent, statistically significant effect.

  9. Development of a vinasse nutritive solution for hydroponics.

    PubMed

    dos Santos, José Darcy; Lopes da Silva, André Luís; da Luz Costa, Jefferson; Scheidt, Gessiel Newton; Novak, Alessandra Cristine; Sydney, Eduardo Bittencourt; Soccol, Carlos Ricardo

    2013-01-15

    Vinasse is a residue that originates from the distillation of fuel alcohol. However, it contains a relative amount of nutrients. The aim of this work was to develop a nutritive solution using vinasse and to compare it with a commercial solution for the cultivation of lettuce, watercress and rocket. Vinasse obtained from juice must was decanted and filtered, followed by chemical analyses of the nutrients. A nutritive solution composed of 10% vinasse supplemented with nutrients was in agreement with the results of the chemical analyses (a similar amount of Furlani's solution). Experiments were then performed in an NFT (Nutrient film technique) system. The treatments used the vinasse solution and a commercial solution constituted from a Yara Fertilizantes(®) product. The height of the aerial part and the number of leaves of the crops were evaluated at 7, 14, 21, 28, 35 and 42 days. In most crops, the results were very similar. The vinasse solution promoted a larger number of leaves in lettuce and the highest aerial part in watercress. For the rocket, there were no significant differences between the two solutions. In conclusion, a nutritive solution was developed using vinasse, and this solution provided suitable growth, which was higher in some cases, for the crops studied herein. This study shows the great potential of this technology as a rational alternative to vinasse disposal.

  10. Treatment of drainage solution from hydroponic greenhouse production with microalgae.

    PubMed

    Hultberg, Malin; Carlsson, Anders S; Gustafsson, Susanne

    2013-05-01

    This study investigated treatment of the drainage solution from greenhouse production with microalgae, through inoculation with Chlorella vulgaris or through growth of the indigenous microalgal community. A significant reduction in nitrogen, between 34.7 and 73.7 mg L(-1), and particularly in phosphorus concentration, between 15.4 and 15.9 mg L(-1), was observed in drainage solution collected from commercial greenhouse production. The large reduction in nutrients was achieved through growth of the indigenous microalgal community i.e., without pre-treatment of the drainage solution or inoculation with the fast growing green microalgae C. vulgaris. Analysis of the fatty acid composition of the algal biomass revealed that compared with a standard growth medium for green algae, the drainage solution was inferior for lipid production. Despite the biorefinery concept being less promising, microalgae-based treatment of drainage solution from greenhouse production is still of interest considering the urgent need for phosphorus recycling.

  11. Nutrient solution cooling and its effect on temperature of leaf lettuce in hydroponic system.

    PubMed

    Nam, S W; Kim, M K; Son, J E

    1996-12-01

    The heat transfer characteristics of a hydroponic system were experimentally verified after theoretical establishment and the effect of nutrient solution cooling on the plant temperature was investigated. About 96 percent of the total heat flow transferred from culture bed to nutrient solution was the conductive heat through planting board and partitioning materials. The average and maximum temperatures of the leaf lettuce decreased 0.6 and 1.5 degrees C., respectively, with cooling of nutrient solution by 6 degrees C. A numerical model for prediction of cooling load of nutrient solution in a hydroponic greenhouse was developed, and the results from the simulation model showed a good agreement with those from experiments. A mechanical cooling system using the counter flow type with double pipes was developed for cooling the nutrient solution. Also the heat transfer characteristics of the system were analyzed experimentally and theoretically, and compared with the other existing cooling systems of nutrient solution. The cooling capacities of three different systems, which used polyethylene tube in solution tank, stainless tube in solution tank, and the counter flow type with double pipes, were comparatively evaluated.

  12. Oral bioavailability: issues and solutions via nanoformulations.

    PubMed

    Pathak, Kamla; Raghuvanshi, Smita

    2015-04-01

    The delivery of drugs through the oral route is regarded as most optimal to achieve desired therapeutic effects and patient compliance. However, poor pharmacokinetic profiles of oral drug candidates remains an area of concern, and approaches to enhance their bioavailability are widely cited in the literature. Traditionally, the approaches have been confined to molecular optimization of the drug molecule, which has gradually evolved into development of microsized and nanosized formulations. Nanoformulations, by virtue of their nanosize, are widely acclaimed for circumventing the obstacles of poor pharmacokinetics. In this review, an attempt has been made to discuss existing challenges of bioavailability and approaches to overcome the same, with in-depth compilation of the literature on nanoformulations. The nanoformulations reviewed include nanocrystals, nanoemulsions, polymeric nanoparticles, self-nanoemulsifying drug delivery systems, dendrimers, carbon nanotubes, polymeric micelles and lipid nanocarriers. This review confirms the potential of nanomedicines to improve the pharmacokinetics of drugs via nanoformulations. Chemotherapeutic applications and patent reports are also compiled in the review. Despite the promising benefits, nanomedicines are associated with hazards to human health. Hence, the review also deals with toxicological consequences of nanomedicines, and with in vitro/in vivo screening methods to assess bioavailability as per regulatory considerations. Nanotechnology has been shown to facilitate the clinical translation of drug candidates that were deemed to be bioavailability failures. Conclusively, nanotechnological approaches to particle design and formulation are beginning to expand the market for many drugs with improved bioavailability and therapeutics. However, dedicated efforts are needed to develop advanced nanomedicines with minimal or no adverse effects.

  13. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  14. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    NASA Astrophysics Data System (ADS)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  15. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  16. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato.

    PubMed

    McKeehen, J D; Mitchell, C A; Wheeler, R M; Bugbee, B; Nielsen, S S

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  17. Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System

    NASA Technical Reports Server (NTRS)

    Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

    1998-01-01

    Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.

  18. Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System

    NASA Technical Reports Server (NTRS)

    Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

    1998-01-01

    Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.

  19. Computer model of hydroponics nutrient solution pH control using ammonium.

    PubMed

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  20. Hydroponic Culture

    ERIC Educational Resources Information Center

    Steucek, G. L.; Yurkiewicz, W. J.

    1973-01-01

    Describes a hydroponic culture technique suitable for student exercises in biology. This technique of growing plants in nutrient solutions enhances plant growth, and is an excellent way to obtain intact plants with root systems free of soil or other particulate matter. (JR)

  1. Hydroponic Culture

    ERIC Educational Resources Information Center

    Steucek, G. L.; Yurkiewicz, W. J.

    1973-01-01

    Describes a hydroponic culture technique suitable for student exercises in biology. This technique of growing plants in nutrient solutions enhances plant growth, and is an excellent way to obtain intact plants with root systems free of soil or other particulate matter. (JR)

  2. Evidence of Association of Salmonellae with Tomato Plants Grown Hydroponically in Inoculated Nutrient Solution

    PubMed Central

    Guo, Xuan; van Iersel, Marc W.; Chen, Jinru; Brackett, Robert E.; Beuchat, Larry R.

    2002-01-01

    The possibility of uptake of salmonellae by roots of hydroponically grown tomato plants was investigated. Within 1 day of exposure of plant roots to Hoagland nutrient solution containing 4.46 to 4.65 log10 CFU of salmonellae/ml, the sizes of the pathogen populations were 3.01 CFU/g of hypocotyls and cotyledons and 3.40 log10 CFU/g of stems for plants with intact root systems (control) and 2.55 log10 CFU/g of hypocotyls and cotyledons for plants from which portions of the roots had been removed. A population of ≥3.38 log10 CFU/g of hypocotyls-cotyledons, stems, and leaves of plants grown for 9 days was detected regardless of the root condition. Additional studies need to be done to unequivocally demonstrate that salmonellae can exist as endophytes in tomato plants grown under conditions that simulate commonly used agronomic practices. PMID:12089054

  3. Oral bioavailability of pantoprazole suspended in sodium bicarbonate solution.

    PubMed

    Ferron, Geraldine M; Ku, Sherry; Abell, Madelyn; Unruh, Mary; Getsy, John; Mayer, Philip R; Paul, Jeffrey

    2003-07-01

    The bioavailability of pantoprazole when administered as a suspension in sodium bicarbonate solution and as the oral tablet was studied. In an open-label, randomized, two-period crossover study, healthy fasting subjects received either one enteric-coated 40-mg pantoprazole tablet by mouth with 240 mL of water or 20 mL of a suspension prepared from one crushed pantoprazole tablet and 840 mg of sodium bicarbonate solution and administered via a nasogastric tube. Treatments were separated by a 48-hour washout period. Blood samples were collected at intervals up to 24 hours after drug administration for measurement of pantoprazole concentration by high-performance liquid chromatography (HPLC) and estimation of pharmacokinetic values. A separate study was conducted to determine pantoprazole's stability in the suspension for up to three months at 25, 5, and -20 degrees C; concentrations were measured by HPLC. Twelve subjects completed the study. The suspension yielded pantoprazole Cmax values similar to those of the tablet formulation, but the drug was 25% less bioavailable. There was no lag time for the suspension. The suspension was stable for up to two weeks at 5 degrees C and up to three months at -20 degrees C. A suspension of pantoprazole in sodium bicarbonate solution yielded a Cmax similar to that of the tablet formulation, and the drug was quickly absorbed. However, bio-availability was slightly lower with the suspension than with the tablet.

  4. Uptake and translocation of p,p'-dichlorodiphenyldichloroethylene supplied in hydroponics solution to Cucurbita.

    PubMed

    Gent, Martin P N; White, Jason C; Parrish, Zakia D; Isleyen, Mehmet; Eitzer, Brian D; Mattina, MaryJane Incorvia

    2007-12-01

    Field studies show shoots of zucchini (Cucurbita pepo L.) accumulate various hydrophobic contaminants from soil, although many other plants do not, including cucumber (Cucumis sativus L.). To investigate the mechanism for this uptake, we presented p,p'-dichlorodiphenyldichloroethylene (DDE) to these two species in hydroponics solution. A mixture of DDE bound to Tenax beads stirred with a solution of water passing through a reservoir provided a flowing solution containing DDE at approximately 2 microg/L for many weeks duration. Approximately 90% of the DDE supplied in solution was adsorbed on the roots of both cucumber and zucchini. Less than 10% of the sorbed DDE was released subsequently when clean solution flowed past these contaminated roots for 9 d. The shoots of both species accumulated DDE, but the fraction that moved from the roots to the shoot in zucchini, ranging from 6 to 27% in various trials, was 10-fold greater than that in cucumber, 0.7 to 2%. The gradient in DDE concentration in zucchini tissues was in the order root more more than stem > petiole > leaf blade, indicating the movement was through the xylem in the transpiration stream. Some DDE in leaf blades might have been absorbed from the air, because the concentration in this tissue varied less with time, position in trough, or species, than did DDE in stems and petioles. The remarkable ability of zucchini to translocate DDE could not be attributed to differences in tissue composition, growth rate, distribution of weight among plant parts, or in the leaf area and rate of transpiration of water from leaves. Some other factor enables efficient translocation of hydrophobic organic contaminants in the xylem of zucchini.

  5. Development of a potassium-selective optode for hydroponic nutrient solution monitoring.

    PubMed

    Bamsey, Matthew; Berinstain, Alain; Dixon, Michael

    2012-08-06

    Highly efficient and reliable plant growth such as that required in biological life support systems for future space-based missions can be better achieved with knowledge of ion concentrations within the hydroponic nutrient solution. This paper reports on the development and application of ion-selective bulk optodes to plant growth systems. Membranes for potassium-selective sensing are reported that have been tailored so that their dynamic range is centred on potassium activities within typical nutrient solution recipes. The developed sensors have been shown to exhibit a potassium activity measuring range from 0.134 to 117 mM at pH 6.0. These bulk optodes show full scale response on the order of several minutes. They show minimal interference to other cations and meet worst-case selectivity requirements for potassium monitoring in the considered half strength Hoagland solution. When continuously immersed in nutrient solution, these sensors demonstrated predicable lifetimes on the order of 50h. The developed instrument for absorption-based measurements including light source, mini-spectrometer and optode probe is presented. Custom instrument control and monitoring software including a spectral normalization procedure, use of a dual-wavelength absorbance ratio technique and automatic adjustment for pH variation result in an instrument that is self-calibrating and one that can account for effects such as light source fluctuations, membrane thickness variations and a variety of other factors. The low mass, low volume nature of bulk optode sensing systems, make them a promising technology for future space-based plant production systems. Their low-cost and technology transfer potential suggest that they could provide terrestrial growers a new and reliable mechanism to obtain ion-selective knowledge of their nutrient solution, improving yields, reducing costs and aiding in compliance to continually more stringent environmental regulation. Crown Copyright © 2012. Published

  6. Closed-Cycle Nutrient Supply For Hydroponics

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.

    1991-01-01

    Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.

  7. Removal of 2,4-dichlorophenol in hydroponic solution by four Salix matsudana clones.

    PubMed

    Shi, Xiang; Leng, Huani; Hu, Yunxue; Liu, Yihua; Duan, Hongping; Sun, Haijing; Chen, Yitai

    2012-12-01

    Using plants to treat polluted sites and groundwater is an approach called phytoremediation. The aim of the present study was to investigated the toxicity, uptake, accumulation, and removal of 2,4-dichlorophenol (2,4-DCP) in four Salix matsudana clones and to screen the feasibility of phytoremediation using S. matsudana clones. Willows were exposed to 2,4-DCP in hydroponic solution with the concentrations of 10, 20 and 30mg L(-1) for 96h. The biomass of shoots and roots were reduced. Chlorophyll content decreased significantly compared with the control. All root morphology values were different between clones and different concentrations. The 2,4-DCP endurance of four S. matsudana clones was gauged as follows: clone 18> clone 22> clone 8> clone 10. S. matsudana was found to promote 2,4-DCP removal relative to the contaminated solution without plants. From 52.2% to 73.7% of 2,4-DCP were removed by all treatments after 96h exposure. 2,4-DCP was mainly accumulated in roots than in shoots. Clone 22 was the most efficient for the accumulation of 2,4-DCP in plant tissues. The removal of 2,4-DCP from the media may result from its degradation or polymerized in the root zone by the plant enzymes. Phytoremediation of 2,4-DCP with S. matsudana clone 8, 18 and 22 seem to be a viable option, especially at lower concentrations. These clones could remove 2,4-DCP from aquatic environment rapidly and efficiently. In addition, the toxic effect on trees during the removal process is not lethal.

  8. Aseptic hydroponics to assess rhamnolipid-Cd and rhamnolipid-Zn bioavailability for sunflower (Helianthus annuus): a phytoextraction mechanism study.

    PubMed

    Wen, Jia; McLaughlin, Mike J; Stacey, Samuel P; Kirby, Jason K

    2016-11-01

    The availability of cadmium (Cd) and zinc (Zn) to sunflower (Helianthus annuus) was investigated in rhamnolipid- and ethylenediaminetetraacetic acid (EDTA)-buffered solutions in order to evaluate the influence of aqueous speciation of the metals on their uptake by the plant, in relation to predictions of uptake by the free ion activity model (FIAM). Free metal ion activity was estimated using the chemical equilibrium program MINTEQ or measured by Donnan dialysis. The uptake of Cd followed the FIAM for the EDTA-buffered solution at EDTA concentrations below 0.4 μM; for the rhamnolipid-buffered solution, the uptake of both metals in roots was not markedly affected by increasing rhamnolipid concentrations in solution. This suggests rhamnolipid enhanced metal accumulation in plant roots (per unit free metal in solution) possibly through formation and uptake of lipophilic complexes. The addition of normal Ca concentrations (low millimetre range) to the rhamnolipid uptake solutions reduced Cd accumulation in shoots by inhibiting Cd translocation, whereas it significantly increased Zn accumulation in shoots. This study confirms that although rhamnolipid could enhance accumulation of Cd in plants roots at low Ca supply, it is not suitable for Cd phytoextraction in contaminated soil environments where Ca concentrations in soil solution are orders of magnitude greater than those of Cd.

  9. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    PubMed

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants.

  10. Growth of Escherichia coli O157:H7, Non-O157 Shiga Toxin-Producing Escherichia coli , and Salmonella in Water and Hydroponic Fertilizer Solutions.

    PubMed

    Shaw, Angela; Helterbran, Kara; Evans, Michael R; Currey, Christopher

    2016-12-01

    The desire for local, fresh produce year round is driving the growth of hydroponic growing systems in the United States. Many food crops, such as leafy greens and culinary herbs, grown within hydroponics systems have their root systems submerged in recirculating nutrient-dense fertilizer solutions from planting through harvest. If a foodborne pathogen were introduced into this water system, the risk of contamination to the entire crop would be high. Hence, this study was designed to determine whether Escherichia coli O157:H7, non-O157 Shiga toxin-producing E. coli , and Salmonella were able to survive and reproduce in two common hydroponic fertilizer solutions and in water or whether the bacteria would be killed or suppressed by the fertilizer solutions. All the pathogens grew by 1 to 6 log CFU/ml over a 24-h period, depending on the solution. E. coli O157:H7 reached higher levels in the fertilizer solution with plants (3.12 log CFU/ml), whereas non-O157 Shiga toxin-producing E. coli and Salmonella reached higher levels in the fertilizer solution without plants (1.36 to 3.77 log CFU/ml). The foodborne pathogens evaluated here survived for 24 h in the fertilizer solution, and populations grew more rapidly in these solutions than in plain water. Therefore, human pathogens entering the fertilizer solution tanks in hydroponic systems would be expected to rapidly propagate and spread throughout the system and potentially contaminate the entire crop.

  11. Bioavailability and ecotoxicity of arsenic species in solution culture and soil system: implications to remediation.

    PubMed

    Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Seshadri, Balaji; Thangarajan, Ramya

    2015-06-01

    In this work, bioavailability and ecotoxicity of arsenite (As(III)) and arsenate (As(V)) species were compared between solution culture and soil system. Firstly, the adsorption of As(III) and As(V) was compared using a number of non-allophanic and allophanic soils. Secondly, the bioavailability and ecotoxicity were examined using germination, phytoavailability, earthworm, and soil microbial activity tests. Both As-spiked soils and As-contaminated sheep dip soils were used to test bioavailability and ecotoxicity. The sheep dip soil which contained predominantly As(V) species was subject to flooding to reduce As(V) to As(III) and then used along with the control treatment soil to compare the bioavailability between As species. Adsorption of As(V) was much higher than that of As(III), and the difference in adsorption between these two species was more pronounced in the allophanic than non-allophanic soils. In the solution culture, there was no significant difference in bioavailability and ecotoxicity, as measured by germination and phytoavailability tests, between these two As species. Whereas in the As-spiked soils, the bioavailability and ecotoxicity were higher for As(III) than As(V), and the difference was more pronounced in the allophanic than non-allophanic soils. Bioavailability of As increased with the flooding of the sheep dip soils which may be attributed to the reduction of As(V) to As(III) species. The results in this study have demonstrated that while in solution, the bioavailability and ecotoxicity do not vary between As(III) and As(V), in soils, the latter species is less bioavailable than the former species because As(V) is more strongly retained than As(III). Since the bioavailability and ecotoxicity of As depend on the nature of As species present in the environment, risk-based remediation approach should aim at controlling the dynamics of As transformation.

  12. Spectral Quantitation Of Hydroponic Nutrients

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle

    1996-01-01

    Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.

  13. Spectral Quantitation Of Hydroponic Nutrients

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle

    1996-01-01

    Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.

  14. Hydroponic Gardening

    ERIC Educational Resources Information Center

    Julinor, Helmut

    1976-01-01

    In addition to being an actual source of foodstuffs in inhospitable climates and a potential source of a large portion of the world's food supply, hydroponic gardening is a useful technique in the classroom for illustrating the role of plant life in the world's food chain. (MB)

  15. Hydroponic Gardening

    ERIC Educational Resources Information Center

    Julinor, Helmut

    1976-01-01

    In addition to being an actual source of foodstuffs in inhospitable climates and a potential source of a large portion of the world's food supply, hydroponic gardening is a useful technique in the classroom for illustrating the role of plant life in the world's food chain. (MB)

  16. Electrochemical control of pH in a hydroponic nutrient solution

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1986-01-01

    The electrochemical pH control system described was found to provide a feasible alternative method of controlling nutrient solution pH for CELSS applications. The plants grown in nutrient solution in which the pH was controlled electrochemically showed no adverse effects. Further research into the design of a larger capacity electrode bridge for better control is indicated by the results of this experiment, and is currently under way.

  17. Energy demand analysis via small scale hydroponic systems in suburban areas - An integrated energy-food nexus solution.

    PubMed

    Xydis, George A; Liaros, Stelios; Botsis, Konstantinos

    2017-03-28

    The study is a qualitative approach and looks into new ways for the effective energy management of a wind farm (WF) operation in a suburban or near-urban environment in order the generated electricity to be utilised for hydroponic farming purposes as well. Since soilless hydroponic indoor systems gain more and more attention one basic goal, among others, is to take advantage of this not typical electricity demand and by managing it, offering to the grid a less fluctuating electricity generation signal. In this paper, a hybrid business model is presented where the Distributed Energy Resources (DER) producer is participating in the electricity markets under competitive processes (spot market, real-time markets etc.) and at the same time acts as a retailer offering - based on the demand - to the hydroponic units for their mass deployment in an area, putting forward an integrated energy-food nexus approach.

  18. Microbiological investigation of Raphanus sativus L. grown hydroponically in nutrient solutions contaminated with spoilage and pathogenic bacteria.

    PubMed

    Settanni, Luca; Miceli, Alessandro; Francesca, Nicola; Cruciata, Margherita; Moschetti, Giancarlo

    2013-01-01

    The survival of eight undesired (spoilage/pathogenic) food related bacteria (Citrobacter freundii PSS60, Enterobacter spp. PSS11, Escherichia coli PSS2, Klebsiella oxytoca PSS82, Serratia grimesii PSS72, Pseudomonas putida PSS21, Stenotrophomonas maltophilia PSS52 and Listeria monocytogenes ATCC 19114(T)) was investigated in mineral nutrient solution (MNS) during the crop cycle of radishes (Raphanus sativus L.) cultivated in hydroponics in a greenhouse. MNSs were microbiologically analyzed weekly by plate count. The evolution of the pure cultures was also evaluated in sterile MNS in test tubes. The inoculated trials contained an initial total mesophilic count (TMC) ranging between 6.69 and 7.78Log CFU/mL, while non-sterile and sterile control trials showed levels of 4.39 and 0.97Log CFU/mL, respectively. In general, all inoculated trials showed similar levels of TMC in MNS during the experimentation, even though the levels of the inoculated bacteria decreased. The presence of the inoculums was ascertained by randomly amplified polymorphic DNA (RAPD) analysis applied on the isolates collected at 7-day intervals. At harvest, MNSs were also analyzed by denaturing gradient gel electrophoresis (DGGE). The last analysis, except P. putida PSS21 in the corresponding trial, did not detect the other bacteria, but confirmed that pseudomonads were present in un-inoculated MNSs. Despite the high counts detected (6.44 and 7.24CFU/g), only C. freundii PSS60, Enterobacter spp. PSS11 and K. oxytoca PSS82 were detected in radishes in a living form, suggesting their internalization.

  19. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    PubMed

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils.

  20. Hydroponics in the Classroom.

    ERIC Educational Resources Information Center

    Sell, Merran

    1997-01-01

    Summarizes the benefits of using hydroponics in school for investigational work. Lists requirements and includes advice on suitable plant choices. Outlines the various growing systems and growing media and provides suggestions for science investigations using hydroponics. (DDR)

  1. Hydroponics in the Classroom.

    ERIC Educational Resources Information Center

    Sell, Merran

    1997-01-01

    Summarizes the benefits of using hydroponics in school for investigational work. Lists requirements and includes advice on suitable plant choices. Outlines the various growing systems and growing media and provides suggestions for science investigations using hydroponics. (DDR)

  2. Labile synthetic cadmium complexes are not bioavailable to Pseudokirchneriella subcapitata in resin buffered solutions.

    PubMed

    Verheyen, L; Merckx, R; Smolders, E

    2012-11-15

    The Free Ion Activity Model (FIAM) predicts that cadmium (Cd) uptake by organisms is identical for solutions with the same free Cd(2+) concentration and inorganic composition. Clear exceptions to the FIAM have been shown for Cd uptake by plant roots, periphyton and human cells where labile Cd complexes increase bioavailability and which has been attributed to their role in enhancing Cd diffusion towards the uptake cells. Here, we assessed the role of labile Cd complexes on Cd uptake by algae, for which diffusion limitations should be less pronounced due to their smaller size. Long-term (3 days) Cd uptake by the green algae Pseudokirchneriella subcapitata was measured in resin buffered solutions with or without synthetic ligands and at three Cd(2+) ion activities (pCd 8.2-5.7). The free Cd(2+) activity was maintained during the test using a metal-selective resin located in the algal bottles. Total dissolved Cd increased up to 35-fold by adding the synthetic ligands at constant Cd(2+) activity. In contrast, Cd uptake by algae increased maximally 2.8 fold with increasing concentration of the synthetic ligands and the availability of the complexes were maximally 5.2% relative to Cd(2+) for NTA and CDTA complexes. It is concluded that labile Cd complexes do not greatly enhance Cd bioavailability to the unicellular algae and calculations suggest that Cd transport from solution to these small cells is not rate limiting. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Toxicity, bioavailability and pharmacokinetics of a newly formulated colistin sulfate solution.

    PubMed

    Lin, B; Zhang, C; Xiao, X

    2005-08-01

    We formulated a new colistin sulfate injectable solution and tested its effectiveness, toxicity and pharmacokinetics in vivo on mice, rabbits, and piglets. When intramuscularly injected (i.m.) into rabbits at 0.5 mL per site, the 2.5% colistin sulfate solution caused no reaction at the injection site, but the 5.0% solution caused the muscle circumference to appear erythematic. Tested LD50 in CD-1 mice were 38.72 mg/kg for i.m. and 431.95 mg/kg for oral administration, respectively. At 15.0 mg/kg/day (i.m.) for 5 days, colistin sulfate caused obvious neurotoxicity to piglets with moderate granular degenerations in the epithelial tissues from kidney and liver. These toxic responses were not seen when colistin sulfate was injected at 10.0 mg/kg/day for 5 days. Pharmacokinetic studies revealed Cmax of 3.73 +/- 0.28 and 6.40 +/- 0.18 microg/mL, Tmax of 32 +/- 1.5 and 34 +/- 1.8 min, t(1/2beta) of 256 +/- 14 and 264 +/- 29 min, and absolute bioavailability of 95.94 and 88.45% for colistin sulfate intramuscularly injected to piglets at 2.5 and 5.0 mg/kg, respectively. Serum colistin sulfate concentration followed a two-compartment open model showing first-order absorption. The high bioavailability and the long-lasting serum retention time indicated that the new solution is suitable for i.m. in piglets with a recommended dose of 2.5 mg/kg injected twice daily.

  4. Hydroponic chrysanthemum production: cultural and pathological issues.

    PubMed

    Liptay, A; Tu, J C

    2003-01-01

    Hydroponic culture has not replaced soil culture in greenhouse production of chrysanthemum (commonly known as 'mum'). This study examines cultural or pathological conditions that might have affected the conversion from soil to hydroponic production. Cultural factors investigated included hydroponic container size and shape and oxygenation of the nutrient solution. Disorders encountered during the studies included salt wicking during rooting of the cuttings and severe Pythium infection in the third and successive crops in a hydroponic system. Mums did not appear to respond to various shapes and sizes of containers and troughs in which they were grown. Also, increased oxygenation had little effect on pythium root rot and plant growth. Rooting of cuttings in a polyethylene covered hydroponic system reduced wilting, whereas salt wicking was severe without a plastic covering. Pythium disease was severe in the third and successive crops in the same hydroponic system. The disease could be overcome by raising the cuttings in a peat-based growing medium in perforated plastic cells and then transplanting the seedlings along with the peat moss cubes into a hydroponic system.

  5. Bioavailability study of dronabinol oral solution versus dronabinol capsules in healthy volunteers

    PubMed Central

    Parikh, Neha; Kramer, William G; Khurana, Varun; Cognata Smith, Christina; Vetticaden, Santosh

    2016-01-01

    Background Dronabinol, a pharmaceutical Δ-9-tetrahydrocannabinol, was originally developed as an oral capsule. This study evaluated the bioavailability of a new formulation, dronabinol oral solution, versus a dronabinol capsule formulation. Methods In an open-label, four-period, single-dose, crossover study, healthy volunteers were randomly assigned to one of two treatment sequences (T-R-T-R and R-T-R-T; T = dronabinol 4.25 mg oral solution and R = dronabinol 5 mg capsule) under fasted conditions, with a minimum 7-day washout period between doses. Analyses were performed on venous blood samples drawn 15 minutes to 48 hours postdose, and dronabinol concentrations were assayed by liquid chromatography–tandem mass spectrometry. Results Fifty-one of 52 individuals had pharmacokinetic data for analysis. The 90% confidence interval of the geometric mean ratio (oral solution/capsule) for dronabinol was within the 80%–125% bioequivalence range for area under the plasma concentration–time curve (AUC) from time zero to last measurable concentration (AUC0–t) and AUC from time zero to infinity (AUC0–∞). Maximum plasma concentration was also bioequivalent for the two dronabinol formulations. Intraindividual variability in AUC0–∞ was >60% lower for dronabinol oral solution 4.25 mg versus dronabinol capsule 5 mg. Plasma dronabinol concentrations were detected within 15 minutes postdose in 100% of patients when receiving oral solution and in <25% of patients when receiving capsules. Conclusion Single-dose dronabinol oral solution 4.25 mg was bioequivalent to dronabinol capsule 5 mg under fasted conditions. Dronabinol oral solution formulation may provide an easy-to-swallow administration option with lower intraindividual variability as well as more rapid absorption versus dronabinol capsules. PMID:27785111

  6. Bioavailability of oxalic acid from spinach, sugar beet fibre and a solution of sodium oxalate consumed by female volunteers.

    PubMed

    Hanson, C F; Frankos, V H; Thompson, W O

    1989-03-01

    Oxalate bioavailability from sugar beet fibre (40 g), spinach (25 g) and a solution of sodium oxalate (182 mg) was tested in nine women using a triplicated 3 x 3 Latin square arrangement. Each test substance provided 120 mg oxalic acid. Throughout the study the volunteers consumed a control diet and the test substances were administered at breakfast on specified days. After an initial 2-day control period, oxalate was administered in three test periods that consisted of one test day followed by one control day. Urine collected during 24-hr periods was analysed daily for oxalate. Oxalate excretion did not differ among the five control days and was not increased significantly following the ingestion of sugar beet fibre by the volunteers. Oxalate excretion was greater (P less than 0.0001) for the mean of the spinach and sodium oxalate solution diets than for the mean of the sugar beet fibre and control diets. Oxalate bioavailability from sugar beet fibre was 0.7% compared with bioavailabilities of 4.5 and 6.2% for spinach and oxalate solutions, respectively. The low bioavailability of oxalate from sugar beet fibre may be attributable to its high ratio of minerals (calcium and magnesium) to oxalate, its complex fibre matrix or the loss of the soluble oxalate during processing of sugar beets.

  7. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  8. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  9. Selective enhancement of the fluorescent pseudomonad population after amending the recirculating nutrient solution of hydroponically grown plants with a nitrogen stabilizer.

    PubMed

    Pagliaccia, D; Merhaut, D; Colao, M C; Ruzzi, M; Saccardo, F; Stanghellini, M E

    2008-10-01

    Fluorescent pseudomonads have been associated, via diverse mechanisms, with suppression of root disease caused by numerous fungal and fungal-like pathogens. However, inconsistent performance in disease abatement, after their employment, has been a problem. This has been attributed, in part, to the inability of the biocontrol bacterium to maintain a critical threshold population necessary for sustained biocontrol activity. Our results indicate that a nitrogen stabilizer (N-Serve, Dow Agrosciences) selectively and significantly enhanced, by two to three orders of magnitude, the resident population of fluorescent pseudomonads in the amended (i.e., 25 microg ml(-1) nitrapyrin, the active ingredient) and recycled nutrient solution used in the cultivation of hydroponically grown gerbera and pepper plants. Pseudomonas putida was confirmed as the predominant bacterium selectively enhanced. Terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rDNA suggested that N-Serve selectively increased P. putida and reduced bacterial diversity 72 h after application. In vitro tests revealed that the observed population increases of fluorescent pseudomonads were preceded by an early growth suppression of indigenous aerobic heterotrophic bacteria (AHB) population. Interestingly, the fluorescent pseudomonad population did not undergo this decrease, as shown in competition assays. Xylene and 1,2,4-trimethylbenzene (i.e., the inert ingredients in N-Serve) were responsible for a significant percentage of the fluorescent pseudomonad population increase. Furthermore, those increases were significantly higher when the active ingredient (i.e., nitrapyrin) and the inert ingredients were combined, which suggests a synergistic response. P. putida strains were screened for the ability to produce antifungal compounds and for the antifungal activity against Pythium aphanidermatum and Phytophthora capsici. The results of this study suggest the presence of diverse mechanisms with

  10. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass.

    PubMed

    Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J

    2010-02-01

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Relative Bioavailability of Apixaban Solution or Crushed Tablet Formulations Administered by Mouth or Nasogastric Tube in Healthy Subjects.

    PubMed

    Song, Yan; Wang, Xiaoli; Perlstein, Itay; Wang, Jessie; Badawy, Sherif; Frost, Charles; LaCreta, Frank

    2015-08-01

    Crushed tablet and solution formulations of apixaban administered orally or via a nasogastric tube (NGT) may be useful in patients unable to swallow solid dose formulations. It is important to understand whether new formulations and/or methods of administration impact apixaban bioavailability and pharmacokinetic properties. These studies evaluated the relative bioavailability (Frel) of apixaban solution administered orally; oral solution administered via NGT flushed with either 5% dextrose in water (D5W) or with infant formula; oral solution via NGT with a nutritional supplement; and crushed tablet suspended in D5W and administered via NGT. Three open-label, randomized, crossover studies were conducted in healthy adults (study 1: apixaban 10-mg tablet [reference] versus oral solution, both administered PO; study 2: apixaban 5-mg oral solution PO [reference] versus oral solution via NGT flushed with either D5W or infant formula; study 3: apixaban 5-mg oral solution PO [reference] versus apixaban 5-mg oral solution via NGT with a nutritional supplement and versus crushed tablet suspended in D5W and administered via NGT). Point estimates and 90% CIs of the geometric mean ratios (GMRs; test/reference) were generated for Cmax and AUC. Adverse events were recorded throughout each study. Frel of the oral solution was 105% versus tablet, and Frel for oral solution via NGT with D5W flush, infant formula flush, nutritional supplement, and crushed tablet via NGT versus oral solution administration were 96.7%, 92.2%, 81.3%, and 95.1%, respectively. The 90% CIs of the GMRs of all AUCs met the bioequivalence criterion except that of the nutritional supplement (0.766-0.863). The corresponding GMRs for Cmax were 0.977, 0.953, 0.805, 0.682, and 0.884. For the solution via NGT flushed with D5W and for the crushed tablet, the 90% CIs of the Cmax GMRs met the bioequivalence criterion. Apixaban was well tolerated in all 3 studies; most adverse events were mild. Comparable Frel was

  12. Drug interaction between oral solution itraconazole and calcineurin inhibitors in allogeneic hematopoietic stem cell transplantation recipients: an association with bioavailability of oral solution itraconazole.

    PubMed

    Mori, Takehiko; Aisa, Yoshinobu; Kato, Jun; Nakamura, Yukinori; Ikeda, Yasuo; Okamoto, Shinichiro

    2009-07-01

    To assess the drug interaction between oral solution itraconazole and calcineurin inhibitors, 10 recipients of allogeneic hematopoietic stem cell transplantation (HSCT), in whom oral solution itraconazole was started when they had been on a steady dose of calcineurin inhibitors (cyclosporine A or tacrolimus), were retrospectively evaluated. The concentration/dose [C/D; (ng/mL)/(mg/kg)] ratio of calcineurin inhibitors significantly increased after initiating oral solution itraconazole, and the increase at 7-10 days after initiating itraconazole was 93.7%, ranging from 37.3 to 328.2%. The plasma level of itraconazole/hydroxyitraconazole was significantly correlated with the increase in the C/D ratio of calcineurin inhibitors (correlation coefficient, 0.65; P < 0.05). These results suggest that oral solution itraconazole significantly interacts with calcineurin inhibitors with a wide interindividual variability in allogeneic HSCT recipients, which could partly be explained by the variable bioavailability of oral solution itraconazole.

  13. Hydroponics or soilless culture

    NASA Technical Reports Server (NTRS)

    Chapman, H. D.

    1963-01-01

    Historically, hydroponics is not a new field; plant physiologists have known and used it for some 100 years. Inevitably, some enthusiasts got carried away.Claims were made of enormous potential yields; skyscraper tops were said to be capable of producing enough food for all of their occupants; and closets, basements, garages, etc. were wishfully converted into fields for hydroponic culture. Numerous publications on the subject appeared during this period. Basic requirements for hydropinc techniques are given along with examples of where soilless culture has been used commercially.

  14. Hydroponics or soilless culture

    NASA Technical Reports Server (NTRS)

    Chapman, H. D.

    1963-01-01

    Historically, hydroponics is not a new field; plant physiologists have known and used it for some 100 years. Inevitably, some enthusiasts got carried away.Claims were made of enormous potential yields; skyscraper tops were said to be capable of producing enough food for all of their occupants; and closets, basements, garages, etc. were wishfully converted into fields for hydroponic culture. Numerous publications on the subject appeared during this period. Basic requirements for hydropinc techniques are given along with examples of where soilless culture has been used commercially.

  15. Phytoaccumulation of antimicrobials by hydroponic Cucurbita pepo.

    PubMed

    Aryal, Niroj; Reinhold, Dawn

    2013-01-01

    Consumer use of antimicrobial-containing products continuously introduces triclocarban and triclosan into the environment. Triclocarban and triclosan adversely affect plants and animals and have the potential to affect human health. Research examined the phytoaccumulation of triclocarban and triclosan by pumpkin (Cucurbita pepo cultivar Howden) and zucchini (Cucurbita pepo cultivar Gold Rush) grown hydroponically. Pumpkin and zucchini were grown in nutrient solution spiked with 0.315 microg/mL triclocarban and 0.289 microg/mL triclosan for two months. Concentrations of triclocarban and triclosan in nutrient solutions were monitored weekly. At the end of the trial, roots and shoots were analyzed for triclocarban and triclosan. Research demonstrated that pumpkin and zucchini accumulated triclocarban and triclosan. Root accumulation factors were 1.78 and 0.64 and translocation factors were 0.001 and 0.082 for triclocarban and triclosan, respectively. The results of this experiment were compared with a previous soil column study that represented environmentally relevant exposure of antimicrobials from biosolids and had similar root mass. Plants were not as efficient in removing triclocarban and triclosan in hydroponic systems as in soil systems. Shoot concentrations of antimicrobials were the same or lower in hydroponic systems than in soil columns, indicating that hydroponic system does not overpredict the concentrations of antimicrobials.

  16. Hands-On Hydroponics

    ERIC Educational Resources Information Center

    Carver, Jeffrey; Wasserman, Bradley

    2012-01-01

    Hydroponics is a process in which plants are grown using nutrient-rich water instead of soil. Because this process maximizes the use of water and nutrients--providing only what the plant uses in controlled and easily maintained systems--it is a viable alternative to traditional farming methods. The amount of control in these systems also ensures…

  17. Hands-On Hydroponics

    ERIC Educational Resources Information Center

    Carver, Jeffrey; Wasserman, Bradley

    2012-01-01

    Hydroponics is a process in which plants are grown using nutrient-rich water instead of soil. Because this process maximizes the use of water and nutrients--providing only what the plant uses in controlled and easily maintained systems--it is a viable alternative to traditional farming methods. The amount of control in these systems also ensures…

  18. Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability.

    PubMed

    Thavarajah, Pushparajah; Thavarajah, Dil; Vandenberg, Albert

    2009-10-14

    Phytic acid is an antinutrient present mainly in seeds of grain crops such as legumes and cereals. It has the potential to bind mineral micronutrients in food and reduce their bioavailability. This study analyzed the phytic acid concentration in seeds of 19 lentil ( Lens culinaris L.) genotypes grown at two locations for two years in Saskatchewan, Canada. The objectives of this study were to determine (1) the levels of phytic acid in commercial lentil genotypes and (2) the impact of postharvest processing and (3) the effect of boiling on the stability of phytic aid in selected lentil genotypes. The phytic acid was analyzed by high-performance anion exchange separation followed by conductivity detection. The Saskatchewan-grown lentils were naturally low in phytic acid (phytic acid = 2.5-4.4 mg g(-1); phytic acid phosphorus = 0.7-1.2 mg g(-1)), with concentrations lower than those reported for low phytic acid mutants of corn, wheat, common bean, and soybean. Decortication prior to cooking further reduced total phytic acid by >50%. As lowering phytic acid intake can lead to increased mineral bioavailability, dietary inclusion of Canadian lentils may have significant benefits in regions with widespread micronutrient malnutrition.

  19. Degradation of Surfactants in Hydroponic Wheat Root Zones

    NASA Astrophysics Data System (ADS)

    Monje, Oscar; McCoy, Lashelle; Flanagan, Aisling

    Hygiene water recycling in recirculating hydroponic systems can be enhanced by plant roots by providing a substrate and root exudates for bacterial growth. However, reduced plant growth can occur during batch mode additions of high concentrations of surfactant. An analog hygiene water stream containing surfactants (Steol CS330, Mirataine CB) was added to a hydroponically-grown wheat plant root zone. The plants were grown at 700 mol mol-1 CO2, a photosynthetic photon flux of 300 mol m-2 s-1, and a planting density of 380 plants m-2. Volumetric oxygen mass transfer coefficients were determined using the fermentative/dynamic outgassing method to maintain adequate oxygen mass transfer rates in the root zone. This analysis suggested an optimal flow rate of the hydroponic solution of 5 L min-1. The hydroponic system was inoculated with biofilm from a bioreactor and rates of surfactant degradation were measured daily based on reduction in chemical oxygen demand (COD). The COD decreased from 400 to 100 mg L-1 after 2 days following batch addition of the analog hygiene water to the hydroponic system. Measurements of dissolved oxygen concentration and solution temperature suggest that the root zone was provided adequate aeration to meet both oxygen demands from plant and microbial respiration during the degradation of the surfactant. Results from this study show that hydroponic systems can be used to enhance rates of hygiene water processing.

  20. Solution-mediated phase transformation: significance during dissolution and implications for bioavailability.

    PubMed

    Greco, Kristyn; Bogner, Robin

    2012-09-01

    Solubility improvement of poorly soluble drug compounds is a key approach to ensuring the successful development of many new drugs. Methods used to improve the solubility of drug compounds include forming a salt, cocrystal, or amorphous solid. These methods of improving solubility can often lead to a phenomenon called solution-mediated phase transformation, a phase change that is facilitated through exposure to solution. Solution-mediated phase transformation occurs in three steps: dissolution to create a supersaturated solution followed by nucleation of less soluble phase and the growth of that phase. When the growth of the less soluble phase occurs on the surface of the metastable solid, this phenomenon can cause a marked decrease in dissolution rate during in vitro dissolution evaluation, and ultimately in vivo. Therefore, transformation to a less soluble solid during dissolution is an important aspect to consider when evaluating approaches to increase the solubility of a poorly soluble drug. Identification of solution-mediated phase transformation during dissolution is reviewed for powder dissolution, rotating disk method, and channel flow-through apparatus. Types of solution-mediated phase transformation are described in this report, including those involving salts, polymorphs, amorphous solids, and cocrystals. Many experimental examples are provided. Evidence of potential solution-mediated phase transformation in vivo is discussed to better understand the relationship between in vitro dissolution evaluation and in vivo performance.

  1. Exploring Classroom Hydroponics. Growing Ideas.

    ERIC Educational Resources Information Center

    National Gardening Association, Burlington, VT.

    Growing Ideas, the National Gardening Association's series for elementary, middle, and junior high school educators, helps teachers engage students in using plants and gardens as contexts for developing a deeper, richer understanding of the world around them. This volume's focus is on hydroponics. It presents basic hydroponics information along…

  2. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Wheeler, R. M.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

  3. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.).

    PubMed

    Mackowiak, C L; Wheeler, R M; Stutte, G W; Yorio, N C; Ruffe, L M

    1998-07-01

    Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

  4. [Chemical form changes of exogenous water solution fluoride and bioavailability in tea garden soil].

    PubMed

    Cai, Hui-Mei; Peng, Chuan-Yi; Chen, Jing; Hou, Ru-Yan; Wan, Xiao-Chun

    2013-11-01

    Pot experiments and the sequential extraction method were conducted to study the chemical form changes of exogenous water solution fluoride in tea garden soil and their contribution to fluoride accumulation of tea plant. The results showed that the background concentration of all chemical forms of fluoride had little changes with time treatment, which was in a relatively stable state. The exogenous water solution fluoride adding to the soils was rapidly transformed to other fractions. Under the 10 mg x kg(-1) fluoride treatment, the concentration of water solution fluoride increased firstly and then decreased with time treatment, the concentration of organic matter fluoride and Fe/Mn oxides fluoride decreased, the concentration of exchangeable fluoride was not different before and after the treatment (P > 0.05), and the concentration of residual fluoride was in a relatively stable state; under the 200 mg x kg(-1) fluoride treatment, the concentration of water solution fluoride, Fe/Mn oxides fluoride and organic matter fluoride decreased with time treatment, the concentration of exchangeable fluoride increased firstly and then decreased, showed no difference before and after the treatment (P > 0.05), and the concentration of residual fluoride increased, with some differences compared with 10 mg x kg(-1) fluoride treatment. The concentration of total fluoride in root, stem and leaf had significant differences under 0-10 mg x kg(-1) fluoride treatment (P < 0.05), while showed no difference from 10 to 100 mg x kg(-1) fluoride treatment (P > 0.05). Step regression analysis suggested the contribution of all chemical forms of fluoride to the concentration of water solution fluoride and total fluoride of root, stem and leaf had some differences, there was a remarkable regression relationship among the content of total fluoride in leaf and water solution fluoride, organic matter fluoride, Fe/Mn oxides fluoride and residual fluoride in soil, however, no significant

  5. Nutrient Management in Recirculating Hydroponic Culture

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  6. Nutrient Management in Recirculating Hydroponic Culture

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  7. Gastric pre-processing is an important determinant of the ability of medium-chain lipid solution formulations to enhance oral bioavailability in rats.

    PubMed

    Lee, Kathy Wai Yu; Porter, Christopher J H; Boyd, Ben J

    2013-11-01

    The contribution of dispersion and digestion in the stomach to the bioavailability of poorly water-soluble drugs administered in lipid-based formulations was assessed by comparison of intraduodenal (ID) and peroral (p.o.) administration using cinnarizine (CZ) as a model drug. Differences in the dispersion and digestion in the gastric and intestinal compartments for medium-chain triacylglycerides (MCT) and long-chain triacylglycerides (LCT) were observed, leading to differences in the oral bioavailability of CZ. Bypassing gastric processing using ID administration of lipid solution formulations decreased drug bioavailability regardless of lipid type. Overall, bioavailability from LCT formulations was higher than MCT regardless of route of administration, consistent with past data after p.o. administration and previously reported descriptions of increases in drug precipitation after administration of medium-chain lipid formulations. The larger differences between bioavailability after both p.o. and ID administration for MCT compared with LCT formulations suggest that passage through the stomach is more critical for MCT formulations, and that gastric digestion may be more critical for MCT than LCT formulations. For MCT-based formulations, efficient dispersion and partial digestion in the stomach may be required to allow rapid transfer to intestinal-mixed micelles and absorption in the upper small intestine prior to drug precipitation.

  8. Hydroponics reducing effluent's heavy metals discharge.

    PubMed

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  9. Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways

    USGS Publications Warehouse

    Luoma, S.N.; Johns, C.; Fisher, N.S.; Steinberg, N.A.; Oremland, R.S.; Reinfelder, J.R.

    1992-01-01

    Particulate organo-Se was assimilated with 86% efficiency by the deposit feeding bivalve Macoma balthica, when the clam was fed 75Se-labeled diatoms. Absorption efficiencies of participate elemental Se were 22%, when the animals were fed 75Se-labeled sediments in which elemental Se was precipitated by microbial dissimilatory reduction. Precipitation of elemental Se did not eliminate biological availability of the element. Selenite was taken up from solution slowly by M. balthica (mean concentration factor was 712). Concentrations of selenite high enough to influence Se bioaccumulation by M. balthica did not occur in the oxidized water column of San Francisco Bay. However, 98-99% of the Se observed in M. balthica could be explained by ingestion of the concentrations of participate Se found in the bay. The potential for adverse biological effects occurred at much lower concentrations of environmental Se when food web transfer was considered than when predictions of effects were based upon bioassays with solute forms of the element. Selenium clearly requires a protective criterion based upon particulate concentrations or food web transfer. ?? 1992 American Chemical Society.

  10. Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes

    USDA-ARS?s Scientific Manuscript database

    Hydroponic production systems grow plants without soil, relying on a circulating solution to provide the necessary nutrients. Maintaining an optimum nutrient balance in this solution is important for maximizing crop growth and yield. Particularly in closed hydroponic systems it is important to monit...

  11. Evaluation of Skin Penetration of Diclofenac from a Novel Topical Non Aqueous Solution: A Comparative Bioavailability Study.

    PubMed

    Nivsarkar, Manish; Maroo, Sanjaykumar H; Patel, Ketan R; Patel, Dixit D

    2015-12-01

    Different topical formulations of diclofenac have varying skin penetration profile. Recent advances in science and technology has led to the development of many new formulations of drugs for topical drug delivery. One such technological development has led to the innovation of Dynapar QPS, a novel, non-aqueous, quick penetrating solution (QPS) of diclofenac diethylamine. This study was aimed to measure the total exposure from the drug penetrating the skin in healthy human subjects and comparing the relative systemic bioavailability of Dynapar QPS(®) with diclofenac emulgel. A 200 mg of diclofenac from either Dynapar QPS(®) (5 ml) or emulgel (20 g) was applied on back of subject as per the randomisation schedule. Blood samples were collected up to 16 hours post drug application. Plasma concentration of diclofenac was measured by pre-validated HPLC method. Pharmacokinetic (PK) parameters like Cmax, Tmax, t1/2, AUC0-t, AUC0-∞, and Kel, of diclofenac were determined for both the formulations. Mean Cmax after administration of Dynapar QPS(®) and diclofenac emulgel were 175.93 and 40.04 ng/ml, respectively. Tmax of diclofenac was almost half with QPS compared to emulgel (5.24 hrs versus 9.53 hrs respectively). The mean AUC0-t and AUC0-∞ after administration of Dynapar QPS(®) was higher as compared to diclofenac emulgel (AUC0-t: 1224.19 versus 289.78 ng.h/ml, respectively; AUC0-∞: 1718.21 versus 513.83 ng.h/ml, respectively). None of the subject experienced any adverse event during the study. The results indicate an enhanced penetration and subsequent absorption of diclofenac from Dynapar QPS(®) as compared to diclofenac emulgel. Higher penetration is likely to translate into better pain relief in patients.

  12. Evaluation of Skin Penetration of Diclofenac from a Novel Topical Non Aqueous Solution: A Comparative Bioavailability Study

    PubMed Central

    Nivsarkar, Manish; Patel, Ketan R.; Patel, Dixit D.

    2015-01-01

    Introduction Different topical formulations of diclofenac have varying skin penetration profile. Recent advances in science and technology has led to the development of many new formulations of drugs for topical drug delivery. One such technological development has led to the innovation of Dynapar QPS, a novel, non-aqueous, quick penetrating solution (QPS) of diclofenac diethylamine. Aim This study was aimed to measure the total exposure from the drug penetrating the skin in healthy human subjects and comparing the relative systemic bioavailability of Dynapar QPS® with diclofenac emulgel. Materials and Methods A 200 mg of diclofenac from either Dynapar QPS® (5 ml) or emulgel (20 g) was applied on back of subject as per the randomisation schedule. Blood samples were collected up to 16 hours post drug application. Plasma concentration of diclofenac was measured by pre-validated HPLC method. Pharmacokinetic (PK) parameters like Cmax, Tmax, t1/2, AUC0-t, AUC0-∞, and Kel, of diclofenac were determined for both the formulations. Results Mean Cmax after administration of Dynapar QPS® and diclofenac emulgel were 175.93 and 40.04 ng/ml, respectively. Tmax of diclofenac was almost half with QPS compared to emulgel (5.24 hrs versus 9.53 hrs respectively). The mean AUC0–t and AUC0-∞ after administration of Dynapar QPS® was higher as compared to diclofenac emulgel (AUC0–t: 1224.19 versus 289.78 ng.h/ml, respectively; AUC0-∞: 1718.21 versus 513.83 ng.h/ml, respectively). None of the subject experienced any adverse event during the study. Conclusion The results indicate an enhanced penetration and subsequent absorption of diclofenac from Dynapar QPS® as compared to diclofenac emulgel. Higher penetration is likely to translate into better pain relief in patients. PMID:26816910

  13. Biological Control of Diseases of Vegetables Grown Hydroponically in Thailand: Challenge and Opportunity.

    PubMed

    Kanjanamaneesathian, Mana

    2015-01-01

    In Thailand, yield loss due to plant diseases in vegetables grown hydroponically is very high as a result of the growers` lack of knowledge for controlling diseases and their un- willingness to invest in setting-up the proper hydroponic system from the beginning. Severe root rot disease caused by Pythium spp. is frequent and can be anticipated in the hot climate in Thailand. This review focuses on the diseases in temperate lettuces which have been produced hydroponically and have been attacked by plant pathogens, particularly Pythium spp. Biological control of vegetable diseases grown hydroponically has been investigated in Thailand. Research is being carried out to identify effective strains of the antagonists, formulating the applicable products and delivering them appropriately to control the disease. Products of Bacillus subtilis, Chaetomium globosom and Trichoderma harzianum have been recommended for use to control diseases in vegetables grown hydroponically. Control efficacy of these products is varied as the biological products have been used by the growers in the paradigm of using chemical fungicide for disease control in hydroponic production system, overlooking the intrinsic characteristics of the biological control products. The recent patent, which minimizes the effects of sunlight and heat on the nutrient solution without the use of an external energy for cooling the nutrient, should be applied in producing hydroponic vegetables to mitigate poor plant growth and root rot disease outbreak in Thailand.

  14. Hydroponics--Studies in Plant Culture With Historical Roots.

    ERIC Educational Resources Information Center

    Lopez, Luz Maria

    1981-01-01

    Presents methods for demonstrating and applying scientific principles by growing plants through water culture (hydroponics), including a review of the history of hydroponics, re-creating some early experiments, and setting up a modern hydroponic system. (CS)

  15. Hydroponics--Studies in Plant Culture With Historical Roots.

    ERIC Educational Resources Information Center

    Lopez, Luz Maria

    1981-01-01

    Presents methods for demonstrating and applying scientific principles by growing plants through water culture (hydroponics), including a review of the history of hydroponics, re-creating some early experiments, and setting up a modern hydroponic system. (CS)

  16. Hydroponic phytoremediation of heavy metals and radionuclides

    SciTech Connect

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  17. Hydroponic system for the treatment of anaerobic liquid.

    PubMed

    Krishnasamy, K; Nair, J; Bäuml, B

    2012-01-01

    The effluent from anaerobic digestion process has high concentrations of nutrients, particularly nitrogen, essential for plant growth but is not suitable for direct disposal or application due to high chemical oxygen demand (COD), low dissolved oxygen (DO), odour issues and is potentially phytotoxic. This research explored the optimum conditions of anaerobic effluent for application and dilutions of the effluent required to obtain better plant growth. A small-scale hydroponic system was constructed in a glasshouse to test different concentrations of anaerobic effluent against a commercial hydroponic medium as the control for the growth of silverbeet. It was found that the survival of silverbeet was negatively affected at 50% concentration due to low DO and NH(4) toxicity. The concentration of 20% anaerobic liquid was found to be the most efficient with highest foliage yield and plant growth. The hydroponic system with 20% concentrated effluent had better utilisation of nutrients for plant growth and a COD reduction of 95% was achieved during the 50-day growth period. This preliminary evaluation revealed that the growth and development of silverbeet was significantly lower in anaerobic effluent compared with a commercial hydroponic plant growth solution. The nutrient quality of anaerobic effluent could be highly variable with the process and the waste material used and dilution may depend on the nutrient content of the effluent. It is recommended that, a pre-treatment of the effluent to increase DO and reduce ammonium content is required before plant application, and simple dilution by itself is not suitable for optimum plant growth in a hydroponic system.

  18. Hydroponic Feed With Suction

    NASA Technical Reports Server (NTRS)

    Cox, William M.; Brown, Christopher S.; Dreschel, Thomas W.

    1994-01-01

    Placing nutrient solution under suction increases growth. Foam plug seals growing stem of plant, making it possible to maintain suction in nutrient liquid around roots. Jar wrapped in black tape to keep out light. Potential use in terrestrial applications in arid climates or in labor-intensive agricultural situations.

  19. Hydroponic Feed With Suction

    NASA Technical Reports Server (NTRS)

    Cox, William M.; Brown, Christopher S.; Dreschel, Thomas W.

    1994-01-01

    Placing nutrient solution under suction increases growth. Foam plug seals growing stem of plant, making it possible to maintain suction in nutrient liquid around roots. Jar wrapped in black tape to keep out light. Potential use in terrestrial applications in arid climates or in labor-intensive agricultural situations.

  20. Gene expression profiling of ramie roots during hydroponic induction and adaption to aquatic environment.

    PubMed

    Gao, Gang; Xiong, Heping; Chen, Kunmei; Chen, Jikang; Chen, Ping; Yu, Chunming; Zhu, Aiguo

    2017-12-01

    Ramie (Boehmeria nivea (L.) Gaud.) is a traditionally terrestrial fiber crop. However, hydroponic technology can enhance the quantity and quality of disease free Ramie plant seedlings for field cultivation. To date, few studies have attempted to examine the hydroponic induction of ramie roots and the molecular responses of ramie roots to aquatic environment. In this study, ramie tender stems was grown in the soil or in a hydroponic water solution, and cultured in the same environmental conditions. Root samples of terrestrial ramie, and different developmental stages of hydroponic ramie (5 days, 30 days), were firstly pooled for reference transcriptome sequencing by Illumina Hiseq 2000. Gene expression levels of each samples were quantified using the BGISEQ500 platform to help understand the distribution of aquatic root development related genes at the macro level (GSE98903). Our data resources provided an opportunity to elucidate the adaptation mechanisms of ramie seedlings roots in aquatic environment.

  1. A hydroponic design for microgravity and gravity installations

    NASA Technical Reports Server (NTRS)

    Fielder, Judith; Leggett, Nickolaus

    1990-01-01

    A hydroponic system is presented that is designed for use in microgravity or gravity experiments. The system uses a sponge-like growing medium installed in tubular modules. The modules contain the plant roots and manage the flow of the nutrient solution. The physical design and materials considerations are discussed, as are modifications of the basic design for use in microgravity or gravity experiments. The major external environmental requirements are also presented.

  2. Solution behavior of PVP-VA and HPMC-AS-based amorphous solid dispersions and their bioavailability implications.

    PubMed

    Qian, Feng; Wang, Jennifer; Hartley, Ruiling; Tao, Jing; Haddadin, Raja; Mathias, Neil; Hussain, Munir

    2012-10-01

    To identify the mechanism behind the unexpected bio-performance of two amorphous solid dispersions: BMS-A/PVP-VA and BMS-A/HPMC-AS. Solubility of crystalline BMS-A in PVP-VA and HPMC-AS was measured by DSC. Drug-polymer interaction parameters were obtained by Flory-Huggins model fitting. Drug dissolution kinetics of spray-dried dispersions were studied under sink and non-sink conditions. BMS-A supersaturation was studied in the presence of pre-dissolved PVP-VA and HPMC-AS. Potency and crystallinity of undissolved solid dispersions were determined by HPLC and DSC. Polymer dissolution kinetics were obtained by mass balance calculation. Bioavailability of solid dispersions was assessed in dogs. In solid state, both polymers are miscible with BMS-A, while PVP-VA solublizes the drug better. BMS-A dissolves similarly from both solid dispersions in vitro regardless of dissolution method, while the HPMC-AS dispersion performed much better in vivo. At the same concentration, HPMC-AS is more effective in prolonging BMS-A supersaturation; this effect was negated by the slow dissolution rate of HPMC-AS. Further study revealed that fast PVP-VA dissolution resulted in elevated drug loading in undissolved dispersions and facilitated drug recrystallization before complete release. In contrast, the hydrophobicity and slower HPMC-AS dissolution prevented BMS-A recrystallization within the HPMC-AS matrix for >24 h. The lower bioavailability of PVP-VA dispersion was attributed to BMS-A recrystallization within the undissolved dispersion, due to hydrophilicity and fast PVP-VA dissolution rate. Polymer selection for solid dispersion development has significant impact on in vivo performance besides physical stability.

  3. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  4. Hormonal regulation of wheat growth during hydroponic culture

    NASA Technical Reports Server (NTRS)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  5. Hydroponics as a valid tool to assess arsenic availability in mine soils.

    PubMed

    Moreno-Jiménez, E; Esteban, E; Fresno, T; de Egea, C López; Peñalosa, J M

    2010-04-01

    The low solubility of As in mine soils limits its phytoavailability. This makes the extrapolation of data obtained under hydroponic conditions unrealistic because the concentration in nutrient solution frequently overexposes plants to this metalloid. This work evaluates whether As supply in hydroponics resembles, to some extent, the As phytoavailable fraction in soils and the implications for phytoremediation. Phytotoxicity of As, in terms of biomass production, chlorophyll levels, and As concentrations in plants, was estimated and compared in both soils and hydroponics. In order for hydroponic conditions to be compared to soil conditions, plant exposure levels were measured in both cultures. Hydroponic As concentration ranging from 2-8microM equated to the same plant organ concentrations from soils with 700-3000mgkg(-1). Total and extractable As fractions exceeded those values, but As concentrations in pore water were bellow them. According to our results (i) hydroponics should include doses in the range 0-10microM As to allow the extrapolation of the results to As-polluted soils, and (ii) phytoextraction of As in mining sites will be limited by low As phytoavailability.

  6. Supersaturation produces high bioavailability of amorphous danazol particles formed by evaporative precipitation into aqueous solution and spray freezing into liquid technologies.

    PubMed

    Vaughn, Jason M; McConville, Jason T; Crisp, Matthew T; Johnston, Keith P; Williams, Robert O

    2006-06-01

    The bioavailability of high surface area danazol formulations was evaluated in a mouse model to determine what effect high supersaturation, as measured in vitro, has on the absorption of a poorly water soluble drug. Danazol, a biopharmaceutics classification system II (BCS II) compound, was used as the model drug. Evaporative precipitation into aqueous solution (EPAS) and spray freezing into liquid (SFL) technologies were used to prepare powders of danazol/PVP K-15 in a 1:1 ratio. The evaporative precipitation into aqueous solution (EPAS) and SFL compositions, physical mixture and commercial product were dosed by oral gavage to 28 male Swiss/ICR mice for each arm of the study. Samples were taken at time points ranging from 0.5 to 24 h. Pooled mouse serum was analyzed for danazol by high performance liquid chromatography (HPLC). Powders were analyzed for their ability to form supersaturated solutions through dissolution at concentrations of 1 mg/mL which was the dose delivered to the mouse models. Spray freezing into liquid (SFL) and EPAS compositions displayed higher C(max) at 392.5 ng/mL and 430.1 ng/mL, respectively, compared to the physical mixture (204.4 ng/mL) and commercially available danazol (199.3 ng/mL). The T(max) for all compositions studied was near the 1 h time point. The area under the curve (AUC) for the SFL composition was 2558 ng.h/mL compared to EPAS composition at 1534 ng.h/mL. The area under the curve (AUC) for the physical mixture and commercially available danazol were 672 ng.h/mL and 1519 ng.h/mL, respectively. The elimination rate constants for the EPAS composition, SFL composition, and physical mixture were similar at approximately 0.15 h(-1) where as the commercially available danazol capsules displayed an elimination rate constant of 0.103 h(-1). The extent of danazol absorption in the mouse model was higher for SFL composition compared to the less amorphous EPAS composition, physical mixture, and commercially available danazol powders

  7. Influence of hydroponic culture method on morphology and hydraulic conductivity of roots of honey locust.

    PubMed

    Graves, W R

    1992-09-01

    The morphology and hydraulic conductivity of root systems of Gleditsia triacanthos L. var. inermis Willd. (honey locust) grown hydroponically in sand and solution cultures were compared. Total root system length was similar in the two cultures. However, root systems grown in solution had longer primary roots, fewer lateral roots and root hairs, and a greater distance between the tip of the primary root and the junction of the youngest secondary root and the primary root than root systems grown in sand. Hydraulic conductivities of root systems grown hydroponically for 21 or 35 days in sand or solution culture were similar. These findings show that different methods of hydroponic culture can affect root morphology without altering root resistance to water transport.

  8. Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment.

    PubMed

    Bonfranceschi, Barros A; Flocco, C G; Donati, E R

    2009-06-15

    Sorghum and alfalfa are two important forage crops. We studied their capacity for accumulating heavy metals in hydroponic experiments. Cadmium, nickel (as divalent cations) and chromium (trivalent and hexavalent) were added individually to the nutrient solution in a range of concentrations from 1 to 80 mg/l. Cr(III) was complexed with EDTA to increase its bioavailability. In alfalfa the increases in the concentration of Cr(III) and Cr(VI) favoured translocation of the metals to the upper parts of the plants, while with Ni(II) the level of translocated metal remained almost unchanged. In sorghum, both Cr(VI) and Ni(II) produced similar results to those in alfalfa, but increases in the concentrations of Cd(II) and Cr(III) in the solution lead to a higher accumulation of the metal at the root level. The concentrations referred to the dry biomass of alfalfa were 500 mg/kg (aerial parts) and 1500 mg/kg (roots) of Cr(III), simultaneously enhancing plant growth. Sorghum captured 500 and 1100 mg/kg (in aerial parts) and 300 and 2000 mg/kg (in roots) for Ni(II) and Cd(II) respectively, without significant damage to its biomass. The results show that alfalfa and sorghum can not only grow in the presence of high heavy metal concentration but also capture and translocate them to the aerial parts; because of these results special attention should be given to these crop plants for their possible use in phytoremediation of large contaminated areas but especially to avoid the possible introduction of the metals accumulated in aerial parts into the food chain when those plants grow in contaminated areas.

  9. A Simplified Integrated Fish Culture Hydroponics System.

    ERIC Educational Resources Information Center

    Emberger, Gary

    1991-01-01

    Investigations that facilitate experimental design, the concept of replication, data analysis, and other aspects of scientific study are described. A list of materials, the recommended plants, and the directions for building the hydroponics unit are included. (KR)

  10. A Simplified Integrated Fish Culture Hydroponics System.

    ERIC Educational Resources Information Center

    Emberger, Gary

    1991-01-01

    Investigations that facilitate experimental design, the concept of replication, data analysis, and other aspects of scientific study are described. A list of materials, the recommended plants, and the directions for building the hydroponics unit are included. (KR)

  11. Bioavailability and biochemical effects of diclofenac sodium 0.1% ophthalmic solution in the domestic chicken (Gallus gallus domesticus).

    PubMed

    Griggs, Angela N; Yaw, Taylor J; Haynes, Joseph S; Ben-Shlomo, Gil; Tofflemire, Kyle L; Allbaugh, Rachel A

    2017-03-01

    To determine if topical ophthalmic diclofenac sodium 0.1% solution alters renal parameters in the domestic chicken, and to determine if the drug is detectable in plasma after topical ophthalmic administration. Thirty healthy domestic chickens. Over 7 days, six birds were treated unilaterally with one drop of artificial tear solution (group 1), 12 birds were treated unilaterally (group 2) and 12 bilaterally (group 3) with diclofenac sodium 0.1% ophthalmic solution. Treatments were provided every 12 h in all groups. Pre- and post-treatment plasma samples from all birds were evaluated for changes in albumin, total protein, and uric acid. Post-treatment samples of all birds, collected 15 min post-administration, were analyzed by high-performance liquid chromatography with mass spectrometry for diclofenac sodium detection. A randomly selected renal sample from each group was submitted for histopathologic review. Changes in pre- and post-treatment plasma albumin were significant (P < 0.05) in groups 2 and 3, but not for group 1. Pre- and post-treatment changes in total protein and uric acid were not significant for any group. Diclofenac sodium was not detectable (limit of detection = 0.10 ng/mL) in plasma samples from birds in group 1. Post-treatment concentration of diclofenac in group 3 was statistically greater than group 2 (P = 0.0008). Histopathologic changes did not identify diclofenac-induced acute renal tubular necrosis. Ophthalmic diclofenac sodium 0.1% administered topically every 12 h in one or both eyes for 7 days is detectable in systemic circulation in the domestic chicken, but does not cause overt significant changes in plasma uric acid or total protein. © 2016 American College of Veterinary Ophthalmologists.

  12. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  13. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures.

  14. Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana.

    PubMed

    Smeets, Karen; Ruytinx, Joske; Van Belleghem, Frank; Semane, Brahim; Lin, Dan; Vangronsveld, Jaco; Cuypers, Ann

    2008-02-01

    Arabidopsis thaliana is one of the most widely used model organisms in plant sciences. Because of the increasing knowledge in the understanding of its molecular pathways, a reproducible and stable growth set-up for obtaining uniform plants becomes more important. In order to be able to easily harvest and study both roots and shoots, and to allow simple exposure to water-soluble toxic substances, a hydroponic system is the desired cultivation method for controlled plant growth. Based on earlier developed hydroponic cultivation protocols, a hydroponic set-up was optimized and statistically validated using linear mixed-effects models. In order to determine important components that influence the level of variability in a hydroponic set-up, stress-related indicators were examined at the biochemical as well as at the molecular level. It is highly recommended that statistical as well as biological assumptions are carried out before post-analyses are performed. Therefore, we suggest a model where factors that influence variability such as the usage of different pots and harvesting on different times are taken into account in the analyses. Furthermore, in contrast to what has been reported in earlier studies, our findings indicate that continuous aeration of the hydroponic solution is highly important.

  15. Tropane alkaloid profiling of hydroponic Datura innoxia Mill. Plants inoculated with Agrobacterium rhizogenes.

    PubMed

    Jousse, Cyril; Vu, Thi Dao; Tran, Thi Le Minh; Al Balkhi, Mohamad Houssam; Molinié, Roland; Boitel-Conti, Michèle; Pilard, Serge; Mathiron, David; Hehn, Alain; Bourgaud, Frédéric; Gontier, Eric

    2010-01-01

    Hydroponics has been shown as a possible way to produce high quality plant biomass with improved phytochemical levels. Nevertheless, effects of plant biotic and abiotic environment can lead to drastic changes and plant growth conditions must be optimised. To evaluate how much microbes and Agrobacterium rhizogenes TR7 wild strain may affect the tropane alkaloid profile in Datura innoxia Mill. plants cultivated in hydroponic conditions. Datura innoxia Mill. plants were cultivated in hydroponic with sterile or non-sterile conditions. For half of the non-sterile plants, Agrobacterium rhizogenes TR7 strain was added to the nutrient solution for hydroponics. The tropane alkaloid content of leaves and roots was analysed by UFLC/ESI-HRMS and MS/MS. The metabolite profiles were compared using partial least square-discriminant analysis. In sterile conditions, aerial parts contained more scopolamine than the roots. However, the diversity of tropane alkaloids was greater in roots. Furthermore, 21 known compounds and four non-elucidated tropane alkaloids were found. The tropane alkaloid profile was shown to be statistically different between sterile and non-sterile hydroponic conditions. The levels of 3-acetoxy-6-hydroxytropane and 3-hydroxylittorine were higher in plants inoculated with A. rhizogenes. Five other tropane compounds were found in higher amounts in non-axenic control plants. Hyoscyamine and scopolamine total contents were much higher in the whole plant co-cultivated with A. rhizogenes TR7 than in controls. Furthermore, the leaves and roots of axenic plants contained more alkaloids than non-sterile ones. In hydroponic conditions, microbes induced variations of the phytochemical levels. Addition of A. rhizogenes TR7 into the nutrient solutions improved the total hyoscyamine and scopolamine production. (c) 2009 John Wiley & Sons, Ltd.

  16. Carotenoid composition of hydroponic leafy vegetables.

    PubMed

    Kimura, Mieko; Rodriguez-Amaya, Delia B

    2003-04-23

    Because hydroponic production of vegetables is becoming more common, the carotenoid composition of hydroponic leafy vegetables commercialized in Campinas, Brazil, was determined. All samples were collected and analyzed in winter. Lactucaxanthin was quantified for the first time and was found to have concentrations similar to that of neoxanthin in the four types of lettuce analyzed. Lutein predominated in cress, chicory, and roquette (75.4 +/- 10.2, 57.0 +/- 10.3, and 52.2 +/- 12.6 microg/g, respectively). In the lactucaxanthin-containing lettuces, beta-carotene and lutein were the principal carotenoids (ranging from 9.9 +/- 1.5 to 24.6 +/- 3.1 microg/g and from 10.2 +/- 1.0 to 22.9 +/- 2.6 microg/g, respectively). Comparison of hydroponic and field-produced curly lettuce, taken from neighboring farms, showed that the hydroponic lettuce had significantly lower lutein, beta-carotene, violaxanthin, and neoxanthin contents than the conventionally produced lettuce. Because the hydroponic farm had a polyethylene covering, less exposure to sunlight and lower temperatures may have decreased carotenogenesis.

  17. [Plant hydroponics and its application prospect in medicinal plants study].

    PubMed

    Zeng, Yan; Guo, Lan-Ping; Huang, Lu-Qi; Sun, Yu-Zhang

    2007-03-01

    This article introduced the theorem and method of hydroponics. Some examples of studies in agriculture and forestry were presented, the effects of elements, environmental stress and hormones on physiology of medicinal plants by using hydroponics were analyzed. It also introduced the feasibility and advantage of hydroponics in intermediate propagation and allelopathy of medicinal plant. And finally it made the conclusion that the way of hydroponics would be widely used in medicinal plant study.

  18. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  19. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control.

    PubMed

    Vessey, J K; York, E K; Henry, L T; Raper, C D

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  20. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  1. A Phase 1, Open-Label, Randomized, Crossover Study Evaluating the Bioavailability of TAS-102 (Trifluridine/Tipiracil) Tablets Relative to an Oral Solution Containing Equivalent Amounts of Trifluridine and Tipiracil.

    PubMed

    Becerra, Carlos R; Yoshida, Kenichiro; Mizuguchi, Hirokazu; Patel, Manish; Von Hoff, Daniel

    2017-06-01

    TAS-102 (trifluridine/tipiracil) is composed of an antineoplastic thymidine-based nucleoside analogue trifluridine (FTD), and a thymidine phosphorylase inhibitor, tipiracil (TPI), at a molar ratio of 1:0.5 (weight ratio, 1:0.471). A phase 1 study evaluated relative bioavailability of TAS-102 tablets compared with an oral solution containing equivalent amounts of FTD and TPI. In an open-label, 2-sequence, 3-period, crossover bioavailability study (part 1), patients 18 years or older with advanced solid tumors were randomized to receive TAS-102 tablets (60 mg; 3 × 20-mg tablets) on day 1 and TAS-102 oral solution (60 mg) on days 8 and 15, or the opposite sequence. In an extension (part 2), all patients received TAS-102 tablets. Of the 46 patients treated in the crossover study, 38 were evaluable in the crossover bioavailability pharmacokinetic population. For area under the concentration-time curve (AUC)0-∞ and AUC0-last for FTD and TPI, and maximum plasma concentration (Cmax ) for TPI, the 90% confidence intervals (CIs) of the geometric mean ratios were within the 0.80 to 1.25 boundary for demonstration of bioequivalence; for FTD Cmax , the lower limit of the 90%CI was 0.786. The most frequently reported treatment-related grade 3 or 4 adverse events were neutropenia (7 patients) and decreased neutrophil count (3 patients). Although the lower limit of the 90%CI for the geometric mean ratio of FTD Cmax was slightly lower than 0.80, the bioavailability of the TAS-102 tablet is considered clinically similar to that of a TAS-102 oral solution. TAS-102 was well tolerated in this population of patients with advanced solid tumors. © 2016, The American College of Clinical Pharmacology.

  2. Carbohydrate bioavailability.

    PubMed

    Englyst, Klaus N; Englyst, Hans N

    2005-07-01

    There is consensus that carbohydrate foods, in the form of fruit, vegetables and whole-grain products, are beneficial to health. However, there are strong indications that highly processed, fibre-depleted, and consequently rapidly digestible, energy-dense carbohydrate food products can lead to over-consumption and obesity-related diseases. Greater attention needs to be given to carbohydrate bioavailability, which is determined by the chemical identity and physical form of food. The objective of the present concept article is to provide a rational basis for the nutritional characterisation of dietary carbohydrates. Based on the properties of carbohydrate foods identified to be of specific relevance to health, we propose a classification and measurement scheme that divides dietary carbohydrates into glycaemic carbohydrates (digested and absorbed in the small intestine) and non-glycaemic carbohydrates (enter the large intestine). The glycaemic carbohydrates are characterised by sugar type, and by the likely rate of digestion described by in vitro measurements for rapidly available glucose and slowly available glucose. The main type of non-glycaemic carbohydrates is the plant cell-wall NSP, which is a marker of the natural fibre-rich diet recognised as beneficial to health. Other non-glycaemic carbohydrates include resistant starch and the resistant short-chain carbohydrates (non-digestible oligosaccharides), which should be measured and researched in their own right. The proposed classification and measurement scheme is complementary to the dietary fibre and glycaemic index concepts in the promotion of healthy diets with low energy density required for combating obesity-related diseases.

  3. Uranium uptake by hydroponically cultivated crop plants.

    PubMed

    Soudek, Petr; Petrová, Sárka; Benešová, Dagmar; Dvořáková, Marcela; Vaněk, Tomáš

    2011-06-01

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC(50) value about 0.1mM. Cucumis sativa represented the most resistant plant to uranium (EC(50)=0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1mM or 0.5mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Wheat response to differences in water and nutritional status between zeoponic and hydroponic growth systems

    NASA Technical Reports Server (NTRS)

    Steinberg, S. L.; Ming, D. W.; Henderson, K. E.; Carrier, C.; Gruener, J. E.; Barta, D. J.; Henninger, D. L.

    2000-01-01

    Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L. cv. USU-Apogee). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15 to 20 L m-2 d-1 up to Day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences in water status were noted between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT than in hydroponic culture. Sterile green tillers made up 12 and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4-N nutrition of plants grown in ZPT compared with NO3-N in hydroponic nutrient solution. It is probable that NH4-N-induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS.

  5. Wheat Response to Differences In Water and Nutritional Status Between Zeoponic and Hydroponic Growth Systems

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L.; Ming, Douglas W.; Henderson, Keith E.; Carrier, Chris; Gruener, John E.; Barta, Dan J.; Henninger, Don L.

    1999-01-01

    Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L., CV 'USU-Apogee'). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15-20 L per square meters per d up to day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences were noted in water status between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT versus hydroponic culture. Sterile green tillers made up 12% and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4 -N nutrition of plants grown in ZPT as compared with NO3-N in hydroponic nutrient solution. It was likely that NH4-N induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS.

  6. Wheat response to differences in water and nutritional status between zeoponic and hydroponic growth systems.

    PubMed

    Steinberg, S L; Ming, D W; Henderson, K E; Carrier, C; Gruener, J E; Barta, D J; Henninger, D L

    2000-01-01

    Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L. cv. USU-Apogee). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15 to 20 L m-2 d-1 up to Day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences in water status were noted between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT than in hydroponic culture. Sterile green tillers made up 12 and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4-N nutrition of plants grown in ZPT compared with NO3-N in hydroponic nutrient solution. It is probable that NH4-N-induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS.

  7. Dieldrin uptake and translocation in plants growing in hydroponic medium.

    PubMed

    Murano, Hirotatsu; Otani, Takashi; Seike, Nobuyasu; Sakai, Mizuki

    2010-01-01

    It has been known that the Cucurbitaceae family takes up a large amount of persistent organic pollutants from soils and that the translocation of those compounds in cucurbits is higher than those in non-cucurbits. To understand the persistent organic pollutant uptake mechanisms of plant species, we compared the dieldrin absorption and transportation potentials of several plants in hydroponic medium. Sorghum (Sorghum vulgare Moench), sunflower (Helianthus annuus L.), soybean (Glycine max), komatsuna (Brassica rapa var. peruviridis), white-flowered gourd (Lagenaria siceraria var. hispida), cucumber (Cucumis sativus L.), and zucchini (Cucurbita pepo L.) were grown in a dieldrin-added hydroponic medium for 10 d, and then the amount of dieldrin in their shoots and roots was measured. All of the roots contained dieldrin, whereas only the cucurbits (white-flowered gourd, cucumber, and zucchini) contained considerable amounts of dieldrin in their shoots. The dieldrin uptake to the roots depended on the concentration of the n-hexane soluble components in the roots, regardless of whether the dieldrin in the roots was translocated to shoots or not. The dieldrin uptake from the solution to the roots was thought to be due to a passive response, such as adsorption on the roots. The translocation of dieldrin from the roots to the shoots was probably through the xylems. The amounts of dieldrin in the shoots per transpiration rates were higher for cucurbits than for non-cucurbits. It seems likely that cucurbits have uptake mechanisms for hydrophobic organic chemicals.

  8. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    NASA Astrophysics Data System (ADS)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    evaluate the adaptation of soybean plants to hydroponics under controlled environment, as well as the plant response to changing cultural parameters, in order to identify the best cultivation protocol for BLSSs. The optimisation of growth conditions in hydroponics has been pursued being aware that environmental factors acting at sub-optimal levels may also increase the sensitivity of plants to space factors. The influence of the following parameters on plant growth and yield was also studied: - the hydroponic system: sole liquid solution (Nutrient Film Technique, NFT) vs solid substrate (rockwool); - the source of nitrogen in the nutrient solution: nitrate fertilizers vs urea; - the root symbiosis with atmospheric nitrogen-fixing bacteria: absence or presence of Bradyrhizobium japonicum; - the influence of microbes in the rhizosphere: inoculation with a mix containing mycorrhizal and trichoderma species, and beneficial bacteria vs a non-inoculated control. All the treatments were evaluated in terms of agronomic traits (e.g. plant size and seed production), physiological traits (gas exchange, nutrient uptake), chemical composition of seeds and their products, and technical parameters such as resource use efficiency and non-edible biomass production (waste).

  9. Monitoring And Controlling Hydroponic Flow

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1992-01-01

    Pressure-monitoring and -controlling apparatus maintains slight suction required on nutrient solution in apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375), while overcoming gravity effects on operation of system on Earth. Suction helps to hold solution in tubular membrane.

  10. Bioavailability of Allelochemicals in Soil

    DTIC Science & Technology

    2008-02-27

    which is regulated by its sorption to soil colloids (2)...................................................3 Figure 2. Hydroponic screening system...of 7,8-benzoflavone, its desorption from soil with water or methanol was investigated. Bioassays included hydroponic studies – a species screening...sorption and hydroponic toxicity studies were also purchased from Sigma Chemical Co. (St. Louis, MO). Analyses of (+/-)-catechin and 7, 8 benzoflavone in

  11. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb's lettuce (Valerianella locusta L. Laterr).

    PubMed

    Manzocco, Lara; Foschia, Martina; Tomasi, Nicola; Maifreni, Michela; Dalla Costa, Luisa; Marino, Marilena; Cortella, Giovanni; Cesco, Stefano

    2011-06-01

    Nowadays, there is an increasing interest in the hydroponic floating system to cultivate leafy vegetables for ready-to-eat salads. It is reasonable that different growing systems could affect the quality and shelf life of these salads. The quality and shelf life of ready-to-eat lamb's lettuce grown in protected environment in soil plot or in soil-less system over hydroponic solution with or without the addition of 30 µmol L⁻¹ silicon were evaluated. Minimum effects were observed on colour, firmness and microbial counts. Hydroponic cultivation largely affected plant tissue hydration, leading to weight loss and structural modifications during refrigerated storage. The shelf life of lamb's lettuce was limited by the development of visually detectable unpleasant sensory properties. Shelf life, calculated by survival analysis of consumer acceptability data, resulted about 7 days for soil-cultivated salad and 2 days for the hydroponically grown ones. The addition of silicon to the hydroponic solution resulted in an interesting strategy to increase plant tissue yield and reduce nitrate accumulation. Although hydroponic cultivation may have critical consequences on product quality and shelf life, these disadvantages could be largely counterbalance by increased yield and a reduction of nitrate accumulation when cultivation is performed on nutritive solutions with supplemental addition of silicon. Copyright © 2011 Society of Chemical Industry.

  12. Hydroponic uptake and distribution of nitrobenzene in Phragmites australis: potential for phytoremediation.

    PubMed

    Song, Yanyu; Song, Changchun; Ju, Songbai; Chai, Junhai; Guo, Jun; Zhao, Quandong

    2010-03-01

    Phragmites australis was grown hydroponically in nutrient solutions containing nitrobenzene to examine the potential for treatment of contaminated waters through phytoremediation. The hydroponic solutions and plant tissue were sampled each day during the five day growth period and tested for nitrobenzene. Plant tissue analysis included both rhizome and shoot sections of the plant. The average half lives and disappearance rate of nitrobenzene in the nutrient solution was 1.85 days and 88.10%, respectively. The levels of nitrobenzene in rhizomes and shoots of Phragmites australis increased with higher exogenous concentrations. For the highest treatment, nitrobenzene measurements in the rhizome tissue were much higher than the plant shoots until the third day. Shoot sections initially showed elevated concentrations and then decreased. This variation is presumably due to the translocation of the target compound from the rhizomes to shoots. Our findings indicate that Phragmites australis removed nitrobenzene from the hydroponic solutions and accumulated the compound within the plant tissue. This activity makes Phragmites australis a good candidate species for the phytoremediation of nitrobenzene contaminated waters.

  13. Production of deuterated switchgrass by hydroponic cultivation.

    PubMed

    Evans, Barbara R; Bali, Garima; Foston, Marcus; Ragauskas, Arthur J; O'Neill, Hugh M; Shah, Riddhi; McGaughey, Joseph; Reeves, David; Rempe, Caroline S; Davison, Brian H

    2015-07-01

    The bioenergy crop switchgrass was grown hydroponically from tiller cuttings in 50 % D 2 O to obtain biomass with 34 % deuterium substitution and physicochemical properties similar to those of H 2 O-grown switchgrass controls. Deuterium enrichment of biological materials can potentially enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controls grown with H2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50 % D2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by (1)H- and (2)H-NMR. This capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.

  14. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?

    PubMed

    Zabłudowska, E; Kowalska, J; Jedynak, L; Wojas, S; Skłodowska, A; Antosiewicz, D M

    2009-10-01

    The main aim of the study was to evaluate the strategies for coping with arsenic toxicity developed by the mine species (Calamagrostis arundinacea, Fragaria vesca, Stachys sylvatica, and Epilobium parviflorum), and to compare results obtained from plants exposed to arsenic present in contaminated soil (2000-3500 mg/kg dw) and in hydroponic solution (2 microM and 12 microM arsenate). Here we report basic differences in plant responses to arsenic depending on growth conditions (hydroponic/soil) with respect to uptake, root-to-shoot translocation, distribution, and detoxification/speciation. Calamagrostis has the highest level of As-tolerance among the tested species. When grown in soil, it accumulated the highest amount of As in roots and shoots relative to other species, however, when exposed to arsenic in hydroponics, it had lower As concentrations. The efficiency of arsenic root-to-shoot translocation was also different, being less effective in soil-grown Calamagrostis compared with hydroponics. Furthermore, in Calamagrostis exposed to arsenate in liquid medium, As(III) was the predominant arsenic form, in contrast to plants grown in As-contaminated soil, in which As(V) predominated. In addition, comparison of the level of phytochelatins showed that only PC2 was detected in plants from hydroponics, whereas in those from soil, additionally PC3 and PC4 were found. The results show that the basic components of a plant's response to arsenic, including uptake, accumulation as well as detoxification, change depending on the experimental conditions (arsenic in liquid medium or contaminated soil).

  15. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    SciTech Connect

    Cao, Q; Hu, Q; Khan, S; Wang, Z; Lin, A; Du, X; Zhu, Y

    2007-03-05

    The toxicity effect of two deleterious elements of arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC{sub 50}) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC{sub 50} for As was 0.97 {mu}M in hydroponics and 196 mg {center_dot} kg{sup -1} in soil, and 4.32 {mu}M and 449 mg {center_dot} kg{sup -1} for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC{sub 50mix} = 0.36 TU{sub mix} and AI: 1.76) and antagonism in soil experiments (EC{sub 50mix} = 1.49 TU{sub mix} and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd can not explain the discrepancy between the results derived from soil and hydroponics experiments.

  16. Relative bioavailability of a newly developed 5-mg levomethadone hydrochloride IR tablet (L-Polamidon® 5 mg tablets) in comparison with the 5-mg levomethadone hydrochloride oral solution (L-Polamidon® solution for substitution) as reference product.

    PubMed

    Blume, Henning H; Wedemeyer, Ralf-Steven; Donath, Frank; Roscher, Katrin; Elvert, Gerd; Wagner, Daniel; Bley, Oliver; Vuia, Alexander; Todorova-Sanjari, Marina; Villalobos, Ramon; Schug, Barbara

    2015-04-01

    To establish the relative bioavailability (rBA) between two p.o. 5-mg levomethadone hydrochloride formulations, i.e., L-Polamidon® 5 mg tablets (test) vs. L-Polamidon® solution for substitution (reference). To assess the safety and tolerability of both formulations. A total of 33 healthy male subjects, aged 29 ± 6 years (BMI: 23.9 ± 2.5 kg/m2) completed this single center, open-label, randomized, 2-period cross-over study with single dose administrations under fasting conditions and coadministration with naltrexone for safety reasons. Administrations of both investigational products were separated by a washout period of at least 2 weeks, i.e., 13 treatmentfree days. The total dose for each subject was 2 x 5 mg resulting in 10 mg levomethadone hydrochloride. For pharmacokinetic evaluation, blood samples were withdrawn until 72 hours postdose. A validated non-stereoselective liquid chromatography-tandem mass spectroscopy method (LC-MS/MS) was applied for the determination of levomethadone in plasma. The lower limit of quantitation was 0.100 ng/mL. Adverse events were descriptively analyzed in the study population. The geometric means of the parameters related with the extent of total exposure of levomethadone, i.e., AUC(0-tlast) and AUC(0-∞), were 244.422 ng x h/mL and 332.999 ng x h/mL for test and 246.837 ng x h/mL and 329.467 ng×h/mL for reference, respectively. The geometric means of the peak exposure for levomethadone, i.e., Cmax, were 8.923 ng/mL for test and 8.635 ng/mL for reference. The point estimates (PEs) of the Test/Reference (T/R) adjusted geometric mean ratios of AUC(0-last), AUC(0-∞), and C(max) were 99.20%, 101.42%, and 104.11%, respectively, and all of them showed 90%-confidence intervals (CIs) within the range of 80.00 - 125.00% as suggested by regulatory requirements for bioequivalence assessment In total, 21 subjects experienced 55 AEs during the study, the most frequently reported AE, i.e., headache, accounted for 13 out of the total

  17. Bacterial community analysis of Tatsoi cultivated by hydroponics.

    PubMed

    Koo, Ok K; Kim, Hun; Kim, Hyun J; Baker, Christopher A; Ricke, Steven C

    2016-07-02

    Tatsoi (Brassica narinosa) is a popular Asian salad green that is mostly consumed as a source of fresh produce. The purpose of this study was to assess the microbial diversity of Tatsoi cultivated in a hydroponic system and of its ecosystem. Tatsoi leaves, nutrient solution, and perlite/earth samples from a trickle feed system (TFS) and an ebb-and-flow system (EFS) were collected and their microbial communities were analyzed by pyrosequencing analysis. The results showed that most bacteria in the leaves from the TFS contained genus Sporosarcina (99.6%), while Rhizobium (60.4%) was dominant in the leaves from the EFS. Genus Paucibacter (18.21%) and Pelomonas (12.37%) were the most abundant microbiota in the nutrient solution samples of the TFS. In the EFS, the nutrient solution samples contained mostly genus Rhodococcus and Acinetobacter. Potential microbial transfer between the leaves and the ecosystem was observed in the EFS, while samples in the TFS were found to share only one species between the leaves, nutrient solution, and earth. Together, these results show that the bacterial populations in Tatsoi and in its ecosystem are highly diverse based on the cultivation system.

  18. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement

    PubMed Central

    Thilakarathna, Surangi H.; Rupasinghe, H. P. Vasantha

    2013-01-01

    Flavonoids are a group of phytochemicals that have shown numerous health effects and have therefore been studied extensively. Of the six common food flavonoid classes, flavonols are distributed ubiquitously among different plant foods whereas appreciable amounts of isoflavones are found in leguminous plant-based foods. Flavonoids have shown promising health promoting effects in human cell culture, experimental animal and human clinical studies. They have shown antioxidant, hypocholesterolemic, anti-inflammatory effects as well as ability to modulate cell signaling and gene expression related disease development. Low bioavailability of flavonoids has been a concern as it can limit or even hinder their health effects. Therefore, attempts to improve their bioavailability in order to improve the efficacy of flavonoids are being studied. Further investigations on bioavailability are warranted as it is a determining factor for flavonoid biological activity. PMID:23989753

  19. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa)

    PubMed Central

    Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong

    2014-01-01

    Background and Aims Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Methods Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. Key Results The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Conclusions Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. PMID:24948669

  20. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa).

    PubMed

    Wang, Xun; Tam, Nora Fung-Yee; Fu, Shi; Ametkhan, Aray; Ouyang, Yun; Ye, Zhihong

    2014-08-01

    Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. The high Se treatment (5 μg g(-1)) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced 'water-soluble' Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Nutritional status and ion uptake response of Gynura bicolor DC. between Porous-tube and traditional hydroponic growth systems

    NASA Astrophysics Data System (ADS)

    Wang, Minjuan; Fu, Yuming; Liu, Hong

    2015-08-01

    Hydroponic culture has traditionally been used for Bioregenerative Life Support Systems (BLSS) because the optimal environment for roots supports high growth rates. Recent developments in Porous-tube Nutrient Delivery System (PTNDS) also offer high control of the root environment which is designed to provide a means for accurate environmental control and to allow for two-phase flow separation in microgravity. This study compared the effects of PTNDS and traditional hydroponic cultures on biomass yield, nutritional composition and antioxidant defense system (T-AOC, GSH, H2O2 and MDA) of G. bicolor, and ionic concentration (NH4+, K+, Mg2+, Ca2+, NO3-, H2 PO4-, SO42-) of nutrient solution during planting period in controlled environment chambers. The results indicated that the biomass production and yield of G. bicolor grown in PTNDS were higher than in hydroponic culture, although Relative water content (RWC), leaf length and shoot height were not significantly different. PTNDS cultivation enhanced calories from 139.5 to 182.3 kJ/100 g dry matter, and carbohydrate from 4.8 to 7.3 g/100 g dry matter and reduced the amount of protein from 7.3 to 4.8 g/100 g dry matter and ash from 1.4 to1.0 g/100 g dry matter, compared with hydroponic culture. PTNDS cultivation accumulated the nutrition elements of Ca, Cu, Fe and Zn, and reduced Na concentration. T-AOC and GSH contents were significantly lower in PTNDS than in hydroponic culture in the first harvest. After the first harvest, the contents of MDA and H2O2 were significantly higher in PTNDS than in hydroponic culture. However, the activity of T-AOC and GSH and H2O2 and MDA contents had no significant differences under both cultures after the second and third harvest. Higher concentrations of K+, Mg2+ and Ca2+ were found in nutrient solution of plants grown in hydroponics culture compared to PTNDS, wherein lower concentrations of NO3-, H2 PO4- and SO42- occurred. Our results demonstrate that PTNDS culture has more

  2. Production of deuterated switchgrass by hydroponic cultivation

    SciTech Connect

    Evans, Barbara R.; Bali, Garima; Foston, Marcus B.; Ragauskas, Arthur J.; O'Neill, Hugh Michael; Shah, Riddhi S.; McGaughey, Joseph; Reeves, David T.; Rempe, Caroline S.; Davison, Brian H.

    2015-04-21

    Deuterium enrichment of biological materials can potential enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controls grown with H2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50% D2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by 1H- and 2H-NMR. Lastly, this capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.

  3. Production of deuterated switchgrass by hydroponic cultivation

    DOE PAGES

    Evans, Barbara R.; Bali, Garima; Foston, Marcus B.; ...

    2015-04-21

    Deuterium enrichment of biological materials can potential enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controls grownmore » with H2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50% D2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by 1H- and 2H-NMR. Lastly, this capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.« less

  4. Uptake and translocation of sulfamethazine by alfalfa grown under hydroponic conditions.

    PubMed

    Kurwadkar, Sudarshan; Struckhoff, Garrett; Pugh, Kameron; Singh, Om

    2017-03-01

    Antibiotics are routinely used in intensive animal agriculture operations collectively known as Concentrated Animal Feed Operations (CAFO) which include dairy, poultry and swine farms. Wastewater generated by CAFOs often contains low levels of antibiotics and is typically managed in an anaerobic lagoon. The objective of this research is to investigate the uptake and fate of aqueous sulfamethazine (SMN) antibiotic by alfalfa (Medicago sativa) grass grown under hydroponic conditions. Uptake studies were conducted using hydroponically grown alfalfa in a commercially available nutrient solution supplemented with 10mg/L of SMN antibiotic. Analysis of alfalfa sap, root zone, middle one-third, and top portion of the foliage showed varying uptake rate and translocation of SMN. The highest average amount of SMN (8.58μg/kg) was detected in the root zone, followed by the top portion (1.89μg/kg), middle one-third (1.30μg/kg), and sap (0.38μg/kg) samples, indicating a clear distribution of SMN within the sampled regions. The ultraviolet (UV) spectra of parent SMN and translocated SMN identified in different parts of the plant present the possibility of metabolization during the uptake process. Uptake of SMN using alfalfa grown under hydroponic conditions has potential as a promising remediation technology for removal of similar antibiotics from wastewater lagoons. Copyright © 2016. Published by Elsevier B.V.

  5. Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method

    NASA Astrophysics Data System (ADS)

    Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty

    2017-03-01

    Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.

  6. Use of polishing pond effluents to cultivate lettuce (Lactuca sativa) in a hydroponic system.

    PubMed

    Keller, R; Perin, K; Souza, W G; Cruz, L S; Zandonade, E; Cassini, S T A; Goncalves, R F

    2008-01-01

    The sanitary quality and productivity of hydroponic lettuce (Lactuca sativa L.) plants cultivated under greenhouse conditions and treated with effluent from anaerobic reactor + polishing pond followed by physical-chemical treatment was evaluated. Two hydroponic cultivations were performed at summer and winter time at Vitoria-ES, Brazil. The treatments for both cultivations were: T1) conventional nutrient solution, T2) effluent from physical-chemical treatment, T3) effluent from polishing pond, and T4) effluent from polishing pond with 50% dilution. The plants were evaluated for microbial contamination, productivity and nutrient content. In all cases, no significant microbial contamination of lettuce was detected and the levels of macronutrients in the shoot system were similar to those in published reports. In the experiments from summer season, the treatments T1 and T2 resulted in higher production than the T3 and T4 treatments. Plants from T3 and T4 had a less developed root system as a result of reduced oxygenation from competition with the higher algae biomass content from the polishing pond effluent. In the winter season, the effect of the algal biomass was pronounced only in the T3 treatment (undiluted effluent from polishing pond). In conclusion, hydroponic cultivation of lettuce with pond effluent is suitable as a complement to water and nutrients for plants.

  7. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    NASA Technical Reports Server (NTRS)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  8. Arsenic uptake and speciation in Arabidopsis thaliana under hydroponic conditions.

    PubMed

    Park, Jin Hee; Han, Young-Soo; Seong, Hye Jin; Ahn, Joo Sung; Nam, In-Hyun

    2016-07-01

    Arsenic (As) uptake and species in Arabidopsis thaliana were evaluated under hydroponic conditions. Plant nutrient solutions were treated with arsenite [As(III)] or arsenate [As(V)], and aqueous As speciation was conducted using a solid phase extraction (SPE) cartridge. Arabidopsis reduced As(V) to As(III) in the nutrient solution, possibly due to root exudates such as organic acids or the efflux of As(III) from plant roots after in vivo reduction of As(V) to As(III). Arsenic uptake by Arabidopsis was associated with increased levels of Ca and Fe, and decreased levels of K in plant tissues. Arsenic in Arabidopsis mainly occurred as As(III), which was coordinated with oxygen and sulfur based on XANES and EXAFS results. The existence of As(III)O and As(III)S in EXAFS indicates partial biotransformation of As(III)O to a sulfur-coordinated form because of limited amount of glutathione in plants. Further understanding the mechanism of As biotransformation in Arabidopsis may help to develop measures that can mitigate As toxicity via genetic engineering.

  9. Integrating biological treatment of crop residue into a hydroponic sweetpotato culture

    NASA Astrophysics Data System (ADS)

    Trotman, A. A.; David, P. P.; Bonsi, C. K.; Hill, W. A.; Mortley, D. G.; Loretan, P. A.

    1997-01-01

    Residual biomass from hydroponic culture of sweetpotato [Ipomoea batatas (L.) Lam.] was degraded using natural bacterial soil isolates. Sweetpotato was grown for 120 days in hydroponic culture with a nutrient solution comprised of a ratio of 80% modified half Hoagland solution to 20% filtered effluent from an aerobic starch hydrolysis bioreactor. The phytotoxicity of the effluent was assayed with `Waldmann's Green' lettuce (Lactuca sativa L.) and the ratio selected after a 60-day bioassay using sweetpotato plants propagated vegetatively from cuttings. Controlled environment chamber experiments were conducted to investigate the impact of filtrate from biological treatment of crop residue on growth and storage root production with plants grown in a modified half Hoagland solution. Incorporation of bioreactor effluent, reduced storage root yield of `Georgia Jet' sweetpotato but the decrease was not statistically significant when compared with yield for plants cultured in a modified half Hoagland solution without filtrate. However, yield of `TU-82-155' sweetpotato was significantly reduced when grown in a modified half Hoagland solution into which filtered effluent had been incorporated. Total biomass was significantly reduced for both sweetpotato cultivars when grown in bioreactor effluent. The leaf area and dry matter accumulation were significantly (P < 0.05) reduced for both cultivars when grown in solution culture containing 20% filtered effluent.

  10. Integrating biological treatment of crop residue into a hydroponic sweetpotato culture.

    PubMed

    Trotman, A A; David, P P; Bonsi, C K; Hill, W A; Mortley, D G; Loretan, P A

    1997-01-01

    Residual biomass from hydroponic culture of sweetpotato [Ipomoea batatas (L.) Lam.] was degraded using natural bacterial soil isolates. Sweetpotato was grown for 120 days in hydroponic culture with a nutrient solution comprised of a ratio of 80% modified half Hoagland solution to 20% filtered effluent from an aerobic starch hydrolysis bioreactor. The phytotoxicity of the effluent was assayed with Waldmann's Green' lettuce (Lactuca sativa L.) and the ratio selected after a 60-day bioassay using sweetpotato plants propagated vegetatively from cuttings. Controlled environment chamber experiments were conducted to investigate the impact of filtrate from biological treatment of crop residue on growth and storage root production with plants grown in a modified half Hoagland solution. Incorporation of bioreactor effluent, reduced storage root yield of 'Georgia Jet' sweetpotato but the decrease was not statistically significant when compared with yield for plants cultured in a modified half Hoagland solution without filtrate. However, yield of 'TU-82-155' sweetpotato was significantly reduced when grown in a modified half Hoagland solution into which filtered effluent had been incorporated. Total biomass was significantly reduced for both sweetpotato cultivars when grown in bioreactor effluent. The leaf area and dry matter accumulation were significantly (P < 0.05) reduced for both cultivars when grown in solution culture containing 20% filtered effluent.

  11. [Bioavailability of antiinflammatory drugs].

    PubMed

    Cochereau, I

    2000-05-01

    Bioavailability is one of the major factors for therapeutic efficacy. The bioavailability of antiinflammatory drugs depends on the status of the eye (degree of inflammation, vitrectomy, aphakia) and on the drug (route of administration, regimen, concentration and presentation). The bioavailability of steroid drops increases with acetate compounds, frequency of administration, concentration and contact time. Peribulbar injections provide a long-delivery system but with a significant systemic diffusion. Intravitreal steroids have only a local effect due to the very low doses injected. The bioavailability of non steroidal antiinflammatory drugs is variable, but their effects are similar. Antimetabolites such as 5-fluorouracil or mitomycin C have short half-lives, but mitomycin C must be rinsed after use due to its toxicity.

  12. Integrating bioavailability approaches into waste rock evaluations

    USGS Publications Warehouse

    Ranville, James F.; Blumenstein, E. P.; Adams, Michael J.; Choate, LaDonna M.; Smith, Kathleen S.; Wildeman, Thomas R.

    2006-01-01

    The presence of toxic metals in soils affected by mining, industry, agriculture and urbanization, presents problems to human health, the establishment and maintenance of plant and animal habitats, and the rehabilitation of affected areas. A key to managing these problems is predicting the fraction of metal in a given soil that will be biologically labile, and potentially harmful ('bioavailable'). The molecular form of metals and metalloids, particularly the uncomplexed (free) form, controls their bioavailability and toxicity in solution. One computational approach for determining bioavailability, the biotic ligand model (BLM), takes into account not only metal complexation by ligands in solution, but also competitive binding of hardness cations (Ca 2+,Mg 2+,) and metal ions to biological receptor sites. The more direct approach to assess bioavailability is to explicitly measure the response of an organism to a contaminant. A number of microbial enzyme tests have been developed to assess the impact of pollution in a rapid and procedurally simple way. These different approaches in making bioavailability predictions may have value in setting landuse priorities, remediation goals, and habitat reclamation strategies.

  13. Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants

    PubMed Central

    2013-01-01

    Background Hydroponic growth systems are a convenient platform for studying whole plant physiology. However, we found through trialling systems as they are described in the literature that our experiments were frequently confounded by factors that affected plant growth, including algal contamination and hypoxia. We also found the way in which the plants were grown made them poorly amenable to a number of common physiological assays. Results The drivers for the development of this hydroponic system were: 1) the exclusion of light from the growth solution; 2) to simplify the handling of individual plants, and 3) the growth of the plant to allow easy implementation of multiple assays. These aims were all met by the use of pierced lids of black microcentrifuge tubes. Seed was germinated on a lid filled with an agar-containing germination media immersed in the same solution. Following germination, the liquid growth media was exchanged with the experimental solution, and after 14-21 days seedlings were transferred to larger tanks with aerated solution where they remained until experimentation. We provide details of the protocol including composition of the basal growth solution, and separate solutions with altered calcium, magnesium, potassium or sodium supply whilst maintaining the activity of the majority of other ions. We demonstrate the adaptability of this system for: gas exchange measurement on single leaves and whole plants; qRT-PCR to probe the transcriptional response of roots or shoots to altered nutrient composition in the growth solution (we demonstrate this using high and low calcium supply); producing highly competent mesophyll protoplasts; and, accelerating the screening of Arabidopsis transformants. This system is also ideal for manipulating plants for micropipette techniques such as electrophysiology or SiCSA. Conclusions We present an optimised plant hydroponic culture system that can be quickly and cheaply constructed, and produces plants with similar

  14. Childhood hypersensitivity pneumonitis associated with fungal contamination of indoor hydroponics.

    PubMed

    Engelhart, Steffen; Rietschel, Ernst; Exner, Martin; Lange, Lars

    2009-01-01

    Childhood hypersensitivity pneumonitis (HP) is often associated with exposure to antigens in the home environment. We describe a case of HP associated with indoor hydroponics in a 14-year-old girl. Water samples from hydroponics revealed Aureobasidium pullulans as the dominant fungal micro-organism (10(4)CFU/ml). The diagnosis is supported by the existence of serum precipitating antibodies against A. pullulans, lymphocytic alveolitis on bronchoalveolar lavage (BAL) fluid, a corresponding reaction on a lung biopsy, and the sustained absence of clinical symptoms following the removal of hydroponics from the home. We conclude that hydroponics should be considered as potential sources of fungal contaminants when checking for indoor health complaints.

  15. A thin film hydroponic system for plant studies

    NASA Technical Reports Server (NTRS)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  16. A thin film hydroponic system for plant studies

    NASA Technical Reports Server (NTRS)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  17. Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis.

    PubMed

    Norton, Gareth J; Lou-Hing, Daniel E; Meharg, Andrew A; Price, Adam H

    2008-01-01

    Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 muM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the BalaxAzucena mapping population.

  18. Controlled environment crop production - Hydroponic vs. lunar regolith

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce G.; Salisbury, Frank B.

    1989-01-01

    The potential of controlled environment crop production in a lunar colony is discussed. Findings on the effects of optimal root-zone and aerial environments derived as part of the NASA CELSS project at Utah State are presented. The concept of growing wheat in optimal environment is discussed. It is suggested that genetic engineering might produce the ideal wheat cultivar for CELSS (about 100 mm in height with fewer leaves). The Utah State University hydroponic system is outlined and diagrams of the system and plant container construction are provided. Ratio of plant mass to solution mass, minimum root-zone volume, maintenance, and pH control are discussed. A comparison of liquid hydrophonic systems and lunar regoliths as substrates for plant growth is provided. The physiological processes that are affected by the root-zone environment are discussed including carbon partitioning, nutrient availability, nutrient absorption zones, root-zone oxygen, plant water potential, root-produced hormones, and rhizosphere pH control.

  19. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    PubMed

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  20. Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis

    PubMed Central

    Norton, Gareth J.; Lou-Hing, Daniel E.; Meharg, Andrew A.; Price, Adam H.

    2008-01-01

    Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 μM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the Bala×Azucena mapping population. PMID:18453530

  1. Controlled environment crop production - Hydroponic vs. lunar regolith

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce G.; Salisbury, Frank B.

    1989-01-01

    The potential of controlled environment crop production in a lunar colony is discussed. Findings on the effects of optimal root-zone and aerial environments derived as part of the NASA CELSS project at Utah State are presented. The concept of growing wheat in optimal environment is discussed. It is suggested that genetic engineering might produce the ideal wheat cultivar for CELSS (about 100 mm in height with fewer leaves). The Utah State University hydroponic system is outlined and diagrams of the system and plant container construction are provided. Ratio of plant mass to solution mass, minimum root-zone volume, maintenance, and pH control are discussed. A comparison of liquid hydrophonic systems and lunar regoliths as substrates for plant growth is provided. The physiological processes that are affected by the root-zone environment are discussed including carbon partitioning, nutrient availability, nutrient absorption zones, root-zone oxygen, plant water potential, root-produced hormones, and rhizosphere pH control.

  2. Response of hydroponically grown head lettuce on residual monomer from polyacrylamide.

    PubMed

    Mroczek, E; Konieczny, P; Kleiber, T; Waśkiewicz, A

    2014-01-01

    The aim was to assess acrylamide monomer (AMD) uptake by hydroponically grown lettuce. Lettuce was cultivated by applying plant tissue testing in a recycled system by the use of nutrient solutions prepared with two water-soluble flocculants F3 and F4 containing 176 and 763 mg kg(-1) of AMD, respectively. The effects on growth, fresh weight and plant leaf quality were evaluated by comparing these treatments and one control standard nutrient solution typically recommended for lettuce hydroponic cultivation. To assess the nutritional status of lettuce, samples were collected and lyophilised before determination of the selected micro- and macro-element contents. An HPLC with photodiode array detector method was applied to determine AMD in both selected flocculants and dried plant samples. Results show that lettuces cultivated under the conditions described above absorb AMD from nutrient solutions into their leaves. The AMD presence in recycled nutrient solutions has a negative influence on the growth of lettuce, reducing their average fresh weight and average number of leaves. The study confirmed that the problem of AMD mobility and its accumulation risk in plants should to be an important topic with respect to safe polyacrylamide (PAM) handling in the agro food area.

  3. Measuring bioavailable copper using anodic stripping voltammetry

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1996-11-01

    Since speciation can affect bioavailability and toxicity of copper in aquatic systems, accurate predictions of effects of bioavailable forms require detection and/or measurement of these forms. To develop an approach for measurement of bioavailable copper, a copper sulfate solution was used in 10-d aqueous and sediment toxicity tests with Hyalella azteca Saussure. These tests encompassed ranges of pH, alkalinity, hardness, and conductivity. Changes in copper speciation were measured using atomic absorption spectroscopy (AA) for dissolved copper and differential pulse anodic stripping voltammetry (DPASV) for labile copper, and concentrations were evaluated relative to amphipod survival. Ten-day LC50s based on AA-measured aqueous copper concentrations ranged from 42 to 142 {micro}g Cu/L, and LC50s based on DPASV-measured copper concentrations ranged from 17.4 to 24.8 {micro}g Cu/L. In 10-d tests using copper-amended sediments with diverse characteristics and AA-measured copper concentrations spanning an order of magnitude, total copper concentrations were not predictive of sediment toxicity, but H. azteca survival was explained by DPASV measurements that varied by {le}4%. In order to make defensible estimates of the potential risk of metals in sediments or water, it is essential to identify the fraction of total metal that is bioavailable. In these experiments, DPASV was useful for measuring bioavailable copper in aqueous and sediment tests with H. azteca.

  4. Hydroxyiminodisuccinic acid (HIDS): A novel biodegradable chelating ligand for the increase of iron bioavailability and arsenic phytoextraction.

    PubMed

    Rahman, M Azizur; Hasegawa, H; Kadohashi, K; Maki, T; Ueda, K

    2009-09-01

    The influence of biodegradable chelating ligands on arsenic and iron uptake by hydroponically grown rice seedlings (Oryza sativa L.) was investigated. Even though the growth solution contained sufficient Fe, the growth of rice seedlings gradually decreased up to 76% with the increase of pH of the solution from 7 to 11. Iron forms insoluble ferric hydroxide complexes at neutral or alkaline pH in oxic condition. Chelating ligands produce soluble 'Fe-ligand complex' which assist Fe uptake in plants. The biodegradable chelating ligand hydroxyiminodisuccinic acid (HIDS) was more efficient then those of ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), and iminodisuccinic acid (IDS) in the increase of Fe uptake and growth of rice seedling. A total of 79+/-20, 87+/-6, 116+/-15, and 63+/-18mg dry biomass of rice seedlings were produced with the addition of 0.5mM of EDDS, EDTA, HIDS, and IDS in the nutrient solution, respectively. The Fe concentrations in rice tissues were 117+/-15, 82+/-8, 167+/-25, and 118+/-22micromolg(-1) dry weights when 0.25mM of EDDS, EDTA, HIDS, and IDS were added to the nutrient solution, respectively. Most of the Fe accumulated in rice tissues was stored in roots after the addition of chelating ligands in the solution. The results indicate that the HIDS would be a potential alternative to environmentally persistent EDTA for the increase of Fe uptake and plant growth. The HIDS also increased As uptake in rice root though its translocation from root to shoot was not augmented. This study reports HIDS for the first time as a promising chelating ligand for the enhancement of Fe bioavailability and As phytoextraction.

  5. Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution.

    PubMed

    Bedabati Chanu, Laitonjam; Gupta, Abhik

    2016-08-01

    Ipomoea aquatica Forsk., an aquatic macrophyte, was assessed for its ability to accumulate lead (Pb) by exposing it to graded concentrations of this metal. Accumulation of Pb was the highest in root followed by that in stem and leaf with translocation factor (TF) values of less than unity. On the other hand, all bioconcentration factor (BCF) values in root, stem and leaf were greater than unity. Furthermore, exposure to Pb concentrations over about 20 mg L(-1) induced colour changes in the basal portion of stem which had significantly higher Pb accumulation than that in the unaffected apical part. This resulted in sequestration of excess metal in affected stem tissue, which could take up Pb by the process of caulofiltration or shoot filtration, and served as a secondary reservoir of Pb in addition to the root. The apical parts contained less lead and could regrow roots from nodes and survive when kept in Pb-free medium. The ability of the plant to store Pb in its root and lower part of stem coupled with its ability to propagate by fragmentation through production of adventitious roots and lateral branches from nodes raises the possibility of utilizing Ipomoea aquatica for Pb phytoremediation from liquid effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data

    USGS Publications Warehouse

    Estrada, Nubia Luz; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua; Harvey, Greg; Burkey, Kent O.; Grantz, David A.; McGrath, Margaret T.; Anderson, Todd A.; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B.; Jackson, W. Andrew

    2017-01-01

    Natural perchlorate (ClO4−) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ37Cl, δ18O, and Δ17O), indicating that ClO4− may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO4−, but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO4− in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO4− was transported from solutions into plants similarly to NO3− but preferentially to Cl− (4-fold). The ClO4− isotopic compositions of initial ClO4− reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO4− uptake or accumulation. The ClO4− isotopic composition of field-grown snap beans was also consistent with that of ClO4− in varying proportions from irrigation water and precipitation. NO3− uptake had little or no effect on NO3− isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε (15N/18O) ratio of 1.05 was observed between NO3− in hydroponic solutions and leaf extracts, consistent with partial NO3− reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO4− in commercial produce, as illustrated by spinach, for which the ClO4− isotopic composition was similar to that of indigenous natural ClO4−. Our results indicate that some types of plants can accumulate and (presumably) release ClO4− to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO4−and NO3− in plants may be useful for determining sources of fertilizers and sources of ClO4− in their growth environments and

  7. Arsenic Bioavailability, Bioaccessibility, And Speciation

    EPA Science Inventory

    The term bioavailability has many different meanings across various disciplines. Often bioavailability is concerned with human health aspects such as the case of urban children interacting with contaminated soil. The still utilized approach to base risk assessment on total meta...

  8. Arsenic Bioavailability, Bioaccessibility, And Speciation

    EPA Science Inventory

    The term bioavailability has many different meanings across various disciplines. Often bioavailability is concerned with human health aspects such as the case of urban children interacting with contaminated soil. The still utilized approach to base risk assessment on total meta...

  9. Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium.

    PubMed

    Lv, Tao; Zhang, Yang; Casas, Mònica E; Carvalho, Pedro N; Arias, Carlos A; Bester, Kai; Brix, Hans

    2016-04-01

    Pollution from pesticide residues in aquatic environments is of increasing concern. Imazalil and tebuconazole, two commonly used systemic pesticides, are water contaminants that can be removed by constructed wetlands. However, the phytoremediation capability of emergent wetland plants for imazalil and tebuconazole, especially the removal mechanisms involved, is poorly understood. This study compared the removal of both pesticides by four commonly used wetland plants, Typha latifolia, Phragmites australis, Iris pseudacorus and Juncus effusus, and aimed to understand the removal mechanisms involved. The plants were individually exposed to an initial concentration of 10 mg/L in hydroponic solution. At the end of the 24-day study period, the tebuconazole removal efficiencies were relatively lower (25%-41%) than those for imazalil (46%-96%) for all plant species studied. The removal of imazalil and tebuconazole fit a first-order kinetics model, with the exception of tebuconazole removal in solutions with I. pseudacorus. Changes in the enantiomeric fraction for imazalil and tebuconazole were detected in plant tissue but not in the hydroponic solutions; thus, the translocation and degradation processes were enantioselective in the plants. At the end of the study period, the accumulation of imazalil and tebuconazole in plant tissue was relatively low and constituted 2.8-14.4% of the total spiked pesticide in each vessel. Therefore, the studied plants were able to not only take up the pesticides but also metabolise them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. BIOAVAILABILITY: SCIENCE AND ACCEPTANCE

    EPA Science Inventory

    Reducing risk from elevated levels of soil Pb involves removal, covering, or dilution by mixing with uncontaminated soil. Understanding that soil lead bioavailability is related to metal speciation and that in situ remediation techniques can alter metal speciation EPA's Na...

  11. Thermodynamically Correct Bioavailability Estimations

    DTIC Science & Technology

    1992-04-30

    6448 I 1. SWPPUMENTA* NOTIS lIa. OISTUAMJTiOAVAILAIILTY STATIMENT 121 OT REbT ostwosCo z I Approved for public release; distribution unlimited... research is to develop thermodynamically correct bioavailability estimations using chromatographic stationary phases as a model of the "interphase

  12. Uptake of human pharmaceuticals by plants grown under hydroponic conditions.

    PubMed

    Herklotz, Patrick A; Gurung, Prakash; Vanden Heuvel, Brian; Kinney, Chad A

    2010-03-01

    Cabbage (Brassica rapa var. pekinensis) and Wisconsin Fast Plants (Brassica rapa) were chosen for a proof of concept study to determine the potential uptake and accumulation of human pharmaceuticals by plants. These plants were grown hydroponically under high-pressure sodium lamps in one of two groups including a control and test group exposed to pharmaceuticals. The control plants were irrigated with a recirculating Hoagland's nutrient solution while the test plants were irrigated with a Hoagland's nutrient solution fortified with the pharmaceuticals carbamazepine, salbutamol, sulfamethoxazole, and trimethoprim at 232.5 microg L(-1). When plants reached maturity, nine entire plants of each species were separated into components such as roots, leaves, stems, and seedpods where applicable. An analytical method for quantifying pharmaceuticals and personal care products was developed using pressurized liquid extraction and liquid chromatography electrospray ionization mass spectrometry (LC/ESI/MS) in positive and negative ion modes using single ion monitoring. The method detection limits ranged from 3.13 ng g(-1) to 29.78 ng g(-1) with recoveries ranging from 66.83% to 113.62% from plant matrices. All four of the pharmaceuticals were detected in the roots and leaves of the cabbage. The maximum wet weight concentrations of the pharmaceuticals were detected in the root structure of the cabbage plants at 98.87 ng g(-1) carbamazepine, 114.72 ng g(-1) salbutamol, 138.26 ng g(-1) sulfamethoxazole, and 91.33 ng g(-1) trimethoprim. Carbamazepine and salbutamol were detected in the seedpods of the Wisconsin Fast Plants while all four of the pharmaceuticals were detected in the leaf/stem/root of the Wisconsin Fast Plants. Phloroglucinol staining of root cross-sections was used to verify the existence of an intact endodermis, suggesting that pharmaceuticals found in the leaf and seedpods of the plants were transported symplastically. Copyright (c) 2010 Elsevier Ltd. All rights

  13. Growth of sweetpotato cultured in the newly designed hydroponic system for space farming

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.; Wei, X.; Islam, A. F. M. S.; Yamamoto, M.

    Life support of crews in long-duration space missions for other planets will be highly dependent on amounts of food, atmospheric O2 and clean water produced by plants. Therefore, the space farming system with scheduling of crop production, obtaining high yields with a rapid turnover rate, converting atmospheric CO2 to O2 and purifying water should be established with employing suitable plant species and cultivars and precisely controlling environmental variables around plants grown at a high density in a limited space. In this study, we developed a new hydroponic method for producing tuberous roots and fresh edible leaves and stems of sweetpotato. In the first experiment, we examined the effects of water contents in the rooting substrate on growth and tuberous root development of sweetpotato. The rooting substrates made with rockwool slabs were inclined in a culture container and absorbed nutrient solution from the lower end of the slabs by capillary action. Tuberous roots developed on the lower surface of the rockwool slabs. The tuberous roots showed better growth and development at locations farther from the water surface on the rockwool slabs, which had lower water content. In the second experiment, three sweetpotato cultivars were cultured in a hydroponic system for five months from June to November under the sun light in Osaka, Japan as a fundamental study for establishing the space farming system. The cultivars employed were ‘Elegant summer’, ‘Kokei-14’ and ‘Beniazuma’. The hydroponic system mainly consisted of culture containers and rockwool slabs. Dry weights of tuberous roots developed in the aerial space between the rockwool slab and the nutrient solution filled at the bottom of the culture container were 0.34, 0.45 and 0.23 kg/plant and dry weights of the top portion (leaves, petioles and stems) were 0.42, 0.29 and 0.61 kg/plant for ‘Elegant summer’, ‘Kokei-14’ and ‘Beniazuma’, respectively. Young stems and leaves as well as

  14. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics.

    PubMed

    Touliatos, Dionysios; Dodd, Ian C; McAinsh, Martin

    2016-08-01

    Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension. To test whether this approach presents a viable alternative to horizontal crop production systems, a VFS (where plants were grown in upright cylindrical columns) was compared against a conventional horizontal hydroponic system (HHS) using lettuce (Lactuca sativa L. cv. "Little Gem") as a model crop. Both systems had similar root zone volume and planting density. Half-strength Hoagland's solution was applied to plants grown in perlite in an indoor controlled environment room, with metal halide lamps providing artificial lighting. Light distribution (photosynthetic photon flux density, PPFD) and yield (shoot fresh weight) within each system were assessed. Although PPFD and shoot fresh weight decreased significantly in the VFS from top to base, the VFS produced more crop per unit of growing floor area when compared with the HHS. Our results clearly demonstrate that VFS presents an attractive alternative to horizontal hydroponic growth systems and suggest that further increases in yield could be achieved by incorporating artificial lighting in the VFS.

  15. Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus.

    PubMed

    Zhang, Dong Qing; Gersberg, Richard M; Hua, Tao; Zhu, Junfei; Goyal, Manish Kumar; Ng, Wun Jern; Tan, Soon Keat

    2013-10-01

    A systematic approach to assess the fate of selected pharmaceuticals (carbamazepine, naproxen, diclofenac, clofibric acid and caffeine) in hydroponic mesocosms is described. The overall objective was to determine the kinetics of depletion (from solution) and plant uptake for these compounds in mesocosms planted with S. validus growing hydroponically. The potential for translocation of these pharmaceuticals from the roots to the shoots was also assessed. After 21 days of incubation, nearly all of the caffeine, naproxen and diclofenac were eliminated from solution, whereas carbamazepine and clofibric acid were recalcitrant to both photodegradation and biodegradation. The fact that the BAFs for roots for carbamazepine and clofibric acid were greater than 5, while the BAFs for naproxen, diclofenac and caffeine were less than 5, implied that the latter two compounds although recalcitrant to biodegradation, still had relatively high potential for plant uptake. Naproxen was sensitive to both photodegradation (30-42%) and biodegradation (>50%), while diclofenac was particularly sensitive (>70%) to photodegradation alone. No significant correlations (p > 0.05) were found between the rate constants of depletion or plant tissue levels of the pharmaceuticals and either log Kow or log Dow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Microbial colonization of a closed growth chamber during hydroponic cultivation of lettuce.

    PubMed

    Koenig, D W; Bruce, R J; Molina, T C; Barta, D J; Pierson, D L

    1997-01-01

    The goal of this study was to characterize sessile and planktonic microbiota that developed during two successive hydroponic cultures of lettuce in a closed chamber system. Coupons of polyvinyl chloride (PVC) placed in the nutrient solution lines were removed periodically, as were samples of the nutrient solutions and condensate from the air-handling system. The bacteria and fungi present on the coupons and in fluid samples were enumerated by direct plate counts. Disinfecting the hydroponic system with 0.1% hypochlorite and 0.1 N nitric acid reduced the bacterial densities in biofilm samples from 1 x 10(7) CFU/10 cm2 to 1 x 10(1) CFU/10 cm2 and eliminated culturable fungi; Staphylococcus sp., Pseudomonas sp., and Micrococcus sp. survived this procedure. Bacterial and fungal concentrations in all samples returned to predisinfection levels after 2 days of plant growth. Pseudomonas and Acremonium predominated both before and after disinfection. Fungal concentrations never exceeded 7 x 10(2) CFU/10 cm2. The coupon microbiota differed from that of the rhizoplane at harvest. Overall, the greatest numbers of species were found on the rhizoplane samples collected during the second crop. The microbial community changed little during individual crops or between successive crops. Diversity indices remained relatively constant for all samples.

  17. Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system.

    PubMed

    Wang, Qinghai; Zhang, Wei; Li, Cui; Xiao, Bo

    2012-01-01

    A hydroponic system was used to evaluate atrazine (ATZ) removal and uptake by three emergent hydrophytes, Iris pseudacorus, Lythrum salicaria and Acorus calamus, determining their potential as phytoremediation agents for ATZ-contaminated water. After 20 days of exposure, the relative growth rate of plants in sterile conditions was less than in natural conditions. ATZ amount in a culture solution planted with emergent plants decreased significantly compared with an unplanted solution, and the removal rate of ATZ in natural conditions was greater than in sterile conditions (p < 0.05). The degradation contributions of I. pseudacorus, L. salicaria and A. calamus were 75.6, 65.5 and 61.8%, respectively. Those of the corresponding microbial population in the solution were 5.4, 11.4 and 17.4%, respectively. Emergent plants play a dominant role in reducing the ATZ level in the water body and could be used as phytoremediation agents.

  18. [Feasibility of the use of degraded inedible biomass of plants as a nutrient liquid for hydroponic cultivation].

    PubMed

    Guo, S S; Ai, W D; Hou, W H; Shi, W W

    2001-10-01

    Objective. To demonstrate that the recycled liquid, which originated from lettuce inedible biomass degraded by fixed microorganism (correction of microorgannism) and enzyme, can be used as a nutrient solution for lettuce hydroponic cultivation. Method. After biologically degrading the weighted, oven-dried and milled leaves and roots of lettuce in a biological reactor under aerobic condition, the original effluent and its supplemented effluent were used as nutrients for lettuce hydroponic cultivation. Result. The average dried weight (ADW) of lettuce from the original effluent group was approximately half of that from the control group, and the ADW from supplemented effluent group was about equal to that from the control group; some qualities of the lettuce such as a relatively lower content of NO3- from both the original effluent group and the supplemented effluent one improved, and some of those such as a relatively higher content of NO2- dropped. Conclusion. The biologically-degraded effluent was able to be used as nutrient solution for lettuce hydroponic cultivation, although the effects of the inorganic ion-supplemented effluent were much better; the plants of lettuce from the biologically-degraded effluent were safely edible.

  19. Biocompatibility of sweetpotato and peanut in a hydroponic system

    NASA Technical Reports Server (NTRS)

    Mortley, D. G.; Loretan, P. A.; Hill, W. A.; Bonsi, C. K.; Morris, C. E.; Hall, R.; Sullen, D.

    1998-01-01

    'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.

  20. Biocompatibility of sweetpotato and peanut in a hydroponic system.

    PubMed

    Mortley, D G; Loretan, P A; Hill, W A; Bonsi, C K; Morris, C E; Hall, R; Sullen, D

    1998-12-01

    'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.

  1. Assessment of a closed greenhouse aquaculture and hydroponic system

    SciTech Connect

    Head, W.D.

    1984-01-01

    Research was conducted to address three objectives: 1) to determine the nitrogen cycling of a closed greenhouse aquaculture and hydroponic system; 2) to determine the energy budget of a closed greenhouse aquaculture and hydroponic system; and 3) to determine which low cost fish diets could be used as a replacement or supplement to commercial diets for Tilapia mossambica. A 6435 liter recirculating aquaculture system was enclosed in a 32.6 m/sup 2/ greenhouse. Water was recirculated through two 416 liter trickling filter towers and three 5.5 m long hydroponic troughs. The aquaculture tank was stocked with a polyculture of channel catfish (Ictalurus punctatus) and tilapia (Tilapia mossambica) and the hydroponic troughs were planted with tomatoes (Lycopersicon esculentum). The fishes were fed a commercial fish diet and the tomatoes were irrigated with the aquaculture water using a modified Nutrient Film Technique. The fish yield was 42.2 kg and the average tomato yield from 24 plants was 4.1 kg/plant. The combined fish and tomato production accounted for 65% of the total nitrogen input. Leaf analyses and visual inspection showed that the tomato plants from the hydroponic troughs were deficient in potassium and magnesium. An energy analysis of the greenhouse and aquaculture-hydroponic system showed that when combining the energy outputs of heat, fish, and tomatoes the energy ratio (energy output/energy input) was similar to literature values for milkfish pond culture. When only the fish production was considered the energy ratio was similar to literature values reported for intensive water recirculating systems.

  2. Biomarkers of carotenoid bioavailability.

    PubMed

    Granado-Lorencio, F; Blanco-Navarro, I; Pérez-Sacristán, B; Hernández-Álvarez, E

    2017-09-01

    The use of biomarkers constitutes an essential tool to assess the bioavailability of carotenoids in humans. The present article aims to review several methodological, host-related and modulating factors relevant on assessing and interpreting carotenoid bioavailability. Markers for carotenoid bioavailability can be broadly divided into direct, biochemical or "analytical" markers and indirect, physiological or "functional" indicators. Analytical markers usually refer to biochemical indicators of intake and/or status (short and long term exposure) while functional measures may be interpreted in terms of cumulative exposure, biological effect (bioactivity) or modification of risk factors. Both types of markers display advantages and limitations but, in general, a relationship exists among the type of marker, the biological specimen needed and the time required for a change. Humans may absorb a wide range of carotenes and xanthophylls and many of them may be found in serum and tissues. However, under physiological conditions, the several classes of dietary carotenoids may behave unequally leading to a different systemic profile and, moreover, they can be selectively accumulated at target tissues. In addition, some carotenoids may be chemically and enzymatically modified generating different oxidative metabolites and apocarotenoids. Quantitatively, the biological response upon carotenoid intervention (assessed by analytical and functional markers) is highly variable but the use of large doses and long-term protocols may lead to saturation effects and the loss of linearity in the response. Also, despite carotenoid exposition is considered to be safe, markers of overexposure include clinical signs (i.e. carotenodermia, corneal rings and retinopathy) and biochemical indicators (hypercarotenemia, xanthophyll esters). Overall, both host-related and methodological factors may influence analytical and functional markers to assess carotenoid bioavailability although the

  3. Lead phytoremediation potential of Vetiver grass: a hydroponic study

    NASA Astrophysics Data System (ADS)

    Pachanoor, D. S.; Andra, S. P.; Datta, R.; Sarkar, D.

    2006-05-01

    Lead (Pb) is a toxic heavy metal that is released into the environment from a variety of sources. Sources of Pb contamination in soils can be divided into three broad categories: industrial activities, such as mining and smelting processes, agricultural activities, such as application of insecticide and municipal sewage sludge, and urban activities, such as use of Pb in gasoline, paints, and other materials. Severe Pb contamination of soils may cause a variety of environmental problems, including loss of vegetation, groundwater contamination and Pb toxicity in plants, animals and humans. The use of plants to remove toxic metals from soils (phytoremediation) is fast emerging as an acceptable strategy for cost-effective and environmentally sound remediation of contaminated soils. The objective of this study was to gain insight into the lead uptake potential and biochemical stress response mechanism in vetiver grass (Vetiveria zizanioides L.) upon exposure to Pb in contaminated soils. We investigated the effect of increasing concentrations of Pb on vetiver grass grown in a hydroponic system. Plant response to the addition of phosphate in the presence of Pb was also studied. Biochemical stress response was studied by monitoring the activities of Superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes. The results indicated that exposure to Pb in the range of 0 ppm -1200 ppm had no significant negative effects on the growth of vetiver grass. There was no considerable decrease in vetiver biomass, implying the potential of this grass for Pb phytoremediation. The translocation of Pb from the root to the shoot was up to 20%. The SOD activity was in positive correlation with Pb concentrations in the solution, but no such trend was observed with GPx. In systems containing phosphate fertilizer, lead precipitated out immediately, thereby decreasing the soluble concentration of lead, resulting in less availability of Pb to the grass.

  4. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system.

    PubMed

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-04-03

    Cs accumulation characteristics by Sorghum bicolor were investigated in hydroponic system (Cs level at 50-1000 μmol/L) and in soil (Cs-spiked concentration was 100 and 400 mg/kg soil). Two varieties of S. bicolor Cowly and Nengsi 2# grown on pot soil during the entire growth period (100 days) did not show significant differences on the height, dry weight (DW), and Cs accumulation. S. bicolor showed the potential phytoextraction ability for Cs-contaminated soil with the bioaccumulation factor (BCF) and the translocation factor (TF) values usually higher than 1 in soil system and in hydroponic system. The aerial parts of S. bicolor contributed to 86-92% of the total removed amounts of Cs from soil. Cs level in solution at 100 μmol/L gave the highest BCF and TF values of S. bicolor. Cs at low level tended to transfer to the aerial parts, whereas Cs at high level decreased the transfer ratio from root to shoot. In soil, the plant grew well when Cs spiked level was 100 mg/kg soil, but was inhibited by Cs at 400 mg/kg soil with Cs content in sorghum reaching 1147 mg/kg (roots), 2473 mg/kg (stems), and 2939 mg/kg (leaves). In hydroponic system, average Cs level in sorghum reached 5270 mg/kg (roots) and 4513 mg/kg (aerial parts), without significant damages to its biomass at 30 days after starting Cs treatment. Cs accumulation in sorghum tissues was positively correlated with the metal concentration in medium.

  5. Comparison of two possible routes of pathogen contamination of spinach leaves in a hydroponic cultivation system.

    PubMed

    Koseki, Shigenobu; Mizuno, Yasuko; Yamamoto, Kazutaka

    2011-09-01

    The route of pathogen contamination (from roots versus from leaves) of spinach leaves was investigated with a hydroponic cultivation system. Three major bacterial pathogens, Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes, were inoculated into the hydroponic solution, in which the spinach was grown to give concentrations of 10⁶ and 10³ CFU/ml. In parallel, the pathogens were inoculated onto the growing leaf surface by pipetting, to give concentrations of 10⁶ and 10³ CFU per leaf. Although contamination was observed at a high rate through the root system by the higher inoculum (10⁶ CFU) for all the pathogens tested, the contamination was rare when the lower inoculum (10³ CFU) was applied. In contrast, contamination through the leaf occurred at a very low rate, even when the inoculum level was high. For all the pathogens tested in the present study, the probability of contamination was promoted through the roots and with higher inoculum levels. The probability of contamination was analyzed with logistic regression. The logistic regression model showed that the odds ratio of contamination from the roots versus from the leaves was 6.93, which suggested that the risk of contamination from the roots was 6.93 times higher than the risk of contamination from the leaves. In addition, the risk of contamination by L. monocytogenes was about 0.3 times that of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis and E. coli O157:H7. The results of the present study indicate that the principal route of pathogen contamination of growing spinach leaves in a hydroponic system is from the plant's roots, rather than from leaf contamination itself.

  6. Bioavailability of Cadmium in Inexpensive Jewelry

    PubMed Central

    Miller, Jennifer; Guinn, Daphne; Pearson, Janna

    2011-01-01

    Objectives: We evaluated the bioavailability of Cd in 86 components of 57 jewelry items found to contain high levels of Cd (> 10,000 ppm) by X-ray fluorescence (XRF), using extractions that simulate mouthing or swallowing of jewelry items. Methods: We screened jewelry for Cd content by XRF. Bioavailability was measured in two ways. Items were placed in saline solution at 37°C for 6 hr to simulate exposures from mouthing of jewelry items. Items were placed in dilute hydrochloric acid (HCl) at 37°C for 6–96 hr, simulating the worst-case scenario of a child swallowing a jewelry item. Damaged pieces of selected samples were also extracted by both methods to determine the effect of breaching the outer plating on bioavailability. Total Cd content of all items was determined by atomic absorption. Results: The 6-hr saline extraction yielded as much as 2,200 µg Cd, and 24-hr dilute HCl extraction yielded a maximum of > 20,000 µg Cd. Leaching of Cd in dilute HCl increased linearly over 6–96 hr, indicating potential for increasing harm the longer an item remains in the stomach. Damage to jewelry by breaching the outer plating generally, but not always, increased Cd release. Bioavailability did not correlate directly with Cd content. Conclusions: These results indicate the potential for dangerous Cd exposures to children who wear, mouth, or accidentally swallow high-Cd jewelry items. PMID:21377949

  7. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts.

    PubMed

    Inaba, Shoko; Takenaka, Chisato

    2005-05-01

    It is well known that dissolved organic matter in soil solution may affect the toxicity or bioavailability of heavy metals to plants, but existing information on various organic substances is insufficient for treating problems with heavy metal-contaminated soils. To clarify how dissolved organic matter alters the toxicity and bioavailability of metals, we germinated lettuce seeds exposed to solutions containing Cu and several kinds of dissolved organic matters. Low molecular weight organic acids (citric, malic, and oxalic acids) increased the toxicity and bioavailability of Cu, but low concentrations of the synthetic chelators ethylenediamine tetra-acetic acid (EDTA) and diethylenetriamine penta-acetic acid (DTPA) decreased the toxicity and bioavailability of Cu. In contrast, humic acid appeared to be the most effective organic substance for detoxifying Cu, even though it did not significantly decrease the bioavailability of Cu. Consequently, the bioavailability and toxic effects of Cu in soil depend on the nature of coexisting organic substances in the soil solution.

  8. Fiber optic spectrophotometry monitoring of plant nutrient deficiency under hydroponic culture conditions

    NASA Astrophysics Data System (ADS)

    Liew, Oi Wah; Boey, William S. L.; Asundi, Anand K.; Chen, Jun-Wei; He, Duo-Min

    1999-05-01

    In this paper, fiber optic spectrophotometry (FOSpectr) was adapted to provide early detection of plant nutrient deficiency by measuring leaf spectral reflectance variation resulting from nutrient stress. Leaf reflectance data were obtained form a local vegetable crop, Brassica chinensis var parachinensis (Bailey), grown in nitrate-nitrogen (N)- and calcium (Ca)- deficient hydroponics nutrient solution. FOSpectr analysis showed significant differences in leaf reflectance within the first four days after subjecting plants to nutrient-deficient media. Recovery of the nutrient-stressed plants could also be detected after transferring them back to complete nutrient solution. In contrast to FOSpectr, plant response to nitrogen and calcium deficiency in terms of reduced growth and tissue elemental levels was slower and less pronounced. Thus, this study demonstrated the feasibility of using FOSpectr methodology as a non-destructive alternative to augment current methods of plant nutrient analysis.

  9. Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.).

    PubMed

    Camarena-Rangel, Nancy; Rojas Velázquez, Angel Natanael; Santos-Díaz, María del Socorro

    2015-10-01

    The ability of hydroponic cultures of camellia and sugar cane adult plants to remove fluoride was investigated. Plants were grown in a 50% Steiner nutrient solution. After an adaptation period to hydroponic conditions, plants were exposed to different fluoride concentrations (0, 2.5, 5 and 10 mg L(-1)). Fluoride concentration in the culture medium and in tissues was measured. In sugar cane, fluoride was mainly located in roots, with 86% of it absorbed and 14% adsorbed. Sugar cane plants removed 1000-1200 mg fluoride kg(-1) dry weight. In camellia plants the highest fluoride concentration was found in leaf. Roots accumulated fluoride mainly through absorption, which was 2-5 times higher than adsorption. At the end of the experiment, fluoride accumulation in camellia plants was 1000-1400 mgk g(-1) dry weight. Estimated concentration factors revealed that fluoride bioaccumulation is 74-221-fold in camellia plants and 100-500-fold in sugar cane plants. Thus, the latter appear as a suitable candidate for removing fluoride from water due to their bioaccumulation capacity and vigorous growth rate; therefore, sugar cane might be used for phytoremediation.

  10. [Yeast irrigation enhances the nutritional content in hydroponic green maize fodder].

    PubMed

    Bedolla-Torres, Martha H; Palacios Espinosa, Alejandro; Palacios, Oskar A; Choix, Francisco J; Ascencio Valle, Felipe de Jesús; López Aguilar, David R; Espinoza Villavicencio, José Luis; de Luna de la Peña, Rafael; Guillen Trujillo, Ariel; Avila Serrano, Narciso Y; Ortega Pérez, Ricardo

    2015-01-01

    The objective of this study was to evaluate the effect of irrigation with yeasts (Debaryomyces hansenii var. Fabry, Yarowia lipolytica YIBCS002, Yarowia lipolytica var. BCS and Candida pseudointermedia) on the final nutritional content of hydroponic green maize fodder (Zea Zea mays L.), applied at different fodder growth stages (1. seed-seedling stage, 2. seedling-plant 20cm, 3. during all the culture). Irrespective of the fodder growth stages at which they were applied, all yeasts tested enhanced the content of raw protein, lipids, ash, moisture and energy. The percentage of electrolytes (Na, K, Cl, sulphates, Ca and Mg) showed different responses depending on the kind of yeast applied; D. hansenii exhibited the highest increment in all electrolytes, except for phosphorous. We conclude that the addition of yeasts belonging to the genera Debaryomyces, Candida and Yarowia to the irrigation solution of hydroponic systems enhances the nutrient content of green fodder. This kind of irrigation can be applied to generate high commercial value cultures in limited spaces. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Yield and gas exchange ability of sweetpotato plants cultured in a hydroponic system

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.; Saiful Islam, A. F. M.; Yamamoto, M.

    Life support of crews in space is greatly dependent on the amounts of food atmospheric O 2 and clean water produced by plants Therefore the space farming systems with scheduling of crop production obtaining high yields with a rapid turnover rate converting atmospheric CO 2 to O 2 and purifying water should be established with employing suitable plant species and varieties and precisely controlling environmental variables around plants grown at a high density in a limited space In this study three sweetpotato varieties were cultured in a newly developed hydroponic system and the yield the photosynthetic rate and the transpiration rate were compared on the earth as a fundamental study for establishing the space farming systems The varieties were Elegant summer Koukei 14 and Beniazuma The hydroponic system mainly consisted of water channels and rockwool boards A growing space for roots was made between the rockwool board and nutrient solution in the water channel Storage roots were developed on the lower surface of the rockwool plates Fresh weights of the storage roots were 1 6 1 2 and 0 6 kg plant for Koukei 14 Elegant summer and Beniazuma respectively grown for five months from June to October under the sun light in Osaka Japan Koukei 14 and Elegant summer produced greater total phytomass than Beniazuma There were positive correlations among the total phytomass the net photosynthetic rate and the transpiration rate Young stems and leaves as well as storage roots of Elegant summer are edible Therefore Elegant-summer

  12. The influence of different hydroponic conditions on thorium uptake by Brassica juncea var. foliosa.

    PubMed

    Wang, Dingna; Zhou, Sai; Liu, Li; Du, Liang; Wang, Jianmei; Huang, Zhenling; Ma, Lijian; Ding, Songdong; Zhang, Dong; Wang, Ruibing; Jin, Yongdong; Xia, Chuanqin

    2015-05-01

    The effects of different hydroponic conditions (such as concentration of thorium (Th), pH, carbonate, phosphate, organic acids, and cations) on thorium uptake by Brassica juncea var. foliosa were evaluated. The results showed that acidic cultivation solutions enhanced thorium accumulation in the plants. Phosphate and carbonate inhibited thorium accumulation in plants, possibly due to the formation of Th(HPO4)(2+), Th(HPO4)2, or Th(OH)3CO3 (-) with Th(4+), which was disadvantageous for thorium uptake in the plants. Organic aids (citric acid, oxalic acid, lactic acid) inhibited thorium accumulation in roots and increased thorium content in the shoots, which suggested that the thorium-organic complexes did not remain in the roots and were beneficial for thorium transfer from the roots to the shoots. Among three cations (such as calcium ion (Ca(2+)), ferrous ion (Fe(2+)), and zinc ion (Zn(2+))) in hydroponic media, Zn(2+) had no significant influence on thorium accumulation in the roots, Fe(2+) inhibited thorium accumulation in the roots, and Ca(2+) was found to facilitate thorium accumulation in the roots to a certain extent. This research will help to further understand the mechanism of thorium uptake in plants.

  13. Sludge organics bioavailability

    SciTech Connect

    Eiceman, G.E.; Bellin, C.A.; Ryan, J.A.; O'Connor, G.A.

    1991-01-01

    Concern over the bioavailability of toxic organics that can occur in municipal sludges threatens routine land application of sludge. Available data, however, show that concentrations of priority organics in normal sludges are low. Sludges applied at agronomic rates yield chemical concentrations in soil-sludge mixtures 50 to 100 fold lower. Plant uptake at these pollutant concentrations (and at much higher concentrations) is minimal. Chemicals are either (1) accumulated at extremely low levels (PCBs), (2) possibly accumulated, but then rapidly metabolized within plants to extremely low levels (DEHP), or (3) likely degraded so rapidly in soil that only minor contamination occurs (PCP and 2,4-DNP).

  14. Efficacy of gamma radiation and aqueous chlorine on Escherichia coli O157:H7 in hydroponically grown lettuce plants.

    PubMed

    Nthenge, Agnes K; Weese, Jean S; Carter, Melvin; Wei, Cheng-I; Huang, Tung-Shi

    2007-03-01

    Interaction of Escherichia coli O157:H7/pGFP with hydroponically grown lettuce plants was evaluated in this study. Lettuce seedlings were planted in contaminated Hoagland's nutrient solution and thereafter subjected to gamma radiation at 0.25, 0.5, and 0.75 kGy, and aqueous chlorine at 200 ppm. There was no trace of E. coli O157:H7/pGFP in lettuce leaves harvested from noncontaminated nutrient solution (control); however, for plants grown in contaminated nutrient solution, the pathogen was recovered from the leaves disinfected with 80% ethanol and 0.1% mercuric chloride. Most of the lettuce seedlings grown in contaminated nutrient solution tested negative for E. coli O157:H7/pGFP under controlled conditions. Gamma radiation at 0.25 and 0.5 kGy, and aqueous chlorine at 200 ppm failed to eliminate E. coli O157:H7/pGFP in lettuce tissue completely; however, the bacteria were not detected in 0.75-kGy treated plants. The presence of E. coli O157:H7/pGFP in lettuce leaves is an indication that the pathogen migrated from the contaminated hydroponic system through the roots to the internal locations of lettuce tissue. Due to inaccessibility and limited penetrating power, aqueous chlorine could not eliminate the bacteria localized in the internal tissue. Findings from this study suggest that gamma irradiation was more efficacious than was aqueous chlorine to control internal contamination in hydroponically grown lettuce. Gamma irradiation is a process that processors can use to inactivate E. coli O157:H7 and therefore, consumers benefit from a safer food product [corrected

  15. Use of biologically reclaimed minerals for continuous hydroponic potato production in a CELSS

    NASA Astrophysics Data System (ADS)

    Mackowiak, C. L.; Wheeler, R. M.; Stutte, G. W.; Yorio, N. C.; Sager, J. C.

    1997-01-01

    Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions.

  16. Use of biologically reclaimed minerals for continuous hydroponic potato production in a CELSS.

    PubMed

    Mackowiak, C L; Wheeler, R M; Stutte, G W; Yorio, N C; Sager, J C

    1997-01-01

    Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions.

  17. Evaluation of the safety and efficacy of Glycyrrhiza uralensis root extracts produced using artificial hydroponic and artificial hydroponic-field hybrid cultivation systems.

    PubMed

    Akiyama, H; Nose, M; Ohtsuki, N; Hisaka, S; Takiguchi, H; Tada, A; Sugimoto, N; Fuchino, H; Inui, T; Kawano, N; Hayashi, S; Hishida, A; Kudo, T; Sugiyama, K; Abe, Y; Mutsuga, M; Kawahara, N; Yoshimatsu, K

    2017-01-01

    Glycyrrhiza uralensis roots used in this study were produced using novel cultivation systems, including artificial hydroponics and artificial hydroponic-field hybrid cultivation. The equivalency between G. uralensis root extracts produced by hydroponics and/or hybrid cultivation and a commercial Glycyrrhiza crude drug were evaluated for both safety and efficacy, and there were no significant differences in terms of mutagenicity on the Ames tests. The levels of cadmium and mercury in both hydroponic roots and crude drugs were less than the limit of quantitation. Arsenic levels were lower in all hydroponic roots than in the crude drug, whereas mean lead levels in the crude drug were not significantly different from those in the hydroponically cultivated G. uralensis roots. Both hydroponic and hybrid-cultivated root extracts showed antiallergic activities against contact hypersensitivity that were similar to those of the crude drug extracts. These study results suggest that hydroponic and hybrid-cultivated roots are equivalent in safety and efficacy to those of commercial crude drugs. Further studies are necessary before the roots are applicable as replacements for the currently available commercial crude drugs produced from wild plant resources.

  18. Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables.

    PubMed

    Juhasz, Albert L; Smith, Euan; Weber, John; Rees, Matthew; Rofe, Allan; Kuchel, Tim; Sansom, Lloyd; Naidu, Ravi

    2008-05-01

    Considerable information is available in the literature regarding the uptake of arsenic (As) from contaminated soil and irrigation water by vegetables. However, few studies have investigated As speciation in these crops while a dearth of information is available on As bioavailability following their consumption. In this study, the concentration and speciation of As in chard, radish, lettuce and mung beans was determined following hydroponic growth of the vegetables using As-contaminated water. In addition, As bioavailability was assessed using an in vivo swine feeding assay. While As concentrations ranged from 3.0 to 84.2mg As kg(-1) (dry weight), only inorganic As (arsenite and arsenate) was detected in the edible portions of the vegetables. When As bioavailability was assessed through monitoring blood plasma As concentrations following swine consumption of As-contaminated vegetables, between 50% and 100% of the administered As dose was absorbed and entered systemic circulation. Arsenic bioavailability decreased in the order mung beans>radish>lettuce=chard.

  19. Absolute Bioavailability of Tasimelteon.

    PubMed

    Torres, Rosarelis; Dressman, Marlene A; Kramer, William G; Baroldi, Paolo

    2015-01-01

    Tasimelteon is a novel dual melatonin receptor agonist and is the first treatment approved by the US Food and Drug Administration for Non-24-Hour Sleep-Wake Disorder. This study was conducted to assess the absolute bioavailability of tasimelteon and to further assess the single-dose pharmacokinetics, safety, and tolerability of oral and intravenous (IV) routes of administration of the drug. This study was an open-label, single-dose, randomized, 2-period, 2-treatment, 2-sequence, crossover study in which 14 healthy volunteers were randomly administered tasimelteon as either a 20-mg capsule or IV administration of 2 mg infused over 30 minutes. Each subject received both treatments in a random order, separated by a washout period of 5 ± 2 days. The total clearance and volume of distribution of tasimelteon, from the IV treatment, were 505 mL per minute and 42.7 L, respectively. Based on the statistical comparison of dose-corrected area under the curve to infinity, the absolute bioavailability was 38%, with a 90% confidence interval of 27%-54%. The mean elimination half-life was the same for the oral and IV routes. The exposure ratios, oral-to-IV, for metabolites M9, M11, M12, and M13, were 133.27%, 118.28%, 138.76%, and 112.36%, respectively, suggesting presystemic or first-pass metabolism. Three (21.4%) subjects experienced a treatment-emergent adverse event (TEAE) during the study. All TEAEs were mild, considered related to study medication, and consistent with what has been seen in other studies. There were no deaths, serious adverse events, or discontinuations due to TEAEs. Both tasimelteon treatments were well tolerated during the study.

  20. Bioavailability enhancement of verapamil HCl via intranasal chitosan microspheres.

    PubMed

    Abdel Mouez, Mamdouh; Zaki, Noha M; Mansour, Samar; Geneidi, Ahmed S

    2014-01-23

    Chitosan microspheres are potential drug carriers for maximizing nasal residence time, circumventing rapid mucociliary clearance and enhancing nasal absorption. The aim of the present study was to develop and characterize chitosan mucoadhesive microspheres of verapamil hydrochloride (VRP) for intranasal delivery as an alternative to oral VRP which suffers low bioavailability (20%) due to extensive first pass effect. The microspheres were produced using a spray-drying and precipitation techniques and characterized for morphology (scanning electron microscopy), particle size (laser diffraction method), drug entrapment efficiency, thermal behavior (differential scanning calorimetry) and crystallinity (X-ray diffractometric studies) as well as in vitro drug release. Bioavailability of nasal VRP microspheres was studied in rabbits and the results were compared to those obtained after nasal, oral and intravenous administration of VRP solution. Results demonstrated that the microspheres were spherical with size 21-53 μm suitable for nasal deposition. The spray-drying technique was superior over precipitation technique in providing higher VRP entrapment efficiency and smaller burst release followed by a more sustained one over 6h. The bioavailability study demonstrated that the nasal microspheres exhibited a significantly higher bioavailability (58.6%) than nasal solution of VRP (47.8%) and oral VRP solution (13%). In conclusion, the chitosan-based nasal VRP microspheres are promising for enhancing VRP bioavailability by increasing the nasal residence time and avoiding the first-pass metabolism of the drug substance. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  2. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  3. Growing root, tuber and nut crops hydroponically for CELSS

    NASA Astrophysics Data System (ADS)

    Hill, W. A.; Mortley, D. G.; Mackowiak, C. L.; Loretan, P. A.; Tibbitts, T. W.; Wheeler, R. M.; Bonsi, C. K.; Morris, C. E.

    1992-07-01

    Among the crops selected by the National Aeronautics and Space Administration for growth in controlled ecological life support systems are four that have subsurface edible parts - potatoes, sweet potatoes, sugar beets and peanuts. These crops have been produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent, fluorescent plus incandescent and high pressure sodium plus metal halide lamps have proven to be effective light sources. Continuous light with 16°C and 28/22°C (day/night) temperatures have produced highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g m-e for potatoes, sweet potatoes, sugar beets and peanuts, respectively, have been produced in controlled environment hydroponic systems.

  4. Growing root, tuber and nut crops hydroponically for CELSS

    NASA Technical Reports Server (NTRS)

    Hill, W. A.; Mortley, D. G.; Loretan, P. A.; Bonsi, C. K.; Morris, C. E.; Mackowiak, C. L.; Wheeler, R. M.; Tibbitts, T. W.

    1992-01-01

    Among the crops selected by NASA for growth in controlled ecological life-support systems are four that have subsurface edible parts: potatoes, sweet potatoes, sugar beets and peanuts. These crops can be produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent, fluorescent plus incandescent, and high-pressure sodium-plus-metal-halide lamps have proven to be effective light sources. Continuous light with 16-C and 28/22-C (day/night) temperatures produce highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g/sq m for potatoes, sweet potatoes, sugar beets and peanuts, respectively, are produced in controlled environment hydroponic systems.

  5. Neuroprotective activity of hydroponic Teucrium polium following bilateral ovariectomy.

    PubMed

    Simonyan, K V; Chavushyan, V A

    2015-06-01

    Ovariectomy is known as "surgical menopause" with decreased levels of estrogen in female rodents. Its reported risks and adverse effects include cognitive impairment. The action of hydroponic Teucrium polium on nucleus basalis of Meynert (bnM) neurons following 6 weeks of ovariectomy was carried out. The analysis of spike activity was observed by on-line selection and the use of a software package. Early and late tetanic, - posttetanic potentiation and depression of neurons to high frequency stimulation of hippocampus were studied. The complex averaged peri-event time and frequency histograms were constructed. The histochemical study of the activity of Са(2+)-dependent acid phosphatase was observed. In conditions of hydroponic Teucrium polium administration, positive changes in neurons and gain of metabolism leading to cellular survival were revealed. The administration of Teucrium polium elicited neurodegenerative changes in bnM.

  6. Growing root, tuber and nut crops hydroponically for CELSS.

    PubMed

    Hill, W A; Mortley, D G; Mackowiak, C L; Loretan, P A; Tibbitts, T W; Wheeler, R M; Bonsi, C K; Morris, C E

    1992-01-01

    Among the crops selected by the National Aeronautics and Space Administration for growth in controlled ecological life support systems are four that have subsurface edible parts -- potatoes, sweet potatoes, sugar beets and peanuts. These crops have been produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent , fluorescent plus incandescent and high pressure sodium plus metal halide lamps have proven to be effective light sources. Continuous light with 16 degrees C and 28/22 degrees C (day/night) temperatures have produced highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g m-2 for for potatoes, sweet potatoes, sugar beets and peanuts, respectively, have been produced in controlled environment hydroponic systems.

  7. Composition of hydroponic medium affects thorium uptake by tobacco plants.

    PubMed

    Soudek, Petr; Kufner, Daniel; Petrová, Sárka; Mihaljevič, Martin; Vaněk, Tomáš

    2013-08-01

    The ability of thorium uptake as well as responses to heavy metal stress were tested in tobacco cultivar La Burley 21. Thorium was accumulated preferentially in the root system. The presence of citric, tartaric and oxalic acids in hydroponic medium increased thorium accumulation in all plant organs. On the other hand, the addition of diamines and polyamines, the important antioxidants in plants, resulted in decrease of thorium accumulation, especially in the root system. Negative correlation was found between putrescine concentration and thorium accumulation. Nevertheless, the most important factor influencing the accumulation of thorium was the absence of phosphate ions in a hydroponic medium that caused more than 10-fold increase of thorium uptake in all plant parts. Accumulation and distribution of thorium was followed in six cultivars and 14 selected transformants. Cultivar La Barley 21 represented an average between the tested genotypes, having a very good distribution ratio between roots, stems and leaves.

  8. Microbial reporters of metal bioavailability

    PubMed Central

    Magrisso, Sagi; Erel, Yigal; Belkin, Shimshon

    2008-01-01

    Summary When attempting to assess the extent and the implications of environmental pollution, it is often essential to quantify not only the total concentration of the studied contaminant but also its bioavailable fraction: higher bioavailability, often correlated with increased mobility, signifies enhanced risk but may also facilitate bioremediation. Genetically engineered microorganisms, tailored to respond by a quantifiable signal to the presence of the target chemical(s), may serve as powerful tools for bioavailability assessment. This review summarizes the current knowledge on such microbial bioreporters designed to assay metal bioavailability. Numerous bacterial metal‐sensor strains have been developed over the past 15 years, displaying very high detection sensitivities for a broad spectrum of environmentally significant metal targets. These constructs are based on the use of a relatively small number of gene promoters as the sensing elements, and an even smaller selection of molecular reporter systems; they comprise a potentially useful panel of tools for simple and cost‐effective determination of the bioavailability of heavy metals in the environment, and for the quantification of the non‐bioavailable fraction of the pollutant. In spite of their inherent advantages, however, these tools have not yet been put to actual use in the evaluation of metal bioavailability in a real environmental remediation scheme. For this to happen, acceptance by regulatory authorities is essential, as is a standardization of assay conditions. PMID:21261850

  9. Genotypic variation in phytoremediation potential of Indian mustard exposed to nickel stress: a hydroponic study.

    PubMed

    Ansari, Mohd Kafeel Ahmad; Ahmad, Altaf; Umar, Shahid; Zia, Munir Hussain; Iqbal, Muhammad; Owens, Gary

    2015-01-01

    Ten Indian mustard (Brassica juncea L.) genotypes were screened for their nickel (Ni) phytoremediation potential under controlled environmental conditions. All ten genotypes were grown hydroponically in aqueous solution containing Ni concentrations (as nickel chloride) ranging from 0 to 50 μM and changes in plant growth, biomass and total Ni uptake were evaluated. Of the ten genotypes (viz. Agrini, BTO, Kranti, Pusa Basant, Pusa Jai Kisan, Pusa Bahar, Pusa Bold, Vardhan, Varuna, and Vaibhav), Pusa Jai Kisan was the most Ni tolerant genotype accumulating up to 1.7 μg Ni g(-1) dry weight (DW) in its aerial parts. Thus Pusa Jai Kisan had the greatest potential to become a viable candidate in the development of practical phytoremediation technologies for Ni contaminated sites.

  10. Hartig' net formation of Tricholoma vaccinum-spruce ectomycorrhiza in hydroponic cultures.

    PubMed

    Henke, Catarina; Jung, Elke-Martina; Kothe, Erika

    2015-12-01

    For re-forestation of metal-contaminated land, ectomycorrhizal trees may provide a solution. Hence, the study of the interaction is necessary to allow for comprehensive understanding of the mutually symbiotic features. On a structural level, hyphal mantle and the Hartig' net formed in the root apoplast are essential for plant protection and mycorrhizal functioning. As a model, we used the basidiomycete Tricholoma vaccinum and its host spruce (Picea abies). Using an optimized hydroponic cultivation system, both features could be visualized and lower stress response of the tree was obtained in non-challenged cultivation. Larger spaces in the apoplasts could be shown with high statistical significance. The easy accessibility will allow to address metal stress or molecular responses in both partners. Additionally, the proposed cultivation system will enable for other experimental applications like addressing flooding, biological interactions with helper bacteria, chemical signaling, or other biotic or abiotic challenges relevant in the natural habitat.

  11. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals

  12. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    NASA Technical Reports Server (NTRS)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  13. Plant-uptake of uranium: Hydroponic and soil system studies

    USGS Publications Warehouse

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  14. A Reliable Wireless Control System for Tomato Hydroponics.

    PubMed

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-05-05

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.

  15. Microbiological profile of greenhouses in a farm producing hydroponic tomatoes.

    PubMed

    Orozco, Leopoldo; Rico-Romero, Leticia; Escartín, Eduardo F

    2008-01-01

    Produce, including tomatoes, has been implicated in several outbreaks of foodborne illness. A number of the sources of contamination for produce grown in open fields are known. However, as an alternative agricultural system, hydroponic greenhouses are reasonably expected to reduce some of these sources. The objective of the present study was to determine the microbiological profile of tomatoes grown in greenhouses at a Mexican hydroponic farm with a high technological level and sanitary agricultural practices (SAPs) in place. Tomatoes and other materials associated with the farm were analyzed for the presence of Salmonella enterica and populations of Escherichia coli, coliforms, and Enterobacteriaceae. Tomatoes showed median levels of 0.8 log CFU per tomato for Enterobacteriaceae, < 0.5 log CFU per tomato for coliforms, and 0.5 most probable number per tomato for E. coli. Despite the physical barriers that the facilities provide and the implemented SAPs, we found that 2.8% of tomatoes were contaminated with Salmonella and 0.7% with E. coli. Other Salmonella-positive materials were puddles, soil, cleaning cloths, and sponges. Samples from the nursery and greenhouses were positive for E. coli, whereas Salmonella was found only in the latter. Although hydroponic greenhouses provide physical barriers against some sources of enteric bacterial contamination, these results show that sporadic evidence of fecal contamination and the presence of Salmonella can occur at the studied greenhouse farm.

  16. A Reliable Wireless Control System for Tomato Hydroponics

    PubMed Central

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-01-01

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105

  17. Response of graywater recycling systems based on hydroponic plant growth to three classes of surfactants

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Levine, L. H.; Yorio, N. C.; Hummerick, M. E.

    2004-01-01

    Anionic (sodium laureth sulfate, SLES), amphoteric (cocamidopropyl betaine, CAPB) and nonionic (alcohol polyethoxylate, AE) surfactants were added to separate nutrient film technique (NFT) hydroponic systems containing dwarf wheat (Triticum aestivum cv. USU Apogee) in a series of 21 day trials. Surfactant was added either in a (1). temporally dynamic mode (1-3 g surfactant m(-2) growing area d(-1)) as effected by automatic addition of a 300 ppm surfactant solution to meet plant water demand, or (2). continuous mode (2 g surfactant m(-2) growing area d(-1)) as effected by slow addition (10 mLh(-1)) of a 2000 ppm surfactant solution beginning at 4d after planting. SLES showed rapid primary degradation in both experiments, with no accumulation 24 h after initial addition. CAPB and AE were degraded less rapidly, with 30-50% remaining 24 h after initial addition, but CAPB and AE levels were below detection limit for the remainder of the study. No reductions in vegetative growth of wheat were observed in response to SLES, but biomass was reduced 20-25% with CAPB and AE. Microbial communities associated with both the plant roots and wetted hardware surfaces actively degraded the surfactants, as determined by monitoring surfactant levels following pulse additions at day 20 (with plants) and day 21 (after plant removal). In order to test whether the biofilm communities could ameliorate phytotoxicity by providing a microbial community acclimated for CAPB and AE decay, the continuous exposure systems were planted with wheat seeds after crop removal at day 21. Acclimation resulted in faster primary degradation (>90% within 24h) and reduced phytotoxicity. Overall, the studies indicate that relatively small areas (3-5m(2)) of hydroponic plant systems can process per capita production of mixed surfactants (5-10 g x person(-1)d(-1)) with minimal effects on plant growth.

  18. Response of graywater recycling systems based on hydroponic plant growth to three classes of surfactants

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Levine, L. H.; Yorio, N. C.; Hummerick, M. E.

    2004-01-01

    Anionic (sodium laureth sulfate, SLES), amphoteric (cocamidopropyl betaine, CAPB) and nonionic (alcohol polyethoxylate, AE) surfactants were added to separate nutrient film technique (NFT) hydroponic systems containing dwarf wheat (Triticum aestivum cv. USU Apogee) in a series of 21 day trials. Surfactant was added either in a (1). temporally dynamic mode (1-3 g surfactant m(-2) growing area d(-1)) as effected by automatic addition of a 300 ppm surfactant solution to meet plant water demand, or (2). continuous mode (2 g surfactant m(-2) growing area d(-1)) as effected by slow addition (10 mLh(-1)) of a 2000 ppm surfactant solution beginning at 4d after planting. SLES showed rapid primary degradation in both experiments, with no accumulation 24 h after initial addition. CAPB and AE were degraded less rapidly, with 30-50% remaining 24 h after initial addition, but CAPB and AE levels were below detection limit for the remainder of the study. No reductions in vegetative growth of wheat were observed in response to SLES, but biomass was reduced 20-25% with CAPB and AE. Microbial communities associated with both the plant roots and wetted hardware surfaces actively degraded the surfactants, as determined by monitoring surfactant levels following pulse additions at day 20 (with plants) and day 21 (after plant removal). In order to test whether the biofilm communities could ameliorate phytotoxicity by providing a microbial community acclimated for CAPB and AE decay, the continuous exposure systems were planted with wheat seeds after crop removal at day 21. Acclimation resulted in faster primary degradation (>90% within 24h) and reduced phytotoxicity. Overall, the studies indicate that relatively small areas (3-5m(2)) of hydroponic plant systems can process per capita production of mixed surfactants (5-10 g x person(-1)d(-1)) with minimal effects on plant growth.

  19. Response of graywater recycling systems based on hydroponic plant growth to three classes of surfactants.

    PubMed

    Garland, J L; Levine, L H; Yorio, N C; Hummerick, M E

    2004-04-01

    Anionic (sodium laureth sulfate, SLES), amphoteric (cocamidopropyl betaine, CAPB) and nonionic (alcohol polyethoxylate, AE) surfactants were added to separate nutrient film technique (NFT) hydroponic systems containing dwarf wheat (Triticum aestivum cv. USU Apogee) in a series of 21 day trials. Surfactant was added either in a (1). temporally dynamic mode (1-3 g surfactant m(-2) growing area d(-1)) as effected by automatic addition of a 300 ppm surfactant solution to meet plant water demand, or (2). continuous mode (2 g surfactant m(-2) growing area d(-1)) as effected by slow addition (10 mLh(-1)) of a 2000 ppm surfactant solution beginning at 4d after planting. SLES showed rapid primary degradation in both experiments, with no accumulation 24 h after initial addition. CAPB and AE were degraded less rapidly, with 30-50% remaining 24 h after initial addition, but CAPB and AE levels were below detection limit for the remainder of the study. No reductions in vegetative growth of wheat were observed in response to SLES, but biomass was reduced 20-25% with CAPB and AE. Microbial communities associated with both the plant roots and wetted hardware surfaces actively degraded the surfactants, as determined by monitoring surfactant levels following pulse additions at day 20 (with plants) and day 21 (after plant removal). In order to test whether the biofilm communities could ameliorate phytotoxicity by providing a microbial community acclimated for CAPB and AE decay, the continuous exposure systems were planted with wheat seeds after crop removal at day 21. Acclimation resulted in faster primary degradation (>90% within 24h) and reduced phytotoxicity. Overall, the studies indicate that relatively small areas (3-5m(2)) of hydroponic plant systems can process per capita production of mixed surfactants (5-10 g x person(-1)d(-1)) with minimal effects on plant growth.

  20. First results of the application of a new Neemazal powder formulation in hydroponics against different pest insects.

    PubMed

    Hummel, Edmund; Kleeberg, Hubertus

    2002-01-01

    NeemAzal PC (0.5% Azadirachtin) is a new standardised powder formulation from the seed kernels of the tropical Neem tree (Azadirachta indica A. Juss) with an inert carrier. First experiments with beans--as a model-system for hydroponics--show that active ingredient is taken up by the plants through the roots and is transported efficiently with the plant sap to the leaves. After application of NeemAzal PC solution (0.01-1%) to the roots sucking (Aphis fabae Hom., Aphididae) and free feeding (Heliothis armigera Lep., Noctuidae) pest insects can be controlled efficiently. The effects are concentration and time dependent.

  1. Potential for bioavailability to limit degradation of herbicides in unsaturated soils

    USDA-ARS?s Scientific Manuscript database

    It is well established that biodegradation of organic compounds in soils can be limited by bioavailability if sorption reduces the pool of material available in solution. Bioavailability can also affect herbicidal function, reported herein in the complex processes of activation and degradation of t...

  2. Measurement of arsenic bioavailability in soil using a primate model.

    PubMed

    Roberts, Stephen M; Weimar, William R; Vinson, J R T; Munson, John W; Bergeron, Raymond J

    2002-06-01

    Several studies have shown limited absorption of arsenic from soils. This has led to increased interest in including measurements of arsenic relative bioavailability from soils in the calculation of risks to human health posed by arsenic-contaminated sites. Most of the information in the literature regarding arsenic bioavailability from soils comes from studies of mining and smelter sites in the western United States. It is unclear whether these observations are relevant to other types of arsenic-contaminated sites. In order to obtain information regarding arsenic bioavailability for other types of sites, relative bioavailability of arsenic from selected soil samples was measured in a primate model. Sodium arsenate was administered to five male Cebus apella monkeys by the intravenous and oral routes, and blood, urine, and feces were collected. Pharmacokinetic behavior of arsenic after intravenous administration and the fractions of dose excreted in urine and feces after both intravenous and oral doses were consistent with previous observations in humans. Soil samples from five waste sites in Florida (one from an electrical substation, one from a wood preservative treatment site, two from pesticide sites, and one from a cattle-dip vat site) were dried and sieved. Soil doses were prepared from these samples and administered orally to the monkeys. Relative bioavailability was assessed based on urinary excretion of arsenic following the soil dose compared with excretion following an oral dose of arsenic in solution. Differences in bioavailability were observed for different sites, with relative bioavailability ranging from 10.7 +/- 4.9% (mean +/- standard deviation) to 24.7 +/- 3.2% for the five soil samples. These observations, coupled with data in the literature, suggest limited oral bioavailability of arsenic in soils from a variety of types of arsenic-contaminated sites.

  3. A hydroponic system for microgravity plant experiments

    NASA Technical Reports Server (NTRS)

    Wright, B. D.; Bausch, W. C.; Knott, W. M.

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  4. A hydroponic system for microgravity plant experiments.

    PubMed

    Wright, B D; Bausch, W C; Knott, W M

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  5. A hydroponic system for microgravity plant experiments

    NASA Technical Reports Server (NTRS)

    Wright, B. D.; Bausch, W. C.; Knott, W. M.

    1988-01-01

    The construction of a permanently manned space station will provide the opportunity to grow plants for weeks or months in orbit for experiments or food production. With this opportunity comes the need for a method to provide plants with a continuous supply of water and nutrients in microgravity. The Capillary Effect Root Environment System (CERES) uses capillary forces to maintain control of circulating plant nutrient solution in the weightless environment of an orbiting spacecraft. The nutrient solution is maintained at a pressure slightly less than the ambient air pressure while it flows on one side of a porous membrane. The root, on the other side of the membrane, is surrounded by a thin film of nutrient solution where it contacts the moist surface of the membrane. The root is provided with water, nutrients and air simultaneously. Air bubbles in the nutrient solution are removed using a hydrophobic/hydrophilic membrane system. A model scaled to the size necessary for flight hardware to test CERES in the space shuttle was constructed.

  6. Bioavailability: implications for science/cleanup policy

    SciTech Connect

    Denit, Jeffery; Planicka, J. Gregory

    1998-12-01

    This paper examines the role of bioavailability in risk assessment and cleanup decisions. Bioavailability refers to how chemicals ''behave'' and their ''availability'' to interact with living organisms. Bioavailability has significant implications for exposure risks, cleanup goals, and site costs. Risk to human health and the environment is directly tied to the bioavailability of the chemicals of concern.

  7. Zinc bioavailability in the chick

    SciTech Connect

    Hempe, J.M.

    1987-01-01

    Methods for assessing zinc bioavailability were evaluated in the chick. A low-zinc chick diet was developed using rehydrated, spray-dried egg white autoclaved at 121 C for 30 min as the primary protein source. The relative bioavailability of zinc from soy flour and beef was determined by whole-body retention of extrinsic /sup 65/Zn, and in slope ratio assays for growth rate and tissue zinc. Compared to zinc carbonate added to an egg white-based diet, all methods gave similar estimates of approximately 100% zinc bioavailability for beef but estimates for soy flour varied widely. The slope ratio assay for growth rate gave the best estimate of zinc bioavailability for soy flour. True absorption, as measured by percent isotope retention from extrinsically labeled soy flour, was 47%.

  8. Detoxification of phytotoxic compounds by TiO2 photocatalysis in a recycling hydroponic cultivation system of asparagus.

    PubMed

    Sunada, Kayano; Ding, Xin Geng; Utami, Melia Sandya; Kawashima, Yoko; Miyama, Yoko; Hashimoto, Kazuhito

    2008-06-25

    TiO 2 photocatalytic decomposition and detoxification of phytotoxic compounds released by the roots of asparagus ( Asparagus officinalis L.) were investigated from the viewpoint of conservation-oriented cultivation. The phytotoxically active fraction was extracted either from dried asparagus roots or from the recycled nutrient solution of an asparagus hydroponic cultivation system. We found that the phytotoxic activity gradually decreased in the fraction with TiO 2 powder under irradiation with ultraviolet (UV) light at an intensity of 1.0 mW/cm (2). The growth of asparagus plants under actual cultivation conditions was also investigated by comparing asparagus grown in a hydroponic system where recycled waste nutrient solution was photocatalytically treated with solar light and a system with untreated recycled waste nutrient solution. The results showed, as measured by growth indices such as stem length and stem thickness, that asparagus growth in the photocatalytically treated system was superior to the untreated one. Furthermore, the yield of asparagus spears was 1.6-fold greater in the photocatalytically treated system, demonstrating the detoxification effect on the phytotoxic compounds and also the killing effect on pathogenic microorganisms.

  9. Iron and zinc bioavailability in rats fed intrinsically labeled bean and bean-rice infant weaning food products.

    PubMed

    Kannan, S; Nielsen, S S; Rodriguez-Burger, A P; Mason, A C

    2001-10-01

    Beans are the core of the Latin American diet and contain iron and zinc. However, the bioavailability of these trace minerals from beans is low. The objective of this study was to determine if the bioavailability of iron and zinc could be improved with the use of fermentation and germination processing technologies. Black beans native to Costa Rica were grown hydroponically with either radioactive iron or zinc. The influence of fermentation and germination on iron and zinc bioavailability from intrinsically labeled infant weaning food products based on black beans and beans-rice was determined in rats. Mineral bioavailability was determined using whole-body (59)Fe retention for iron, and whole-body (65)Zn retention and incorporation of radiolabel into bone for zinc. Percent absorption of (59)Fe from fermented products ranged between 48.0 and 58.0. Percent absorption of (65)Zn ranged from 57.0 to 64.0. Fermentation did not increase iron bioavailability in rats fed fermented beans without rice. Fermentation of cooked beans significantly increased zinc retention. Germination significantly enhanced iron retention from cooked beans from 46 to 55% and from cooked beans-cooked rice from 34 to 48%. Germination significantly improved zinc absorption and retention from cooked beans without added rice.

  10. Nonrecirculating Hydroponic System Suitable for Uptake Studies at Very Low Nutrient Concentrations 1

    PubMed Central

    Gutschick, Vincent P.; Kay, Lou Ellen

    1991-01-01

    We describe the mechanical, electronic, hydraulic, and structural design of a nonrecirculating hydroponic system. The system is particularly suited to studies at very low nutrient concentrations, for which on-line concentration monitoring methods either do not exist or are costly and limited to monitoring relatively few individual plants. Solutions are mixed automatically to chosen concentrations, which can be set differently for every pump fed from a master supply of deionized water and nutrient concentrates. Pumping rates can be varied over a 50-fold range, up to 400 liters per day, which suffices to maintain a number of large, post-seedling plants in rapid growth at (sub)micromolar levels of N and P. The outflow of each pump is divided among as many as 12 separate root chambers. In each chamber one may monitor uptake by individual plant roots or segments thereof, by measuring nutrient depletion in batch samples of solution. The system is constructed from nontoxic materials that do not adsorb nutrient ions; no transient shifts of nitrate and phosphate concentrations are observable at the submicromolar level. Nonrecirculation of solutions limits problems of pH shifts, microbial contamination, and cumulative imbalances in unmonitored nutrients. We note several disadvantages, principally related to high consumption of deionized water and solutes. The reciprocating pumps can be constructed inexpensively, particularly by the researcher. We also report previously unattainable control of passive temperature rise of chambers exposed to full sunlight, by use of white epoxy paint. PMID:16668100

  11. Self-microemulsifying drug-delivery system for improved oral bioavailability of probucol: preparation and evaluation

    PubMed Central

    Sha, Xianyi; Wu, Juan; Chen, Yanzuo; Fang, Xiaoling

    2012-01-01

    The objective of our investigation was to design a self-microemulsifying drug-delivery system (SMEDDS) to improve the bioavailability of probucol. SMEDDS was composed of probucol, olive oil, Lauroglycol FCC, Cremophor EL, Tween-80, and PEG-400. Droplet sizes were determined. In vitro release was investigated. Pharmacokinetics and bioavailability of probucol suspension, oil solution, and SMEDDS were evaluated and compared in rats. Plasma drug concentration was determined by high-performance liquid chromatography. After administration of probucol suspension, plasma drug concentration was very low. Relative bioavailability of SMEDDS was dramatically enhanced in an average of 2.15- and 10.22-fold that of oil solution and suspension, respectively. It was concluded that bioavailability of probucol was enhanced greatly by SMEDDS. Improved solubility and lymphatic transport may contribute to the enhancement of bioavailability. PMID:22359449

  12. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    NASA Astrophysics Data System (ADS)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  13. [Effects of LED spectrum combinations on the absorption of mineral elements of hydroponic lettuce].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Mmanake Beauty, Morewane

    2014-05-01

    Lettuce (Lactuca sativa) was hydroponically cultured in a completely enclosed plant factory, in which spectrum proportion-adjustable LED panels were used as sole light source for plant growth. Absorption and content of eleven mineral elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu, B and Mo in Lactuca sativa under different spectral component conditions were studied by ICP -AES technology. The results showed that: (1) Single or combined spectrums corresponding to the absorbing peaks of chlorophyll a and b (450, 660 nm) could enhance the absorbing ability of roots especially for mineral elements Na, Fe, Mn, Cu and Mo, the single red spectrum had the most significant promoting effect under which contents of those four elements were respectively 7. 8, 4. 2, 4. 0 and 3. 7 times more than that under FL; (2) Absorption of K and B was the highest under FL which was 10. 309 mg g-1 and 32. 6 microg g-1 while the values decreased significantly under single or combined spectrum of red and blue; (3) Plants grown under single blue spectrum had the lowest absorption of Ca and Mg which respectively decreased by 35% and 33% than FL; (4) Lettuce grown under the spectrum combination of 30% blue and 70% red had the highest accumulations of biomass while those grown under 20% blue and 80% red had the highest accumulations of the following seven elements Ca, Mg, Na, Fe, Mn, Zn and B. The results provided theoretical basis for adjusting nutrient solution formula and selecting light spectrum of hydroponic lettuce.

  14. Soybean cultivar selection for Bioregenerative Life Support Systems (BLSSs) - Hydroponic cultivation

    NASA Astrophysics Data System (ADS)

    Paradiso, R.; Buonomo, R.; De Micco, V.; Aronne, G.; Palermo, M.; Barbieri, G.; De Pascale, S.

    2012-12-01

    Four soybean cultivars ('Atlantic', 'Cresir', 'Pr91m10' and 'Regir'), selected through a theoretical procedure as suitable for cultivation in BLSS, were evaluated in terms of growth and production. Germination percentage and Mean Germination Time (MGT) were measured. Plants were cultivated in a growth chamber equipped with a recirculating hydroponic system (Nutrient Film Technique). Cultivation was performed under controlled environmental conditions (12 h photoperiod, light intensity 350 μmol m-2 s-1, temperature regime 26/20 °C light/dark, relative humidity 65-75%). Fertigation was performed with a standard Hoagland solution, modified for soybean specific requirements, and EC and pH were kept at 2.0 dS m-1 and 5.5 respectively. The percentage of germination was high (from 86.9% in 'Cresir' to 96.8% in 'Regir')and the MGT was similar for all the cultivars (4.3 days). The growing cycle lasted from 114 in 'Cresir' to 133 days on average in the other cultivars. Differences in plant size were recorded, with 'Pr91m10' plants being the shortest (58 vs 106 cm). Cultivars did not differ significantly in seed yield (12 g plant-1) and in non edible biomass (waste), water consumption and biomass conversion efficiency (water, radiation and acid use indexes). 'Pr91m10' showed the highest protein content in the seeds (35.6% vs 33.3% on average in the other cultivars). Results from the cultivation experiment showed good performances of the four cultivars in hydroponics. The overall analysis suggests that 'Pr91m10' could be the best candidate for the cultivation in a BLSS, coupling the small plant size and the good yield with high resource use efficiency and good seed quality.

  15. Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta (L.) Laterr) plants.

    PubMed

    Gottardi, Stefano; Iacuzzo, Francesco; Tomasi, Nicola; Cortella, Giovanni; Manzocco, Lara; Pinton, Roberto; Römheld, Volker; Mimmo, Tanja; Scampicchio, Matteo; Dalla Costa, Luisa; Cesco, Stefano

    2012-07-01

    Soil-less cultivation of horticultural crops represents a fairly recent innovation to traditional agriculture which has several advantages including higher water-use efficiency. When plants are grown with this system, their roots come in contact with nutrients solely via the hydroponic solution. Although its beneficial effects have been widely demonstrated, silicon (Si) is mostly omitted from the composition of nutrient solutions. Therefore, the objective of this study was to assess the beneficial effect of Si addition to hydroponic solution on quali-quantitative aspects of edible production of two cultivars of corn salad (Valerianella locusta (L.) Laterr.) grown in soil-less floating system. Impacts on shelf life of this food were also studied. Results show that the supply of Si increased the edible yield and the quality level reducing the nitrate concentration in edible tissues. This result might be attributed to changes either in the metabolism (such as the nitrate assimilation process) or to the functionality of root mechanisms involved in the nutrient acquisition from the outer medium. In fact, our results show for the first time the ability of Si to modulate the root activity of nitrate and Fe uptake through, at least in part, a regulation of gene expression levels of the proteins involved in this phenomenon. In addition, the presence of Si decreased the levels of polyphenoloxidase gene expression at harvest and, in post-harvest, slowed down the chlorophyll degradation delaying leaf senescence and thus prolonging the shelf life of these edible tissues. In conclusion, data showed that the addition of Si to the nutrient solution can be a useful tool for improving quali-quantitatively the yield of baby leaf vegetable corn salad as well as its shelf life. Since the amelioration due to the Si has been achieved only with one cultivar, the recommendation of its inclusion in the nutrient solution does not exclude the identification of cultivars suitable for this

  16. In vivo efficacy and bioavailability of lumefantrine: Evaluating the application of Pheroid technology.

    PubMed

    du Plessis, Lissinda H; Govender, Katya; Denti, Paolo; Wiesner, Lubbe

    2015-11-01

    The oral absorption of compounds with low aqueous solubility, such as lumefantrine, is typically limited by the dissolution rate in the gastro-intestinal tract, resulting in erratic absorption and highly variable bioavailability. In previous studies we reported on the ability of Pheroid vesicles to improve the bioavailability of poorly soluble drugs. In the present study a Pro-Pheroid formulation, a modification of the previous formulation, was applied to improve the solubility of lumefantrine after oral administration and compared to lumefantrine in DMSO:water (1:9 v/v) solution (reference solution). A bioavailability study of lumefantrine was conducted in a mouse model in fed and fasted states. When using the reference solution, the bioavailability of the lumefantrine heavily depended on food intake, resulting in a 2.7 times higher bioavailability in the fed state when compared to the fasted state. It also showed large between-subject variability. When formulated using Pro-Pheroid, the bioavailability of lumefantrine was 3.5 times higher as compared to lumefantrine in the reference solution and fasting state. Pro-Pheroid also dramatically reduced the effects of food intake and the between-subject variability for bioavailability observed with the reference. In vivo antimalarial efficacy was also evaluated with lumefantrine formulated using Pro-Pheroid technology compared to the reference solution. The results indicated that lumefantrine in Pro-Pheroid formulation exhibited improved antimalarial activity in vitro by 46.8%, when compared to the reference. The results of the Peters' 4-day suppressive test indicated no significant difference in the efficacy or mean survival time of the mice in the Pro-Pheroid formulation and reference test groups when compared to the positive control, chloroquine. These findings suggest that using the Pro-Pheroid formulation improves the bioavailability of lumefantrine, eliminates the food effect associated with lumefantrine as well

  17. Influence of carbon nanotubes on the bioavailability of fluoranthene.

    PubMed

    Linard, Erica N; van den Hurk, Peter; Karanfil, Tanju; Apul, Onur G; Klaine, Stephen J

    2015-03-01

    Concurrent with the increase in the use of carbon nanotubes (CNTs) in society is the rise of their introduction into the environment. Carbon nanotubes cause adverse effects themselves, and they have the potential to adsorb contaminants such as polycyclic aromatic hydrocarbons (PAHs). Although CNTs have a high adsorption capacity for PAHs and these contaminants can co-occur in the environment, few studies have characterized the bioavailability of CNT-adsorbed PAHs to fish. The goal of the present study was to characterize the bioavailability of fluoranthene adsorbed to suspended multiwalled-carbon nanotubes (MWNTs) in freshwater containing natural organic matter (NOM). Adsorption isotherms indicated that NOM influenced the adsorption of fluoranthene to MWNTs, although in the absence of MWNTs it did not influence the bioavailability of fluoranthene to Pimephales promelas. Pimephales promelas were exposed for 16 h in synthetic moderately hard water containing fluoranthene in the presence of different concentrations of NOM, and fluoranthene adsorbed to MWNTs in the presence of NOM. Bioavailable fluoranthene was quantified in each exposure through bile analysis using fluorescence spectrophotometry. By comparing the concentration of fluoranthene metabolites in the bile with the concentration of fluoranthene added to MWNT and NOM solutions, the relative bioavailability of fluoranthene adsorbed to MWNTs was quantified. Results indicate that approximately 60% to 90% of the fluoranthene was adsorbed to the MWNTs and that adsorbed fluoranthene was not bioavailable to P. promelas. The results also suggest that fluoranthene is not desorbed from ingested MWNT, and the bioavailable fraction is only the freely dissolved fluoranthene in the aqueous phase.

  18. Photosynthetic Response to Long- and Short-Term Changes in Carbon Dioxide in Sweetpotatoes Grown Hydroponically with Enhanced Mineral Nutrition

    NASA Technical Reports Server (NTRS)

    Hamilton, Casey; Terse, Anita; Hileman, Douglas R.; Mortley, Desmond G.; Hill, Jill

    1998-01-01

    Sweetpotato [Ipomoea batatas L.(Lam.)] has been selected by NASA as a potential food for long-term space missions. In previous experiments, sweetpotato plants grown hydroponically under elevated levels of CO2 depleted the nitrogen in the nutrient solution between the hi-weekly solution replacements. In this experiment, the effect of enhanced nutrient replenishment on photosynthetic rates of sweetpotato was determined. CO2 response curves were determined for "TU-82-155" and "Georgia-Jet" sweetpotatoes grown hydroponically in growth chambers at three different CO2 concentrations (400, 750, and 1000 micro-mol/mol CO2). Gas exchange measurements were made using infrared gas analysis, an open-flow gas exchange system, and a controlled-climate cuvette. Photosynthetic measurements were made at CO2 concentrations from 50-1000 micro-mol/mol CO2. Net photosynthetic rates showed an increase with increasing measurement CO2 in all nutrient regimes, but the response of photosynthetic rates to the growth CO2 conditions varied among the experiments and between the two varieties. Enhanced mineral nutrition led to increased net photosynthetic rates in "Georgia Jet" plants, but not in "TU-82-155" plants. The results of this study will help to determine the CO2 requirements for growth of sweetpotato on proposed space missions.

  19. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    PubMed

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  20. The bioavailability of dietary calcium.

    PubMed

    Guéguen, L; Pointillart, A

    2000-04-01

    This update focuses on the bioavailability of dietary calcium for humans. Fundamentals of calcium metabolism, intestinal absorption, urinary excretion and balance are recalled. Dietary factors, especially lactose and other milk components, influencing calcium bioavailability at intestinal and renal levels are reviewed. A critical examination of all the methods used for evaluating calcium bioavailability is made. This includes in vitro assays, classical and isotopic balances, urinary excretion, isotope labeling in the urine, plasma and bones, long term evaluation of bone mineralization and the use of biological bone markers. Importance and advantages of animal models are discussed. The state of the art in the comparative bioavailability of calcium in foods is detailed including a comparison of sources of calcium (dairy products and calcium salts) in human studies and in some animal studies, casein phosphopeptides, proteins, lactose and lactase and their relation with calcium bioavailability (in humans and rats). An update on the consumption of dairy products and bone mass is presented. Emphasis on peculiarities and advantages of calcium in milk and dairy products is given.

  1. Bioavailability of Tetracycline and Doxycycline in Fasted and Nonfasted Subjects

    PubMed Central

    Welling, Peter G.; Koch, Patricia A.; Lau, Curtis C.; Craig, William A.

    1977-01-01

    The influence of various test meals and fluid volumes on the relative bioavailability of commercial formulations of doxycycline hyclate and tetracycline hydrochloride was studied in healthy human volunteers. Serum levels of tetracycline were uniformly reduced by approximately 50% by all test meals, whereas serum levels of doxycycline were reduced by 20%. The reduction of tetracycline serum levels will likely be of clinical significance. The bioavailability of each drug was almost identical from an oral solution and from capsules in fasted subjects. The rate of doxycycline absorption was reduced when capsules were administered with a small volume of water, but the overall efficiency of absorption of both drugs was essentially independent of co-administered fluid volume. The use of 8-h serum data provides a reliable estimate of drug bioavailability for tetracycline and, to a lesser extent, for doxycycline. PMID:856000

  2. Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1987-01-01

    Triacontanol (1-triacontanol) applied as a foliar spray at 10(-7) M to 4-day-old, hydroponically grown leaf lettuce (Lactuca sativa L.) seedlings in a controlled environment increased leaf fresh and dry weight 13% to 20% and root fresh and dry weight 13% to 24% 6 days after application, relative to plants sprayed with water. When applied at 8 as well as 4 days after seeding, triacontanol increased plant fresh and dry weight, leaf area, and mean relative growth rate 12% to 37%. There was no benefit of repeating application of triacontanol in terms of leaf dry weight gain.

  3. Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1987-01-01

    Triacontanol (1-triacontanol) applied as a foliar spray at 10(-7) M to 4-day-old, hydroponically grown leaf lettuce (Lactuca sativa L.) seedlings in a controlled environment increased leaf fresh and dry weight 13% to 20% and root fresh and dry weight 13% to 24% 6 days after application, relative to plants sprayed with water. When applied at 8 as well as 4 days after seeding, triacontanol increased plant fresh and dry weight, leaf area, and mean relative growth rate 12% to 37%. There was no benefit of repeating application of triacontanol in terms of leaf dry weight gain.

  4. Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol.

    PubMed

    Knight, S L; Mitchell, C A

    1987-12-01

    Triacontanol (1-triacontanol) applied as a foliar spray at 10(-7) M to 4-day-old, hydroponically grown leaf lettuce (Lactuca sativa L.) seedlings in a controlled environment increased leaf fresh and dry weight 13% to 20% and root fresh and dry weight 13% to 24% 6 days after application, relative to plants sprayed with water. When applied at 8 as well as 4 days after seeding, triacontanol increased plant fresh and dry weight, leaf area, and mean relative growth rate 12% to 37%. There was no benefit of repeating application of triacontanol in terms of leaf dry weight gain.

  5. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.

    PubMed

    Hatayama, Masayoshi; Sato, Takahiko; Shinoda, Kozo; Inoue, Chihiro

    2011-03-01

    The physiological responses of the arsenic-hyperaccumulator, Pteris vittata, such as arsenic uptake and chemical transformation in the fern, have been investigated. However, a few questions remain regarding arsenic treatment in hydroponics. Incubation conditions such as aeration, arsenic concentration, and incubation period might affect those responses of P. vittata in hydroponics. Arsenite uptake was low under anaerobic conditions, as previously reported. However, in an arsenite uptake experiment, phosphorous (P) starvation-dependent uptake of arsenate was observed under aerobic conditions. Time course-dependent analysis of arsenite oxidation showed that arsenite was gradually oxidized to arsenate during incubation. Arsenite oxidation was not observed in any of the control conditions, such as exposure to a nutrient solution or to culture medium only, or with the use of dried root; arsenite oxidation was only observed when live root was used. This result suggests that sufficient aeration allows the rhizosphere system to oxidize arsenite and enables the fern to efficiently take up arsenite as arsenate. X-ray absorption near edge structure (XANES) analyses showed that long-duration exposure to arsenic using a hydroponic system led to the accumulation of arsenate as the dominant species in the root tips, but not in the whole roots, partly because up-regulation of arsenate uptake by P starvation of the fern was caused and retained by long-time incubation. Analysis of concentration-dependent arsenate uptake by P. vittata showed that the uptake switched from a high-affinity transport system to a low-affinity system at high arsenate concentrations, which partially explains the increased arsenate abundance in the whole root.

  6. In vivo bioavailability studies of sumatriptan succinate buccal tablets

    PubMed Central

    Shivanand, K; Raju, SA; Nizamuddin, S; Jayakar, B

    2011-01-01

    Back ground and the purpose of study Sumatriptan succinate is a Serotonin 5- HT1 receptor agonist, used in treatment of migraine. It is absorbed rapidly but incompletely when given orally and undergoes first-pass metabolism, resulting in a low absolute bioavailability of about 15%. The aim of this work was to design mucoadhesive bilayered buccal tablets of sumatriptan succinate to improve its bioavailability. Methods Mucoadhesive polymers carbopol 934 (Carbopol), HPMC K4M, HPMC K15M along with ethyl cellulose as an impermeable backing layer were used for the preparation of mucoadhesive bilayered tablets. In vivo bioavailability studies was also conducted in rabbits for optimized formulation using oral solution of sumatriptan succinate as standard. Results Bilayered buccal tablets (BBT) containing the mixture of Carbopol and HPMC K4M in the ratio 1:1 (T1) had the maximum percentage of in vitro drug release within 6 hrs. The optimized formulation (T1) followed non-Fickian release mechanism. The percentage relative bioavailability of sumatriptan succinate from selected bilayered buccal tablets (T1) was found to be 140.78%. Conclusions Bilayered buccal tablets of sumatriptan succinate was successfully prepared with improved bioavailability. PMID:22615661

  7. Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F(tox) approach.

    PubMed

    Qiu, Hao; Vijver, Martina G; He, Erkai; Liu, Yang; Wang, Peng; Xia, Bing; Smolders, Erik; Versieren, Liske; Peijnenburg, Willie J G M

    2015-12-01

    There are only a limited number of studies that have developed appropriate models which incorporate bioavailability to estimate mixture toxicity. Here, we explored the applicability of the extended biotic ligand model (BLM) and the WHAM-F(tox) approach for predicting and interpreting mixture toxicity, with the assumption that interactions between metal ions obey the BLM theory. Seedlings of lettuce Lactuca sativa were exposed to metal mixtures (Cu-Ni, Cu-Cd, and Ni-Cd) contained in hydroponic solutions for 4 days. Inhibition to root elongation was the endpoint used to quantify the toxic response. Assuming that metal ions compete with each other for binding at a single biotic ligand, the extended BLM succeeded in predicting toxicity of three mixtures to lettuce, with more than 82% of toxicity variation explained. There were no significant differences in the values of f(mix50) (i.e., the overall amounts of metal ions bound to the biotic ligand inducing 50% effect) for the three mixture combinations, showing the possibility of extrapolating these values to other binary metal combinations. The WHAM-F(tox) approach showed a similar level of precision in estimating mixture toxicity while requiring fewer parameters than the BLM-f(mix) model. External validation of the WHAM-F(tox) approach using literature data showed its applicability for other species and other mixtures. The WHAM-F(tox) model is suitable for delineating mixture effects where the extended BLM also applies. Therefore, in case of lower data availability, we recommend the lower parameterized WHAM-F(tox) as an effective approach to incorporate bioavailability in quantifying mixture toxicity.

  8. Effect of water velocity on hydroponic phytoremediation of metals.

    PubMed

    Weiss, P; Westbrook, A; Weiss, J; Gulliver, J; Biesboer, D

    2014-01-01

    The influence of flow velocity on the uptake of cadmium, copper, lead, and zinc by hydroponically grown soft stem bulrush (Scirpus validus) was investigated. The roots of the plants were exposed to a continually recycled, nutrient enriched, synthetic stormwater. Plants were divided into groups and the roots of each group exposed to different but constant water velocities. The metal concentrations in the roots and stems were compared after three weeks. Metal accumulation in roots was increased for water velocities between 1.3 and 4.0 cm s(-1). In a second experiment, the roots of all plants were exposed to a single velocity and the root and stem metal concentrations were determined as a function of time. Metal concentrations in the roots approached a constant value after three weeks. After this time, accumulation of metals depends upon root growth. The results suggest that long-term accumulation by the roots of hydroponic Scirpus validus can be increased by increasing water velocity, which implies that floating islands with movement will retain more metals from the water column.

  9. Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce.

    PubMed

    Carducci, Annalaura; Caponi, Elisa; Ciurli, Adriana; Verani, Marco

    2015-07-17

    Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, have also been used to study the possibility of viral absorption through roots. This study was conducted to assess a possible risk of viral contamination in lettuce from contaminated water. The leaves of lettuce plants grown in hydroponic cultures where the roots were exposed to water containing Coxsakievirus B2, were analysed for evidence of the virus. The plants and water were sampled at different times and virus was measured using quantitative RT-PCR and infectivity assay. In leaf samples, the lowest observed infective data were lower than the qRT-PCR detection limits, suggesting that free viral RNA or damaged viruses are eliminated rapidly while infectious particles remain stable for a longer time. The obtained data revealed that the leaves were contaminated at a water concentration of 4.11 ± 1 Log Most Probable Number/L (8.03 ± 1 Log GC/L) a concentration observed in contaminated untreated water of wastewater treatment plants. However, the absorption dynamics and whether the virus is inactive in the leaves still remains to be clarified. Nevertheless, this work has practical implications for risk management in using reclaimed water for agricultural use; when irrigated vegetables are destined for raw consumption, virological contamination in water sources should be evaluated.

  10. Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Wignarajah, K.

    1997-01-01

    The goal of resource recovery in a regenerative life support system is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control - growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.

  11. Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass.

    PubMed

    Bubenheim, D L; Wignarajah, K

    1997-01-01

    The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.

  12. BIOSURFACES AND BIOAVAILABILITY: A NANOSCALE OVERVIEW

    EPA Science Inventory

    Environmentally, contaminant bioavailability is a key parameter in determining exposure assessment and ultimately risk assessment/risk management. Defining bioavailability requires knowledge of the contaminant spatial/temporal disposition and transportability and the thermodyna...

  13. BIOSURFACES AND BIOAVAILABILITY: A NANOSCALE OVERVIEW

    EPA Science Inventory

    Environmentally, contaminant bioavailability is a key parameter in determining exposure assessment and ultimately risk assessment/risk management. Defining bioavailability requires knowledge of the contaminant spatial/temporal disposition and transportability and the thermodyna...

  14. Hydroxychloroquine relative bioavailability: within subject reproducibility.

    PubMed

    Tett, S; Day, R; Cutler, D

    1996-03-01

    Six healthy volunteers received hydroxychloroquine sulphate 200 mg orally on four occasions (three tablets, one solution). Maximum hydroxychloroquine blood concentration (Cmax; range 135-422 ng ml-1) and time to maximum (tmax; range 1.5-7.0 h) for the three tablet doses showed significant differences between subjects (P < 0.009; between subject coefficients of variation (CVs) 34% and 27%, respectively). There were no within subject differences in Cmax (P = 0.32; mean within subject CV 11%), Cmax corrected for weight (P = 0.28) or tmax (P = 0.35; mean within subject CV 16%). Truncated areas under the hydroxychloroquine blood concentration-time curve of the three tablets were different between (P = 0.0001) but not within subjects (P = 0.13). Again, between subject CV (38%) was more than three times the mean within subject CV (12%). Bioavailability was not limited by tablet formulation. The significant variability in relative bioavailability between but not within individuals indicated that individualising dosing to target concentrations associated with optimal outcomes may minimise variability in response.

  15. Evaluation of the toxicity of selenium from hydroponically produced selenium-enriched kale sprout in laying hens.

    PubMed

    Chantiratikul, Anut; Borisuth, Lalita; Chinrasri, Orawan; Saenthaweesuk, Nattanan; Chookhampaeng, Sumalee; Thosaikham, Witphon; Sriart, Noppong; Chantiratikul, Piyanete

    2016-05-01

    Hydroponically produced Se-enriched kale sprouts (HPSeKS) are studied for their use as an alternative dietary Se supplement for poultry. The study experimented with different levels and sources of Se to determine toxicity and how the toxicity may affect productive performance, Se concentration in egg and tissues, and physiological responses of laying hens. One-hundred and twenty hens, 59 weeks of age, were divided into 5 groups. Each group consisted of 4 replicates and each replicate had 6 birds according to a 2 × 2 + 1 Augmented Factorial Experiment in a Completely Randomized Design. The experiment was conducted over a 4 week period, and 5 dietary treatments (T) were used: T1 basal diet, T2 and T3 basal diet plus 5 and 10mg Se/kg from sodium selenite (SS), T4 and T5 basal diet plus 5 and 10mg Se/kg from HPSeKS, respectively. The results make clear that Se from HPSeKS, at 5-10mg/kg, did not affect (P>0.05) feed intake and egg production; however, Se bioavailability decreased (P<0.05). Egg, tissue and plasma Se concentrations, and GSH-Px activity in red blood cells increased (P<0.05) compared to those in T1. Final body weight, feed intake, Se bioavailability, concentration of Se in breast muscle and plasma of hens fed Se from SS were lower (P<0.05) than those of hens fed Se from HPSeKS. The findings demonstrate that dietary Se from HPSeKS at 5-10mg/kg is not considered a toxic level for laying hens. The toxicity of Se from HPSeKS was less than the toxicity of Se from SS.

  16. Bioavailability of Promethazine during Spaceflight

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2009-01-01

    Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.

  17. Bioavailability of Promethazine during Spaceflight

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2009-01-01

    Promethazine (PMZ) is the choice anti-motion sickness medication for treating space motion sickness (SMS) during flight. The side effects associated with PMZ include dizziness, drowsiness, sedation, and impaired psychomotor performance which could impact crew performance and mission operations. Early anecdotal reports from crewmembers indicate that these central nervous system side effects of PMZ are absent or greatly attenuated in microgravity, potentially due to changes in pharmacokinetics (PK) and pharmacodynamics in microgravity. These changes could also affect the therapeutic effectiveness of drugs in general and PMZ, in particular. In this investigation, we examined bioavailability and associated pharmacokinetics of PMZ in astronauts during and after space flight. Methods. Nine astronauts received, per their preference, PMZ (25 or 50 mg as intramuscular injection, oral tablet, or rectal suppository) on flight day one for the treatment of SMS and subsequently collected saliva samples and completed sleepiness scores for 72 h post dose. Thirty days after the astronauts returned to Earth, they repeated the protocol. Bioavailability and PK parameters were calculated and compared between flight and ground. Results. Maximum concentration (Cmax) was lower and time to reach Cmax (tmax) was longer in flight than on the ground. Area under the curve (AUC), a measure of bioavailability, was lower and biological half-life (t1/2) was longer in flight than on the ground. Conclusion. Results indicate that bioavailability of PMZ is reduced during spaceflight. Number of samples, sampling method, and sampling schedule significantly affected PK parameter estimates.

  18. Aluminum bioavailability from tea infusion

    PubMed Central

    Yokel, Robert A.; Florence, Rebecca L.

    2008-01-01

    The objective was to estimate oral Al bioavailability from tea infusion in the rat, using the tracer 26Al. 26Al citrate was injected into tea leaves. An infusion was prepared from the dried leaves and given intra-gastrically to rats which received concurrent intravenous 27Al infusion. Oral Al bioavailability (F) was calculated from the area under the 26Al, compared to 27Al, serum concentration × time curves. Bioavailability from tea averaged 0.37%; not significantly different from water (F = 0.3%), or basic sodium aluminum phosphate (SALP) in cheese (F = 0.1 to 0.3%), but greater than acidic SALP in a biscuit (F = 0.1%). Time to maximum serum 26Al concentration was 1.25, 1.5, 8 and 4.8 h, respectively. These results of oral Al bioavailability × daily consumption by the human suggest tea can provide a significant amount of the Al that reaches systemic circulation. This can allow distribution to its target organs of toxicity, the central nervous, skeletal and hematopoietic systems. Further testing of the hypothesis that Al contributes to Alzheimer's disease may be more warranted with studies focusing on total average daily food intake, including tea and other foods containing appreciable Al, than drinking water. PMID:18848597

  19. Drug Bioavailability Data: (Un)Available.

    ERIC Educational Resources Information Center

    Capomacchia, Anthony C.; And Others

    1979-01-01

    The obtainability of drug bioavailability data from both brand-name and generic-drug manufacturers was studied to document the relative change in availability to pharmacy students of drug bioavailability data between 1978 and 1976 for drugs exhibiting bioavailability problems. The results indicate no major change. (JMD)

  20. Drug Bioavailability Data: (Un)Available.

    ERIC Educational Resources Information Center

    Capomacchia, Anthony C.; And Others

    1979-01-01

    The obtainability of drug bioavailability data from both brand-name and generic-drug manufacturers was studied to document the relative change in availability to pharmacy students of drug bioavailability data between 1978 and 1976 for drugs exhibiting bioavailability problems. The results indicate no major change. (JMD)

  1. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Strayer, R. F.; Finger, B. W.; Wheeler, R. M.

    1996-01-01

    This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.

  2. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system

    NASA Astrophysics Data System (ADS)

    Mackowiak, C. L.; Garland, J. L.; Strayer, R. F.; Finger, B. W.; Wheeler, R. M.

    1996-01-01

    This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: 1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 μm) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2 - 4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.

  3. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Strayer, R. F.; Finger, B. W.; Wheeler, R. M.

    1996-01-01

    This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.

  4. Potential for phytoextraction of copper by Sinapis alba and Festuca rubra cv. Merlin grown hydroponically and in vineyard soils.

    PubMed

    Malagoli, Mario; Rossignolo, Virginia; Salvalaggio, Nico; Schiavon, Michela

    2014-03-01

    The extensive use of copper-bearing fungicides in vineyards is responsible for the accumulation of copper (Cu) in soils. Grass species able to accumulate Cu could be cultivated in the vineyard inter-rows for copper phytoextraction. In this study, the capacity of Festuca rubra cv Merlin and Sinapis alba to tolerate and accumulate copper (Cu) was first investigated in a hydroponic system without the interference of soil chemical-physical properties. After the amendment of Cu (5 or 10 mg Cu l-(1)) to nutrient solution, shoot Cu concentration in F. rubra increased up to 108.63 mg Cu kg(-1) DW, more than three times higher than in S. alba (31.56 mg Cu kg(-1) DW). The relationship between Cu concentration in plants and external Cu was dose-dependent and species specific. Results obtained from the hydroponic experiment were confirmed by growing plants in pots containing soil collected from six Italian vineyards. The content of soil organic matter was crucial to enhance Cu tolerance and accumulation in the shoot tissues of both plant species. Although S. alba produced more biomass than F. rubra in most soils, F. rubra accumulated significantly more Cu (up to threefold to fourfold) in the shoots. Given these results, we recommended that F. rubra cv Merlin could be cultivated in the vineyard rows to reduce excess Cu in vineyard soils.

  5. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system.

    PubMed

    Mackowiak, C L; Garland, J L; Strayer, R F; Finger, B W; Wheeler, R M

    1996-01-01

    This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.

  6. Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture.

    PubMed

    Schwabe, Franziska; Schulin, Rainer; Limbach, Ludwig K; Stark, Wendelin; Bürge, Diane; Nowack, Bernd

    2013-04-01

    An important aspect in risk assessment of nanoparticles (NPs) is to understand their environmental interactions. We used hydroponic plant cultures to study nanoparticle-plant-root interaction and translocation and exposed wheat and pumpkin to suspensions of uncoated CeO2-NP for 8d (primary particle size 17-100 nm, 100 mg L(-1)) in the absence and presence of fulvic acid (FA) and gum arabic (GA) as representatives of different types of natural organic matter. The behavior of CeO2-NPs in the hydroponic solution was monitored regarding agglomeration, sedimentation, particle size distribution, surface charge, amounts of root association, and translocation into shoots. NP-dispersions were stable over 8d in the presence of FA or GA, but with growing plants, changes in pH, particle agglomeration rate, and hydrodynamic diameter were observed. None of the plants exhibited reduced growth or any toxic response during the experiment. We found that CeO2-NPs translocated into pumpkin shoots, whereas this did not occur in wheat plants. The presence of FA and GA affected the amount of CeO2 associated with roots (pure>FA>GA) but did not affect the translocation factor. Additionally, we could confirm via TEM and SEM that CeO2-NPs adhered strongly to root surfaces of both plant species.

  7. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.

    PubMed

    Sheridan, C; Depuydt, P; De Ro, M; Petit, C; Van Gysegem, E; Delaere, P; Dixon, M; Stasiak, M; Aciksöz, S B; Frossard, E; Paradiso, R; De Pascale, S; Ventorino, V; De Meyer, T; Sas, B; Geelen, D

    2017-02-01

    Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.

  8. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops.

    PubMed

    Felizeter, Sebastian; McLachlan, Michael S; De Voogt, Pim

    2014-04-16

    Tomato, cabbage, and zucchini plants were grown hydroponically in a greenhouse. They were exposed to 14 perfluorinated alkyl acids (PFAAs) at four different concentrations via the nutrient solution. At maturity the plants were harvested, and the roots, stems, leaves, twigs (where applicable), and edible parts (tomatoes, cabbage head, zucchinis) were analyzed separately. Uptake and transfer factors were calculated for all plant parts to assess PFAA translocation and distribution within the plants. Root concentration factors were highest for long-chain PFAAs (>C11) in all three plant species, but these chemicals were not found in the edible parts. All other PFAAs were present in all above-ground plant parts, with transpiration stream concentration factors (TSCFs) of 0.05-0.25. These PFAAs are taken up with the transpiration stream and accumulate primarily in the leaves. Although some systematic differences were observed, overall their uptake from nutrient solution to roots and their further distribution within the plants were similar between plant species and among PFAAs.

  9. Cadmium accumulation by jack-bean and sorghum in hydroponic culture.

    PubMed

    Francato Zancheta, Ariana Carramaschi; De Abreu, Cleide Aparecida; Zambrosi, Fernando César Bachiega; de Magalhães Erismann, Norma; Andrade Lagôa, Ana Maria Magalhães

    2015-01-01

    Among the technologies used to recuperate cadmium (Cd) contaminated soils, phytoextraction are particularly important, where the selection of suitable plants is critical to the success of the soil remediation. Thus, the objectives of this study were to evaluate the responses of jack-bean and sorghum to Cd supply and to quantify Cd accumulation by these species grown in hydroponic culture. The plants were subjected to 0, 15, 30, or 60 μmol Cd L(-1) in the nutrient solution, and gas exchange, plant growth and Cd accumulation were measured at 25 days after starting Cd treatments. The Cd supply severely reduced growth of shoots and roots in both species. In jack-bean, Cd decreased photosynthesis by 56-86%, stomatal conductance by 59-85% and transpiration by 48-80%. The concentrations and amounts of Cd accumulated in the plant tissues were proportional to the metal supply in the nutrient solution. Sorghum was more tolerant than jack-bean to Cd toxicity, but the latter showed a greater metal concentration and accumulation in the shoot. Therefore, jack-bean would be more suitable than sorghum for use in Cd phytoremediation programs based on phytoextraction.

  10. Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca oleracea).

    PubMed

    de Lacerda, Laís Pessôa; Lange, Liséte Celina; Costa França, Marcel Giovanni; Zonta, Everaldo

    2015-01-01

    In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.

  11. Role of plants in nitrogen and sulfur transformations in floating hydroponic root mats: A comparison of two helophytes.

    PubMed

    Saad, Rania A B; Kuschk, Peter; Wiessner, Arndt; Kappelmeyer, Uwe; Müller, Jochen A; Köser, Heinz

    2016-10-01

    Knowledge about the roles helophytes play in constructed wetlands (CWs) is limited, especially regarding their provision of organic rhizodeposits. Here, transformations of inorganic nitrogen and sulfur were monitored in a CW variety, floating hydroponic root mat (FHRM), treating synthetic wastewater containing low concentration of organic carbon. Two helophytes, Phragmites australis and Juncus effusus, were compared in duplicates. Striking differences were found between the FHRM of the two helophytes. Whereas ammonium was removed in all FHRMs to below detection level, total nitrogen of 1.15 ± 0.4 g m(-2) d(-1) was removed completely only in P. australis systems. The mats with J. effusus displayed effective nitrification but incomplete denitrification as 77% of the removed ammonium-nitrogen accumulated as nitrate. Furthermore, the P. australis treatment units showed on average 3 times higher sulfate-S removal rates (1.1 ± 0.45 g m(-2) d(-1)) than the systems planted with J. effusus (0.37 ± 0.29 g m(-2) d(-1)). Since the influent organic carbon was below the stoichiometric requirement for the observed N and S transformation processes, helophytes' organic rhizodeposits apparently contributed to these transformations, while P. australis provided about 6 times higher bioavailable organic rhizodeposits than J. effusus.

  12. Influence of nitrogen nutrition management on biomass partitioning and nitrogen use efficiency indices in hydroponically grown potato

    NASA Technical Reports Server (NTRS)

    Goins, Gregory D.; Yorio, Neil C.; Wheeler, Raymond M.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) has been conducting controlled environment research with potatoes (Solanum tuberosum L.) in recirculating nutrient film technique (NFT)-hydroponic systems as a human life support component during long-duration spaceflight. Standard nutrient solution management approaches include constant pH regulation with nitric acid (HNO3) and daily adjustment of electrical conductivity (EC) equivalent to half-strength modified Hoagland's solution, where nitrate (NO3-) is the sole nitrogen (N) source. Although tuber yields have been excellent with such an approach, N use efficiency indices are expected to be low relative to tuber biomass production. Furthermore, the high amount of N used in NFT-hydroponics, typically results in high inedible biomass, which conflicts with the need to minimize system mass, volume, and expenditure of resources for long-duration missions. More effective strategies of N fertilization need to be developed to more closely match N supply with demand of the crop. Hence, the primary objective of this study was to identify the optimal N management regime and plant N requirement to achieve high yields and to avoid inefficient use of N and excess inedible biomass production. In separate 84-day cropping experiments, three N management protocols were tested. Treatments which decreased NO3(-)-N supply indirectly through lowering nutrient solution EC (Expt. I), or disabling pH control, and/or supplying NH4(+)-N (Expt. III) did not significantly benefit tuber yield, but did influence N use efficiency indices. When supplied with an external 7.5 mM NO3(-)-N for the first 42 days after planting (DAP), lowered to 1.0 mM NO3(-)-N during the final 42 days (Expt. II), plants were able to achieve yields on par with plants which received constant 7.5 mM NO3(-)-N (control). By abruptly decreasing N supply at tuber initiation in Expt. II, less N was taken up and accumulated by plants compared to those which received

  13. Influence of nitrogen nutrition management on biomass partitioning and nitrogen use efficiency indices in hydroponically grown potato

    NASA Technical Reports Server (NTRS)

    Goins, Gregory D.; Yorio, Neil C.; Wheeler, Raymond M.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) has been conducting controlled environment research with potatoes (Solanum tuberosum L.) in recirculating nutrient film technique (NFT)-hydroponic systems as a human life support component during long-duration spaceflight. Standard nutrient solution management approaches include constant pH regulation with nitric acid (HNO3) and daily adjustment of electrical conductivity (EC) equivalent to half-strength modified Hoagland's solution, where nitrate (NO3-) is the sole nitrogen (N) source. Although tuber yields have been excellent with such an approach, N use efficiency indices are expected to be low relative to tuber biomass production. Furthermore, the high amount of N used in NFT-hydroponics, typically results in high inedible biomass, which conflicts with the need to minimize system mass, volume, and expenditure of resources for long-duration missions. More effective strategies of N fertilization need to be developed to more closely match N supply with demand of the crop. Hence, the primary objective of this study was to identify the optimal N management regime and plant N requirement to achieve high yields and to avoid inefficient use of N and excess inedible biomass production. In separate 84-day cropping experiments, three N management protocols were tested. Treatments which decreased NO3(-)-N supply indirectly through lowering nutrient solution EC (Expt. I), or disabling pH control, and/or supplying NH4(+)-N (Expt. III) did not significantly benefit tuber yield, but did influence N use efficiency indices. When supplied with an external 7.5 mM NO3(-)-N for the first 42 days after planting (DAP), lowered to 1.0 mM NO3(-)-N during the final 42 days (Expt. II), plants were able to achieve yields on par with plants which received constant 7.5 mM NO3(-)-N (control). By abruptly decreasing N supply at tuber initiation in Expt. II, less N was taken up and accumulated by plants compared to those which received

  14. Influence of nitrogen nutrition management on biomass partitioning and nitrogen use efficiency indices in hydroponically grown potato.

    PubMed

    Goins, Gregory D; Yorio, Neil C; Wheeler, Raymond M

    2004-01-01

    The National Aeronautics and Space Administration (NASA) has been conducting controlled environment research with potatoes (Solanum tuberosum L.) in recirculating nutrient film technique (NFT)-hydroponic systems as a human life support component during long-duration spaceflight. Standard nutrient solution management approaches include constant pH regulation with nitric acid (HNO3) and daily adjustment of electrical conductivity (EC) equivalent to half-strength modified Hoagland's solution, where nitrate (NO3-) is the sole nitrogen (N) source. Although tuber yields have been excellent with such an approach, N use efficiency indices are expected to be low relative to tuber biomass production. Furthermore, the high amount of N used in NFT-hydroponics, typically results in high inedible biomass, which conflicts with the need to minimize system mass, volume, and expenditure of resources for long-duration missions. More effective strategies of N fertilization need to be developed to more closely match N supply with demand of the crop. Hence, the primary objective of this study was to identify the optimal N management regime and plant N requirement to achieve high yields and to avoid inefficient use of N and excess inedible biomass production. In separate 84-day cropping experiments, three N management protocols were tested. Treatments which decreased NO3(-)-N supply indirectly through lowering nutrient solution EC (Expt. I), or disabling pH control, and/or supplying NH4(+)-N (Expt. III) did not significantly benefit tuber yield, but did influence N use efficiency indices. When supplied with an external 7.5 mM NO3(-)-N for the first 42 days after planting (DAP), lowered to 1.0 mM NO3(-)-N during the final 42 days (Expt. II), plants were able to achieve yields on par with plants which received constant 7.5 mM NO3(-)-N (control). By abruptly decreasing N supply at tuber initiation in Expt. II, less N was taken up and accumulated by plants compared to those which received

  15. Removal of carbaryl, linuron, and permethrin by Lupinus angustifolius under hydroponic conditions.

    PubMed

    Garcinuño, R M; Fernandez Hernando, P; Camara, C

    2006-07-12

    The metabolism of organic pollutants by plants normally requires contaminant direct uptake by cells. Factors affecting this uptake and the later distribution of chemicals within the plant include the physicochemical properties of the compounds (concentration, structure, solubility, log k(ow), diffusion rate) and the biochemical characteristics of the plant. This paper reports the tolerance, uptake, and effects of the pesticides carbaryl, linuron, and permethrin on Lupinus angustifolius germination and growth as well as contaminant intraplant distribution and possible degradation. Lupine plants were grown in hydroponic culture containing either 1 or 5 mg of the individual pesticides, or combinations of these (1, 5, or 10 mg of each), in 100 mL nutrient and water solutions. Analysis of the remaining solutions 8 days post-germination showed the water solutions to have higher remaining pesticide concentrations than nutrient solutions. Furthermore, in the presence of pesticides, germination was more frequent in the water solutions. After 16 days of growth, the plants were harvested, and their tissues were microwaved digested and analyzed by reversed-phase liquid chromatography. Although only minor quantities of each pesticide were detected in plant tissues, their amount in the roots was higher than in the stems. No accumulation was noted in the cotyledons, and only 2% of linuron was detected in the leaves. Mass recovery at the end of the experiment showed that 57, 53, and 55% of carbaryl, linuron, and permethrin, respectively, were degraded and/or bound in an irreversible manner to plant material. The results suggest that L. angustifolius could be useful for the cleaning/remediation of pesticide-contaminated water.

  16. Bioavailability of the Polyphenols: Status and Controversies

    PubMed Central

    D’Archivio, Massimo; Filesi, Carmelina; Varì, Rosaria; Scazzocchio, Beatrice; Masella, Roberta

    2010-01-01

    The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavailability profile. In the present review, we focus on the factors influencing the bioavailability of the polyphenols. Moreover, a critical overview on the difficulties and the controversies of the studies on the bioavailability is discussed. PMID:20480022

  17. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  18. A hydroponic method for plant growth in microgravity

    NASA Technical Reports Server (NTRS)

    Wright, B. D.

    1985-01-01

    A hydroponic apparatus under development for long-term microgravity plant growth is described. The capillary effect root environment system (CERES) is designed to keep separate the nutrient and air flows, although both must be simultaneously available to the roots. Water at a pressure slightly under air pressure is allowed to seep into a plastic depression covered by a plastic screen and a porous membrane. A root in the air on the membrane outer surface draws the moisture through it. The laboratory model has a wire-based 1.241 mm mesh polyethylene screen and a filter membrane with 0.45 micron pores, small enough to prohibit root hair penetration. The design eliminates the need to seal-off the plant environment. Problems still needing attention include scaling up of the CERES size, controlling biofouling of the membrane, and extending the applications to plants without fibrous root systems.

  19. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  20. Treatment of domestic wastewater by an hydroponic NFT system.

    PubMed

    Vaillant, Nathalie; Monnet, Fabien; Sallanon, Huguette; Coudret, Alain; Hitmi, Adnane

    2003-01-01

    The objectives in this work were to investigate a conceptual layout for an inexpensive and simple system that would treat primary municipal wastewater to discharge standards. A commercial hydroponic system was adapted for this study and the wastewater was used to irrigate Datura innoxia plants. Influent and effluent samples were collected once a month for six months and analysed to determine the various parameters relating to the water quality. The legal discharge levels for total suspended, biochemical oxygen demand and chemical oxygen demand were reached with the plant system after 24 h of wastewater treatment. Total nitrogen and total phosphorus reduction were also obtained. NH4(+)-N was reduced by 93% with nitrification proving to be the predominant removal process. Significant nitrification occurred when the BOD5 level dropped 45 mg/l. Similar results were obtained for six months although the sewage composition varied widely. D. innoxia develops and uses the wastewater as the unique nutritive source.

  1. Variation characteristics of chlorpyrifos in nonsterile wetland plant hydroponic system.

    PubMed

    Wang, Chuan; Zhou, Qiaohong; Zhang, Liping; Zhang, Yan; Xiao, Enrong; Wu, Zhenbin

    2013-01-01

    Six wetland plants were investigated for their effect on the degradation characteristics of chlorpyrifos in nonsterile hydroponic system at constant temperature of 28 degrees C. The results showed that the removal rates of chlorpyrifos in the water of plant systems were 1.26-5.56% higher than that in the control without plants. Scirpus validus and Typha angustifolia were better than other hygrophytes in elimination of chlorpyrifos. The removal rates of the two systems were up to 88%. Plants of acaulescent group had an advantage over caulescent group in removing chlorpyrifos. Phytoaccumulation of chlorpyrifos was observed, and the order of chlorpyrifos concentration in different plant tissues was root > stem > leaf. It was also found that chlorpyrifos and its metabolite TCP decreased rapidly at the initial step of the experiment.

  2. Recycling crop residues for use in recirculating hydroponic crop production.

    PubMed

    Mackowiak, C L; Garland, J L; Sager, J C

    1996-12-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  3. Uptake of 2,4,6-Trinitrotoluene (TNT) by Vetiver grass (Vetiviera ziznoides L.) -- Preliminary results from a hydroponic study

    NASA Astrophysics Data System (ADS)

    Shakya, K. M.; Sarkar, D.; Datta, R.; Makris, K.; Pachanoor, D.

    2006-05-01

    2,4,6-Trinitrotoluene(TNT) is a potent mutagen and a Group C human carcinogen that has been widely used to produce munitions and explosives. As a result, vast areas that have been previously used as military ranges, munition burning and open detonation sites have been heavily contaminated with TNT. Conventional remedial activities in such contaminated sites commonly rely on methods such as incineration, land filling and soil composting. Phytoremediation offers a cost-effective solution, utilizing plants to phytoextract TNT from the contaminated soil. We propose the use of vetiver grass (Vetiveria zizanoides) to remove TNT from such contaminated soils. Vetiver is a fast-growing and adaptive grass, enabling its use in TNT-contaminated sites in a wide variety of soil types and climate. We also hypothesized that TNT removal by vetiver grass will be enhanced by utilizing a chaotropic agent (urea) to alter rhizosphere/root hair chemical environment. The objectives of this preliminary hydroponic study were: i) to investigate the effectiveness of vetiver grass in removing TNT from solution, and ii) to evaluate the use of a common agrochemical (urea) in enhancing TNT removal by vetiver grass. Vetiver plants were grown in a hydroponic system with five different TNT concentrations (0, 5, 10, 25, and 50 mg TNT L-1) and three urea concentrations (0, 0.01 and 0.1%). A plant density of 10 g L-1 and three replicate vessels per treatment were used. Aliquots were collected at several time intervals up to 192 hour, and were analyzed for TNT with HPLC. Results showed that vetiver was able to remove TNT from hydroponic solutions. The overall magnitude and kinetics of TNT removal by vetiver grass was enhanced in the presence of urea. TNT removal kinetics depended on TNT and urea initial concentrations, suggestive of second-order kinetic reactions. Preliminary results are encouraging, but in need for verification using more detailed studies involving TNT-contaminated soils. Ongoing

  4. Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce

    PubMed Central

    Carducci, Annalaura; Caponi, Elisa; Ciurli, Adriana; Verani, Marco

    2015-01-01

    Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, have also been used to study the possibility of viral absorption through roots. This study was conducted to assess a possible risk of viral contamination in lettuce from contaminated water. The leaves of lettuce plants grown in hydroponic cultures where the roots were exposed to water containing Coxsakievirus B2, were analysed for evidence of the virus. The plants and water were sampled at different times and virus was measured using quantitative RT-PCR and infectivity assay. In leaf samples, the lowest observed infective data were lower than the qRT-PCR detection limits, suggesting that free viral RNA or damaged viruses are eliminated rapidly while infectious particles remain stable for a longer time. The obtained data revealed that the leaves were contaminated at a water concentration of 4.11 ± 1 Log Most Probable Number/L (8.03 ± 1 Log GC/L) a concentration observed in contaminated untreated water of wastewater treatment plants. However, the absorption dynamics and whether the virus is inactive in the leaves still remains to be clarified. Nevertheless, this work has practical implications for risk management in using reclaimed water for agricultural use; when irrigated vegetables are destined for raw consumption, virological contamination in water sources should be evaluated. PMID:26193291

  5. How-to-Do-It. Hydroponics and Aquaculture in the High School Classroom.

    ERIC Educational Resources Information Center

    Nicol, Ernest

    1990-01-01

    The construction of a hydroponic system for use in the classroom is described. Provided are construction details, a list of materials with approximate cost, a diagram of the setup, and a sample test. Several activities are suggested. (CW)

  6. ANALYSIS OF HYDROPONIC FERTILIZER MATRIXES FOR PERCHLORATE: COMPARISON OF ANALYTICAL TECHNIQUES

    EPA Science Inventory

    Seven retail hydroponic nitrate fertilizer products, two liquid and five solid, were comparatively analyzed for the perchlorate anion (ClO4-) by ion chromatography (IC) with suppressed conductivity detection, complexation electrospray ionization mass spectrometry (cESI-MS), norma...

  7. How-to-Do-It. Hydroponics and Aquaculture in the High School Classroom.

    ERIC Educational Resources Information Center

    Nicol, Ernest

    1990-01-01

    The construction of a hydroponic system for use in the classroom is described. Provided are construction details, a list of materials with approximate cost, a diagram of the setup, and a sample test. Several activities are suggested. (CW)

  8. ANALYSIS OF HYDROPONIC FERTILIZER MATRIXES FOR PERCHLORATE: COMPARISON OF ANALYTICAL TECHNIQUES

    EPA Science Inventory

    Seven retail hydroponic nitrate fertilizer products, two liquid and five solid, were comparatively analyzed for the perchlorate anion (ClO4-) by ion chromatography (IC) with suppressed conductivity detection, complexation electrospray ionization mass spectrometry (cESI-MS), norma...

  9. Bioavailable Ferric Iron (BAFelll) Assay

    DTIC Science & Technology

    2007-02-01

    Immobilization and Magnetite Formation via Ferric Oxide Reduction by Shewanella putrefaciens 200. Environ. Sci. Technol, 34:100-106. EA...bioavailable ferric iron BET Brunauer-Emmett-Teller bgs below ground surface BTEX benzene-toluene-ethylbenzene-xylenes BrY Shewanella alga BrY CDB...reducing bacterium Shewanella alga BrY, lactate as an electron donor, and a mineral salts medium supplemented with reagents that accelerate the assay

  10. Dietary factors affecting polyphenol bioavailability.

    PubMed

    Bohn, Torsten

    2014-07-01

    While many epidemiological studies have associated the consumption of polyphenols within fruits and vegetables with a decreased risk of developing several chronic diseases, intervention studies have generally not confirmed these beneficial effects. The reasons for this discrepancy are not fully understood but include potential differences in dosing, interaction with the food matrix, and differences in polyphenol bioavailability. In addition to endogenous factors such as microbiota and digestive enzymes, the food matrix can also considerably affect bioaccessibility, uptake, and further metabolism of polyphenols. While dietary fiber (such as hemicellulose), divalent minerals, and viscous and protein-rich meals are likely to cause detrimental effects on polyphenol bioaccessibility, digestible carbohydrates, dietary lipids (especially for hydrophobic polyphenols, e.g., curcumin), and additional antioxidants may enhance polyphenol availability. Following epithelial uptake, polyphenols such as flavonoids may reduce phase II metabolism and excretion, enhancing polyphenol bioavailability. Furthermore, polyphenols may act synergistically due to their influence on efflux transporters such as p-glycoprotein. In order to understand polyphenol bioactivity, increased knowledge of the factors affecting polyphenol bioavailability, including dietary factors, is paramount.

  11. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    PubMed

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  12. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    PubMed

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-16

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture.

  13. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods

    PubMed Central

    Lages Barbosa, Guilherme; Almeida Gadelha, Francisca Daiane; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M.; Halden, Rolf U.

    2015-01-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors’ knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture. PMID:26086708

  14. Selection and hydroponic growth of potato cultivars for bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Molders, K.; Quinet, M.; Decat, J.; Secco, B.; Dulière, E.; Pieters, S.; van der Kooij, T.; Lutts, S.; Van Der Straeten, D.

    2012-07-01

    As part of the ESA-funded MELiSSA program, Ghent University and the Université catholique de Louvain investigated the suitability, growth and development of four potato cultivars in hydroponic culture under controlled conditions with the aim to incorporate such cultivation system in an Environmental Control and Life Support System (ECLSS). Potato plants can fulfill three major functions in an ECLSS in space missions: (a) fixation of CO2 and production of O2, (b) production of tubers for human nutrition and (c) production of clean water after condensation of the water vapor released from the plants by transpiration. Four cultivars (Annabelle, Bintje, Desiree and Innovator) were selected and grown hydroponically in nutrient film technique (NFT) gullies in a growth chamber under controlled conditions. The plant growth parameters, tuber harvest parameters and results of tuber nutritional analysis of the four cultivars were compared. The four potato cultivars grew well and all produced tubers. The growth period lasted 127 days for all cultivars except for Desiree which needed 145 days. Annabelle (1.45 kg/m2) and Bintje (1.355 kg/m2) were the best performing of the four cultivars. They also produced two times more tubers than Desiree and Innovator. Innovator produced the biggest tubers (20.95 g/tuber) and Desiree the smallest (7.67 g/tuber). The size of Annabelle and Bintje potatoes were intermediate. Bintje plants produced the highest total biomass in term of DW. The highest non-edible biomass was produced by Desiree, which showed both the highest shoot and root DW. The manual length and width measurements were also used to predict the total tuber mass. The energy values of the tubers remained in the range of the 2010 USDA and Souci-Fachmann-Kraut food composition databases. The amount of Ca determined was slightly reduced compared to the USDA value, but close to the Souci-Fachmann-Kraut value. The concentration of Cu, Zn and P were high compared to both databases

  15. Production and characterization of cyanocobalamin-enriched lettuce (Lactuca sativa L.) grown using hydroponics.

    PubMed

    Bito, Tomohiro; Ohishi, Noriharu; Hatanaka, Yuka; Takenaka, Shigeo; Nishihara, Eiji; Yabuta, Yukinori; Watanabe, Fumio

    2013-04-24

    When lettuces (Lactuca sativa L.) grown for 30 days in hydroponic culture were treated with various concentrations of cyanocobalamin for 24 h, its content in their leaves increased significantly from nondetectable to 164.6 ± 74.7 ng/g fresh weight. This finding indicated that consumption of only two or three of these fresh leaves is sufficient to meet the Recommended Dietary Allowance for adults of 2.4 μg/day. Analyses using a cobalamin-dependent Escherichia coli 215 bioautogram and LC/ESI-MS/MS demonstrated that the cyanocobalamin absorbed from the nutrient solutions by the leaves did not alter any other compounds such as coenzymes and inactive corrinoids. Gel filtration indicated that most (86%) of the cyanocobalamin in the leaves was recovered in the free cyanocobalamin fractions. These results indicated that cyanocobalamin-enriched lettuce leaves would be an excellent source of free cyanocobalamin, particularly for strict vegetarians or elderly people with food-bound cobalamin malabsorption.

  16. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics.

    PubMed

    Sagardoy, R; Morales, F; López-Millán, A-F; Abadía, A; Abadía, J

    2009-05-01

    The effects of high Zn concentration were investigated in sugar beet (Beta vulgaris L.) plants grown in a controlled environment in hydroponics. High concentrations of Zn sulphate in the nutrient solution (50, 100 and 300 microm) decreased root and shoot fresh and dry mass, and increased root/shoot ratios, when compared to control conditions (1.2 microm Zn). Plants grown with excess Zn had inward-rolled leaf edges and a damaged and brownish root system, with short lateral roots. High Zn decreased N, Mg, K and Mn concentrations in all plant parts, whereas P and Ca concentrations increased, but only in shoots. Leaves of plants treated with 50 and 100 microm Zn developed symptoms of Fe deficiency, including decreases in Fe, chlorophyll and carotenoid concentrations, increases in carotenoid/chlorophyll and chlorophyll a/b ratios and de-epoxidation of violaxanthin cycle pigments. Plants grown with 300 microm Zn had decreased photosystem II efficiency and further growth decreases but did not have leaf Fe deficiency symptoms. Leaf Zn concentrations of plants grown with excess Zn were high but fairly constant (230-260 microg.g(-1) dry weight), whereas total Zn uptake per plant decreased markedly with high Zn supply. These data indicate that sugar beet could be a good model to investigate Zn homeostasis mechanisms in plants, but is not an efficient species for Zn phytoremediation.

  17. Use of hydroponics culture to assess nutrient supply by treated wastewater.

    PubMed

    Adrover, Maria; Moyà, Gabriel; Vadell, Jaume

    2013-09-30

    The use of treated wastewater for irrigation is increasing, especially in those areas where water resources are limited. Treated wastewaters contain nutrients that are useful for plant growth and help to reduce fertilizers needs. Nutrient content of these waters depends on the treatment system. Nutrient supply by a treated wastewater from a conventional treatment plant (CWW) and a lagooned wastewater from the campus of the University of Balearic Islands (LWW) was tested in an experiment in hydroponics conditions. Half-strength Hoagland nutrient solution (HNS) was used as a control. Barley (Hordeum vulgare L.) seedlings were grown in 4 L containers filled with the three types of water. Four weeks after planting, barley was harvested and root and shoot biomass was measured. N, P, K, Ca, Mg, Na and Fe contents were determined in both tissues and heavy metal concentrations were analysed in shoots. N, P and K concentrations were lower in LWW than in CWW, while HNS had the highest nutrient concentration. Dry weight barley production was reduced in CWW and LWW treatments to 49% and 17%, respectively, comparing to HNS. However, to a lesser extent, reduction was found in shoot and root N content. Treated wastewater increased Na content in shoots and roots of barley and Ca and Cr content in shoots. However, heavy metals content was lower than toxic levels in all the cases. Although treated wastewater is an interesting water resource, additional fertilization is needed to maintain a high productivity in barley seedlings.

  18. Growth, physiological response and phytoremoval capability of two willow clones exposed to ibuprofen under hydroponic culture.

    PubMed

    Iori, Valentina; Zacchini, Massimo; Pietrini, Fabrizio

    2013-11-15

    Ibuprofen (IBU) is one of the most widespread pharmaceuticals in the aquatic ecosystem, despite the high removal rate that occurs in wastewater treatment plants. Phytoremediation represents a technology to improve the performance of existing wastewater treatment. This study was conducted under hydroponics to evaluate the ability of Salicaceae plants to tolerate and reduce IBU concentration in contaminated water. To this end, we combined growth, physiological and biochemical data to study the effects of different IBU concentrations on two clones of Salix alba L. Data demonstrated that clone SS5 was more tolerant and showed a higher ability to reduce IBU concentration in the solution than clone SP3. The high tolerance to IBU shown by SS5 was likely due to several mechanisms including the capacity to maintain an elevated photosynthetic activity and an efficient antioxidative defence. These results illustrate the remarkable potential of willow to phytoremediate IBU-contaminated waters in natural and constructed wetlands. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Stabilization of pH in solid-matrix hydroponic systems

    NASA Technical Reports Server (NTRS)

    Frick, J.; Mitchell, C. A.

    1993-01-01

    2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.

  20. EDTA reduces the physiological damage of lead on cardoon plants grown hydroponically

    NASA Astrophysics Data System (ADS)

    Hernandez-Allica, J.; Barrutia, O.; Becerril, J. M.; Garbisu, C.

    2003-05-01

    Cardoon seedlings (Cynara cardunculus L.) were grown hydroponically in nutrient solution and exposed to lead (Pb^{2+}: ImM) in the presence of a range of different EDTA concentrations (EDTANa2: 0, 0.5, 1 or 2mM). Analyses were performed to establish whether the coordination of Pb^{2+} transport by EDTA enhances the mobility of this metal within the plant and to determine the toxic effects of these treatments during a phytoextraction process. Net photosynthesis, transpiration rate and stomatal conductance decreased dramatically in plants treated with Pb^{2+} or Pb-EDTA at doses below 1 mM. ln these treatments, most of the Pb^{2+} accumulated in the roots, alld only a very low amount of it was translocated to the shoots. Increasing the EDTA doses up to Pb^{2+} equimolarity, increased the Pb^{2+} shoot content more than 10-fold without any physiological evidence of toxicity. The treatment with higher doses of EDTA (Pb^{2+} 1 mM + EDTA 2 mM) did not show toxicity symptoms, but the Pb^{2+} concentration in the aboveground tissues decreased when compared with the equimolar treatment. The interaction with the absorption of some essential cations such as Ca^{2+} and phytotoxicity on chelated-assisted phytoextraction is discussed.

  1. Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake.

    PubMed

    Purdy, Jason J; Smart, Lawrence B

    2008-01-01

    Shrub willows have demonstrated potential in many types of phytoremediation applications. Hydroponic culture was used to assess arsenic (As) tolerance and uptake by four shrub willow clones and to determine the effects of phosphate on As accumulation. After 4 weeks of growth in the absence of As, plants received one of four treatments: 0.25X Hoagland's minus P (-P), 0.25X Hoagland's minus P plus 100 microM arsenate (As100(-P)), 0.25X Hoagland's minus P plus 250 microM arsenate (As250(-P)), and 0.25X Hoagland's plus 250 IM arsenate (As250(+P)). Except for treatment As250(+P), phosphate was excluded due to its tendency to interfere with As uptake. After 3 weeks of treatment, plants were separated into root, leaf, and stem tissues. Biomass production and transpiration were used to quantify As tolerance. There was wide variation among clones in As tolerance and uptake. The presence of phosphate in solution alleviated the negative impacts of As on biomass and transpiration and also increased above ground As accumulation, suggesting that phosphate may play a role in reducing toxicity and enhancing As uptake by willow shrubs. These findings offer insight into As tolerance and uptake in Salix spp. and add to the growing body of evidence supporting the use of shrub willow for phytoremediation.

  2. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    NASA Technical Reports Server (NTRS)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  3. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    NASA Technical Reports Server (NTRS)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  4. Hydroponic screening of black locust families for heavy metal tolerance and accumulation.

    PubMed

    Župunski, Milan; Borišev, Milan; Orlović, Saša; Arsenov, Danijela; Nikolić, Nataša; Pilipović, Andrej; Pajević, Slobodanka

    2016-01-01

    Present work examines phytoextraction potential of four black locust families (half-sibs 54, 56, 115, and 135) grown hydroponically. Plants were treated with 6 ppm of cadmium (Cd), 100 ppm of nickel (Ni), and 40 ppm of lead (Pb) added in Hoagland nutrient solution, accompanying with simultaneously applied all three metals. Responses to metals exposure among families were different, ranging from severe to slight reduction of root and shoot biomass production of treated plants. Calculated tolerance indices are indicating tested families as highly tolerant (Ti > 60). Family 135 had the lowest tolerance index, pointing that it was highly susceptible to applied metals. Comparing photosynthetic activities of tested families it has been noticed that they were highly sensitive to stress induced by heavy metals. Net photosynthetic rate of nickel treated plants was the most affected by applied concentration. Cadmium and nickel concentrations in stems and leaves of black locust families exceeded 100 mg Cd kg(-1) and 1000 mg Ni kg(-1), in both single and multipollution context. On the contrary, accumulation of lead in above ground biomass was highly affected by multipollution treatment. Tf and BCF significantly varied between investigated treatments and families of black locust. Concerning obtained results of heavy metals accumulation and tolerance of black locust families can be concluded that tested families might be a promising tool for phytoextraction purposes, but it takes to be further confirmed in field trials.

  5. Stabilization of pH in solid-matrix hydroponic systems.

    PubMed

    Frick, J; Mitchell, C A

    1993-10-01

    2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.

  6. Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant

    SciTech Connect

    Guha, S.; Jaffe, P.R.; Peters, C.A.

    1998-08-01

    This study extends the understanding of the bioavailability of the micellar phase for a single compound to a multicomponent system of contaminants. Biodegradation experiments were conducted with binary and ternary mixtures of naphthalene, phenanthrene, and pyrene in the presence of a nonionic surfactant, Triton X-100. A mixed bacterial culture, isolated and enriched from a PAH-contaminated soil at the Wurstsmith Air Force Base, MI, was used for the biodegradation experiments. In the absence of the surfactant and at surfactant concentrations below cmc, the multisubstrate Monod kinetics adequately simulated the biodegradation kinetics of the binary and ternary mixtures. In the multicomponent systems, as in single solute systems, the solutes in the micelle were found to be directly bioavailable, and the bioavailability of each compound in the micellar phase decreased with increasing surfactant concentration. For a given surfactant concentration, the bioavailability was higher for the lower molecular weight PAHs. There was little difference in the bioavailability of the same compound as a dingle solute or in different binary and ternary mixtures. To predict the bioavailability of the micellar phase substrates, a mass transfer-based model was formulated that describes the transfer of substrate from the micellar phase to the microorganisms. The predictions matched the experimental observations well, indicating the validity of the model and its potential for applications in remediation designs.

  7. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture.

    PubMed

    Radzki, W; Gutierrez Mañero, F J; Algar, E; Lucas García, J A; García-Villaraco, A; Ramos Solano, B

    2013-09-01

    Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.

  8. The effect of EDDS and citrate on the uptake of lead in hydroponically grown Matthiola flavida.

    PubMed

    Mohtadi, Ahmad; Ghaderian, Seyed Majid; Schat, Henk

    2013-10-01

    Root and shoot lead concentrations and the impact of chelating agents on these were investigated in two populations of the novel metallophyte Matthiola flavida. Plants were exposed in hydroponics to Pb(NO3)2, supplied alone, or in combination with citric acid, or EDDS. When supplied at concentrations expected to bind about 95% of the Pb in a solution containing 1-μM Pb (1000 μM citrate or 3.1 μM EDDS, respectively), the root and shoot Pb concentrations were dramatically lowered, in comparison with a 1-μM free ionic Pb control exposure. A 1-mM EDDS+1-μM Pb treatment decreased the plants' Pb concentrations further, even to undetectable levels in one population. At 100 μM Pb in a 1-mM EDDS-amended solution the Pb concentration increased strongly in shoots, but barely in roots, in comparison with the 1-μM Pb+1-mM EDDS treatment, without causing toxicity symptoms. Further increments of the Pb concentration in the 1-mM EDDS-amended solution, i.e. to 800 and 990 μM, caused Pb hyperaccumulation, both in roots and in shoots, associated with a complete arrest of root growth and foliar necrosis. M. flavida seemed to be devoid of constitutive mechanisms for uptake of Pb-citrate or Pb-EDDS complexes. Hyperaccumulation of Pb-EDDS occurred only at high exposure levels. Pb-EDDS was toxic, but is much less so than free Pb. Free EDDS did not seem to be toxic at the concentrations tested.

  9. [Study on a model predicting fertilization nitrogen content in hydroponic cultivation of tomato by near infrared spectrum].

    PubMed

    Han, Xiao-ping; Zuo, Yue-ming; Li, Ling-zhi

    2010-09-01

    It was successful to denoise the spectrum signal within visual wave band (350-560 nm) by wavelet transformation, to extract the folic acid characteristic wavelength 366 nm and some character wavelengths with relation to chlorophyll at 380, 414, 437 and 554 nm. In the range from 560 to 2500 nm, after denoising, the biggest error was smaller than 1.47%, while at the peak or vale of character wavelength the biggest error was smaller than 0.11%. Moreover, the model was established based on the denoised data acquired with aid of plant probe. The model was also based on BP neural network and for predicting the nitrogen content in nutrient solution in hydroponic cultivation of tomato. The results showed that the predicting model, which used the values of absorbance at 554, 673, 1440 and 1940 nm as input variables of BP neural network,had a very good forecasting accuracy and great potential to be used practically.

  10. Cilioprotists as biological indicators for estimating the efficiency of using Gravel Bed Hydroponics System in domestic wastewater treatment.

    PubMed

    El-Serehy, Hamed A; Bahgat, Magdy M; Al-Rasheid, Khaled; Al-Misned, Fahad; Mortuza, Golam; Shafik, Hesham

    2014-07-01

    Interest has increased over the last several years in using different methods for treating sewage. The rapid population growth in developing countries (Egypt, for example, with a population of more than 87 millions) has created significant sewage disposal problems. There is therefore a growing need for sewage treatment solutions with low energy requirements and using indigenous materials and skills. Gravel Bed Hydroponics (GBH) as a constructed wetland system for sewage treatment has been proved effective for sewage treatment in several Egyptian villages. The system provided an excellent environment for a wide range of species of ciliates (23 species) and these organisms were potentially very useful as biological indicators for various saprobic conditions. Moreover, the ciliates provided excellent means for estimating the efficiency of the system for sewage purification. Results affirmed the ability of this system to produce high quality effluent with sufficient microbial reduction to enable the production of irrigation quality water.

  11. Cilioprotists as biological indicators for estimating the efficiency of using Gravel Bed Hydroponics System in domestic wastewater treatment

    PubMed Central

    El-Serehy, Hamed A.; Bahgat, Magdy M.; Al-Rasheid, Khaled; Al-Misned, Fahad; Mortuza, Golam; Shafik, Hesham

    2013-01-01

    Interest has increased over the last several years in using different methods for treating sewage. The rapid population growth in developing countries (Egypt, for example, with a population of more than 87 millions) has created significant sewage disposal problems. There is therefore a growing need for sewage treatment solutions with low energy requirements and using indigenous materials and skills. Gravel Bed Hydroponics (GBH) as a constructed wetland system for sewage treatment has been proved effective for sewage treatment in several Egyptian villages. The system provided an excellent environment for a wide range of species of ciliates (23 species) and these organisms were potentially very useful as biological indicators for various saprobic conditions. Moreover, the ciliates provided excellent means for estimating the efficiency of the system for sewage purification. Results affirmed the ability of this system to produce high quality effluent with sufficient microbial reduction to enable the production of irrigation quality water. PMID:24955010

  12. Congener specificity in the accumulation of dioxins and dioxin-like compounds in zucchini plants grown hydroponically.

    PubMed

    Inui, Hideyuki; Wakai, Taketo; Gion, Keiko; Yamazaki, Kiyoshi; Kim, Yun-Seok; Eun, Heesoo

    2011-01-01

    Zucchini cultivars Cucurbita pepo subsp. ovifera cv. Patty Green and subsp. pepo cv. Gold Rush were cultivated hydroponically in a nutrient solution supplemented with a mixture of dioxins and dioxin-like compounds. Patty Green and Gold Rush showed low and high accumulation of these compounds in the aerial parts respectively. In both cultivars, the accumulation of each congener negatively depended on its hydrophobicity. This suggests that desorption and solubilization were partly responsible for congener specificity of accumulation, since this was not found in soil experiments. In contrast, no clear difference in accumulation in the roots was observed between the cultivars, whereas the translocation factors, which are indicators of efficient translocation from the roots to the aerial parts, differed among the congeners hydrophobicity-dependently. There were positive correlations between accumulation in the roots and the hydrophobicity of the polychlorinated biphenyl congeners in both cultivars. These results indicate that translocation was also partly responsible for the congener specificity and accumulation concentrations.

  13. Effects of sulfate and sulfide on the life cycle of Zizania palustris in hydroponic and mesocosm experiments.

    PubMed

    Pastor, John; Dewey, Brad; Johnson, Nathan W; Swain, Edward B; Monson, Philip; Peters, Emily B; Myrbo, Amy

    2017-01-01

    Under oxygenated conditions, sulfate is relatively non-toxic to aquatic plants. However, in water-saturated soils, which are usually anoxic, sulfate can be reduced to toxic sulfide. Although the direct effects of sulfate and sulfide on the physiology of a few plant species have been studied in some detail, their cumulative effects on a plant's life cycle through inhibition of seed germination, seedling survival, growth, and seed production have been less well studied. We investigated the effect of sulfate and sulfide on the life cycle of wild rice (Zizania palustris L.) in hydroponic solutions and in outdoor mesocosms with sediment from a wild rice lake. In hydroponic solutions, sulfate had no effect on seed germination or juvenile seedling growth and development, but sulfide greatly reduced juvenile seedling growth and development at concentrations greater than 320 μg/L. In outdoor mesocosms, sulfate additions to overlying water increased sulfide production in sediments. Wild rice seedling emergence, seedling survival, biomass growth, viable seed production, and seed mass all declined with sulfate additions and hence sulfide concentrations in sediment. These declines grew steeper during the course of the 5 yr of the mesocosm experiment and wild rice populations became extinct in most tanks with concentrations of 250 mg SO4 /L or greater in the overlying water. Iron sulfide precipitated on the roots of wild rice plants, especially at high sulfate application rates. These precipitates, or the encroachment of reducing conditions that they indicate, may impede nutrient uptake and be partly responsible for the reduced seed production and viability. © 2016 by the Ecological Society of America.

  14. Short-term alteration of nitrogen supply prior to harvest affects quality in hydroponic-cultivated spinach (Spinacia oleracea).

    PubMed

    Lin, Xian Yong; Liu, Xiao Xia; Zhang, Ying Peng; Zhou, Yuan Qing; Hu, Yan; Chen, Qiu Hui; Zhang, Yong Song; Jin, Chong Wei

    2014-03-30

    Quality-associated problems, such as excessive in planta accumulation of oxalate, often arise in soillessly cultivated spinach (Spinacia oleracea). Maintaining a higher level of ammonium (NH₄⁺) compared to nitrate (NO₃⁻) during the growth period can effectively decrease the oxalate content in hydroponically cultivated vegetables. However, long-term exposure to high concentrations of NH₄⁺ induces toxicity in plants, and thus decreases the biomass production. Short-term application of NH₄⁺ before harvesting in soilless cultivation may provide an alternative strategy to decrease oxalate accumulation in spinach, and minimise the yield reduction caused by NH₄⁺ toxicity. The plants were pre-cultured in 8 mmol L⁻¹ NO₃⁻ nutrient solution. Next, 6 days before harvest, the plants were transferred to a nutrient solution containing 4 mmol L⁻¹ NO₃⁻ and 4 mmol L⁻¹ NH₄⁺. This new mix clearly reduced oxalate accumulation, increased levels of several antioxidant compounds, and enhanced antioxidant capacity in the edible parts of spinach plants, but it did not affect biomass production. However, when the 8 mmol L⁻¹ NO₃⁻ was shifted to either nitrogen-free, 4 mmol L⁻¹ NH₄⁺ or 8 mmol L⁻¹ NH₄⁺ treatments, although some of the quality indexes were improved, yields were significantly reduced. Short-term alteration of nitrogen supply prior to harvest significantly affects quality and biomass of spinach plants, and we strongly recommend to simultaneously use NO₃⁻ and NH₄⁺ in hydroponic cultivation, which improves vegetable quality without decreasing biomass production. © 2013 Society of Chemical Industry.

  15. Preliminary investigations of the rhizosphere nature of hydroponically grown lettuces

    NASA Astrophysics Data System (ADS)

    Antunes, Inês; Paille, Christel; Lasseur, Christophe

    Due to capabilities of current launchers, future manned exploration beyond the Earth orbit will imply long journeys and extended stays on planet surfaces. For this reason, it is of a great importance to develop a Regenerative Life Support System that enables the crew to be, to a very large extent, metabolic consumables self-sufficient. In this context, the European Space Agency, associated with a scientific and engineering con-sortium, initiated in 1989 the Micro-Ecological Life Support System Alternative (MELiSSA) project. This concept, inspired on a terrestrial ecosystem (i.e. a lake), comprises five intercon-nected compartments inhabited by micro-organisms and higher-plants aiming to produce food, fresh water, and oxygen from organic waste, carbon dioxide, and minerals. Given the important role of the higher-plant compartment for the consumption of carbon dioxide and the production of oxygen, potable water, and food, it was decided to study the microbial communities present in the root zone of the plants (i.e. the rhizosphere), and their synergistic and antagonistic influences in the plant growth. This understanding is important for later investigations concerning the technology involved in the higher plant compartment, since the final goal is to integrate this compartment inside the MELiSSA loop and to guarantee a healthy and controlled environment for the plants to grow under reduced-gravity conditions. To perform a preliminary assessment of the microbial populations of the root zone, lettuces were grown in a hydroponic system and their growth was characterized in terms of nutrient uptake, plant diameter, and plant wet and dry weights. In parallel, the microbial population, bacteria and fungi, present in the hydroponic medium and also inside and outside the roots were analyzed in terms of quantity and nature. The goal of this presentation is to give a preliminary review in the plant root zone of the micro-organisms communities and as well their proportions

  16. Relative Bioavailability and Bioaccessability and Speciation of ...

    EPA Pesticide Factsheets

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bio¬availability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R

  17. ZnCl 2- and NH 4Cl-hydroponics gel electrolytes for zinc-carbon batteries

    NASA Astrophysics Data System (ADS)

    Khalid, N. H.; Ismail, Y. M. Baba; Mohamad, A. A.

    Absorbency testing is used to determine the percentage of ZnCl 2 or NH 4Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl 2 or NH 4Cl solution decreases with increasing solution concentration. The conductivity of ZnCl 2- and NH 4Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm -1 at 3 M ZnCl 2 and 7 M NH 4Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 Ω, a maximum power density of 12.7 and 12.2 mW cm -2, and a short-circuit current density of 29.1 and 33.9 mA cm -2 for ZnCl 2- and NH 4Cl-HPG electrolytes, respectively.

  18. Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency.

    PubMed

    Cheyns, Karlien; Peeters, Sofie; Delcourt, Dorien; Smolders, Erik

    2012-05-01

    This study was set up to relate lead (Pb) bioavailability with its toxicity to plants in soils. Tomato and barley seedlings were grown in six different PbCl(2) spiked soils (pH: 4.7-7.4; eCEC: 4.2-41.7 cmol(c)/kg). Soils were leached and pH corrected after spiking to exclude confounding factors. Plant growth was halved at 1600-6500 mg Pb/kg soil for tomato and at 1900-8300 mg Pb/kg soil for barley. These soil Pb threshold were unrelated to soil pH, organic carbon, texture or eCEC and neither soil solution Pb nor Pb(2+) ion activity adequately explained Pb toxicity among soils. Shoot phosphorus (P) concentrations significantly decreased with increasing soil Pb concentrations. Tomato grown in hydroponics at either varying P supply or at increasing Pb (equal initial P) illustrated that shoot P explained growth response in both scenarios. The results suggest that Pb toxicity is partially related to Pb induced P deficiency, likely due to lead phosphate precipitation.

  19. Uptake and translocation of plutonium in two plant species using hydroponics.

    PubMed

    Lee, J H; Hossner, L R; Attrep, M; Kung, K S

    2002-01-01

    This study presents determinations of the uptake and translocation of Pu in Indian mustard (Brassica juncea) and sunflower (Helianthus annuus) from Pu contaminated solution media. The initial activity levels of Pu were 18.50 and 37.00 Bq ml(-1), for Pu-nitrate [239Pu(NO3)4] and for Pu-citrate [239Pu(C6H5O7)+] in nutrient solution. Plutonium-diethylenetriaminepentaacetic acid (DTPA: [239Pu-C14H23O10N3] solution was prepared by adding 0, 5, 10, and 50 microg of DTPA ml(-1) with 239Pu(NO3)4 in nutrient solution. Concentration ratios (CR, Pu concentration in dry plant material/Pu concentration in nutrient solution) and transport indices (Tl, Pu content in the shoot/Pu content in the whole plant) were calculated to evaluate Pu uptake and translocation. All experiments were conducted in hydroponic solution in an environmental growth chamber. Plutonium concentration in the plant tissue was increased with increased Pu contamination. Plant tissue Pu concentration for Pu-nitrate and Pu-citrate application was not correlated and may be dependent on plant species. For plants receiving Pu-DTPA, the Pu concentration was increased in the shoots but decreased in the roots resulting in a negative correlation between the Pu concentrations in the plant shoots and roots. The Pu concentration in shoots of Indian mustard was increased for application rates up to 10 microg DTPA ml(-1) and up to 5 microg DTPA ml(-1) for sunflower. Similar trends were observed for the CR of plants compared to the Pu concentration in the shoots and roots, whereas the Tl was increased with increasing DTPA concentration. Plutonium in shoots of Indian mustard was up to 10 times higher than that in shoots of sunflower. The Pu concentration in the apparent free space (AFS) of plant root tissue of sunflower was more affected by concentration of DTPA than that of Indian mustard.

  20. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    PubMed

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.

  1. Responses of Szarvasi-1 energy grass to sewage sludge treatments in hydroponics.

    PubMed

    Rév, Ambrus; Tóth, Brigitta; Solti, Ádám; Sipos, Gyula; Fodor, Ferenc

    2017-09-01

    Sewage sludge (SS) originating from communal wastewater is a hazardous material but have a potentially great nutritive value. Its disposal after treatment in agricultural lands can be a very economical and safe way of utilization once fast growing, high biomass, perennial plants of renewable energy production are cultivated. Szarvasi-1 energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1), a good candidate for this application, was grown in hydroponics in order to assess its metal accumulation and tolerance under increasing SS amendments. The applied SS had a composition characteristic to SS from communal wastes and did not contain any toxic heavy metal contamination from industrial sludge in high concentration. Toxic effects was assessed in quarter strength Hoagland nutrient solution and only the two highest doses (12.5-18.75 g dm(-3)) caused decreases in root growth, shoot water content and length and stomatal conductance whereas shoot growth, root water content, chlorophyll concentration and the maximal quantum efficiency of photosystem II was unaffected. Shoot K, Ca, Mg, Mn, Zn and Cu content decreased but Na and Ni increased in the shoot compared to the unamended control. The nutritive effect was tested in 1/40 strength Hoagland solution and only the highest dose (12.5 g dm(-3)) decreased root growth and stomatal conductance significantly while lower doses (1.25-6.25 g dm(-3)) had a stimulative effect. Shoot K, Na, Fe and Ni increased and Ca, Mg, Mn, Zn and Cu decreased in this treatment. It was concluded that SS with low heavy metal content can be a potentially good fertilizer for high biomass non-food crops such as Szarvasi-1 energy grass. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Hydroponic root mats for wastewater treatment-a review.

    PubMed

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  3. A small scale hydroponics wastewater treatment system under Swedish conditions.

    PubMed

    Norström, A; Larsdotter, K; Gumaelius, L; la Cour Jansen, J; Dalhammar, G

    2003-01-01

    A treatment plant using conventional biological treatment combined with hydroponics and microalgae is constructed in a greenhouse in the area of Stockholm, Sweden. The treatment plant is built for research purposes and presently treats 0.559 m3 of domestic wastewater from the surrounding area per day. The system uses anoxic pre-denitrification followed by aerobic tanks for nitrification and plant growth. A microalgal step further reduces phosphorus, and a final sand filter polishes the water. During a three week period in July 2002 the treatment capacity of this system was evaluated with respect to removal of organic matter, phosphorus and nitrogen. 90% COD removal was obtained early in the system. Nitrification and denitrification was well established with total nitrogen reduction of 72%. Phosphorus was removed by 47% in the process. However, higher phosphorus removal values are expected as the microalgal step will be further developed. The results show that acceptable treatment can be achieved using this kind of system. Further optimisation of the system will lead to clean water as well as valuable plants to be harvested from the nutrient rich wastewater.

  4. Effects of silicon and copper on bamboo grown hydroponically.

    PubMed

    Collin, Blanche; Doelsch, Emmanuel; Keller, Catherine; Panfili, Frédéric; Meunier, Jean-Dominique

    2013-09-01

    Due to its high growth rate and biomass production, bamboo has recently been proven to be useful in wastewater treatment. Bamboo accumulates high silicon (Si) levels in its tissues, which may improve its development and tolerance to metal toxicity. This study investigates the effect of Si supplementation on bamboo growth and copper (Cu) sensitivity. An 8-month hydroponic culture of bamboo Gigantocloa sp. "Malay Dwarf " was performed. The bamboo plants were first submitted to a range of Si supplementation (0-1.5 mM). After 6 months, a potentially toxic Cu concentration of 1.5 μM Cu(2+) was added. Contrary to many studies on other plants, bamboo growth did not depend on Si levels even though it absorbed Si up to 218 mg g(-1) in leaves. The absorption of Cu by bamboo plants was not altered by the Si supplementation; Cu accumulated mainly in roots (131 mg kg(-1)), but was also found in leaves (16.6 mg kg(-1)) and stems (9.8 mg kg(-1)). Copper addition did not induce any toxicity symptoms. The different Cu and Si absorption mechanisms may partially explain why Si did not influence Cu repartition and concentration in bamboo. Given the high biomass and its absorption capacity, bamboo could potentially tolerate and accumulate high Cu concentrations making this plant useful for wastewater treatment.

  5. Zinc bioavailability in pork loin

    SciTech Connect

    Hortin, A.E.; Bechtel, P.J. Baker, D.H. )

    1991-03-15

    Pork loins were uniformly trimmed and divided into three groups: raw, roasted and braised. Following cooking, the loins were freeze dried and then ground to a fine granular consistency. Zinc levels of 51, 60 and 63 mg/kg dry matter (DM) were contained in the raw, roasted and braised products, respectively. The chick bioavailability (BV) assay employed a Zn-deficient soy isolate basal diet that was supplemented with 0, 5 or 10 mg Zn/kg from ZnSO{sub 4}{center dot}H{sub 2}O to produce a standard straight-line response in tibia Zn as a function of supplemental Zn intake. Experimental Zn sources were also added to the basal diet to provide 10 mg Zn/kg. Standard curve methodology indicated that Zn BV was unaffected by cooking. Roasted pork lion had a Zn BV of 184% relative to ZnSO{sub 4}{center dot}H{sub 2}O. Addition of 0.40% L-cysteine to the diet containing 10 mg Zn/kg from ZnSO{sub 4}{center dot}H{sub 2}O increased Zn BV to 175%. Results with histidine as a Zn-enhancing factor were variable. It is apparent that pork loin is an excellent source of bioavailable Zn, and SH-containing compounds such as cysteine and glutathione that are present in meat may contribute to enhanced gut absorption of meat-source Zn.

  6. Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process.

    PubMed

    Yang, Lei; Sun, Zhen; Zu, Yuangang; Zhao, Chunjian; Sun, Xiaowei; Zhang, Zhonghua; Zhang, Lin

    2012-05-01

    The objective of the study was to prepare ursolic acid (UA) nanoparticles using the supercritical anti-solvent (SAS) process and evaluate its physicochemical properties and oral bioavailability. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during SAS process, were investigated. Particles with mean particle size ranging from 139.2±19.7 to 1039.8±65.2nm were obtained by varying the process parameters. The UA was characterised by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, thermal gravimetric analysis, specific surface area, dissolution test and bioavailability test. It was concluded that physicochemical properties and bioavailability of crystalline UA could be improved by physical modification, such as particle size reduction and generation of amorphous state using SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and bioavailability of UA.

  7. Hydroponic cultivation improves the nutritional quality of soybean and its products.

    PubMed

    Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo

    2012-01-11

    Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.

  8. Bioavailability and biodistribution of nanodelivered lutein

    USDA-ARS?s Scientific Manuscript database

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein ...

  9. The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability.

    PubMed

    McClements, David Julian; Li, Fang; Xiao, Hang

    2015-01-01

    The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*).

  10. [Bioavailability and factors influencing its rate].

    PubMed

    Vraníková, Barbora; Gajdziok, Jan

    2015-01-01

    Bioavailability can be defined as the rate and range of active ingredient absorption, when it becomes available in the systemic circulation or at the desired site of drug action, respectively. Drug bioavailability after oral administration is affected by anumber of different factors, including physicochemical properties of the drug, physiological aspects, the type of dosage form, food intake, biorhythms, and intra- and interindividual variability of the human population. This article is the first from the series dealing with the bioavailability and methods leading to its improvement. The aim of the present paper is to provide an overview of aspects influencing the rate of bioavailability after oral administration of the active ingredient. Subsequentarticles will provide detailed descriptions of methods used for dug bioavailability improvement, which are here only summarized.

  11. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions.

    PubMed

    Alatorre-Cobos, Fulgencio; Calderón-Vázquez, Carlos; Ibarra-Laclette, Enrique; Yong-Villalobos, Lenin; Pérez-Torres, Claudia-Anahí; Oropeza-Aburto, Araceli; Méndez-Bravo, Alfonso; González-Morales, Sandra-Isabel; Gutiérrez-Alanís, Dolores; Chacón-López, Alejandra; Peña-Ocaña, Betsy-Anaid; Herrera-Estrella, Luis

    2014-03-21

    Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.

  12. Enhancing bioavailability through thermal processing.

    PubMed

    Keen, Justin M; McGinity, James W; Williams, Robert O

    2013-06-25

    Formulation intervention, through the application of processing technologies, is a requirement for enabling therapy for the vast majority of drugs. Without these enabling technologies, poorly soluble drugs may not achieve therapeutic concentrations in the blood or tissue of interest. Conversely, freely soluble and/or rapidly cleared drugs may require frequent dosing resulting in highly cyclic tissue concentrations. During the last several years, thermal processing techniques, such as melt mixing, spray congealing, sintering, and hot-melt extrusion, have evolved rapidly and several new technologies, specifically dry powder coating, injection molding, and KinetiSol(®) dispersing, have been adapted to the pharmaceutical arena. An examination of the contemporary literature is reported in this review to summarize the variety and utility of thermal processing technologies employed for solubility enhancement and controlled release. In particular, the impact of these processing technologies on bioavailability, considered in terms of both rate and extent, has been reviewed.

  13. Automated Liquid-Level Control of a Nutrient Reservoir for a Hydroponic System

    NASA Technical Reports Server (NTRS)

    Smith, Boris; Asumadu, Johnson A.; Dogan, Numan S.

    1997-01-01

    A microprocessor-based system for control of the liquid level of a nutrient reservoir for a plant hydroponic growing system has been developed. The system uses an ultrasonic transducer to sense the liquid level or height. A National Instruments' Multifunction Analog and Digital Input/Output PC Kit includes NI-DAQ DOS/Windows driver software for an IBM 486 personal computer. A Labview Full Development system for Windows is the graphical programming system being used. The system allows liquid level control to within 0.1 cm for all levels tried between 8 and 36 cm in the hydroponic system application. The detailed algorithms have been developed and a fully automated microprocessor based nutrient replenishment system has been described for this hydroponic system.

  14. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    PubMed

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  15. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    PubMed Central

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J.; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue. PMID:26734044

  16. A hydroponic system for growing gnotobiotic vs. sterile plants to study phytoremediation processes.

    PubMed

    Kurzbaum, E; Kirzhner, F; Armon, R

    2014-01-01

    In some phytoremediation studies it is desirable to separate and define the specific contribution of plants and root-colonizing bacteria towards contaminant removal. Separating the influence of plants and associated bacteria is a difficult task for soil root environments. Growing plants hydroponically provides more control over the biological factors in contaminant removal. In this study, a hydroponic system was designed to evaluate the role of sterile plant roots, rhizodeposition, and root-associated bacteria in the removal of a model contaminant, phenol. A strain of Pseudomonas pseudoalcaligenes that grows on phenol was inoculated onto plant roots. The introduced biofilm persisted in the root zone and promoted phenol removal over non-augmented controls. These findings indicate that this hydroponic system can be a valuable tool for phytoremediation studies that investigate the effects of biotic and abiotic factors on pollution remediation.

  17. Relative oral bioavailability of morphine and naltrexone derived from crushed morphine sulfate and naltrexone hydrochloride extended-release capsules versus intact product and versus naltrexone solution: a single-dose, randomized-sequence, open-label, three-way crossover trial in healthy volunteers.

    PubMed

    Johnson, Franklin K; Stark, Jeffrey G; Bieberdorf, Frederick A; Stauffer, Joe

    2010-06-01

    Morphine sulfate/sequestered naltrexone hydrochloride (HCl) (MS-sNT) extended-release fixed-dose combination capsules, approved by the US Food and Drug Administration (FDA) in August 2009 for chronic moderate to severe pain, contain extended-release morphine pellets with a sequestered core of the opioid antagonist naltrexone. MS-sNT was designed so that if the product is tampered with by crushing, the naltrexone becomes bioavailable to mitigate morphine-induced subjective effects, rendering the product less attractive for tampering. The primary aim of this study was to compare the oral bioavailability of naltrexone and its metabolite 6-beta-naltrexol, derived from crushed pellets from MS-sNT capsules, to naltrexone solution. This study also assessed the relative bioavailability of morphine from crushed pellets from MS-sNT capsules and that from the whole, intact product. This single-dose, randomized-sequence, open-label, 3-period, 3-treatment crossover trial was conducted in healthy volunteers. Adults admitted to the study center underwent a 10-hour overnight fast before study drug administration. Each subject received all 3 of the following treatments, 1 per session, separated by a 14-day washout: tampered pellets (crushed for >or=2 minutes with a mortar and pestle) from a 60-mg MS-sNT capsule (60 mg morphine/2.4 mg naltrexone); 60-mg whole, intact MS-sNT capsule; and oral naltrexone HCl (2.4 mg) solution. Plasma concentrations of naltrexone and 6-beta-naltrexol were measured 0 to 168 hours after administration. Morphine pharmaco-kinetics of crushed and whole pellets were determined 0 to 72 hours after administration. The analysis of relative bioavailability was based on conventional FDA criteria for assuming bioequivalence; that is, 90% CIs for ratios of geometric means (natural logarithm [In]-transformed C(max) and AUC) fell within the range of 80% to 125%. Subjects underwent physical examinations, clinical laboratory tests, and ECG at screening and study

  18. Gastroretentive Accordion Pill: Enhancement of riboflavin bioavailability in humans.

    PubMed

    Kagan, Leonid; Lapidot, Noa; Afargan, Michel; Kirmayer, David; Moor, Eytan; Mardor, Yael; Friedman, Michael; Hoffman, Amnon

    2006-07-20

    The purpose of this study was to evaluate the ability of the Accordion Pill (AP), a novel controlled release gastroretentive unfolding dosage form (DF), to increase the bioavailability of riboflavin (RF) in humans. Three formulations containing 75 mg of RF and differing in release rate (immediate release (IR) capsule, AP#1, and AP#2) were administered with a low-calorie meal. Gastric residence time (GRT) of the AP was assessed by magnetic resonance imaging. Serial blood and urine samples were taken and assayed for RF. The AP demonstrated prolonged (up to 10.5 h) GRT in humans. Significant elevation in RF bioavailability (209+/-37%, mean+/-S.E.) was achieved by the AP#1 in comparison to the IR capsule. A correlation was established between the in-vitro release rates from DF and bioavailability of RF in humans, and it was modeled taking into account the saturable nature of RF absorption transport and its narrow absorption window (NAW) in the upper gastro-intestinal tract. It is anticipated that the AP will provide a valuable pharmaceutical solution to enhance therapy with NAW drugs.

  19. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics.

    PubMed

    Rizwan, M; Meunier, J-D; Davidian, J-C; Pokrovsky, O S; Bovet, N; Keller, C

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 μM). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 μM Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.

  20. Stimulation of nodulation in field peas (Pisum sativum) by low concentrations of ammonium in hydroponic culture

    NASA Technical Reports Server (NTRS)

    Waterer, J. G.; Vessey, J. K.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (< 1.0 mM) on nodulation are unknown. In the present experiments we examine the effects of static concentrations of NH4+ at 0, 0.1 and 0.5 mM in flowing, hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalof AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.

  1. Uptake and translocation of cesium-133 in napiergrass (Pennisetum purpureum Schum.) under hydroponic conditions.

    PubMed

    Kang, Dong Jin; Seo, Young-Jin; Saito, Tsukasa; Suzuki, Hiroyuki; Ishii, Yasuyuki

    2012-08-01

    The present study reports the potential remediation of cesium (Cs) using napiergrass, which produces the largest biomass among the herbaceous plants in hydroponic culture containing stable Cs (Cs-133) at concentrations of 50, 150, 300, 1000, and 3,000 μM using cesium chloride (CsCl), with 0 μM Cs as a control concentration. Plant height was significantly decreased in higher Cs-treated conditions (300, 1000, and 3000 μM Cs) at 7 weeks after treatment (WAT), but tiller numbers tended to increase compared with the control plant. No significant difference was observed in the aboveground dry matter weight in all Cs treatments throughout the study period. Cs content in the roots, leaf blades, and leaf sheaths clearly increased with increasing Cs concentration in the solutions. Cs content in the aboveground parts (leaf blades and leaf sheaths) was consistently higher than in the roots at concentration of 3,000 μM. Total Cs contents in the aboveground parts were 6305 and 26,365 mg kg(-1) at 7WAT in 1000- and 3000-μM Cs treatments, respectively. Mean values of transfer factors (TFs) in the aboveground parts were 50 μM=0.78, 150 μM=1.02, 300 μM=0.86, 1,000 μM=0.68, and 3,000 μM=0.94, respectively at 7WAT. Due to its high Cs content and high TF in the aboveground parts, napiergrass may be a candidate plant with high potential for phytoremediation of Cs from Cs-137-contaminated soil.

  2. Levels of Organic Compounds, Number of Microorganisms and Cadmium Accumulation in Festuca ovina Hydroponic Culture.

    PubMed

    Majewska, Małgorzata; Słomka, Anna

    2016-01-01

    Understanding the microbiological, biochemical and physiological aspects of phytoremediation of soil and water environments polluted to different degrees with heavy metals has very important theoretical and practical implications. In this study, a comparison was made between total cadmium concentration in root and shoot tissues as well as concentrations of particular fractions of Cd immobilized by roots of Festuca ovina (Sheep’s fescue) hydroponically cultivated in nutrient solutions supplemented with 1 μg Cd ml(–1) and those cultivated at 10 μg Cd ml(–1). After three weeks of F. ovina cultivation, the number of bacterial CFU and the amounts of organic chelators, siderophores, proteins and reducing sugars in the growth medium and on the root surface were higher at 10 than at 1 μg Cd ml(–1). The grass also reacted to the high Cd concentration by a decrease in plant growth and dehydrogenase activity in root tissues. The concentration of Cd determined in fractions bound with different strength in roots was significantly dependent on Cd concentration in the growth medium. When the plants were grown at 1 μg Cd ml(–1), 9% of the immobilized cadmium was loosely bound to the root surface, 20% was exchangeable adsorbed, and 28% was bound by chelation; at 10 μg Cd ml(–1), the respective values were 12%, 25%, and 20%. About 43% of the immobilized cadmium remained in roots after sequential extraction, and bioaccumulation factors in shoots had the same values independently of Cd concentration. At both Cd concentrations, the cadmium translocation index for F. ovina was low (< 1), which is why this grass can be recommended for phytostabilization of the metal under study.

  3. Stimulation of nodulation in field peas (Pisum sativum) by low concentrations of ammonium in hydroponic culture

    NASA Technical Reports Server (NTRS)

    Waterer, J. G.; Vessey, J. K.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (< 1.0 mM) on nodulation are unknown. In the present experiments we examine the effects of static concentrations of NH4+ at 0, 0.1 and 0.5 mM in flowing, hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalof AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.

  4. Effect of bacterial root symbiosis and urea as source of nitrogen on performance of soybean plants grown hydroponically for Bioregenerative Life Support Systems (BLSSs).

    PubMed

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A; Barbieri, Giancarlo; De Pascale, Stefania

    2015-01-01

    Soybean is traditionally grown in soil, where root symbiosis with Bradyrhizobium japonicum can supply nitrogen (N), by means of bacterial fixation of atmospheric N2. Nitrogen fertilizers inhibit N-fixing bacteria. However, urea is profitably used in soybean cultivation in soil, where urease enzymes of telluric microbes catalyze the hydrolysis to ammonium, which has a lighter inhibitory effect compared to nitrate. Previous researches demonstrated that soybean can be grown hydroponically with recirculating complete nitrate-based nutrient solutions. In Space, urea derived from crew urine could be used as N source, with positive effects in resource procurement and waste recycling. However, whether the plants are able to use urea as the sole source of N and its effect on root symbiosis with B. japonicum is still unclear in hydroponics. We compared the effect of two N sources, nitrate and urea, on plant growth and physiology, and seed yield and quality of soybean grown in closed-loop Nutrient Film Technique (NFT) in growth chamber, with or without inoculation with B. japonicum. Urea limited plant growth and seed yield compared to nitrate by determining nutrient deficiency, due to its low utilization efficiency in the early developmental stages, and reduced nutrients uptake (K, Ca, and Mg) throughout the whole growing cycle. Root inoculation with B. japonicum did not improve plant performance, regardless of the N source. Specifically, nodulation increased under fertigation with urea compared to nitrate, but this effect did not result in higher leaf N content and better biomass and seed production. Urea was not suitable as sole N source for soybean in closed-loop NFT. However, the ability to use urea increased from young to adult plants, suggesting the possibility to apply it during reproductive phase or in combination with nitrate in earlier developmental stages. Root symbiosis did not contribute significantly to N nutrition and did not enhance the plant ability to use

  5. Effect of bacterial root symbiosis and urea as source of nitrogen on performance of soybean plants grown hydroponically for Bioregenerative Life Support Systems (BLSSs)

    PubMed Central

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2015-01-01

    Soybean is traditionally grown in soil, where root symbiosis with Bradyrhizobium japonicum can supply nitrogen (N), by means of bacterial fixation of atmospheric N2. Nitrogen fertilizers inhibit N-fixing bacteria. However, urea is profitably used in soybean cultivation in soil, where urease enzymes of telluric microbes catalyze the hydrolysis to ammonium, which has a lighter inhibitory effect compared to nitrate. Previous researches demonstrated that soybean can be grown hydroponically with recirculating complete nitrate-based nutrient solutions. In Space, urea derived from crew urine could be used as N source, with positive effects in resource procurement and waste recycling. However, whether the plants are able to use urea as the sole source of N and its effect on root symbiosis with B. japonicum is still unclear in hydroponics. We compared the effect of two N sources, nitrate and urea, on plant growth and physiology, and seed yield and quality of soybean grown in closed-loop Nutrient Film Technique (NFT) in growth chamber, with or without inoculation with B. japonicum. Urea limited plant growth and seed yield compared to nitrate by determining nutrient deficiency, due to its low utilization efficiency in the early developmental stages, and reduced nutrients uptake (K, Ca, and Mg) throughout the whole growing cycle. Root inoculation with B. japonicum did not improve plant performance, regardless of the N source. Specifically, nodulation increased under fertigation with urea compared to nitrate, but this effect did not result in higher leaf N content and better biomass and seed production. Urea was not suitable as sole N source for soybean in closed-loop NFT. However, the ability to use urea increased from young to adult plants, suggesting the possibility to apply it during reproductive phase or in combination with nitrate in earlier developmental stages. Root symbiosis did not contribute significantly to N nutrition and did not enhance the plant ability to use

  6. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells

    NASA Astrophysics Data System (ADS)

    Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K.

    The viability of hydroponics gel as a new alkaline electrolyte gelling agent is investigated. Zinc-air cells are fabricated employing 12 wt.% KOH electrolyte immobilised with hydroponics gel. The cells are discharged at constant currents of 5, 50 and 100 mA. XRD and SEM analysis of the anode plates after discharge show that the failure mode is due to the formation of zinc oxide insulating layers and not due to any side reactions between the gel and the plate or the electrolyte.

  7. Rapid and sensitive Nitrosomonas europaea biosensor assay for quantification of bioavailable ammonium sensu strictu in soil.

    PubMed

    Nguyen, Minh Dong; Risgaard-Petersen, Nils; Sørensen, Jan; Brandt, Kristian K

    2011-02-01

    Knowledge on bioavailable ammonium sensu strictu (i.e., immediately available for cellular uptake) in soil is required to understand nutrient uptake processes in microorganisms and thus of vital importance for plant production. We here present a novel ammonium biosensor approach based on the lithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea transformed with a luxAB sensor plasmid. Bioluminescence-based ammonium detection was achieved within 10 min with a quantification limit in liquid samples of ∼20 μM and a linear response range up to 400 μM. Biosensor and conventional chemical quantification of ammonium in soil solutions agreed well across a range of sample and assay conditions. The biosensor was subsequently applied for a solid phase-contact assay allowing for direct interaction of biosensor cells with soil particle-associated (i.e., exchangeable plus fixed) ammonium. The assay successfully quantified bioavailable ammonium even in unfertilized soil and demonstrated markedly higher ratios of bioavailable ammonium to water- or 2 M KCl-exchangeable ammonium in anoxic soil than in corresponding oxic soil. Particle-associated ammonium contributed by at least 74% and 93% of the total bioavailable pool in oxic and anoxic soil, respectively. The N. europaea biosensor should have broad relevance for environmental monitoring of bioavailable ammonium and processes depending on ammonium bioavailability.

  8. Strategies to Overcome Heparins’ Low Oral Bioavailability

    PubMed Central

    Neves, Ana Rita; Correia-da-Silva, Marta; Sousa, Emília; Pinto, Madalena

    2016-01-01

    Even after a century, heparin is still the most effective anticoagulant available with few side effects. The poor oral absorption of heparins triggered the search for strategies to achieve oral bioavailability since this route has evident advantages over parenteral administration. Several approaches emerged, such as conjugation of heparins with bile acids and lipids, formulation with penetration enhancers, and encapsulation of heparins in micro and nanoparticles. Some of these strategies appear to have potential as good delivery systems to overcome heparin’s low oral bioavailability. Nevertheless, none have reached the market yet. Overall, this review aims to provide insights regarding the oral bioavailability of heparin. PMID:27367704

  9. Use of anemic piglet to assess bioavailability of iron from oral iron preparations.

    PubMed

    Intoccia, A P; Walkenstein, S S; Wittendorf, R W; Hoppe, R C; Free, S M

    1977-01-01

    Except for methods using long-lived iron isotopes, there are no reliable means for assessing the bioavilability of iron from oral preparations in human subjects. Use of the anemic piglet as an alternative means was studied. When piglets were made anemic on a commercial milk diet and then dosed with solutions of 1, 2, and 5 mg/kg of ferrous sulfate/day, a dose-related recovery of hematocrit and hemoglobin levels resulted. The most sensitive dose range for use in a bioavailability study of iron was between 1 and 2 mg of iron/kg/day when using these parameters. A study carried out using this method indicated that the iron from a delayed-release capsule and from a ferrous sulfate solution was equally bioavailable. Hemoglobin and hematocrit recovery rates of the anemic piglet were shown to be reliable and sensitive indicators of the bioavailability of iron from various iron dosage forms.

  10. Biomass accumulation in hydroponically grown sweetpotato in a controlled environment: a preliminary study

    NASA Technical Reports Server (NTRS)

    Hill, J.; Douglas, D.; David, P.; Mortley, D.; Trotman, A.; Bonsi, C.

    1996-01-01

    In the development of a plant growth model, the assumptions made and the general equations representing an understanding of plant growth are gradually refined as more information is acquired through experimentation. One such experiment that contributed to sweetpotato model development consisted of measuring biomass accumulation of sweetpotato grown in hydroponic culture in a plant growth chamber. Plants were started from fifteen centimeter long 'TU-82-155' sweetpotato vine cuttings spaced 25 cm apart in each of 18 rectangular growing channels (0.15 by 0.15 by 1.2m) in a system designed to use the nutrient film technique (NFT). Each channel contained four plants. The 3.5m by 5.2m plant growth chamber environmental parameters included an 18h photoperiod, 500 micromoles m-2 s-1 of photosynthetic photon flux (PPF), and a diurnal light/dark temperature of 28 degrees C/22 degrees C. The relative humidity was 80 +/- 5% and the CO2 partial pressure was ambient (350 ppm). The nutrient solution contained in 30L reservoirs was a modified half Hoagland's solution with a 1:2.4 N:K ratio and a pH of 6.2. Solution replenishment occurred when the electrical conductivity (EC) level dropped below 1050. Plants were harvested at 15 days after planting (DAP) and weekly thereafter until day 134. By 57 DAP, stems and fibrous roots had acquired 90% of their total dry biomass, while leaves had reached 84% of their maximum dry biomass. Beginning at 64 DAP dry biomass accumulation in the storage roots dominated the increase in dry biomass for the plants. Dry weight of storage roots at 120 DAP was 165 g/plant or 1.1 kg/m2. Resulting growth curves were consistent with the physiological processes occurring in the plant. Results from this study will be incorporated in a plant growth model for use in conjunction with controlled life support systems for long-term manned space missions.

  11. Biomass accumulation in hydroponically grown sweetpotato in a controlled environment: a preliminary study

    NASA Technical Reports Server (NTRS)

    Hill, J.; Douglas, D.; David, P.; Mortley, D.; Trotman, A.; Bonsi, C.

    1996-01-01

    In the development of a plant growth model, the assumptions made and the general equations representing an understanding of plant growth are gradually refined as more information is acquired through experimentation. One such experiment that contributed to sweetpotato model development consisted of measuring biomass accumulation of sweetpotato grown in hydroponic culture in a plant growth chamber. Plants were started from fifteen centimeter long 'TU-82-155' sweetpotato vine cuttings spaced 25 cm apart in each of 18 rectangular growing channels (0.15 by 0.15 by 1.2m) in a system designed to use the nutrient film technique (NFT). Each channel contained four plants. The 3.5m by 5.2m plant growth chamber environmental parameters included an 18h photoperiod, 500 micromoles m-2 s-1 of photosynthetic photon flux (PPF), and a diurnal light/dark temperature of 28 degrees C/22 degrees C. The relative humidity was 80 +/- 5% and the CO2 partial pressure was ambient (350 ppm). The nutrient solution contained in 30L reservoirs was a modified half Hoagland's solution with a 1:2.4 N:K ratio and a pH of 6.2. Solution replenishment occurred when the electrical conductivity (EC) level dropped below 1050. Plants were harvested at 15 days after planting (DAP) and weekly thereafter until day 134. By 57 DAP, stems and fibrous roots had acquired 90% of their total dry biomass, while leaves had reached 84% of their maximum dry biomass. Beginning at 64 DAP dry biomass accumulation in the storage roots dominated the increase in dry biomass for the plants. Dry weight of storage roots at 120 DAP was 165 g/plant or 1.1 kg/m2. Resulting growth curves were consistent with the physiological processes occurring in the plant. Results from this study will be incorporated in a plant growth model for use in conjunction with controlled life support systems for long-term manned space missions.

  12. Biomass accumulation in hydroponically grown sweetpotato in a controlled environment: a preliminary study.

    PubMed

    Hill, J; Douglas, D; David, P; Mortley, D; Trotman, A; Bonsi, C

    1996-12-01

    In the development of a plant growth model, the assumptions made and the general equations representing an understanding of plant growth are gradually refined as more information is acquired through experimentation. One such experiment that contributed to sweetpotato model development consisted of measuring biomass accumulation of sweetpotato grown in hydroponic culture in a plant growth chamber. Plants were started from fifteen centimeter long 'TU-82-155' sweetpotato vine cuttings spaced 25 cm apart in each of 18 rectangular growing channels (0.15 by 0.15 by 1.2m) in a system designed to use the nutrient film technique (NFT). Each channel contained four plants. The 3.5m by 5.2m plant growth chamber environmental parameters included an 18h photoperiod, 500 micromoles m-2 s-1 of photosynthetic photon flux (PPF), and a diurnal light/dark temperature of 28 degrees C/22 degrees C. The relative humidity was 80 +/- 5% and the CO2 partial pressure was ambient (350 ppm). The nutrient solution contained in 30L reservoirs was a modified half Hoagland's solution with a 1:2.4 N:K ratio and a pH of 6.2. Solution replenishment occurred when the electrical conductivity (EC) level dropped below 1050. Plants were harvested at 15 days after planting (DAP) and weekly thereafter until day 134. By 57 DAP, stems and fibrous roots had acquired 90% of their total dry biomass, while leaves had reached 84% of their maximum dry biomass. Beginning at 64 DAP dry biomass accumulation in the storage roots dominated the increase in dry biomass for the plants. Dry weight of storage roots at 120 DAP was 165 g/plant or 1.1 kg/m2. Resulting growth curves were consistent with the physiological processes occurring in the plant. Results from this study will be incorporated in a plant growth model for use in conjunction with controlled life support systems for long-term manned space missions.

  13. Interactions between active pharmaceutical ingredients and excipients affecting bioavailability: impact on bioequivalence.

    PubMed

    García-Arieta, Alfredo

    2014-12-18

    The aim of the present paper is to illustrate the impact that excipients may have on the bioavailability of drugs and to review existing US-FDA, WHO and EMA regulatory guidelines on this topic. The first examples illustrate that small amounts of sorbitol (7, 50 or 60mg) affect the bioavailability of risperidone, a class I drug, oral solution, in contrast to what is stated in the US-FDA guidance. Another example suggests, in contrast to what is stated in the US-FDA BCS biowaivers guideline, that a small amount of sodium lauryl sulphate (SLS) (3.64mg) affects the bioavailability of risperidone tablets, although the reference product also includes SLS in an amount within the normal range for that type of dosage form. These factors are considered sufficient to ensure that excipients do not affect bioavailability according to the WHO guideline. The alternative criterion, defined in the WHO guideline and used in the FIP BCS biowaivers monographs, that asserts that excipients present in generic products of the ICH countries do not affect bioavailability if used in normal amounts, is shown to be incorrect with an example of alendronate (a class III drug) tablets, where 4mg of SLS increases bioavailability more than 5-fold, although a generic product in the USA contains SLS. Finally, another example illustrates that a 2mg difference in SLS may affect bioavailability of a generic product of a class II drug, even if SLS is contained in the comparator product, and in all cases its amount was within the normal range. Therefore, waivers of in vivo bioequivalence studies (e.g., BCS biowaivers, waivers of certain dosage forms in solution at the time of administration and variations in the excipient composition) should be assessed more cautiously.

  14. Bioavailability of heavy metals in soils: definitions and practical implementation--a critical review.

    PubMed

    Kim, Rog-Young; Yoon, Jeong-Ki; Kim, Tae-Seung; Yang, Jae E; Owens, Gary; Kim, Kwon-Rae

    2015-12-01

    Worldwide regulatory frameworks for the assessment and remediation of contaminated soils have moved towards a risk-based approach, taking contaminant bioavailability into consideration. However, there is much debate on the precise definition of bioavailability and on the standardization of methods for the measurement of bioavailability so that it can be reliably applied as a tool for risk assessment. Therefore, in this paper, we reviewed the existing definitions of heavy metal bioavailability in relation to plant uptake (phytoavailability), in order to better understand both the conceptual and operational aspects of bioavailability. The related concepts of specific and non-specific adsorption, as well as complex formation and organic ligand affinity were also intensively discussed to explain the variations of heavy metal solubility and mobility in soils. Further, the most frequently used methods to measure bioavailable metal soil fractions based on both chemical extractions and mechanistic geochemical models were reviewed. For relatively highly mobile metals (Cd, Ni, and Zn), a neutral salt solution such as 0.01 M CaCl2 or 1 M NH4NO3 was recommended, whereas a strong acid or chelating solution such as 0.43 M HNO3 or 0.05 M DTPA was recommended for strongly soil-adsorbed and less mobile metals (Cu, Cr, and Pb). While methods which assessed the free metal ion activity in the pore water such as DGT and DMT or WHAM/Model VI, NICA-Donnan model, and TBLM are advantageous for providing a more direct measure of bioavailability, few of these models have to date been properly validated.

  15. Bioavailability of cefuroxime axetil formulations.

    PubMed

    Donn, K H; James, N C; Powell, J R

    1994-06-01

    Cefuroxime axetil tablets have proved effective for the treatment of a variety of community-acquired infections. A suspension formulation has been developed for use in children. Two studies have been conducted to determine if the cefuroxime axetil formulations are bioequivalent. In the initial randomized, two-period crossover study, 24 healthy men received 250-mg doses of suspension and tablet formulations of cefuroxime axetil every 12 h after eating for seven doses. Each treatment period was separated by 4 days. Comparisons of serum and urine pharmacokinetic parameters indicated that the suspension and tablet formulations of cefuroxime axetil are not bioequivalent. Following the initial bioequivalency study, 0.1 % sodium lauryl sulfate (SLS) was added to the suspension to assure the homogeneity of the granules during the manufacturing process. In the subsequent randomized, three-period crossover study, 24 healthy men received single 250-mg doses of three cefuroxime axetil formulations: suspension without SLS, suspension with SLS, and tablet. Again each treatment period was separated by 4 days. Pharmacokinetic analyses demonstrated that while the suspension with SLS and suspension without SLS are bioequivalent, bioequivalence between the suspension with SLS and the tablet was not observed. Thus, the addition of the SLS surfactant to the suspension did not alter the bioavailability of the formulation.

  16. Hydroponics on a chip: analysis of the Fe deficient Arabidopsis thylakoid membrane proteome.

    PubMed

    Laganowsky, Arthur; Gómez, Stephen M; Whitelegge, Julian P; Nishio, John N

    2009-04-13

    The model plant Arabidopsis thaliana was used to evaluate the thylakoid membrane proteome under Fe-deficient conditions. Plants were cultivated using a novel hydroponic system, called "hydroponics on a chip", which yields highly reproducible plant tissue samples for physiological analyses, and can be easily used for in vivo stable isotope labeling. The thylakoid membrane proteome, from intact chloroplasts isolated from Fe-sufficient and Fe-deficient plants grown with hydroponics on a chip, was analyzed using liquid chromatography coupled to mass spectrometry. Intact masses of thylakoid membrane proteins were measured, many for the first time, and several proteins were identified with post-translational modifications that were altered by Fe deficiency; for example, the doubly phosphorylated form of the photosystem II oxygen evolving complex, PSBH, increased under Fe-deficiency. Increased levels of photosystem II protein subunit PSBS were detected in the Fe-deficient samples. Antioxidant enzymes, including ascorbate peroxidase and peroxiredoxin Q, were only detected in the Fe-deficient samples. We present the first biochemical evidence that the two major LHC IIb proteins (LHCB1 and LHCB2) may have significantly different functions in the thylakoid membrane. The study illustrates the utility of intact mass proteomics as an indispensable tool for functional genomics. "Hydroponics on a chip" provides the ability to grow A. thaliana under defined conditions that will be useful for systems biology.

  17. Proliferation of Escherichia coli O157:H7 in soil and hydroponic microgreen production systems

    USDA-ARS?s Scientific Manuscript database

    Radish (Raphanus sativus var. longipinnatus) microgreens were produced from seeds inoculated with Escherichia coli O157: H7 using soil substitute and hydroponic production systems. E. coli populations on the edible and inedible parts of harvested microgreen plants and in growth medium were examined....

  18. Effects of Phosphorus on Morphology of Hydroponically Grown Scaevola aemula R. Br. "Whirlwind Blue"

    USDA-ARS?s Scientific Manuscript database

    The popular hanging basket plant, fan-flower (Scaevola aemula R. Br. ‘Whirlwind Blue’), is cultivated from low phosphorus soils and requires minimal supplemental phosphorus. To accurately evaluate the effects of phosphorus on morphology, fan-flower was grown hydroponically in order to maintain conc...

  19. Removal of micro-organisms in a small-scale hydroponics wastewater treatment system.

    PubMed

    Ottoson, J; Norström, A; Dalhammar, G

    2005-01-01

    To measure the microbial removal capacity of a small-scale hydroponics wastewater treatment plant. Paired samples were taken from untreated, partly-treated and treated wastewater and analysed for faecal microbial indicators, i.e. coliforms, Escherichia coli, enterococci, Clostridium perfringens spores and somatic coliphages, by culture based methods. Escherichia coli was never detected in effluent water after >5.8-log removal. Enterococci, coliforms, spores and coliphages were removed by 4.5, 4.1, 2.3 and 2.5 log respectively. Most of the removal (60-87%) took place in the latter part of the system because of settling, normal inactivation (retention time 12.7 d) and sand filtration. Time-dependent log-linear removal was shown for spores (k = -0.17 log d(-1), r(2) = 0.99). Hydroponics wastewater treatment removed micro-organisms satisfactorily. Investigations on the microbial removal capacity of hydroponics have only been performed for bacterial indicators. In this study it has been shown that virus and (oo)cyst process indicators were removed and that hydroponics can be an alternative to conventional wastewater treatment.

  20. Animal and Environmental Impact on the Presence and Distribution of Salmonella spp. in Hydroponic Tomato Greenhouses

    USDA-ARS?s Scientific Manuscript database

    From 2003 to 2004, we studied the impact of environmental influences on the microbiological quality of a hydroponic tomato farm. The presence of Salmonella was investigated on 906 samples of tomatoes and 714 environmental samples. The farm comprised 14 greenhouses and a technologically advanced pack...

  1. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  2. Study of the microbial dynamics in the root environment of closed, hydroponic cultivation systems for tomato using phospholipid fatty acid profiles.

    PubMed

    Waechter-Kristensen, B; Khalil, S; Sundin, P; Englund, J E; Gertsson, U E; Jensen, P

    1996-12-01

    A more basic understanding of the microbial dynamics of closed, hydroponic cultivation systems is needed. We therefore initiated a study of the microbial community inhabiting the root environment, using phospholipid fatty acid (PLFA) profiles, and started to examine whether changes in the microbial population structure would result from the introduction of selected isolates of plant growth-promoting rhizobacteria (PGPR). Tomato were cultured in deep-flow systems with circulating nutrient solution. Bacteria were sampled from tomato roots at three locations, longitudinally, in the gutters of a control system and in two systems inoculated with PGPR. In the beginning of the gutters the PLFA profiles were similar in all systems, whereas the profiles differed in the gutter ends (following the direction of flow). In the control system, and in a treatment inoculated with two Gram-negative and one Gram-positive PGPR strain, the relative proportion of PLFAs characteristic to Gram-positive bacteria was highest at the end of the gutter. In a treatment inoculated only with a Gram-negative PGPR strain, the relative proportion of PLFAs characteristic of Gram-negative bacteria was highest at the end of the gutter. The results indicate a complex situation with different micro-environments distributed along the root mat. It can also be concluded that PLFA profiles may be useful tools in the study of the microbiology of closed hydroponic plant cultivation systems.

  3. [Study of bioavailability of paclitaxel after sublingual administration].

    PubMed

    Samsonia, M; Lesiovskaia, E; Ghibradze, O; Kandelaki, M

    2015-05-01

    The bioavailability of sublingual form of paclitaxel, developed in the pharmacology laboratory of pharmaceutical company - Legion "Provisus" is studied. Sublingual form of paclitaxel is an alcoholic solution of paclitaxel (1 mg/ml) with penetrator - dimethyl sulfoxide (DMSO) addition. Experiments were performed on 180 white mongrel male mice each of 25-30 g. The animals were divided into three groups. The first group served for control. 10 mg/kg of taxol was injected (once) in the lateral tail vein of the first group animals. A solution was prepared by diluting taxol with physiological sodium chloride solution until to a final concentration of paclitaxel to 1 mg/ml. The dose of 10 mg/kg (single dose) was applied under the tongue of the second group animals. Paclitaxel (substance) was extracted with dichloromethane - Taxol (by liquid-liquid extraction) for the manufacturing of a sublingual form. Unlike the second group, the third group animals took the same dose of sublingual form of paclitaxel orally (by gavage). The concentration of paclitaxel in plasma was studied by reversed-phase HPLC with spectrophotometric detection at λ = 227 nm by Woo JS et al. (2003) method. Bioavailability was determined by comparing the concentration of paclitaxel in blood after sublingual and intravenous use of Taxol (as an area under the curve of concentration versus time). It is established that the bioavailability of sublingual forms of paclitaxel was 42.4%, Cmax = 615 ± 73 ng × ml(-1) and tmax = 30-35 min. The value of the initial volume of distribution of paclitaxel (Vd = 3,14 ± 0,85 l × kg(-1)) also shows its intensive penetration to the organs and tissues. The half-life of the drug on the terminal segment of concentration-time curve was averaged 1,06 ± 0,21 h. The results create the preconditions for further preclinical study of sublingual form of paclitaxel, as the bioavailability of paclitaxel after sublingual application allows to have a systemic effect on the tumor

  4. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  5. EFFECTS OF HUMIC SUBSTANCES ON ATTENUATION OF METALS: BIOAVAILABILITY AND MOBILITY IN SOIL

    EPA Science Inventory

    Humic substances play vastly important roles in metal behavior in a wide variety of environments. They can affect the mobility and bioavailability of metals by binding and sequestration thereby decreasing the mobility of a metal. They can also transport metals into solution or ...

  6. Modeling and interpreting bioavailability of organic contaminant mixtures in subsurface environments

    NASA Astrophysics Data System (ADS)

    Haws, Nathan W.; Ball, William P.; Bouwer, Edward J.

    2006-01-01

    Bioavailability often controls the fate of organic contaminants in surface and subsurface aquatic environments. Bioavailability can be limited by sorption, mass transfer, and intrinsic biodegradation potential and can be further altered by the presence of other compounds. This paper reviews current perspectives on the processes influencing subsurface contaminant bioavailability, how these processes are modeled, and how the relative role of the various processes can be assessed through bioavailability indices. Although these processes are increasingly well understood, the use of sophisticated models and indices often are precluded by an inability to estimate the many parameters that are associated with complex models. Nonetheless, the proper representation of sorption, mass transfer, biodegradation, and co-solute effects can be critical in predicting bio-attenuation. The influence of these processes on contaminant fate is illustrated with numerical simulations for the simultaneous degradation of toluene (growth substrate) and trichloroethylene (nongrowth cometabolite) in hypothetical, aerobic, solid-water systems. The results show how the relative impacts on contaminant fate of the model's various component processes depends upon system conditions, including co-solute concentrations. Slow biodegradation rates increase the inhibition effects of a cometabolite and suppress the rate enhancement effects of a growth substrate. Irrespective of co-solute effects, contaminant fate is less sensitive to biodegradation processes in systems with strong sorption and slow desorption rates. Bioavailability indices can be used to relate these findings and to help identify appropriate modeling simplifications. In general, however, there remains a need to redefine such indices in order that bioavailability concepts can be better incorporated into site characterization, remediation design, and regulatory oversight.

  7. Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Posavec, Lidija; Bolisetty, Sreenath; Hilty, Florentine M.; Nyström, Gustav; Kohlbrecher, Joachim; Hilbe, Monika; Rossi, Antonella; Baumgartner, Jeannine; Zimmermann, Michael B.; Mezzenga, Raffaele

    2017-07-01

    Iron-deficiency anaemia (IDA) is a major global public health problem. A sustainable and cost-effective strategy to reduce IDA is iron fortification of foods, but the most bioavailable fortificants cause adverse organoleptic changes in foods. Iron nanoparticles are a promising solution in food matrices, although their tendency to oxidize and rapidly aggregate in solution severely limits their use in fortification. Amyloid fibrils are protein aggregates initially known for their association with neurodegenerative disorders, but recently described in the context of biological functions in living organisms and emerging as unique biomaterial building blocks. Here, we show an original application for these protein fibrils as efficient carriers for iron fortification. We use biodegradable amyloid fibrils from β-lactoglobulin, an inexpensive milk protein with natural reducing effects, as anti-oxidizing nanocarriers and colloidal stabilizers for iron nanoparticles. The resulting hybrid material forms a stable protein-iron colloidal dispersion that undergoes rapid dissolution and releases iron ions during acidic and enzymatic in vitro digestion. Importantly, this hybrid shows high in vivo iron bioavailability, equivalent to ferrous sulfate in haemoglobin-repletion and stable-isotope studies in rats, but with reduced organoleptic changes in foods. Feeding the rats with these hybrid materials did not result in abnormal iron accumulation in any organs, or changes in whole blood glutathione concentrations, inferring their primary safety. Therefore, these iron-amyloid fibril hybrids emerge as novel, highly effective delivery systems for iron in both solid and liquid matrices.

  8. Vanadium bioavailability in soils amended with blast furnace slag.

    PubMed

    Larsson, Maja A; Baken, Stijn; Smolders, Erik; Cubadda, Francesco; Gustafsson, Jon Petter

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg(-1)) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  9. Bioavailability of zinc from sweet potato roots and leaves

    SciTech Connect

    Baiden, H.N.; Ercanli-Huffman, F.G.

    1986-03-05

    Bioavailability of zinc from sweet potato (SP) roots and leaves were determined, by extrinsic labeling technique, in rats fed control and zinc deficient diets. Weanling male Sprague Dawley (SD) rats (60-75g) were divided into 4 groups, and fed laboratory chow, a control diet (ad libitum and pair fed) and a zinc deficient diet, for 4 weeks. Each group then was divided into at least 2 sub groups, containing 6 rats, which were intubated with one of 3 tubing solutions extrinsically labeled with /sup 65/Zn; baked sweet potato roots (BSPR), raw sweet potato leaves (RSPL) and cooked sweet potato leaves (CSPL). Five hours after intubation the rats were sacrificed, blood, liver, testes, spleen, heart, brain, thymus and lungs were removed. Feces, urine, and GI tract contents were collected and their /sup 65/Zn activity was determined in a gamma counter. In all treatment groups zinc bioavailability from BSPR, RSPL or CSPL were not significantly different. Zinc deficient rats absorbed significantly more (P < 0.01) /sup 65/Zn (86-90% of the dose), regardless of type of tubing solution than the pairfed or control animals (35-58% of the dose). The highest retention of /sup 65/Zn was found in the liver (12-20% of absorbed dose), GI tract (6-17% of absorbed dose), kidney (2-8% of absorbed dose), and blood (1-5% of absorbed dose). The lowest retention was found in the brain, heart, thymus and testes. (< 1% of absorbed dose).

  10. Nutrient uptake of ornamental plants exposed to arsenic in hydroponic solution

    USDA-ARS?s Scientific Manuscript database

    Arsenic-based agro-chemicals have contaminated considerable acreage on turf-farms, orchards, and around horticultural production structures. A study was undertaken to evaluate iris (Iris virginica), switchgrass (Panicum virgatum), Tithonia rotundiflora, Coreopsis lanceolata, Sunflower (Helianthus an...

  11. Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.

    PubMed

    Zhang, Weilan; Musante, Craig; White, Jason C; Schwab, Paul; Wang, Qiang; Ebbs, Stephen D; Ma, Xingmao

    2017-01-01

    Cerium oxide nanoparticles (CeO2 NP) are a common component of many commercial products. Due to the general concerns over the potential toxicity of engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO2 NPs have been broadly investigated. However, most previous studies were conducted in hydroponic systems and with grain crops. For a few studies performed with soil grown plants, the impact of soil properties on the fate and transport of CeO2 NPs was generally ignored even though numerous previous studies indicate that soil properties play a critical role in the fate and transport of environmental pollutants. The objectives of this study were to evaluate the soil fractionation and bioavailability of CeO2 NPs to Raphanus sativus L (radish) in two soil types. Our results showed that the silty loam contained slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO2 NPs concentration increased. CeO2 NPs associated with silicate minerals or the residue fraction (F4) dominated in both soils. The cerium concentration in radish storage root showed linear correlation with the sum of the first three fractions (r(2) = 0.98 and 0.78 for loamy sand and silty loam respectively). However, the cerium content in radish shoots only exhibited strong correlations with F1 (r(2) = 0.97 and 0.89 for loamy sand and silty loam respectively). Overall, the results demonstrated that soil properties are important factors governing the distribution of CeO2 NPs in soil and subsequent bioavailability to plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Comparative bioavailability of trazodone formulations using stable isotope methodology.

    PubMed Central

    Gammans, R E; Mackenthun, A V; Russell, J W

    1984-01-01

    The bioavailability of trazodone, a new antidepressant, from 50 mg dividose (A) or film-sealed (B) tablets relative to an oral solution was determined in six healthy male subjects using 50 mg of D4-trazodone as a stable isotope labelled standard. Concentrations of trazodone and D4-trazodone were measured by GCMS. The pharmacokinetics of trazodone and D4-trazodone were identical indicating no isotope effect. For formulation A, B and solution, the relative (trazodone/D4-trazodone) Cmax values were 0.84 +/- 0.09, 0.90 +/- 0.05 and 1.05 +/- 0.04. The relative bioequivalence of the dosage formed with a power of 85% (power by conventional ANOVA was 54%). Among subjects % relative standard deviations (RSD) for the D4-trazodone AUC values, a measure of intra-subject variability, were 6 to 38% while the % RSDs by period, a measure of inter-subject variability, were 26 to 55%. PMID:6487481

  13. Bioavailability enhancers of herbal origin: An overview

    PubMed Central

    Kesarwani, Kritika; Gupta, Rajiv

    2013-01-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  14. Bioavailability enhancers of herbal origin: an overview.

    PubMed

    Kesarwani, Kritika; Gupta, Rajiv; Mukerjee, Alok

    2013-04-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds.

  15. Characterizing nutrient uptake kinetics for efficient crop production during Solanum lycopersicum var. cerasiforme Alef. growth in a closed indoor hydroponic system.

    PubMed

    Lee, Ju Yeon; Rahman, Arifur; Azam, Hossain; Kim, Hyung Seok; Kwon, Man Jae

    2017-01-01

    A balanced nutrient supply is essential for the healthy growth of plants in hydroponic systems. However, the commonly used electrical conductivity (EC)-based nutrient control for plant cultivation can provide amounts of nutrients that are excessive or inadequate for proper plant growth. In this study, we investigated the kinetics of major and minor nutrient uptake in a nutrient solution during the growth of tomato (Solanum lycopersicum var. cerasiforme Alef.) in a closed hydroponic system. The concentrations of major and minor ions in the nutrient solution were determined by various analytical methods including inductively coupled plasma-optical emission spectroscopy (ICP-OES), ion chromatography (IC), ion specific electrodes, and/or colorimetric methods. The concentrations of the individual nutrient ions were compared with changes in the EC. The EC of the nutrient solution varied according to the different growth stages of tomato plants. Variation in the concentrations of NO3-, SO42-, Mg2+, Ca2+, and K+ was similar to the EC variation. However, in the cases of PO43-, Na+, Cl-, dissolved Fe and Mn, Cu2+, and Zn2+, variation did not correspond with that of EC. These ions were generally depleted (to 0 mg L-1) during tomato growth, suggesting that these specific ions should be monitored individually and their supply increased. Nutrient uptake rates of major ions increased gradually at different growth stages until harvest (from < 3 mg L-1 d-1 to > 15 mg L-1 d-1). Saturation indices determined by MINEQL+ simulation and a mineral precipitation experiment demonstrated the potential for amorphous calcium phosphate precipitation, which may facilitate the abiotic adsorptive removal of dissolved Fe, dissolved Mn, Cu2+, and Zn2+.

  16. Characterizing nutrient uptake kinetics for efficient crop production during Solanum lycopersicum var. cerasiforme Alef. growth in a closed indoor hydroponic system

    PubMed Central

    Lee, Ju Yeon; Rahman, Arifur; Azam, Hossain; Kim, Hyung Seok

    2017-01-01

    A balanced nutrient supply is essential for the healthy growth of plants in hydroponic systems. However, the commonly used electrical conductivity (EC)-based nutrient control for plant cultivation can provide amounts of nutrients that are excessive or inadequate for proper plant growth. In this study, we investigated the kinetics of major and minor nutrient uptake in a nutrient solution during the growth of tomato (Solanum lycopersicum var. cerasiforme Alef.) in a closed hydroponic system. The concentrations of major and minor ions in the nutrient solution were determined by various analytical methods including inductively coupled plasma-optical emission spectroscopy (ICP-OES), ion chromatography (IC), ion specific electrodes, and/or colorimetric methods. The concentrations of the individual nutrient ions were compared with changes in the EC. The EC of the nutrient solution varied according to the different growth stages of tomato plants. Variation in the concentrations of NO3−, SO42−, Mg2+, Ca2+, and K+ was similar to the EC variation. However, in the cases of PO43−, Na+, Cl−, dissolved Fe and Mn, Cu2+, and Zn2+, variation did not correspond with that of EC. These ions were generally depleted (to 0 mg L−1) during tomato growth, suggesting that these specific ions should be monitored individually and their supply increased. Nutrient uptake rates of major ions increased gradually at different growth stages until harvest (from < 3 mg L−1 d−1 to > 15 mg L−1 d−1). Saturation indices determined by MINEQL+ simulation and a mineral precipitation experiment demonstrated the potential for amorphous calcium phosphate precipitation, which may facilitate the abiotic adsorptive removal of dissolved Fe, dissolved Mn, Cu2+, and Zn2+. PMID:28486501

  17. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions

    PubMed Central

    2014-01-01

    Background Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. Results We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. Conclusions The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes. PMID:24649917

  18. Influence of Dissolved Organic Matter on Tetracycline Bioavailability to an Antibiotic-Resistant Bacterium.

    PubMed

    Chen, Zeyou; Zhang, Yingjie; Gao, Yanzheng; Boyd, Stephen A; Zhu, Dongqiang; Li, Hui

    2015-09-15

    Complexation of tetracycline with dissolved organic matter (DOM) in aqueous solution could alter the bioavailability of tetracycline to bacteria, thereby alleviating selective pressure for development of antibiotic resistance. In this study, an Escherichia coli whole-cell bioreporter construct with antibiotic resistance genes coupled to green fluorescence protein was exposed to tetracycline in the presence of DOM derived from humic acids. Complexation between tetracycline and DOM diminished tetracycline bioavailability to E. coli, as indicated by reduced expression of antibiotic resistance genes. Increasing DOM concentration resulted in decreasing bioavailability of tetracycline to the bioreporter. Freely dissolved tetracycline (not complexed with DOM) was identified as the major fraction responsible for the rate and magnitude of antibiotic resistance genes expressed. Furthermore, adsorption of DOM on bacterial cell surfaces inhibited tetracycline diffusion into the bioreporter cells. The magnitude of the inhibition was related to the amount of DOM adsorbed and tetracycline affinity for the DOM. These findings provide novel insights into the mechanisms by which the bioavailability of tetracycline antibiotics to bacteria is reduced by DOM present in water. Agricultural lands receiving livestock manures commonly have elevated levels of both DOM and antibiotics; the DOM could suppress the bioavailability of antibiotics, hence reducing selective pressure on bacteria for development of antibiotic resistance.

  19. More than inorganic copper is bioavailable to aquatic mosses at environmentally relevant concentrations.

    PubMed

    Ferreira, Daniel; Tousset, Nicolas; Ridame, Céline; Tusseau-Vuillemin, Marie-Hélène

    2008-10-01

    The present study investigates how dissolved organic matter (DOM) alters copper bioavailability at environmentally relevant concentrations (1-5 microg/L of dissolved copper, 1-4 mg/L of dissolved organic copper). A methodology combining two biological endpoints (short-term and steady-state bioaccumulation of copper by the aquatic moss Fontinalis antipyretica) and a sampling of labile copper with diffusion gradient in thin films (DGT) is proposed for batch experiments conducted with mineral water and various DOM, ethylenediaminetetra-acetic acid (EDTA), humic acid, and natural Seine River (France) extracts (hydrophobic and transphilic fractions). All types of DOM reduce the bioavailability of copper to aquatic mosses, and this reduction was more pronounced for the short-term biological endpoint, which was taken as being representative for environmental exposure. Labile copper sampled with DGT made it possible to estimate short-term bioaccumulation in the case of EDTA and natural Seine River extracts. With humic acid solutions, however, labile copper was lower than bioavailable copper. This result suggests that at realistic metal concentrations and with certain types of natural DOM, bioavailable copper might comprise not only inorganic copper but also some weak organic complexes. Hence, labile copper, in situ sampled with DGT, might not systematically overestimate bioavailable copper, as suggested previously on the basis of in vitro toxicity studies.

  20. Formulation and Characterization of Drug Loaded Nonionic Surfactant Vesicles (Niosomes) for Oral Bioavailability Enhancement

    PubMed Central

    Kamboj, Sunil; Saini, Vipin; Bala, Suman

    2014-01-01

    Nonionic surfactant vesicles (niosomes) were formulated with an aim of enhancing the oral bioavailability of tenofovir disoproxil fumarate (TDF), an anti-HIV drug. Niosomes were formulated by conventional thin film hydration technique with different molar ratios of surfactant, cholesterol, and dicetyl phosphate. The formulated niosomes were found spherical in shape, ranging from 2.95 μm to 10.91 μm in size. Vesicles with 1 : 1 : 0.1 ratios of surfactant : cholesterol : dicetyl phosphate with each grade of span were found to have higher entrapment efficiencies, which were further selected for in vitro and in vivo studies. Vesicles formulated with sorbitan monostearate were found to have maximum drug release (99.091%) at the end of 24 hours and followed zero order release kinetics. The results of in vivo study revealed that the niosomes significantly enhanced the oral bioavailability of TDF in rats after a dose of 95 mg/kg. The average relative bioavailability of niosomes in relation to plane drug solution was found to be 2.58, indicating more than twofold increase in oral bioavailability of TDF. Significant increase in mean residential time (MRT) was also found, reflecting release retarding efficacy of the vesicles. In conclusion, niosomes could be a promising delivery for TDF with improved oral bioavailability and prolonged release profiles. PMID:24672401

  1. Influence of a niosomal formulation on the oral bioavailability of acyclovir in rabbits.

    PubMed

    Attia, Ismail A; El-Gizawy, Sanaa A; Fouda, Medhat A; Donia, Ahmed M

    2007-12-14

    The purpose of this research was to prepare acyclovir niosomes in a trial to improve its poor and variable oral bioavailability. The nonionic surfactant vesicles were prepared by the conventional thin film hydration method. The lipid mixture consisted of cholesterol, span 60, and dicetyl phosphate in the molar ratio of 65:60:5, respectively. The percentage entrapment was approximately 11% of acyclovir used in the hydration process. The vesicles have an average size of 0.95 microm, a most probable size of 0.8 microm, and a size range of 0.4 to 2.2 microm. Most of the niosomes have unilamellar spherical shape. In vitro drug release profile was found to follow Higuchi's equation for free and niosomal drug. The niosomal formulation exhibited significantly retarded release compared with free drug. The in vivo study revealed that the niosomal dispersion significantly improved the oral bioavailability of acyclovir in rabbits after a single oral dose of 40 mg kg(-1). The average relative bioavailability of the drug from the niosomal dispersion in relation to the free solution was 2.55 indicating more than 2-fold increase in drug bioavailability. The niosomal dispersion showed significant increase in the mean residence time (MRT) of acyclovir reflecting sustained release characteristics. In conclusion, the niosomal formulation could be a promising delivery system for acyclovir with improved oral bioavailability and prolonged drug release profiles.

  2. Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions.

    PubMed

    He, Yupeng; Nie, Enguang; Li, Chengming; Ye, Qingfu; Wang, Haiyan

    2017-01-01

    The increasing discharge of pharmaceuticals and personal care products (PPCPs) into the environment has generated serious public concern. The recent awareness of the environmental impact of this emerging class of pollutants and their potential adverse effects on human health have been documented in many reports. However, information regarding uptake and intracellular distribution of PPCPs in hydrophytes under hydroponic conditions, and potential human exposure is very limited. A laboratory experiment was conducted using (14)C-labeled triclosan (TCS) to investigate uptake and distribution of TCS in six aquatic plants (water spinach, purple perilla, cress, penny grass, cane shoot, and rice), and the subcellular distribution of (14)C-TCS was determined in these plants. The results showed that the uptake and removal rate of TCS from nutrient solution by hydrophytes followed the order of cress (96%) > water spinach (94%) > penny grass (87%) > cane shoot (84%) > purple perilla (78%) > rice (63%) at the end of incubation period (192 h). The range of (14)C-TCS content in the roots was 94.3%-99.0% of the added (14)C-TCS, and the concentrations in roots were 2-3 orders of magnitude greater than those in shoots. Furthermore, the subcellular fraction-concentration factor (3.6 × 10(2)-2.6 × 10(3) mL g(-1)), concentration (0.58-4.47 μg g(-1)), and percentage (30%-61%) of (14)C-TCS in organelles were found predominantly greater than those in cell walls and/or cytoplasm. These results indicate that for these plants, the roots are the primary storage for TCS, and within plant cells organelles are the major domains for TCS accumulation. These findings provide a better understanding of translocation and accumulation of TCS in aquatic plants at the cellular level, which is valuable for environmental and human health assessments of TCS.

  3. Pharmacokinetics and bioavailability of drotaverine in humans.

    PubMed

    Bolaji, O O; Onyeji, C O; Ogundaini, A O; Olugbade, T A; Ogunbona, F A

    1996-01-01

    The pharmacokinetics and bioavailability of drotaverine was studied in 10 healthy volunteers after administration of single 80 mg oral and intravenous doses of the HCl salt of the drug, in a crossover fashion. Plasma and urine samples were analyzed for the unchanged drug by HPLC. The pharmacokinetic parameters, such as elimination half-life, plasma clearance, renal clearance and apparent volume of distribution, were not influenced by the route of drug administration. The drug was mainly eliminated by non-renal routes since renal clearance accounted for only 0.31 +/- 0.13% of the total plasma clearance. The absolute bioavailability was variable and ranged from 24.5-91% with a mean of 58.2 +/- 18.2% (mean +/- SD). It is suggested that the high variation in the bioavailability of drotaverine HCl after oral administration may result in significant interindividual differences in therapeutic response.

  4. Bioavailability of Polyphenol Liposomes: A Challenge Ahead

    PubMed Central

    Mignet, Nathalie; Seguin, Johanne; Chabot, Guy G.

    2013-01-01

    Dietary polyphenols, including flavonoids, have long been recognized as a source of important molecules involved in the prevention of several diseases, including cancer. However, because of their poor bioavailability, polyphenols remain difficult to be employed clinically. Over the past few years, a renewed interest has been devoted to the use of liposomes as carriers aimed at increasing the bioavailability and, hence, the therapeutic benefits of polyphenols. In this paper, we review the causes of the poor bioavailability of polyphenols and concentrate on their liposomal formulations, which offer a means of improving their pharmacokinetics and pharmacodynamics. The problems linked to their development and their potential therapeutic advantages are reviewed. Future directions for liposomal polyphenol development are suggested. PMID:24300518

  5. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    PubMed

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  6. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements

    PubMed Central

    Nguyen, Nga T.; McInturf, Samuel A.; Mendoza-Cózatl, David G.

    2016-01-01

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements. PMID:27500800

  7. Effects of elevated atmospheric carbon dioxide concentrations on water and acid requirements of soybeans grown in a recirculating hydroponic system

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Wheeler, R. M.; Lowery, W.; Sager, J. C.

    1990-01-01

    Establishing mass budgets of various crop needs, i.e. water and nutrients, in different environments is essential for the Controlled Ecological Life Support System (CELSS). The effects of CO2 (500 and 1000 umol mol (exp -1)) on water and acid use (for pH control) by soybeans in a recirculating hydroponic system were examined. Plants of cvs. McCall and Pixie were grown for 90 days using the nutrient film technique (NFT) and a nitrate based nutrient solution. System acid use for both CO2 levels peaked near 4 weeks during a phase of rapid vegetative growth, but acid use decreased more rapidly under 500 compared to 1000 umol mol (exp GR) CO2. Total system water use by 500 and 1000 umol mol (exp -1) plants was similar, leaving off at 5 weeks and declining as plants senesced (ca. 9 weeks). However, single leaf transpiration rates were consistently lower at 1000 umol mol (exp -1). The data suggest that high CO2 concentrations increase system acid (and nutrient) use because of increased vegetative growth, which in turn negates the benefit of reduced water use (lower transpiration rates) per unit leaf area.

  8. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site - a hydroponics experiment.

    PubMed

    Li, Siliang; Wang, Fengping; Ru, Mei; Ni, Wuzhong

    2014-01-01

    In this study, a hydroponics experiment was conducted to investigate the characteristics of Cd tolerance and accumulation of Elsholtzia argyi natively growing on the soil with high levels of heavy metals in a Zn/Pb mining site. Seedlings of E. argyi grown for 4 weeks and then were treated with 0(CK), 5,10,15, 20, 25, 30, 40, 50,100 umM Cd for 21 days. Each treatment had three replications. No visual toxic symptoms on shoots of E. argyi were observed at Cd level < or = 50 muM. The results indicated that the dry biomass of each tissue and the whole plants of the treatments with < or =40 umM cadmium were similar to that of the control, implying that E. argyi was a cadmium tolerant plant. The results also showed that the shoot Cd concentration significantly (P < 0.05) increased with the increase in the Cd level in nutrient solution. The shoot Cd concentration of the treatment with 40 umM Cd was as high as 237.9 mg kg(-1), which was higher than 100 mg kg(-1), normally used as the threshold concentration for identifying the Cd hyperaccumulating plant. It could be concluded that E. argyi was a Cd tolerant and accumulating plant species.

  9. Screening of Cucumis sativus as a new arsenic-accumulating plant and its arsenic accumulation in hydroponic culture.

    PubMed

    Hong, Sun Hwa; Choi, Sun Ah; Yoon, Hyeon; Cho, Kyung-Suk

    2011-01-01

    Phytoextraction is a remediation technology with a promising application for removing arsenic (As) from soils and waters. Several plant species were evaluated for their As accumulation capacity in hydroponic culture amended with As. Cucumis sativus (cucumber) displayed the highest tolerance against As among 4 plants tested in this study (corn, wheat, sorghum and cucumber). The germination ratio of Cucumis sativus was more than 50% at the high concentration of 5,000 mg-As/l. In Cucumis sativus grown in a solution contaminated with 25 mg-As/l, the accumulated As concentrations in the shoot and root were 675.5 ± 11.5 and 312.0 ± 163.4 mg/kg, respectively, and the corresponding values of the translocation and bioaccumulation factors for As were 1.9 ± 0.9 and 21.1 ± 8.4, respectively. These results indicate Cucumis sativus is to be a candidate plant for phytoextraction of As from soils and water.

  10. Mild Fe-deficiency improves biomass production and quality of hydroponic-cultivated spinach plants (Spinacia oleracea L.).

    PubMed

    Jin, Chong-Wei; Liu, Yue; Mao, Qian-Qian; Wang, Qian; Du, Shao-Ting

    2013-06-15

    It is of great practical importance to improve yield and quality of vegetables in soilless cultures. This study investigated the effects of iron-nutrition management on yield and quality of hydroponic-cultivated spinach (Spinacia oleracea L.). The results showed that mild Fe-deficient treatment (1 μM FeEDTA) yielded a greater biomass of edible parts than Fe-omitted treatment (0 μM FeEDTA) or Fe-sufficient treatments (10 and 50 μM FeEDTA). Conversely, mild Fe-deficient treatment had the lowest nitrate concentration in the edible parts out of all the Fe treatments. Interestingly, all the concentrations of soluble sugar, soluble protein and ascorbate in mild Fe-deficient treatments were higher than Fe-sufficient treatments. In addition, both phenolic concentration and DPPH scavenging activity in mild Fe-deficient treatments were comparable with those in Fe-sufficient treatments, but were higher than those in Fe-omitted treatments. Therefore, we concluded that using a mild Fe-deficient nutrition solution to cultivate spinach not only would increase yield, but also would improve quality.

  11. Bioavailability of Plant-Derived Antioxidants

    PubMed Central

    Abourashed, Ehab A.

    2013-01-01

    Natural products with antioxidant properties have been extensively utilized in the pharmaceutical and food industry and have also been very popular as health-promoting herbal products. This review provides a summary of the literature published around the first decade of the 21st century regarding the oral bioavailability of carotenoids, polyphenols and sulfur compounds as the three major classes of plant-derived antioxidants. The reviewed original research includes more than 40 compounds belonging to the above mentioned classes of natural antioxidants. In addition, related reviews published during the same period have been cited. A brief introduction to general bioavailability-related definitions, procedures and considerations is also included. PMID:26784467

  12. Bioavailability of Metal Ions and Evolutionary Adaptation

    PubMed Central

    Hong Enriquez, Rolando P.; Do, Trang N.

    2012-01-01

    The evolution of life on earth has been a long process that began nearly 3.5 × 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches. PMID:25371266

  13. Coupling bioaccumulation and phytotoxicity to predict copper removal by switchgrass grown hydroponically.

    PubMed

    Juang, Kai-Wei; Lai, Hung-Yu; Chen, Bo-Ching

    2011-06-01

    A major challenge in phytoextraction is to increase plants' removal rates of metals from contaminated soils. In this study, we developed a phytoextraction model, by coupling a saturable Michaelis-Menten type accumulation model and an energy-based toxicity model, to predict copper (Cu) removal by switchgrass (Panicum virgatum L.) grown hydroponically under various exposure concentrations. Results of the present study indicated that the phytotoxicity of Cu to switchgrass is relatively low, whereas a certain accumulation capacity exists in the plant for Cu. In addition, the simulation results suggested that, under a lower dissolved concentration, Cu removal is increased more efficiently as the exposure duration increases. Although it is difficult to extrapolate the results from greenhouse-based hydroponic experiments to field conditions, we believe that the current methodology can offer a first approximation in predicting the phytoextraction duration needed for plant species to remove a specific metal from contaminated sites, which is crucial in evaluating the economic costs for remediation purposes.

  14. The sensitivity of an hydroponic lettuce root elongation bioassay to metals, phenol and wastewaters.

    PubMed

    Park, Jihae; Yoon, Jeong-hyun; Depuydt, Stephen; Oh, Jung-Woo; Jo, Youn-min; Kim, Kyungtae; Brown, Murray T; Han, Taejun

    2016-04-01

    The root elongation bioassay is one of the most straightforward test methods used for environmental monitoring in terms of simplicity, rapidity and economy since it merely requires filter paper, distilled water and Petri dishes. However, filter paper as a support material is known to be problematic as it can reduce the sensitivity of the test. The newly developed hydroponic method reported here differs from the conventional root elongation method (US EPA filter paper method) in that no support material is used and the exposure time is shorter (48 h in this test versus 120 h in the US EPA test). For metals, the hydroponic test method was 3.3 (for Hg) to 57 (for Cu) times more sensitive than the US EPA method with the rank orders of sensitivity, estimated from EC50 values, being Cu≥Cd>Ni≥Zn≥Hg for the former and Hg≥Cu≥Ni≥Cd≥Zn for the latter methods. For phenol, the results did not differ significantly; EC50 values were 124 mg L(-1) and 108-180 mg L(-1) for the hydroponic and filter paper methods, respectively. Lettuce was less sensitive than daphnids to wastewaters, but the root elongation response appears to be wastewater-specific and is especially sensitive for detecting the presence of fluorine. The new hydroponic test thus provides many practical advantages, especially in terms of cost and time-effectiveness requiring only a well plate, a small volume of distilled water and short exposure period; furthermore, no specialist expertise is required. The method is simpler than the conventional EPA technique in not using filter paper which can influence the sensitivity of the test. Additionally, plant seeds have a long shelf-life and require little or no maintenance.

  15. Safety assessment of greenhouse hydroponic tomatoes irrigated with reclaimed and surface water.

    PubMed

    Lopez-Galvez, Francisco; Allende, Ana; Pedrero-Salcedo, Francisco; Alarcon, Juan Jose; Gil, Maria Isabel

    2014-11-17

    The impact of reclaimed and surface water on the microbiological safety of hydroponic tomatoes was assessed. Greenhouse tomatoes were irrigated with reclaimed and surface water and grown on two hydroponic substrates (coconut fiber and rock wool). Water samples (n=208) were taken from irrigation water, with and without the addition of fertilizers and drainage water, and hydroponic tomatoes (n=72). Samples were analyzed for indicator microorganisms, generic Escherichia coli and Listeria spp., and pathogenic bacteria such as Salmonella spp. and Shiga-toxigenic E. coli (STEC), using multiplex real-time PCR (RT-PCR) after enrichment. The correlation between climatological parameters such as temperature and the levels of microorganisms in water samples was also determined. In irrigation water, generic E. coli counts were higher in reclaimed than in surface water whereas Listeria spp. numbers increased after adding the fertilizers in both water sources. In drainage water, no clear differences in E. coli and Listeria numbers were observed between reclaimed and surface water. No positive samples for STEC were found in irrigation water. Presumptive positives for Salmonella spp. were found in 7.7% of the water samples and 62.5% of these samples were reclaimed water. Salmonella-positive samples by RT-PCR could not be confirmed by conventional methods. Higher concentrations of E. coli were associated with Salmonella-presumptive positive samples. Climatological parameters, such as temperature, were not correlated with the E. coli and Listeria spp. counts. Tomato samples were negative for bacterial pathogens, while generic E. coli and Listeria spp. counts were below the detection limit. The prevalence of presumptive Salmonella spp. found in irrigation water (reclaimed and surface water) was high, which might present a risk of contamination. The absence of pathogens on greenhouse hydroponic tomatoes indicates that good agricultural practices (GAP) were in place, avoiding the

  16. A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana

    PubMed Central

    Tocquin, Pierre; Corbesier, Laurent; Havelange, Andrée; Pieltain, Alexandra; Kurtem, Emile; Bernier, Georges; Périlleux, Claire

    2003-01-01

    Background Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development. However, because of its small size and rosette growth habit, Arabidopsis is hardly grown in standard hydroponic devices and the systems described in the last years are still difficult to transpose at a large scale. Our aim was to design and optimize an up-scalable device that would be adaptable to any experimental conditions. Results An hydroponic system was designed for Arabidopsis, which is based on two units: a seed-holder and a 1-L tank with its cover. The original agar-containing seed-holder allows the plants to grow from sowing to seed set, without transplanting step and with minimal waste. The optimum nitrate supply was determined for vegetative growth, and the flowering response to photoperiod and vernalization was characterized to show the feasibility and reproducibility of experiments extending over the whole life cycle. How this equipment allowed to overcome experimental problems is illustrated by the analysis of developmental effects of nitrate reductase deficiency in nia1nia2 mutants. Conclusion The hydroponic device described in this paper allows to drive small and large scale cultures of homogeneously growing Arabidopsis plants. Its major advantages are its flexibility, easy handling, fast maintenance and low cost. It should be suitable for many experimental purposes. PMID:12556248

  17. The structure and function of microbial communities in recirculating hydroponic systems.

    PubMed

    Garland, J L

    1994-11-01

    Strategies to control the microbial community associated with plant growth systems need to be based on a fundamental understanding of the factors which structure and regulate the community. Spatial and temporal patterns in the abundance and production rate of microorganisms in hydroponic systems containing wheat were examined to evaluate how root-derived carbon is processed. The relevance of results to monitoring and control strategies is discussed.

  18. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    EPA Science Inventory

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  19. Animal versus human oral drug bioavailability: do they correlate?

    PubMed

    Musther, Helen; Olivares-Morales, Andrés; Hatley, Oliver J D; Liu, Bo; Rostami Hodjegan, Amin

    2014-06-16

    Oral bioavailability is a key consideration in development of drug products, and the use of preclinical species in predicting bioavailability in human has long been debated. In order to clarify whether any correlation between human and animal bioavailability exist, an extensive analysis of the published literature data was conducted. Due to the complex nature of bioavailability calculations inclusion criteria were applied to ensure integrity of the data. A database of 184 compounds was assembled. Linear regression for the reported compounds indicated no strong or predictive correlations to human data for all species, individually and combined. The lack of correlation in this extended dataset highlights that animal bioavailability is not quantitatively predictive of bioavailability in human. Although qualitative (high/low bioavailability) indications might be possible, models taking into account species-specific factors that may affect bioavailability are recommended for developing quantitative prediction.

  20. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    EPA Science Inventory

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  1. Intraluminal zinc bioavailability - effect of amino acids on zinc solubility

    SciTech Connect

    Jacobs, F.A.; Nelson, L.S. Jr.; Brushmiller, J.G.

    1986-03-01

    Human and bovine milks and simple solutions modeled after milks (milk models) have been used in the development of an intraluminal system involves subjecting a food, i.e., milk, to the pH range encountered in the digestive tract, and measuring the amount of soluble minerals at various pH's. With this system the authors have demonstrated that co-precipitation of zinc with calcium phosphate is a key factor modulating the solubility of zinc in milks and in milk models. Since a mineral must be soluble in order to be bioavailable, and since free amino acids have been suggested to increase the solubility of zinc by adding various amino acids. Of the amino acids, aspartate, glutamate, histidine, and phosphoserine, only histidine (10 mM) increased the solubility of zinc in a milk model, albeit slightly. Supplementation of bovine milk with 10 mM histidine also resulted in a slight increase in zinc solubility. No increase in zinc solubility was observed at a physiologic histidine level. Free amino acids at physiologic concentrations do not increase zinc solubility in milks, and therefore, do not seem to contribute to zinc bioavailability.

  2. Comparative bioavailability and pharmacokinetics of three formulations of albuterol.

    PubMed

    Powell, M L; Weisberger, M; Gural, R; Chung, M; Patrick, J E; Radwanski, E; Symchowicz, S S

    1985-02-01

    Albuterol sulfate, alpha'[[1,1-dimethyl)amino]methyl]-4-hydroxy-1,3-benzenedimethanol sulfate, is a relatively selective beta-2-adrenergic bronchodilator used for the relief of bronchospasm. The bioavailability of two 4-mg tablet formulations, differing in their inactive excipients, and a syrup formulation, was evaluated. The three dosage forms were orally administered to 12 normal male volunteers in a randomized three-way crossover study. Plasma samples were collected at frequent time points through 12 h and analyzed for albuterol content by a specific GC-MS method. The drug was rapidly absorbed from all three formulations. Maximum drug concentrations were comparable for the three formulations and were obtained between 1.8-2.0 h. The areas under the plasma concentration-time curves were 68-78 h X ng/mL. The drug elimination phase half-live (t1/2 beta) ranged from 4.8 to 5.5 h. Analysis of the data showed that the bioavailability of albuterol from a tablet formulation is equivalent to that from a solution.

  3. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet Controlled Ecological Life Support Systems (CELSS) tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  4. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  5. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Astrophysics Data System (ADS)

    Strayer, R. F.

    1994-11-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  6. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet Controlled Ecological Life Support Systems (CELSS) tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  7. Dynamics of microorganism populations in recirculating nutrient solutions.

    PubMed

    Strayer, R F

    1994-11-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  8. Computer-operated analytical platform for the determination of nutrients in hydroponic systems.

    PubMed

    Rius-Ruiz, F Xavier; Andrade, Francisco J; Riu, Jordi; Rius, F Xavier

    2014-03-15

    Hydroponics is a water, energy, space, and cost efficient system for growing plants in constrained spaces or land exhausted areas. Precise control of hydroponic nutrients is essential for growing healthy plants and producing high yields. In this article we report for the first time on a new computer-operated analytical platform which can be readily used for the determination of essential nutrients in hydroponic growing systems. The liquid-handling system uses inexpensive components (i.e., peristaltic pump and solenoid valves), which are discretely computer-operated to automatically condition, calibrate and clean a multi-probe of solid-contact ion-selective electrodes (ISEs). These ISEs, which are based on carbon nanotubes, offer high portability, robustness and easy maintenance and storage. With this new computer-operated analytical platform we performed automatic measurements of K(+), Ca(2+), NO3(-) and Cl(-) during tomato plants growth in order to assure optimal nutritional uptake and tomato production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Use of cross-flow membrane filtration in a recirculating hydroponic system to suppress root disease in pepper caused by Pythium myriotylum.

    PubMed

    Schuerger, Andrew C; Hammer, William

    2009-05-01

    Zoosporic pathogens in the genera Pythium and Phytophthora cause extensive root disease epiphytotics in recirculating hydroponic vegetable-production greenhouses. Zoospore cysts of Pythium myriotylum Drechsler were used to evaluate the effectiveness of cross-flow membrane filters to control pythiaceous pathogens in recirculating hydroponic systems. Four membrane filter brands (Honeycomb, Polypure, Polymate, and Absolife) were tested alone or in combination to determine which filters would effectively remove infective propagules of P. myriotylum from solutions and reduce disease incidence and severity. Zoospore cysts of P. myriotylum generally measured 8 to 10 microm, and it was hypothesized that filters with pore-sizes<5 microm would be effective at removing 100% of the infective propagules and protect pepper plants from root infection. Single-filter assays with Honeycomb and Polypure brands removed 85 to 95% of zoospore cysts when pore sizes were rated at 1, 5, 10, 20, or 30 microm. Single-filter assays of Polymate and Absolife brands were more effective, exhibiting apparently 100% removal of zoospore cysts from nutrient solutions on filters rated at 1 to 10 microm. However, plant bioassays with Honeycomb and Polymate single filters failed to give long-term protection of pepper plants. Double-filter assays with 1- and 0.5-microm Polymate filters significantly increased the protection of pepper plants grown in nutrient film technique systems but, eventually, root disease and plant wilt could be observed. Insect transmissions by shore flies were not factors in disease development. Scanning electron microscopy images of zoospore cysts entrapped on Polymate filters revealed zoospore cysts that were either fully encysted, partially encysted, or of unusually small size (3 microm in diameter). It was concluded that either the atypically small or pliable pleomorphic zoospore cysts were able to penetrate filter membranes that theoretically should have captured them.

  10. Effects of hypertonic buffer composition on lymph node uptake and bioavailability of rituximab, after subcutaneous administration

    PubMed Central

    Fathallah, Anas M.; Turner, Michael R.; Balu-Iyer, Sathy V.

    2015-01-01

    Subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after sc administration remains a major challenge. In this work we investigated the effects of excipient dependent hyper-osmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as our animal model, we compared the effects of NaCl, mannitol and, O-Phospho-L-Serine (OPLS) on plasma concentration of rituximab over 5 days after sc administration. We observed an increase in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, as compared to isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph node in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatic, as estimated by the model, increased from 0.05 % in isotonic buffer to 13% in hyper-tonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. Our data suggests that hypertonic solutions may be a viable option to improve sc bioavailability. PMID:25377184

  11. Effects of hypertonic buffer composition on lymph node uptake and bioavailability of rituximab, after subcutaneous administration.

    PubMed

    Fathallah, Anas M; Turner, Michael R; Mager, Donald E; Balu-Iyer, Sathy V

    2015-03-01

    The subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after s.c. administration remains a major challenge. In this work we investigated the effects of excipient dependent hyperosmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as the animal model, we compared the effects of NaCl, mannitol and O-phospho-L-serine (OPLS) on the plasma concentration of rituximab over 5 days after s.c. administration. An increase was observed in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, compared with isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to the improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph nodes in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatics, as estimated by the model, increased from 0.05% in isotonic buffer to 13% in hypertonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. The data suggest that hypertonic solutions may be a viable option for improving s.c. bioavailability. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Continuous hydroponic wheat production using a recirculating system

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.

    1989-01-01

    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  13. A DGT technique for plutonium bioavailability measurements.

    PubMed

    Cusnir, Ruslan; Steinmann, Philipp; Bochud, François; Froidevaux, Pascal

    2014-09-16

    The toxicity of heavy metals in natural waters is strongly dependent on the local chemical environment. Assessing the bioavailability of radionuclides predicts the toxic effects to aquatic biota. The technique of diffusive gradients in thin films (DGT) is largely exploited for bioavailability measurements of trace metals in waters. However, it has not been applied for plutonium speciation measurements yet. This study investigates the use of DGT technique for plutonium bioavailability measurements in chemically different environments. We used a diffusion cell to determine the diffusion coefficients (D) of plutonium in polyacrylamide (PAM) gel and found D in the range of 2.06-2.29 × 10(-6) cm(2) s(-1). It ranged between 1.10 and 2.03 × 10(-6) cm(2) s(-1) in the presence of fulvic acid and in natural waters with low DOM. In the presence of 20 ppm of humic acid of an organic-rich soil, plutonium diffusion was hindered by a factor of 5, with a diffusion coefficient of 0.50 × 10(-6) cm(2) s(-1). We also tested commercially available DGT devices with Chelex resin for plutonium bioavailability measurements in laboratory conditions and the diffusion coefficients agreed with those from the diffusion cell experiments. These findings show that the DGT methodology can be used to investigate the bioaccumulation of the labile plutonium fraction in aquatic biota.

  14. Enhanced bioavailability of opiates after intratracheal administration

    SciTech Connect

    Findlay, J.W.A.; Jones, E.C.; McNulty, M.J.

    1986-03-01

    Several opiate analgesics have low oral bioavailabilities in the dog because of presystemic metabolism. Intratracheal administration may circumvent this first-pass effect. Three anesthetized beagles received 5-mg/kg doses of codeine phosphate intratracheally (i.t.), orally (p.o.) and intravenously (i.v.) in a crossover study. The following drugs were also studied in similar experiments: ethylmorphine hydrochloride (5 mg/kg), pholcodine bitartrate (10 mg/kg, hydrocodone bitartrate (4 mg/kg) and morphine sulfate (2.5 mg/kg). Plasma drug concentrations over the 24- to 48-hr periods after drug administrations were determined by radioimmunoassays. I.t. bioavailabilities (codeine (84%), ethylmorphine (100%), and morphine (87%)) of drugs with poor oral availabilities were all markedly higher than the corresponding oral values (14, 26, and 23%, respectively). I.t. bioavailabilities of pholcodine (93%) and hydrocodone (92%), which have good oral availabilities (74 and 79%, respectively), were also enhanced. In all cases, peak plasma concentrations occurred more rapidly after i.t. (0.08-0.17 hr) than after oral (0.5-2 hr) dosing and i.t. disposition often resembled i.v. kinetics. I.t. administration may be a valuable alternative dosing route, providing rapid onset of pharmacological activity for potent drugs with poor oral bioavailability.

  15. Factors influencing micronutrient bioavailability in biofortified crops.

    PubMed

    Bechoff, Aurélie; Dhuique-Mayer, Claudie

    2017-02-01

    Dietary and human factors have been found to be the major factors influencing the bioavailability of micronutrients, such as provitamin A carotenoid (pVAC), iron, and zinc, in biofortified crops. Dietary factors are related to food matrix structure and composition. Processing can improve pVAC bioavailability by disrupting the food matrix but can also result in carotenoid losses. By degrading antinutrients, such as phytate, processing can also enhance mineral bioavailability. In in vivo interventions, biofortified crops have been shown to be overall efficacious in reducing micronutrient deficiency, with bioconversion factors varying between 2.3:1 and 10.4:1 for trans-β-carotene and amounts of iron and zinc absorbed varying between 0.7 and 1.1 mg/day and 1.1 and 2.1 mg/day, respectively. Micronutrient bioavailability was dependent on the crop type and the presence of fat for pVACs and on antinutrients for minerals. In addition to dietary factors, human factors, such as inflammation and disease, can affect micronutrient status. Understanding the interactions between micronutrients is also essential, for example, the synergic effect of iron and pVACs or the competitive effect of iron and zinc. Future efficacy trials should consider human status and genetic polymorphisms linked to interindividual variations.

  16. BIOAVAILABILITY OF CHEMICAL CONTAMINANTS IN AQUATIC SYSTEMS

    EPA Science Inventory

    Before a chemical can elicit toxicity, the animal must accumulate a dose at a target tissue of sufficient magnitude to produce a response. Bioavailability refers to the degree to which this accumulation occurs relative to the amount of chemical present in the environment, and is ...

  17. Iron bioavailability to phytoplankton: an empirical approach.

    PubMed

    Lis, Hagar; Shaked, Yeala; Kranzler, Chana; Keren, Nir; Morel, François M M

    2015-03-17

    Phytoplankton are often limited by iron in aquatic environments. Here we examine Fe bioavailability to phytoplankton by analyzing iron uptake from various Fe substrates by several species of phytoplankton grown under conditions of Fe limitation and comparing the measured uptake rate constants (Fe uptake rate/ substrate concentration). When unchelated iron, Fe', buffered by an excess of the chelating agent EDTA is used as the Fe substrate, the uptake rate constants of all the eukaryotic phytoplankton species are tightly correlated and proportional to their respective surface areas (S.A.). The same is true when FeDFB is the substrate, but the corresponding uptake constants are one thousand times smaller than for Fe'. The uptake rate constants for the other substrates we examined fall mostly between the values for Fe' and FeDFB for the same S.A. These two model substrates thus empirically define a bioavailability envelope with Fe' at the upper and FeDFB at the lower limit of iron bioavailability. This envelope provides a convenient framework to compare the relative bioavailabilities of various Fe substrates to eukaryotic phytoplankton and the Fe uptake abilities of different phytoplankton species. Compared with eukaryotic species, cyanobacteria have similar uptake constants for Fe' but lower ones for FeDFB. The unique relationship between the uptake rate constants and the S.A. of phytoplankton species suggests that the uptake rate constant of Fe-limited phytoplankton has reached a universal upper limit and provides insight into the underlying uptake mechanism.

  18. Iron bioavailability to phytoplankton: an empirical approach

    PubMed Central

    Lis, Hagar; Shaked, Yeala; Kranzler, Chana; Keren, Nir; Morel, François M M

    2015-01-01

    Phytoplankton are often limited by iron in aquatic environments. Here we examine Fe bioavailability to phytoplankton by analyzing iron uptake from various Fe substrates by several species of phytoplankton grown under conditions of Fe limitation and comparing the measured uptake rate constants (Fe uptake rate/ substrate concentration). When unchelated iron, Fe′, buffered by an excess of the chelating agent EDTA is used as the Fe substrate, the uptake rate constants of all the eukaryotic phytoplankton species are tightly correlated and proportional to their respective surface areas (S.A.). The same is true when FeDFB is the substrate, but the corresponding uptake constants are one thousand times smaller than for Fe′. The uptake rate constants for the other substrates we examined fall mostly between the values for Fe′ and FeDFB for the same S.A. These two model substrates thus empirically define a bioavailability envelope with Fe′ at the upper and FeDFB at the lower limit of iron bioavailability. This envelope provides a convenient framework to compare the relative bioavailabilities of various Fe substrates to eukaryotic phytoplankton and the Fe uptake abilities of different phytoplankton species. Compared with eukaryotic species, cyanobacteria have similar uptake constants for Fe′ but lower ones for FeDFB. The unique relationship between the uptake rate constants and the S.A. of phytoplankton species suggests that the uptake rate constant of Fe-limited phytoplankton has reached a universal upper limit and provides insight into the underlying uptake mechanism. PMID:25350155

  19. Bioavailability of voriconazole in hospitalised patients.

    PubMed

    Veringa, Anette; Geling, Sanne; Span, Lambert F R; Vermeulen, Karin M; Zijlstra, Jan G; van der Werf, Tjip S; Kosterink, Jos G W; Alffenaar, Jan-Willem C

    2017-02-01

    An important element in antimicrobial stewardship programmes is early switch from intravenous (i.v.) to oral antimicrobial treatment, especially for highly bioavailable drugs. The antifungal agent voriconazole is available both in i.v. and oral formulations and bioavailability is estimated to be >90% in healthy volunteers, making this drug a suitable candidate for such a transition. Recently, two studies have shown that the bioavailability of voriconazole is substantially lower in patients. However, for both studies various factors that could influence the voriconazole serum concentration, such as inflammation, concomitant intake of food with oral voriconazole, and gastrointestinal complications, were not included in the evaluation. Therefore, in this study a retrospective chart review was performed in adult patients treated with both oral and i.v. voriconazole at the same dose and within a limited (≤5 days) time interval in order to evaluate the effect of switching the route of administration on voriconazole serum concentrations. A total of 13 patients were included. The mean voriconazole trough concentration was 2.28 mg/L [95% confidence interval (CI) 1.29-3.26 mg/L] for i.v. voriconazole administration and 2.04 mg/L (95% CI 0.78-3.30 mg/L) for oral administration. No significant difference was found in the mean oral and i.v. trough concentrations of voriconazole (P = 0.390). The mean bioavailability was 83.0% (95% CI 59.0-107.0%). These findings suggest that factors other than bioavailability may cause the observed difference in voriconazole trough concentrations between oral and i.v. administration in the earlier studies and stress the need for an antimicrobial stewardship team to guide voriconazole dosing.

  20. Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system

    PubMed Central

    2012-01-01

    Background In this report we studied the genetic regulation of juvenile development of wild barley introgression lines (S42ILs) under two contrasting hydroponic nitrogen (N) supplies. Ten shoot and root related traits were examined among 42 S42ILs and the recurrent parent ‘Scarlett’. The traits included tiller number, leaf number, plant height, leaf and root length, leaf to root length ratio, shoots and root dry weight, shoot to root weight ratio, and chlorophyll content. Our aims were (1) to test the suitability of a hydroponic system for early detection of favourable S42ILs, (2) to locate quantitative trait loci (QTL) that control the examined traits, (3) to identify favourable wild barley alleles that improve trait performances in regard to N treatment and, finally, (4) to validate the identified QTL through comparison with previously reported QTL originating from the same parental cross. Results The phenotypic data were analysed in a mixed model association study to detect QTL. The post-hoc Dunnett test identified 28 S42ILs that revealed significant (P < 0.01) effects for at least one trait. Forty-three, 41 and 42 S42ILs revealed effects across both N treatments, under low N and under high N treatment, respectively. Due to overlapping or flanking wild barley introgressions of the S42ILs, these associations were summarised to 58 QTL. In total, 12 QTL of the hydroponic N study corresponded to QTL that were also detected in field trials with adult plants of a similar S42IL set or of the original S42 population. For instance, S42IL-135, -136 and -137, revealed increasing Hsp effects for tiller number, leaf number, leaf length, plant height and leaf to root ratio on the long arm of chromosome 7H. These QTL correspond to QTL for ears per plant and plant height that were previously detected in field trials conducted with the same S42ILs or with the S42 population. Conclusion Our results suggest that the QTL we identified under hydroponic N cultivation partly

  1. Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco.

    PubMed

    Drake, Pascal M W; Barbi, Tommaso; Sexton, Amy; McGowan, Edward; Stadlmann, Johannes; Navarre, Catherine; Paul, Matthew J; Ma, Julian K-C

    2009-10-01

    Rhizosecretion is an attractive technology for the production of recombinant proteins from transgenic plants. However, to date, yields of plant-derived recombinant pharmaceuticals by this method have been too low for commercial viability. Studies conducted focused on three transgenic plant lines grown in hydroponic culture medium, two expressing monoclonal antibodies Guy's 13 and 4E10 and one expressing a small microbicide polypeptide cyanovirin-N. Rhizosecretion rates increased significantly by the addition of the plant growth regulator alpha-naphthalene acetic acid. The maximum rhizosecretion rates achieved were 58 microg/g root dry weight/24 h for Guy's 13, 10.43 microg/g root dry weight/24 h for 4E10, and 766 microg/g root dry weight/24 h for cyanovirin-N, the highest figures so far reported for a full-length antibody and a recombinant protein, respectively. The plant growth regulators indole-butyric acid, 6-benzylaminopurine, and kinetin were also demonstrated to increase rhizosecretion of Guy's 13. The effect of the growth regulators differed, as alpha-naphthalene acetic acid and indole-butyric acid increased the root dry weight of hydroponic plants, whereas the cytokinins benzylaminopurine and kinetin increased rhizosecretion without affecting root mass. A comparative glycosylation analysis between MAb Guy's 13 purified from either hydroponic culture medium or from leaf extracts demonstrated a similar pattern of glycosylation comprising high mannose to complex glycoforms. Analysis of the hydroponic culture medium at harvest revealed significantly lower and less complex levels of proteolytic enzymes, in comparison with leaf extracts, which translated to a higher proportion of intact Guy's 13 IgG in relation to other IgG products. Hydroponic medium could be added directly to a chromatography column for affinity purification, allowing simple and rapid production of high purity Guy's 13 antibody. In addition to the attractiveness of controlled cultivation within

  2. Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system.

    PubMed

    Hoffmann, Astrid; Maurer, Andreas; Pillen, Klaus

    2012-10-20

    In this report we studied the genetic regulation of juvenile development of wild barley introgression lines (S42ILs) under two contrasting hydroponic nitrogen (N) supplies. Ten shoot and root related traits were examined among 42 S42ILs and the recurrent parent 'Scarlett'. The traits included tiller number, leaf number, plant height, leaf and root length, leaf to root length ratio, shoots and root dry weight, shoot to root weight ratio, and chlorophyll content. Our aims were (1) to test the suitability of a hydroponic system for early detection of favourable S42ILs, (2) to locate quantitative trait loci (QTL) that control the examined traits, (3) to identify favourable wild barley alleles that improve trait performances in regard to N treatment and, finally, (4) to validate the identified QTL through comparison with previously reported QTL originating from the same parental cross. The phenotypic data were analysed in a mixed model association study to detect QTL. The post-hoc Dunnett test identified 28 S42ILs that revealed significant (P < 0.01) effects for at least one trait. Forty-three, 41 and 42 S42ILs revealed effects across both N treatments, under low N and under high N treatment, respectively. Due to overlapping or flanking wild barley introgressions of the S42ILs, these associations were summarised to 58 QTL. In total, 12 QTL of the hydroponic N study corresponded to QTL that were also detected in field trials with adult plants of a similar S42IL set or of the original S42 population. For instance, S42IL-135, -136 and -137, revealed increasing Hsp effects for tiller number, leaf number, leaf length, plant height and leaf to root ratio on the long arm of chromosome 7H. These QTL correspond to QTL for ears per plant and plant height that were previously detected in field trials conducted with the same S42ILs or with the S42 population. Our results suggest that the QTL we identified under hydroponic N cultivation partly correspond to QTL detected in field

  3. Thiol-Based Selective Extraction Assay to Comparatively Assess Bioavailable Mercury in Sediments

    PubMed Central

    Ticknor, Jonathan L.; Kucharzyk, Katarzyna H.; Porter, Kaitlyn A.; Deshusses, Marc A.; Hsu-Kim, Heileen

    2015-01-01

    Abstract Bioaccumulation of methylmercury in the aquatic food web is governed in part by the methylation of inorganic divalent mercury (Hg(II)) by anaerobic microorganisms. In sulfidic settings, a small fraction of total Hg(II) is typically bioavailable to methylating microorganisms. Quantification of this fraction is difficult due to uncertainties in the speciation of Hg(II) and the mechanisms of uptake by methylating microbes. However, recent studies have shown that the bioavailable fraction is likely to include a portion of Hg(II) associated with solid phases, that is, nanostructured mercuric sulfides. Moreover, addition of thiols to suspensions of methylating cultures coincides with increased uptake into cells and methylmercury production. Here, we present a thiol-based selective extraction assay to provide information on the bioavailable Hg fraction in sediments. In the procedure, sediment samples were exposed to a nitrogen-purged solution of glutathione (GSH) for 30 min and the amount of GSH-leachable mercury was quantified. In nine sediment samples from a marine location, the relative GSH-leachable mercury concentration was strongly correlated to the relative amount of methylmercury in the sediments (r2=0.91, p<0.0001) across an order of magnitude of methylmercury concentration values. The approach was further applied to anaerobic sediment slurry microcosm experiments in which sediments were cultured under the same microbial growth conditions but were amended with multiple forms of Hg with a known spectrum of bioavailability. GSH-leachable Hg concentrations increased with observed methylmercury concentrations in the microcosms, matching the trend of species bioavailability in our previous work. Results suggest that a thiol-based selective leaching approach is an improvement compared with other proposed methods to assess Hg bioavailability in sediment and that this approach could provide a basis for comparison of sites where Hg methylation is a concern

  4. Evaluation of a Nanoemulsion Formulation Strategy for Oral Bioavailability Enhancement of Danazol in Rats and Dogs

    PubMed Central

    Devalapally, Harikrishna; Silchenko, Svitlana; Zhou, Feng; McDade, Jessica; Goloverda, Galina; Owen, Albert; Hidalgo, Ismael J.

    2013-01-01

    The objective of this study was to determine whether nanoemulsion formulations constitute a viable strategy to improve the oral bioavailability of danazol, a compound whose poor aqueous solubility limits its oral bioavailability. Danazol-containing oil-in-water nanoemulsions (NE) with and without co-surfactants stearylamine (SA) and deoxycholic acid (DCA) were prepared and characterized. Nanoemulsion droplets size ranging from 238 to 344 nm and with surface charges of −24.8 mV (NE), −26.5 mV (NE-DCA), and +27.8 mV (NE-SA) were reproducibly obtained. Oral bioavailability of danazol in nanoemulsions was compared with other vehicles such as, PEG400, 1% methylcellulose in water (1% MC), Labrafil, and a Labrafil/Tween 80 (9:1) mixture, after intragastric administration to rats and after oral administration of NE-SA, a Labrafil solution, or a Danocrine® tablet to dogs. The absolute bioavailability of danazol was 0.6% (PEG400), 1.2% (1% MC), 6.0% (Labrafil), 7.5% (Labrafil/Tween80), 8.1% (NE-DCA), 14.8% (NE), and 17.4% (NE-SA) in rats, and 0.24% (Danocrine), 6.2% (Labrafil), and 58.7% (NE-SA) in dogs. Overall, danazol bioavailability in any nanoemulsion was higher than any other formulation. Danazol bioavailability from NE and NE-SA was 1.8 to 2.2-fold higher than NE-DCA nanoemulsion and could be due to significant difference in droplet size. PMID:23878097

  5. Automated lettuce nutrient solution management using an array of ion-selective electrodes

    USDA-ARS?s Scientific Manuscript database

    Automated sensing and control of macronutrients in hydroponic solutions would allow more efficient management of nutrients for crop growth in closed systems. This paper describes the development and evaluation of a computer-controlled nutrient management system with an array of ion-selective electro...

  6. Arsenic uptake and speciation and the effects of phosphate nutrition in hydroponically grown kikuyu grass (Pennisetum clandestinum Hochst).

    PubMed

    Panuccio, Maria Rosaria; Logoteta, Barbara; Beone, Gian Maria; Cagnin, Massimo; Cacco, Giovanni

    2011-08-01

    This work focuses on the accumulation and mobility properties of arsenic (As) and the effects of phosphate (P) on its movement in Pennisetum clandestinum Hochst (kikuyu grass), grown hydroponically under increasing arsenate (As(V)) concentrations. The uptake of both ions and the relative kinetics show that phosphate is an efficient competitive inhibitor of As(V) uptake. The P/As uptake rate ratios in roots indicate that P is taken up preferentially by P/As transporters. An arsenite (As(III)) efflux from roots was also found, but this decreased when the arsenate concentration in the solution exceeded 5 μM. Increases in both arsenite and arsenate concentrations in roots were observed when the arsenate concentration in the solution was increased, and the highest accumulation of As(III) in roots was found when plants were grown at 5 μM As(V). The low ratios of As accumulated in shoots compared to roots suggest limited mobility of the metalloid within Kikuyu plants. The results indicate that arsenic resistance in kikuyu grass in conditions of moderate exposure is mainly dependent on the following factors: 1) phosphate nutrition: P is an efficient competitive inhibitor of As(V) uptake because of the higher selectivity of membrane transporters with respect to phosphate rather than arsenate; and 2) a detoxification mechanism including a reduction in both arsenate and arsenite root efflux. The As tolerance strategy of Kikuyu limits arsenate uptake and As translocation from roots to shoots; therefore, this plant cannot be considered a viable candidate for use in the phytoextraction of arsenic from contaminated soils or water.

  7. Mathematical Models to Explore Potential Effects of Supersaturation and Precipitation on Oral Bioavailability of Poorly Soluble Drugs.

    PubMed

    Kleppe, Mary S; Forney-Stevens, Kelly M; Haskell, Roy J; Bogner, Robin H

    2015-07-01

    Poorly soluble drugs are increasingly formulated into supersaturating drug delivery systems which may precipitate during oral delivery. The link between in vitro drug concentration profiles and oral bioavailability is under intense investigation. The objective of the present work was to develop closed-form analytical solutions that relate in vitro concentration profiles to the amount of drug absorbed using several alternate assumptions and only six parameters. Three parameters define the key features of the in vitro drug concentration-time profile. An additional three parameters focus on physiological parameters. Absorption models were developed based on alternate assumptions; the drug concentration in the intestinal fluid: (1) peaks at the same time and concentration as in vitro, (2) peaks at the same time as in vitro, or (3) reaches the same peak concentration as in vitro. The three assumptions provide very different calculated values of bioavailability. Using Case 2 assumptions, bioavailability enhancement was found to be less than proportional to in silico examples of dissolution enhancement. Case 3 assumptions lead to bioavailability enhancements that are more than proportional to dissolution enhancements. Using Case 1 predicts drug absorption amounts that fall in between Case 2 and 3. The equations developed based on the alternate assumptions can be used to quickly evaluate the potential improvement in bioavailability due to intentional alteration of the in vitro drug concentration vs. time curve by reformulation. These equations may be useful in making decisions as to whether reformulation is expected to provide sufficient bioavailability enhancement to justify the effort.

  8. Bioavailability Challenges Associated with Development of Anti-Cancer Phenolics

    PubMed Central

    Gao, Song; Hu, Ming

    2010-01-01

    Phenolics including many polyphenols and flavonoids have the potentials to become chemoprevention and chemotherapy agents. However, poor bioavailability limits their biological effects in vivo. This paper reviews the factors that affect phenolics absorption and their bioavailabilities from the points of view of their physicochemical properties and disposition in the gastrointestinal tract. The up-to-date research data suggested that solubility and metabolism are the primary reasons that limit phenolic aglycones’ bioavailability although stability and poor permeation may also contribute to the poor bioavailabilities of the glycosides. Future investigations should further optimize phenolics’ bioavailabilities and realize their chemopreventive and chemotherapeutic effects in vivo. PMID:20370701

  9. Estimating relative bioavailability of soil lead in the mouse.

    PubMed

    Bradham, Karen D; Green, William; Hayes, Hunter; Nelson, Clay; Alava, Pradeep; Misenheimer, John; Diamond, Gary L; Thayer, William C; Thomas, David J

    2016-01-01

    Lead (Pb) in soil is an important exposure source for children. Thus, determining bioavailability of Pb in soil is critical in evaluating risk and selecting appropriate strategies to minimize exposure. A mouse model was developed to estimate relative bioavailability of Pb in NIST SRM 2710a (Montana 1 Soil). Based on Pb levels in tissues, the mean relative bioavailability of this metal in this soil was 0.5. Estimates of relative bioavailabilities derived from mouse compared favorably with those obtained in juvenile swine. The mouse model is thus an efficient and inexpensive method to obtain estimates of relative bioavailability of soil Pb.

  10. The Vacuum-Operated Nutrient Delivery System: hydroponics for microgravity.

    PubMed

    Brown, C S; Cox, W M; Dreschel, T W; Chetirkin, P V

    1992-11-01

    A nutrient delivery system that may have applicability for growing plants in microgravity is described. The Vacuum-Operated Nutrient Delivery System (VONDS) draws nutrient solution across roots that are under a partial vacuum at approximately 91 kPa. Bean (Phaseolus vulgaris L. cv. Blue Lake 274) plants grown on the VONDS had consistently greater leaf area and higher root, stem, leaf, and pod dry weights than plants grown under nonvacuum control conditions. This study demonstrates the potential applicability of the VONDS for growing plants in microgravity for space biology experimentation and/or crop production.

  11. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats.

    PubMed

    Ansari, Mohammad Javed; Anwer, Md Khalid; Jamil, Shahid; Al-Shdefat, Ramadan; Ali, Bahaa E; Ahmad, Mohammad Muqtader; Ansari, Mohammad Nazam

    2016-07-01

    Insulin is a hormone used in the treatment of diabetes mellitus. Multiple injections of insulin every day may causes pain, allergic reactions at injection site, which lead to low patient compliance. The aim of this work was to develop and evaluate an efficient solid lipid nanoparticle (SLN) carrier for oral delivery of insulin. SLNs were prepared by double emulsion solvent evaporation (w/o/w) technique, employing glyceryltrimyristate (Dynasan 114) as lipid phase and soy lecithin and polyvinyl alcohol as primary and secondary emulsifier, respectively, and evaluated in vitro for particle size, polydispersity index (PDI) and drug entrapment. Among the eight different developed formulae (F1-F8), F7 showed an average particle size (99 nm), PDI (0.021), high entrapment of drug (56.5%). The optimized formulation (F7) was further evaluated by FT-IR, DSC, XRD, in vitro release, permeation, stability, bioavailability and pharmacological studies. Insulin-loaded SLNs showed better protection from gastrointestinal environment as evident from the relative bioavailability, which was enhanced five times as compared to the insulin solution. A significant enhancement of relative bioavailability of insulin was observed, i.e. approximately five times of pure insulin solution when loaded in SLN (8.26% versus 1.7% only).

  12. Folate bioavailability: UK Food Standards Agency workshop report.

    PubMed

    Sanderson, Peter; McNulty, Helene; Mastroiacovo, Pierpaolo; McDowell, Ian F W; Melse-Boonstra, Alida; Finglas, Paul M; Gregory, Jess F

    2003-08-01

    The UK Food Standards Agency convened a group of expert scientists to review current research investigating folate bioavailability. The workshop aimed to overview current research and establish priorities for future research. Discrepancies were observed in the evidence base for folate bioavailability, especially with regard to the relative bioavailability of natural folates compared with folic acid. A substantial body of evidence shows folic acid to have superior bioavailability relative to food folates; however, the exact relative bioavailability still needs to be determined, and in particular with regard to mixed diets. The bioavailability of folate in a mixed diet is probably not a weighted average of that in the various foods consumed; thus the workshop considered that assessment of folate bioavailability of whole diets should be a high priority for future research.

  13. Heavy Metal Bioavailability and Bioaccessibility in Soil

    NASA Astrophysics Data System (ADS)

    Dean, John Richard

    This chapter considers the use of a variety of approaches to assess either the bioavailability or the bioaccessibility of metals in soil. The bioavailability of metals from soils is considered with respect to a series of single-extraction methods, including the use of ethylenediaminetetraacetic acid (EDTA), acetic acid, diethylenetriaminepentaacetic acid (DTPA), ammonium nitrate, calcium chloride and sodium nitrate. Then, a procedure for the recovery of metals using a three-stage sequential extraction protocol is described. Two alternate approaches for assessing the environmental health risk to humans by undertaking in vitro gastrointestinal extraction (also known as the physiologically based extraction test, PBET) are considered. Finally, two acid digestion protocols that allow the pseudo-total metal content of samples to be assessed are provided.

  14. [Absolute bioavailability of chlorpromazine, promazine and promethazine].

    PubMed

    Koytchev, R; Alken, R G; Kirkov, V; Neshev, G; Vagaday, M; Kunter, U

    1994-02-01

    The absolute bioavailability of the three phenothiazine neuroleptics, promazine (Sinophenin, CAS 58-40-2), chlorpromazine (Propaphenin, CAS 50-53-3) and promethazine (Prothazin, CAS 60-87-7) was tested in three single-dose cross-over studies. In each trial 12 to 14 healthy volunteers were enrolled. The single doses for promazine, promethazine and chlorpromazine were 100, 75 and 150 mg (orally) and 20, 50 and 50 mg (intravenously), resp. The serum concentrations of the three neuroleptics were measured by means of a selective HPLC-method. the distribution-free confidence intervals for the absolute bioavailability of the three phenothiazines were within 10.5 to 24.7% for chlorpromazine, 7.8 to 24.9% for promazine and 12.3 to 40% for promethazine. Promazine and chlorpromazine are pharmacokinetically very similar and differ substantially from promethazine.

  15. Comparative bioavailability of tetracycline and lymecycline.

    PubMed

    Sjölin-Forsberg, G; Hermansson, J

    1984-10-01

    The relative bioavailability of lymecycline and tetracycline hydrochloride was compared in 12 healthy volunteers in a double-blind cross-over study using a high performance liquid chromatographic method for plasma and urine analyses. A statistical significant difference in favour of tetracycline hydrochloride was found concerning the mean AUC and the mean lag time. The relative bioavailability of lymecycline was only 70% compared with tetracycline in multiple dosing (19.13 +/- 5.39 micrograms ml-1 h and 27.22 +/- 6.26 micrograms ml-1 h respectively) and 80% in a single dose (21.88 +/- 4.23 micrograms ml-1 h and 26.91 +/- 6.01 respectively) and the mean lag time of tetracycline was only 60% compared with lymecycline.

  16. Comparative bioavailability of tetracycline and lymecycline.

    PubMed Central

    Sjölin-Forsberg, G; Hermansson, J

    1984-01-01

    The relative bioavailability of lymecycline and tetracycline hydrochloride was compared in 12 healthy volunteers in a double-blind cross-over study using a high performance liquid chromatographic method for plasma and urine analyses. A statistical significant difference in favour of tetracycline hydrochloride was found concerning the mean AUC and the mean lag time. The relative bioavailability of lymecycline was only 70% compared with tetracycline in multiple dosing (19.13 +/- 5.39 micrograms ml-1 h and 27.22 +/- 6.26 micrograms ml-1 h respectively) and 80% in a single dose (21.88 +/- 4.23 micrograms ml-1 h and 26.91 +/- 6.01 respectively) and the mean lag time of tetracycline was only 60% compared with lymecycline. PMID:6487493

  17. Effect of bismuth subsalicylate on ciprofloxacin bioavailability.

    PubMed Central

    Rambout, L; Sahai, J; Gallicano, K; Oliveras, L; Garber, G

    1994-01-01

    A single oral dose of 528 mg of bismuth subsalicylate (30 ml of Pepto-Bismol) had no significant effect on the plasma pharmacokinetics of a single oral dose of 750 mg of ciprofloxacin administered to 12 healthy volunteers (six men and six women). These results suggest that ciprofloxacin bioavailability will not be significantly decreased by single doses of bismuth subsalicylate when the two medications are administered simultaneously. PMID:7811043

  18. The identification of orally bioavailable thrombopoietin agonists.

    PubMed

    Munchhof, Michael J; Antipas, Amy S; Blumberg, Laura C; Brissette, William H; Brown, Matthew F; Casavant, Jeffrey M; Doty, Jonathan L; Driscoll, James; Harris, Thomas M; Wolf-Gouveia, Lilli A; Jones, Christopher S; Li, Qifang; Linde, Robert G; Lira, Paul D; Marfat, Anthony; McElroy, Eric; Mitton-Fry, Mark; McCurdy, Sandra P; Reiter, Lawrence A; Ripp, Sharon L; Shavnya, Andrei; Thomasco, Lisa M; Trevena, Kristen A

    2009-03-01

    Recently, we disclosed a series of potent pyrimidine benzamide-based thrombopoietin receptor agonists. Unfortunately, the structural features required for the desired activity conferred physicochemical properties that were not favorable for the development of an oral agent. The physical properties of the series were improved by replacing the aminopyrimidinyl group with a piperidine-4-carboxylic acid moiety. The resulting compounds possessed favorable in vivo pharmacokinetic properties, including good bioavailability.

  19. Bioavailability of tocotrienols: evidence in human studies

    PubMed Central

    2014-01-01

    As a minor component of vitamin E, tocotrienols were evident in exhibiting biological activities such as neuroprotection, radio-protection, anti-cancer, anti-inflammatory and lipid lowering properties which are not shared by tocopherols. However, available data on the therapeutic window of tocotrienols remains controversial. It is important to understand the absorption and bioavailability mechanisms before conducting in-depth investigations into the therapeutic efficacy of tocotrienols in humans. In this review, we updated current evidence on the bioavailability of tocotrienols from human studies. Available data from five studies suggested that tocotrienols may reach its target destination through an alternative pathway despite its low affinity for α-tocopherol transfer protein. This was evident when studies reported considerable amount of tocotrienols detected in HDL particles and adipose tissues after oral consumption. Besides, plasma concentrations of tocotrienols were shown to be higher when administered with food while self-emulsifying preparation of tocotrienols was shown to enhance the absorption of tocotrienols. Nevertheless, mixed results were observed based on the outcome from 24 clinical studies, focusing on the dosages, study populations and formulations used. This may be due to the variation of compositions and dosages of tocotrienols used, suggesting a need to understand the formulation of tocotrienols in the study design. Essentially, implementation of a control diet such as AHA Step 1 diet may influence the study outcomes, especially in hypercholesterolemic subjects when lipid profile might be modified due to synergistic interaction between tocotrienols and control diet. We also found that the bioavailability of tocotrienols were inconsistent in different target populations, from healthy subjects to smokers and diseased patients. In this review, the effect of dosage, composition and formulation of tocotrienols as well as study populations on the

  20. Speciation and microalgal bioavailability of inorganic silver

    SciTech Connect

    Reinfelder, J.R.; Chang, S.I.

    1999-06-01

    Silver accumulation in aquatic organisms is primarily attributed to the bioavailability of the free Ag ion (Ag{sup +}). Some reports suggest that AgCl(aq) is also available for biological uptake, but few studies of Ag bioavailability used the range of chloride concentrations over which AgCl{sup 0}(aq) is the dominant Ag species. None used environmentally realistic, low Ag concentrations. To assess the bioavailability of inorganic Ag species and the importance of the low polarity AgCl(aq) complex to biological uptake, the authors determined the octanol-water partition coefficient of Ag over a range of chloride concentrations representative of fresh to brackish waters and measured short-term Ag uptake rates in the euryhaline marine microalga Thalassiosira weissflogii exposed to a total silver concentration of 50 pM. Overall octanol-water partition coefficients (D{sub ow}) of inorganic silver ranged from 0.02 to 0.06. The K{sub ow} of AgCl(aq) calculated using D{sub ow} values measured at 0.5, 5, and 50 mM Cl{sup {minus}} and the K{sub ow} of Ag{sup +} (0.03, measured in the absence of Cl{sup {minus}}) was 0.09. Silver D{sub ow} and uptake rate constants in phytoplankton were highest at the Cl{sup {minus}} concentration where uncharged AgCl(aq) is the dominant silver species. Their results demonstrate that AgCl(aq) is the principal bioavailable species of inorganic silver in phytoplankton and suggest that direct uptake of AgCl(aq) is important to the overall accumulation of Ag in aquatic invertebrates.

  1. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    PubMed Central

    Stone, Michael S.; Martyn, Lisa; Weaver, Connie M.

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60–100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  2. Potassium Intake, Bioavailability, Hypertension, and Glucose Control.

    PubMed

    Stone, Michael S; Martyn, Lisa; Weaver, Connie M

    2016-07-22

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60-100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  3. Selenium in soybeans: bioavailability and form

    SciTech Connect

    Mason, A.C.

    1984-01-01

    Experiments are presented which evaluate the bioavailability of different forms of selenium from intrinsically and extrinsically labeled isolated soy protein and soy flour. The bioavailability of selenium from soy and egg is compared and some characteristics of selenium are described as it exists in soybeans. The metabolism of selenium was measured by whole-body and tissue radioactivity retention and selenium excretion. Selenium-75 was well absorbed from an isolated soy protein diet by rats. Selenium-75 from isolated soy protein labeled intrinsically and extrinsically with /sup 75/Se selenate was better absorbed than from protein labeled extrinsically with /sup 75/Se selenite or /sup 75/Se selenomethionine. Bioavailability of selenium from soy flour and egg was measured by whole-body and tissue radioactivity retention and glutathione peroxidase (GSH-Px) activity regeneration. Selenium-75 from soy flour intrinsically labeled with selenite was better absorbed than /sup 75/Se from flour intrinsically labeled with selenate. GSH-Px levels in the liver, kidney, platelets and heart fell when rats were fed a selenium deficient diet, but were not significantly raised on 0.0825 ppm Se repletion diets.

  4. Bioavailability and biodistribution of nanodelivered lutein.

    PubMed

    Kamil, Alison; Smith, Donald E; Blumberg, Jeffrey B; Astete, Carlos; Sabliov, Cristina; Oliver Chen, C-Y

    2016-02-01

    The aim of the study was to evaluate the ability of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) to enhance lutein bioavailability. The bioavailability of free lutein and PLGA-NP lutein in rats was assessed by determining plasma pharmacokinetics and deposition in selected tissues. Lutein uptake and secretion was also assessed in Caco-2 cells. Compared to free lutein, PLGA-NP increased the maximal plasma concentration (Cmax) and area under the time-concentration curve in rats by 54.5- and 77.6-fold, respectively, while promoting tissue accumulation in the mesenteric fat and spleen. In comparison with micellized lutein, PLGA-NP lutein improved the Cmax in rat plasma by 15.6-fold and in selected tissues by ⩾ 3.8-fold. In contrast, PLGA-NP lutein had a lower uptake and secretion of lutein in Caco-2 cells by 10.0- and 50.5-fold, respectively, compared to micellized lutein. In conclusion, delivery of lutein with polymeric NP may be an approach to improve the bioavailability of lutein in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Selenium bioavailability with reference to human nutrition

    SciTech Connect

    Young, V.R.; Nahapetian, A.; Janghorbani, M.

    1982-05-01

    Various aspects of selenium metabolism and nutrition in relation to the question of selenium bioavailability in foods and the diet of man are reviewed. Few published studies exist on selenium metabolism in human subjects, particularly those representative of healthy individuals in the United States. Animal studies reveal that various factors, including the source and chemical form of selenium in foods and feeds, influence selenium bioavailability. However, the quantitative significance of animal assay data for human nutrition is not known. The limited number of published studies in man suggest that the metabolic fate and physiological function of dietary selenite may differ from that of selenomethionine or of food selenium. However, much additional research will be required to establish an adequate picture of the significance of dietary selenium bioavailability in human nutrition and health. Based on initial human experiments carried out at the Massachusetts Institute of Technology, use of stable isotopes of selenium offers promising opportunities for closing the gap of knowledge that now exists concerning the role and significance of factors that determine how the selenium present in foods is used to meet the physiological requirements of the consumer.

  6. Rapid screening assay for calcium bioavailability studies

    SciTech Connect

    Luhrsen, K.R.; Hudepohl, G.R.; Smith, K.T.

    1986-03-01

    Calcium bioavailability has been studied by numerous techniques. The authors report here the use of the gamma emitting isotope of calcium (/sup 47/Ca) in a whole body retention assay system. In this system, calcium sources are administered by oral gavage and subsequent counts are determined and corrected for isotopic decay. Unlike iron and zinc retention curves, which exhibit a 2-3 day equilibration period, calcium reaches equilibration after 24 hours. Autoradiographic analysis of the femurs indicate that the newly absorbed calcium is rapidly distributed to the skeletal system. Moreover, the isotope is distributed along the entire bone. Comparisons of calcium bioavailability were made using intrinsic/extrinsic labeled milk from two species i.e. rat and goat as well as CaCO/sub 3/. In addition, extrinsic labeled cow milk was examined. In the rat, the extrinsic labeled calcium from milk was better absorbed than the intrinsic calcium. This was not the case in goat milk or the calcium carbonate which exhibited no significant differences. Chromatographic analysis of the labeled milk indicates a difference in distribution of the /sup 47/Ca. From these data, the authors recommend the use of this assay system in calcium bioavailability studies. The labeling studies and comparisons indicate caution should be used, however, in labeling techniques and species milk comparison.

  7. Bioavailability and delivery of nutraceuticals using nanotechnology.

    PubMed

    Huang, Qingrong; Yu, Hailong; Ru, Qiaomei

    2010-01-01

    Nanotechnology is an enable technology that has the potential to revolutionize agriculture and food systems. Driven by increasing consumer demand for healthy food products, researchers have been applying tools and knowledge in nanotechnology to address the issues relevant to food and nutrition. This concise review is mainly focused on nanoemulsions and polymer micelles-based delivery systems which have shown enhanced oral bioavailability and biological efficacies (that is, antiinflammation, anti-cancer, and so on) of different phytochemicals. Nanoemulsions are a class of extremely small droplets that appear to be transparent or translucent with a bluish coloration. They are usually in the range 50 to 200 nm but much smaller than the range (from 1 to 100 mum) for conventional emulsions. Nanoemulsion preparation, characterization, and bioavailability have been discussed. Curcumin nanoemulsions show 85% inhibition of TPA-induced mouse ear inflammation as well as the inhibition of cyclin D1 expression, while dibenzoylmethane (DBM) nanoemulsion shows about 3-fold increase in oral bioavailability compared to the conventional DBM emulsion. Biopolymer micelles show significantly improved water solubility/dispersibility and in vitro anti-cancer activity of phytochemicals. More research efforts are still needed for the understanding of the potential impacts of nanoencapsulated phytochemicals on the human body and environment to address the public concerns.

  8. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability.

    PubMed

    Saini, Ramesh Kumar; Nile, Shivraj Hariram; Keum, Young-Soo

    2016-11-01

    Folates (Vitamin B9) include both naturally occurring folates and synthetic folic acid used in fortified foods and dietary supplements. Folate deficiency causes severe abnormalities in one-carbon metabolism can result chronic diseases and developmental disorders, including neural tube defects. Mammalian cells cannot synthesize folates de novo; therefore, diet and dietary supplements are the only way to attain daily folate requirements. In the last decade, significant advancements have been made to enhance the folate content of rice, tomato, common bean and lettuce by using genetic engineering approaches. Strategies have been developed to improve the stability of folate pool in plants. Folate deglutamylation through food processing and thermal treatment has the potential to enhance the bioavailability of folate. This review highlights the recent developments in biosynthesis, composition, bioavailability, enhanced production by elicitation and metabolic engineering, and methods of analysis of folate in food. Additionally, future perspectives in this context are identified. Detailed knowledge of folate biosynthesis, degradation and salvage are the prime requirements to efficiently engineer the plants for the enhancement of overall folate content. Similarly, consumption of a folate-rich diet with enhanced bioavailability is the best way to maintain optimum folate levels in the body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Sugars Increase Non-Heme Iron Bioavailability in Human Epithelial Intestinal and Liver Cells

    PubMed Central

    Christides, Tatiana; Sharp, Paul

    2013-01-01

    Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55) increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions. PMID:24340076

  10. Effect of reactive core mat application on bioavailability of hydrophobic organic compounds

    PubMed Central

    Meric, Dogus; Barbuto, Sara M.; Alshawabkeh, Akram N.; Shine, James P.; Sheahan, Thomas C.

    2014-01-01

    Sediment remediation techniques to limit the bioavailability of contaminants are of special interest due to related acute or chronic toxicities associated with sediment contaminants. Bioavailability in aquatic sediments can be particularly problematic due to their accessibility to food chain biota, and interactions with surface and ground water. The effect of a reactive core mat (RCM) containing organoclay on the bioavailability of hydrophobic organic compounds (HOCs) (i.e., PCBs and naphthalene) was studied using oligochaete worms (Lumbriculus variegatus). Sediment sampled from the Neponset River (Milton, MA) with 10 ppm background PCB contamination was used in the experimental study. The objective of this study is to investigate the difference in HOC concentration of worms exposed to: a) a grab sample of contaminated sediment (10.4% total organic carbon); and b) an initially clean mixture of sand and organic matter (the so-called biouptake layer), placed on top of the RCM-capped sediment during consolidation coupled solute transport experiments. In addition to the experimental data, the U.S. Army Corps of Engineers (USACE) biota-sediment accumulation factor (BSAF) database was validated and used to model biouptake of contaminants for certain cases. Results indicate that RCM capping reduced the average bioavailability of both PCBs and naphthalene by a factor of about 50. In fact, worms exposed to the RCM-protected biouptake layer show virtually the same HOC concentrations as those measured in the control worm samples. PMID:22386995

  11. Effect of reactive core mat application on bioavailability of hydrophobic organic compounds.

    PubMed

    Meric, Dogus; Barbuto, Sara M; Alshawabkeh, Akram N; Shine, James P; Sheahan, Thomas C

    2012-04-15

    Sediment remediation techniques to limit the bioavailability of contaminants are of special interest due to related acute or chronic toxicities associated with sediment contaminants. Bioavailability in aquatic sediments can be particularly problematic due to their accessibility to food chain biota, and interactions with surface and ground water. The effect of a reactive core mat (RCM) containing organoclay on the bioavailability of hydrophobic organic compounds (HOCs) (i.e., PCBs and naphthalene) was studied using oligochaete worms (Lumbriculus variegatus). Sediment sampled from the Neponset River (Milton, MA) with 10 ppm background PCB contamination was used in the experimental study. The objective of this study is to investigate the difference in HOC concentration of worms exposed to: a) a grab sample of contaminated sediment (10.4% total organic carbon); and b) an initially clean mixture of sand and organic matter (the so-called biouptake layer), placed on top of the RCM-capped sediment during consolidation coupled solute transport experiments. In addition to the experimental data, the U.S. Army Corps of Engineers (USACE) biota-sediment accumulation factor (BSAF) database was validated and used to model biouptake of contaminants for certain cases. Results indicate that RCM capping reduced the average bioavailability of both PCBs and naphthalene by a factor of about 50. In fact, worms exposed to the RCM-protected biouptake layer show virtually the same HOC concentrations as those measured in the control worm samples.

  12. Zn and Fe biofortification: the right chemical environment for human bioavailability.

    PubMed

    Clemens, Stephan

    2014-08-01

    A considerable fraction of global disease burden and child mortality is attributed to Fe and Zn deficiencies. Biofortification, i.e. the development of plants with more bioavailable Zn and Fe, is widely seen as the most sustainable solution, provided suitable crops can be generated. In a cereal-dominated diet availability of Fe and Zn for absorption by the human gut is generally low and influenced by a highly complex chemistry. This complexity has mostly been attributed to the inhibitory effect of Fe and Zn binding by phytate, the principal phosphorus storage compound in cereal and legume seeds. However, phytate is only part of the answer to the multifaceted bioavailability question, albeit an important one. Recent analyses addressing elemental distribution and micronutrient speciation in seeds strongly suggest the existence of different Fe and Zn pools. Exploration of natural variation in maize showed partial separation of phytate levels and Fe bioavailability. Observations made with transgenic plants engineered for biofortification lend further support to this view. From a series of studies the metal chelator nicotianamine is emerging as a key molecule. Importantly, nicotianamine levels have been found to not only increase the loading of Fe and Zn into grains. Bioavailability assays indicate a strong activity of nicotianamine also as an enhancer of intestinal Fe and Zn absorption.

  13. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine.

    PubMed

    Chávez-Zamudio, Rubi; Ochoa-Flores, Angélica A; Soto-Rodríguez, Ida; Garcia-Varela, Rebeca; García, Hugo Sergio

    2017-09-20

    Curcumin is the main and most abundant bioactive component in Curcuma longa L. with documented properties in the prevention and treatment of chronic degenerative and infectious diseases. However, curcumin has low solubility in aqueous media, hence low bioavailability when administered orally. The use of nanoemulsions as carriers can provide a partial solution to bioavailability restrictions. In our study, O/W nanoemulsions of curcumin were prepared using lysophosphatidylcholine, a phospholipid with proven emulsification capacity; nevertheless, such qualities have not been previously reported in the preparation of nanoemulsions. Lysophosphatidylcholine was obtained by enzymatic removal of one fatty acid residue from phosphatidylcholine. The objective of our work was to formulate stable curcumin nanoemulsions and evaluate their bioavailability in BALB/c mice plasma after oral administration. Formulated nanoemulsions had a droplet size mean of 154.32 ± 3.10 nm, a polydispersity index of 0.34 ± 0.07 and zeta potential of -10.43 ± 1.10 mV; stability was monitored for 12 weeks. Lastly, in vivo pharmacokinetic parameters, using BALB/c mice, were obtained; namely, Cmax of 610 ± 65.0 μg mL(-1) and Tmax of 2 h. Pharmacokinetic data revealed a higher bioavailability of emulsified as opposed to free curcumin. Research regarding other potential emulsifiers that may provide better health benefits and carry nano-encapsulated bioactive compounds more effectively, is necessary. This study provides important data on the preparation and design of nanoencapsulated Curcumin using lysophosphatidylcholine as an emulsifier.

  14. Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment.

    PubMed

    Bade, Rabindra; Oh, Sanghwa; Sik Shin, Won

    2012-06-01

    In this study, changes in bioavailable concentrations of Pb, Zn, Cu and As in former smelter site soils (J1 and J2) were investigated before and after lime amendment. The immobilization efficiencies of metal(loid)s were evaluated by Toxicity Characteristic Leaching Procedure (TCLP). Their bioavailable concentrations in the soils were evaluated by the acid-extractable and -reducible fractions in Standard Measurement and Testing Program (i.e., SM&T(I+II)), in vitro physiologically based extraction test (PBET) and diffusive gradients in thin-films (DGT). The results showed that the bioavailable concentrations remarkably decreased after lime amendment in both J1 and J2 soils. DGT uptake and resupply (R) of Zn, Cu and As from soil to soil solution increased but that of Pb decreased. This pattern was consistent with SM&T(I+II)- and PBET-extractable concentrations after lime amendment. This indicates that lime amendment is highly effective for the immobilization of Zn, Cu and As, but not for Pb. Our results implicate that DGT can be used to estimate bioavailability of metal(loid)s in soils and further extended to estimate risk reduction after soil remediation.

  15. A novel method for evaluating bioavailability of polycyclic aromatic hydrocarbons in sediments of an urban stream.

    PubMed

    Nakajima, F; Baun, A; Ledin, A; Mikkelsen, P S

    2005-01-01

    Hydrophobic organic pollutants in urban wet weather discharges can accumulate in the sediments of receiving waters and may have adverse effects on the ecological system, especially on benthic organisms. Here, a novel method is developed for evaluating the bioavailability of such hydrophobic organic pollutants by considering the digestive guts in deposit-feeding polychaetes. We compared the amount of polycyclic aromatic hydrocarbons (PAHs) extracted by an organic solvent and by sodium dodecyl sulfate (SDS) solution (as a hypothetical digestive gut fluid of polychaetes) and interpreted the ratio of the two values as bioavailability. The sediment extracts were applied to bacterial acute toxicity tests and algal growth inhibition tests. Sediment samples were collected from an urban stream system receiving wet weather discharges. The bioavailability of the total amount of 12 PAHs in the sediments was in the range 14-38% based on the results from the GC/MS determination of the two different extracts. Lower molecular PAHs showed higher bioavailability compared to the higher molecular ones. The sediment extracts were shown to be toxic towards both algae and bacteria. The SDS extracts showed similar or higher toxicity in the two biotests compared to the organic solvent extracts in spite of their lower PAHs content.

  16. Bioavailability of arsenic, cadmium, iron and zinc in leafy vegetables amended with urban particulate matter suspension.

    PubMed

    Tremlová, Jana; Száková, Jiřina; Sysalová, Jiřina; Tlustoš, Pavel

    2013-04-01

    Urban particulate matter (PM) can affect green plants either via deposition on the above-ground biomass, where the contaminants can penetrate the leaf surface, or indirectly via soil-root interaction. This experiment assessed the potential risk of PM-derived risk elements contained in vegetables. The bioavailable portions of arsenic (As), cadmium (Cd), iron (Fe), and zinc (Zn) in leafy vegetables amended by PM via soil and/or foliar application were investigated in a model pot experiment, in which lettuce and chard were cultivated. By using the physiologically based extraction test simulating in vitro human digestive processes in the stomach and small intestine, the bioavailable portions of toxic elements from PM-amended plant biomass were extracted. Extractable portions of elements by a simulated gastric solution from biomass decreased for lettuce in the order Zn > Cd > As > Fe; while for chard, the order was As > Zn > Cd > Fe. No significant effects of PM physical fractions or soil were observed. Although the bioavailable element portions in the PM samples were lower compared to plants, the bioavailable element contents in foliar PM-amended plant leaves exceeded the control and soil PM amendment levels, even after biomass washing. © 2012 Society of Chemical Industry.

  17. Relative bioavailability of metaproterenol in humans utilizing a single dose, stable isotope approach

    SciTech Connect

    Hatch, F.; McKellop, K.; Hansen, G.; MacGregor, T.

    1986-09-01

    The relative bioavailability of metaproterenol (3,5-dihydroxy-alpha-((isopropylamino)methyl)benzyl alcohol) following a single dose (10-mg metaproterenol sulfate tablet) was studied in six normal male volunteers using coadministration of a solution of a deuterated analogue (metaproterenol-d7 sulfate). The bioavailability of the tablet formulation relative to that of the oral solution was 92 +/- 9%, with excellent power at the 5% significance level. Comparison of the coadministration of the labeled and unlabeled metaproterenol sulfate solutions in two subjects after a one-week washout demonstrated the absence of an isotope effect on either absorption or elimination. A GC-MS assay for metaproterenol was developed to measure plasma concentrations resulting from oral administration. The assay was linear over the range of 0.5-8 ng/mL, corresponding to typical plasma metaproterenol concentrations obtained after a single 10-mg oral dose. Accuracy and precision data were obtained at metaproterenol concentrations of 1.0 and 2.0 ng/mL plasma to demonstrate the applicability of the assay for bioavailability studies. Following oral administration, metaproterenol showed peak plasma concentrations of 2.2 to 13 ng/mL at 0.75 to 3.0 h, with a terminal harmonic mean half-life of 2.1 h over the plasma concentration range studied. The renal clearance of 133-158 mL/min for metaproterenol slightly exceeds the glomerular filtration rate in humans.

  18. Efficiency of white lupin in the removal of mercury from contaminated soils: soil and hydroponic experiments.

    PubMed

    Zornoza, Pilar; Millán, Rocío; Sierra, M José; Seco, Almudena; Esteban, Elvira

    2010-01-01

    This study examined the ability of the white lupin to remove mercury (Hg) from a hydroponic system (Hg concentrations 0, 1.25, 2.5, 5 and 10 micromol/L) and from soil in pots and lysimeters (total Hg concentration (19.2 +/- 1.9) mg/kg availability 0.07%, and (28.9 +/- 0.4) mg/kg availability 0.09%, respectively), and investigated the accumulation and distribution of Hg in different parts of the plant. White lupin roots efficiently took up Hg, but its translocation to the harvestable parts of the plant was low. The Hg concentration in the seeds posed no risk to human health according to the recommendations of the World Health Organization, but the shoots should not be used as fodder for livestock, at least when unmixed with other fodder crops. The accumulation of Hg in the hydroponically-grown plants was linear over the concentration range tested. The amount of Hg retained in the roots, relative to the shoots, was almost constant irrespective of Hg dose (90%). In the soil experiments, Hg accumulation increased with exposure time and was the greater in the lysimeter than in the pot experiments. Although Hg removal was the greater in the hydroponic system, revealing the potential of the white lupin to extract Hg, bioaccumulation was the greatest in the lysimeter-grown plants; the latter system more likely reflects the true behaviour of white lupin in the field when Hg availability is a factor that limits Hg removal. The present results suggest that the white lupin could be used in long-term soil reclamation strategies that include the goal of profitable land use in Hg-polluted areas.

  19. Lentil (Lens culinaris L) as a candidate crop for iron biofortification: Is there a genetic potential for iron bioavailability?

    USDA-ARS?s Scientific Manuscript database

    Iron (Fe) deficiency is the most prevalent nutrient deficiency worldwide. Biofortification of staple food crops, such as the lentil (Lens culinaris L.), may be an effective solution. We analyzed the iron (Fe) concentration, Fe bioavailability, and phytic acid (PA) concentration of 23 lentil genotype...

  20. Survival and Transfer of Murine Norovirus within a Hydroponic System during Kale and Mustard Microgreen Harvesting.

    PubMed

    Wang, Qing; Kniel, Kalmia E

    2015-11-13

    Hydroponically grown microgreens are gaining in popularity, but there is a lack of information pertaining to their microbiological safety. The potential risks associated with virus contamination of crops within a hydroponic system have not been studied to date. Here a human norovirus (huNoV) surrogate (murine norovirus [MNV]) was evaluated for its ability to become internalized from roots to edible tissues of microgreens. Subsequently, virus survival in recirculated water without adequate disinfection was assessed. Kale and mustard seeds were grown on hydroponic pads (for 7 days with harvest at days 8 to 12), edible tissues (10 g) were cut 1 cm above the pads, and corresponding pieces (4 cm by 4 cm) of pads containing only roots were collected separately. Samples were collected from a newly contaminated system (recirculated water inoculated with ∼3 log PFU/ml MNV on day 8) and from a previously contaminated system. (A contaminated system without adequate disinfection or further inoculation was used for production of another set of microgreens.) Viral titers and RNA copies were quantified by plaque assay and real-time reverse transcription (RT)-PCR. The behaviors of MNV in kale and mustard microgreens were similar (P > 0.05). MNV was detected in edible tissues and roots after 2 h postinoculation, and the levels were generally stable during the first 12 h. Relatively low levels (∼2.5 to ∼1.5 log PFU/sample of both edible tissues and roots) of infectious viruses were found with a decreasing trend over time from harvest days 8 to 12. However, the levels of viral RNA present were higher and consistently stable (∼4.0 to ∼5.5 log copies/sample). Recirculated water maintained relatively high levels of infectious MNV over the period of harvest, from 3.54 to 2.73 log PFU/ml. Importantly, cross-contamination occurred easily; MNV remained infectious in previously contaminated hydroponic systems for up to 12 days (2.26 to 1.00 PFU/ml), and MNV was detected in both

  1. Survival and Transfer of Murine Norovirus within a Hydroponic System during Kale and Mustard Microgreen Harvesting

    PubMed Central

    Wang, Qing

    2015-01-01

    Hydroponically grown microgreens are gaining in popularity, but there is a lack of information pertaining to their microbiological safety. The potential risks associated with virus contamination of crops within a hydroponic system have not been studied to date. Here a human norovirus (huNoV) surrogate (murine norovirus [MNV]) was evaluated for its ability to become internalized from roots to edible tissues of microgreens. Subsequently, virus survival in recirculated water without adequate disinfection was assessed. Kale and mustard seeds were grown on hydroponic pads (for 7 days with harvest at days 8 to 12), edible tissues (10 g) were cut 1 cm above the pads, and corresponding pieces (4 cm by 4 cm) of pads containing only roots were collected separately. Samples were collected from a newly contaminated system (recirculated water inoculated with ∼3 log PFU/ml MNV on day 8) and from a previously contaminated system. (A contaminated system without adequate disinfection or further inoculation was used for production of another set of microgreens.) Viral titers and RNA copies were quantified by plaque assay and real-time reverse transcription (RT)-PCR. The behaviors of MNV in kale and mustard microgreens were similar (P > 0.05). MNV was detected in edible tissues and roots after 2 h postinoculation, and the levels were generally stable during the first 12 h. Relatively low levels (∼2.5 to ∼1.5 log PFU/sample of both edible tissues and roots) of infectious viruses were found with a decreasing trend over time from harvest days 8 to 12. However, the levels of viral RNA present were higher and consistently stable (∼4.0 to ∼5.5 log copies/sample). Recirculated water maintained relatively high levels of infectious MNV over the period of harvest, from 3.54 to 2.73 log PFU/ml. Importantly, cross-contamination occurred easily; MNV remained infectious in previously contaminated hydroponic systems for up to 12 days (2.26 to 1.00 PFU/ml), and MNV was detected in both

  2. Hydroponic screening of poplar for trace element tolerance and accumulation.

    PubMed

    Migeon, Aude; Richaud, Pierre; Guinet, Frédéric; Blaudez, Damien; Chalot, Michel

    2012-04-01

    Using the nutrient film technique, we screened 21 clones of poplar for growth in the presence of a mix of trace elements (TE) and for TE accumulation capacities. Poplar cuttings were exposed for four weeks to a multipollution solution consisting in 10 microM Cd, Cu, Ni, and Pb, and 200 microM Zn. Plant biomass and TE accumulation patterns in leaves varied greatly between clones. The highest Cd and Zn concentrations in leaves were detected in P. trichocarpa and P. trichocarpa hybrids, with the clone Skado (P. trichocarpa x P. maximowiczii) accumulating up to 108 mg Cd kg(-1) DW and 1510 mg Zn kg(-1) DW when exposed to a multipollution context. Our data also confirm the importance of pH and multipollution, as these factors greatly affect TE accumulation in above ground biomass. The NFT technique applied here to a large range of poplar clones also revealed the potential of the Rochester, AFO662 and AFO678 poplar clones for use in phytostabilization programs and bioenergy production, where production of less contaminated above ground biomass is suitable.

  3. Variations in Metal Tolerance and Accumulation in Three Hydroponically Cultivated Varieties of Salix integra Treated with Lead

    PubMed Central

    Sun, Haijing; Chen, Yitai; Pan, Hongwei; Yang, Xiaoe; Rafiq, Tariq

    2014-01-01

    Willow species have been suggested for use in the remediation of contaminated soils due to their high biomass production, fast growth, and high accumulation of heavy metals. The tolerance and accumulation of metals may vary among willow species and varieties, and the assessment of this variability is vital for selecting willow species/varieties for phytoremediation applications. Here, we examined the variations in lead (Pb) tolerance and accumulation of three cultivated varieties of Salix integra (Weishanhu, Yizhibi and Dahongtou), a shrub willow native to northeastern China, using hydroponic culture in a greenhouse. In general, the tolerance and accumulation of Pb varied among the three willow varieties depending on the Pb concentration. All three varieties had a high tolerance index (TI) and EC50 value (the effective concentration of Pb in the nutrient solution that caused a 50% inhibition on biomass production), but a low translocation factor (TF), indicating that Pb sequestration is mainly restricted in the roots of S. integra. Among the three varieties, Dahogntou was more sensitive to the increased Pb concentration than the other two varieties, with the lowest EC50 and TI for root and above-ground tissues. In this respect, Weishanhu and Yizhibi were more suitable for phytostabilization of Pb-contaminated soils. However, our findings also indicated the importance of considering the toxicity symptoms when selecting willow varieties for the use of phytoremediation, since we also found that the three varieties revealed various toxicity symptoms of leaf wilting, chlorosis and inhibition of shoot and root growth under the higher Pb concentrations. Such symptoms could be considered as a supplementary index in screening tests. PMID:25268840

  4. Do rhizospheric processes linked to P nutrition participate in U absorption by Lupinus albus grown in hydroponics?

    PubMed

    Tailliez, Antoine; Pierrisnard, Sylvie; Camilleri, Virginie; Keller, Catherine; Henner, Pascale

    2013-10-01

    Phosphate (P) is an essential element for plant development but is generally present in limiting amount in the soil solution. Plant species have developed different mechanisms promoting the solubilization of this element in soils to ensure a sufficient supply for their growth. One of these mechanisms is based on the ability of certain species such as L. albus to exude large amounts of citrate through specific tertiary roots called cluster-roots. Uranium (U) is an ubiquitous contaminant known firstly for its chemical toxicity and secondly for its high affinity for P with which it forms low-soluble complexes in soils. We highlight the effects of P-U interaction on the physiology of L. albus and particularly on citrate exudation, and the impact of this root process on the phytoavailability of U and its accumulation in plants in a hydroponic study. Different levels of P (1 and 100 μM) and U (0 and 20 μM) have been tested. Our results show no toxicity of U on the development of L. albus with an adequate P supply, whereas the effects of P starvation are amplified by the presence of U in the growth medium, except for the production of cluster-roots. Citrate exudation is totally inhibited by U in a low-P environment whereas it increases in the presence of U when its toxicity is lowered by the addition of P. The differences observed in terms of toxicity and accumulation are partly explained by the microphotographs obtained by electron microscopy (TEM-EDX): in the absence of P, U penetrates deep into the roots and causes lethal damages, whereas in presence of P, we observe the formation of U-P complexes which limit the internalization of the pollutant and so its toxicity.

  5. Influence of Se concentrations and species in hydroponic cultures on Se uptake, translocation and assimilation in non-accumulator ryegrass.

    PubMed

    Versini, Antoine; Di Tullo, Pamela; Aubry, Emmanuel; Bueno, Maïté; Thiry, Yves; Pannier, Florence; Castrec-Rouelle, Maryse

    2016-11-01

    The success of biofortification and phytoremediation practices, addressing Se deficiency and Se pollution issues, hinges crucially on the fate of selenium in the plant media in response to uptake, translocation and assimilation processes. We investigate the fate of selenium in root and shoot compartments after 3 and 6 weeks of experiment using a total of 128 plants grown in hydroponic solution supplied with 0.2, 2, 5, 20 and 100 mg L(-1) of selenium in the form of selenite, selenate and a mixture of both species. Selenate-treated plants exhibited higher root-to-shoot Se translocation and total Se uptake than selenite-treated plants. Plants took advantage of the selenate mobility and presumably of the storage capacity of leaf vacuoles to circumvent selenium toxicity within the plant. Surprisingly, 28% of selenate was found in shoots of selenite-treated plants, questioning the ability of plants to oxidize selenite into selenate. Selenomethionine and methylated organo-selenium amounted to 30% and 8% respectively in shoots and 35% and 9% in roots of the identified Se, suggesting that selenium metabolization occurred concomitantly in root and shoot plant compartments and demonstrating that non-accumulator plants can synthesize notable quantities of precursor compound for volatilization. The present study demonstrated that non-accumulator plants can develop the same strategies as hyper-accumulator plants to limit selenium toxicity. When both selenate and selenite were supplied together, plants used selenate in a storage pathway and selenite in an assimilation pathway. Plants might thereby benefit from mixed supplies of selenite and selenate by saving enzymes and energy required for selenate reduction.

  6. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead.

    PubMed

    Wang, Shufeng; Shi, Xiang; Sun, Haijing; Chen, Yitai; Pan, Hongwei; Yang, Xiaoe; Rafiq, Tariq

    2014-01-01

    Willow species have been suggested for use in the remediation of contaminated soils due to their high biomass production, fast growth, and high accumulation of heavy metals. The tolerance and accumulation of metals may vary among willow species and varieties, and the assessment of this variability is vital for selecting willow species/varieties for phytoremediation applications. Here, we examined the variations in lead (Pb) tolerance and accumulation of three cultivated varieties of Salix integra (Weishanhu, Yizhibi and Dahongtou), a shrub willow native to northeastern China, using hydroponic culture in a greenhouse. In general, the tolerance and accumulation of Pb varied among the three willow varieties depending on the Pb concentration. All three varieties had a high tolerance index (TI) and EC50 value (the effective concentration of Pb in the nutrient solution that caused a 50% inhibition on biomass production), but a low translocation factor (TF), indicating that Pb sequestration is mainly restricted in the roots of S. integra. Among the three varieties, Dahogntou was more sensitive to the increased Pb concentration than the other two varieties, with the lowest EC50 and TI for root and above-ground tissues. In this respect, Weishanhu and Yizhibi were more suitable for phytostabilization of Pb-contaminated soils. However, our findings also indicated the importance of considering the toxicity symptoms when selecting willow varieties for the use of phytoremediation, since we also found that the three varieties revealed various toxicity symptoms of leaf wilting, chlorosis and inhibition of shoot and root growth under the higher Pb concentrations. Such symptoms could be considered as a supplementary index in screening tests.

  7. From Bioavailability Science to Regulation of Organic Chemicals.

    PubMed

    Ortega-Calvo, Jose-J; Harmsen, Joop; Parsons, John R; Semple, Kirk T; Aitken, Michael D; Ajao, Charmaine; Eadsforth, Charles; Galay-Burgos, Malyka; Naidu, Ravi; Oliver, Robin; Peijnenburg, Willie J G M; Römbke, Jörg; Streck, Georg; Versonnen, Bram

    2015-09-01

    The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently started to consider bioavailability within retrospective risk assessment frameworks for organic chemicals; by doing so, realistic decision-making with regard to polluted environments can be achieved, rather than relying on the traditional approach of using total-extractable concentrations. However, implementation remains difficult because scientific developments on bioavailability are not always translated into ready-to-use approaches for regulators. Similarly, bioavailability remains largely unexplored within prospective regulatory frameworks that address the approval and regulation of organic chemicals. This article discusses bioavailability concepts and methods, as well as possible pathways for the implementation of bioavailability into risk assessment and regulation; in addition, this article offers a simple, pragmatic and justifiable approach for use within retrospective and prospective risk assessment.

  8. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    PubMed

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  9. beta-cyclodextrin derivatives, SBE4-beta-CD and HP-beta-CD, increase the oral bioavailability of cinnarizine in beagle dogs.

    PubMed

    Järvinen, T; Järvinen, K; Schwarting, N; Stella, V J

    1995-03-01

    The absolute bioavailabilities (Fabs) of cinnarizine after oral administration as two modified beta-cyclodextrin (SBE4-beta-CD or HP-beta-CD) solutions, an aqueous suspension, and two capsules in fasted beagle dogs were determined. Cinnarizine was administered orally (25.0 mg) and intravenously (12.5 mg) to four dogs. Blood samples were drawn for 24.5 h postdosing, and cinnarizine levels in plasma were determined by HPLC with spectrofluorometric detection. Cinnarizine pharmacokinetics after iv administration as a 1.25 mg/mL SBE4-beta-CD solution followed triexponential behavior (t1/2 = 12.6 +/- 0.4 h and CI = 1.4 +/- 0.17 L/h/kg). A very low bioavailability of cinnarizine with a wide interanimal variation was observed after oral administration as a suspension (Fabs = 8 +/- 4%) or capsule containing only cinnarizine (Fabs = 0.8 +/- 0.4%). Administration of cinnarizine as a CD complex either as a solution (Fabs = 55-60%) or in a capsule (Fabs = 38 +/- 12%) significantly enhanced the bioavailability. Since the solutions showed excellent bioavailability, the logical conclusion is that, once presented as a solution, cinnarizine is well absorbed and that cinnarizine rapidly dissociates from its inclusion complexes. Presumably, the elevated bioavailability from the SBE4-beta-CD containing capsule was due to rapid dissolution and release of cinnarizine.

  10. Stimulating in situ surfactant production to increase contaminant bioavailability and augment bioremediation of petroleum hydrocarbons

    NASA Astrophysics Data System (ADS)

    Haws, N. W.; Bentley, H. W.; Yiannakakis, A.; Bentley, A. J.; Cassidy, D. P.

    2006-12-01

    The effectiveness of a bioremediation strategy is largely dependent on relationships between contaminant sequestration (geochemical limitations) and microbial degradation potential (biological limitations). As contaminant bioavailability becomes mass transfer limited, contaminant removal will show less sensitivity to biodegradation enhancements without concurrent enhancements to rates of mass transfer into the bioavailable phase. Implementing a strategy that can simultaneously address geochemical and biological limitations is motivated by a subsurface zone of liquid petroleum hydrocarbons (LPH) contamination that is in excess of 10 acres (40,000 sq. meters). Biodegradation potential at the site is high; however, observed biodegradation rates are generally low, indicative of bioavailability limitations (e.g., low aqueous solubilities, nutrient deficiencies, and/or mass transfer limitations), and estimates indicate that bioremediation (i.e., biosparging/bioventing) with unaugmented biodegradation may be unable to achieve the remedial objectives within an acceptable time. Bench-scale experiments using soils native to the site provide evidence that, in addition to nutrient additions, a pulsed oxygen delivery can increase biodegradation rates by stimulating the microbial production of biosurfactants (rhamnolipids), leading to a reduction in surface tension and an increase in contaminant bioavailability. Pilot-scale tests at the field site are evaluating the effectiveness of stimulating in situ biosurfactant production using cyclic biosparging. The cyclic sparging creates extended periods of alternating aerobic and oxygen-depleted conditions in the submerged smear zone. The increased bioavailability of LPH and the resulting biodegradation enhancements during the test are evaluated using measurements of surface tension (as confirmation of biosurfactant accumulation) and nitrate concentrations (as substantiation of anaerobic biodegradation during shut-off periods). The

  11. Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids

    SciTech Connect

    Basta, N.T.; Sloan, J.J.

    1999-03-01

    New federal regulations may increase application of exceptional quality (EQ) biosolids to acidic soils, and information on the effect of this practice on bioavailability of heavy metal is limited. The objective of this study was to compare bioavailability of heavy metal in soil treated with nonalkaline or alkaline EQ biosolids with limestone-treated soils. Three acidic soils (pH 3.7--4.3) were treated with three amounts of lime-stabilized biosolids (LS), anaerobic-digested biosolids (AN), or agricultural limestone (L), and incubated at 25 C. Soil solution Cd, Zn, and other chemical constituents were measured at 1, 30, 90, and 180 d incubation. Soil solution Cd and Zn were AN > LS {ge} L, C. Soil solution Cd and Zn increased with AN applied but decreased wit h LS applied. The high application of LS had soil solution Zn dramatically decreased at soil pH > 5.5 and >5.1, respectively. Soil solution Cd and Zn increases were AN > LS with incubation time. Biosolids treatments increased heavy metal in Ca(NO{sub 3}){sub 2} and NaOAc fractions. Except for Cd, most metal from biosolids were in EDTA and HNO{sub 3} fractions. Heavy metal bioavailability, measured using lettuce (Latuca sativa L.), was AN > LS {ge} L, C. Although state regulations prohibiting application of nonalkaline EQ biosolids to acidic soil is a prudent practice, application of EQ alkaline biosolids that achieves soil pH > 5 minimizes risk from soil solution Cd and Zn and plant uptake of heavy metal.

  12. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley.

    PubMed

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K

    2012-06-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na(+), Cl(-), and K(+) at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at EC(e) 7.2 [Spearman's rank correlation (rs)=0.79] and EC(e) 15.3 (rs=0.82) and the crucial parameter of leaf Na(+) (rs=0.72) and Cl(-) (rs=0.82) concentrations at EC(e) 7.2 dS m(-1). This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of

  13. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley

    PubMed Central

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.

    2012-01-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt

  14. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization.

    PubMed

    Chen, Zhe; Tang, Ye-Tao; Zhou, Can; Xie, Shu-Ting; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-05-01

    Cadmium contaminated rice from China has become a global food safety issue. Some research has suggested that chelate addition to substrates can affect metal speciation and plant metal content. We investigated the mitigation of Cd accumulation in hydroponically-grown rice supplied with EDTANa2Fe(II) or EDDHAFe(III). A japonica rice variety (Nipponbare) was grown in modified Kimura B solution containing three concentrations (0, 10, 100 μΜ) of the iron chelates EDTANa2Fe(II) or EDDHAFe(III) and 1 μΜ Cd. Metal speciation in solution was simulated by Geochem-EZ; growth and photosynthetic efficiency of rice were evaluated, and accumulation of Cd and Fe in plant parts was determined. Net Cd fluxes in the meristematic zone, growth zone, and maturation zone of roots were monitored by a non-invasive micro-test technology. Expression of Fe- and Cd-related genes in Fe-sufficient or Fe-deficient roots and leaves were studied by QRT-PCR. Compared to Fe deficiency, a sufficient or excess supply of Fe chelates significantly enhanced rice growth by elevating photosynthetic efficiency. Both Fe chelates increased the Fe content and decreased the Cd content of rice organs, except for the Cd content of roots treated with excess EDDHAFe(III). Compared to EDDHAFe(III), EDTANa2Fe(II) exhibited better mitigation of Cd accumulation in rice by generating the EDTANa2Cd complex in solution, decreasing net Cd influx and increasing net Cd efflux in root micro-zones. Application of EDTANa2Fe(II) and EDDHAFe(III) also reduced Cd accumulation in rice by inhibiting expression of genes involved in transport of Fe and Cd in the xylem and phloem. The 'win-win' situation of Fe biofortification and Cd mitigation in rice was achieved by application of Fe chelates. Root-to-stem xylem transport of Cd and redistribution of Cd in leaves by phloem transport can be regulated in rice through the use of Fe chelates that influence Fe availability and Fe-related gene expression. Fe fertilization decreased Cd

  15. Survival of Potentially Pathogenic Human-Associated Bacteria in the Rhizosphere of Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Morales, Anabelle; Garland, Jay L.; Lim, Daniel V.

    1996-01-01

    Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(exp 8 cu/ml)) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aeruginosa showed considerable growth. E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition.

  16. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system

    PubMed Central

    Ding, Haiyan; Liu, Menglong; Hayat, Sikandar; Feng, Han

    2016-01-01

    ABSTRACT A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12) were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA) content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production. PMID:27095440

  17. Survival of potentially pathogenic human-associated bacteria in the rhizosphere of hydroponically grown wheat.

    PubMed

    Morales, A; Garland, J L; Lim, D V

    1996-07-01

    Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(8) cfu ml-1) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aerogiunosa showed considerable growth, E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition.

  18. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics.

    PubMed

    Goto, E; Both, A J; Albright, L D; Langhans, R W; Leed, A R

    1996-12-01

    Lettuce (Lactuca sativa L., cv. Ostinata) growth experiments were carried out to study the effect of dissolved oxygen (DO) concentration on plant growth in a floating hydroponic system. Pure O2 and N2 gas were supplied to the hydroponic system for precise DO control. This system made it easy to increase the DO concentration beyond the maximum (or saturation) concentration possible when bubbling air into water. Eleven day old lettuce seedlings were grown for 24 days under various DO concentrations: sub-saturated, saturated, and super-saturated. There was no significant difference in fresh weight, shoot and root dry weights among the DO concentrations: 2.1 (25% of saturated at 24 degrees C), 4.2 (50%), 8.4 (saturated), and 16.8 (200%) mg/L. The critical DO concentration for vigorous lettuce growth was considered to be lower than 2.1 mg/L. Neither root damage nor delay of shoot growth was observed at any of the studied DO concentrations.

  19. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics.

    PubMed

    Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  20. Isoflavones: estrogenic activity, biological effect and bioavailability.

    PubMed

    Vitale, Daniela Cristina; Piazza, Cateno; Melilli, Barbara; Drago, Filippo; Salomone, Salvatore

    2013-03-01

    Isoflavones are phytoestrogens with potent estrogenic activity; genistein, daidzein and glycitein are the most active isoflavones found in soy beans. Phytoestrogens have similarity in structure with the human female hormone 17-β-estradiol, which can bind to both alpha and beta estrogen receptors, and mimic the action of estrogens on target organs, thereby exerting many health benefits when used in some hormone-dependent diseases. Numerous clinical studies claim benefits of genistein and daidzein in chemoprevention of breast and prostate cancer, cardiovascular disease and osteoporosis as well as in relieving postmenopausal symptoms. The ability of isoflavones to prevent cancer and other chronic diseases largely depends on pharmacokinetic properties of these compounds, in particular absorption and distribution to the target tissue. The chemical form in which isoflavones occur is important because it influences their bioavailability and, therefore, their biological activity. Glucose-conjugated isoflavones are highly polar, water-soluble compounds. They are hardly absorbed by the intestinal epithelium and have weaker biological activities than the corresponding aglycone. Different microbial families of colon can transform glycosylated isoflavones into aglycones. Clinical studies show important differences between the aglycone and conjugated forms of genistein and daidzein. The evaluation of isoflavone metabolism and bioavailability is crucial to understanding their biological effects. Lipid-based formulations such as drug incorporation into oils, emulsions and self-microemulsifying formulations have been introduced to increase bioavailability. Complexation with cyclodextrin also represent a valid method to improve the physicochemical characteristics of these substances in order to be absorbed and distributed to target tissues. We review and discuss pharmacokinetic issues that critically influence the biological activity of isoflavones.

  1. Highly bioavailable silibinin nanoparticles inhibit HCV infection.

    PubMed

    Liu, Ching-Hsuan; Lin, Chun-Ching; Hsu, Wen-Chan; Chung, Chueh-Yao; Lin, Chih-Chan; Jassey, Alagie; Chang, Shun-Pang; Tai, Chen-Jei; Tai, Cheng-Jeng; Shields, Justin; Richardson, Christopher D; Yen, Ming-Hong; Tyrrell, D Lorne J; Lin, Liang-Tzung

    2017-10-01

    Silibinin is a flavonolignan that is well established for its robust antiviral activity against HCV infection and has undergone several clinical trials for the management of hepatitis C. Despite its potency, silibinin suffers from poor solubility and bioavailability, restricting its clinical use. To overcome this limitation, we developed highly bioavailable silibinin nanoparticles (SB-NPs) and evaluated their efficiency against HCV infection. SB-NPs were prepared using a nanoemulsification technique and were physicochemically characterised. Infectious HCV culture systems were used to evaluate the influence of SB-NP on the virus life cycle and examine their antioxidant activity against HCV-induced oxidative stress. The safety profiles of SB-NP, in vivo pharmacokinetic studies and antiviral activity against infection of primary human hepatocytes were also assessed. SB-NP consisted of nanoscale spherical particles (<200 nm) encapsulating amorphous silibinin at >97% efficiency and increasing the compound's solubility by >75%. Treatment with SB-NP efficiently restricted HCV cell-to-cell transmission, suggesting that they retained silibinin's robust anti-HCV activity. In addition, SB-NP exerted an antioxidant effect via their free radical scavenging function. Oral administration of SB-NP in rodents produced no apparent in vivo toxicity, and pharmacokinetic studies revealed an enhanced serum level and superior biodistribution to the liver compared with non-modified silibinin. Finally, SB-NP efficiently reduced HCV infection of primary human hepatocytes. Due to SB-NP's enhanced bioavailability, effective anti-HCV activity and an overall hepatoprotective effect, we suggest that SB-NP may be a cost-effective anti-HCV agent that merits further evaluation for the treatment of hepatitis C. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Bioavailability and feasibility of subcutaneous 5-fluorouracil.

    PubMed

    Borner, M M; Kneer, J; Crevoisier, C; Brunner, K W; Cerny, T

    1993-09-01

    Continuous intravenous (i.v.) infusion of 5-fluorouracil (5-FU) has been shown to be superior to bolus regimens in terms of response rates and toxicity. However, a continuous infusion is more expensive and prone to complications such as thromboembolism and infections. A way to circumvent these problems would be to administer 5-FU subcutaneously (s.c.). To assess feasibility and bioavailability of s.c. 5-FU, eight patients with advanced cancer received 250 mg 5-FU as an infusion over 90 min either intravenously (i.v.) or s.c. into the abdominal wall. The mean +/- s.d. bioavailability of s.c. 5-FU was 0.89 +/- 0.23. The interpatient variability for the area under the plasma concentration-time curve was 48% for the s.c. and 36% for the i.v. infusion. No local side effects were observed. To test the local tolerance of a more prolonged administration three patients received 930-1,000 mg m-2 5-FU by 24-h continuous s.c. infusion. The steady-state plasma levels were comparable to i.v. infusion. One patient developed a painless skin pigmentation at the s.c. infusion site. However, the same reaction was observed at the forearm after i.v. infusion. We conclude that at the dose studied s.c. 5-FU has an almost complete bioavailability and is well tolerated. Further work will show, whether prolonged s.c. infusion can be used as a safe and economical alternative to i.v. infusion.

  3. Bioavailability and feasibility of subcutaneous 5-fluorouracil.

    PubMed Central

    Borner, M. M.; Kneer, J.; Crevoisier, C.; Brunner, K. W.; Cerny, T.

    1993-01-01

    Continuous intravenous (i.v.) infusion of 5-fluorouracil (5-FU) has been shown to be superior to bolus regimens in terms of response rates and toxicity. However, a continuous infusion is more expensive and prone to complications such as thromboembolism and infections. A way to circumvent these problems would be to administer 5-FU subcutaneously (s.c.). To assess feasibility and bioavailability of s.c. 5-FU, eight patients with advanced cancer received 250 mg 5-FU as an infusion over 90 min either intravenously (i.v.) or s.c. into the abdominal wall. The mean +/- s.d. bioavailability of s.c. 5-FU was 0.89 +/- 0.23. The interpatient variability for the area under the plasma concentration-time curve was 48% for the s.c. and 36% for the i.v. infusion. No local side effects were observed. To test the local tolerance of a more prolonged administration three patients received 930-1,000 mg m-2 5-FU by 24-h continuous s.c. infusion. The steady-state plasma levels were comparable to i.v. infusion. One patient developed a painless skin pigmentation at the s.c. infusion site. However, the same reaction was observed at the forearm after i.v. infusion. We conclude that at the dose studied s.c. 5-FU has an almost complete bioavailability and is well tolerated. Further work will show, whether prolonged s.c. infusion can be used as a safe and economical alternative to i.v. infusion. PMID:8353044

  4. Investigations of copper speciation and bioavailability

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1995-12-31

    Speciation, or form in which copper occurs, can effect the bioavailability and therefore, the toxicity of that element. One needs to determine the bioavailable forms of copper in sediment/water effects on organisms. In both water and sediment experiments, physical/chemical factors influencing copper speciation were evaluated and related to organism responses. Ten day aqueous experiments encompassing a range of pH (6.5--8.1), alkalinity (10--70 mg/L as CaCO{sub 3}), hardness (10--70 mg/L as CaCO{sub 3}) and conductivity (30--300 umhos/cm) were conducted using Hyalella azteca. Amphipod survival was evaluated relative to changes in water characteristics and concomitant changes in copper speciation as measured using atomic adsorption spectroscopy (AA) for acid extractable copper, and differential pulse anodic stripping voltammetry (DPASV) for labile copper. Ten day LC50s based on AA measured copper concentrations ranged from 42 to 142 ug/L Cu, and LC50s based on DPASV measured copper concentrations ranged from 17.4--24.8 ug/L Cu. Ten day sediment experiments encompassing a range of sediment pH, organic carbon content, acid volatile sulfides and redox concentrations were also conducted using H. azteca. Overlying water (AA and DPASV) and sediment copper concentrations (AA) were measured and evaluated relative to organism survival. Ten day sediment test LC50s based on DPASV measured copper concentrations in overlying water were 18.5 and 18 ug/L Cu for experiments in sandy and silty sediments, respectively. Organism survival, used as a measure of bioavailable copper, was evaluated in relation to measured copper species concentrations and used to develop guidelines for predicting copper toxicity in freshwater systems.

  5. The bioavailability of chemicals in soil for earthworms

    USGS Publications Warehouse

    Lanno, R.; Wells, J.; Conder, Jason M.; Bradham, K.; Basta, N.

    2004-01-01

    The bioavailability of chemicals to earthworms can be modified dramatically by soil physical/chemical characteristics, yet expressing exposure as total chemical concentrations does not address this problem. In order to understand the effects of modifying factors on bioavailability, one must measure and express chemical bioavailability to earthworms in a consistent, logical manner. This can be accomplished by direct biological measures of bioavailability (e.g., bioaccumulation, critical body residues), indirect biological measures of bioavailability (e.g., biomarkers, reproduction), or indirect chemical measures of bioavailability (e.g., chemical or solid-phase extracts of soil). If indirect chemical measures of bioavailability are to be used, they must be correlated with some biological response. Bioavailability can be incorporated into ecological risk assessment during risk analysis, primarily in the estimation of exposure. However, in order to be used in the site-specific ecological risk assessment of chemicals, effects concentrations must be developed from laboratory toxicity tests based on exposure estimates utilizing techniques that measure the bioavailable fraction of chemicals in soil, not total chemical concentrations. ?? 2003 Elsevier Inc. All rights reserved.

  6. Bioavailability of Micronutrients from Plant Foods: An Update.

    PubMed

    Platel, Kalpana; Srinivasan, Krishnapura

    2016-07-26

    Deficiencies of iron, zinc, iodine and vitamin A are widespread in the developing countries, poor bioavailability of these micronutrients from plant-based foods being the major reason for their wide prevalence. Diets predominantly vegetarian are composed of components that enhance as well as inhibit mineral bioavailability, the latter being predominant. However, prudent cooking practices and use of ideal combinations of food components can significantly improve micronutrient bioavailability. Household processing such as heat treatment, sprouting, fermentation and malting have been evidenced to enhance the bioavailability of iron and β-carotene from plant foods. Food acidulants amchur and lime are also shown to enhance the bioavailability of not only iron and zinc, but also of β-carotene. Recently indentified newer enhancers of micronutrient bioaccessibility include sulphur compound-rich Allium spices-onion and garlic, which also possess antioxidant properties, β-carotene-rich vegetables-carrot and amaranth, and pungent spices-pepper (both red and black) as well as ginger. Information on the beneficial effect of these dietary compounds on micronutrient bioaccessibility is novel. These food components evidenced to improve the bioavailability of micronutrients are common ingredients of Indian culinary, and probably of other tropical countries. Fruits such as mango and papaya, when consumed in combination with milk, provide significantly higher amounts of bioavailable β-carotene. Awareness of the beneficial influence of these common dietary ingredients on the bioavailability of micronutrients would help in devising dietary strategies to improve the bioavailability of these vital nutrients.

  7. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  8. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System.

    PubMed

    Garcés-Ruiz, Mónica; Calonne-Salmon, Maryline; Plouznikoff, Katia; Misson, Coralie; Navarrete-Mier, Micaela; Cranenbrouck, Sylvie; Declerck, Stéphane

    2017-01-01

    A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.

  9. Vitamin D bioavailability: state of the art.

    PubMed

    Borel, P; Caillaud, D; Cano, N J

    2015-01-01

    There has been renewed interest in vitamin D since numerous recent studies have suggested that besides its well-established roles in bone metabolism and immunity, vitamin D status is inversely associated with the incidence of several diseases, e.g., cancers, cardio-vascular diseases, and neurodegenerative diseases. Surprisingly, there is very little data on factors that affect absorption of this fat-soluble vitamin, although it is acknowledged that dietary vitamin D could help to fight against the subdeficient vitamin D status that is common in several populations. This review describes the state of the art concerning the fate of vitamin D in the human upper gastrointestinal tract and on the factors assumed to affect its absorption efficiency. The main conclusions are: (i) ergocalciferol (vitamin D2), the form mostly used in supplements and fortified foods, is apparently absorbed with similar efficiency to cholecalciferol (vitamin D3, the main dietary form), (ii) 25-hydroxyvitamin D (25OHD), the metabolite produced in the liver, and which can be found in foods, is better absorbed than the nonhydroxy vitamin D forms cholecalciferol and ergocalciferol, (iii) the amount of fat with which vitamin D is ingested does not seem to significantly modify the bioavailability of vitamin D3, (iv) the food matrix has apparently little effect on vitamin D bioavailability, (v) sucrose polyesters (Olestra) and tetrahydrolipstatin (orlistat) probably diminish vitamin D absorption, and (vi) there is apparently no effect of aging on vitamin D absorption efficiency. We also find that there is insufficient, or even no data on the following factors suspected of affecting vitamin D bioavailability: (i) effect of type and amount of dietary fiber, (ii) effect of vitamin D status, and (iii) effect of genetic variation in proteins involved in its intestinal absorption. In conclusion, further studies are needed to improve our knowledge of factors affecting vitamin D absorption efficiency

  10. Extraction, bioavailability, and bioefficacy of capsaicinoids.

    PubMed

    Lu, Muwen; Ho, Chi-Tang; Huang, Qingrong

    2017-01-01

    Capsaicinoids are active constituents responsible for the pungent and spicy flavor in chili peppers. During the past few decades, various extraction methods of capsaicinoids from peppers have been developed with high yields. Through biological studies, pharmacological benefits have been reported such as pain relief, antiinflammation, anticancer, cardio-protection, as well as weight loss. In this paper, the extraction methods and bioavailability of capsaicinoids are reviewed and discussed. In addition, the pharmacological effects and their underlying mechanisms are also studied. Copyright © 2016. Published by Elsevier B.V.

  11. Animal bioavailability of defined xenobiotic lignin metabolites

    SciTech Connect

    Sandermann, H. Jr.; Arjmand, M.; Gennity, I.; Winkler, R. ); Struble, C.B.; Aschbacher, P.W. )

    1990-09-01

    Lignin has been recognized as a major component of bound pesticide residues in plants and is thought to be undigestible in animals. Two defined ring-U-{sup 14}C-labeled chloroaniline/lignin metabolites have now been fed to rats, where a release of {approximately}66% of the bound xenobiotic occurred in the form of simple chloroaniline derivatives. The observed high degree of bioavailability indicates that bound pesticidal residues may possess ecotoxicological significance. In parallel studies, the white-rot fungus Phanerochaete chrysosporium was more efficient, and a soil system was much less efficient, in the degradation of the (ring-U-{sup 14}C)chloroaniline/lignin metabolites.

  12. Bioavailability of stabilised ferrous gluconate with glycine in fresh cheese matrix: a novel iron compound for food fortification.

    PubMed

    Pizarro, Fernando; Boccio, José; Salgueiro, María; Olivares, Manuel; Carmuega, Esteban; Weill, Ricardo; Marque, Sebastien; Frereux, Marine; Noirt, Florence

    2013-03-01

    Iron fortification of foods continues to be one of the preferred ways of improving the iron status of the population. Dairy product is a common product in the diet; therefore, it is a plausible vehicle for iron fortification. This study aims to investigate the bioavailability of ferrous gluconate stabilised with glycine (FGSG) in a fresh cheese fortified with zinc. The iron bioavailability of fresh cheese fortified with either FGSG and with or without zinc and FGSG in aqueous solution and a water solution of ferrous ascorbate (reference dose) was studied using double radio iron ((55)Fe and (59)Fe) erythrocyte incorporation in 15 male subjects. All subjects presented with normal values for iron status parameters. The geometric mean of iron bioavailability for the water solution of FGSG was 38.2 %, adjusted to 40 % from reference doses (N.S.). Iron bioavailability in fresh cheese fortified with Ca and Zn was 15.4 % and was 23.1 % without Zn, adjusted to 40 % from reference doses (N.S.). The results of the present study show that the novel iron compound ferrous gluconate stabilised with glycine in a fresh cheese matrix is a good source of iron and can be used in iron fortification programmes.

  13. Bioavailability of the Nano-Unit 14C-Agrochemicals Under Various Water Potential.

    PubMed

    Jung, S C; Kim, H G; Kuk, Y I; Ahn, H G; Senseman, S A; Lee, D J

    2015-08-01

    The study was conducted to investigate the effects of water potential on bioavailability of the nano-unit 14C-cafenstrole, 14C-pretilachlor, 14C-benfuresate, 14C-simetryn and 14C-oxyfluorfen applied with or without dimepiperate or daimuron under various water potential conditions. The highest bioavailable concentration in soil solution (BCSS) was found at 60% soil moisture, while the lowest occurred at 50% soil moisture for soil-applied alone or in combination. All water potential conditions differed significantly from each other with variations in total bioavailable amount in soil solution (TBSS) when either dimepiperate or daimuron were added to the soil, and changes were directly proportional to variations in water potential. Across all treatments, TBSS at 80% soil moisture was three to four times greater than that at 50% soil moisture when applied alone or in combination with dimepiperate or daimuron. Cafenstrole and simetryn had distribution coefficient (Kd) values <64 ml g-1 and a TBSS ranging from 10 to 44 ng g-1 soil, regardless of water potential conditions applied alone or in combination. Pretilachlor and benfuresate had Kd values <15 ml g-1 and a TBSS range of 38 to 255 ng g-1 soil when applied with or without dimepiperate or daimuron.

  14. Planar microdevices for enhanced in vivo retention and oral bioavailability of poorly permeable drugs.

    PubMed

    Chirra, Hariharasudhan D; Shao, Ling; Ciaccio, Natalie; Fox, Cade B; Wade, Jennifer M; Ma, Averil; Desai, Tejal A

    2014-10-01

    The development of novel oral drug delivery platforms for administering therapeutics in a safe and effective manner through the harsh gastrointestinal environment is of great importance. Here, the use of engineered thin planar poly(methyl methacrylate) (PMMA) microdevices is tested to enhance oral bioavailability of acyclovir, a poorly permeable drug. Acyclovir is loaded into the unidirectional drug releasing microdevice reservoirs using a drug entrapping photocross-linkable hydrogel matrix. An increase in acyclovir permeation across in vitro caco-2 monolayer is seen in the presence of microdevices as compared with acyclovir-entrapped hydrogels or free acyclovir solution. Cell proliferation studies show that microdevices are relatively nontoxic in nature for use in in vivo studies. Enhanced in vivo retention of microdevices is observed as their thin side walls experience minimal peristaltic shear stress as compared with spherical microparticles. Unidirectional acyclovir release and enhanced retention of microdevices achieve a 4.5-fold increase in bioavailability in vivo as compared with an oral gavage of acyclovir solution with the same drug mass. The enhanced oral bioavailability results suggest that thin, planar, bioadhesive, and unidirectional drug releasing microdevices will significantly improve the systemic and localized delivery of a broad range of oral therapeutics in the near future.

  15. Improving oral bioavailability of metformin hydrochloride using water-in-oil microemulsions and analysis of phase behavior after dilution.

    PubMed

    Li, Yuan; Song, Jiaqi; Tian, Ning; Cai, Jie; Huang, Meihong; Xing, Qiao; Wang, Yalong; Wu, Chuanbin; Hu, Haiyan

    2014-10-01

    Microemulsions show significant promise for enhancing the oral bioavailability of biopharmaceutics classification system (BCS) class II drugs, but how about class III drugs remains unclear. Here we employed metformin hydrochloride (MET) as the model drug and prepared drug-loaded water-in-oil (W/O) microemulsions selecting different hydrophile-lipophile balance (HLB) surfactant systems, using HLB 8 as a cut-off. We examined the phase behaviors of microemulsions after dilution and attempted to correlate these behaviors to drug oral bioavailability. ME-A, including a lower content of surfactants (35%), underwent a transition of W/O emulsion and then became a stable O/W emulsion in a light milky appearance; ME-B, in contrast, introducing a higher content of surfactants (45%), still remained transparent or semitransparent upon dilution. Unexpectedly, ME-A showed significantly higher oral bioavailability, which can be reduced by blocking the lymphatic absorption pathway. Comparatively, the AUC of ME-B is lower, close to MET solution. Both microemulsions behaved similarly in intestinal perfusion test because of the dilution before perfusion, lacking of the important phase transition of W/O emulsion. These findings suggest that W/O microemulsions improve oral bioavailability of BCS class III drug by promoting lymphatic absorption. Analyzing the phase behavior of microemulsions after dilution may help predict the drug oral bioavailability and optimize formulations. Copyright © 2014. Published by Elsevier B.V.

  16. Size-dependent bioavailability of hematite (α-Fe2O3) nanoparticles to a common aerobic bacterium.

    PubMed

    Dehner, Carolyn A; Barton, Lauren; Maurice, Patricia A; DuBois, Jennifer L

    2011-02-01

    The size-dependent bioavailability of hematite (α-Fe(2)O(3)) nanoparticles to obligate aerobic Pseudomonas mendocina bacteria was examined using the natural siderophore-producing wild type strain and a siderophore(-) mutant strain. Results showed that Fe from hematite less than a few tens of nm in size appears to be considerably more bioavailable than Fe associated with larger particles. This increased bioavailability is related to the total available particle surface area, and depends in part on greater accessibility of the Fe to the chelating siderophore(s). Greater bioavailability is also related to mechanism(s) that depend on cell/nanomineral proximity, but not on siderophores. Siderophore(-) bacteria readily acquire Fe from particles <10 nm but must be in direct physical proximity to the nanomineral; the bacteria neither produce a diffusible Fe-mobilizing agent nor accumulate a reservoir of dissolved Fe in supernatant solutions. Particles <10 nm appear to be capable of penetrating the outer cell wall, offering at least one possible pathway for Fe acquisition. Other cell-surface-associated molecules and/or processes could also be important, including a cell-wall associated reducing capability. The increased bioavailability of <10 nm particles has implications for both biogeochemical Fe cycling and applications involving engineered nanoparticles, and raises new questions regarding biogenic influences on adsorbed contaminants.

  17. Influence of dissolved organic matter on nickel bioavailability and toxicity to Hyalella azteca in water-only exposures.

    PubMed

    Doig, Lorne E; Liber, Karsten

    2006-03-10

    Dissolved organic matter (DOM) is known to reduce the bioavailability of metals in aquatic systems. This study evaluated the effects of DOM from various sources (e.g., Little Bear Lake sediment, Suwannee River, peat moss) and various DOM fractions (humic acids, HA; fulvic acids, FA) on the bioavailability of nickel (Ni) to Hyalella azteca, a common freshwater benthic invertebrate. In particular, this study was conducted to evaluate the effect of surficial sediment DOM on Ni bioavailability. Short-term (48 h) acute toxicity tests with H. azteca conducted in synthetic water demonstrated that the aqueous Ni concentrations required for lethality were greater than what could be significantly complexed by environmentally relevant concentrations of dissolved organic carbon (DOC: 0.6-30.4 mg/L). At Ni concentrations sublethal to H. azteca (500 microg/L), the bioavailability of Ni was significantly reduced in the presence of representative surface water DOC concentrations regardless of DOC source or fraction. DOC fraction (i.e., FA and HA) differentially affected Ni speciation, but had little or no effect on Ni accumulation by H. azteca. Tissue Ni was found to be strongly dependent upon the Ni(2+) concentration in the exposure solutions and the Ni:DOC ratio. Overall, the concentration of DOC played a greater role than either DOC source or fraction in determining Ni speciation and hence bioavailability and toxicity to H. azteca.

  18. The impact of DeltaG on the oral bioavailability of low bioavailable therapeutic agents.

    PubMed

    Salama, Noha N; Fasano, Alessio; Thakar, Manjusha; Eddington, Natalie D

    2005-01-01

    Low oral bioavailability continues to drive research toward identifying novel approaches to enhance drug delivery. Over the past few years, emphasis on the use of absorption enhancers has been overwhelming despite their major adverse effects. Zonula occludens toxin (Zot) was recently established as a safe and effective absorption enhancer, reversibly opening the tight junctions for hydrophilic markers and hydrophobic drugs across the small intestine and the blood brain barrier. DeltaG, the biologically active fragment of Zot, was isolated and shown to increase the in vitro transport and in vivo absorption of paracellular markers. The objective of this study was to examine the effect of DeltaG on the oral bioavailability of low bioavailable therapeutic agents. Jugular vein cannulated Sprague-Dawley rats were randomly assigned to receive the following treatments intraduodenally (ID): [(3)H]cyclosporin A, [(3)H]ritonavir, [(3)H]saquinavir, or [(3)H]acyclovir at (120 microCi/kg) alone, with protease inhibitors (PIs), or with DeltaG (720 microg/kg)/PI. Serial blood samples were collected, and plasma was analyzed for radioactivity. After ID administration with DeltaG/PI, C(max) significantly (p < 0.05) increased over a range of 197 to 5700%, whereas area under the plasma concentration time curve displayed significant increases extending over a range of 123.8 to 4990.3% for the investigated drugs. DeltaG significantly increased the in vivo oral absorption of some low bioavailable drugs in the presence of PI. This study suggests that DeltaG-mediated tight junction modulation, combined with metabolic protection, may be used to enhance the low oral bioavailability of certain drugs when administered concurrently.

  19. Effect of some detergents, humate, and composition of seedbed on crop of tomato plants in a hydroponic culture

    NASA Technical Reports Server (NTRS)

    Guminka, A. Z.; Gracz-Nalepka, M.; Lukasiewicz, B.; Sobolewicz, E.; Turkiewicz, I. T.

    1978-01-01

    It is established that single detergent doses distinctly stimulate vegetative development of plants in the initial stage when humates are available. When detergents are applied every four weeks in a hydroponic culture, in which the seedbed does not contain active humates, the crop is reduced by 50%. This adverse effect does not occur when the seedbed is a mixture of brown coal and peat.

  20. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator.

    PubMed

    Kuroda, Masaharu; Ikenaga, Sachiko

    2015-01-01

    We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.

  1. Fluoride bioavailability in saliva and plaque

    PubMed Central

    2012-01-01

    Background Different fluoride formulations may have different effects on caries prevention. It was the aim of this clinical study to assess the fluoride content, provided by NaF compared to amine fluoride, in saliva and plaque. Methods Eight trained volunteers brushed their teeth in the morning for 3 minutes with either NaF or amine fluoride, and saliva and 3-day-plaque-regrowth was collected at 5 time intervals during 6 hours after tooth brushing. The amount of collected saliva and plaque was measured, and the fluoride content was analysed using a fluoride sensitive electrode. All subjects repeated all study cycles 5 times, and 3 cycles per subject underwent statistical analysis using the Wilcoxon-Mann-Whitney test. Results Immediately after brushing the fluoride concentration in saliva increased rapidly and dropped to the baseline level after 360 minutes. No difference was found between NaF and amine fluoride. All plaque fluoride levels were elevated after 30 minutes until 120 minutes after tooth brushing, and decreasing after 360 minutes to baseline. According to the highly individual profile of fluoride in saliva and plaque, both levels of bioavailability correlated for the first 30 minutes, and the fluoride content of saliva and plaque was back to baseline after 6 hours. Conclusions Fluoride levels in saliva and plaque are interindividually highly variable. However, no significant difference in bioavailability between NaF and amine fluoride, in saliva, or in plaque was found. PMID:22230722

  2. Modulation of nitric oxide bioavailability by erythrocytes

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Tse; Han, Tae H.; Hyduke, Daniel R.; Vaughn, Mark W.; van Herle, Helga; Hein, Travis W.; Zhang, Cuihua; Kuo, Lih; Liao, James C.

    2001-09-01

    Nitric oxide (NO) activates soluble guanylyl cyclase in smooth muscle cells to induce vasodilation in the vasculature. However, as hemoglobin (Hb) is an effective scavenger of NO and is present in high concentrations inside the red blood cell (RBC), the bioavailability of NO would be too low to elicit soluble guanylyl cyclase activation in the presence of blood. Therefore, NO bioactivity must be preserved. Here we present evidence suggesting that the RBC participates in the preservation of NO bioactivity by reducing NO influx. The NO uptake by RBCs was increased and decreased by altering the degree of band 3 binding to the cytoskeleton. Methemoglobin and denatured hemoglobin binding to the RBC membrane or cytoskeleton also were shown to contribute to reducing the NO uptake rate of the RBC. These alterations in NO uptake by the RBC, hence the NO bioavailability, were determined to correlate with the vasodilation of isolated blood vessels. Our observations suggest that RBC membrane and cytoskeleton associated NO-inert proteins provide a barrier for NO diffusion and thus account for the reduction in the NO uptake rate of RBCs.