Science.gov

Sample records for hydroquinones

  1. Hydroquinone

    Integrated Risk Information System (IRIS)

    Hydroquinone ; CASRN 123 - 31 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  2. Hydroquinone: Environmental Pollution, Toxicity, and Microbial Answers

    PubMed Central

    Leitão, Ana Lúcia

    2013-01-01

    Hydroquinone is a major benzene metabolite, which is a well-known haematotoxic and carcinogenic agent associated with malignancy in occupational environments. Human exposure to hydroquinone can occur by dietary, occupational, and environmental sources. In the environment, hydroquinone showed increased toxicity for aquatic organisms, being less harmful for bacteria and fungi. Recent pieces of evidence showed that hydroquinone is able to enhance carcinogenic risk by generating DNA damage and also to compromise the general immune responses which may contribute to the impaired triggering of the host immune reaction. Hydroquinone bioremediation from natural and contaminated sources can be achieved by the use of a diverse group of microorganisms, ranging from bacteria to fungi, which harbor very complex enzymatic systems able to metabolize hydroquinone either under aerobic or anaerobic conditions. Due to the recent research development on hydroquinone, this review underscores not only the mechanisms of hydroquinone biotransformation and the role of microorganisms and their enzymes in this process, but also its toxicity. PMID:23936816

  3. Synthetic Strategies to Terpene Quinones/Hydroquinones

    PubMed Central

    Gordaliza, Marina

    2012-01-01

    The cytotoxic and antiproliferative properties of many natural sesquiterpene-quinones and -hydroquinones from sponges offer promising opportunities for the development of new drugs. A review dealing with different strategies for obtaining bioactive terpenyl quinones/hydroquinones is presented. The different synthetic approches for the preparation of the most relevant quinones/hydroquinones are described. PMID:22412807

  4. Environmental and health risks of hydroquinone

    SciTech Connect

    Devillers, J.; Boule, P.; Vasseur, P.; Prevot, P.; Steiman, R.; Seigle-Murandi, F.; Benoit-Guyod, J.L.; Nendza, M.; Grioni, C.; Dive, D. )

    1990-06-01

    Hazard assessment of hydroquinone has been evaluated from bibliographical and original data on the physicochemical properties, the environmental behavior, and the biological effects of this aromatic compound. Hydroquinone, which is produced in large amounts and widely used, must be considered as an environmental contaminant. However, it is not persistent. The ecotoxicity of this molecule, which must be linked to its physicochemical properties, varies from species to species. Its acute and chronic toxicity toward higher terrestrial organisms is moderate. Hydroquinone is estimated to be nonmutagenic by the Ames test but induces chromosome aberrations or karyotypic effects in eucaryotic cells. Carcinogenic and teratogenic potentials have been at present inadequately studied. The study underlines the complementarity of QSAR models and experimental approaches when an attempt is made to obtain ecotoxicological profiles of pollutants.182 references.

  5. Final amended safety assessment of hydroquinone as used in cosmetics.

    PubMed

    Andersen, F Alan; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W

    2010-01-01

    Hydroquinone is an aromatic compound that functions in cosmetics as an antioxidant, fragrance, reducing agent, or polymerization inhibitor. Hydroquinone is also used as a skin bleaching agent. Safety and toxicity information indicate that hydroquinone is dermally absorbed in humans from both aqueous and alcoholic formulations and is excreted mainly as the glucuronide or sulfate conjugates. Hydroquinone is associated with altered immune function in vitro and in vivo in animals and an increased incidence of renal tubule cell tumors and leukemia in F344 rats, but the relevance to humans is uncertain. Quantitatively, however, the use of hydroquinone in cosmetics is unlikely to result in renal neoplasia through this mode of action. Thus, hydroquinone is safe at concentrations of ≤1% in hair dyes and is safe for use in nail adhesives. Hydroquinone should not be used in other leave-on cosmetics. PMID:21164074

  6. Skin lightening preparations and the hydroquinone controversy.

    PubMed

    Draelos, Zoe Diana

    2007-01-01

    Skin lightening preparations are widely used in dermatology by persons of all Fitzpatrick skin types. Fitzpatrick skin types I-III require local pigment lightening for the treatment of hormonally induced melasma and postinflammatory hyperpigmentation caused by acne and trauma. Fitzpatrick skin types IV and darker have an even greater need for skin lightening for social reasons, as well as pigmentary changes that occur around the eyes, in the intertriginous areas, following dermatitis, or with acne and trauma. The gold standard dermatologic agent for skin lightening was hydroquinone, until regulatory agencies in Japan, Europe, and most recently in the United States questioned the safety of this substance. This has encouraged research into alternative agents to inhibit skin pigmentation such as retinoids, mequinol, azelaic acid, arbutin, kojic acid, aleosin, licorice extract, ascorbic acid, soy proteins, and N-acetyl glucosamine. The efficacy and safety of each of these ingredients is examined as possible topical alternatives to hydroquinone. PMID:18045355

  7. Hydroquinone: a general phagostimulating pheromone in termites.

    PubMed

    Reinhard, Judith; Lacey, Michael J; Ibarra, Fernando; Schroeder, Frank C; Kaib, Manfred; Lenz, Michael

    2002-01-01

    The organization of termite societies depends predominantly on intraspecific chemical signals (pheromones) produced by exocrine glands, which induce and modulate individual behavioral responses. Here, the saliva-producing labial glands of termites were investigated with respect to their pheromonal role in communal food exploitation of termite colonies. From these glands, we identified for the first time hydroquinone (1,4-dihydroxybenzene) as a phagostimulating pheromone in the Australian termite species Mastotermes darwiniensis. Hydroquinone is released from the labial glands of termite workers and applied onto the food. It stimulates nestmates to feed at the spot of application and is, thus, employed to mark feeding sites. No synergistic effect with other identified labial gland compounds, such as glucose, inositol, and arbutin, was evident. Significantly, we show that termite species from all over the world, irrespective of taxonomic position and biological traits, produce and employ hydroquinone as phagostimulating signal. The use of the same chemical signal throughout an order is a unique phenomenon, not reported before in animals. Its possible biosynthetic pathway, ecological significance, and evolution are discussed.

  8. Rapid method for the quantification of hydroquinone concentration: chemiluminescent analysis.

    PubMed

    Chen, Tung-Sheng; Liou, Show-Yih; Kuo, Wei-Wen; Wu, Hsi-Chin; Jong, Gwo-Ping; Wang, Hsueh-Fang; Shen, Chia-Yao; Padma, V Vijaya; Huang, Chih-Yang; Chang, Yen-Lin

    2015-11-01

    Topical hydroquinone serves as a skin whitener and is usually available in cosmetics or on prescription based on the hydroquinone concentration. Quantification of hydroquinone content therefore becomes an important issue in topical agents. High-performance liquid chromatography (HPLC) is the commonest method for determining hydroquinone content in topical agents, but this method is time-consuming and uses many solvents that can become an environmental issue. We report a rapid method for quantifying hydroquinone content by chemiluminescent analysis. Hydroquinone induces the production of hydrogen peroxide in the presence of basic compounds. Hydrogen peroxide induced by hydroquinone oxidized light-emitting materials such as lucigenin, resulted in the production of ultra-weak chemiluminescence that was detected by a chemiluminescence analyzer. The intensity of the chemiluminescence was found to be proportional to the hydroquinone concentration. We suggest that the rapid (measurement time, 60 s) and virtually solvent-free (solvent volume, <2 mL) chemiluminescent method described here for quantifying hydroquinone content may be an alternative to HPLC analysis. PMID:25693839

  9. Micellar electrokinetic chromatographic study of hydroquinone and some of its ethers. Determination of hydroquinone in skin-toning cream.

    PubMed

    Sakodinskaya, I K; Desiderio, C; Nardi, A; Fanali, S

    1992-04-01

    The separation of hydroquinone and some of its ether derivatives was studied by micellar electrokinetic chromatography with sodium dodecyl sulphate as an anionic surfactant in the background electrolyte. The optimized method was used for the determination of hydroquinone in a sample of skin-toning cream. On-column detection at 254 nm with caffeine as an internal standard gave good quantitative results.

  10. UV Spectrophotometric Determination and Validation of Hydroquinone in Liposome

    PubMed Central

    Khoshneviszadeh, Rabea; Fazly Bazzaz, Bibi Sedigheh; Housaindokht, Mohammad Reza; Ebrahim-Habibi, Azadeh; Rajabi, Omid

    2015-01-01

    The method has been developed and validated for the determination of hydroquinone in liposomal formulation. The samples were dissolved in methanol and evaluated in 293 nm. The validation parameters such as linearity, accuracy, precision, specificity, limit of detection (LOD) and limit of quantitation (LOQ) were determined. The calibration curve was linear in 1-50 µg/mL range of hydroquinone analyte with a regression coefficient of 0.9998. This study showed that the liposomal hydroquinone composed of phospholipid (7.8 %), cholesterol (1.5 %), alpha ketopherol (0.17 %) and hydroquinone (0.5 %) did not absorb wavelength of 293 nm if it diluted 500 times by methanol. The concentration of hydroquinone reached 10 µg/mL after 500 times of dilution. Furthermore, various validation parameters as per ICH Q2B guideline were tested and found accordingly. The recovery percentages of liposomal hydroquinone were found 102 ± 0.8, 99 ± 0.2 and 98 ± 0.4 for 80%, 100% and 120% respectively. The relative standard deviation values of inter and intra-day precisions were <%2. LOD and LOQ were 0.24 and 0.72 µg/mL respectively. PMID:25901154

  11. Hydroquinone Based Synthesis of Gold Nanorods.

    PubMed

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-08-10

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM.

  12. Hydroquinone Based Synthesis of Gold Nanorods.

    PubMed

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-01-01

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM. PMID:27585238

  13. Coulometric titration of ruthenium and iridium by the generated hydroquinone

    SciTech Connect

    Organeysan, L.S.; Butakova, N.A.

    1986-05-10

    This paper studies the electrogeneration of hydroquinone from solutions of quinone on platinum and glass-carbon electrodes in HC1 and H/sub 2/SO/sub 4/ media of different concentrations, to select the optimal conditions for the coulometric titration of Ru(IV) and Ir(IV).

  14. Successful treatment of hydroquinone-resistant melasma using topical methimazole.

    PubMed

    Malek, Joelle; Chedraoui, Adele; Nikolic, Damian; Barouti, Neda; Ghosn, Samer; Abbas, Ossama

    2013-01-01

    Melasma is an acquired hyperpigmentation skin disorder in sun-exposed areas. It occurs almost exclusively over the face, and is most commonly seen in women. Several depigmenting agents have been used for the treatment of melasma among which hydroquinone has been the most widely used due to its efficacy and safety in short-term use. However, hydroquinone is recently reported to be a cytotoxic and mutagenic compound in mammalian cells and is thus banned in several countries. Hydroquinone ban has caused investigators to search for alternative depigmenting agents for the treatment of melasma in recent years. Methimazole is an antithyroid agent orally used in humans since several decades and has been shown that when applied topically, it inhibits melanin synthesis and causes skin depigmentation in lab animals as well as human subjects. Herein, we report two hydroquinone-resistant melasma patients who were successfully treated with methimazole cream. Application of 5% methimazole cream once daily resulted in significant improvement of melasma in both patients after 8 weeks. The efficacy of methimazole for melasma treatment as well as its advantages over other known depigmenting compounds (non-mutagenicity, non-cytotoxicity and high tolerability profile) suggests that topical methimazole should be added to the armamentarium of anti-melasma treatment.

  15. Potentiometric Biosensor for Studying Hydroquinone Cytotoxicity in vitro

    PubMed Central

    Wang, Yanyan; Chen, Qiang; Zeng, Xiangqun

    2009-01-01

    Many processes in living cells have electrochemical characteristics that are suitable for measurement by potentiometric biosensors. Potentiometric biosensors allow non invasive, real-time monitoring of the extracellular environment changes by measuring the potential at cell/sensor interface. This can be used as an indicator for overall cell cytotoxicity. The present work employs a potentiometric sensor array to investigate the cytotoxicity of hydroquinone to cultured mammalian V79 cells. Various electrode substrates (Au, PPy-HQ and PPy-PS) used for cell growth were designed and characterized. The controllable release of hydroquinone from PPy substrates was studied. Our results showed that hydroquinone exposure affected cell proliferation and delayed cell growth and attachment in a dose-dependent manner. Additionally, we have shown that exposure of V79 cells to hydroquinone at low doses (i.e 5μM) for more than 15 hours allows V79 cells to gain enhanced adaptability to survive exposure to high toxic HQ doses afterwards. Compared with traditional methods, the potentiometric biosensor not only provides non-invasive and real time monitoring of the cellular reactions but also is more sensitive for in vitro cytotoxicity study. By real time and non-invasive monitoring of the extracellular potential in vitro, the potentiometric sensor system represents a promising biosensor system for drug discovery. PMID:19926470

  16. Benzoquinones and Hydroquinones in Defensive Secretions of Tropical Millipedes

    NASA Astrophysics Data System (ADS)

    Deml, R.; Huth, A.

    The defensive secretions of two tropical species of millipedes (the spirostreptid Telodeinopus aoutii and a species of Harpagophoridae) contain a complex mixture of closely related benzoquinones and hydroquinones. The major compounds are toluquinone and 2-methoxy-3-methylbenzoquinone, accompanied by the minor components, 2,3-dimethoxybenzoquinone and toluhydroquinone. Because of the large size and the geographic separation of the test animals a common defensive strategy of tropical, large millipedes against predation by vertebrates is assumed.

  17. Selection of the Mutants with High Hydroquinone Degradation Ability of Serratia Marcesscen by Plasma Mutation

    NASA Astrophysics Data System (ADS)

    Yao, Risheng; You, Qidong; He, Weijing; Zhu, Huixia

    2009-06-01

    In this study, an efficient way by plasma induced mutation was applied to improve the hydroquinone degradation capacity of Serratia marcescens AB 90027 (SM27). The results showed that combined with the selection of hydroquinone tolerance, the mutant with high hydroquinone degradation ability induced by plasma could be achieved. The best dose for plasma mutation was 15 s, which showed a 47.0% higher positive mutation ratio. Besides, the aimed mutant was markedly different from the parent strain (SM27) in colonial traits while cultivated on Kings media. Finally, the hydroquinone degradation ratio reached 70.5% using the induced mutant strain with 1500 mg/L hydroquinone (HQ) after 15 days of cultivation as the selective conditions; however, it was only 46.7% for SM27. The improvement of the degradation capacity by the induced mutant with a high concentration of HQ selection was attributed to its faster growth and higher hydroquinone tolerance compared with that of the parent strain.

  18. Involvement of oxidative stress in hydroquinone-induced cytotoxicity in catalase-deficient Escherichia coli mutants.

    PubMed

    Horita, Masako; Wang, Da-Hong; Tsutsui, Ken; Sano, Kuniaki; Masuoka, Noriyoshi; Kira, Shohei

    2005-10-01

    Hydroquinone is a benzene-derived metabolite. To clarify whether the reactive oxygen species (ROS) are involved in hydroquinone-induced cytotoxicity, we constructed transformants of Escherichia coli (E. coli) strains that express mammalian catalase gene derived from catalase mutant mice (Cs(b), Cs(c)) and the wild-type (Cs(a)) using a catalase-deficient E. coli UM255 as a recipient. Specific catalase activities of these tester strains were in order of Cs(a) > Cs(c) > Cs(b) > UM255, and their susceptibility to hydrogen peroxide (H2O2) showed UM255 > Cs(b) > Cs(c) > Cs(a). We found that hydroquinone exposure reduced the survival of catalase-deficient E. coli mutants in a dose-dependent manner significantly, especially in the strains with lower catalase activities. Hydroquinone toxicity was also confirmed using zone of inhibition test, in which UM255 was the most susceptible, showing the largest zone of growth inhibition, followed by Cs(b), Cs(c) and Cs(a). Furthermore, we found that hydroquinone-induced cell damage was inhibited by the pretreatment of catalase, ascorbic acid, dimethyl sulfoxide (DMSO), and ethylenediaminetetraacetic acid (EDTA), and augmented by superoxide dismutase (both CuZnSOD and MnSOD). The present results suggest that H2O2 is probably involved in hydroquinone-induced cytotoxicity in catalase-deficient E. coli mutants and catalase plays an important role in protection of the cells against hydroquinone toxicity.

  19. Graphene quantum dots: Highly active bifunctional nanoprobes for nonenzymatic photoluminescence detection of hydroquinone.

    PubMed

    He, Yuezhen; Sun, Jian; Feng, Dexiang; Chen, Hongqi; Gao, Feng; Wang, Lun

    2015-12-15

    In this paper, a simple and sensitive photoluminescence method is developed for the hydroquinone quantitation by using graphene quantum dots which simultaneously serve as a peroxidase-mimicking catalyst and a photoluminescence indicator. In the presence of dissolved oxygen, graphene quantum dots with intrinsic peroxidase-mimicking catalytic activity can catalyze the oxidation of hydroquinone to produce p-benzoquinone, an intermediate, which can efficiently quench graphene quantum dots' photoluminescence. Based on this effect, a novel fluorescent platform is proposed for the sensing of hydroquinone, and the detection limit of 5 nM is found. PMID:26164014

  20. Molecular layer deposition of alucone films using trimethylaluminum and hydroquinone

    SciTech Connect

    Choudhury, Devika; Sarkar, Shaibal K.; Mahuli, Neha

    2015-01-01

    A hybrid organic–inorganic polymer film grown by molecular layer deposition (MLD) is demonstrated here. Sequential exposures of trimethylaluminum [Al(CH{sub 3}){sub 3}] and hydroquinone [C{sub 6}H{sub 4}(OH){sub 2}] are used to deposit the polymeric films, which is a representative of a class of aluminum oxide polymers known as “alucones.” In-situ quartz crystal microbalance (QCM) studies are employed to determine the growth characteristics. An average growth rate of 4.1 Å per cycle at 150 °C is obtained by QCM and subsequently verified with x-ray reflectivity measurements. Surface chemistry during each MLD-half cycle is studied in depth by in-situ Fourier transform infrared (FTIR) vibration spectroscopy. Self limiting nature of the reaction is confirmed from both QCM and FTIR measurements. The conformal nature of the deposit, typical for atomic layer deposition and MLD, is verified with transmission electron microscopy imaging. Secondary ion mass spectroscopy measurements confirm the uniform elemental distribution along the depth of the films.

  1. Molecular Modeling and docking of Wheat Hydroquinone Glucosyl transferase by using Hydroquinone, Phenyl phosphorodiamate and n-(n butyl) Phosphorothiocic Triamide as Inhibitors.

    PubMed

    Huma, Tayyaba; Maryam, Arooma; Qamar, Tahir Ul

    2014-01-01

    In agriculture high urease activity during urea fertilization causes substantial environmental and economical problems by releasing abnormally large amount of ammonia into the atmosphere which leads to plant damage as well as ammonia toxicity. All over the world, urea is the most widely applied nitrogen fertilizer. Due to the action of enzyme urease; urea nitrogen is lost as volatile ammonia. For efficient use of nitrogen fertilizer, urease inhibitor along with the urea fertilizer is one of the best promising strategies. Urease inhibitors also provide an insight in understanding the mechanism of enzyme catalyzed reaction, the role of various amino acids in catalytic activity present at the active site of enzyme and the importance of nickel to this metallo enzyme. By keeping it in view, the present study was designed to dock three urease inhibitors namely Hydroquinone (HQ), Phenyl Phosphorodiamate (PPD) and N-(n-butyl) Phosphorothiocic triamide (NBPT) against Hydroquinone glucosyltransferase using molecular docking approach. The 3D structure of Hydroquinone glucosyltransferase was predicted using homology modeling approach and quality of the structure was assured using Ramachandran plot. This study revealed important interactions among the urease inhibitors and Hydroquinone glucosyltransferase. Thus, it can be inferred that these inhibitors may serve as future anti toxic constituent against plant toxins. PMID:24748751

  2. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions.

    PubMed

    Jiang, Chao; Garg, Shikha; Waite, T David

    2015-12-15

    Interactions of 1,4-hydroquinone with soluble iron species over a pH range of 3-5 in the air-saturated and partially deoxygenated solution are examined here. Our results show that 1,4-hydroquinone reduces Fe(III) in acidic conditions, generating semiquinone radicals (Q(•-)) that can oxidize Fe(II) back to Fe(III). The oxidation rate of Fe(II) by Q(•-)increases with increase in pH due to the speciation change of Q(•-) with its deprotonated form (Q(•-)) oxidizing Fe(II) more rapidly than the protonated form (HQ(•)). Although the oxygenation of Fe(II) is negligible at pH < 5, O2 still plays an important role in iron redox transformation by rapidly oxidizing Q(•-) to form benzoquinone (Q). A kinetic model is developed to describe the transformation of quinone and iron under all experimental conditions. The results obtained here are compared with those obtained in our previous studies of iron-Suwannee River fulvic acid (SRFA) interactions in acidic solutions and support the hypothesis that hydroquinone moieties can reduce Fe(III) in natural waters. However, the semiquinone radicals generated in pure hydroquinone solution are rapidly oxidized by dioxygen, while the semiquinone radicals generated in SRFA solution are resistant to oxidation by dioxygen, with the result that steady-state semiquinone concentrations in SRFA solutions are 2-3 orders of magnitude greater than in solutions of 1,4-hydroquinone. As a result, semiquinone moieties in SRFA play a much more important role in iron redox transformations than is the case in solutions of simple quinones such as 1,4-hydroquinone. This difference in the steady-state concentration of semiquinone species has a dramatic effect on the cycling of iron between the +II and +III oxidation states, with iron turnover frequencies in solutions containing SRFA being 10-20 times higher than those observed in solutions of 1,4-hydroquinone.

  3. Purification and characterization of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3

    PubMed Central

    2011-01-01

    Hydroquinone-1,2-dioxygenase, an enzyme involved in the degradation of alkylphenols in Sphingomonas sp. strain TTNP3 was purified to apparent homogeneity. The extradiol dioxygenase catalyzed the ring fission of hydroquinone to 4-hydroxymuconic semialdehyde and the degradation of chlorinated and several alkylated hydroquinones. The activity of 1 mg of the purified enzyme with unsubstituted hydroquinone was 6.1 μmol per minute, the apparent Km 2.2 μM. ICP-MS analysis revealed an iron content of 1.4 moles per mole enzyme. The enzyme lost activity upon exposure to oxygen, but could be reactivated by Fe(II) in presence of ascorbate. SDS-PAGE analysis of the purified enzyme yielded two bands of an apparent size of 38 kDa and 19 kDa, respectively. Data from MALDI-TOF analyses of peptides of the respective bands matched with the deduced amino acid sequences of two neighboring open reading frames found in genomic DNA of Sphingomonas sp strain TTNP3. The deduced amino acid sequences showed 62% and 47% identity to the large and small subunit of hydroquinone dioxygenase from Pseudomonas fluorescens strain ACB, respectively. This heterotetrameric enzyme is the first of its kind found in a strain of the genus Sphingomonas sensu latu. PMID:21906340

  4. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode.

    PubMed

    Tashkhourian, J; Daneshi, M; Nami-Ana, F; Behbahani, M; Bagheri, A

    2016-11-15

    A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0μM-1.0mM range for hydroquinone with the detection limit of 1.2μM and from 30.0μM-1.0mM for catechol with the detection limit of 1.1μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples. PMID:27420383

  5. Micellar liquid chromatographic determination of arbutin and hydroquinone in medicinal plant extracts and commercial cosmetic products.

    PubMed

    Thogchai, W; Liawruangrath, B

    2013-06-01

    A simple micellar liquid chromatographic (MLC) procedure for simultaneous determination of arbutin and hydroquinone in medicinal plant extracts and commercial cosmetic products was proposed. This method was developed and validated. The chromatographic conditions were also optimized. All analyses were performed at room temperature in an isocratic mode, using a mixture of 1% (v/v) acetonitrile and 0.006 mol L⁻¹ Brij 35 (pH 6.0) as a mobile phase. The flow rate was set at 1.0 mL min⁻¹. The analytical column was a 150 × 3.9 mm Nova-Pak C-18 column. The effluent from the analytical column was monitored by UV detection at 280 nm. Under the optimum conditions, arbutin and hydroquinone could be determined within a concentration range of 2-50 μg mL⁻¹ of arbutin, and hydroquinone was obtained with the regression equations; y = 0.045x + 0.042 (r² = 0.9923) and y = 0.091x + 0.050 (r² = 0.9930) respectively. The limits of detection were found to be 0.51 μg mL⁻¹ and 0.37 μg mL⁻¹ for arbutin and hydroquinone respectively. The proposed MLC method was applied for the determination of arbutin and hydroquinone contents in medicinal plant extracts and commercial cosmetic products. This proposed MLC method is thus suitable for routine analysis of arbutin and hydroquinone in the pharmaceutical formulations, cosmetic products and raw medicinal plant extracts.

  6. Revisiting the thermodynamic modelling of type I gas-hydroquinone clathrates.

    PubMed

    Conde, M M; Torré, J P; Miqueu, C

    2016-04-21

    Under specific pressure and temperature conditions, certain gaseous species can be engaged in a host lattice of hydroquinone molecules, forming a supramolecular entity called a gas hydroquinone clathrate. This study is devoted to the thermodynamic modelling of type I hydroquinone clathrates. The gases considered in this work are argon, krypton, xenon, methane, nitrogen, oxygen and hydrogen sulphide. The basic van der Waals and Platteeuw model, which is, for example, not able to predict well the phase equilibrium properties of such clathrates at high temperature, is modified and extended by considering first the solubility of the guest in solid HQ and then the mutual interactions between the gaseous molecules inside the clathrate structure (i.e. guest-guest interactions). Other improvements of the basic theory, such as the choice of the reference state, are proposed, and a unique set of thermodynamic parameters valid for all the studied guests are finally calculated. Very good agreement is obtained between the model predictions and the experimental data available in the literature. Our results clearly demonstrate that the highest level of theory is necessary to describe well both the triphasic equilibrium line (where the HQ clathrate, the native hydroquinone HQα and the gas coexist), the occupancy of the guest in the clathrate, and the intercalation enthalpy.

  7. Treating epidermal melasma with a 4% hydroquinone skin care system plus tretinoin cream 0.025%.

    PubMed

    Grimes, Pearl; Watson, JoAnne

    2013-01-01

    We sought to evaluate the efficacy and tolerability of treating melasma using a 4% hydroquinone skin care system, including a proprietary cleanser, toner, 4% hydroquinone, exfoliation enhancer, and sunscreen, plus tretinoin cream 0.025%. Together these products offer not only treatment of melasma but also a complete skin care regimen. Twenty participants with mild or moderate epidermal melasma with Fitzpatrick skin types III to VI were instructed to use the hydroquinone skin care system and tretinoin cream for 12 weeks. Melasma severity, melasma pigmentation intensity, and melasma area and severity index (MASI) score were significantly reduced from week 4 onward relative to baseline (P < or = .01). The proportion of participants who felt embarrassed or self-conscious about their skin very much or a lot declined from 80% (16/20) to 20% (4/20) between baseline and week 12. Similarly, the proportion of those who made very much or a lot of effort to hide their skin discoloration declined from 90% (18/20) to 37% (7/19). In total, 85% (17/20) of participants were satisfied with the overall effectiveness of the study treatment. Three participants had adverse events probably related to treatment (dryness, erythema, peeling, and stinging sensation). The 4% hydroquinone skin care system plus tretinoin cream 0.025% is effective and well-tolerated in the treatment of melasma.

  8. Congenital Melanocytic Nevus of the Nose Removed Using Dermabrasion, Hydroquinone, and Serial Excision.

    PubMed

    Hassanein, Aladdin H; Greene, Arin K

    2015-10-01

    We report a child with a congenital pigmented nevus of the nose involving the left ala, sidewall, soft triangle, and tip. Removal of the lesion was performed using dermabrasion, topical hydroquinone, and serial excision to optimize the aesthetic outcome. The patient was left with a linear scar and did not require reconstruction with a skin graft or flap.

  9. In vivo levels of chlorinated hydroquinones in a pentachlorophenol-degrading bacterium.

    PubMed Central

    McCarthy, D L; Claude, A A; Copley, S D

    1997-01-01

    Sphingomonas chlorophenolica RA-2 is a soil microorganism that can grow on pentachlorophenol (PCP) as a sole carbon source. In this microorganism, PCP is converted to tetrachlorohydroquinone (TCHQ), trichlorohydroquinone, and 2,6-dichlorohydroquinone. The remainder of the pathway has not yet been defined. The ability to grow on PCP as a sole carbon source is remarkable because of the toxicity of PCP and its chlorinated hydroquinone metabolites. Experiments in which the levels of PCP and chlorinated hydroquinones were measured in cells metabolizing [U-14C]PCP revealed that the levels of chlorinated hydroquinones in the cytoplasm are in the low micromolar range. The toxicity of chlorinated hydroquinones was evaluated by exposure of Escherichia coli cells that had been treated with EDTA (to remove the outer membrane) to TCHQ. Significant toxicity due to TCHQ was not apparent until concentrations of 500 microM and higher. Thus, an important part of the explanation for why S. chlorophenolica RA-2 is able to grow on PCP as a sole carbon source is undoubtedly that it can process sufficient carbon for growth without accumulating high levels of toxic intermediates. PMID:9143119

  10. Revisiting the thermodynamic modelling of type I gas-hydroquinone clathrates.

    PubMed

    Conde, M M; Torré, J P; Miqueu, C

    2016-04-21

    Under specific pressure and temperature conditions, certain gaseous species can be engaged in a host lattice of hydroquinone molecules, forming a supramolecular entity called a gas hydroquinone clathrate. This study is devoted to the thermodynamic modelling of type I hydroquinone clathrates. The gases considered in this work are argon, krypton, xenon, methane, nitrogen, oxygen and hydrogen sulphide. The basic van der Waals and Platteeuw model, which is, for example, not able to predict well the phase equilibrium properties of such clathrates at high temperature, is modified and extended by considering first the solubility of the guest in solid HQ and then the mutual interactions between the gaseous molecules inside the clathrate structure (i.e. guest-guest interactions). Other improvements of the basic theory, such as the choice of the reference state, are proposed, and a unique set of thermodynamic parameters valid for all the studied guests are finally calculated. Very good agreement is obtained between the model predictions and the experimental data available in the literature. Our results clearly demonstrate that the highest level of theory is necessary to describe well both the triphasic equilibrium line (where the HQ clathrate, the native hydroquinone HQα and the gas coexist), the occupancy of the guest in the clathrate, and the intercalation enthalpy. PMID:27004460

  11. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning

    SciTech Connect

    Huang, C.-P.; Fang, W.-H.; Lin, L.-I.; Chiou, Robin Y.; Kan, L.-S.; Chi, N.-H.; Chen, Y.-R.; Lin, T.-Y.; Lin, S.-B.

    2008-03-15

    Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia. Each has an unsaturated alkyl chain attached to the 2-position of a hydroquinone ring. One of these isolates, 10'(Z),13'(E),15'(E)-heptadecatrienylhydroquinone [HQ17(3)], being the most cytotoxic, was chosen for studying the anticancer mechanism of these compounds. We found that HQ17(3) was a topoisomerase (Topo) II poison. It irreversibly inhibited Topo II{alpha} activity through the accumulation of Topo II-DNA cleavable complexes. A cell-based assay showed that HQ17(3) inhibited the growth of leukemia HL-60 cells with an EC{sub 50} of 0.9 {mu}M, inhibited the topoisomerase-II-deficient cells HL-60/MX2 with an EC{sub 50} of 9.6 {mu}M, and exerted no effect on peripheral blood mononuclear cells at concentrations up to 50 {mu}M. These results suggest that Topo II is the cellular drug target. In HL-60 cells, HQ17(3) promptly inhibited DNA synthesis, induced chromosomal breakage, and led to cell death with an EC{sub 50} about one-tenth that of hydroquinone. Pretreatment of the cells with N-acetylcysteine could not attenuate the cytotoxicity and DNA damage induced by HQ17(3). However, N-acetylcysteine did significantly reduce the cytotoxicity of hydroquinone. In F344 rats, intraperitoneal injection of HQ17(3) for 28 days induced no clinical signs of toxicity. These results indicated that HQ17(3) is a potential anticancer agent, and its structural features could be a model for anticancer drug design.

  12. Arbutin production via biotransformation of hydroquinone in in vitro cultures of Aronia melanocarpa (Michx.) Elliott.

    PubMed

    Kwiecień, Inga; Szopa, Agnieszka; Madej, Kornelia; Ekiert, Halina

    2013-01-01

    Arbutin (hydroquinone β-D-glucoside) is a compound of plant origin possessing valuable therapeutic (urinary tract disinfection) and cosmetic (skin whitening) properties, which can be obtained from in vitro cultures of plants belonging to different taxa via biotransformation of exogenously supplemented hydroquinone. Agitating cultures of Aronia melanocarpa were maintained on the Murashige and Skoog medium containing growth regulators: the cytokinin - BAP (6-benzylaminopurine), 2 mg/l and the auxin NAA (α-naphthaleneacetic acid), 2 mg/l. The biomass was cultured for 2 weeks and then hydroquinone was supplemented at the following doses: 96, 144, 192, 288 and 384 mg/l either undivided or divided into two or three portions added at 24-hour intervals. The content of the reaction product - arbutin, was determined using an HPLC method in methanolic extracts from biomass and lyophilized medium samples collected 24 hours after the addition of the last precursor dose. The total amounts of arbutin were very diverse, from 2.71 to 8.27 g/100g d.w. The production of arbutin rose with increasing hydroquinone concentration. The maximum content of the product was observed after hydroquinone addition at 384 mg/l divided into two portions. Biotransformation efficiency also varied widely, ranging from 37.04% do 73.80%. The identity of the product - arbutin, after its isolation and purification was confirmed by spectral analysis ((1)H-NMR spectrum). The maximum amount of arbutin obtained was higher than that required by the latest 9(th) Edition of the Polish Pharmacopoeia and by the newest 8th Edithion of European Pharmacopoeia for Uvae ursi folium (7.0 g/100g d.w.), and is interesting from practical point of view.

  13. Small structural changes on a hydroquinone scaffold determine the complex I inhibition or uncoupling of tumoral oxidative phosphorylation.

    PubMed

    Urra, Félix A; Córdova-Delgado, Miguel; Lapier, Michel; Orellana-Manzano, Andrea; Acevedo-Arévalo, Luis; Pessoa-Mahana, Hernán; González-Vivanco, Jaime M; Martínez-Cifuentes, Maximiliano; Ramírez-Rodríguez, Oney; Millas-Vargas, Juan Pablo; Weiss-López, Boris; Pavani, Mario; Ferreira, Jorge; Araya-Maturana, Ramiro

    2016-01-15

    Mitochondria participate in several distinctiveness of cancer cell, being a promising target for the design of anti-cancer compounds. Previously, we described that ortho-carbonyl hydroquinone scaffold 14 inhibits the complex I-dependent respiration with selective anti-proliferative effect on mouse mammary adenocarcinoma TA3/Ha cancer cells; however, the structural requirements of this hydroquinone scaffold to affect the oxidative phosphorylation (OXPHOS) of cancer cells have not been studied in detail. Here, we characterize the mitochondrial metabolism of TA3/Ha cancer cells, which exhibit a high oxidative metabolism, and evaluate the effect of small structural changes of the hydroquinone scaffold 14 on the respiration of this cell line. Our results indicate that these structural changes modify the effect on OXPHOS, obtaining compounds with three alternative actions: inhibitors of complex I-dependent respiration, uncoupler of OXPHOS and compounds with both actions. To confirm this, the effect of a bicyclic hydroquinone (9) was evaluated in isolated mitochondria. Hydroquinone 9 increased mitochondrial respiration in state 4o without effects on the ADP-stimulated respiration (state 3ADP), decreasing the complexes I and II-dependent respiratory control ratio. The effect on mitochondrial respiration was reversed by 6-ketocholestanol addition, indicating that this hydroquinone is a protonophoric uncoupling agent. In intact TA3/Ha cells, hydroquinone 9 caused mitochondrial depolarization, decreasing intracellular ATP and NAD(P)H levels and GSH/GSSG ratio, and slightly increasing the ROS levels. Moreover, it exhibited selective NAD(P)H availability-dependent anti-proliferative effect on cancer cells. Therefore, our results indicate that the ortho-carbonyl hydroquinone scaffold offers the possibility to design compounds with specific actions on OXPHOS of cancer cells. PMID:26712467

  14. Small structural changes on a hydroquinone scaffold determine the complex I inhibition or uncoupling of tumoral oxidative phosphorylation.

    PubMed

    Urra, Félix A; Córdova-Delgado, Miguel; Lapier, Michel; Orellana-Manzano, Andrea; Acevedo-Arévalo, Luis; Pessoa-Mahana, Hernán; González-Vivanco, Jaime M; Martínez-Cifuentes, Maximiliano; Ramírez-Rodríguez, Oney; Millas-Vargas, Juan Pablo; Weiss-López, Boris; Pavani, Mario; Ferreira, Jorge; Araya-Maturana, Ramiro

    2016-01-15

    Mitochondria participate in several distinctiveness of cancer cell, being a promising target for the design of anti-cancer compounds. Previously, we described that ortho-carbonyl hydroquinone scaffold 14 inhibits the complex I-dependent respiration with selective anti-proliferative effect on mouse mammary adenocarcinoma TA3/Ha cancer cells; however, the structural requirements of this hydroquinone scaffold to affect the oxidative phosphorylation (OXPHOS) of cancer cells have not been studied in detail. Here, we characterize the mitochondrial metabolism of TA3/Ha cancer cells, which exhibit a high oxidative metabolism, and evaluate the effect of small structural changes of the hydroquinone scaffold 14 on the respiration of this cell line. Our results indicate that these structural changes modify the effect on OXPHOS, obtaining compounds with three alternative actions: inhibitors of complex I-dependent respiration, uncoupler of OXPHOS and compounds with both actions. To confirm this, the effect of a bicyclic hydroquinone (9) was evaluated in isolated mitochondria. Hydroquinone 9 increased mitochondrial respiration in state 4o without effects on the ADP-stimulated respiration (state 3ADP), decreasing the complexes I and II-dependent respiratory control ratio. The effect on mitochondrial respiration was reversed by 6-ketocholestanol addition, indicating that this hydroquinone is a protonophoric uncoupling agent. In intact TA3/Ha cells, hydroquinone 9 caused mitochondrial depolarization, decreasing intracellular ATP and NAD(P)H levels and GSH/GSSG ratio, and slightly increasing the ROS levels. Moreover, it exhibited selective NAD(P)H availability-dependent anti-proliferative effect on cancer cells. Therefore, our results indicate that the ortho-carbonyl hydroquinone scaffold offers the possibility to design compounds with specific actions on OXPHOS of cancer cells.

  15. The induction of monocytopoiesis in HL-60 promyelocytic leukemia cells is inhibited by hydroquinone, a toxic metabolite of benzene

    SciTech Connect

    Oliveira, N.L.

    1992-01-01

    Chronic exposure of humans to benzene has been shown to have a cytotoxic effect on hematopoietic progenitor cells in intermediate stages of differentiation which can lead to aplastic anemia and acute myelogenous leukemia. This thesis examined the effect of hydroquinone, a toxic metabolite of benzene found in the bone marrow, on the human promyelocytic leukemia cell line (HL-60) which can be induced to differentiate to both monocyte and myeloid cells, and thus has been used as a surrogate for a granulocyte/macrophage progenitor cell. Exposure of HL-60 cells to noncytotoxic concentrations of hydroquinone for three hours prior to induction with 12-O-tetradecanoyl phorbol-13-acetate caused a dose-dependent inhibition of the acquisition of characteristics of monocytic differentiation. These included adherence, nonspecific esterase activity and phagocytosis. Hydroquinone had no effect on cell proliferation. Hydroquinone appeared to be affecting maturation beyond the monoblast/promonocyte stages. Hydroquinone also prevented differentiation induced by 1, 25-dihydroxy vitamin D[sub 3], however, the block occurred after the acquisition of adherence. Hydroquinone at concentrations that inhibited monocytic differentiation had no effect on differentiation to granulocytes, suggesting that the block in the differentiation of these bipotential cells is at a step unique to the monocytic pathway. Hydroquinone was unable to prevent differentiation induced by the macrophage-derived cytokine interleukin-1, a differentiation factor for cells of the monocytic lineage. These data demonstrate that treatment of Hl-60 cells with hydroquinone prior to induction of differentiation prevents the acquisition of the monocytic phenotype induced by TPA or 1, 25(OH)[sub 2]D[sub 3] by a mechanism which at present is unknown, but which appears to be specific for the monocytic pathway. These results are of considerable significance for benzene hematotoxicity.

  16. Regulatory effect of hydroquinone-tetraethylene glycol conjugates on zebrafish pigmentation.

    PubMed

    Le, Hoa Thi; Hong, Bin Na; Lee, Yeong Ro; Cheon, Ji Hyun; Kang, Tong Ho; Kim, Tae Woo

    2016-01-15

    We synthesized two hydroquinone-tetraethylene glycol conjugates (HQ-TGs) and investigated their logP, photophysical stability, and redox chemical stability. HQ-TGs are a little more hydrophilic than hydroquinone (HQ) and show an enhanced photophysical and redox chemical stability compared with HQ. In addition we studied the effect of HQ-TGs on cell viability and on zebrafish pigmentation. MTT assay in HF-16 cells showed HQ-TGs are less cytotoxic than HQ. The phenotype-based image analysis of zebrafish larvae suggests that HQ-TGs suppress the pigmentation of zebrafish in a dose-dependent manner. The comparative experiments on stability, cytotoxicity, and zebrafish pigmentation between HQ and HQ-TGs suggest that mono tetraethylene glycol-functionalization of HQ is an alternative solution to overcome the adverse effect of HQ.

  17. Nrf2 and HSF-1 Pathway Activation via Hydroquinone-Based Proelectrophilic Small Molecules Is Regulated by Electrochemical Oxidation Potential

    PubMed Central

    Stalder, Romain; McKercher, Scott R.; Williamson, Robert E.; Roth, Gregory P.; Lipton, Stuart A.

    2015-01-01

    Activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 and heat-shock protein 90/heat-shock factor-1 signal-transduction pathways plays a central role in combatting cellular oxidative damage and related endoplasmic reticulum stress. Electrophilic compounds have been shown to be activators of these transcription-mediated responses through S-alkylation of specific regulatory proteins. Previously, we reported that a prototype compound (D1, a small molecule representing a proelectrophilic, para-hydroquinone species) exhibited neuroprotective action by activating both of these pathways. We hypothesized that the para-hydroquinone moiety was critical for this activation because it enhanced transcription of these neuroprotective pathways to a greater degree than that of the corresponding ortho-hydroquinone isomer. This notion was based on the differential oxidation potentials of the isomers for the transformation of the hydroquinone to the active, electrophilic quinone species. Here, to further test this hypothesis, we synthesized a pair of para- and ortho-hydroquinone-based proelectrophilic compounds and measured their redox potentials using analytical cyclic voltammetry. The redox potential was then compared with functional biological activity, and the para-hydroquinones demonstrated a superior neuroprotective profile. PMID:26243592

  18. Mercury, hydroquinone and clobetasol propionate in skin lightening products in West Africa and Canada.

    PubMed

    Gbetoh, Mètogbé Honoré; Amyot, Marc

    2016-10-01

    Skin lightening products are types of cosmetics (creams, gels, lotions and soaps) applied voluntarily on skin. Several of these products contain a variety of active ingredients that are highly toxic. Among those toxic agents, the present study focuses on mercury, hydroquinone, and clobetasol propionate. Out of the 93 lightening soaps and 98 creams purchased in large city markets in sub-Saharan West Africa and in small ethnic shops in Canada, 68-84% of all creams and 7.5-65% of all soaps exceeded regulatory guidelines for at least one active ingredient when considering different regulations. Mercury was found in high concentrations mainly in soaps, while hydroquinone and clobetasol propionate concentrations exceeded US FDA standards in some creams for all countries included in our study. Concentrations of the three compounds declared on labels of soaps and creams usually did not correspond to concentrations actually measured, particularly for mercury and hydroquinone. Overall, our results indicate that most studied skin-lightening products are potentially toxic and that product labels are frequently inaccurate with respect to the presence of toxic agents. PMID:27372064

  19. Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry.

    PubMed

    Jurica, Karlo; Karačonji, Irena Brčić; Šegan, Sandra; Opsenica, Dušanka Milojković; Kremer, Dario

    2015-09-01

    The phenolic glycoside arbutin and its metabolite with uroantiseptic activity hydroquinone occur naturally in the leaves of various medicinal plants and spices. In this study, an extraction procedure coupled with gas chromatography-mass spectrometry (GC-MS) was developed to determine arbutin and hydroquinone content in strawberry tree (Arbutus unedo L., Ericaceae) leaves. The method showed good linearity (R2>0.9987) in the tested concentration range (0.5-200 μg mL(-1)), as well as good precision (RSD<5%), analytical recovery (96.2-98.0%), and sensitivity (limit of detection=0.009 and 0.004 μg mL(-1) for arbutin and hydroquinone, respectively). The results obtained by the validated GC-MS method corresponded well to those obtained by high performance liquid chromatography (HPLC) method. The proposed method was then applied for determining arbutin and hydroquinone content in methanolic leaf extracts. The amount of arbutin in the leaves collected on the island of Koločep (6.82 mg g(-1) dry weight) was found to be higher (tpaired=43.57, tc=2.92) in comparison to the amount of arbutin in the leaves collected on the island of Mali Lošinj (2.75 mg g(-1) dry weight). Hydroquinone was not detected in any of the samples. The analytical features of the proposed GC-MS method demonstrated that arbutin and hydroquinone could be determined alternatively by gas chromatography. Due to its wide concentration range, the method could also be suitable for arbutin and hydroquinone analysis in leaves of other plant families (Rosaceae, Lamiaceae, etc.).

  20. Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry.

    PubMed

    Jurica, Karlo; Karačonji, Irena Brčić; Šegan, Sandra; Opsenica, Dušanka Milojković; Kremer, Dario

    2015-09-01

    The phenolic glycoside arbutin and its metabolite with uroantiseptic activity hydroquinone occur naturally in the leaves of various medicinal plants and spices. In this study, an extraction procedure coupled with gas chromatography-mass spectrometry (GC-MS) was developed to determine arbutin and hydroquinone content in strawberry tree (Arbutus unedo L., Ericaceae) leaves. The method showed good linearity (R2>0.9987) in the tested concentration range (0.5-200 μg mL(-1)), as well as good precision (RSD<5%), analytical recovery (96.2-98.0%), and sensitivity (limit of detection=0.009 and 0.004 μg mL(-1) for arbutin and hydroquinone, respectively). The results obtained by the validated GC-MS method corresponded well to those obtained by high performance liquid chromatography (HPLC) method. The proposed method was then applied for determining arbutin and hydroquinone content in methanolic leaf extracts. The amount of arbutin in the leaves collected on the island of Koločep (6.82 mg g(-1) dry weight) was found to be higher (tpaired=43.57, tc=2.92) in comparison to the amount of arbutin in the leaves collected on the island of Mali Lošinj (2.75 mg g(-1) dry weight). Hydroquinone was not detected in any of the samples. The analytical features of the proposed GC-MS method demonstrated that arbutin and hydroquinone could be determined alternatively by gas chromatography. Due to its wide concentration range, the method could also be suitable for arbutin and hydroquinone analysis in leaves of other plant families (Rosaceae, Lamiaceae, etc.). PMID:26444340

  1. Co-drug strategy for promoting skin targeting and minimizing the transdermal diffusion of hydroquinone and tranexamic acid.

    PubMed

    Hsieh, Pei-Wen; Chen, Wei-Yu; Aljuffali, Ibrahim A; Chen, Chun-Che; Fang, Jia-You

    2013-01-01

    Hydroquinone and tranexamic acids (TXA) are skin-lightening agents with a hydrophilic nature and low skin absorption. A high dose is needed for clinical use, resulting in a high incidence of skin irritation. Co-drugs formed by conjugating hydroquinone and TXA were synthesized and their in vitro and in vivo skin absorption characteristics were evaluated. The two synthesized co-drugs were 4-hydroxyphenyl 4-(aminomethyl)cyclohexanecarboxylate (HAC) and 1,4- phenylene bis(aminomethyl)cyclohexanecarboxylate (BAC). The co-drugs were chemically stable in aqueous solution, but rapidly degraded to the respective parent drug in esterases and skin homogenates. Compared to hydroquinone application, 7.2- and 2.4-fold increments in the hydroquinone skin deposition were obtained with the in vitro application of HAC and BAC. HAC and BAC led to 3- and 2-fold enhancements of equivalent TXA deposition compared to TXA administration. The in vivo experiment showed a further enhancement of co-drugs compared to the in vitro setup. The transdermal penetration of co-drugs, especially BAC, was much lower than that of hydroquinone and TXA. This indicated high-level skin targeting by the co-drugs. HAC and BAC revealed strong affinities for the viable epidermis/dermis. Hair follicles are important reservoirs for co-drug delivery. Daily administration of co-drugs to the skin did not generate irritation for up to 7 days. Both co-drugs are superior candidates for treating skin hyperpigmentation. PMID:23931279

  2. New High-performance Liquid Chromatography-DAD Method for Analytical Determination of Arbutin and Hydroquinone in Rat Plasma

    PubMed Central

    Gallo, F. R.; Pagliuca, G.; Multari, G.; Panzini, G.; D’amore, E.; Altieri, I.

    2015-01-01

    Natural substances present in herbal preparations should be carefully used because they can give toxic or therapeutic effects despite of their amount or the way of administration. The safety of products of vegetable origin must be assessed before commercialisation by monitoring the active ingredients and their metabolites. This study was therefore designed to identify and quantify arbutin and its metabolite hydroquinone, naturally present in Arctostaphylos uva-ursi (L.) Spreng plant in rat plasma, after an acute and subacute administration of aqueous arbutin solution in Wistar rats. For this purpose a reversed-phase high-performance liquid chromatography coupled with photodiode array detection was developed to assess the pharmacokinetic of arbutin and hydroquinone in plasma of female rats treated with aqueous arbutin solutions. The detection (arbutin: 0.0617 µg/ml and hydroquinone 0.0120 µg/ml) and quantification (arbutin: 0.2060 µg/ml and hydroquinone: 0.0400 µg/ml) limits were determined. At the arbutin concentration level of 10.7 µg/ml repeatability was 13.33% and its recovery 93.4±6.93%, while at the hydroquinone concentration level of 10.6 µg/ml repeatability was 11.66% and its recovery 92.9±7.75%. Furthermore the method was fully validated and the obtained data indicate that the new method provides good performances. PMID:26798166

  3. New High-performance Liquid Chromatography-DAD Method for Analytical Determination of Arbutin and Hydroquinone in Rat Plasma.

    PubMed

    Gallo, F R; Pagliuca, G; Multari, G; Panzini, G; D'amore, E; Altieri, I

    2015-01-01

    Natural substances present in herbal preparations should be carefully used because they can give toxic or therapeutic effects despite of their amount or the way of administration. The safety of products of vegetable origin must be assessed before commercialisation by monitoring the active ingredients and their metabolites. This study was therefore designed to identify and quantify arbutin and its metabolite hydroquinone, naturally present in Arctostaphylos uva-ursi (L.) Spreng plant in rat plasma, after an acute and subacute administration of aqueous arbutin solution in Wistar rats. For this purpose a reversed-phase high-performance liquid chromatography coupled with photodiode array detection was developed to assess the pharmacokinetic of arbutin and hydroquinone in plasma of female rats treated with aqueous arbutin solutions. The detection (arbutin: 0.0617 µg/ml and hydroquinone 0.0120 µg/ml) and quantification (arbutin: 0.2060 µg/ml and hydroquinone: 0.0400 µg/ml) limits were determined. At the arbutin concentration level of 10.7 µg/ml repeatability was 13.33% and its recovery 93.4±6.93%, while at the hydroquinone concentration level of 10.6 µg/ml repeatability was 11.66% and its recovery 92.9±7.75%. Furthermore the method was fully validated and the obtained data indicate that the new method provides good performances.

  4. Co-drug strategy for promoting skin targeting and minimizing the transdermal diffusion of hydroquinone and tranexamic acid.

    PubMed

    Hsieh, Pei-Wen; Chen, Wei-Yu; Aljuffali, Ibrahim A; Chen, Chun-Che; Fang, Jia-You

    2013-01-01

    Hydroquinone and tranexamic acids (TXA) are skin-lightening agents with a hydrophilic nature and low skin absorption. A high dose is needed for clinical use, resulting in a high incidence of skin irritation. Co-drugs formed by conjugating hydroquinone and TXA were synthesized and their in vitro and in vivo skin absorption characteristics were evaluated. The two synthesized co-drugs were 4-hydroxyphenyl 4-(aminomethyl)cyclohexanecarboxylate (HAC) and 1,4- phenylene bis(aminomethyl)cyclohexanecarboxylate (BAC). The co-drugs were chemically stable in aqueous solution, but rapidly degraded to the respective parent drug in esterases and skin homogenates. Compared to hydroquinone application, 7.2- and 2.4-fold increments in the hydroquinone skin deposition were obtained with the in vitro application of HAC and BAC. HAC and BAC led to 3- and 2-fold enhancements of equivalent TXA deposition compared to TXA administration. The in vivo experiment showed a further enhancement of co-drugs compared to the in vitro setup. The transdermal penetration of co-drugs, especially BAC, was much lower than that of hydroquinone and TXA. This indicated high-level skin targeting by the co-drugs. HAC and BAC revealed strong affinities for the viable epidermis/dermis. Hair follicles are important reservoirs for co-drug delivery. Daily administration of co-drugs to the skin did not generate irritation for up to 7 days. Both co-drugs are superior candidates for treating skin hyperpigmentation.

  5. The effects of galangin on a mouse model of vitiligo induced by hydroquinone.

    PubMed

    Huo, Shi-Xia; Liu, Xin-Ming; Ge, Chun-Hui; Gao, Li; Peng, Xiao-Ming; Zhao, Ping-Ping; Yan, Ming

    2014-10-01

    Galangin, the main active component of Alpinia officinarum Hance, was tested in a mouse model of vitiligo induced in C57BL/6 mice by the topical application of 2 mL of 2.5% hydroquinone daily to shaved areas (2 × 2 cm) of dorsal skin for 60 days. Thirty days after the final application of hydroquinone, galangin (0.425, and 4.25 mg/kg) was administered orally for 30 days. The hair colour darkened when it grew back after treatment, and histological analysis showed that the number of melanin-containing hair follicles had increased after treatment with all doses of galangin groups and 8-methoxypsoralen (8-MOP, the positive control) compared with the untreated vitiligo group (p < 0.05). The number of skin basal layer melanocytes and melanin-containing epidermal cells had also increased significantly with the application of 4.25 mg/kg of galangin. The concentration of tyrosinase (TYR) in serum was found to have increased, whereas the content of malondialdehyde and the activity of cholinesterase had decreased after treatment with all doses of galangin and 8-MOP, compared with control (p < 0.05). The expression of TYR protein in treated areas of skin also increased with the application of 4.25 mg/kg galangin and 8-MOP. In conclusion, the results showed that galangin was able to improve vitiligo induced by hydroquinone in mice, with the activity related to concentrations of TYR, expression of TYR protein, activity of malondialdehyde and content of cholinesterase. Galangin may therefore be a potential candidate for the treatment of vitiligo, subject to further investigation.

  6. The first clinical experience on efficacy of topical flutamide on melasma compared with topical hydroquinone: a randomized clinical trial

    PubMed Central

    Adalatkhah, Hassan; Sadeghi-Bazargani, Homayoun

    2015-01-01

    Background Treatment of melasma is unsatisfactory most of the times. Hormonal role is shown to exist in pathogenesis of the melasma, and sex-hormone related drugs may have an effect on melasma. Aim To investigate efficacy of 1% flutamide cream versus 4% hydroquinone cream on melasma. Methods In a parallel randomized clinical trial, 74 women with melasma were allocated to receive a sunscreen along with 4% hydroquinone cream or 1% flutamide cream. Melasma Area and Severity Index (MASI), mexameter melanin assay, and patient satisfaction were investigated. Results Mean age of the participants was 33.8 years. Mean length of time suffering from Melasma was 96.3 months. The subjects reported in average 1.1 hours per day of exposure to sunlight. Mean standardized total patient satisfaction score was 28.8 (standard deviation [SD] 17.2) in flutamide group patients versus 18 (SD 15.5) in control group (P<0.01). Regardless of treatment group, the skin darkness assessed upon MASI scales was reduced over the treatment course (P<0.001). Using mixed effects, longitudinal modeling showed better treatment efficacy based on MASI scale for flutamide group compared to the hydroquinone group (P<0.05). However, longitudinal analysis of mexameter scores did not reveal any significant difference in melanin measurements between flutamide and hydroquinone. Conclusion Topical flutamide appeared as effective as topical hydroquinone in treating melasma using mexameter assessment but with a better MASI improvement trend and higher patient satisfaction in flutamide treatment versus topical hydroquinone. As the present study is possibly the first clinical experience on efficacy of topical flutamide on melasma, it would be quite unreasonable to recommend clinical use of it before future studies replicate the results on its efficacy and safety. PMID:26345129

  7. Efficacy of topical treatment of pigmentation skin disorders with plant hydroquinone glucosides as assessed by quantitative color analysis.

    PubMed

    Clarys, P; Barel, A

    1998-06-01

    Hydroquinone is a well known reagent used in the treatment of pigmentation disorders. The instability of the quinones and the required active concentration make topical treatment rather difficult. We tested the efficacy of an ascorbate-phytohydroquinone complex that inhibits the synthesis of melanin and promotes the degradation of the existing melanin. Lentigo senile lesions were evaluated before and after 1 month of treatment. Objective skin color evaluation was performed instrumentally. After one month of treatment, a clear depigmentation of the macules was measured. None of the volunteers reported any side effects from the prolonged treatment with the hydroquinone containing product. PMID:9675352

  8. Oxidative degradation and associated mineralization of catechol, hydroquinone and resorcinol catalyzed by birnessite.

    PubMed

    Chang Chien, S W; Chen, H L; Wang, M C; Seshaiah, K

    2009-02-01

    Abiotic degradation and mineralization of catechol, hydroquinone, and resorcinol catalyzed by birnessite (delta-MnO2) was investigated. Studies were carried out by monitoring changes of pE versus time and pH versus time of the reaction systems during the initial 10 h reaction period and release of CO2 and associated reactions at the end of a 90 h reaction period. The reactions under anoxic condition were compared with aeration condition. The reactions were carried out in suspensions at initial pH of 6.0 under air and N2 atmosphere at room temperature and free of microbial activity. These results indicated that kinetic-related changes of pE versus time and pH versus time were dependent on structural characteristics of phenolic compound and aeration or anoxic condition in the reaction system. The sequence of the mineralization of phenolic compounds catalyzed by delta-MnO2 in presence of air expressed by CO2 release was catechol > hydroquinone > or = resorcinol and the differences were significant. However, under an N2 atmosphere the amounts of CO2 released were drastically reduced with insignificant differences among the three reaction systems. Further, phenolic compound degradations, dissolved and adsorbed Mn, and oxidation state of Mn in delta-MnO2 were also determined to elucidate the catalytic efficacy mediated by both O2 and delta-MnO2 in the reaction systems.

  9. A chemiluminescence method to detect hydroquinone with water-soluble sulphonato-(salen)manganese(III) complex as catalyst.

    PubMed

    Zhang, Guangbin; Tang, Yuhai; Sun, Yang; Yu, Hua; Du, Wei; Fu, Qiang

    2016-02-01

    A water-soluble sulphonato-(salen)manganese(III) complex with excellent catalytic properties was synthesized and demonstrated to greatly enhance the chemiluminescence signal of the hydrogen peroxide - luminol reaction. Coupled with flow-injection technique, a simple and sensitive chemiluminescence method was first developed to detect hydroquinone based on the chemiluminescence system of the hydrogen peroxide-luminol-sulphonato-(salen)manganese(III) complex. Under optimal conditions, the assay exhibited a wide linear range from 0.1 to 10 ng mL(-1) with a detection limit of 0.05 ng mL(-1) for hydroquinone. The method was applied successfully to detect hydroquinone in tap-water and mineral-water, with a sampling frequency of 120 times per hour. The relative standard deviation for determination of hydroquinone was less than 5.6%, and the recoveries ranged from 96.8 to 103.0%. The ultraviolet spectra, chemiluminescence spectra, and the reaction kinetics for the peroxide-luminol-sulphonato-(salen)manganese(III) complex system were employed to study the possible chemiluminescence mechanism. The proposed chemiluminescence analysis technique is rapid and sensitive, with low cost, and could be easily extended and applied to other compounds.

  10. RATE AND CAPACITY OF HEPATIC MICROSOMAL RING HYDROXYLATION OF PHENOL TO HYDROQUINONE AND CATECHOL IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    EPA Science Inventory

    Rainbow trout liver microsomes were used to study the rate of ring-hydroxylation of phenol (PH) by directly measuring the production of hydroquinone (HQ), the primary metabolite, and catechol (CAT), a secondary metabolite. An HPLC method with integrated ultroviolet (UV) and elect...

  11. RATE AND CAPACITY OF HEPATIC MICROSOMAL RING HYDROXYLATION OF PHENOL TO HYDROQUINONE AND CATECHOL IN RAINBOW TROUT

    EPA Science Inventory

    Rainbow trout (Oncorhynchus mykiss) liver microsomes were used to study the rate of ring-hydroxylation of phenol PH) by directly measuring the production of hydroquinone (HQ), the primary metabolite, and catechol (CAT), a secondary metabolite. An HPLC method with integrated ultra...

  12. Impact of hydroquinone used as a redox effector model on potential denitrification, microbial activity and redox condition of a cultivable soil.

    PubMed

    Perotti, Elda B R

    2015-01-01

    In this microcosm study, we analyzed the effect produced by hydroquinone on the expression of soil biological denitrification, in relation to the redox state of the soil, both in terms of intensity factor (Eh') and capacity factor (amount of oxidized or reduced compounds). The supplementation of an Argiudoll soil with hydroquinone decreased the soil apparent reduction potential (Eh') and soil dehydrogenase activity (formazan production from tetrazolium chloride reduction; redox capacity factor), the relationship between both factors being highly significative, r=0.99 (p<0.001). The bacterial population (measured by colony forming units) increased, and the production of N2O was greater (p<0.001) at 200 and 400μg/g dry soil doses. Furthermore, there was an inverse relationship between soil dehydrogenase activity and the number of bacteria (r=-0.82; p<0.05), increased denitrification activity and changes in the CO2/N2O ratio value. These results suggest that hydroquinone at supplemented doses modified the soil redox state and the functional structure of the microbial population. Acetate supplementation on soil with hydroquinone, to ensure the availability of an energy source for microbial development, confirmed the tendency of the results obtained with the supplementation of hydroquinone alone. The differences observed at increased doses of hydroquinone might be explained by differences on the hydroquinone redox species between treatments.

  13. Effects of caffeoyl conjugates of isoprenyl-hydroquinone glucoside and quinic acid on leukocyte function.

    PubMed

    Góngora, Luis; Giner, Rosa María; Máñez, Salvador; Recio, María del Carmen; Schinella, Guillermo; Ríos, José Luis

    2002-11-01

    The activity of three prenylhydroquinone glucosides (1-3) and four caffeoylquinic esters (4-7), obtained from Phagnalon rupestre, on elastase release, myeloperoxidase activity and superoxide and leukotriene B(4) production from polymorphonuclear leukocytes was determined. 4,5-Dicaffeoylquinic acid strongly inhibited elastase release with an IC(50) value of 4.8 microM. Methylated caffeoylquinic derivatives were the most potent inhibitors of myeloperoxidase (IC(50) near 60 microM), whereas both methylated and free carboxyl isomers inhibited superoxide production with similar potency (IC(50) between 27 and 42 microM). The monocaffeoyl conjugate of prenylhydroquinone glucoside (3), the most potent inhibitor of leukotriene B(4) production (IC(50) = 33 microM), possesses a mixed hydroquinone-caffeoyl character that could be considered as a potential anti-inflammatory entity.

  14. Tyrosinase-catalyzed hydroxylation of hydroquinone, a depigmenting agent, to hydroxyhydroquinone: A kinetic study.

    PubMed

    García-Molina, María del Mar; Muñoz Muñoz, Jose Luis; Martinez-Ortiz, Francisco; Martinez, José Rodriguez; García-Ruiz, Pedro Antonio; Rodriguez-López, José Neptuno; García-Cánovas, Francisco

    2014-07-01

    Hydroquinone (HQ) is used as a depigmenting agent. In this work we demonstrate that tyrosinase hydroxylates HQ to 2-hydroxyhydroquinone (HHQ). Oxy-tyrosinase hydroxylates HQ to HHQ forming the complex met-tyrosinase-HHQ, which can evolve in two different ways, forming deoxy-tyrosinase and p-hydroxy-o-quinone, which rapidly isomerizes to 2-hydroxy-p-benzoquinone or on the other way generating met-tyrosinase and HHQ. In the latter case, HHQ is rapidly oxidized by oxygen to generate 2-hydroxy-p-benzoquinone, and therefore, it cannot close the enzyme catalytic cycle for the lack of reductant (HHQ). However, in the presence of hydrogen peroxide, met-tyrosinase (inactive on hydroquinone) is transformed into oxy-tyrosinase, which is active on HQ. Similarly, in the presence of ascorbic acid, HQ is transformed into 2-hydroxy-p-benzoquinone by the action of tyrosinase; however, in this case, ascorbic acid reduces met-tyrosinase to deoxy-tyrosinase, which after binding to oxygen, originates oxy-tyrosinase. This enzymatic form is now capable of reacting with HQ to generate p-hydroxy-o-quinone, which rapidly isomerizes to 2-hydroxy-p-benzoquinone. The formation of HHQ during the action of tyrosinase on HQ is demonstrated by means of high performance liquid chromatography mass spectrometry (HPLC-MS) by using hydrogen peroxide and high ascorbic acid concentrations. We propose a kinetic mechanism for the tyrosinase oxidation of HQ which allows us the kinetic characterization of the process. A possible explanation of the cytotoxic effect of HQ is discussed. PMID:24842617

  15. Tyrosinase-catalyzed hydroxylation of hydroquinone, a depigmenting agent, to hydroxyhydroquinone: A kinetic study.

    PubMed

    García-Molina, María del Mar; Muñoz Muñoz, Jose Luis; Martinez-Ortiz, Francisco; Martinez, José Rodriguez; García-Ruiz, Pedro Antonio; Rodriguez-López, José Neptuno; García-Cánovas, Francisco

    2014-07-01

    Hydroquinone (HQ) is used as a depigmenting agent. In this work we demonstrate that tyrosinase hydroxylates HQ to 2-hydroxyhydroquinone (HHQ). Oxy-tyrosinase hydroxylates HQ to HHQ forming the complex met-tyrosinase-HHQ, which can evolve in two different ways, forming deoxy-tyrosinase and p-hydroxy-o-quinone, which rapidly isomerizes to 2-hydroxy-p-benzoquinone or on the other way generating met-tyrosinase and HHQ. In the latter case, HHQ is rapidly oxidized by oxygen to generate 2-hydroxy-p-benzoquinone, and therefore, it cannot close the enzyme catalytic cycle for the lack of reductant (HHQ). However, in the presence of hydrogen peroxide, met-tyrosinase (inactive on hydroquinone) is transformed into oxy-tyrosinase, which is active on HQ. Similarly, in the presence of ascorbic acid, HQ is transformed into 2-hydroxy-p-benzoquinone by the action of tyrosinase; however, in this case, ascorbic acid reduces met-tyrosinase to deoxy-tyrosinase, which after binding to oxygen, originates oxy-tyrosinase. This enzymatic form is now capable of reacting with HQ to generate p-hydroxy-o-quinone, which rapidly isomerizes to 2-hydroxy-p-benzoquinone. The formation of HHQ during the action of tyrosinase on HQ is demonstrated by means of high performance liquid chromatography mass spectrometry (HPLC-MS) by using hydrogen peroxide and high ascorbic acid concentrations. We propose a kinetic mechanism for the tyrosinase oxidation of HQ which allows us the kinetic characterization of the process. A possible explanation of the cytotoxic effect of HQ is discussed.

  16. A method for maintaining the clinical results of 4% hydroquinone and 0.025% tretinoin with a cosmeceutical formulation.

    PubMed

    Draelos, Zoe Diana; Raab, Susana; Yatskayer, Margarita; Chen, Nannan; Krol, Yevgeniy; Oresajo, Christian

    2015-04-01

    Facial dyspigmentation treatment is an unmet need in dermatology with increasing challenges due to the questionable safety of hydroquinone. This research examined a new OTC formulation containing hydroxyphenoxy propionic acid, ellagic acid, yeast extract, and salicylic acid on subjects who previously completed 12 weeks of treatment with 4% hydroquinone and 0.025% retinoic acid. The goal of this study was to evaluate the skin lightening and tolerability profile of a 20-week maintanence therapy with a cosmeceutical formulation during the summer months. 33 healthy subjects ages 25-60 years with moderate facial dyspigmentation defined as a score of 3 on a 5-point scale were enrolled. There was statistically significant improvement at week 20 in terms of even skin tone (P<0.001), spot intensity (P<0.001), spot size (P<0.05) and overall hyperpigmentation (P>=0.002). PMID:25844613

  17. Exogenous ochronosis After Prolonged Use of Topical Hydroquinone (2%) in a 50-Year-Old Indian Female.

    PubMed

    Gandhi, Vijay; Verma, Prashant; Naik, Geetanjali

    2012-09-01

    Ochronosis is a rare disease characterized by speckled and diffuse pigmentation symmetrically over the face, neck, and photo-exposed areas. It is characterized histologically by banana-shaped ochre-colored deposits in the dermis. It can present in exogenous or endogenous form. We report a case of exogenous ochronosis in a 50-year-old Indian woman after prolonged use of topical hydroquinone which is a rare complication with a commonly used drug which is available over the counter. PMID:23112363

  18. Azelaic acid and glycolic acid combination therapy for facial hyperpigmentation in darker-skinned patients: a clinical comparison with hydroquinone.

    PubMed

    Kakita, L S; Lowe, N J

    1998-01-01

    This multicenter, randomized, double-masked, parallel-group, 24-week clinical study compared the efficacy of the combination of azelaic acid 20% cream and glycolic acid 15% or 20% lotion with hydroquinone 4% in the treatment of facial hyperpigmentation in darker-skinned patients. At week 24, overall improvement and reduction in lesion area, pigmentary intensity, and disease severity were comparable in the two treatment groups. At some visits, patients treated with an azelaic/glycolic acid combination had slightly greater levels of peeling, burning, stinging, or dryness than did patients treated with hydroquinone, although scores for cutaneous signs and symptoms were always low. The present study demonstrated that the combination of azelaic acid 20% cream and glycolic acid 15% or 20% lotion was as effective as hydroquinone 4% cream in the treatment of hyperpigmentation in darker-skinned patients, with only a slightly higher rate of mild local irritation. These findings suggest that the addition of glycolic acid to azelaic acid treatment for hyperpigmentation is an appropriate alternative in selected darker-skinned patients.

  19. Effect of alkaline earth metals on the liquid-phase hydrogenation of hydroquinone over Ru-based catalysts

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Ji, Dong; Li, Yu; Liang, Yalan; Li, Gui Xian

    2015-12-01

    A series of Ru-based catalysts modified by alkaline earth metals were prepared by the impregnation-precipitation method and characterized using transmission electron microscopy, X-ray diffraction, ICP optical emission spectroscopy, Infrared Spectroscopy of adsorbed pyridine analysis and surface area analysis. The performance of the catalysts was measured via liquid-phase hydroquinone hydrogenation reaction. Results show that the Ru-Sr/NaY catalyst has the best activity and selectivity among those Ru-based catalysts. The conversion of hydroquinone and the selectivity to 1,4-cyclohexanediol reached up to 99.6% and 89.6% at optimum reaction condition (700 r/min, 423 K and 5 MPa pressure of H2 in 3 h). This may be attributed to the fact that the right amount of Strontium is beneficial to the good dispersion of the ruthenium nanoclusters on the surface of NaY and modify the acidic properties of the catalyst. Moreover, IR of adsorbed pyridine analysis suggested the proper ratio of L/B acid of the catalysts played an important role in the performance of the hydroquinone hydrogenation reaction.

  20. Tunable electrochemical pH modulation in a microchannel monitored via the proton-coupled electro-oxidation of hydroquinone

    PubMed Central

    Contento, Nicholas M.; Bohn, Paul W.

    2014-01-01

    Electrochemistry is a promising tool for microfluidic systems because it is relatively inexpensive, structures are simple to fabricate, and it is straight-forward to interface electronically. While most widely used in microfluidics for chemical detection or as the transduction mechanism for molecular probes, electrochemical methods can also be used to efficiently alter the chemical composition of small (typically <100 nl) microfluidic volumes in a manner that improves or enables subsequent measurements and sample processing steps. Here, solvent (H2O) electrolysis is performed quantitatively at a microchannel Pt band electrode to increase microchannel pH. The change in microchannel pH is simultaneously tracked at a downstream electrode by monitoring changes in the i-V characteristics of the proton-coupled electro-oxidation of hydroquinone, thus providing real-time measurement of the protonated forms of hydroquinone from which the pH can be determined in a straightforward manner. Relative peak heights for protonated and deprotonated hydroquinone forms are in good agreement with expected pH changes by measured electrolysis rates, demonstrating that solvent electrolysis can be used to provide tunable, quantitative pH control within a microchannel. PMID:25379105

  1. Cellular deficiency of Werner Syndrome protein or RECQ1 promotes genotoxic potential of hydroquinone and benzo[a]pyrene exposure

    PubMed Central

    Garige, Mamatha; Sharma, Sudha

    2014-01-01

    The five known RecQ helicases in humans (RECQ1, BLM, WRN, RECQL4, and RECQ5) have demonstrated roles in diverse genome maintenance mechanisms but their functions in safeguarding the genome from environmental toxicants are poorly understood. Here, we have evaluated a potential role of WRN (mutated in Werner Syndrome) and RECQ1 (the most abundant homolog of WRN) in hydroquinone and benzo[a]pyrene-induced genotoxicity. Silencing of WRN or RECQ1 expression in HeLa cells increased their sensitivity to hydroquinone and benzo[a]pyrene but elicited distinct DNA damage response. RECQ1-depleted cells exhibited increased RPA phosphorylation, Chk1 activation, and DNA double strand breaks as compared to control or WRN-depleted cells following exposure to benzo[a]pyrene treatment. Benzo[a]pyrene-induced double strand breaks in RECQ1-depleted cells were dependent on DNA-PK activity. Notably, loss of WRN in RECQ1-depleted cells ameliorated benzo[a]pyrene toxicity. Collectively, our results provide first indication of non-redundant participation of WRN and RECQ1 in protection from the potentially carcinogenic effects of benzo[a]pyrene and hydroquinone. PMID:25228686

  2. Highly sensitive spectrometric method for determination of hydroquinone in skin lightening creams: application in cosmetics.

    PubMed

    Uddin, S; Rauf, A; Kazi, T G; Afridi, H I; Lutfullah, G

    2011-04-01

    A highly sensitive, simpler, faster and economical UV/visible spectrophotometric method has been established for the estimation of hydroquinone (HQ) in dilute organic matrices. The method is based on using ammonium meta-vanadate as an oxidizing catalyst for conversion of HQ to p-benzoquinone (BQ) in the presence of oxygen. As a result of higher absorption of UV light by BQ than by HQ, its signal has been utilized for determining HQ at the trace level. The effect of various parameters such as amount of oxidizing agent, stability time, temperature, acids and bases, solvents and interference by various compounds has been studied upon the absorption of BQ as HQ. Under optimized conditions, Beer's Law was obeyed in the range of 0.025-2.00 μg ml(-1) HQ at 245.5 nm using 1 : 1 (V/V) 2-propanol/water system with a lower detection limit of 7 ng ml(-1) and linear regression coefficient of 0.9998. Relative standard deviation of 1.5% was observed for 0.5 μg ml(-1) HQ solution (n = 11). The newly developed method has been successfully applied to diluted samples of various skin lightening creams for free HQ determination at the trace level. Comparison of the results obtained by the proposed method with those by a previously reported method proved its validity.

  3. Study on the cytogenetic changes induced by benzene and hydroquinone in human lymphocytes.

    PubMed

    Peng, D; Jiaxing, W; Chunhui, H; Weiyi, P; Xiaomin, W

    2012-04-01

    Benzene (BN) is a prototypical hematotoxicant, genotoxic carcinogen, and ubiquitous environmental pollutant. Although the molecular mechanisms of BN-induced cytotoxicity and genotoxic damage are poorly understood in humans, previous studies suggested that bioactivated BN metabolites are capable of oxidative stress, cell cycle arrest, apoptosis, and DNA damage. The objective of the current study was to investigate the BN-induced cytogenetic changes and underlying mechanisms based on these hypotheses. Peripheral blood lymphocytes (PBLs) might be the targets for BN-induced cytotoxicity and genotoxicity, and therefore DNA damage responses of PBLs after exposure to different concentrations of BN (0.25, 3.5, 50 μmol/L) or BN metabolite, hydroquinone (HQ; 50, 150, 450 μmol/L) were studied in vitro. Microculture tetrazolium assay, flow cytometry, 2',7'-dichlorodihydrofluorescein-diacetate assay, comet assay, micronuclei assay, and attenuated total reflectance microspectroscope were chosen for this study. Based on the results, we reached the conclusion that different concentrations of BN or HQ significantly inhibited cell growth, induced the arrest of S phase and G2/M phase, and increased late apoptosis in a concentration-dependent manner. Furthermore, evidence was also provided to support the conclusion that BN and HQ induced DNA strand breaks and chromosomal mutations in PBL, which indicated the genotoxicity of BN and HQ. Current evidence has indicated that multiple mechanisms including dysfunction of cell cycle, programmed cell death, oxidative stress, and DNA lesions are likely to contribute to BN-induced cytogenetic changes. PMID:22297702

  4. Hydroquinone-ZnO nano-laminate deposited by molecular-atomic layer deposition

    SciTech Connect

    Huang, Jie; Lucero, Antonio T.; Cheng, Lanxia; Kim, Jiyoung; Hwang, Hyeon Jun; Ha, Min-Woo

    2015-03-23

    In this study, we have deposited organic-inorganic hybrid semiconducting hydroquinone (HQ)/zinc oxide (ZnO) superlattices using molecular-atomic layer deposition, which enables accurate control of film thickness, excellent uniformity, and sharp interfaces at a low deposition temperature (150 °C). Self-limiting growth of organic layers is observed for the HQ precursor on ZnO surface. Nano-laminates were prepared by varying the number of HQ to ZnO cycles in order to investigate the physical and electrical effects of different HQ to ZnO ratios. It is indicated that the addition of HQ layer results in enhanced mobility and reduced carrier concentration. The highest Hall mobility of approximately 2.3 cm{sup 2}/V·s and the lowest n-type carrier concentration of approximately 1.0 × 10{sup 18}/cm{sup 3} were achieved with the organic-inorganic superlattice deposited with a ratio of 10 ZnO cycles to 1 HQ cycle. This study offers an approach to tune the electrical transport characteristics of ALD ZnO matrix thin films using an organic dopant. Moreover, with organic embedment, this nano-laminate material may be useful for flexible electronics.

  5. Analysis of the effects of hydroquinone and arbutin on the differentiation of melanocytes.

    PubMed

    Inoue, Yu; Hasegawa, Seiji; Yamada, Takaaki; Date, Yasushi; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko; Akamatsu, Hirohiko

    2013-01-01

    Hydroquinone (HQ) is a chemical compound that inhibits the functions of melanocytes and has long been known for its skin-whitening effect. According to previous studies, the Tyrosinase (Tyr) activity inhibitory effect and melanocyte-specific cell toxicity are known depigmenting mechanisms; however, details of the underlying mechanisms are unknown. Arbutin (Arb) is also known for its Tyr activity inhibitory effect and is commonly used as a skin-whitening agent. However, the detailed depigmenting mechanism of Arb is also not yet fully understood. Few studies have attempted to elucidate the effects of HQ and Arb on undifferentiated melanocytes. In this study, we examined the effects of HQ and Arb throughout each stage of differentiation of melanocytes using a mouse embryonic stem cell (ESC) culture system to induce melanocytes. The results showed that HQ in particular downregulated the early stage of differentiation, in which neural crest cells were generated, and the late stage of differentiation, in which melanogenesis became active. On the other hand, Arb had no effect on the differentiation of melanocytes, and only suppressed melanogenesis by specifically suppressing elevations in Tyr expression in the late stage of differentiation.

  6. Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene

    SciTech Connect

    Hutt, A.M.; Kalf, G.F.

    1996-12-01

    Chronic exposure of humans to benzene (BZ) causes acute myeloid leukemia (AML). Both BZ and therapy-related secondary AML are characterized by chromosomal translocations that may occur by inappropriate recombinational events. DNA topoisomerase 11 (topo 11) is an essential sulfhydryl (SH)-dependent endonuclease required for replication, recombination, chromosome segregation, and chromosome structure. Topo 11 cleaves DNA at purine(R)/pyrimidine(Y) repeat sequences that have been shown to be highly recombinogenic in vivo. Certain antineoplastic drugs stabilize topo 11-DNA cleavage complexes at RY repeat sequences, which leads to translocations of the type observed in leukemia. Hydroquinone (HQ) is metabolized to p-benzoquinone (BQ) in a peroxidase-mediated reaction in myeloid progenitor cells. BO interacts with SH groups of SH-dependent enzymes. Consequently, the aims of this research were to determine whether HQ and BO are topo 11 inhibitors. The ability of the compounds to inhibit the activity of topo, 11 was tested using an assay system that depends on the conversion, by homogeneous human topo 11, of catenated kinetoplast DNA into open and/or nicked open circular DNA that can be separated from the catenated DNA by electrophoresis in a 1% agarose-ethidium bromide gel. We provide preliminary data that indicate that both HQ and BO cause a time and concentration (pM)-dependent inhibition of topo 11 activity. 32 refs., 5 figs.

  7. Analysis of hydroquinone and some of its ethers by using capillary electrochromatography.

    PubMed

    Desiderio, C; Ossicini, L; Fanali, S

    2000-07-28

    Capillary electrochromatography (CEC) was used for the analysis of relevant compounds in cosmetic preparation. Hydroquinone (HQ) and some of its ethers (methyl-, dimethyl-, benzyl-, phenyl-, propyl-HQ derivatives) were analyzed by using an octadecylsilica (ODS) stationary phase packed in fused-silica capillary (100 microm I.D.; 30 cm and 21.5 cm total and effective lengths, respectively). 20 mM Ammonium acetate pH 6-acetonitrile (50-70%) were the mobile phases used for the experiments. The acetonitrile (ACN) content strongly influenced the resolution of the studied compounds as well as the efficiency and the retention factor. Baseline resolution for the studied analytes was achieved at both the lowest and the highest percentage of ACN, the last one providing the shortest analysis time. Mobile phase containing 70% of ACN was therefore used for the analysis of an extract of skin-toning cream declared to contain HQ. Good repeatability of both retention times, peak areas and peak areas ratio (Asample/Ainternational standard) was found. The calibration graphs were linear in the concentration range studied (5-90 microg/ml) with correlation coefficients between 0.9975 and 09991. The analysis of the cosmetic preparation revealed the presence of HQ (1.72%, w/w) and of two additional peaks (not identified).

  8. New host architecture of hydroquinone with enclathrated C[sub 70

    SciTech Connect

    Ermer, O.; Roebke, C. )

    1993-11-03

    The room-temperature crystal structure of a molecular 1:4.5:1 complex of C[sub 70], hydroquinone (HQ), and benzene (bz), C[sub 70](HQ)[sub 4.5]bz, is reported. The solid-state architecture of the donor-acceptor complex has trigonal symmetry and consists of a novel H-bonded superoctahedral HQ host network with three different types of cavities enclathrating the C[sub 70] and bz guest molecules. Giant HQ twin cages shaped according to the shell of a peanut house a pair of C[sub 70] molecules, large single cages accommodate one C[sub 70] guest, and smaller HQ cages of tetrahedral shape embrace a sandwich pair of bz molecules. The long axes of the C[sub 70] guest molecules are orthogonal to the trigonal crystal and cage axes. Their HQ host cages may be viewed as expanded supercubes and related to the simple supercube cavities of the sister complex C[sub 60](HQ)[sub 3] reported previously. A topological analogy exists between the tetrahedral HQ cages and the supertetrahedral building blocks of the pyrochlore network. The HQ host network of C[sub 70](HQ)[sub 4.5]bz is essentially ordered, and the C[sub 70] and bz guest species are orientationally disordered. The adopted benzene guest model is provisional only and requires further backing. 8 refs., 4 figs., 1 tab.

  9. Simple ortho- and para-hydroquinones as compounds neuroprotective against oxidative stress in a manner associated with specific transcriptional activation

    SciTech Connect

    Satoh, Takumi Saitoh, Sachie; Hosaka, Manami; Kosaka, Kunio

    2009-02-06

    Electrophilic compounds protect neurons through the activation of the Keap1/Nrf2 pathway and the induction of phase-2 enzymes [T. Satoh, S.A. Lipton, Redox regulation of neuronal survival by electrophilic compounds, Trends Neurosci. 30 (2007) 38-45; T. Satoh, S. Okamoto, J. Cui, Y. Watanabe, K. Furuta, M. Suzuki, K. Tohyama, S.A. Lipton, Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic phase II inducers. Proc. Natl. Acad. Sci. USA 103 (2006) 768-773]. Hydroquinone-type electrophilic compounds such as tert-butyl hydroquinone (TBHQ) and carnosic acid (CA) have attracted special attention, because the oxidative conversion of 'hydroquinone' to 'quinone' is essential for the transcriptional activation of the above-mentioned enzymes [T. Satoh, K. Kosaka, K. Itoh, A. Kobayashi, M. Yamamoto, Y. Shimojo, C. Kitajima, J. Cui, J. Kamins, S. Okamoto, T. Shirasawa, S.A. Lipton, Carnosic acid, a catechol-type electrophilic compound, protect neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of specific cysteine, J. Neurochem. 104 (2008) 1161-1131; A.D. Kraft, D.A. Johnson, J.A. Johnson, Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult, J. Neurosci. 24 (2004) 1101-1112]. In the present study, we examined the relationship between electrophilicity and the protective effects afforded by electrophilic compounds. Electrophilicity was assessed in terms of the ability of a compound to bind to a cysteine on bovine serum albumin, by which we found that neuroprotective hydroquinones [TBHQ (para-) and CA (ortho-)] had distinctive patterns of cysteine binding compared with other electrophilic compounds. Further, we found that isomers of simple ortho- and para-hydroquinones such as 2-methylhydroquinone (para-) and 4-methyl-catechol (ortho-) [not in abstract] had

  10. Intermolecular Interactions and Electrostatic Properties of the [beta]-Hydroquinone Apohost: Implications for Supramolecular Chemistry

    SciTech Connect

    Clausen, Henrik F.; Chen, Yu-Sheng; Jayatilaka, Dylan; Overgaard, Jacob; Koutsantonis, George A.; Spackman, Mark A.; Iversen, Bo B.

    2012-02-07

    The crystal structure of the {beta}-polymorph of hydroquinone ({beta}-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated with the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/{angstrom}{sup 2} (0.27 V/{angstrom}) 1 {angstrom} along the 3-fold axis and 0.0105 e/{angstrom}{sup 2} (0.15 V/{angstrom}) 1 {angstrom} along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule.

  11. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation.

    PubMed

    Qin, Wenxiu; Wang, Yujun; Fang, Guodong; Wu, Tongliang; Liu, Cun; Zhou, Dongmei

    2016-05-01

    Natural organic matter (NOM) significantly affects the fate, bioavailability, and toxicity of arsenic in the environment. In the present study, we investigated the oxidation of As(III) in the presence of hydroquinone (HQ) and benzoquinone (BQ), which were selected as model quinone moieties for NOM. It was found that As(III) was oxidized to As(V) in the presence of HQ or BQ at neutral conditions, and the oxidation efficiency of As(III) increased from 33% to 92% in HQ solutions and from 0 to 80% in BQ solutions with pH increasing from 6.5 to 8.5. The oxidation mechanism was further explored with electron spin resonance (ESR) technique. The results showed that semiquinone radicals (SQ(-)) were generated from the comproportionation reaction between BQ and HQ, which mediated the formation of superoxide anion (O2(-)), hydrogen peroxide (H2O2) and hydroxyl radical (OH). Both the SQ(-), H2O2 and OH contributed to the oxidation of As(III). The increase of pH favored the formation of SQ(-), and thus promoted the generation of reactive oxygen species (ROS) as well as As(III) oxidation. Increasing concentrations of HQ and BQ from 0.1 to 1.0 mM enhanced As(III) oxidation from 65% to 94% and from 10% to 53%, respectively. The findings of this study facilitate our understanding of the fate and transformation of As(III) in organic-rich aquatic environments and highlight quinone moieties as the potential oxidants for As(III) in the remediation of arsenic contaminated sites.

  12. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone

    NASA Astrophysics Data System (ADS)

    Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter

    2016-09-01

    Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ∼100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV–vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ∼100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering—volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.

  13. Induction of centrosome amplification by formaldehyde, but not hydroquinone, in human lymphoblastoid TK6 cells.

    PubMed

    Ji, Zhiying; McHale, Cliona M; Bersonda, Jessica; Tung, Judy; Smith, Martyn T; Zhang, Luoping

    2015-07-01

    Benzene and formaldehyde (FA) are important industrial chemicals and environmental pollutants that cause leukemia by inducing DNA damage and chromosome aberrations in hematopoietic stem cells (HSC), the target cells for leukemia. Our previous studies showed that workers exposed to benzene and FA exhibit increased levels of aneuploidy in their blood cells. As centrosome amplification is a common phenomenon in human cancers, including leukemia, and is associated with aneuploidy in carcinogenesis, we hypothesized that benzene and FA would induce centrosome amplification in vitro. We treated human lymphoblastoid TK6 cells with a range of concentrations of hydroquinone (HQ, a benzene metabolite) or FA for 24 h, allowed the cells to recover in fresh medium for 24 h, and examined centrosome amplification; chromosomal gain, loss, and breakage; and cytotoxicity. We included melphalan and etoposide, chemotherapeutic drugs that cause therapy-related acute myeloid leukemia and that have been shown to induce centrosome amplification as well as chromosomal aneuploidy and breakage, as positive controls. Melphalan and etoposide induced centrosome amplification and chromosome gain and breakage in a dose-dependent manner, at cytotoxic concentrations. HQ, though cytotoxic, did not induce centrosome amplification or any chromosomal aberration. FA-induced centrosome amplification and cytotoxicity, but did not induce chromosomal aberrations. Our data suggest, for the first time, that centrosome amplification is a potential mechanism underlying FA-induced leukemogenesis, but not benzene-induced leukemogenesis, as mediated through HQ. Future studies are needed to delineate the mechanisms of centrosome amplification and its association with DNA damage, chromosomal aneuploidy and carcinogenesis, following exposure to FA.

  14. Intermolecular interactions and electrostatic properties of the β-hydroquinone apohost: implications for supramolecular chemistry.

    PubMed

    Clausen, Henrik F; Chen, Yu-Sheng; Jayatilaka, Dylan; Overgaard, Jacob; Koutsantonis, George A; Spackman, Mark A; Iversen, Bo B

    2011-11-17

    The crystal structure of the β-polymorph of hydroquinone (β-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated with the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/Å(2) (0.27 V/Å) 1 Å along the 3-fold axis and 0.0105 e/Å(2) (0.15 V/Å) 1 Å along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule. PMID:21809888

  15. Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone

    NASA Astrophysics Data System (ADS)

    Kumar, Dhiraj; Mutreja, Isha; Sykes, Peter

    2016-09-01

    Gold nanoparticles (AuNPs) are being studied for several biomedical applications, including drug delivery, biomedical imaging, contrast agents and tumor targeting. The synthesis of nanoparticles with a narrow size distribution is critical for these applications. We report the synthesis of highly mono-dispersed AuNPs by a seed mediated approach, in the presence of tri-sodium citrate and hydroquinone (HQ). AuNPs with an average size of 18 nm were used for the synthesis of highly mono-dispersed nanocrystals of an average size 40 nm, 60 nm, 80 nm and ˜100 nm; but the protocol is not limited to these sizes. The colloidal gold was subjected to UV-vis absorbance spectroscopy, showing a red shift in lambda max wavelength, peaks at 518.47 nm, 526.37 nm, 535.73 nm, 546.03 nm and 556.50 nm for AuNPs seed (18 nm), 40 nm, 60 nm, 80 nm and ˜100 nm respectively. The analysis was consistent with dynamic light scattering and electron microscopy. Hydrodynamic diameters measured were 17.6 nm, 40.8 nm, 59.8 nm, 74.1 nm, and 91.4 nm (size by dynamic light scattering—volume %); with an average poly dispersity index value of 0.088, suggesting mono-dispersity in the size distribution, which was also confirmed by transmission electron microscopy analysis. The advantage of a seed mediated approach is a multi-step growth of nanoparticle size that enables us to control the number of nanoparticles in the suspension, for size ranging from 24.5 nm to 95.8 nm. In addition, the HQ-based synthesis of colloidal nanocrystals allowed control of the particle size and size distribution by tailoring either the number of seeds, amount of gold precursor or reducing agent (HQ) in the final reaction mixture.

  16. Enzymatic synthesis and characterization of hydroquinone galactoside using Kluyveromyces lactis lactase.

    PubMed

    Kim, Go-Eun; Lee, Jin-Ha; Jung, Sun-Hwa; Seo, Eun-Seong; Jin, Sheng-De; Kim, Ghahyun J; Cha, Jaeho; Kim, Eui-Joong; Park, Ki-Deok; Kim, Doman

    2010-09-01

    Hydroquinone galactoside (HQ-Gal) as a potential skin whitening agent was synthesized by the reaction of lactase (beta-galactosidase) from Kluyveromyces lactis, Aspergillus oryzae, Bacillus circulans, and Thermus sp. with lactose as a donor and HQ as an acceptor. Among these lactases, the acceptor reaction involving HQ and lactose with K. lactis lactase showed a higher conversion ratio to HQ-Gal (60.27%). HQ-Gal was purified using butanol partitioning and silica gel column chromatography. The structure of the purified HQ-Gal was determined by nuclear magnetic resonance, and the ionic product was observed at m/z 295 (C12H16O7Na)+ using matrix assisted laser desorption ionization time-of-flight mass spectrometry. HQ-Gal was identified as 4-hydroxyphenyl-beta-d-galactopyranoside. The optimum conditions for HQ-Gal synthesis by K. lactis determined using response surface methodology were 50 mM HQ, 60 mM lactose, and 20 U mL(-1) lactase. These conditions produced a yield of 2.01 g L(-1) HQ-Gal. The half maximal inhibitory concentration (IC50) of diphenylpicrylhydrazyl scavenging activity was 3.31 mM, indicating a similar antioxidant activity compared to beta-arbutin (IC50=3.95 mM). The Ki value of HQ-Gal (0.75 mM) against tyrosinase was smaller than that of beta-arbutin (Ki=1.97 mM), indicating its superiority as an inhibitor. HQ-Gal inhibited (23%) melanin synthesis without being significantly toxic to the cells, while beta-arbutin exhibited only 8% reduction of melanin synthesis in B16 melanoma cells compared with the control. These results indicate that HQ-Gal may be a suitable functional component in the cosmetics industry.

  17. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben

    NASA Astrophysics Data System (ADS)

    Elghobashy, Mohamed R.; Bebawy, Lories I.; Shokry, Rafeek F.; Abbas, Samah S.

    2016-03-01

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL- 1 for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method.

  18. Mercury and hydroquinone content of skin toning creams and cosmetic soaps, and the potential risks to the health of Ghanaian women.

    PubMed

    Agorku, Eric Selorm; Kwaansa-Ansah, Edward Ebow; Voegborlo, Ray Bright; Amegbletor, Pamela; Opoku, Francis

    2016-01-01

    In this study, sixty-two (62) skin-lightening creams and soaps were analysed for total mercury and hydroquinone levels. Total mercury was determined by the Cold Vapour Atomic Absorption Spectrophotometry using an automatic mercury analyser and hydroquinone by High Performance Liquid Chromatography. The mean concentration of total mercury in skin toning creams and cosmetic soaps were 0.098 ± 0.082 and 0.152 ± 0.126 μg/g, respectively. The mean concentration of hydroquinone was 0.243 ± 0.385 and 0.035 ± 0.021 % in skin toning creams and cosmetic soaps, respectively. All the creams and soaps analysed had mercury and hydroquinone levels below the US Food and Drug Administration's acceptable limit of 1 μg/g and 2 %, respectively. The low levels of mercury and hydroquinone in the creams and soaps analysed in this study therefore do not pose any potential risk to consumers who are mostly women in Ghana.

  19. Successive ratio subtraction coupled with constant multiplication spectrophotometric method for determination of hydroquinone in complex mixture with its degradation products, tretinoin and methyl paraben.

    PubMed

    Elghobashy, Mohamed R; Bebawy, Lories I; Shokry, Rafeek F; Abbas, Samah S

    2016-03-15

    A sensitive and selective stability-indicating successive ratio subtraction coupled with constant multiplication (SRS-CM) spectrophotometric method was studied and developed for the spectrum resolution of five component mixture without prior separation. The components were hydroquinone in combination with tretinoin, the polymer formed from hydroquinone alkali degradation, 1,4 benzoquinone and the preservative methyl paraben. The proposed method was used for their determination in their pure form and in pharmaceutical formulation. The zero order absorption spectra of hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben were determined at 293, 357.5, 245 and 255.2 nm, respectively. The calibration curves were linear over the concentration ranges of 4.00-46.00, 1.00-7.00, 0.60-5.20, and 1.00-7.00 μg mL(-1) for hydroquinone, tretinoin, 1,4 benzoquinone and methyl paraben, respectively. The pharmaceutical formulation was subjected to mild alkali condition and measured by this method resulting in the polymerization of hydroquinone and the formation of toxic 1,4 benzoquinone. The proposed method was validated according to ICH guidelines. The results obtained were statistically analyzed and compared with those obtained by applying the reported method. PMID:26745510

  20. Mercury and hydroquinone content of skin toning creams and cosmetic soaps, and the potential risks to the health of Ghanaian women.

    PubMed

    Agorku, Eric Selorm; Kwaansa-Ansah, Edward Ebow; Voegborlo, Ray Bright; Amegbletor, Pamela; Opoku, Francis

    2016-01-01

    In this study, sixty-two (62) skin-lightening creams and soaps were analysed for total mercury and hydroquinone levels. Total mercury was determined by the Cold Vapour Atomic Absorption Spectrophotometry using an automatic mercury analyser and hydroquinone by High Performance Liquid Chromatography. The mean concentration of total mercury in skin toning creams and cosmetic soaps were 0.098 ± 0.082 and 0.152 ± 0.126 μg/g, respectively. The mean concentration of hydroquinone was 0.243 ± 0.385 and 0.035 ± 0.021 % in skin toning creams and cosmetic soaps, respectively. All the creams and soaps analysed had mercury and hydroquinone levels below the US Food and Drug Administration's acceptable limit of 1 μg/g and 2 %, respectively. The low levels of mercury and hydroquinone in the creams and soaps analysed in this study therefore do not pose any potential risk to consumers who are mostly women in Ghana. PMID:27065161

  1. The molecular mechanisms of liver and islets of Langerhans toxicity by benzene and its metabolite hydroquinone in vivo and in vitro.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Gholami, Mahdi; Ghafour-Boroujerdi, Elmira; Abdollahi, Mohammad

    2015-01-01

    Benzene (C6H6) is one of the most commonly used industrial chemicals causing environmental pollution. This study aimed to examine the effect of benzene and its metabolite hydroquinone on glucose regulating organs, liver and pancreas, and to reveal the involved toxic mechanisms, in rats. In the in vivo part, benzene was dissolved in corn oil and administered through intragastric route at doses of 200, 400 and 800 mg/kg/day, for 4 weeks. And, in the in vitro part, toxic mechanisms responsible for weakening the antioxidant system in islets of Langerhans by hydroquinone at different concentrations (0.25, 0.5 and 1 mM), were revealed. Benzene exposure raised the activity of phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6Pase) enzymes and increased fasting blood sugar (FBS) in comparison to control animals. Also, the activity of hepatic glucokinase (GK) was decreased significantly. Along with, a significant increase was observed in hepatic tumor necrosis factor (TNF-α) and plasma insulin in benzene treated rats. Moreover, benzene caused a significant rise in hepatic lipid peroxidation, DNA damage and oxidation of proteins. In islets of Langerhans, hydroquinone was found to decrease the capability of antioxidant system to fight free radicals. Also, the level of death proteases (caspase 3 and caspase 9) was found higher in hydroquinone exposed islets. The current study demonstrated that benzene and hydroquinone causes toxic effects on liver and pancreatic islets by causing oxidative impairment.

  2. Hydroquinone-quinone oxidation by molecular oxygen: a simple tool for signal amplification through auto-generation of hydrogen peroxide.

    PubMed

    Sella, Eran; Shabat, Doron

    2013-08-21

    Signal amplification methods are of obvious importance for various diagnostic assays. We have developed a new small-molecule-based probe that, upon activation with sub-stoichiometric amounts of hydrogen peroxide, produces an auto-inductive amplification reaction. The signal is produced through the oxidation reaction of hydroquinone to the corresponding quinone derivative by molecular oxygen. This oxidation is accompanied by the formation of hydrogen peroxide, which can enter the amplification sequence and initiate a new diagnostic cycle. The generated quinone is composed of a donor-acceptor conjugated pair and fluoresces at a distinct wavelength, allowing the formation to be monitored by a convenient fluorescence assay.

  3. Simultaneous Detection and Estimation of Catechol, Hydroquinone, and Resorcinol in Binary and Ternary Mixtures Using Electrochemical Techniques.

    PubMed

    Hossain, Md Uzzal; Rahman, Md Toufiqur; Ehsan, Md Qamrul

    2015-01-01

    Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed with a glassy carbon electrode (GCE) modified with polyglutamic acid (PGA) on the three dihydroxybenzene isomers, catechol (CT), hydroquinone (HQ), and resorcinol (RS). At bare GCE, these isomers exhibited voltammograms with highly overlapped redox peaks that impeded their simultaneous detection in binary and ternary mixtures. On the contrary, at PGA modified GCE binary and ternary mixtures of the dihydroxybenzene isomers showed well-resolved redox peaks in both CV and DPV experiments. This resolving ability of PGA modified GCE proves its potential to be exploited as an electrochemical sensor for the simultaneous detection of these isomers.

  4. Simultaneous Detection and Estimation of Catechol, Hydroquinone, and Resorcinol in Binary and Ternary Mixtures Using Electrochemical Techniques

    PubMed Central

    Hossain, Md. Uzzal; Rahman, Md. Toufiqur; Ehsan, Md. Qamrul

    2015-01-01

    Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed with a glassy carbon electrode (GCE) modified with polyglutamic acid (PGA) on the three dihydroxybenzene isomers, catechol (CT), hydroquinone (HQ), and resorcinol (RS). At bare GCE, these isomers exhibited voltammograms with highly overlapped redox peaks that impeded their simultaneous detection in binary and ternary mixtures. On the contrary, at PGA modified GCE binary and ternary mixtures of the dihydroxybenzene isomers showed well-resolved redox peaks in both CV and DPV experiments. This resolving ability of PGA modified GCE proves its potential to be exploited as an electrochemical sensor for the simultaneous detection of these isomers. PMID:26770198

  5. Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene.

    PubMed Central

    Hutt, A M; Kalf, G F

    1996-01-01

    Chronic exposure of humans to benzene (BZ) causes acute myeloid leukemia (AML). Both BZ and therapy-related secondary AML are characterized by chromosomal translocations that may occur by inappropriate recombinational events. DNA topoisomerase II (topo II) is an essential sulfhydryl (SH)-dependent endonuclease required for replication, recombination, chromosome segregation, and chromosome structure. Topo II cleaves DNA at purine(R)/pyrimidine(Y) repeat sequences that have been shown to be highly recombinogenic in vivo. Certain antineoplastic drugs stabilize topo II-DNA cleavage complexes at RY repeat sequences, which leads to translocations of the type observed in leukemia. Hydroquinone (HQ) is metabolized to p-benzoquinone (BQ) in a peroxidase-mediated reaction in myeloid progenitor cells. BQ interacts wit SH groups of SH-dependent enzymes. Consequently, the aims of this research were to determine whether HQ and BQ are topo II inhibitors. The ability of the compounds to inhibit the activity of topo III was tested using an assay system that depends on the conversion, by homogeneous human topo II, of catenated kinetoplast DNA into open and/or nicked open circular DNA that can be separated from the catenated DNA by electrophoresis in a 1% agarose-ethidium bromide gel. We provide preliminary data that indicate that both HQ and BQ cause a time and concentration (microM)-dependent inhibition of topo II activity. These compounds, which potentially can form adducts with DNA, have no effect on the migration of the supercoiled and open circular forms in the electrophoretic gradient, and BQ-adducted KDNA can be decatenated by topo II. Using a pRYG plasmid DNA with a single RY repeat as a cleavage site, it was determined that BQ does not stimulate the production of linear DNA indicative of an inhibition of topo II religation of strand breaks by stabilization of the covalent topo III-DNA cleavage complex. Rather, BQ most probably inhibits the SH-dependent topo II by binding to

  6. Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene.

    PubMed

    Hutt, A M; Kalf, G F

    1996-12-01

    Chronic exposure of humans to benzene (BZ) causes acute myeloid leukemia (AML). Both BZ and therapy-related secondary AML are characterized by chromosomal translocations that may occur by inappropriate recombinational events. DNA topoisomerase II (topo II) is an essential sulfhydryl (SH)-dependent endonuclease required for replication, recombination, chromosome segregation, and chromosome structure. Topo II cleaves DNA at purine(R)/pyrimidine(Y) repeat sequences that have been shown to be highly recombinogenic in vivo. Certain antineoplastic drugs stabilize topo II-DNA cleavage complexes at RY repeat sequences, which leads to translocations of the type observed in leukemia. Hydroquinone (HQ) is metabolized to p-benzoquinone (BQ) in a peroxidase-mediated reaction in myeloid progenitor cells. BQ interacts wit SH groups of SH-dependent enzymes. Consequently, the aims of this research were to determine whether HQ and BQ are topo II inhibitors. The ability of the compounds to inhibit the activity of topo III was tested using an assay system that depends on the conversion, by homogeneous human topo II, of catenated kinetoplast DNA into open and/or nicked open circular DNA that can be separated from the catenated DNA by electrophoresis in a 1% agarose-ethidium bromide gel. We provide preliminary data that indicate that both HQ and BQ cause a time and concentration (microM)-dependent inhibition of topo II activity. These compounds, which potentially can form adducts with DNA, have no effect on the migration of the supercoiled and open circular forms in the electrophoretic gradient, and BQ-adducted KDNA can be decatenated by topo II. Using a pRYG plasmid DNA with a single RY repeat as a cleavage site, it was determined that BQ does not stimulate the production of linear DNA indicative of an inhibition of topo II religation of strand breaks by stabilization of the covalent topo III-DNA cleavage complex. Rather, BQ most probably inhibits the SH-dependent topo II by binding to

  7. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase.

    PubMed

    Seo, Dong-Ho; Jung, Jong-Hyun; Ha, Suk-Jin; Cho, Hyun-Kug; Jung, Dong-Hyun; Kim, Tae-Jip; Baek, Nam-In; Yoo, Sang-Ho; Park, Cheon-Seok

    2012-06-01

    α-Arbutin (α-Ab) is a powerful skin whitening agent that blocks epidermal melanin biosynthesis by inhibiting the enzymatic oxidation of tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA). α-Ab was effectively synthesized from hydroquinone (HQ) by enzymatic biotransformation using amylosucrase (ASase). The ASase gene from Deinococcus geothermalis (DGAS) was expressed and efficiently purified from Escherichia coli using a constitutive expression system. The expressed DGAS was functional and performed a glycosyltransferase reaction using sucrose as a donor and HQ as an acceptor. The presence of a single HQ bioconversion product was confirmed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The HQ bioconversion product was isolated by silica gel open column chromatography and its chemical structure determined by 1H and 13C nuclear magnetic resonance (NMR). The product was determined to be hydroquinone-O-α-D-glucopyranoside with a glucose molecule linked to HQ through an α-glycosidic bond. However, the production yield of the transfer reaction was significantly low (1.3%) due to the instability of HQ in the reaction mixture. The instability of HQ was considerably improved by antioxidant agents, particularly ascorbic acid, implying that HQ is labile to oxidation. A maximum yield of HQ transfer product of 90% was obtained at a 10:1 molar ratio of donor (sucrose) and acceptor (HQ) molecules in the presence of 0.2 mM ascorbic acid.

  8. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.

    PubMed

    Wang, Jun; Krishna, Rajamani; Yang, Jiangfeng; Deng, Shuguang

    2015-08-01

    Hydroquinone and quinone functional groups were grafted onto a hierarchical porous carbon framework via the Friedel-Crafts reaction to develop more efficient adsorbents for the selective capture and removal of carbon dioxide from flue gases and natural gas. The oxygen-doped porous carbons were characterized with scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. CO2, CH4, and N2 adsorption isotherms were measured and correlated with the Langmuir model. An ideal adsorbed solution theory (IAST) selectivity for the CO2/N2 separation of 26.5 (298 K, 1 atm) was obtained on the hydroquinone-grafted carbon, which is 58.7% higher than that of the pristine porous carbon, and a CO2/CH4 selectivity value of 4.6 (298 K, 1 atm) was obtained on the quinone-grafted carbon (OAC-2), which represents a 28.4% improvement over the pristine porous carbon. The highest CO2 adsorption capacity on the oxygen-doped carbon adsorbents is 3.46 mmol g(-1) at 298 K and 1 atm. In addition, transient breakthrough simulations for CO2/CH4/N2 mixture separation were conducted to demonstrate the good separation performance of the oxygen-doped carbons in fixed bed adsorbers. Combining excellent adsorption separation properties and low heats of adsorption, the oxygen-doped carbons developed in this work appear to be very promising for flue gas treatment and natural gas upgrading.

  9. Sesquiterpene Hydroquinones with Protein Tyrosine Phosphatase 1B Inhibitory Activities from a Dysidea sp. Marine Sponge Collected in Okinawa.

    PubMed

    Abdjul, Delfly B; Yamazaki, Hiroyuki; Takahashi, Ohgi; Kirikoshi, Ryota; Ukai, Kazuyo; Namikoshi, Michio

    2016-07-22

    Three new sesquiterpene hydroquinones, avapyran (1), 17-O-acetylavarol (2), and 17-O-acetylneoavarol (3), were isolated from a Dysidea sp. marine sponge collected in Okinawa together with five known congeners: avarol (4), neoavarol (5), 20-O-acetylavarol (6), 20-O-acetylneoavarol (7), and 3'-aminoavarone (8). The structures of 1-3 were assigned on the basis of their spectroscopic data. Compounds 1-3 inhibited the activity of protein tyrosine phosphatase 1B with IC50 values of 11, 9.5, and 6.5 μM, respectively, while known compounds 4-8 gave IC50 values of 12, >32, 10, 8.6, and 18 μM, respectively. In a preliminary investigation on structure-activity relationships, six ester and methoxy derivatives (9-14) were prepared from 4 and 5.

  10. Sesquiterpene Hydroquinones with Protein Tyrosine Phosphatase 1B Inhibitory Activities from a Dysidea sp. Marine Sponge Collected in Okinawa.

    PubMed

    Abdjul, Delfly B; Yamazaki, Hiroyuki; Takahashi, Ohgi; Kirikoshi, Ryota; Ukai, Kazuyo; Namikoshi, Michio

    2016-07-22

    Three new sesquiterpene hydroquinones, avapyran (1), 17-O-acetylavarol (2), and 17-O-acetylneoavarol (3), were isolated from a Dysidea sp. marine sponge collected in Okinawa together with five known congeners: avarol (4), neoavarol (5), 20-O-acetylavarol (6), 20-O-acetylneoavarol (7), and 3'-aminoavarone (8). The structures of 1-3 were assigned on the basis of their spectroscopic data. Compounds 1-3 inhibited the activity of protein tyrosine phosphatase 1B with IC50 values of 11, 9.5, and 6.5 μM, respectively, while known compounds 4-8 gave IC50 values of 12, >32, 10, 8.6, and 18 μM, respectively. In a preliminary investigation on structure-activity relationships, six ester and methoxy derivatives (9-14) were prepared from 4 and 5. PMID:27336796

  11. Stable isotope dilution analysis of salicylic acid and hydroquinone in human skin samples by gas chromatography with mass spectrometric detection.

    PubMed

    Judefeind, Anja; van Rensburg, Peet Jansen; Langelaar, Stephan; du Plessis, Jeanetta

    2007-06-01

    A sensitive and accurate gas chromatographic-mass spectrometric (GC-MS) method has been developed for the quantitative determination of salicylic acid (SA) and hydroquinone (HQ) from human skin samples and cosmetic emulsions. Deuterium labeled SA-d(6) and HQ-d(6) were used as internal standards (IS). The samples were extracted with methanol, dried under nitrogen and derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)+1% trimethylchlorosilane (TMCS). Quantification was performed in SIM mode with a limit of quantification (LOQ) of 50 ng ml(-1) for SA and 10 ng ml(-1) for HQ. The inter-day variation (R.S.D.) was less than 5% and the accuracy was better than 13.3% for both compounds. The recoveries from the different matrices ranged between 93.1 and 103.3% for SA, and 97.3 and 100.8% for HQ.

  12. Hydroquinone Resin Induced Carbon Nanotubes on Ni Foam As Binder-Free Cathode for Li-O2 Batteries.

    PubMed

    Zhu, Qian-Cheng; Du, Fei-Hu; Xu, Shu-Mao; Wang, Zong-Kai; Wang, Kai-Xue; Chen, Jie-Sheng

    2016-02-17

    In this work, hydroquinone resin was used to grow carbon nanotubes directly on Ni foam. The composites were obtained via a simple carbonization method, which avoids using the explosive gaseous carbon precursors that are usually applied in the chemical vapor deposition method. When evaluated as cathode for Li-O2 batteries, the binder-free structure showed enhanced ORR/OER activities, thus giving a high rate capability (12690 mAh g(-1) at 200 mA g(-1) and 3999 mAh g(-1) at 2000 mA g(-1)) and outstanding long-term cycling stability (capacity limited 2000 mAh g(-1), 110 cycles at 200 mA g(-1)). The excellent battery performance provides new insights into designing a low-cost and high-efficiency cathode for Li-O2 batteries. PMID:26720145

  13. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    SciTech Connect

    Sutter, E.; Tong, X.; Medina-Plaza, C.; Rodriguez-Mendez, M. L.; Sutter, P.

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated with the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.

  14. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    DOE PAGES

    Sutter, E.; Tong, X.; Medina-Plaza, C.; Rodriguez-Mendez, M. L.; Sutter, P.

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated withmore » the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.« less

  15. Fast and sensitive high performance liquid chromatography analysis of cosmetic creams for hydroquinone, phenol and six preservatives.

    PubMed

    Gao, Wenhui; Legido-Quigley, Cristina

    2011-07-15

    A fast and sensitive HPLC method for analysis of cosmetic creams for hydroquinone, phenol and six preservatives has been developed. The influence of sample preparation conditions and the composition of the mobile phase and elution mode were investigated to optimize the separation of the eight studied components. Final conditions were 60% methanol and 40% water (v/v) extraction of the cosmetic creams. A C18 column (100 mm × 2.1 mm) was used as the separation column and the mobile phase consisted of methanol and 0.05 mol/L ammonium formate in water (pH=3.0) with gradient elution. The results showed that complete separation of the eight studied components was achieved within 10 min, the linear ranges were 1.0-200 μg/mL for phenol, 0.1-150 μg/mL for sorbic acid, 2.0-200 μg/mL for benzoic acid, 0.5-200 μg/mL for hydroquinone, methyl paraben, ethyl paraben and propyl paraben, butyl paraben, and good linear correlation coefficient (≥0.9997) were obtained, the detection limit was in the range of 0.05-1.0 μg/mL, the average recovery was between 86.5% and 116.3%, and the relative standard deviation (RSD) was less than 5.0% (n=6). The method is easy, fast and sensitive, it can be employed to analyze component residues in cosmetic creams especially in a quality control setting.

  16. A novel di terpene para-hydroquinone compound derived from cryptoquinone protects neuronal cells against oxidative stress and activates the Nrf2/ARE pathway.

    PubMed

    Sasaki, Shunsuke; Tozawa, Terumasa; Sugamoto, Kazuhiro; Matsushita, Yoh-ichi; Satoh, Takumi

    2013-08-26

    Green plant-origin electrophilic compounds are a newly recognized class of neuroprotective compounds that provide neuroprotection through activation of the Nrf2/ARE pathway. Electrophilic hydroquinones are of particular interest due to their ability to become electrophilic quinones upon auto-oxidation. Although green plants frequently produce a variety of electrophilic compounds, the detailed mechanisms of action of these compounds remain unknown. Here, we focused on the neuroprotective effects of 11,14-dihydroxy-8,11,13-abietariene (DA1), derived from a para-hydroquinone-type pro-electrophilic compound from the cryptoquinone. DA1 activated the Nrf2/ARE pathway, induced phase 2 enzymes, and increased glutathione, thus protecting neuronal cells from oxidative stress. DA1 had a very broad safety zone (199.41 fold) at least in our system. Thus, DA1 is a novel neuroprotective pro-electrophilic diterpene from green plant.

  17. Crystal Structure of PnpCD, a Two-subunit Hydroquinone 1,2-Dioxygenase, Reveals a Novel Structural Class of Fe2+-dependent Dioxygenases*

    PubMed Central

    Liu, Shiheng; Su, Tiantian; Zhang, Cong; Zhang, Wen-Mao; Zhu, Deyu; Su, Jing; Wei, Tiandi; Wang, Kang; Huang, Yan; Guo, Liming; Xu, Sujuan; Zhou, Ning-Yi; Gu, Lichuan

    2015-01-01

    Aerobic microorganisms have evolved a variety of pathways to degrade aromatic and heterocyclic compounds. However, only several classes of oxygenolytic fission reaction have been identified for the critical ring cleavage dioxygenases. Among them, the most well studied dioxygenases proceed via catecholic intermediates, followed by noncatecholic hydroxy-substituted aromatic carboxylic acids. Therefore, the recently reported hydroquinone 1,2-dioxygenases add to the diversity of ring cleavage reactions. Two-subunit hydroquinone 1,2-dioxygenase PnpCD, the key enzyme in the hydroquinone pathway of para-nitrophenol degradation, catalyzes the ring cleavage of hydroquinone to γ-hydroxymuconic semialdehyde. Here, we report three PnpCD structures, named apo-PnpCD, PnpCD-Fe3+, and PnpCD-Cd2+-HBN (substrate analog hydroxyenzonitrile), respectively. Structural analysis showed that both the PnpC and the C-terminal domains of PnpD comprise a conserved cupin fold, whereas PnpC cannot form a competent metal binding pocket as can PnpD cupin. Four residues of PnpD (His-256, Asn-258, Glu-262, and His-303) were observed to coordinate the iron ion. The Asn-258 coordination is particularly interesting because this coordinating residue has never been observed in the homologous cupin structures of PnpCD. Asn-258 is proposed to play a pivotal role in binding the iron prior to the enzymatic reaction, but it might lose coordination to the iron when the reaction begins. PnpD also consists of an intriguing N-terminal domain that might have functions other than nucleic acid binding in its structural homologs. In summary, PnpCD has no apparent evolutionary relationship with other iron-dependent dioxygenases and therefore defines a new structural class. The study of PnpCD might add to the understanding of the ring cleavage of dioxygenases. PMID:26304122

  18. Modification of an enzyme electrode by electrodeposition of hydroquinone for use as the anode of a glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Kuwahara, Takashi; Yamazaki, Hiraku; Kondo, Mizuki; Shimomura, Masato

    2012-06-01

    An electrode having immobilized glucose oxidase (GOx) was modified with polyhydroquinone (PHQ), which was employed as an electron-transferring mediator, by a simple electrochemical method and used as the anode of a glucose fuel cell. The GOx-immobilized electrode was fabricated by attaching polyallylamine (PAAm) and then GOx covalently onto a gold electrode covered with a monolayer formed with 3-mercaptopropionic acid. Subsequently, the GOx-immobilized electrode (GOx/PAAm electrode) was modified with PHQ by electrodeposition of hydroquinone. The cyclic voltammogram of the modified electrode (PHQ/GOx/PAAm electrode) in a phosphate buffer solution (0.10 M, pH 7.0) showed redox peaks due to the electrodeposited PHQ, whereas no redox peaks were found for the GOx/PAAm electrode in the buffer solution containing p-benzoquinone (BQ). The onset potential of glucose oxidation with the PHQ/GOx/PAAm electrode became ca. 0.2 V more negative than that observed with the GOx/PAAm electrode in the presence of BQ. The glucose fuel cell equipped with the PHQ/GOx/PAAm electrode as an anode gave a 3 times larger power output than the cell with the GOx/PAAm electrode using dissolved quinone as the mediator.

  19. A Double-Blind, Randomized Clinical Trial of Niacinamide 4% versus Hydroquinone 4% in the Treatment of Melasma.

    PubMed

    Navarrete-Solís, Josefina; Castanedo-Cázares, Juan Pablo; Torres-Álvarez, Bertha; Oros-Ovalle, Cuauhtemoc; Fuentes-Ahumada, Cornelia; González, Francisco Javier; Martínez-Ramírez, Juan David; Moncada, Benjamin

    2011-01-01

    Background. Multiple modalities have been used in the treatment of melasma with variable success. Niacinamide has anti-inflammatory properties and is able to decrease the transfer of melanosomes. Objective. To evaluate the therapeutic effect of topical niacinamide versus hydroquinone (HQ) in melasma patients. Patients and Methods. Twenty-seven melasma patients were randomized to receive for eight weeks 4% niacinamide cream on one side of the face, and 4% HQ cream on the other. Sunscreen was applied along the observation period. They were assessed by noninvasive techniques for the evaluation of skin color, as well as subjective scales and histological sections initially and after the treatment with niacinamide. Results. All patients showed pigment improvement with both treatments. Colorimetric measures did not show statistical differences between both sides. However, good to excellent improvement was observed with niacinamide in 44% of patients, compared to 55% with HQ. Niacinamide reduced importantly the mast cell infiltrate and showed improvement of solar elastosis in melasma skin. Side effects were present in 18% with niacinamide versus 29% with HQ. Conclusion. Niacinamide induces a decrease in pigmentation, inflammatory infiltrate, and solar elastosis. Niacinamide is a safe and effective therapeutic agent for this condition.

  20. Treating photodamage of the décolletage area with a novel copper zinc malonate complex plus hydroquinone and tretinoin.

    PubMed

    Leyden, James J; Parr, Lisa

    2010-03-01

    There has been a proliferation of treatments for facial rejuvenation but, curiously, the use of such treatments on other areas of the body has not been widely investigated. The clinical effects of treating photodamaged skin of the neck and anterior chest area (décolletage) with a proprietary copper zinc malonate lotion and a proprietary 4% hydroquinone cream (twice daily), plus tretinoin cream (once daily), were evaluated in 42 females in a 24-week investigator-blind randomized study. Treatment was associated with early and significant (P< or =0.05) improvements in mean scores on an overall integrated assessment of photodamage (from week 4 onward) and for multiple signs of photodamage--tactile roughness (from week 2 onward); mottled hyperpigmentation, lentigines and fine wrinkling (from week 4 onward); laxity (from week 8 onward); and crepiness and coarse wrinkling (from week 12 onward). Treatment was generally well tolerated and 94% of subjects were satisfied or very satisfied with the overall improvement in their décolletage at week 24.

  1. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    PubMed

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-01

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells. PMID:25969998

  2. Simultaneous determination of hydroquinone, catechol and resorcinol by voltammetry using graphene screen-printed electrodes and partial least squares calibration.

    PubMed

    Aragó, Miriam; Ariño, Cristina; Dago, Àngela; Díaz-Cruz, José Manuel; Esteban, Miquel

    2016-11-01

    Catechol (CC), resorcinol (RC) and hydroquinone (HQ) are dihydroxybenzene isomers that usually coexist in different samples and can be determined using voltammetric techniques taking profit of their fast response, high sensitivity and selectivity, cheap instrumentation, simple and timesaving operation modes. However, a strong overlapping of CC and HQ signals is observed hindering their accurate analysis. In the present work, the combination of differential pulse voltammetry with graphene screen-printed electrodes (allowing detection limits of 2.7, 1.7 and 2.4µmolL(-1) for HQ, CC and RC respectively) and the data analysis by partial least squares calibration (giving root mean square errors of prediction, RMSEP values, of 2.6, 4.1 and 2.3 for HQ, CC and RC respectively) has been proposed as a powerful tool for the quantification of mixtures of these dihydroxybenzene isomers. The commercial availability of the screen-printed devices and the low cost and simplicity of the analysis suggest that the proposed method can be a valuable alternative to chromatographic and electrophoretic methods for the considered species. The method has been applied to the analysis of these isomers in spiked tap water.

  3. Uniaxially aligned electrospun cellulose acetate nanofibers for thin layer chromatographic screening of hydroquinone and retinoic acid adulterated in cosmetics.

    PubMed

    Tidjarat, Siripran; Winotapun, Weerapath; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak

    2014-11-01

    Uniaxially aligned cellulose acetate (CA) nanofibers were successfully fabricated by electrospinning and applied to use as stationary phase for thin layer chromatography. The control of alignment was achieved by using a drum collector rotating at a high speed of 6000 rpm. Spin time of 6h was used to produce the fiber thickness of about 10 μm which was adequate for good separation. Without any chemical modification after the electrospinning process, CA nanofibers could be readily devised for screening hydroquinone (HQ) and retinoic acid (RA) adulterated in cosmetics using the mobile phase consisting of 65:35:2.5 methanol/water/acetic acid. It was found that the separation run on the aligned nanofibers over a distance of 5 cm took less than 15 min which was two to three times faster than that on the non-aligned ones. On the aligned nanofibers, the masses of HQ and RA which could be visualized were 10 and 25 ng, respectively, which were two times lower than those on the non-aligned CA fibers and five times lower than those on conventional silica plates due to the appearance of darker and sharper of spots on the aligned nanofibers. Furthermore, the proposed method efficiently resolved HQ from RA and ingredients commonly found in cosmetic creams. Due to the satisfactory analytical performance, facile and inexpensive production process, uniaxially aligned electrospun CA nanofibers are promising alternative media for planar chromatography.

  4. Simultaneous determination of hydroquinone, catechol and resorcinol by voltammetry using graphene screen-printed electrodes and partial least squares calibration.

    PubMed

    Aragó, Miriam; Ariño, Cristina; Dago, Àngela; Díaz-Cruz, José Manuel; Esteban, Miquel

    2016-11-01

    Catechol (CC), resorcinol (RC) and hydroquinone (HQ) are dihydroxybenzene isomers that usually coexist in different samples and can be determined using voltammetric techniques taking profit of their fast response, high sensitivity and selectivity, cheap instrumentation, simple and timesaving operation modes. However, a strong overlapping of CC and HQ signals is observed hindering their accurate analysis. In the present work, the combination of differential pulse voltammetry with graphene screen-printed electrodes (allowing detection limits of 2.7, 1.7 and 2.4µmolL(-1) for HQ, CC and RC respectively) and the data analysis by partial least squares calibration (giving root mean square errors of prediction, RMSEP values, of 2.6, 4.1 and 2.3 for HQ, CC and RC respectively) has been proposed as a powerful tool for the quantification of mixtures of these dihydroxybenzene isomers. The commercial availability of the screen-printed devices and the low cost and simplicity of the analysis suggest that the proposed method can be a valuable alternative to chromatographic and electrophoretic methods for the considered species. The method has been applied to the analysis of these isomers in spiked tap water. PMID:27591597

  5. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    PubMed

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-01

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells.

  6. Differential inhibition of DNA synthesis in human T cells by the cigarette tar components hydroquinone and catechol.

    PubMed

    Li, Q; Aubrey, M T; Christian, T; Freed, B M

    1997-08-01

    Hydroquinone (HQ), catechol, and phenol exist in microgram quantities in cigarette tar and represent the predominant form of human exposure to benzene. Exposure of human T lymphoblasts (HTL) in vitro to 50 microM HQ or 50 microM catechol decreased IL-2-dependent DNA synthesis and cell proliferation by >90% with no effect on cell viability. Phenol had no effect on HTL proliferation at concentrations up to 1 mm. The addition of HQ or catechol to proliferating HTL blocked 3H-TdR uptake by >90% within 2 hr without significantly affecting 3H-UR uptake, suggesting that both compounds inhibit a rate-limiting step in DNA synthesis. However, the effects of HQ and catechol appear to involve different mechanisms. Ferric chloride (FeCl3) reversed the inhibitory effect of catechol, but not HQ, corresponding with the known ability of catechol to chelate iron. HQ, but not catechol, caused a decrease in transferrin receptor (TfR, CD71) expression, comparable to the level observed in IL-2-starved cells. HQ also inhibited DNA synthesis in cultures of transformed Jurkat T lymphocytes, primary and transformed fibroblasts, and mink lung epithelial cells, indicating that its antiproliferative effect was not restricted to IL-2 mediated proliferation. However, DNA synthesis by primary lymphocytes was more sensitive to HQ (IC50 = 6 microM) than that of the transformed Jurkat T cell line (IC50 = 37 microM) or primary human fibroblasts (IC50 = 45 microM), suggesting that normal lymphocytes may be particularly sensitive to HQ. The effects of HQ and catechol on DNA synthesis could be partially reversed by a combination of adenosine deoxyribose and guanosine deoxyribose, suggesting that both compounds may inhibit ribonucleotide reductase.

  7. Monoclonal antibody to a cancer-specific and drug-responsive hydroquinone (NADH) oxidase from the sera of cancer patients

    NASA Technical Reports Server (NTRS)

    Cho, NaMi; Chueh, Pin-Ju; Kim, Chinpal; Caldwell, Sara; Morre, Dorothy M.; Morre, D. James

    2002-01-01

    Monoclonal antibodies were generated in mice to a 34-kDa circulating form of a drug-responsive hydroquinone (NADH) oxidase with a protein disulfide-thiol interchange activity specific to the surface of cancer cells and the sera of cancer patients. Screening used Western blots with purified 34-kDa tNOX from HeLa cells and the sera of cancer patients. Epitopes were sought that inhibited the drug-responsive oxidation of NADH with the sera of cancer patients, but which had no effect on NADH oxidation with the sera of healthy volunteers. Two such antisera were generated. One, designated monoclonal antibody (mAb) 12.1, was characterized extensively. The NADH oxidase activity inhibited by mAb 12.1 also was inhibited by the quinone site inhibitor capsaicin (8-methyl- N-vanillyl-6-noneamide). The inhibition was competitive for the drug-responsive protein disulfide-thiol interchange activity assayed either by restoration of activity to scrambled RNase or by cleavage of a dithiodipyridine substrate, and was uncompetitive for NADH oxidation. Both the mAb 12.1 and the postimmune antisera immunoprecipitated drug-responsive NOX activity and identified the same 34-kDa tNOX protein in the sera of cancer patients that was absent from sera of healthy volunteers, and was utilized as immunogen. Preimmune sera from the same mouse as the postimmune antisera was without effect. Both mouse ascites containing mAb 12.1 and postimmune sera (but not preimmune sera) slowed the growth of human cancer cell lines in culture, but did not affect the growth of non-cancerous cell lines. Immunocytochemical and histochemical findings showed that mAb 12.1 reacted with the surface membranes of human carcinoma cells and tissues.

  8. Structural characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) from Sphingobium chlorophenolicum, a new type of aromatic ring-cleavage enzyme

    PubMed Central

    Hayes, Robert P.; Green, Abigail R.; Nissen, Mark S.; Lewis, Kevin M.; Xun, Luying; Kang, ChulHee

    2014-01-01

    Summary PcpA (2,6-dichloro-p-hydroquinone 1,2-dioxygenase) from Sphingobium chlorophenolicum, a non-haem Fe(II) dioxygenase capable of cleaving the aromatic ring of p-hydroquinone and its substituted variants, is a member of the recently discovered p-hydroquinone 1,2-dioxygenases. Here we report the 2.6 Å structure of PcpA, which consists of four βαβββ motifs, a hallmark of the vicinal oxygen chelate superfamily. The secondary co-ordination sphere of the Fe(II) centre forms an extensive hydrogen-bonding network with three solvent exposed residues, linking the catalytic Fe(II) to solvent. A tight hydrophobic pocket provides p-hydroquinones access to the Fe(II) centre. The p-hydroxyl group is essential for the substrate-binding, thus phenols and catechols, lacking a p-hydroxyl group, do not bind to PcpA. Site-directed mutagenesis and kinetic analysis confirm the critical catalytic role played by the highly conserved His10, Thr13, His226 and Arg259. Based on these results, we propose a general reaction mechanism for p-hydroquinone 1,2-dioxygenases. PMID:23489289

  9. Simultaneous electroanalytical determination of hydroquinone and catechol in the presence of resorcinol at an SiO2/C electrode spin-coated with a thin film of Nb2O5.

    PubMed

    Canevari, Thiago C; Arenas, Leliz T; Landers, Richard; Custodio, Rogério; Gushikem, Yoshitaka

    2013-01-01

    This paper describes the development, characterization and application of an Nb(2)O(5) film formed on the surface of a carbon ceramic material, SiO(2)/C, obtained by a sol-gel method, using the spin-coating technique. The working electrode using this material will be designated as SiCNb. Hydroquinone and catechol can be oxidized at this electrode in the presence of resorcinol, allowing their simultaneous detection. The electrochemical properties of the resulting electrode were investigated using cyclic and differential pulse voltammetry techniques. Well-defined and separated oxidation peaks were observed by differential pulse voltammetry in Tris-HCl buffer solution at pH 7 containing 1 mol L(-1) KCl in the supporting electrolyte solution. The SiCNb electrode exhibited high sensitivity in the simultaneous determination of hydroquinone and catechol in the presence of resorcinol, with the limits of detection for hydroquinone and catechol being 1.6 μmol L(-1) and 0.8 μmol L(-1), respectively. Theoretical calculations were performed to determine the ionization energies of hydroquinone, catechol and resorcinol; the results were used to explain the simultaneous determination of species by differential pulse voltammetry. The presence of resorcinol did not produce any interference in the simultaneous detection of hydroquinone and catechol on the surface of the modified electrode.

  10. Unfolding ESIPT in Bis-2,5-(2-benzoxazolyl) Hydroquinone and 2,5-Bis(benzo[d]oxazol-2-yl)-4-methoxyphenol: a Comprehensive Computational Approach.

    PubMed

    Jadhav, Manoj M; Rhyman, Lydia; Ramasami, Ponnadurai; Sekar, Nagaiyan

    2016-07-01

    The photo-physical behaviour of bis-2,5-(2-benzoxazolyl) hydroquinone and 2,5-bis (benzo[d]oxazol-2-yl)-4-methoxyphenol was studied using the Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT). All the possible rotamers were optimized to obtain global minimum optimized structure. The theoretical absorption and emission values of rotamers estimated by using TD-DFT [TD-B3LYP/6-31G(d)] are in good agreement with experimental absorption and emission wavelengths. Based on the absorption values, the contribution of respective rotamer is determined theoretically.

  11. Deoxygenation of hydroquinones as a general route to norbornane-fused aromatic systems: an entry into substituted and functionalized dimethano- and methanoanthracenes.

    PubMed

    Ganji, Prasad; Ibrahim, Hasim

    2012-01-01

    A high-yielding route to substituted and functionalized dimethanoanthracenes by the Pd-catalyzed deoxyenation of the corresponding hydroquinone precursors is described. Attempts were made to deoxygenate the 9,10-dimesylate, ditosylate, and ditriflate derivatives of anti-dimethanoanthracene 1a, and it was found that under the studied conditions only the ditriflate 8a gave the corresponding deoxygenated aromatic scaffold. Optimization of the reaction conditions identified the Pd(OAc)(2)/dppf tandem as a suitable catalytic system for this transformation. The presented strategy was further extended to a novel and efficient synthetic route to methanoanthracenes employing a one-pot Pd-catalyzed deoxygenation/hydrogenation sequence.

  12. Estimated daily intakes of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) antioxidants in Korea.

    PubMed

    Suh, H-J; Chung, M-S; Cho, Y-H; Kim, J-W; Kim, D-H; Han, K-W; Kim, C-J

    2005-12-01

    The study was conducted to establish the estimated daily intake (EDI) of antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) in Korea. The EDIs were obtained from two sources. One of the estimations was based on the analytical determination of BHA, BHT and TBHQ in 12 food categories (ten food categories for TBHQ) and on individual dietary intake data obtained from the National Health and Nutrition Survey in 1998 (n=11 525, age > 1 year). The other EDIs of BHA, BHT and TBHQ were based on the maximum permitted levels specified in national food standards in Korea and on individual dietary intake data obtained from the National Health and Nutrition Survey in 1998 (n=11 525, age > 1 year). To establish the EDIs based on the analytical determination and on individual dietary intake data, 133 food samples in 12 food categories were selected from the foods considered to be representative sources of BHA, BHT and TBHQ in the Korean diet. Selected samples were analysed by GC with FID. BHA was not detected in any of the samples analysed. BHT and TBHQ were detected in the samples, but the levels were significantly lower than their maximum limits. The EDIs1 of BHT, and TBHQ for average consumers were 0.0156(-3), and 0.0012(-3) mg kg(-1) body weight bw day(-1) and as a proportion of the ADI were 0.0052 and 0.0002%, respectively. For 95th percentile consumers, the EDIs of BHT and TBHQ were 0.0080 and 0.0006 mg kg(-1) bw day(-1), and as a proportion of the ADI were 2.67 and 0.09%, respectively. EDIs for BHA, BHT and TBHQ based on the maximum permitted levels and on individual dietary intake data were 0.04, 0.04 and 0.04 mg kg(-1) bw day(-1), respectively. The EDIs of BHA, BHT and TBHQ for average consumers ranged from 6.00 to 14.42% of the ADI of each antioxidant. According to these results, the EDIs of BHA, BHT and TBHQ in Korea were significantly lower than ADI of these antioxidants established by the JECFA.

  13. Palladium clusters as catalysts for the oxidation of hydroquinone and ubiquinol Q/sub 9/H/sub 2/ by molecular oxygen

    SciTech Connect

    Tuvin, M.Yu.; Mund, S.L.; Berenblyum, A.S.; Vol'pin, M.E.

    1987-08-10

    The authors investigated the catalytic activity of some palladium clusters in the oxidation of models of the natural coenzyme of ubiquinol Q/sub 10/H/sub 2/ by oxygen. They used as such models unsubstituted hydroquinone QH/sub 2/ and synthetic ubiquinol Q/sub 9/H/sub 2/ (the lateral hydrocarbon chain contains nine C/sub 5/ structural units). To some degree, all the studied compounds catalyze the oxidation of hydroquinone. However, their activity depends significantly on the number of Pd atoms in the cluster. The highest catalytic activity was exhibited by a cluster of composition (Pd/sub 10/ (Dipy)/sub 4/(O/sub 2/)/sub 3/)-(OAc)/sub 2/. According to data of volumetry and iodometric titration, in H/sub 2/O at 20/sup 0/C and 1 atm of O/sub 2/, the absorption of 0.5 mole of O/sub 2/ is accompanied by the formation of 1 mole of quinone. The results of iodometric titration in the presence of catalase and also the absence of a characteristic reaction with benzidine suggest that H/sub 2/O is not formed as the final product in the reaction.

  14. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry.

    PubMed

    Krueger, Martin C; Hofmann, Ulrike; Moeder, Monika; Schlosser, Dietmar

    2015-01-01

    Synthetic polymers often pose environmental hazards due to low biodegradation rates and resulting accumulation. In this study, a selection of wood-rotting fungi representing different lignocellulose decay types was screened for oxidative biodegradation of the polymer polystyrene sulfonate (PSS). Brown-rot basidiomycetes showed PSS depolymerisation of up to 50 % reduction in number-average molecular mass (Mn) within 20 days. In-depth investigations with the most efficient depolymeriser, a Gloeophyllum trabeum strain, pointed at extracellular hydroquinone-driven Fenton chemistry responsible for depolymerisation. Detection of hydroxyl radicals present in the culture supernatants showed good compliance with depolymerisation over the time course of PSS degradation. 2,5-Dimethoxy-1,4-hydroquinone (2,5-DMHQ), which was detected in supernatants of active cultures via liquid chromatography and mass spectrometry, was demonstrated to drive the Fenton processes in G. trabeum cultures. Up to 80% reduction in Mn of PSS where observed when fungal cultures were additionally supplemented with 2,5-dimethoxy benzoquinone, the oxidized from of 2,5-DMHQ. Furthermore, 2,5-DMHQ could initiate the Fenton's reagent-mediated PSS depolymerisation in cell-free systems. In contrast, white-rot fungi were unable to cause substantial depolymerising effects despite the expression of lignin-modifying exo-enzymes. Detailed investigations with laccase from Trametes versicolor revealed that only in presence of certain redox mediators limited PSS depolymerisation occurred. Our results indicate that brown-rot fungi might be suitable organisms for the biodegradation of recalcitrant synthetic polymeric pollutants.

  15. Hydroxylation activity of P450 BM-3 mutant F87V towards aromatic compounds and its application to the synthesis of hydroquinone derivatives from phenolic compounds.

    PubMed

    Sulistyaningdyah, Woro Triarsi; Ogawa, Jun; Li, Qing-Shan; Maeda, Chiharu; Yano, Yuki; Schmid, Rolf D; Shimizu, Sakayu

    2005-06-01

    Cytochrome P450 BM-3 from Bacillus megaterium is a fatty acid hydroxylase exhibiting selectivity for long-chain substrates (12-20 carbons). Replacement of Phe87 in P450 BM-3 by Val (F87V) greatly increased its activity towards a variety of aromatic and phenolic compounds. The apparent initial reaction rates of F87V as to benzothiophene, indan, 2,6-dichlorophenol, and 2-(benzyloxy)phenol were 227, 204, 129, and 385 nmol min(-1) nmol(-1) P450, which are 220-, 66-, 99-, and 963-fold those of the wild type, respectively. These results indicate that Phe87 plays a critical role in the control of the substrate specificity of P450 BM-3. Furthermore, F87V catalyzed regioselective hydroxylation at the para position of various phenolic compounds. In particular, F87V showed high activity as to the hydroxylation of 2-(benzyloxy)phenol to 2-(benzyloxy)hydroquinone. With F87V as the catalyst, 0.71 mg ml(-1) 2-(benzyloxy)hydroquinone was produced from 1.0 mg ml(-1) 2-(benzyloxy)phenol in 4 h, with a molar yield of 66%.

  16. The risk of hydroquinone and sunscreen over-absorption via photodamaged skin is not greater in senescent skin as compared to young skin: nude mouse as an animal model.

    PubMed

    Hung, Chi-Feng; Chen, Wei-Yu; Aljuffali, Ibrahim A; Shih, Hui-Chi; Fang, Jia-You

    2014-08-25

    Intrinsic aging and photoaging modify skin structure and components, which subsequently change percutaneous absorption of topically applied permeants. The purpose of this study was to systematically evaluate drug/sunscreen permeation via young and senescent skin irradiated by ultraviolet (UV) light. Both young and senescent nude mice were subjected to UVA (10 J/cm(2)) and/or UVB radiation (175 mJ/cm(2)). Physiological parameters, immunohistology, and immunoblotting were employed to examine the aged skin. Hydroquinone and sunscreen permeation was determined by in vitro Franz cell. In vivo skin absorption was documented using a hydrophilic dye, rhodamine 123 (log P=-0.4), as a permeant. UVA exposure induced cyclooxygenase (COX)-2 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) upregulation. Epidermal tight junction (TJ) were degraded by UVA. UVB increased transepidermal water loss (TEWL) from 13 to 24 g/m(2)/h. Hyperplasia and inflammation, but not loss of TJ, were also observed in UVB-treated skin. UVA+UVB- and UVA-irradiated skin demonstrated similar changes in histology and biomarkers. UVA+UVB or UVA exposure increased hydroquinone flux five-fold. A negligible alteration of hydroquinone permeation was shown with UVB exposure. Hydroquinone exhibited a lower penetration through senescent skin than young skin. Both UVA and UVB produced enhancement of oxybenzone flux and skin uptake. However, the amount of increase was less than that of hydroquinone delivery. Photoaging did not augment skin absorption of sunscreens with higher lipophilicity, including avobenzone and ZnO. Exposure to UVA generally increased follicular entrance of these permeants, which showed two- to three-fold greater follicular uptake compared to the untreated group. Photoaging had less impact on drug/sunscreen absorption with more lipophilic permeants. Percutaneous absorption did not increase in skin subjected to both intrinsic and extrinsic aging.

  17. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O

    NASA Astrophysics Data System (ADS)

    Kharlamov, Alexey; Bondarenko, Marina; Kharlamova, Ganna; Fomenko, Veniamin

    2016-09-01

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C3N4. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets.

  18. [Skin lightening products are a part of everyday life in many parts of the world. Corticosteroids, hydroquinone and mercury are common ingredients].

    PubMed

    Wallander, Märit; Löfgren, Patrik; Rydén, Mikael

    2015-06-30

    During the past decade, attention has been drawn towards the globally increased usage of skin-lightening (bleaching) products which are manufactured and sold, particularly in Africa and Asia, but also via the internet and in local shops all over North America and Europe. The active ingredients include hydroquinone, mercury and potent corticosteroids which can have severe health effects.  After investigating a patient at our clinic where the symptoms and findings could be linked to the use of bleaching products, we started to search the literature for similar cases. We found a global epidemic of health disorders related to skin lightening products. With this article we want to increase the awareness among Swedish physicians of this growing and harmful cosmetic trend.

  19. Excited State Intramolecular Proton Transfer of 2,5-bis(5-ethyl-2-benzoxazolyl)-hydroquinone and its OH/OD-isotopomers studied in supersonic jets

    NASA Astrophysics Data System (ADS)

    Peukert, Sebastian; Gil, Michał; Kijak, Michał; Sepioł, Jerzy

    2015-11-01

    The Excited State Intramolecular Proton Transfer (ESIPT) reactions of dually fluorescent 2,5-bis(5-ethyl-2-benzoxazolyl)-hydroquinone (DE-BBHQ) and its isotopomers have been studied in the supersonic jet applying laser induced fluorescence (LIF) and fluorescence-depletion (F-D) spectroscopy. LIF-spectra measured at photo-tautomeric (red) fluorescence exhibit a characteristic triplet pattern of vibronic bands, which gradually collapses upon successive deuteration. Complementary TDDFT calculations indicate the possibility of 2 consecutive ESIPT reactions yielding an excited state diketo-tautomer. However, concerning this matter the present experimental results are not unambiguous and could be also rationalized without assuming the formation of an additional photo-tautomer.

  20. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry

    PubMed Central

    Krueger, Martin C.; Hofmann, Ulrike; Moeder, Monika; Schlosser, Dietmar

    2015-01-01

    Synthetic polymers often pose environmental hazards due to low biodegradation rates and resulting accumulation. In this study, a selection of wood-rotting fungi representing different lignocellulose decay types was screened for oxidative biodegradation of the polymer polystyrene sulfonate (PSS). Brown-rot basidiomycetes showed PSS depolymerisation of up to 50 % reduction in number-average molecular mass (Mn) within 20 days. In-depth investigations with the most efficient depolymeriser, a Gloeophyllum trabeum strain, pointed at extracellular hydroquinone-driven Fenton chemistry responsible for depolymerisation. Detection of hydroxyl radicals present in the culture supernatants showed good compliance with depolymerisation over the time course of PSS degradation. 2,5-Dimethoxy-1,4-hydroquinone (2,5-DMHQ), which was detected in supernatants of active cultures via liquid chromatography and mass spectrometry, was demonstrated to drive the Fenton processes in G. trabeum cultures. Up to 80% reduction in Mn of PSS where observed when fungal cultures were additionally supplemented with 2,5-dimethoxy benzoquinone, the oxidized from of 2,5-DMHQ. Furthermore, 2,5-DMHQ could initiate the Fenton's reagent-mediated PSS depolymerisation in cell-free systems. In contrast, white-rot fungi were unable to cause substantial depolymerising effects despite the expression of lignin-modifying exo-enzymes. Detailed investigations with laccase from Trametes versicolor revealed that only in presence of certain redox mediators limited PSS depolymerisation occurred. Our results indicate that brown-rot fungi might be suitable organisms for the biodegradation of recalcitrant synthetic polymeric pollutants. PMID:26147966

  1. Open-Label Treatment of Moderate or Marked Melasma with a 4% Hydroquinone Skin Care System Plus 0.05% Tretinoin Cream

    PubMed Central

    Rendon, Marta; Dibernardo, Barry; Bruce, Suzanne; Lucas-Anthony, Chere; Watson, Joanne

    2013-01-01

    Objective: To evaluate treating epidermal melasma using a 4% hydroquinone skin care system plus tretinoin 0.05% cream. Design: Multicenter open-label study with all patients receiving above-mentioned treatment for up to 24 weeks. Setting: Private dermatology and plastic surgery clinics and clinical research facilities. Participants: Thirty-seven adult females with moderate or marked epidermal melasma, melasma pigmentation of mild-to-marked intensity and Fitzpatrick skin type III to VI. Measurements: Melasma severity melasma pigmentation intensity melasma improvement, patient satisfaction, quality-of-life measures, erythema, dryness, peeling, burning/stinging. Results: No patient discontinued due to lack of efficacy or treatment-related adverse events. Treatment was associated with a significant reduction from baseline in melasma severity and melasma pigmentation intensity from Week 4 onward (P≤0.001), and 100 percent of patients showed improvement from Week 8 onward. At Week 24, 100 percent of patients were “satisfied” or “very satisfied” with the overall effectiveness of their treatment. Patients’ quality of life also improved (e.g., the proportion of patients feeling embarrassed or self-conscious about their skin “a lot” or “very much” declined from 78 percent at baseline to four percent at Week 24). Mean and median scores for erythema, dryness, peeling, and burning/stinging did not exceed trace levels. Conclusion: Treating moderate-to-severe melasma using the 4% hydroquinone skin care system plus 0.05% tretinoin can significantly reduce the severity of melasma and the intensity of melasma pigmentation within four weeks. Treatment was generally well tolerated and associated with an improved quality of life and high levels of patient satisfaction. PMID:24307923

  2. The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits.

    PubMed

    Zhou, Jian; Li, Xi; Yang, Linlin; Yan, Songlin; Wang, Mengmeng; Cheng, Dan; Chen, Qi; Dong, Yulin; Liu, Peng; Cai, Weiquan; Zhang, Chaocan

    2015-10-29

    A novel electrochemical sensor based on Cu-MOF-199 [Cu-MOF-199 = Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylicacid)] and SWCNTs (single-walled carbon nanotubes) was fabricated for the simultaneous determination of hydroquinone (HQ) and catechol (CT). The modification procedure was carried out through casting SWCNTs on the bare glassy carbon electrode (GCE) and followed by the electrodeposition of Cu-MOF-199 on the SWCNTs modified electrode. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were performed to characterize the electrochemical performance and surface characteristics of the as-prepared sensor. The composite electrode exhibited an excellent electrocatalytic activity with increased electrochemical signals towards the oxidation of HQ and CT, owing to the synergistic effect of SWCNTs and Cu-MOF-199. Under the optimized condition, the linear response range were from 0.1 to 1453 μmol L(-1) (RHQ = 0.9999) for HQ and 0.1-1150 μmol L(-1) (RCT = 0.9990) for CT. The detection limits for HQ and CT were as low as 0.08 and 0.1 μmol L(-1), respectively. Moreover, the modified electrode presented the good reproducibility and the excellent anti-interference performance. The analytical performance of the developed sensor for the simultaneous detection of HQ and CT had been evaluated in practical samples with satisfying results.

  3. Assessment of a superficial chemical peel combined with a multimodal, hydroquinone-free skin brightener using in vivo reflectance confocal microscopy.

    PubMed

    Goberdhan, Lisa T; Mehta, Rahul C; Aguilar, Caroline; Makino, Elizabeth T; Colvan, Lora

    2013-03-01

    The combination of in-office procedures such as chemical peels with topical maintenance therapies has been shown to provide greater efficacy than either treatment by itself in the management of melasma. A series of 3 case studies were conducted to evaluate the efficacy and tolerability of one superficial chemical peel (containing a proprietary blend of resorcinol, lactic acid, salicylic acid, and retinol) combined with a topical multimodal, hydroquinone-free skin brightener as postpeel maintenance therapy. Patients presented with moderate to severe facial hyperpigmentation. At baseline, subjects received the superficial chemical peel treatment followed by a standard postpeel skin care regimen (cleanser, moisturizer, and SPF 30+ sunscreen). Approximately 1 week after the peel procedure, subjects initiated twice-daily application of the skin brightener. Subjects were then evaluated for Global Improvement in Hyperpigmentation by the investigator for up to 7 weeks postpeel. Standardized digital photographs of the subjects facial skin and in vivo reflectance confocal microscopy (RCM) images were taken of a target hyperpigmented lesion at baseline and at follow-up. Standardized photography and in vivo RCM images at baseline and at postpeel show the improvements observed by the investigator. Results from these case studies suggest that the combination of a superficial chemical peel with topical maintenance and the multimodal skin brightener may provide an effective treatment approach for subjects with moderate to severe facial hyperpigmentation. PMID:23545932

  4. A Comparative Study of Two Modalities, 4% Hydroquinone Versus 30% Salicylic Acid in Periorbital Hyperpigmentation and Assessment of Quality of Life Before and After Treatment

    PubMed Central

    Ranjan, Rashmi; Sarkar, Rashmi; Garg, Vijay Kumar; Gupta, Tanvi

    2016-01-01

    Background: Periorbital hyperpigmentation (POH) is a common hyperpigmentary problem of the face, which can be psychologically distressing and it can influence an individual's quality of life. However, this condition has received less attention in literature. Aims and Objectives: To study the clinico-etiological features and the effect of two therapeutic modalities on the quality of life in patients of POH before and after treatment. Materials and Methods: Fifty patients attending the outpatient clinic of Dermatology Department, with clinically evident POH were included. All patients were divided randomly into two groups of 25 each and one group was treated with 4% hydroquinone and another group with 30% salicylic acid for 12 weeks. Assessment with visual analog scale (VAS) was done at 4, 6, and 12 weeks, and outcome of the patients was analyzed statistically. Results: Majority of the cases, i.e. 26 (52%) were in the age group of 20–30 years. Females comprised 74% of the study population. On VAS, most of the patients showed mild improvement (10–30%) at 12 weeks of treatment in both the groups. Separately, both the treatments significantly improved the dermatological life quality index of the patients although there was no significant difference found between the two groups. Conclusion: POH is less responsive to standard treatments due to its multifactorial etiology and deposition of melanin in both dermis and epidermis. However, even the mild to moderate improvement in appearance can cause an improvement in the quality of life of the patients. PMID:27512187

  5. Hydroquinone-induced malignant transformation of TK6 cells by facilitating SIRT1-mediated p53 degradation and up-regulating KRAS.

    PubMed

    Chen, Yuting; Chen, Jiajia; Yun, Lin; Xu, Longmei; Liu, Jiaxian; Xu, Yongchun; Yang, Hui; Liang, Hairong; Tang, Huanwen

    2016-09-30

    Hydroquinone (HQ), known as one of the metabolic products of benzene, causes a number of hematologic malignancies. The study evaluated the potential mechanism of Sirtuin 1 (SIRT1) in HQ-induced TK6 cell malignant transformation. The data of our study show that short term exposure of TK6 cells to HQ led to a decrease expression of SIRT1. Knockdown of SIRT1 sensitized to the HQ-induced apoptosis in vitro and increased the expression of p53, p21 and γ-H2AX. Furthermore, chronic HQ-treated (20μM once a week for 19 weeks) caused carcinogenic transformation and was confirmed by abnormal cell proliferation, matrix metalloproteinase 9(MMP9) and subcutaneous tumor formation in nude mice. SIRT1 increased KRAS expression, and decreased H3K9 and H3K18 acetylation, inhibited p53 signaling and the level of caspase-3 in HQ-induced transformation cells. Taken together, these data suggest that SIRT1 is involved in HQ-induced malignant transformation associated with suppressing p53 signaling and activation of KRAS. PMID:27515134

  6. Facile one-pot synthesis and application of nitrogen and sulfur-doped activated graphene in simultaneous electrochemical determination of hydroquinone and catechol.

    PubMed

    Xiao, Lili; Yin, Jiao; Li, Yingchun; Yuan, Qunhui; Shen, Hangjia; Hu, Guangzhi; Gan, Wei

    2016-10-01

    Nitrogen (N) and sulfur (S) co-doped activated graphene (N,S-AGR) was prepared by the one-pot pyrolysis of a mixture of graphene oxide (GO), thiourea, and potassium hydroxide (KOH), where thiourea acts as the source of N and S dopants and KOH is the activator for porosity. N,S-AGR with a dopant abundance of 2.8 at% N and 2.3 at% S was then used as a high-activity electrocatalyst in the fabrication of an electrochemical sensor for simultaneous determination of dihydroxybenzene isomers, hydroquinone (HQ) and catechol (CC), in aqueous solution. Compared with the bare glassy carbon electrode (GCE), the electrodes modified with N,S-AGR showed enhanced electrochemical performance toward HQ and CC in both cyclic voltammetric (CV) and differential pulse voltammetric (DPV) measurements because of their enlarged surface area, enhanced electron-transfer rate and increased active sites. Compared with some recently reported electrochemical sensors based on graphene composites, the N,S-AGR modified electrode exhibits higher sensitivity, a much lower detection limit and a comparable linear range for the simultaneous determination of HQ and CC. Moreover, the proposed sensor is promising in practical application for the satisfactory recoveries obtained in real water sample analyses.

  7. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro.

    PubMed Central

    Irons, R D; Stillman, W S; Colagiovanni, D B; Henry, V A

    1992-01-01

    The effects of in vitro pretreatment with benzene metabolites on colony-forming response of murine bone marrow cells stimulated with recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) were examined. Pretreatment with hydroquinone (HQ) at concentrations ranging from picomolar to micromolar for 30 min resulted in a 1.5- to 4.6-fold enhancement in colonies formed in response to rGM-CSF that was due to an increase in granulocyte/macrophage colonies. The synergism equaled or exceeded that reported for the effects of interleukin 1, interleukin 3, or interleukin 6 with GM-CSF. Optimal enhancement was obtained with 1 microM HQ and was largely independent of the concentration of rGM-CSF. Pretreatment with other authentic benzene metabolites, phenol and catechol, and the putative metabolite trans, trans-muconaldehyde did not enhance growth factor response. Coadministration of phenol and HQ did not enhance the maximal rGM-CSF response obtained with HQ alone but shifted the optimal concentration to 100 pM. Synergism between HQ and rGM-CSF was observed with nonadherent bone marrow cells and lineage-depleted bone marrow cells, suggesting an intrinsic effect on recruitment of myeloid progenitor cells not normally responsive to rGM-CSF. Alterations in differentiation in a myeloid progenitor cell population may be of relevance in the pathogenesis of acute myelogenous leukemia secondary to drug or chemical exposure. PMID:1570288

  8. Synthesis and characterization of a noncytotoxic, X-ray opaque polyurethane containing iodinated hydroquinone bis(2-hydroxyethyl) ether as chain extender for biomedical applications.

    PubMed

    Kiran, S; Joseph, Roy

    2014-09-01

    An iodinated urethane polymer that does not require addition of X-ray attenuating additives to impart X-ray opacity was synthesized and characterized for biomedical applications. A new X-ray opaque diiodo compound, namely, 2,2'-(2,5-diiodobenzene-1,4-diyl)bis(oxy)diethanol (DBD), was synthesized by iodinating hydroquinone bis(2-hydroxyethyl) ether and this compound was used as chain extender during polyurethane synthesis so that X-ray opacity could be imparted to the polymer formed. X-ray opaque polyurethane (XPU) was synthesized by reacting 1,6-diisocyanatohexane with poly(hexamethylene carbonate)diol and DBD. X-ray opacity of XPU was measured with a fluoroscopy machine using BaSO4 -filled polyurethane as controls. Radiographic images showed that XPU sample had X-ray opacity equivalent to 15 wt % BaSO4-filled polymer. In vivo imaging in a rabbit model showed that the material could be readily distinguishable from bones. XPU was found to be hemocompatible and noncytotoxic to L929 fibroblast cell lines. Optical transparency measurements using ultraviolet-visible spectrophotometer showed that XPU transmitted 85% of visible light.

  9. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Colagiovanni, D. B.; Henry, V. A.; Clarkson, T. W. (Principal Investigator)

    1992-01-01

    The effects of in vitro pretreatment with benzene metabolites on colony-forming response of murine bone marrow cells stimulated with recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) were examined. Pretreatment with hydroquinone (HQ) at concentrations ranging from picomolar to micromolar for 30 min resulted in a 1.5- to 4.6-fold enhancement in colonies formed in response to rGM-CSF that was due to an increase in granulocyte/macrophage colonies. The synergism equaled or exceeded that reported for the effects of interleukin 1, interleukin 3, or interleukin 6 with GM-CSF. Optimal enhancement was obtained with 1 microM HQ and was largely independent of the concentration of rGM-CSF. Pretreatment with other authentic benzene metabolites, phenol and catechol, and the putative metabolite trans, trans-muconaldehyde did not enhance growth factor response. Coadministration of phenol and HQ did not enhance the maximal rGM-CSF response obtained with HQ alone but shifted the optimal concentration to 100 pM. Synergism between HQ and rGM-CSF was observed with nonadherent bone marrow cells and lineage-depleted bone marrow cells, suggesting an intrinsic effect on recruitment of myeloid progenitor cells not normally responsive to rGM-CSF. Alterations in differentiation in a myeloid progenitor cell population may be of relevance in the pathogenesis of acute myelogenous leukemia secondary to drug or chemical exposure.

  10. Quantitative determination of butylated hydroxyanisole, butylated hydroxytoluene, and tert-butyl hydroquinone in oils, foods, and biological fluids by high-performance liquid chromatography with fluorometric detection.

    PubMed

    Yankah, V V; Ushio, H; Ohshima, T; Koizumi, C

    1998-11-01

    Concentrations of synthetic antioxidants butylated hydroxyanisole, butylated hydroxytoluene, and tert-butyl hydroquinone were quantified using a high-performance liquid chromatograph with spectrofluorometric detector. The antioxidants were separated and eluted on a reversed-phase column by gradient of a mixture of H2O/acetonitrile/acetic acid (66.5: 28.5:5, by vol) and a mixture of acetonitrile/acetic acid (95:5, vol/vol). The eluants were monitored at emission and excitation wavelengths of 310 and 280 nm, respectively. Calibration curves obtained using peak areas against concentration showed high coefficients of multiple determination (R2 > 0.99) for all antioxidants. Known concentrations of added antioxidant standards were recoverable within 98-99% from oils and over 93% from mouse blood. This method requires minimum sample extraction and purification before analysis and provides a relatively high percentage recovery. The method has been applied successfully for the measurement of antioxidant concentrations in oils, dried foods, and biological fluids.

  11. Studies with 1,2-dithiole-3-thione as a chemoprotector of hydroquinone-induced toxicity to DBA/2-derived bone marrow stromal cells.

    PubMed Central

    Twerdok, L E; Rembish, S J; Trush, M A

    1993-01-01

    Stromal cells from DBA/2 mouse bone marrow have been shown to be susceptible to cytotoxicity induced by several redox-active metabolites of benzene, including hydroquinone (HQ). Treatment with HQ also alters the composition of stromal cell populations by preferentially killing stromal macrophages compared to stromal fibroblasts. This cytotoxicity can be prevented by 1,2-dithiole-3-thione (DTT) as a result of the induction of quinone reductase (QR), a quinone-processing enzyme, and glutathione. The inductive activities of DTT protected stromal cells against HQ-induced cytotoxicity and against HQ-induced impairment of stromal cell ability to support myelopoiesis. In vivo feeding of DTT to DBA/2 mice increased QR activity within the bone marrow compartment and protected bone marrow stromal cells isolated from the DTT-fed animals from ex vivo HQ challenge. Thus, the inducibility of cellular defense mechanisms and xenobiotic-processing enzymes by chemoprotective agents such as DTT may be a useful strategy for protecting against chemically induced bone marrow toxicities. PMID:8354204

  12. Tolerance and efficacy of a product containing ellagic and salicylic acids in reducing hyperpigmentation and dark spots in comparison with 4% hydroquinone.

    PubMed

    Dahl, Amanda; Yatskayer, Margarita; Raab, Susana; Oresajo, Christian

    2013-01-01

    Hydroquinone (HQ) is the benchmark prescription agent for skin lightening. However, HQ use is recently banned in Europe and in parts of Asia because of potential long-term consequences, including carcinogenesis when orally consumed. This has resulted in development of alternative skin-lightening agents with comparable efficacy to HQ, but better safety profiles. This study examined the skin-lightening ability of a topical product containing 0.5% ellagic acid and 0.1% salicylic acid and compared its efficacy with that of a prescription generic 4% HQ product. Fifty-four multiethnic subjects were randomly assigned to use the topical test formulation or generic 4% HQ twice daily for 12 weeks to evaluate product tolerability and efficacy. Under the conditions of this double-blinded clinical study, the test product demonstrated comparable tolerance and efficacy to that of a benchmark product 4% HQ, as assessed by clinical grading, physical measurement of spot size using image analysis, and questionnaire response analysis. This study suggests that this new product provided comparable skin depigmentation benefit to the benchmark product. In addition, the product appears to have better esthetics (texture, pleasantness to use, skin feel) than the 4% HQ product.

  13. Effect of emulsifiers and their liquid crystalline structures in emulsions on dermal and transdermal delivery of hydroquinone, salicylic acid and octadecenedioic acid.

    PubMed

    Otto, A; Wiechers, J W; Kelly, C L; Dederen, J C; Hadgraft, J; du Plessis, J

    2010-01-01

    This study investigated the effect of emulsifiers and their liquid crystalline structures on the dermal and transdermal delivery of hydroquinone (HQ), salicylic acid (SA) and octadecenedioic acid (DIOIC). Emulsions containing liquid crystalline phases were compared with an emulsion without liquid crystals. Skin permeation experiments were performed using Franz-type diffusion cells and human abdominal skin dermatomed to a thickness of 400 mum. The results indicate that emulsifiers arranging in liquid crystalline structures in the water phase of the emulsion enhanced the skin penetration of the active ingredients with the exception of SA. SA showed a different pattern of percutaneous absorption, and no difference in dermal and transdermal delivery was observed between the emulsions with and without liquid crystalline phases. The increase in skin penetration of HQ and DIOIC could be attributed to an increased partitioning of the actives into the skin. It was hypothesized that the interaction between the different emulsifiers and active ingredients in the formulations varied and, therefore, the solubilization capacities of the various emulsifiers and their association structures.

  14. Catalytic Oxidation of Hydroquinone in Aqueous Solution over Bimetallic PdCo Catalyst Supported on Carbon: Effect of Interferents and Electrochemical Measurement.

    PubMed

    Ye, Weichun; Shi, Xuezhao; Zhang, Yane; Hong, Chenghui; Wang, Chunming; Budzianowski, Wojciech M; Xue, Desheng

    2016-02-10

    Palladium-cobalt alloy nanoparticles were synthesized and dispersed on carbon black support, aiming to have a less expensive catalyst. Catalytic behaviors of PdCo/C catalyst for the oxidation of hydroquinone (HQ) with H2O2 in aqueous solution were evaluated using high-performance liquid chromatography (HPLC). The results revealed that PdCo/C catalyst had better catalytic activity than an equal amount of commercial Pd/C and Co/C catalysts because of the d-band hybridization between Pd and Co. The effects of pH value, solvent, and various interferents including inorganic and organic compounds on the efficiency of HQ oxidation were further investigated. Furthermore, on the basis of mixed potential theory, comprehensive electrochemical measurements such as the open-circuit potential-time (OCP-t) technique and Tafel plot were efficient to assess the catalytic activity of the catalyst, and the results obtained were consistent with those of HPLC measurements. The efficient HQ oxidation was closely associated with the catalytic activity of PdCo nanoparticles because they accelerated the electron-transfer process and facilitated the generation of OH radicals. PMID:26788813

  15. Poly(3,4-ethylenedioxypyrrole) Modified Emitter Electrode for Substitution of Homogeneous Redox Buffer Agent Hydroquinone in Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Peintler-Krivan, Emese; Van Berkel, Gary J; Kertesz, Vilmos

    2010-01-01

    The electrolysis inherent to the operation of the electrospray ionization (ESI) source used with mass spectrometry (MS) is a well-known attendant effect of generating unipolar spray droplets and may affect the analysis of the analyte of interest. Undesirable electrolysis of an analyte may be prevented by limiting the emitter electrode current and/or the mass transport characteristics of the system. However, these ways to avoid analyte electrolysis may not be applcable in all ESI-MS experiments. For example, in the case of specific nanospray systems (e.g. the wire-in-a-capillary bulk-loaded or chip-based tip-loaded nanospray configurations), the solution flow rate is fixed in the 50-500 nL/min range and the electrode surface to volume ratio is large presenting a very effcient analyte to electrode mass transport configuration. In these situations, control over the interfacial potential of the working electrode via homogeneous or traditional heterogeneous (sacrificial metal) redox buffering is a possible way to prevent analyte electrolysis. However, byproducts of these redox buffering approaches can appear in the mass spectra and/or they can chemically alter the analyte. For example, the main reason for using hydroquinone as a homogeneous redox buffer, in addition to its relatively low oxidation potential, is that neither the original compound nor its oxidation product benzoquinone can be detected directly by ESI-MS. However, benzoquinone can alter analytes with thiol functional groups by reacting with those groups via a 1,4-Michael addition.

  16. Relationship between Sublethal Injury and Microbial Inactivation by the Combination of High Hydrostatic Pressure and Citral or tert-Butyl Hydroquinone

    PubMed Central

    Somolinos, Maria; García, Diego; Pagán, Rafael; Mackey, Bernard

    2008-01-01

    The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log10 cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log10 cycles of E. coli at pH 7.0 and almost 3 log10 cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes. PMID:18952869

  17. Antioxidant protection of NO-induced relaxations of the mouse anococcygeus against inhibition by superoxide anions, hydroquinone and carboxy-PTIO.

    PubMed

    Lilley, E; Gibson, A

    1996-09-01

    1. The potential protective effect of several antioxidants [Cu/Zn superoxide dismutase (Cu/Zn SOD), ascorbate, reduced glutathione (GSH), and alpha-tocopherol (alpha-TOC)] on relaxations of the mouse anococcygeus muscle to nitric oxide (NO; 15 microM) and, where appropriate, nitrergic field stimulation (10 Hz; 10 s trains) was investigated. 2. The superoxide anion generating drug duroquinone (100 microM) reduced relaxations to exogenous NO by 54 +/- 6%; this inhibition was partially reversed by Cu/Zn SOD (250 u ml-1), and by ascorbate (500 microM). Following inhibition of endogenous Cu/Zn SOD activity with diethyldithiocarbamate (DETCA), duroquinone (50 microM) also reduced relaxations to nitrergic field stimulation (by 53 +/- 6%) and this effect was again reversed by Cu/Zn SOD and by ascorbate. Neither GSH (500 microM) nor alpha-TOC (400 microM) afforded any protection against duroquinone. 3. Xanthine (20 mu ml-1); xanthine oxidase (100 microM) inhibited NO-induced relaxations by 73 +/- 14%, but had no effect on those to nitrergic field stimulation, even after DETCA treatment. The inhibition of exogenous NO was reduced by Cu/Zn SOD (250 u ml-1) and ascorbate (400 microM), but was unaffected by GSH or alpha-TOC (both 400 microM). 4. Hydroquinone (100 microM) also inhibited relaxations to NO (by 52 +/- 10%), but not nitrergic stimulation. In this case, however, the inhibition was reversed by GSH (5-100 microM) and ascorbate (100-400 microM), although Cu/Zn SOD and alpha-TOC were ineffective. 5. 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO, 50 microM) inhibited NO-induced relaxations by 50 +/- 4%, but had no effect on nitrergic responses; the inhibition was reduced by ascorbate (2-200 microM) and alpha-TOC (10-200 microM), but not by Cu/Zn SOD or GSH. 6. Hydroxocobalamin (5-100 microM) inhibited, equally, relaxations to both NO (-logIC40 3.14 +/- 0.33) and nitrergic stimulation (-logIC40 3.17 +/- 0.22). 7. Thus, a number of

  18. Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene.

    PubMed

    Juanjuan, Zhang; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2014-05-21

    Graphene aerogel materials have attracted increasing attention owing to their large specific surface area, high conductivity and electronic interactions. Here, we report for the first time a novel strategy for the synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles (N-doped AGA/GNs). First, the mixture of graphite oxide, 2,4,6-trihydroxybenzaldehyde, urea and potassium hydroxide was dispersed in water and subsequently heated to form a graphene oxide hydrogel. Then, the hydrogel was dried by freeze-drying and reduced by thermal annealing in an Ar/H2 environment in sequence. Finally, GNs were adsorbed on the surface of the N-doped AGA. The resulting N-doped AGA/GNs offers excellent electronic conductivity (2.8 × 10(3) S m(-1)), specific surface area (1258 m(2) g(-1)), well-defined 3D hierarchical porous structure and apparent heterogeneous electron transfer rate constant (40.78 ± 0.15 cm s(-1)), which are notably better than that of previous graphene aerogel materials. Moreover, the N-doped AGA/GNs was used as a new sensing material for the electrochemical detection of hydroquinone (HQ) and o-dihydroxybenzene (DHB). Owing to the greatly enhanced electron transfer and mass transport, the sensor displays ultrasensitive electrochemical response to HQ and DHB. Its differential pulse voltammetric peak current linearly increases with the increase of HQ and DHB in the range of 5.0 × 10(-8) to 1.8 × 10(-4) M for HQ and 1 × 10(-8) to 2.0 × 10(-4) M for DHB. The detection limit is 1.5 × 10(-8) M for HQ and 3.3 × 10(-9) M for DHB (S/N = 3). This method provides the advantage of sensitivity, repeatability and stability compared with other HQ and DHB sensors. The sensor has been successfully applied to detection of HQ and DHB in real water samples with the spiked recovery in the range of 96.8-103.2%. The study also provides a promising approach for the fabrication of various graphene aerogel materials with improved electrochemical performances, which

  19. Correlation of electronic transitions and redox potentials measured for pyrocatechol, resorcinol, hydroquinone, pyrogallol, and gallic acid with results of semi-empirical molecular orbital computations A useful interpretation tool

    NASA Astrophysics Data System (ADS)

    Carter, Melvin Keith

    2007-04-01

    Cyclic voltammogram (CV) electrochemical measurements for pyrocatechol, resorcinol, hydroquinone, pyrogallol, and gallic acid in strong alkaline solution produced observable oxidation-reduction potentials for each hydroxy group present except for resorcinol. UV absorption spectra were also observed for the diluted solutions. Semi-empirical molecular orbital computations were conducted for these molecules of C2 v point group symmetry to determine the character and energies to aid interpretation of the experimental results. CV oxidation removed a π-electron by a radiationless π-π* transition followed by an electron shift from a negative oxygen to the positive aromatic π-system indicated by an observable σ-π* transition. Simple semi-empirical computations correlated with measured excited electronic states during electron transfer.

  20. Quantitative Determination of α-Arbutin, β-Arbutin, Kojic Acid, Nicotinamide, Hydroquinone, Resorcinol, 4-Methoxyphenol, 4-Ethoxyphenol, and Ascorbic Acid from Skin Whitening Products by HPLC-UV.

    PubMed

    Wang, Yan-Hong; Avonto, Cristina; Avula, Bharathi; Wang, Mei; Rua, Diego; Khan, Ikhlas A

    2015-01-01

    An HPLC-UV method was developed for the quantitative analysis of nine skin whitening agents in a single injection. These compounds are α-arbutin, β-arbutin, kojic acid, nicotinamide, resorcinol, ascorbic acid, hydroquinone, 4-methoxyphenol, and 4-ethoxyphenol. The separation was achieved on a reversed-phase C18 column within 30 min. The mobile phase was composed of water and methanol, both containing 0.1% acetic acid (v/v). The stability of the analytes was evaluated at different pH values between 2.3 and 7.6, and the extraction procedure was validated for different types of skin whitening product matrixes, which included two creams, a soap bar, and a capsule. The best solvent system for sample preparation was 20 mM NaH2PO4 containing 10% methanol at pH 2.3. The analytical method was validated for accuracy, precision, LOD, and LOQ. The developed HPLC-UV method was applied for the quantitation of the nine analytes in 59 skin whitening products including creams, lotions, sera, foams, gels, mask sheets, soap bars, tablets, and capsules.

  1. Molecular cloning and characterization of a tumor-associated, growth-related, and time-keeping hydroquinone (NADH) oxidase (tNOX) of the HeLa cell surface

    NASA Technical Reports Server (NTRS)

    Chueh, Pin-Ju; Kim, Chinpal; Cho, NaMi; Morre, Dorothy M.; Morre, D. James

    2002-01-01

    NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit prion-like properties. The two enzymatic activities alternate to generate a regular period length of about 24 min. Here we report the expression, cloning, and characterization of a tumor-associated NADH oxidase (tNOX). The cDNA sequence of 1830 bp is located on gene Xq25-26 with an open reading frame encoding 610 amino acids. The activities of the bacterially expressed tNOX oscillate with a period length of 22 min as is characteristic of tNOX activities in situ. The activities are inhibited completely by capsaicin, which represents a defining characteristic of tNOX activity. Functional motifs identified by site-directed mutagenesis within the C-terminal portion of the tNOX protein corresponding to the processed plasma membrane-associated form include quinone (capsaicin), copper and adenine nucleotide binding domains, and two cysteines essential for catalytic activity. Four of the six cysteine to alanine replacements retained enzymatic activity, but the period lengths of the oscillations were increased. A single protein with two alternating enzymatic activities indicative of a time-keeping function is unprecedented in the biochemical literature.

  2. Quantitative Determination of α-Arbutin, β-Arbutin, Kojic Acid, Nicotinamide, Hydroquinone, Resorcinol, 4-Methoxyphenol, 4-Ethoxyphenol, and Ascorbic Acid from Skin Whitening Products by HPLC-UV.

    PubMed

    Wang, Yan-Hong; Avonto, Cristina; Avula, Bharathi; Wang, Mei; Rua, Diego; Khan, Ikhlas A

    2015-01-01

    An HPLC-UV method was developed for the quantitative analysis of nine skin whitening agents in a single injection. These compounds are α-arbutin, β-arbutin, kojic acid, nicotinamide, resorcinol, ascorbic acid, hydroquinone, 4-methoxyphenol, and 4-ethoxyphenol. The separation was achieved on a reversed-phase C18 column within 30 min. The mobile phase was composed of water and methanol, both containing 0.1% acetic acid (v/v). The stability of the analytes was evaluated at different pH values between 2.3 and 7.6, and the extraction procedure was validated for different types of skin whitening product matrixes, which included two creams, a soap bar, and a capsule. The best solvent system for sample preparation was 20 mM NaH2PO4 containing 10% methanol at pH 2.3. The analytical method was validated for accuracy, precision, LOD, and LOQ. The developed HPLC-UV method was applied for the quantitation of the nine analytes in 59 skin whitening products including creams, lotions, sera, foams, gels, mask sheets, soap bars, tablets, and capsules. PMID:25857872

  3. Antioxidant farnesylated hydroquinones from Ganoderma capense.

    PubMed

    Peng, Xingrong; Li, Lei; Wang, Xia; Zhu, Guolei; Li, Zhongrong; Qiu, Minghua

    2016-06-01

    Phytochemical investigation of the fruiting bodies of Ganoderma capense led to isolation of eight aromatic meroterpenoids (1-8). Ganocapensins A and B (1, 2) possessed a thirteen-membered and a fourteen-membered ether rings, respectively. The structures of new isolates including absolute configuration were elucidated on the basis of extensive spectroscopic technologies and Mosher's method. All isolated compounds showed significant antioxidant effects with IC50 values ranging from 6.00±0.11 to 8.20±0.30μg/ml in the DPPH radical scavenging assay. PMID:27083379

  4. Enhancement of the carbon electrode capacitance by brominated hydroquinones

    NASA Astrophysics Data System (ADS)

    Gastol, Dominika; Walkowiak, Jedrzej; Fic, Krzysztof; Frackowiak, Elzbieta

    2016-09-01

    This paper presents supercapacitors utilizing new redox-active electrolytes with bromine species. Two sources of Br specimen were investigated, i.e. dibromodihydroxybenzene dissolved in KOH and potassium bromide dissolved in KOH with hydroxybenzene additive. KOH-activated carbon, exhibiting a well-developed porosity, was incorporated as an electrode material. The tested systems revealed a capacitance enhancement explained by Br- and partial BrO3- redox activity. The optimisation of the electrolyte concentration resulted in a capacitance value of 314 F g-1 achieved at 1.1 V voltage range. Good cyclability performance (11% capacitance loss) combined with a high capacitance value (244 F g-1) were obtained for the system operating in 0.2 mol L- 1 C6H4Br2O2 in 2 mol L-1 KOH electrolytic solution.

  5. Kinetic studies on the oxidation of semiquinone and hydroquinone forms of Arabidopsis cryptochrome by molecular oxygen

    PubMed Central

    van Wilderen, Luuk J.G.W.; Silkstone, Gary; Mason, Maria; van Thor, Jasper J.; Wilson, Michael T.

    2015-01-01

    Cryptochromes (crys) are flavoprotein photoreceptors present throughout the biological kingdom that play important roles in plant development and entrainment of the circadian clock in several organisms. Crys non-covalently bind flavin adenine dinucleotide (FAD) which undergoes photoreduction from the oxidised state to a radical form suggested to be active in signalling in vivo. Although the photoreduction reactions have been well characterised by a number of approaches, little is known of the oxidation reactions of crys and their mechanisms. In this work, a stopped-flow kinetics approach is used to investigate the mechanism of cry oxidation in the presence and absence of an external electron donor. This in vitro study extends earlier investigations of the oxidation of Arabidopsis cryptochrome1 by molecular oxygen and demonstrates that, under some conditions, a more complex model for oxidation of the flavin than was previously proposed is required to accommodate the spectral evidence (see P. Müller and M. Ahmad (2011) J. Biol. Chem. 286, 21033–21040 [1]). In the absence of an electron donor, photoreduction leads predominantly to the formation of the radical FADH•. Dark recovery most likely forms flavin hydroperoxide (FADHOOH) requiring superoxide. In the presence of reductant (DTT), illumination yields the fully reduced flavin species (FADH−). Reaction of this with dioxygen leads to transient radical (FADH•) and simultaneous accumulation of oxidised species (FAD), possibly governed by interplay between different cryptochrome molecules or cooperativity effects within the cry homodimer. PMID:26649273

  6. Insect growth inhibition by tocotrienols and hydroquinones from Roldana barba-johannis.

    PubMed

    Céspedes, Carlos L; Torres, Patricio; Marín, Juan C; Arciniegas, Amira; Romo de Vivar, Alfonso; Pérez-Castorena, Ana L; Aranda, Eduardo

    2004-07-01

    The methanol extract from the aerial parts of Roldana barba-johannis (Asteraceae) afforded sargachromenol, sargahydroquinoic acid, and sargaquinoic acid. These natural products and their corresponding acetylated and methylated derivatives showed insecticidal and insect growth regulatory activities against the Fall Armyworm [Spodoptera frugiperda J.E. Smith, (Lepidoptera: Noctuidae)], an important insect pest of corn. The most active compounds were sargachromenol and its acetylated derivative; sargahydroquinoic acid and its acetylated derivative; and a mixture of sargachromenol, sargahydroquinoic acid, and sargaquinoic acid (6:3:1) and the acetylated form of this mixture. All these compounds and mixtures had significant inhibitory effects between 5.0 and 20.0 ppm in diets. Most compounds were insecticidal to larvae, with lethal doses between 20 and 35 ppm. In addition, these substances also demonstrated scavenging properties toward 2,2-diphenyl-1-picrylhydrazyl radical in TLC autographic and spectrophotometric assays. These compounds appear to have selective effects on the pre-emergence metabolism of the insect. The results from these compounds were fully comparable in activity to those known natural insect growth inhibitors such as gedunin and methanol extracts of Cedrela salvadorensis and Yucca periculosa. These substances may be useful as natural insecticidal agents. PMID:15280003

  7. Coffee component hydroxyl hydroquinone (HHQ) as a putative ligand for PPAR gamma and implications in breast cancer

    PubMed Central

    2013-01-01

    Background Coffee contains several compounds that have the potential to influence breast cancer risk and survival. However, epidemiologic data on the relation between coffee compounds and breast cancer survival are sparse and inconsistent. Results We show that coffee component HHQ has significant apoptotic effect on MDA-MB-231 and MCF-7 cells in vitro, and that ROS generation, change in mitochondrial membrane permeability, upregulation of Bax and Caspase-8 as well as down regulation of PGK1 and PKM2 expression may be important apoptosis-inducing mechanisms. The results suggest that PPARγ ligands may serve as potential therapeutic agents for breast cancer therapy. HHQ was also validated as a ligand for PPARγ by docking procedure. Conclusion This is the first report on the anti-breast cancer (in vitro) activity of HHQ. PMID:24564733

  8. Experimental studies on the toxicity of lithographic developer solution.

    PubMed

    Saito, T; Takeichi, S

    1995-01-01

    The purpose of this study was to determine whether the toxicity of a lithographic developer solution which contains hydroquinone is caused by hydroquinone or the alkaline lithographic developer solution. Male Wistar rats were divided into seven groups. In four groups, rats were dosed orally with 3% hydroquinone or 3% hydroquinone in 3% lithographic developer solution. Hydroquinone levels were measured after one and 24 hours. In two groups, rats were dosed orally with 6% hydroquinone or 6% hydroquinone in lithographic developer solution. In the seventh group, rats received the alkaline solution only. Hydroquinone measurement was made using gas chromatography-mass spectrometry. Hydroquinone was rapidly absorbed from the gastrointestinal tract and subsequently distributed throughout the body. Nearly all hydroquinone was excreted in the urine as either a glucuronide or a sulfate (78-82%) within 24 hours. All rats administered 6% hydroquinone in non-alkaline vehicle died, but the mortality rate of rats administered 6% hydroquinone in lithographic developer solution was 60%. Tissue hydroquinone was lower at one hour and 24 hours after administration in lithographic developer solution than in equal dose of hydroquinone in non-alkaline vehicle suggesting decreased absorption in an alkaline pH. Hydroquinone was not associated with gross pathologic changes of the intestine but all animals treated with lithographic developer solution or alkaline solution had congestion, hemorrhagic petechiae and purple-brown discoloration throughout the small intestine. The combination of alkaline/formaldehyde diluent with hydroquinone may delay hydroquinone absorption but increase the risk of intestinal necrosis.

  9. A New Sensitive Sensor for Simultaneous Differential Pulse Voltammetric Determination of Codeine and Acetaminophen Using a Hydroquinone Derivative and Multiwall Carbon Nanotubes Carbon Paste Electrode

    PubMed Central

    Garazhian, Elahe; Shishehbore, M. Reza

    2015-01-01

    A new sensitive sensor was fabricated for simultaneous determination of codeine and acetaminophen based on 4-hydroxy-2-(triphenylphosphonio)phenolate (HTP) and multiwall carbon nanotubes paste electrode at trace levels. The sensitivity of codeine determination was deeply affected by spiking multiwall carbon nanotubes and a modifier in carbon paste. Electron transfer coefficient, α, catalytic electron rate constant, k, and the exchange current density, j 0, for oxidation of codeine at the HTP-MWCNT-CPE were calculated using cyclic voltammetry. The calibration curve was linear over the range 0.2–844.7 μM with two linear segments, and the detection limit of 0.063 μM of codeine was obtained using differential pulse voltammetry. The modified electrode was separated codeine and acetaminophen signals by differential pulse voltammetry. The modified electrode was applied for the determination of codeine and acetaminophen in biological and pharmaceutical samples with satisfactory results. PMID:25945094

  10. Photographic fixative poisoning

    MedlinePlus

    Photographic developer poisoning; Hydroquinone poisoning; Quinone poisoning; Sulfite poisoning ... Hydroquinones Quinones Sodium thiosulfate Sodium sulfite/bisulfite Boric acid Photographic fixative can also break down (decompose) to form sulfur dioxide gas.

  11. Hydrothermal synthesis of mesoporous rod-like nanocrystalline vanadium oxide hydrate V{sub 3}O{sub 7}·H{sub 2}O from hydroquinone and V{sub 2}O{sub 5}

    SciTech Connect

    Mjejri, I.; Etteyeb, N.; Sediri, F.

    2013-09-01

    Graphical abstract: - Highlights: • Rod-like nanocrystalline V{sub 3}O{sub 7}·H{sub 2}O has heen synthesized hydrothermally. • Molar ratio is key factor for structure and morphology. • Electrochemical properties were also studied. • CV has revealed reversible redox behavior with charge–discharge cycling. - Abstract: Rod-like nanocrystalline V{sub 3}O{sub 7}·H{sub 2}O has been synthesized hydrothermally via a simple and elegant route. Techniques X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy and nitrogen adsorption/desorption isotherms have been used to characterize the structure, morphology and composition of the materials. The as-prepared V{sub 3}O{sub 7}·H{sub 2}O nanorods are up to several of micrometers in length, about 130 nm in width and about 70 nm in thickness in average, respectively. Cyclic voltammetric characterization of thin films of V{sub 3}O{sub 7}·H{sub 2}O nanorods has revealed reversible redox behavior with charge–discharge cycling corresponding to the reversible lithium intercalation/deintercalation.

  12. Quantitative determination of a-Arbutin, ß-Arbutin, Kojic acid, nicotinamide, hydroquinone, resorcinol, 4-methoxyphenol, 4-ethoxyphenol and ascorbic acid from skin whitening Products by HPLC-UV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of an analytical method for the simultaneous determination of multifarious skin whitening agents will provide an efficient tool to analyze skin whitening cosmetics. An HPLC-UV method was developed for quantitative analysis of six commonly used whitening agents, a-arbutin, ß-arbutin, koji...

  13. Comparative studies on the chemical and enzymatic stability of alpa-and beta-arbutin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alpha and beta arbutin are glycoside derivatives used as skin whitening agents. Both compounds interfere with tyrosinases activity in a fashion similar to their aglycone hydroquinone. Hydroquinone has been associated with ochronosis and possible carcinogenic effect. Due to their structural similarit...

  14. Noncovalent Derivatization: A Laboratory Experiment for Understanding the Principles of Molecular Recognition and Self-Assembly through Phase Behavior

    ERIC Educational Resources Information Center

    Cannon, Amy S.; Warner, John C.; Koraym, Smaa A.; Marteel-Parrish, Anne E.

    2014-01-01

    An experiment focusing on the creation of phase diagrams involving nonconvalent derivatives of hydroquinone and bis[N,N-diethyl]terephthalamide (HQ-DETPA) is presented. A phase diagram was assembled by taking samples of different compositions (i.e., 40% hydroquinone and 60% bis[N,N-diethyl]terephthalamide, 70%/30%, etc.) and determining the…

  15. Studies on the mechanism of benzene toxicity.

    PubMed Central

    Snyder, R; Dimitriadis, E; Guy, R; Hu, P; Cooper, K; Bauer, H; Witz, G; Goldstein, B D

    1989-01-01

    Using the 59Fe uptake method of Lee et al. it was shown that erythropoiesis in female mice was inhibited following IP administration of benzene, hydroquinone, p-benzoquinone, and muconaldehyde. Toluene protected against the effects of benzene. Coadministration of phenol plus either hydroquinone or catechol resulted in greatly increased toxicity. The combination of metabolites most effective in reducing iron uptake was hydroquinone plus muconaldehyde. We have also shown that treating animals with benzene leads to the formation of adducts of bone marrow DNA as measured by the 32P-postlabeling technique. PMID:2792049

  16. Acanthosis nigricans

    MedlinePlus

    ... as AN only causes a change in skin color. If the condition is affecting your appearance, using moisturizers containing ammonium lactate or hydroquinone can help lighten the skin. Certain lasers may also help the appearance. It is important, ...

  17. Usefulness of retinoic acid in the treatment of melasma.

    PubMed

    Pathak, M A; Fitzpatrick, T B; Kraus, E W

    1986-10-01

    Melasma is a circumscribed brown macular hypermelanosis of the areas of the face and neck that are exposed to light. Clinical trials with various depigmenting formulations containing hydroquinone were conducted to determine the ideal concentration of hydroquinone, retinoic acid, and corticosteroids for the treatment of melasma. The compounds were tested with and without the concomitant use of topical sunscreen preparations. Based on the results of the trials and our earlier clinical experience, we conclude that treatment of melasma should involve the following: avoidance of sun exposure, constant use of broad-spectrum sunscreens, and topical application of a cream or lotion containing 2% hydroquinone and 0.05% to 0.1% retinoic acid (tretinoin). Patients should suspend use of oral contraceptives and other agents that promote skin pigmentation. The monobenzyl ether of hydroquinone should never be used in melasma therapy.

  18. Some new applications of ferroin as redox indicator in titrations with dichromate.

    PubMed

    Sriramam, K

    1972-11-01

    Working conditions for the titration of arsenic(III), hydroquinone, ferrocyanide, uranium(IV) and molybdenum(V) with dichromate in sulphuric acid and hydrochloric acid media have been established, with ferroin as the redox indicator.

  19. 21 CFR 184.1890 - α-Tocopherols.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., nearly odorless, viscous oil. It is obtained by vacuum steam distillation of edible vegetable oil... isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room temperature. (b)...

  20. Thermally conductive polymers

    NASA Technical Reports Server (NTRS)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  1. Effects of the principal hydroxy-metabolites of benzene on microtubule polymerization.

    PubMed

    Irons, R D; Neptun, D A

    1980-10-01

    The principal hydroxy-metabolites of benzene - phenol, catechol and hydroquinone - possess characteristics and produce toxicity similar to those reported for certain inhibitors of microtubule polymerization. In this study we examined the effects of phenol, catechol and hydroquinone on purified microtubule polymerization and the decay of tubulin-colchicine binding activity. Hydroquinone, but not catechol or phenol, inhibited microtubule polymerization and accelerated the decay of tubulin-colchicine binding activity. The latter effect was shown to be dependent on the concentration of GTP. Hydroquinone did not directly complex with GTP or ATP but bound to the high molecular weight fraction of tubulin. concentration ratios of hydroquinone to tubulin resulting in altered activity were low, suggesting a specific interaction, presumably at the tubulin-GTP binding site. The acceleration of tubulin-colchicine binding activity decay was completely prevented under anaerobic conditions, indicative of an oxidative mechanism. These studies suggest that hydroquinone, which auto-oxidizes, may interfere with microtubule function, nucleotide binding or both and that this mechanism may be involved in eliciting the wide range of cytoskeletal-related abnormalities observed in cells exposed to benzene in vivo or its metabolites in vitro. PMID:7447702

  2. Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors.

    PubMed

    Malla, G; Bhatia, Arti; Pathak, H; Prasad, S; Jain, Niveta; Singh, J

    2005-01-01

    Mitigation of methane (CH4) and nitrous oxide (N2O) emissions from soil is important to reduce the global warming. Efficacy of five nitrification inhibitors, i.e. neem (Azadirachta melia) cake, thiosulphate, coated calcium carbide, neem oil coated urea and dicyandiamide (DCD) and one urease inhibitor, hydroquinone, in mitigating N2O and CH4 emissions from fertilized soil was tested in rice-wheat system in the Indo-Gangetic plains. The closed chamber technique was used for the collection of gas samples, which were analyzed using gas chromatography. Reduction in N2O emission on the application of nitrification/urease inhibitors along with urea ranged from 5% with hydroquinone to 31% with thiosulphate in rice and 7% with hydroquinone to 29% with DCD in wheat crop. The inhibitors also influenced the emission of CH4. While application of neem coated urea, coated calcium carbide, neem oil and DCD reduced the emission of CH4; hydroquinone and thiosulphate increased the emission when compared to urea alone. However, the global warming potential was lower with the inhibitors (except hydroquinone) as compared to urea alone, suggesting that these substances could be used for mitigating greenhouse gas emission from the rice-wheat systems.

  3. Synthesis of gold nanorods with a longitudinal surface plasmon resonance peak of around 1250 nm

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Nhat Hang; Le Trinh Nguyen, Thi; Thanh Tuyen Luong, Thi; Thang Nguyen, Canh Minh; Nguyen, Thi Phuong Phong

    2016-03-01

    We prepared gold nanorods and joined them to chemicals such as tetrachloauric (III) acid trihydrate, silver nitrate, hydroquinone, hexadecyltrimethylammonium bromide, sodium hydroxide and sodium borohydride using the seed-mediated method. The combination of hydroquinone, with or without salicylic acid, influences the size of the gold nanorods, and this is demonstrated by the results of TEM images, UV-vis spectra and the value of the longitudinal surface plasmon resonance peak with respect to the UV-vis spectra. By changing the Ag+ ion and hydroquinone concentration and the combination of hydroquinone and salicylic acid, the size of the gold nanorods can be controlled and this is manifested by longitudinal surface plasmon resonance peaks forming between 875 and 1278 nm. In particular, sample E2 achieved a longitudinal surface plasmon peak at 1273 nm and an aspect ratio of more than 10 by modifying the hydroquinone to 2.5 mM and salicylic acid to 0.5 mM concentration in the growth solution.

  4. Bioluminescent reporter bacterium for toxicity monitoring in biological wastewater treatment systems

    SciTech Connect

    Kelly, C.J.; Lajoie, C.A.; Layton, A.C.; Sayler, G.S.

    1999-01-01

    Toxic shock due to certain chemical loads in biological wastewater treatment systems can result in death of microorganisms and loss of floc structure. To overcome the limitations of existing approaches to toxicity monitoring, genes encoding enzymes for light production were inserted to a bacterium (Shk 1) isolated from activated sludge. The Shk 1 bioreporter indicated a toxic response to concentrations of cadmium, 2,4-dinitrophenol, and hydroquinone by reductions in initial levels of bioluminescence on exposure to the toxicant. The decrease in bioluminescence was more severe with increasing toxicant concentration. Bioluminescence did not decrease in response to ethanol concentrations up to 1,000 mg/L or to pH conditions between 6.1 and 7.9. A continuous toxicity monitoring system using this bioreporter was developed for influent wastewater and tested with hydroquinone. The reporter exhibited a rapid and proportional decrease in bioluminescence in response to increasing hydroquinone concentrations.

  5. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide

    PubMed Central

    Song, Yang; Buettner, Garry R.

    2010-01-01

    The quinone/semiquinone/hydroquinone triad (Q/SQ•−/H2Q) represents a class of compounds that has great importance in a wide range of biological processes. The half-cell reduction potentials of these redox couples in aqueous solutions at neutral pH, E°′, provide a window to understanding the thermodynamic and kinetic characteristics of this triad and their associated chemistry and biochemistry in vivo. Substituents on the quinone ring can significantly influence the electron density “on the ring” and thus modify E°′ dramatically. E°′ of the quinone governs the reaction of semiquinone with dioxygen to form superoxide. At near-neutral pH the pKa's of the hydroquinone are outstanding indicators of the electron density in the aromatic ring of the members of these triads (electrophilicity) and thus are excellent tools to predict half-cell reduction potentials for both the one-electron and two-electron couples, which in turn allow estimates of rate constants for the reactions of these triads. For example, the higher the pKa's of H2Q, the lower the reduction potentials and the higher the rate constants for the reaction of SQ•− with dioxygen to form superoxide. However, hydroquinone autoxidation is controlled by the concentration of di-ionized hydroquinone; thus, the lower the pKa's the less stable H2Q to autoxidation. Catalysts, e.g., metals and quinone, can accelerate oxidation processes; by removing superoxide and increasing the rate of formation of quinone, superoxide dismutase can accelerate oxidation of hydroquinones and thereby increase the flux of hydrogen peroxide. The principal reactions of quinones are with nucleophiles via Michael addition, for example, with thiols and amines. The rate constants for these addition reactions are also related to E°′. Thus, pKa's of a hydroquinone and E°′ are central to the chemistry of these triads. PMID:20493944

  6. N-substituted phenothiazines as redox indicators in titrations with chloramine-T and chloramine-B.

    PubMed

    Gowda, H S; Mohan, B M; Ahmed, S A

    1980-12-01

    Profenamine hydrochloride, fluphenazine dihydrochloride, trifluopromazine hydrochloride, cyamepromazine maleate, perphenazine dihydrochloride and mepazine hydrochloride are proposed as redox indicators in the titration of hydroquinone, metol and ascorbic acid with chloramine-T and chloramine-B in sulphuric, hydrochloric and acetic acid media. They give a sharp reversible colour change at the equivalence point. A simple but accurate method for the determination of hydroquinone, metol and ascorbic acid is described. The conditional potentials and molar absorptivities of the indicators and redox potential of chloramine-B are reported.

  7. Comparative study on the photostability of arbutin and deoxy arbutin: sensitivity to ultraviolet radiation and enhanced photostability by the water-soluble sunscreen, benzophenone-4.

    PubMed

    Yang, Chao-Hsun; Chang, Nai-Fang; Chen, Yi-Shyan; Lee, Shu-Mei; Lin, Pei-Jin; Lin, Chih-Chien

    2013-01-01

    Arbutin and deoxy arbutin may release hydroquinone under some conditions. We therefore investigated the photostability of arbutin and deoxy arbutin in an aqueous solution. The results revealed arbutin and deoxy arbutin to be photolabile in an aqueous solution. Deoxy arbutin was less stable than arbutin when exposed to UV radiation. The hydroquinone concentration was also increased during the radiation period in both solutions. Benzophenone-4 could clearly improve the photostability of arbutin during the period of UV radiation, but only slightly enhance the photostability of deoxy arbutin.

  8. Application of a Palladium-Catalyzed C-H Functionalization/Indolization Method to Syntheses of cis-Trikentrin A and Herbindole B.

    PubMed

    Leal, Raul A; Bischof, Caroline; Lee, Youjin V; Sawano, Shota; McAtee, Christopher C; Latimer, Luke N; Russ, Zachary N; Dueber, John E; Yu, Jin-Quan; Sarpong, Richmond

    2016-09-19

    We describe herein formal syntheses of the indole alkaloids cis-trikentrin A and herbindole B from a common meso-hydroquinone intermediate prepared by a ruthenium-catalyzed [2+2+1+1] cycloaddition that has not been used previously in natural product synthesis. Key steps include a sterically demanding Buchwald-Hartwig amination as well as a unique C(sp(3) )-H amination/indole formation. Studies toward a selective desymmetrization of the meso-hydroquinone are also reported. PMID:27570932

  9. Observation of the post-inflammatory hyperpigmentation of the face laser resurfacing in China

    NASA Astrophysics Data System (ADS)

    Lin, Xiao-Hua; Wu, Hui-Zhen

    1998-11-01

    There were one hundred Chinese cases treated with face laser resurfacing. Observed the result, the post-inflammatory hyperpigmentation was found in all case. It is not any use that the cases used the 3 percent hydroquinone before the operation. Eighty-five cases were going down between two and six months after the operation. Fifteen cases continued to nine months. Five cases continued to a year. Cosmetics are possible to affect the course of inflammatory hyperpigmentation. Hyperpigmentation disappeared more quickly while using 3 percent hydroquinone cream or KA cream after the operation. And intravenous injections with vitamin C is helpful.

  10. Palladium(II) Catalyzed Cyclization-Carbonylation-Cyclization Coupling Reaction of (ortho-Alkynyl Phenyl) (Methoxymethyl) Sulfides Using Molecular Oxygen as the Terminal Oxidant.

    PubMed

    Shen, Rong; Kusakabe, Taichi; Yatsu, Tomofumi; Kanno, Yuichiro; Takahashi, Keisuke; Nemoto, Kiyomitsu; Kato, Keisuke

    2016-01-01

    An efficient Pd(II)/Pd⁰-p-benzoquinone/hydroquinone-CuCl₂/CuCl catalyst system was developed that uses environmentally friendly molecular oxygen as the terminal oxidant to catalyze the cyclization-carbonylation-cyclization coupling reaction (CCC-coupling reaction) of (o-alkynyl phenyl) (methoxymethyl) sulfides. PMID:27607997

  11. Peroxidase-dependent metabolism of benzene's phenolic metabolites and its potential role in benzene toxicity and carcinogenicity.

    PubMed Central

    Smith, M T; Yager, J W; Steinmetz, K L; Eastmond, D A

    1989-01-01

    The metabolism of two of benzene's phenolic metabolites, phenol and hydroquinone, by peroxidase enzymes has been studied in detail. Studies employing horseradish peroxidase and human myeloperoxidase have shown that in the presence of hydrogen peroxide phenol is converted to 4,4'-diphenoquinone and other covalent binding metabolites, whereas hydroquinone is converted solely to 1,4-benzoquinone. Surprisingly, phenol stimulates the latter conversion rather than inhibiting it, an effect that may play a role in the in vivo myelotoxicity of benzene. Indeed, repeated coadministration of phenol and hydroquinone to B6C3F1 mice results in a dramatic and significant decrease in bone marrow cellularity similar to that observed following benzene exposure. A mechanism of benzene-induced myelotoxicity is therefore proposed in which the accumulation and interaction of phenol and hydroquinone in the bone marrow and the peroxidase-dependent formation of 1,4-benzoquinone are important components. This mechanism may also be responsible, at least in part, for benzene's genotoxic effects, as 1,4-benzoquinone has been shown to damage DNA and is shown here to induce multiple micronuclei in human lymphocytes. Secondary activation of benzene's phenol metabolites in the bone marrow may therefore play an important role in benzene's myelotoxic and carcinogenic effects. PMID:2551665

  12. Exogenous ochronosis. An update on clinical features, causative agents and treatment options.

    PubMed

    Levin, C Y; Maibach, H

    2001-01-01

    Exogenous ochronosis is clinically and histologically similar to its endogenous counterpart; however, it exhibits no systemic effects and is not an inherited disorder. It is characterized by an asymptomatic hyperpigmentation of the face, sides and back of the neck, back, and extensor surfaces of the extremities. The associated ochronotic discoloration most commonly results from use of products containing hydroquinone. It also occurs following use of antimalarials and products containing resorcinol, phenol, mercury or picric acid. The etiology of hydroquinone-induced hyperpigmentation in exogenous ochronosis remains speculative. The majority of patients with this condition are Black, but it has been reported to occur in Hispanics and Caucasians. Exogenous ochronosis is prevalent among South African Blacks, but is believed relatively uncommon within the US. The reasons for this phenomenon are not clear, but it could be a result of the use of skin care products containing resorcinol in combination with hydroquinone or the use of hydroquinone in a hydroalcoholic lotion. Treatment of this condition is difficult. The offending agent must be avoided, but improvement occurs only slowly. A number of topical agents have been studied as have dermabrasion and the use of lasers. Controlled studies in larger numbers of patients are require to determine the true efficacy of newer treatments.

  13. Squaric acid ester-based total synthesis of echinochrome A.

    PubMed

    Peña-Cabrera, Eduardo; Liebeskind, Lanny S

    2002-03-01

    The total synthesis of echinochrome A is described. Both key intermediates 5 and 8 were efficiently prepared from diisopropyl squarate 7. Nucleophilic addition of aryllithium 8 to 5, followed by thermal ring-expansion/cyclization of the 1,2-adduct 4, furnished hydroquinone 3. Oxidation and full deprotection of 3 gave the title compound.

  14. 21 CFR 184.1890 - α-Tocopherols.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam distillation of edible vegetable oil products. (2) dl-α-Tocopherol (CAS Reg. No. 10191-41-0) is a mixture of stereoisomers of 2,5,7... condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room...

  15. 21 CFR 184.1890 - α-Tocopherols.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam distillation of edible vegetable oil products. (2) dl-α-Tocopherol (CAS Reg. No. 10191-41-0) is a mixture of stereoisomers of 2,5,7... condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room...

  16. 21 CFR 184.1890 - α-Tocopherols.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam distillation of edible vegetable oil products. (2) dl-α-Tocopherol (CAS Reg. No. 10191-41-0) is a mixture of stereoisomers of 2,5,7... condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room...

  17. 21 CFR 184.1890 - α-Tocopherols.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... concentrate and is a red, nearly odorless, viscous oil. It is obtained by vacuum steam distillation of edible vegetable oil products. (2) dl-α-Tocopherol (CAS Reg. No. 10191-41-0) is a mixture of stereoisomers of 2,5,7... condensing racemic isophytol with trimethyl hydroquinone. It is a pale yellow viscous oil at room...

  18. PHOTOGRAPHIC FILM DEVELOPER

    DOEpatents

    Berry, F.G.

    1958-06-24

    S>An improved photographic developer is presented having very high energy development fine grain characteristics and a long shelf life. These characteristics are obtained by the use of aminoacetic acid in the developer, the other constituents of which are: sodium sulfite, hydroquinone, sodiunn borate, boric acid and potassium bromide, 1-phenyl-3-pyrazolidone.

  19. Palladium(II) Catalyzed Cyclization-Carbonylation-Cyclization Coupling Reaction of (ortho-Alkynyl Phenyl) (Methoxymethyl) Sulfides Using Molecular Oxygen as the Terminal Oxidant.

    PubMed

    Shen, Rong; Kusakabe, Taichi; Yatsu, Tomofumi; Kanno, Yuichiro; Takahashi, Keisuke; Nemoto, Kiyomitsu; Kato, Keisuke

    2016-09-05

    An efficient Pd(II)/Pd⁰-p-benzoquinone/hydroquinone-CuCl₂/CuCl catalyst system was developed that uses environmentally friendly molecular oxygen as the terminal oxidant to catalyze the cyclization-carbonylation-cyclization coupling reaction (CCC-coupling reaction) of (o-alkynyl phenyl) (methoxymethyl) sulfides.

  20. 21 CFR 176.170 - Components of paper and paperboard in contact with aqueous and fatty foods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Hydrocarbon Solvents,” which are incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part...,5-Di-tert-butyl hydroquinone For use only as an antioxidant for fatty based coating adjuvants... use only as an antioxidant for fatty based coating adjuvants provided it is used at a level not...

  1. Study of the cerium(IV)-picrate system in acetonitrile.

    PubMed

    Kratochvil, B; Tipler, M; McKay, B

    1966-07-01

    A potentiometric and spectrophotometric study has been made of the reaction between hexanitratocerate and picrate in dry acetonitrile. Several cerium(IV)-picrate complexes are formed; the formation constant for the first is estimated to be 4 from spectrophotometric measurements. The catalytic effect of picrate on hydroquinone oxidation by nitratocerate is postulated to be due to more rapid electron transfer by cerium picrate complexes.

  2. Developmental Neurotoxic Effects of Percutaneous Drug Delivery: Behavior and Neurochemical Studies in C57BL/6 Mice.

    PubMed

    Wu, Huali; Feng, Junyi; Lv, Wenting; Huang, Qiaoling; Fu, Mengsi; Cai, Minxuan; He, Qiangqiang; Shang, Jing

    2016-01-01

    Dermatosis often as a chronic disease requires effective long-term treatment; a comprehensive evaluation of mental health of dermatology drug does not receive enough attention. An interaction between dermatology and psychiatry has been increasingly described. Substantial evidence has accumulated that psychological stress can be associated with pigmentation, endocrine and immune systems in skin to create the optimal responses against pathogens and other physicochemical stressors to maintain or restore internal homeostasis. Additionally, given the common ectodermal origin shared by the brain and skin, we are interested in assessing how disruption of skin systems (pigmentary, endocrine and immune systems) may play a key role in brain functions. Thus, we selected three drugs (hydroquinone, isotretinoin, tacrolimus) with percutaneous excessive delivery to respectively intervene in these systems and then evaluate the potential neurotoxic effects. Firstly, C57BL/6 mice were administrated a dermal dose of hydroquinone cream, isotretinoin gel or tacrolimus ointment (2%, 0.05%, 0.1%, respectively, 5 times of the clinical dose). Behavioral testing was performed and levels of proteins were measured in the hippocampus. It was found that mice treated with isotretinoin or tacrolimus, presented a lower activity in open-field test and obvious depressive-like behavior in tail suspension test. Besides, they damaged cytoarchitecture, reduced the level of 5-HT-5-HT1A/1B system and increased the expression of apoptosis-related proteins in the hippocampus. To enable sensitive monitoring the dose-response characteristics of the consecutive neurobehavioral disorders, mice received gradient concentrations of hydroquinone (2%, 4%, 6%). Subsequently, hydroquinone induced behavioral disorders and hippocampal dysfunction in a dose-dependent response. When doses were high as 6% which was 3 times higher than 2% dose, then 100% of mice exhibited depressive-like behavior. Certainly, 6% hydroquinone

  3. Developmental Neurotoxic Effects of Percutaneous Drug Delivery: Behavior and Neurochemical Studies in C57BL/6 Mice

    PubMed Central

    Lv, Wenting; Huang, Qiaoling; Fu, Mengsi; Cai, Minxuan; He, Qiangqiang

    2016-01-01

    Dermatosis often as a chronic disease requires effective long-term treatment; a comprehensive evaluation of mental health of dermatology drug does not receive enough attention. An interaction between dermatology and psychiatry has been increasingly described. Substantial evidence has accumulated that psychological stress can be associated with pigmentation, endocrine and immune systems in skin to create the optimal responses against pathogens and other physicochemical stressors to maintain or restore internal homeostasis. Additionally, given the common ectodermal origin shared by the brain and skin, we are interested in assessing how disruption of skin systems (pigmentary, endocrine and immune systems) may play a key role in brain functions. Thus, we selected three drugs (hydroquinone, isotretinoin, tacrolimus) with percutaneous excessive delivery to respectively intervene in these systems and then evaluate the potential neurotoxic effects. Firstly, C57BL/6 mice were administrated a dermal dose of hydroquinone cream, isotretinoin gel or tacrolimus ointment (2%, 0.05%, 0.1%, respectively, 5 times of the clinical dose). Behavioral testing was performed and levels of proteins were measured in the hippocampus. It was found that mice treated with isotretinoin or tacrolimus, presented a lower activity in open-field test and obvious depressive-like behavior in tail suspension test. Besides, they damaged cytoarchitecture, reduced the level of 5-HT-5-HT1A/1B system and increased the expression of apoptosis-related proteins in the hippocampus. To enable sensitive monitoring the dose-response characteristics of the consecutive neurobehavioral disorders, mice received gradient concentrations of hydroquinone (2%, 4%, 6%). Subsequently, hydroquinone induced behavioral disorders and hippocampal dysfunction in a dose-dependent response. When doses were high as 6% which was 3 times higher than 2% dose, then 100% of mice exhibited depressive-like behavior. Certainly, 6% hydroquinone

  4. Human CYP2E1-dependent and human sulfotransferase 1A1-modulated induction of micronuclei by benzene and its hydroxylated metabolites in Chinese hamster V79-derived cells.

    PubMed

    Jiang, Hao; Lai, Yanmei; Hu, Keqi; Wei, Qinzhi; Liu, Yungang

    2014-12-01

    Benzene is a ubiquitous environmental pollutant and a confirmed human carcinogen, which requires metabolic activation, primarily by CYP2E1, for most of its biological actions. Chromosome damages in benzene-exposed workers and rodents have been observed, and in their urine sulfo- and glucuronide-conjugates of phenol and hydroquinone were present. Yet, direct evidence for human CYP2E1-activated mutagenicity of benzene and the exact significance of phase II metabolism for inactivating benzene metabolites are still missing. In the present study, benzene and its oxidized metabolites (phenol, hydroquinone, catechol, 1,2,4-trihydroxybenzene and 1,4-benzoquinone) were investigated for induction of micronuclei in a V79-derived cell line genetically engineered for expression of both human CYP2E1 and human sulfotransferase (SULT) 1A1 (indicated by active micronuclei induction by 1-hydroxymethylpyrene). The results demonstrated concentration-dependent induction of micronuclei by benzene and phenol, though with lower potency or efficacy than the other metabolites. Inhibition of CYP2E1 by 1-aminobenzotriazole did not change the effect of benzoquinone, but completely abolished that of benzene and phenol, and attenuated that of the other compounds. Moreover, inhibition of SULT1A1 by pentachlorophenol potentiated the effects of benzene, hydroquinone, catechol and trihydroxybenzene. Ascorbic acid, a reducing and free radical-scavenging agent, significantly lowered the effects of hydroquinone, catechol, trihydroxybenzene as well as N-nitrosodimethylamine (a known CYP2E1-dependent promutagen), with that of benzoquinone unaffected. These results suggest that in addition to activating benzene and phenol, human CYP2E1 may further convert hydroquinone, catechol and trihydroxybenzene to more genotoxic metabolites, and sulfo-conjugation of the multi-hydroxylated metabolites of benzene by human SULT1A1 may represent an important detoxifying pathway.

  5. Development of an immunoassay to detect benzene adducts in hemoglobin

    SciTech Connect

    Grassman, J.A.

    1993-01-01

    The purpose of this project was to develop an immunoassay to detect the adducts formed in hemoglobin after exposure to benzene, which is known to cause bone marrow degeneration and acute myelogenous leukemia. The use of benzene-adduct detection as a biological monitoring method would permit measurement of low exposures and exposures sustained weeks earlier. The reactivity of hydroquinone, an important benzene metabolite, with blood proteins and amino acids was investigated in order to decide which antigens and analytes were likely to be suitable for immunoassay development. The second section determined the combination of benzene-metabolite and antigen need to produce an immunoassay with the requisite low detection limit and specificity. The immunoassays with the best performance were tested on hemoglobin from benzene-exposed mice. In vitro studies showed that hydroquinone efficiently formed adducts with erythrocyte membranes and hemoglobin but not with albumin. Adduction efficiency was greater in incubations using purified hemoglobin than whole blood. Cysteine accounted for 15 to 27% of the adducts formed by hydroquinone. The site of the other adducts were not identified although there was evidence that the hemoglobin heme was adducted. Adducts were found on only 1 of the 2 globin chains. Tryptic digestion of the globin failed to associate the adducts with a specific peptide. Antigens made from hydroquinone-adducted hemoglobin but not hydroquinone-adducted cysteines coupled to carrier proteins effectively elicited adduct-specific antibodies. Interference due to reactivity to hemoglobin was controlled by using uniform quantities of hemoglobin in all wells. The mid-range of the best assays were approximately 12 pmoles HQ per well. Antibodies directed toward hemoglobin adducted with the benzene metabolites phenol, catechol and 1,2,4-trihydroxybenzene were also made. The performance of the anti-1,2,4-trihydroxybenzene were suitable for quantitative immunoassays.

  6. A physiological model for simulation of benzene metabolism by rats and mice.

    PubMed

    Medinsky, M A; Sabourin, P J; Lucier, G; Birnbaum, L S; Henderson, R F

    1989-06-15

    Studies conducted by the National Toxicology Program on the chronic toxicity of benzene indicated that B6C3F1 mice are more sensitive to the toxic effects of benzene than are F344 rats. A physiological model was developed to describe the uptake and metabolism of benzene in rats and mice and to determine if the observed differences in toxic effects could be explained by differences in the pathways for metabolism of benzene or by differences in uptake of benzene. Major pathways for elimination of benzene included metabolism to hydroquinone glucuronide or hydroquinone sulfate, phenyl glucuronide or phenyl sulfate, muconic acid, and prephenyl mercapturic acid or phenyl mercapturic acid. Model simulations for total benzene metabolized and for profiles of benzene metabolites were conducted for oral or inhalation exposure and compared to data for urinary excretion of benzene metabolites after exposure of rats and mice to [14C]- or [3H]-benzene by inhalation or gavage. Results for total amount of benzene metabolized, expressed per kilogram body weight, indicated that for inhalation exposure concentrations up to 1000 ppm, mice metabolized at least two to three times as much benzene as did rats. Simulations of oral exposure to benzene resulted in more benzene metabolized per kilogram body weight by rats at oral exposures of greater than 50 mg/kg. Patterns of metabolites formed after either route of exposure were very different for F344/N rats and B6C3F1 mice. Rats primarily formed the detoxification metabolite, phenyl sulfate. Mice formed hydroquinone glucuronide and muconic acid in addition to phenyl sulfate. Hydroquinone and muconic acid are associated with pathways leading to the formation of the putative toxic metabolites of benzene. Metabolic rate parameters, Vmax and Km, were very different for hydroquinone conjugate and muconic acid formation compared to formation of phenyl conjugates and phenyl mercapturic acids. Putative toxication pathways could be characterized as

  7. Lignin Modification for Biopolymer/Conjugated Polymer Hybrids as Renewable Energy Storage Materials.

    PubMed

    Nilsson, Ting Yang; Wagner, Michal; Inganäs, Olle

    2015-12-01

    Lignin derivatives, which arise as waste products from the pulp and paper industry and are mainly used for heating, can be used as charge storage materials. The charge storage function is a result of the quinone groups formed in the lignin derivative. Herein, we modified lignins to enhance the density of such quinone groups by covalently linking monolignols and quinones through phenolation. The extra guaiacyl, syringyl, and hydroquinone groups introduced by phenolation of kraft lignin derivatives were monitored by (31) P nuclear magnetic resonance and size exclusion chromatography. Electropolymerization in ethylene glycol/tetraethylammonium tosylate electrolyte was used to synthesize the kraft lignin/polypyrrole hybrid films. These modifications changed the phenolic content of the kraft lignin with attachment of hydroquinone units yielding the highest specific capacity (around 70 mA h g(-1) ). The modification of softwood and hardwood lignin derivatives yielded 50 % and 23 % higher charge capacity than the original lignin, respectively.

  8. Role of Metabolism by Intestinal Bacteria in Arbutin-Induced Suppression of Lymphoproliferative Response in vitro

    PubMed Central

    Kang, Mi Jeong; Ha, Hyun Woo; Kim, Ghee Hwan; Lee, Sang Kyu; Ahn, Young Tae; Kim, Dong Hyun; Jeong, Hye Gwang; Jeong, Tae Cheon

    2012-01-01

    Role of metabolism by intestinal bacteria in arbutin-induced immunotoxicity was investigated in splenocyte cultures. Following an incubation of arbutin with 5 different intestinal bacteria for 24 hr, its aglycone hydroquinone could be produced and detected in the bacterial culture media with different amounts. Toxic effects of activated arbutin by intestinal bacteria on lymphoproliferative response were tested in splenocyte cultures from normal mice. Lipopolysaccharide and concanavalin A were used as mitogens for B- and T-cells, respectively. When bacteria cultured medium with arbutin was treated into the splenocytes for 3 days, the medium cultured with bacteria producing large amounts of hydroquinone induced suppression of lymphoproliferative responses, indicating that metabolic activation by intestinal bacteria might be required in arbutin-induced toxicity. The results indicated that the present testing system might be applied for determining the possible role of metabolism by intestinal bacteria in certain chemical-induced immunotoxicity in animal cell cultures. PMID:24116295

  9. Pulse radiolysis study of daunorubicin redox reactions: redox cycles or glycosidic cleavage

    SciTech Connect

    Houee-Levin, C.; Gardes-Albert, M.; Ferradini, C.

    1986-01-01

    Two aspects of daunorubicin reactivity were investigated by pulse radiolysis. The reactions of O/sub 2/ and O/sub 2/- with the semiquinone and the hydroquinone transients of daunorubicin were determined and their rate constants measured. Although O/sub 2/- can reduce the drug and its semiquinone form, it is a more powerful oxidant towards the two reduced transients. The hydroquinone daunorubicin glycosidic cleavage in aqueous solution was studied. Three intermediates were seen and characterized by their absorption spectra, their formation and decay kinetics. The competition between these two main processes was evaluated in the conditions of pulse radiolysis. Even under low O/sub 2/ partial pressures the redox cycles are much more rapid than the glycosidic cleavage and a relatively high O/sub 2/- steady state is settled. Biological implications are discussed.

  10. Large cavities with nanosized channels in a three-dimensional neutral framework: structure and properties of a novel oxovanadium arsenate: As 2V IVV VO 26(OH)]·8H 2O

    NASA Astrophysics Data System (ADS)

    Zhao, Yongnan; Li, Yafeng; Liu, Qingsheng; Chen, Xiangming; Wang, Yong; Li, Xiuhong; Li, Ming; Mai, Zhenhong

    2002-12-01

    A novel open-framework oxovanadium arsenate has been hydrothermally synthesized. It crystallizes in space group I 4¯3 m with cell parameters of a=16.708(2) Å, V=4664.4(9) Å 3 and Z=4. Its structure is composed of a new type of decavandium cluster, which is constructed by two pentamers. Linking this decavanadate by AsO 4 tetrahedral, a three-dimensional open-framework structure forms, which possesses large cavities. These high symmetric cavities interconnected through 12-membered ring windows forming a three-dimensional channel system. Catalytic measurements indicate that this compound is active for phenol hydroxylation using hydrogen peroxide as the oxidant. Catechol, hydroquinone and benzoquinone are the main products with 15.8% conversion of phenol (taking no account of the secondary product of tar) and 59.6% selectivity for hydroquinone, when the reaction was performed in water at 60°C for 6 h.

  11. Unusual catalytic effects of iron salts on phenol degradation by glow discharge plasma in aqueous solution.

    PubMed

    Wang, Lei; Jiang, Xuanzhen

    2009-01-30

    Catalytic effects of iron salts on phenol degradation induced by glow discharge plasma (GDP) were examined. It was found that ferric ions showed much better catalytic effect than that of ferrous ions. The reason was that GDP could produce hydroxyl radicals and hydrogen peroxide simultaneously; the hydroxyl radicals reacted with phenol to produce dihydroxycyclohexadienyl radicals which reduced the ferric ions to ferrous ions and the newly formed ferrous ions catalyzed the hydrogen peroxide to produce more hydroxyl radicals. Without iron salts, TOC of the solution gradually decreased with treatment time while COD of the solution increased due to the accumulation of the hydrogen peroxide. Without iron salts, catechol, hydroquinone, and hydroxylhydroquinone were major by-products. However, large amounts of catechol, hydroquinone and benzoquinone yielded in the presence of iron salts. The present study presents some new information related to Fenton's reaction. PMID:18501506

  12. Electroanalytical approaches to understanding benzene metabolism.

    PubMed

    Lunte, S M; Lunte, C E

    1990-01-01

    Electrochemical techniques are ideally suited to the study of the metabolism of aromatic xenobiotics because the metabolites are frequently easier to oxidize than the parent compounds. In many cases, the trace metabolites have the lowest oxidation potentials and hence electrochemical methods have the greatest selectivity for these compounds. The sensitivity of dual-electrode liquid chromatography-electrochemistry for the detection and identification of trace metabolites was demonstrated by the detection of the secondary metabolite, hydroquinone, in a microsomal incubation containing benzene and ascorbic acid. The use of an electrochemical detector in a series configuration provides increased selectivity for chemically reversible metabolites such as hydroquinone. Electrochemical methods can also be used to generate metabolites. The products of the electrochemical oxidation of phenol and biphenol are compared with those generated in a peroxidase incubation.

  13. Effect of additives on the performance and morphology of sulfonated copoly (phthalazinone biphenyl ether sulfone) composite nanofiltration membranes☆

    NASA Astrophysics Data System (ADS)

    Guan, Shanshan; Zhang, Shouhai; Liu, Peng; Zhang, Guozhen; Jian, Xigao

    2014-03-01

    Sulfonated copoly (phthalazinone biphenyl ether sulfone) (SPPBES) composite nanofiltration membranes were fabricated by adding low molecular weight additives into SPPBES coating solutions during a dip coating process. Three selected additives: glycol, glycerol and hydroquinone were used in this work. The effect of additives on the membrane performance was studied and discussed in terms of rejection and permeation flux. Among all the composite membranes, the membrane prepared with glycol as an additive achieved the highest Na2SO4 rejection, and the membrane fabricated with glycerol as an additive exhibited the highest flux. The salts rejection of SPPBES composite membranes increased in the following order MgCl2 < NaCl ≤ MgSO4 < Na2SO4. The morphologies of the SPPBES composite membranes were characterized by SEM, it was found that the membrane prepared with hydroquinone showed a rough membrane surface. Composite membrane fabricated with glycol or glycerol as the additive showed very good chemical stability.

  14. Comparison of supramolecular hydrogen bonded liquid crystals

    NASA Astrophysics Data System (ADS)

    Pongali Sathya Prabu, N.; Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2012-01-01

    Supramolecular hydrogen bonded liquid crystals are formed by methoxy hydroquinone (MHQ) and alkyloxy benzoic acids are isolated and characterised. MHQ formed double hydrogen bonds with p-n-alkyloxy benzoic acids. Fourier Transform-Infrared studies confirm the hydrogen bond formation in the complex. Polarising Optical Microscopic (POM) studies revealed the textural information, while the transition and enthalpy values are experimentally deduced from Differential Scanning Calorimetry (DSC) studies. Phase diagram has been constructed from the POM and DSC data, respectively. Experimental data of optical tilt angle in Smectic C phase have been fitted to a power law and it has been observed that the temperature variation of the tilt angle follows Mean Field theory prediction. Present homologous are compared with hydroquinone alkyloxy benzoic acids complexes and the influence of methyl group on the occurrence of phases and its transition temperatures are discussed.

  15. Recyclable graphene oxide grafted with poly(N-isopropylacrylamide) and its enhanced selective adsorption for phenols

    NASA Astrophysics Data System (ADS)

    Gong, Zailin; Li, Shujin; Han, Weifang; Wang, Jiaping; Ma, Jun; Zhang, Xiangdong

    2016-01-01

    The graphene oxide (GO) was synthesized with Brodie's method and grafted with poly (N-isopropylacrylamide) (NIPAM) in aqueous solution at ambient temperature. Compared with the initial GO, the PNIPAM graft GO (GO-PNIPAM) has larger surface area, pore volume and self-flocculation effect with rapid response to temperature. Moreover, the GO-PNIPAM also has selective adsorptions with different phenol pollutants because of the different interactions of hydrogen bonds and the molecule structure of the adsorbates. Compared with phenol and bisphenol A, hydroquinone has better adsorption on GO-PNIPAM because of the ample phenolic hydroxyl group and the appropriate molecule structure. The adsorption performance of hydroquinone on GO-PNIPAM is also temperature sensitive because of the thermoresponsive transition of the hydrogen bond. The thermoresponsive adsorption and self-flocculation will make the GO-PNIPAM recyclable in the potential water remediation.

  16. Exogenous ochronosis in a Chinese patient: use of dermoscopy aids early diagnosis and selection of biopsy site

    PubMed Central

    Liu, Wen Chun; Tey, Hong Liang; Lee, Joyce Siong See; Goh, Boon Kee

    2014-01-01

    The diagnosis of exogenous ochronosis is often challenging and requires a high index of suspicion. Herein, we report a case of exogenous ochronosis in a Chinese patient. The condition was caused by the use of bleaching agents, including creams containing hydroquinone. We demonstrate the use of dermoscopy as an invaluable tool for the early recognition of the condition, as well as in the selection of an appropriate site for a skin biopsy. PMID:24452981

  17. Tests of alternative reductants in the second uranium purification cycle

    SciTech Connect

    Thompson, M.C.

    1980-05-01

    Miniature mixer-settler tests of the second uranium purification cycle show that plutonium cannot be removed by hydroxylamine-hydrazine (NH/sub 2/OH-N/sub 2/H/sub 4/) because the acidity is too high, or by 2,5-di-t-pentylhydroquinone because HNO/sub 3/ oxidizes the hydroquinone. Plutonium can be removed satisfactorily when U(IV)-hydrazine is used as the reductant.

  18. Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells

    SciTech Connect

    Wan, Joanne; Winn, Louise M. . E-mail: winnl@queensu.ca

    2007-07-15

    Benzene is a known leukemogen that is metabolized to form reactive intermediates and reactive oxygen species (ROS). The c-Myb oncoprotein is a transcription factor that has a critical role in hematopoiesis. c-Myb transcript and protein have been overexpressed in a number of leukemias and cancers. Given c-Myb's role in hematopoiesis and leukemias, it is hypothesized that benzene interferes with the c-Myb signaling pathway and that this involves ROS. To investigate our hypothesis, we evaluated whether benzene, 1,4-benzoquinone, hydroquinone, phenol, and catechol generated ROS in chicken erythroblast HD3 cells, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (DCFDA) and dihydrorhodamine-123 (DHR-123), and whether the addition of 100 U/ml of the antioxidating enzyme superoxide dismutase (SOD) could prevent ROS generation. Reduced to oxidized glutathione ratios (GSH:GSSG) were also assessed as well as hydroquinone and benzoquinone's effects on c-Myb protein levels and activation of a transiently transfected reporter construct. Finally we attempted to abrogate benzene metabolite mediated increases in c-Myb activity with the use of SOD. We found that benzoquinone, hydroquinone, and catechol increased DCFDA fluorescence, increased DHR-123 fluorescence, decreased GSH:GSSG ratios, and increased reporter construct expression after 24 h of exposure. SOD was able to prevent DCFDA fluorescence and c-Myb activity caused by benzoquinone and hydroquinone only. These results are consistent with other studies, which suggest metabolite differences in benzene-mediated toxicity. More importantly, this study supports the hypothesis that benzene may mediate its toxicity through ROS-mediated alterations in the c-Myb signaling pathway.

  19. Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: Identification of target cells and a potential role for modulation of apoptosis in benzene toxicity

    SciTech Connect

    Ross, D.; Siegel, D.; Schattenberg, D.G.

    1996-12-01

    The role of cell-specific metabolism in benzene toxicity was examined in both murine and human bone marrow. Hemopoietic progenitor cells and stromal cells are important control points for regulation of hemopoiesis. We show that the selective toxicity of hydroquinone at the level of the macrophage in murine bone marrow stroma may be explained by a high peroxidase/nicotanimicle adenine dinucleotide phosphate, reduced [NAD(P)H]:quinone oxidoreductase (NQO1) ratio. Peroxidases metabolize hydroquinone to the reactive 1,4-benzoquinone, whereas NQO1 reduces the quinones formed, resulting in detoxification. Peroxidase and NQO1 activity in human stromal cultures vary as a function of time in culture, with peroxidase activity decreasing and NQO1 activity increasing with time. Peroxidase activity and, more specifically, myeloperoxidase, which had previously been considered to be expressed at the promyelocyte level, was detected in murine lineage-negative and human CD34{sup +} progenitor cells. This provides a metabolic mechanism whereby phenolic metabolites of benzene can be bioactivated in progenitor cells, which are considered initial target cells for the development of leukemias. Consequences of a high peroxidase/NQO1 ratio in HL-60 cells were shown to include hydroquinone-induced apoptosis. Hydroquinone can also inhibit proteases known to play a role in induction of apoptosis, suggesting that it may be able to inhibit apoptosis induced by other stimuli. Modulation of apoptosis may lead to aberrant hemopoiesis and neoplastic progression. This enzyme-directed approach has identified target cells of the phenolic metabolites of benzene in bone marrow and provided a metabolic basis for benzene-induced toxicity at the level of the progenitor cell in both murine and human bone marrow. 60 refs., 8 figs.

  20. Allergic contact dermatitis to adhesive bandages.

    PubMed

    Norris, P; Storrs, F J

    1990-01-01

    More than two billion Band-Aid Brand Sheer Strips are used in the United States yearly, yet allergic contact dermatitis resulting from their use is nearly nonexistent. We report four patients with allergic reactions to these strips. One patient reacted to tricresyl phosphate, the plasticizer in the vinyl backing; another patient was allergic to 2,5-di(tertiary-amyl)hydroquinone, the antioxidant in the adhesive. In the other two patients, the allergic contact dermatitis remains unexplained.

  1. Electrostatic effects of surface acidic amino acid residues on the oxidation-reduction potentials of the flavodoxin from Desulfovibrio vulgaris (Hildenborough).

    PubMed

    Zhou, Z; Swenson, R P

    1995-03-14

    The flavodoxin from Desulfovibrio vulgaris (Hildenborough) is a member of a family of small, acidic proteins that contain a single noncovalently bound flavin mononucleotide (FMN) cofactor. These proteins function as low-potential one-electron transferases in bacteria. A distinguishing feature of these flavoproteins is the dramatic decrease in the midpoint potential of the semiquinone/hydroquinone couple of the FMN upon binding to the apoprotein (-172 mV for FMN free in solution versus -443 mV when bound), a perturbation thought to be essential for physiological function. The structural basis of this phenomenon is not yet thoroughly understood. In this study, the contribution of six acidic residues (Asp62, Asp63, Glu66, Asp95, Glu99, and Asp106) to the perturbation of the redox properties of the cofactor has been investigated. These residues are clustered about the FMN binding site within 13 A of the N(1) atom of the cofactor. Using oligonucleotide-directed mutagenesis, these residues were neutralized in various combinations through the substitution of asparagine for aspartate and glutamine for glutamate. Seventeen mutant flavodoxins were generated in which one to all six acidic residues were systematically neutralized, often in various spatial configurations. There was no obvious correlation between the midpoint potentials for the oxidized/semiquinone couple and general electrostatic environment, although some differences were noted. However, the midpoint potential for the semiquinone/hydroquinone couple for each of the mutants was less negative than that of the wild type. These increases are strongly correlated with the number of acid to amide substitutions, with an average contribution of about 15 mV per substitution. Collectively, the unfavorable electrostatic environment provided by these acidic residues accounts for approximately one-third of the large midpoint potential shift for the semiquinone/hydroquinone couple that typifies the flavodoxin family

  2. Feedback-amplified electrochemical dual-plate boron-doped diamond microtrench detector for flow injection analysis.

    PubMed

    Lewis, Grace E M; Gross, Andrew J; Kasprzyk-Hordern, Barbara; Lubben, Anneke T; Marken, Frank

    2015-08-01

    An electrochemical flow cell with a boron-doped diamond dual-plate microtrench electrode has been developed and demonstrated for hydroquinone flow injection electroanalysis in phosphate buffer pH 7. Using the electrochemical generator-collector feedback detector improves the sensitivity by one order of magnitude (when compared to a single working electrode detector). The diffusion process is switched from an analyte consuming "external" process to an analyte regenerating "internal" process with benefits in selectivity and sensitivity.

  3. Intensification of chemiluminescence in the inhibited oxidation of oils

    SciTech Connect

    Nikolayevskii, A.N.; Filippenko, T.A.; Sergovskaya, T.S.

    1982-01-01

    Chemiluminescence is intensified upon the addition of inhibitors (phloroglucinol, p-phenylenediamine, hydroquinone) to oxidized sunflower oil. The formation of a further source of chemiluminescence is explained by reactions of the oxidized oil and the inhibitors. Oxidation initiated by azoisobutyronitrile of sunflower oil using atmospheric oxygen was performed at 70/sup 0/C in chlorobenzene solution; 9,10-dibromoanthracene was the luminescence activator. 4 figures.

  4. [Analysis of the applicability of model systems to measuring the activity of lipid-soluble antioxidants by the electrochemiluminescent method].

    PubMed

    Lukin, Iu L

    1976-11-01

    A comparative study of two most common model systems (methanol-sodium citrate and chloroform-aceton-maleic acid (10(-3) M)) was carried out to measure lipid-soluble antioxidants by the method of electrochemiluminescence. alpha-naftole, pyrogalole, phenole, hydroquinone, acrylamide, cholesterine and alkohol lipid extract from rat liver were used as inhibitors. The analysis has shown that it is worthwhile to apply only the system chloroform-aceton-maleic acid as a model of electroluminescent studies.

  5. Quercinol, an anti-inflammatory chromene from the wood-rotting fungus Daedalea quercina (Oak Mazegill).

    PubMed

    Gebhardt, P; Dornberger, K; Gollmick, F A; Gräfe, U; Härtl, A; Görls, H; Schlegel, B; Hertweck, C

    2007-05-01

    The fungus Daedalea quercina (oak mazegill) was examined for its capability of producing antioxidative and anti-inflammatory compounds. Bioactivity guided fractionation of the extract from a mycelial culture led to the isolation of quercinol, which was identified as (-)-(2S)-2-hydroxymethyl-2-methyl-6-hydroxychromene 1 by NMR and X-ray analyses. The cryptic hydroquinone 1 shows a broad anti-inflammatory activity against cyclooxygenase 2 (COX-2), xanthine oxidase (XO), and horseradish peroxidase (HRP) at micromolar concentrations.

  6. Mechanistic considerations in benzene physiological model development

    SciTech Connect

    Medinsky, M.A.; Kenyon, E.M.; Seaton, M.J.; Schlosser, P.M.

    1996-12-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase 11 enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans. 39 refs., 4 figs., 2 tabs.

  7. Evolution of toxicity upon wet catalytic oxidation of phenol.

    PubMed

    Santos, A; Yustos, P; Quintanilla, A; García-Ochoa, F; Casas, J A; Rodríguez, J J

    2004-01-01

    This work reports on the evolution of the toxicity of phenol-containing simulated wastewater upon catalytic wet oxidation with a commercial copper-based catalyst (Engelhard Cu-0203T). The results of the study show that this catalyst enhances detoxification, in addition to its effect on the oxidation rate. The EC50 values of the intermediates identified throughout the oxidation route of phenol have been determined and used to predict the evolution of toxicity upon oxidation. The predicted values have been compared with the ones measured directly from the aqueous solution during the oxidation process. To learn about the evolution of toxicity through out the routes of phenol oxidation, experiments have been performed with simulated wastewaters containing separately phenol, catechol, and hydroquinone as original pollutants. The significant increase of toxicity observed during the early stages of phenol oxidation is not directly related to the development of the brown color that derives mainly from catechol oxidation. This increase of toxicity is caused by the formation of hydroquinone and p-benzoquinone as intermediates, the former showing the highest toxicity. Furthermore, synergistic effects, giving rise to a significant increase of toxicity, have been observed. These effects derive from the interactions among copper leached from the catalyst and catechol, hydroquinone, and p-benzoquinone and demand that close attention be paid to this potential problem in catalytic wet oxidation. PMID:14740728

  8. Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Niemelä, Janne-Petteri; Tynell, Tommi; Gaskins, John T.; Donovan, Brian F.; Karppinen, Maarit; Hopkins, Patrick E.

    2016-03-01

    Nanomaterial interfaces and concomitant thermal resistances are generally considered as atomic-scale planes that scatter the fundamental energy carriers. Given that the nanoscale structural and chemical properties of solid interfaces can strongly influence this thermal boundary conductance, the ballistic and diffusive nature of phonon transport along with the corresponding phonon wavelengths can affect how energy is scattered and transmitted across an interfacial region between two materials. In hybrid composites composed of atomic layer building blocks of inorganic and organic constituents, the varying interaction between the phononic spectrum in the inorganic crystals and vibronic modes in the molecular films can provide a new avenue to manipulate the energy exchange between the fundamental vibrational energy carriers across interfaces. Here, we systematically study the heat transfer mechanisms in hybrid superlattices of atomic- and molecular-layer-grown zinc oxide and hydroquinone with varying thicknesses of the inorganic and organic layers in the superlattices. We demonstrate ballistic energy transfer of phonons in the zinc oxide that is limited by scattering at the zinc oxide/hydroquinone interface for superlattices with a single monolayer of hydroquinone separating the thicker inorganic layers. The concomitant thermal boundary conductance across the zinc oxide interfacial region approaches the maximal thermal boundary conductance of a zinc oxide phonon flux, indicative of the contribution of long wavelength vibrations across the aromatic molecular monolayers in transmitting energy across the interface. This transmission of energy across the molecular interface decreases considerably as the thickness of the organic layers are increased.

  9. Melasma.

    PubMed

    Kauh, Y C; Zachian, T F

    1999-01-01

    Melasma is a common disorder of macular hyperpigmentation which involves mostly in sun exposed areas of the face and neck. Those most affected are women. Multiple factors have been postulated to involve in the etiology and pathogenesis of melasma including pregnancy, oral contraceptives, genetics, sun exposure, cosmetics and race. We have conducted a clinical trial utilizing all trans-retinoic acid (tretinoin, Retin-A) cream 0.1% q pm and hydroquinone lotion 3% (Melanex) applied every morning in Korean women with melasma. Our study patients demonstrated all three clinical patterns common to melasma: centrofacial, malar and mandibular. Wood's light examination was performed on all patients and identified two of the four types of melasma described. Most patients showed epidermal melasma and a few manifested a mixed type. No patients exhibited solely dermal or inapparent type in melasma. With open studies of tretinoin cream and hydroquinone lotion followed by sun screen, we have found significant improvement within 5 months with a few side effects. Histopathologic examination of melasma in the pre-trial biopsies revealed increased pigmentation of the epidermis, dermis or both. In addition, significant alterations of the dermis with solar damage was noted in all melasma patients sampled. Biopsies taken after five months of treatment revealed significant decreases in epidermal pigmentation and improvement of solar damage in the dermis. We reconfirmed that a synergistic mechanism between tretinoin and hydroquinone is responsible for the improvement seen in the female Korean melasma patients from our study.

  10. Novel skin brightener used as monotherapy for moderate melasma in skin of color.

    PubMed

    Grimes, Pearl E

    2014-03-01

    Melasma is a chronic, relapsing disorder that can be disfiguring and can have adverse effects on quality of life. Recently, a unique hydroquinone-free topical product addressing multiple pathways involved in pigmentation was shown to have similar efficacy and equally well tolerated as 4% hydroquinone in females with facial hyperpigmentation. The goal herein was to further assess the efficacy and tolerability of this new multimodality product for the control of moderate melasma in skin of color. Six female subjects with Fitzpatrick skin types IV-V in good general health between the ages of 46 and 63 years with moderate epidermal facial melasma are presented herein. Subjects applied the skin brightener twice daily, morning and evening, and returned to the clinic at weeks 4, 8, and 12. By week 12, Investigator Overall Hyperpigmentation scores and MASI scores improved by an average of 22% and 38% from baseline, respectively. Additionally, 100% of subjects showed at least a 25% increase in Global Improvement at week 12. The skin brightener was well tolerated with no reports of erythema, edema, scaling, burning/stinging, or itching. Results from these case studies suggest that this multimodality skin brightener may provide an alternative treatment to hydroquinone for moderate melasma in skin of color. However additional clinical studies would be needed.

  11. Males of Hylamorpha elegans burmeister (Coleoptera: Scarabaeidae) are attracted to odors released from conspecific females.

    PubMed

    Quiroz, Andrés; Palma, Ruben; Etcheverría, Paulina; Navarro, Vicente; Rebolledo, Ramón

    2007-04-01

    The behavioral responses of Hylamorpha elegans L. (Coleoptera: Scarabaeidae, Rutelinae) to the semiochemicals released from conspecific individual adults were studied, with particular attention paid to female attraction of males. Odors released from virgin females significantly attracted male conspecifics in both the field and laboratory olfactometer and wind tunnel bioassays. However, females did not attract other females, and males attracted no one. The response of male H. elegans to (1) compounds (1,4-hydroquinone and 1,4-benzoquinone) released only by unmated females; (2) the essential oil of the secondary host (Nothofagus obliqua); and (3) the blend of 1,4-hydroquinone and 1,4-benzoquinone with N. obliqua essential oil was studied. The blend of 1,4-benzoquinone mixed with essential oil at the trial concentration was attractive with males. The same response was found with 1,4-hydroquinone alone. The essential oil did not have the expected attractant effect on conspecific males. These results suggest that, when combined with essential oil, 1,4-benzoquinone may function in the sexual behavior of males and females. These findings are discussed in terms of the ecological role of this putative sexual pheromone and its potential use in a strategy of control of this pest.

  12. Pulse electroanalysis at gold-gold micro-trench electrodes: chemical signal filtering.

    PubMed

    Dale, Sara E C; Marken, Frank

    2013-01-01

    Bipotentiostatic control of micro- and nano-trench sensor systems provides new opportunities for enhancing signals (employing feedback currents) and for improved selectivity (by "chemical filtering"). In this study both phenomena are exploited with a gold-gold micro-trench electrode with ca. 70 microm width and ca. 800 microm trench depth. In "generator-collector mode", feedback current enhancement is demonstrated for the hydroquinone/ benzoquinone redox system. Next, a "modulator-sensor mode" experiment is developed in which one electrode potential is stepped into the negative potential region (employing the normal pulse voltammetry method) to induce an oscillating pH change locally in the micro-trench. The resulting shift in the hydroquinone/benzoquinone reversible potential causes a Faradaic sensor signal (employing chronoamperometry). This method provides a "chemical filter" by selecting pH-sensitive redox processes only, and by showing enhanced sensitivity in the region of low buffer capacity. The results for the chemically reversible hydroquinone/benzoquinone system are contrasted to the detection of the chemically irreversible ammonia oxidation.

  13. Dynamic determination of the functional state in photolyase and the implication for cryptochrome.

    PubMed

    Liu, Zheyun; Zhang, Meng; Guo, Xunmin; Tan, Chuang; Li, Jiang; Wang, Lijuan; Sancar, Aziz; Zhong, Dongping

    2013-08-01

    The flavin adenine dinucleotide cofactor has an unusual bent configuration in photolyase and cryptochrome, and such a folded structure may have a functional role in initial photochemistry. Using femtosecond spectroscopy, we report here our systematic characterization of cyclic intramolecular electron transfer (ET) dynamics between the flavin and adenine moieties of flavin adenine dinucleotide in four redox forms of the oxidized, neutral, and anionic semiquinone, and anionic hydroquinone states. By comparing wild-type and mutant enzymes, we have determined that the excited neutral oxidized and semiquinone states absorb an electron from the adenine moiety in 19 and 135 ps, whereas the excited anionic semiquinone and hydroquinone states donate an electron to the adenine moiety in 12 ps and 2 ns, respectively. All back ET dynamics occur ultrafast within 100 ps. These four ET dynamics dictate that only the anionic hydroquinone flavin can be the functional state in photolyase due to the slower ET dynamics (2 ns) with the adenine moiety and a faster ET dynamics (250 ps) with the substrate, whereas the intervening adenine moiety mediates electron tunneling for repair of damaged DNA. Assuming ET as the universal mechanism for photolyase and cryptochrome, these results imply anionic flavin as the more attractive form of the cofactor in the active state in cryptochrome to induce charge relocation to cause an electrostatic variation in the active site and then lead to a local conformation change to initiate signaling.

  14. [Properties of sucrose phosphorylase from recombinant Escherichia coli and enzymatic synthesis of alpha-arbutin].

    PubMed

    Wan, Yuejia; Ma, Jiangfeng; Xu, Rong; He, Aiyong; Jiang, Min; Chen, Kequan; Jiang, Yin

    2012-12-01

    Sucrose phosphorylase (EC 2.4.1.7, Sucrose phosphorylase, SPase) can be produced by recombinant strain Escherichia coli Rosetta(DE3)/Pet-SPase. Crude enzyme was obtained from the cells by the high pressure disruption and centrifugation. Sucrose phosphorylase was purified by Ni-NTA affinity column chromatography and desalted by ultrafiltration. The specific enzyme activity was 1.1-fold higher than that of the crude enzyme, and recovery rate was 82.7%. The purified recombinant SPase had a band of 59 kDa on SDS-PAGE. Thermostability of the enzyme was shown at temperatures up to 37 degrees C, and pH stability between pH 6.0 and 6.7. The optimum temperature and pH were 37 degrees C and 6.7, respectively. The K(m) of SPase for sucrose was 7.3 mmol/L, and Vmax was 0.2 micromol/(min x mg). Besides, alpha-arbutin was synthesized from sucrose and hydroquinone by transglucosylation with recombinant SPase. The optimal conditions for synthesis of alpha-arbutin were 200 U/mL of recombinant SPase, 20% of sucrose, and 1.6% hydroquinone at pH 6-6.5 and 25 degrees C for 21 h. Under these conditions, alpha-arbutin was obtained with a 78.3% molar yield with respect to hydroquinone, and the concentration of alpha-arbutin was about 31 g/L.

  15. Phenol decomposition by pulsed-plasma exposure in oxygen and argon atmosphere

    NASA Astrophysics Data System (ADS)

    Satoh, Kohki; Shiota, Haruki; Itabashi, Hideyuki; Itoh, Hidenori

    2011-10-01

    Phenol in an aqueous solution is decomposed by the exposure of pulsed-discharge plasma, and by-products are investigated by gas chromatograph mass spectrometry. When Ar is used as a background gas, catechol, hydroquinone and 4-hydroxy-2-cyclohexene-1-on are produced, and no O3 is produced; therefore, OH radicals generated in the plasma can initiate the decomposition of phenol, and 4-hydroxy-2-cyclohexene-1-on can be produced. Further, 4-hydroxy-2-cyclohexene-1-on can be converted into catechol and hydroquinone. When O2 is used as a background gas, catechol, hydroquinone, formic acid, maleic acid, succinic acid and 4,6-dihydroxy-2,4-hexadienoic acid are produced. Therefore, phenol is probably decomposed into 4,6-dihydroxy-2,4-hexadienoic acid by 1,3-dipolar addition reaction with O3, and 4,6-dihydroxy-2,4-hexadienoic acid can be decomposed into maleic acid and succinic acid by 1,3-dipolar addition reaction with O3. Oxalic acid is possibly another by-product from 4,6-dihydroxy-2,4-hexadienoic acid, since formic acid, which is produced from oxalic acid, is detected.

  16. Tubular metal-organic framework-based capillary gas chromatography column for separation of alkanes and aromatic positional isomers.

    PubMed

    Fang, Zhi-Li; Zheng, Sheng-Run; Tan, Jing-Bo; Cai, Song-Liang; Fan, Jun; Yan, Xia; Zhang, Wei-Guang

    2013-04-12

    In this work, a tubular metal-organic framework, MOF-CJ3, with a large one-dimensional channel was chosen as stationary phase to prepare a capillary gas chromatographic column via a verified dynamic coating procedure. The column offered good separations of linear and branched alkanes, as well as aromatic positional isomers (ethylbenzene, xylene, cresol, hydroquinone, dichlorobenzene, bromobenzonitrile, chloronitrobenzene, and nitrotoluene) based on a combination of host-guest interactions and adsorption effects. Elution sequence of most of the analytes followed an increasing order of their boiling points, except for the separation of n-heptanes/isooctane, cresol, and hydroquinone isomers. Separation behavior of the column upon different organic substances may be related to the tubular pore structure of MOF-CJ3, in which the van der Waals forces between the alkanes and the hydrophobic inner surfaces might have great effect on separation of n-heptanes and isooctane, whereas the separation of cresol and hydroquinone isomers were affected by (OH⋯O) hydrogen bonds formed between the analytes and the 1,3,5-benzenetricarboxylate ligands on the pore wall. The effects of temperature on separation of aromatic positional isomers were investigated to elucidate entropy and enthalpy controlling of the separation process. PMID:23473507

  17. Glycosylation of phenolic compounds by the site-mutated β-galactosidase from Lactobacillus bulgaricus L3.

    PubMed

    Lu, Lili; Xu, Lijuan; Guo, Yuchuan; Zhang, Dayu; Qi, Tingting; Jin, Lan; Gu, Guofeng; Xu, Li; Xiao, Min

    2015-01-01

    β-Galactosidases can transfer the galactosyl from lactose or galactoside donors to various acceptors and thus are especially useful for the synthesis of important glycosides. However, these enzymes have limitations in the glycosylation of phenolic compounds that have many physiological functions. In this work, the β-galactosidase from Lactobacillus bulgaricus L3 was subjected to site-saturation mutagenesis at the W980 residue. The recombinant pET-21b plasmid carrying the enzyme gene was used as the template for mutation. The mutant plasmids were transformed into Escherichia coli cells for screening. One recombinant mutant, W980F, exhibited increased yield of glycoside when using hydroquinone as the screening acceptor. The enzyme was purified and the effects of the mutation on enzyme properties were determined in detail. It showed improved transglycosylation activity on novel phenolic acceptors besides hydroquinone. The yields of the glycosides produced from phenol, hydroquinone, and catechol were increased by 7.6% to 53.1%. Moreover, it generated 32.3% glycosides from the pyrogallol that could not be glycosylated by the wild-type enzyme. Chemical structures of these glycoside products were further determined by MS and NMR analysis. Thus, a series of novel phenolic galactosides were achieved by β-galactosidase for the first time. This was a breakthrough in the enzymatic galactosylation of the challenging phenolic compounds of great values.

  18. In utero and in vitro effects of benzene and its metabolites on erythroid differentiation and the role of reactive oxygen species

    SciTech Connect

    Badham, Helen J.; Winn, Louise M.

    2010-05-01

    Benzene is a ubiquitous occupational and environmental toxicant. Exposures to benzene both prenatally and during adulthood are associated with the development of disorders such as aplastic anemia and leukemia. Mechanisms of benzene toxicity are unknown; however, generation of reactive oxygen species (ROS) by benzene metabolites may play a role. Little is known regarding the effects of benzene metabolites on erythropoiesis. Therefore, to determine the effects of in utero exposure to benzene on the growth and differentiation of fetal erythroid progenitor cells (CFU-E), pregnant CD-1 mice were exposed to benzene and CFU-E numbers were assessed in fetal liver (hematopoietic) tissue. In addition, to determine the effect of benzene metabolite-induced ROS generation on erythropoiesis, HD3 chicken erythroblast cells were exposed to benzene, phenol, or hydroquinone followed by stimulation of erythrocyte differentiation. Our results show that in utero exposure to benzene caused significant alterations in female offspring CFU-E numbers. In addition, exposure to hydroquinone, but not benzene or phenol, significantly reduced the percentage of differentiated HD3 cells, which was associated with an increase in ROS. Pretreatment of HD3 cells with polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) prevented hydroquinone-induced inhibition of erythropoiesis, supporting the hypothesis that ROS generation is involved in the development of benzene erythrotoxicity. In conclusion, this study provided evidence that ROS generated as a result of benzene metabolism may significantly alter erythroid differentiation, potentially leading to the development of Blood Disorders.

  19. Glycosylation of Phenolic Compounds by the Site-Mutated β-Galactosidase from Lactobacillus bulgaricus L3

    PubMed Central

    Lu, Lili; Xu, Lijuan; Guo, Yuchuan; Zhang, Dayu; Qi, Tingting; Jin, Lan; Gu, Guofeng; Xu, Li; Xiao, Min

    2015-01-01

    β-Galactosidases can transfer the galactosyl from lactose or galactoside donors to various acceptors and thus are especially useful for the synthesis of important glycosides. However, these enzymes have limitations in the glycosylation of phenolic compounds that have many physiological functions. In this work, the β-galactosidase from Lactobacillus bulgaricus L3 was subjected to site-saturation mutagenesis at the W980 residue. The recombinant pET-21b plasmid carrying the enzyme gene was used as the template for mutation. The mutant plasmids were transformed into Escherichia coli cells for screening. One recombinant mutant, W980F, exhibited increased yield of glycoside when using hydroquinone as the screening acceptor. The enzyme was purified and the effects of the mutation on enzyme properties were determined in detail. It showed improved transglycosylation activity on novel phenolic acceptors besides hydroquinone. The yields of the glycosides produced from phenol, hydroquinone, and catechol were increased by 7.6% to 53.1%. Moreover, it generated 32.3% glycosides from the pyrogallol that could not be glycosylated by the wild-type enzyme. Chemical structures of these glycoside products were further determined by MS and NMR analysis. Thus, a series of novel phenolic galactosides were achieved by β-galactosidase for the first time. This was a breakthrough in the enzymatic galactosylation of the challenging phenolic compounds of great values. PMID:25803778

  20. Tubular metal-organic framework-based capillary gas chromatography column for separation of alkanes and aromatic positional isomers.

    PubMed

    Fang, Zhi-Li; Zheng, Sheng-Run; Tan, Jing-Bo; Cai, Song-Liang; Fan, Jun; Yan, Xia; Zhang, Wei-Guang

    2013-04-12

    In this work, a tubular metal-organic framework, MOF-CJ3, with a large one-dimensional channel was chosen as stationary phase to prepare a capillary gas chromatographic column via a verified dynamic coating procedure. The column offered good separations of linear and branched alkanes, as well as aromatic positional isomers (ethylbenzene, xylene, cresol, hydroquinone, dichlorobenzene, bromobenzonitrile, chloronitrobenzene, and nitrotoluene) based on a combination of host-guest interactions and adsorption effects. Elution sequence of most of the analytes followed an increasing order of their boiling points, except for the separation of n-heptanes/isooctane, cresol, and hydroquinone isomers. Separation behavior of the column upon different organic substances may be related to the tubular pore structure of MOF-CJ3, in which the van der Waals forces between the alkanes and the hydrophobic inner surfaces might have great effect on separation of n-heptanes and isooctane, whereas the separation of cresol and hydroquinone isomers were affected by (OH⋯O) hydrogen bonds formed between the analytes and the 1,3,5-benzenetricarboxylate ligands on the pore wall. The effects of temperature on separation of aromatic positional isomers were investigated to elucidate entropy and enthalpy controlling of the separation process.

  1. Analysis of target cell susceptibility as a basis for the development of a chemoprotective strategy against benzene-induced hematotoxicities.

    PubMed Central

    Trush, M A; Twerdok, L E; Rembish, S J; Zhu, H; Li, Y

    1996-01-01

    A goal of our research is to identify biochemical factors that underlie the susceptibility of bone marrow cell populations to benzene metabolites so as to develop a mechanistically based chemoprotective strategy that may be used in susceptible humans exposed to benzene. By doing biochemical risk analysis of bone marrow stromal cells from mice and rats and the human myeloid cell lines, HL-60 and ML-1; and by using buthionine sulfoximine and dicumarol we have observed that the susceptibility of these cell populations to hydroquinone (HQ) correlates with their concentration of glutathione (GSH) and activity of quinone reductase (QR). Accordingly, the induction of QR and GSH by 1,2-dithiole-3-thione (D3T) in these cell populations has resulted in a significant protection against the following hydroquinone-mediated toxicities: inhibition of cell proliferation and viability; reduced ability of stromal cells to support myelopoiesis; and altered differentiated of ML-1 cells to monocytes/macrophages. Preliminary in vivo experiments indicate that feeding mice D3T results in an induction of QR in the bone marrow compartment such that stromal cells are more resistant to hydroquinone-induced cytotoxicity in vitro. Overall, these studies suggest that in addition to hepatic cytochrome P4502E1, bone marrow QR and GSH are factors that could determine an individual's relative susceptibility to the toxic effects of benzene. PMID:9118897

  2. Reactive Secondary Sequence Oxidative Pathology Polymer Model and Antioxidant Tests

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Aims To provide common Organic Chemistry/Polymer Science thermoset free-radical crosslinking Sciences for Medical understanding and also present research findings for several common vitamins/antioxidants with a new class of drugs known as free-radical inhibitors. Study Design Peroxide/Fenton transition-metal redox couples that generate free radicals were combined with unsaturated lipid oils to demonstrate thermoset-polymer chain growth by crosslinking with the α-β-unsaturated aldehyde acrolein into rubbery/adhesive solids. Further, Vitamin A and beta carotene were similarly studied for crosslink pathological potential. Also, free-radical inhibitor hydroquinone was compared for antioxidant capability with Vitamin E. Place and Duration of Study Department of Materials Science and Engineering and Department of Biomaterials, University of Alabama at Birmingham, between June 2005 and August 2012. Methodology Observations were recorded for Fenton free-radical crosslinking of unsaturated lipids and vitamin A/beta carotene by photography further with weight measurements and percent-shrinkage testing directly related to covalent crosslinking of unsaturated lipids recorded over time with different concentrations of acrolein. Also, hydroquinone and vitamin E were compared at concentrations from 0.0–7.3wt% as antioxidants for reductions in percent-shrinkage measurements, n = 5. Results Unsaturated lipid oils responded to Fenton thermoset-polymer reactive secondary sequence reactions only by acrolein with crosslinking into rubbery-type solids and different non-solid gluey products. Further, molecular oxygen crosslinking was demonstrated with lipid peroxidation and acrolein at specially identified margins. By peroxide/Fenton free-radical testing, both vitamin A and beta-carotene demonstrated possible pathology chemistry for chain-growth crosslinking. During lipid/acrolein testing over a 50 hour time period at 7.3wt% antioxidants, hydroquinone significantly reduced percent

  3. Nitrogen-rich higher-molecular soil organic compounds patterned by lignin degradation products: Considerations on the nature of soil organic nitrogen

    NASA Astrophysics Data System (ADS)

    Liebner, Falk; Bertoli, Luca; Pour, Georg; Klinger, Karl; Ragab, Tamer; Rosenau, Thomas

    2016-04-01

    The pathways leading to accumulation of covalently bonded nitrogen in higher-molecular soil organic matter (SOM) are still a controversial issue in soil science and geochemistry. Similarly, structural elucidation of the variety of the types of nitrogenous moieties present in SOM is still in its infancy even though recent NMR studies suggest amide-type nitrogen to form the majority of organically bonded nitrogen which is, however, frequently not in accordance with the results of wet-chemical analyses. Following the modified polyphenol theory of Flaig and Kononova but fully aware of the imperfection of a semi-abiotic simulation approach, this work communicates the results of a study that investigated some potential nitrogen accumulation pathways occurring in the re-condensation branch of the theory following the reactions between well-known low-molecular lignin and carbohydrate degradation products with nitrogenous nucleophiles occurring in soils under aerobic conditions. Different low-molecular degradation products of lignin, cellulose, and hemicellulose, such as hydroquinone, methoxyhydroquinone, p-benzoquinone, 2,5-dihydroxy-[1,4]benzoquinone, glucose, xylose, and the respective polysaccharides, i.e. cellulose, xylan as well as various types of lignin were subjected to a joint treatment with oxygen and low-molecular N-nucleophiles, such as ammonia, amines, and amino acids in aqueous conditions, partly using respective 15N labeled compounds for further 15N CPMAS NMR studies. Product mixtures derived from mono- and polysaccharides have been comprehensively fractionated and analyzed by GC/MS after derivatization. Some of ammoxidized polyphenols and quinones have been analyzed by X-ray photoelectron spectroscopy. Some products, such as those obtained from ammoxidation of methoxy hydroquinone using 15N labeled ammonia were fractionated following the IHSS protocol. Individual humin (H), humic acid (HA), and fulvic acid (FA) fractions were subjected to elemental analyses

  4. Mineralization of paracetamol in aqueous solution with advanced oxidation processes.

    PubMed

    Torun, Murat; Gültekin, Özge; Şolpan, Dilek; Güven, Olgun

    2015-01-01

    Paracetamol is a common analgesic drug widely used in all regions of the world more than hundred tonnes per year and it poses a great problem for the aquatic environment. Its phenolic intermediates are classified as persistent organic pollutants and toxic for the environment as well as human beings. In the present study, the irradiation of aqueous solutions of paracetamol with 60Co gamma-rays was examined on a laboratory scale and its degradation path was suggested with detected radiolysis products. The synergic effect of ozone on gamma-irradiation was investigated by preliminary ozonation before irradiation which reduced the irradiation dose from 5 to 3 kGy to completely remove paracetamol and its toxic intermediate hydroquinone from 6 to 4 kGy as well as increasing the radiation chemical yield (Gi values 1.36 and 1.66 in the absence and presence of ozone, respectively). The observed amount of formed hydroquinone was also decreased in the presence of ozone. There is a decrease in pH from 6.4 to 5.2 and dissolved oxygen consumed, which is up to 0.8 mg l(-1), to form some peroxyl radicals used for oxidation. Analytical measurements were carried out with gas chromatography/mass spectrometry and ion chromatography (IC) both qualitatively and quantitatively. Amounts of paracetamol and hydroquinone were measured with gas chromatography after trimethylsilane derivatization. Small aliphatic acids, such as acetic acid, formic acid and oxalic acid, were measured quantitatively with IC as well as inorganic ions (nitrite and nitrate) in which their yields increase with irradiation.

  5. Mineralization of paracetamol in aqueous solution with advanced oxidation processes.

    PubMed

    Torun, Murat; Gültekin, Özge; Şolpan, Dilek; Güven, Olgun

    2015-01-01

    Paracetamol is a common analgesic drug widely used in all regions of the world more than hundred tonnes per year and it poses a great problem for the aquatic environment. Its phenolic intermediates are classified as persistent organic pollutants and toxic for the environment as well as human beings. In the present study, the irradiation of aqueous solutions of paracetamol with 60Co gamma-rays was examined on a laboratory scale and its degradation path was suggested with detected radiolysis products. The synergic effect of ozone on gamma-irradiation was investigated by preliminary ozonation before irradiation which reduced the irradiation dose from 5 to 3 kGy to completely remove paracetamol and its toxic intermediate hydroquinone from 6 to 4 kGy as well as increasing the radiation chemical yield (Gi values 1.36 and 1.66 in the absence and presence of ozone, respectively). The observed amount of formed hydroquinone was also decreased in the presence of ozone. There is a decrease in pH from 6.4 to 5.2 and dissolved oxygen consumed, which is up to 0.8 mg l(-1), to form some peroxyl radicals used for oxidation. Analytical measurements were carried out with gas chromatography/mass spectrometry and ion chromatography (IC) both qualitatively and quantitatively. Amounts of paracetamol and hydroquinone were measured with gas chromatography after trimethylsilane derivatization. Small aliphatic acids, such as acetic acid, formic acid and oxalic acid, were measured quantitatively with IC as well as inorganic ions (nitrite and nitrate) in which their yields increase with irradiation. PMID:25263253

  6. Inhibitory effect of benzene metabolites on nuclear DNA synthesis in bone marrow cells

    SciTech Connect

    Lee, E.W.; Johnson, J.T.; Garner, C.D. )

    1989-01-01

    Effects of endogenously produced and exogenously added benzene metabolites on the nuclear DNA synthetic activity were investigated using a culture system of mouse bone marrow cells. Effects of the metabolites were evaluated by a 30-min incorporation of ({sup 3}H)thymidine into DNA following a 30-min interaction with the cells in McCoy's 5a medium with 10% fetal calf serum. Phenol and muconic acid did not inhibit nuclear DNA synthesis. However, catechol, 1,2,4-benzenetriol, hydroquinone, and p-benzoquinone were able to inhibit 52, 64, 79, and 98% of the nuclear DNA synthetic activity, respectively, at 24 {mu}M. In a cell-free DNA synthetic system, catechol and hydroquinone did not inhibit the incorporation of ({sup 3}H)thymidine triphosphate into DNA up to 24 {mu}M but 1,2,4-benzenetriol and p-benzoquinone did. The effect of the latter two benzene metabolites was completely blocked in the presence of 1,4-dithiothreitol (1 mM) in the cell-free assay system. Furthermore, when DNA polymerase {alpha}, which requires a sulfhydryl (SH) group as an active site, was replaced by DNA polymerase 1, which does not require an SH group for its catalytic activity, p-benzoquinone and 1,2,4-benzenetriol were unable to inhibit DNA synthesis. Thus, the data imply the p-benzoquinone and 1,2,4-benzenetriol inhibited DNA polymerase {alpha}, consequently resulting in inhibition of DNA synthesis in both cellular and cell-free DNA synthetic systems. The present study identifies catechol, hydroquinone, p-benzoquinone, and 1,2,4-benzenetriol as toxic benzene metabolites in bone marrow cells and also suggests that their inhibitory action on DNA synthesis is mediated by mechanism(s) other than that involving DNA damage as a primary cause.

  7. Four cocrystals of thymine with phenolic coformers: influence of the coformer on hydrogen bonding.

    PubMed

    Sridhar, Balasubramanian; Nanubolu, Jagadeesh Babu; Ravikumar, Krishnan

    2015-07-01

    Cocrystals are molecular solids composed of at least two types of neutral chemical species held together by noncovalent forces. Crystallization of thymine [systematic name: 5-methylpyrimidine-2,4(1H,3H)-dione] with four phenolic coformers resulted in cocrystal formation, viz. catechol (benzene-1,2-diol) giving thymine-catechol (1/1), C5H6N2O2·C6H6O2, (I), resorcinol (benzene-1,3-diol) giving thymine-resorcinol (2/1), 2C5H6N2O2·C6H6O2, (II), hydroquinone (benzene-1,4-diol) giving thymine-hydroquinone (2/1), 2C5H6N2O2·C6H6O2, (III), and pyrogallol (benzene-1,2,3-triol) giving thymine-pyrogallol (1/2), C5H6N2O2·2C6H6O3, (IV). The resorcinol molecule in (II) occupies a twofold axis, while the hydroquinone molecule in (III) is situated on a centre of inversion. Thymine-thymine base pairing is common across all four structures, albeit with different patterns. In (I)-(III), the base pair is propagated into an infinite one-dimensional ribbon, whereas it exists as a discrete dimeric unit in (IV). In (I)-(III), the two donor N atoms and one carbonyl acceptor O atom of thymine are involved in thymine-thymine base pairing and the remaining carbonyl O atom is hydrogen bonded to the coformer. In contrast, in (IV), just one donor N atom and one acceptor O atom are involved in base pairing, and the remaining donor N atom and acceptor O atom of thymine form hydrogen bonds to the coformer molecules. Thus, the utilization of the donor and acceptor atoms of thymine in the hydrogen bonding is influenced by the coformers. PMID:26146400

  8. Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium.

    PubMed Central

    Valli, K; Brock, B J; Joshi, D K; Gold, M H

    1992-01-01

    Under ligninolytic conditions, the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene (I). The pathway for the degradation of I was elucidated by the characterization of fungal metabolites and oxidation products generated by lignin peroxidase (LiP), manganese peroxidase (MnP), and crude intracellular cell extracts. The multistep pathway involves the initial reduction of I to yield 2-amino-4-nitrotoluene (II). II is oxidized by MnP to yield 4-nitro-1,2-benzoquinone (XII) and methanol. XII is then reduced to 4-nitro-1,2-hydroquinone (V), and the latter is methylated to 1,2-dimethoxy-4-nitrobenzene (X). 4-Nitro-1,2-hydroquinone (V) is also oxidized by MnP to yield nitrite and 2-hydroxybenzoquinone, which is reduced to form 1,2,4-trihydroxybenzene (VII). 1,2-Dimethoxy-4-nitrobenzene (X) is oxidized by LiP to yield nitrite, methanol, and 2-methoxy-1,4-benzoquinone (VI), which is reduced to form 2-methoxy-1,4-hydroquinone (IX). The latter is oxidized by LiP and MnP to 4-hydroxy-1,2-benzoquinone, which is reduced to 1,2,4-trihydroxybenzene (VII). The key intermediate 1,2,4-trihydroxybenzene is ring cleaved by intracellular cell extracts to produce, after reduction, beta-ketoadipic acid. In this pathway, initial reduction of a nitroaromatic group generates the peroxidase substrate II. Oxidation of II releases methanol and generates 4-nitro-1,2-benzoquinone (XII), which is recycled by reduction and methylation reactions to regenerate intermediates which are in turn substrates for peroxidase-catalyzed oxidation leading to removal of the second nitro group. Thus, this unique pathway apparently results in the removal of both aromatic nitro groups before ring cleavage takes place. PMID:1539977

  9. Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium.

    PubMed Central

    Valli, K; Gold, M H

    1991-01-01

    Under secondary metabolic conditions the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dichlorophenol (I). The pathway for the degradation of 2,4-dichlorophenol (I) was elucidated by the characterization of fungal metabolites and of oxidation products generated by purified lignin peroxidase and manganese peroxidase. The multistep pathway involves the oxidative dechlorination of 2,4-dichlorophenol (I) to yield 1,2,4,5-tetrahydroxybenzene (VIII). The intermediate 1,2,4,5-tetrahydroxybenzene (VIII) is ring cleaved to produce, after subsequent oxidation, malonic acid. In the first step of the pathway, 2,4-dichlorophenol (I) is oxidized to 2-chloro-1,4-benzoquinone (II) by either manganese peroxidase or lignin peroxidase. 2-Chloro-1,4-benzoquinone (II) is then reduced to 2-chloro-1,4-hydroquinone (III), and the latter is methylated to form the lignin peroxidase substrate 2-chloro-1,4-dimethoxybenzene (IV). 2-Chloro-1,4-dimethoxybenzene (IV) is oxidized by lignin peroxidase to generate 2,5-dimethoxy-1,4-benzoquinone (V), which is reduced to 2,5-dimethoxy-1,4-hydroquinone (VI). 2,5-Dimethoxy-1,4-hydroquinone (VI) is oxidized by either peroxidase to generate 2,5-dihydroxy-1,4-benzoquinone (VII) which is reduced to form the tetrahydroxy intermediate 1,2,4,5-tetrahydroxybenzene (VIII). In this pathway, the substrate is oxidatively dechlorinated by lignin peroxidase or manganese peroxidase in a reaction which produces a p-quinone. The p-quinone intermediate is then recycled by reduction and methylation reactions to regenerate an intermediate which is again a substrate for peroxidase-catalyzed oxidative dechlorination. This unique pathway apparently results in the removal of both chlorine atoms before ring cleavage occurs. PMID:1987125

  10. Oxidative Conversion Mediates Antiproliferative Effects of tert-Butylhydroquinone: Structure and Activity Relationship Study.

    PubMed

    Sanidad, Katherine Z; Sukamtoh, Elvira; Wang, Weicang; Du, Zheyuan; Florio, Ellie; He, Lili; Xiao, Hang; Decker, Eric A; Zhang, Guodong

    2016-05-18

    Previous studies have shown that tert-butylhydroquinone (TBHQ), a widely used food antioxidant, has cytotoxic effects at high doses; however, the underlying mechanisms are not well understood. Here, we found that the effects of TBHQ on cell proliferation, cell cycle progression, and apoptosis are mainly mediated by its oxidative conversion to a quinone metabolite tert-butylquinone (TBQ). Co-addition of cupric ion (Cu(2+)) caused accelerated oxidative conversion of TBHQ to TBQ and enhanced the biological activities of TBHQ on cell proliferation, cell cycle progression, and apoptosis in MC38 colon cancer cells. In contrast, co-addition of ethylenediaminetetraacetic acid (EDTA) suppressed TBHQ oxidation and inhibited the biological activities of TBHQ in MC38 cells. For example, after 24 h of treatment in basal medium, low-dose TBHQ (1.88-7.5 μM) had little effect on MC38 cell proliferation, while co-addition of 50 μM Cu(2+) caused 30-70% inhibition of cell proliferation; in contrast, treatment with high-dose TBHQ (15 μM) inhibited 50 ± 4% MC38 proliferation, which was abolished by co-addition of 50 μM EDTA. We further showed that TBQ had more potent actions on cell proliferation and associated cellular responses than TBHQ, supporting a critical role of TBQ formation in the biological activities of TBHQ. Finally, a structure and activity relationship study showed that the fast-oxidized para-hydroquinones had potent antiproliferative effects in MC38 cells, while the slow-oxidized para-hydroquinones had weak or little biological activities. Together, these results suggest that the biological activities of TBHQ and other para-hydroquinones are mainly mediated by their oxidative metabolism to generate more biologically active quinone metabolites.

  11. Bioactivation of myelotoxic xenobiotics by human neutrophil myeloperoxidase

    SciTech Connect

    Roy, R.R.

    1989-01-01

    Many environmental pollutants and drugs are toxic to the bone marrow. Some of these xenobiotics may initiate toxicity after undergoing bioactivation to free radicals and/or other reactive electrophiles. Peroxidases are a group of enzymes that catalyze the one-electron oxidative bioactivation of a variety of xenobiotics in vitro. Myeloperoxidase (MPO) is a peroxidative enzyme found in very high concentration in the neutrophils of human bone marrow. In this study, human MPO was evaluated to determine its ability to catalyze the in vitro bioactivation of known bone marrow toxicants that contain the aromatic hydroxyl (Ar-OH), aromatic amine (Ar-N-R{sub 2}), or heterocyclic tertiary amine ({double bond}N-R) moieties. The formation of free radical metabolites during the MPO-catalyzed bioactivation of hydroquinone and catechol (benzene metabolites), mitoxantrone and ametantrone (antitumor drugs), and chlorpromazine and promazine (antipsychotic drugs) was demonstrated by EPR spectroscopy. The reactivity of the products formed during the MPO catalyzed bioactivation of ({sup 14}C)hydroquinone and ({sup 14}C)catechol was shown by their covalent binding to protein and DNA in vitro. The covalently binding metabolite in each case is postulated to be the quinone form of the xenobiotic. In addition, both GSH and NADH were oxidized by the reactive intermediate(s) formed during the MPO-catalyzed bioactivation of many of the bone marrow toxicants tested. It was also shown that p,p-biphenol stimulated the MPO catalyzed bioactivation of both hydroquinone and catechol, while p-cresol stimulated the MPO-catalyzed bioactivation of catechol.

  12. Enhanced phenol bioavailability by means of photocatalysis.

    PubMed

    Wang, Jiewei; Zhang, Yongming; Yan, Ning; Chen, Jiwei; Rittmann, Bruce E

    2013-09-01

    Phenol was investigated for the ability of TiO2 photocatalysis to increase its bioavailability as an electron donor for denitrification. The rate of nitrate removal by denitrification was increased by up to 2.6-fold by exposing phenol to photocatalysis for 30 min, although the rate decreased with increasing photocatalysis. The increased denitrification rate appeared to be associated with the photocatalytic production of carboxylic acids, but the slow down correlated to the production of catechol and hydroquinone. PMID:23229742

  13. Methanol and ethanol conversion into hydrocarbons over H-ZSM-5 catalyst

    NASA Astrophysics Data System (ADS)

    Hamieh, S.; Canaff, C.; Tayeb, K. Ben; Tarighi, M.; Maury, S.; Vezin, H.; Pouilloux, Y.; Pinard, L.

    2015-07-01

    Ethanol and methanol are converted using H-ZSM-5 zeolite at 623 K and 3.0 MPa into identical hydrocarbons (paraffins, olefins and aromatics) and moreover with identical selectivities. The distribution of olefins as paraffins follows the Flory distribution with a growth probability of 0.53. Regardless of the alcohol, the catalyst lifetime and selectivity into hydrocarbons C3+ are high in spite of an important coke content. The coke that poisons the Brønsted acid sites without blocking their access is composed in part of radical polyalkylaromatics. The addition of hydroquinone, an inhibitor of radicals, to the feed, provokes an immediate catalyst deactivation.

  14. Revealing the halide effect on the kinetics of the aerobic oxidation of Cu(I) to Cu(II)

    SciTech Connect

    Deng, Yi; Zhang, Guanghui; Qi, Xiaotian; Liu, Chao; Miller, Jeffrey T.; Kropf, A. Jeremy; Bunel, Emilio E.; Lan, Yu; Lei, Aiwen

    2015-01-01

    In situ infrared (IR) and X-ray absorption near-edge structure (XANES) spectroscopic investigations reveal that different halide ligands have distinct effects on the aerobic oxidation of Cu(I) to Cu(II) in the presence of TMEDA (tetramethylethylenediamine). The iodide ligand gives the lowest rate and thus leads to the lowest catalytic reaction rate of aerobic oxidation of hydroquinone to benzoquinone. Further DFT calculations suggest that oxidation of CuI–TMEDA involves a side-on transition state, while oxidation of CuCl–TMEDA involves an end-on transition state which has a lower activation energy.

  15. Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer.

    PubMed

    Schaltin, Stijn; D'Urzo, Lucia; Zhao, Qiang; Vantomme, André; Plank, Harald; Kothleitner, Gerald; Gspan, Christian; Binnemans, Koen; Fransaer, Jan

    2012-10-21

    In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.

  16. Fast-Acting Rubber-To-Coated-Aluminum Adhesive

    NASA Technical Reports Server (NTRS)

    Comer, Dawn A.; Novak, Howard; Vazquez, Mark

    1991-01-01

    Cyanoacrylate adhesive used to join rubber to coated aluminum easier to apply and more effective. One-part material applied in single coat to aluminum treated previously with epoxy primer and top coat. Parts mated as soon as adhesive applied; no drying necessary. Sets in 5 minutes. Optionally, accelerator brushed onto aluminum to reduce setting time to 30 seconds. Clamping parts together unnecessary. Adhesive comes in four formulations, all based on ethyl cyanoacrylate with various amounts of ethylene copolymer rubber, poly(methyl methacrylate), silicon dioxide, hydroquinone, and phthalic anhydride.

  17. Emission spectral analysis using photographic plates treated with a phenidone developer.

    PubMed

    Petrakiev, A; Dimitrov, G

    1969-12-01

    When spectral photographic plates are not treated in the conventional metol-hydroquinone developer, but in a phenidone developer, a strong increase in the sensitivity and a certain increase in the contrast are observed. With phenidone development, weak lines are intensified, permitting the lowering of the limits of detection and determination. The increase in the contrast increases the slope of the concentration-calibration curves and hence the concentrational sensitivity of the spectral analyses. This is illustrated in the curves for the determination of Si and Mn in low-alloy steels. Further sensitivity can be obtained by following the phenidone development by a chromium intensifying process.

  18. One-step and rapid synthesis of porous Pd nanoparticles with superior catalytic activity toward ethanol/formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Fang, Youxing; Wang, Jin; Wang, Erkang

    2014-02-01

    Porous Pd nanoparticles are successfully prepared by a rapid, one-step, and efficient route with high yield in aqueous solution. The developed method is very simple, just by mixing sodium tetrachloropalladate, polyvinylpyrrolidone and hydroquinone and heated at 70 °C for 15 min. The structure and composition are analyzed by transmission electron microscope, selected-area electron diffraction, inductively coupled plasma optical emission spectrometer, X-ray diffraction, energy dispersive X-ray spectrum and X-ray photoelectron spectroscopy. Electrochemical catalytic measurement results prove that the as synthesized porous Pd nanoparticles exhibit superior catalytic activity towards ethanol and formic acid electrooxidation.

  19. Feedback-amplified electrochemical dual-plate boron-doped diamond microtrench detector for flow injection analysis

    PubMed Central

    Lewis, Grace E M; Gross, Andrew J; Kasprzyk-Hordern, Barbara; Lubben, Anneke T; Marken, Frank

    2015-01-01

    An electrochemical flow cell with a boron-doped diamond dual-plate microtrench electrode has been developed and demonstrated for hydroquinone flow injection electroanalysis in phosphate buffer pH 7. Using the electrochemical generator-collector feedback detector improves the sensitivity by one order of magnitude (when compared to a single working electrode detector). The diffusion process is switched from an analyte consuming “external” process to an analyte regenerating “internal” process with benefits in selectivity and sensitivity. PMID:25735831

  20. Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol

    SciTech Connect

    Han, Kun; Miao, Peng; Tang, Yuguo; Tong, Hui; Zhu, Xiaoli; Liu, Tao; Cheng, Wenbo

    2014-02-03

    In this report, silver nanoparticles (AgNPs) decorated graphene nanosheets have been prepared based on the reduction of Ag ions by hydroquinone, and their catalytic performance towards the electrochemical oxidation of methanol is investigated. The synthesis of the nano-composite is confirmed by transmission electron microscope measurements and UV-vis absorption spectra. Excellent electrocatalytic performance of the material is demonstrated by cyclic voltammograms. This material also contributes to the low peak potential of methanol oxidation compared with most of the other materials.

  1. Anti-inflammatory and antimalarial meroterpenoids from the New Zealand ascidian Aplidium scabellum.

    PubMed

    Chan, Susanna T S; Pearce, A Norrie; Januario, Ana H; Page, Michael J; Kaiser, Marcel; McLaughlin, Rene J; Harper, Jacquie L; Webb, Victoria L; Barker, David; Copp, Brent R

    2011-11-01

    Bioassay-directed fractionation of an extract of the New Zealand ascidian Aplidium scabellum has afforded the anti-inflammatory secondary metabolite 2-geranyl-6-methoxy-1,4-hydroquinone-4-sulfate (1) and a family of pseudodimeric meroterpenoids scabellones A (2)-D (5). The benzo[c]chromene-7,10-dione scaffold contained within scabellones A-D is particularly rare among natural products. The structures were elucidated by interpretation of NMR data. Scabellone B was also identified as a moderately potent, nontoxic inhibitor of Plasmodium falciparum.

  2. A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction

    NASA Astrophysics Data System (ADS)

    Valdés, Cristian; Alzate-Morales, Jans; Osorio, Edison; Villaseñor, Jorge; Navarro-Retamal, Carlos

    2015-11-01

    Phenol is one of the worst contaminants at date, and its degradation has been a crucial task over years. Here, the decomposition process of phenol, in a Fenton reaction, is described. Using scavengers, it was observed that decomposition of phenol was mainly influenced by production of hydroxyl radicals. Experimental and theoretical activation energies (Ea) for phenol oxidation intermediates were calculated. According to these Ea, phenol decomposition is a two-step reaction mechanism mediated predominantly by hydroxyl radicals, producing a decomposition yield order given as hydroquinone > catechol > resorcinol. Furthermore, traces of reaction derived acids were detected by HPLC and GS-MS.

  3. Redox reactions between iron and quinones: Thermodynamic constraints

    NASA Astrophysics Data System (ADS)

    Uchimiya, Minori; Stone, Alan T.

    2006-03-01

    Iron is the most abundant redox-active metallic element on the earth's surface. Quinones, a term that encompasses dihydroxybenzenes (catechol and hydroquinone), semiquinone radicals, and benzoquinones, are abundant moieties within natural organic matter. Separately or in concert, iron species (both dissolved and precipitated) and quinones are believed to be key participants in a wide range of environmental redox reactions. Here, we investigate how pH, quinone structure, and iron speciation impose thermodynamic constraints on possible reactions. The steps outlined in this work must be followed to evaluate whether postulated redox processes involving iron and quinones are energetically feasible.

  4. Preparation of polymer-modified electrodes: A literature and experimental study

    SciTech Connect

    Jayanta, P.S.; Ishida, Takanobu.

    1991-05-01

    A literature review is presented on the field of polymer modified electrodes which can be electrochemically generated. It is suggested that a possible application of these polymer modified electrodes is as a regeneratable catalysis packing material for use in couter-current exchange columns. Secondly, there is a presentation of experimental results dealing with possible electrode modification using difluoro- and dimethyl- phenols and fluorinated derivatives of styrene, benzoquinone and hydroquinone. It appears that dimethylphenol shows the most potential of the monomers experimentally tested in providing a stable polymer modified electrode surface. 170 refs., 31 figs., 1 tab.

  5. Polyaryl ethers and related polysiloxane copolymer molecular coatings preparation and radiation degrdation

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.; Hedrick, J. L.; Webster, D. C.; Johnson, B. C.; Mohanty, D. K.; Yilgor, I.

    1983-01-01

    Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon.

  6. Proton-coupled electron transfer and multielectron oxidations in complexes of ruthenium and osmium

    SciTech Connect

    Dovletoglou, A.

    1992-01-01

    This doctoral research concerns the mechanism of proton-coupled electron transfer over an extended pH range. These processes between ruthenium and osmium complexes and hydroquinones have been studied using spectrophotometric methods and cyclic voltammetry. Elucidation of the mechanistic details has been attempted by using isotopic labelling, kinetic analysis, and numerical simulation of complex kinetic schemes. The coordination and redox chemistry of polypyridyl-acetylacetonato and -oxalato complexes of ruthenium and the role of ancillary ligands in defining the properties of Ru[sup IV]O complexes were explored. These studies represent the first attempt to probe possible 2e[sup [minus

  7. Novel Quinone-Based Couples for Flow Batteries

    NASA Astrophysics Data System (ADS)

    Huskinson, Brian; Nawar, Saraf; Aziz, Michael

    2013-03-01

    Flow batteries are of interest for low-cost grid-scale electrical energy storage in the face of rising electricity production from intermittent renewables like wind and solar. We will report on investigations of redox couples based on the reversible protonation of small organic molecules called quinones. We will report half-cell measurements of current density vs. potential for aqueous solutions of various quinones and hydroquinones in sulfuric acid, facilitated by a variety of electrocatalysts. For a subset of these we will report full fuel cell measurements as well.

  8. Redox and complexation interactions of neptunium(V) with quinonoid-enriched humic derivatives

    SciTech Connect

    Shcherbina, Natalia S.; Perminova, Irina V.; Kalmykov, Stephan N.; Kovalenko, Anton N.; Novikov, Alexander P.; Haire, Richard {Dick} G

    2007-01-01

    Actinides in their higher valence states (e.g., MO{sub 2}{sup +} and MO{sub 2}{sup 2+}, where M can be Np, Pu, etc) possess a higher potential for migration and in turn pose a substantial environmental threat. To minimize this potential for migration, reducing them to lower oxidation states (e.g., their tetravalent state) can be an attractive and efficient remedial process. These lower oxidation states are often much less soluble in natural aqueous media and are, therefore, less mobile in the environment. The research presented here focuses on assessing the performance of quinonoid-enriched humic derivatives with regards to complexing and/or reducing Np(V) present in solution. These 'designer' humics are essentially derived reducing agents that can serve as reactive components of a novel humic-based remediation technology. The derivatives are obtained by incorporating different quinonoid-moieties into leonardite humic acids. Five quinonoid-derivatives are tested in this work and all five prove more effective as reducing agents for selected actinides than the parent leonardite humic acid, and the hydroquinone derivatives are better than the catechol derivatives. The reduction kinetics and the Np(V) species formed with the different derivatives are studied via a batch mode using near-infrared (NIR)-spectroscopy. Np(V) reduction by the humic derivatives under anoxic conditions at 293 K and at pH 4.7 obeys first-order kinetics. Rate constants range from 1.70 x 10{sup -6} (parent humic acid) to 1.06 x 10{sup -5} sec{sup -1} (derivative with maximum hydroquinone content). Stability constants for Np(V)-humic complexes calculated from spectroscopic data produce corresponding Log{beta} values of 2.3 for parent humic acid and values ranging from 2.5 to 3.2 at pH 4.7 and from 3.3 to 3.7 at pH 7.4 for humic derivatives. Maximum constants are observed for hydroquinone-enriched derivatives. It is concluded that among the humic derivatives tested, the hydroquinone-enriched ones

  9. Redox Switching of Orthoquinone-Containing Aromatic Compounds with Hydrogen and Oxygen Gas.

    PubMed

    Urakawa, Kazuki; Sumimoto, Michinori; Arisawa, Mitsuhiro; Matsuda, Masaki; Ishikawa, Hayato

    2016-06-20

    Unique redox switching of orthoquinone-containing pentacyclic aromatic compounds with molecular hydrogen and oxygen in the presence of a palladium nanoparticle catalyst (SAPd) is disclosed. These molecules were predicted by in silico screening before synthesis. Efficient protocols for the synthesis of orthoquinone-containing aromatic compounds by palladium-mediated homocoupling and the benzoin condensation reaction were developed. Clear switching between orthoquinone and aromatic hydroquinone compounds was observed on the basis of their photoluminescence properties. Furthermore, the twist strain of the orthoquinone moiety could induce dramatic changes in color and emission.

  10. Screening of Toxic Effects of Bisphenol A and Products of Its Degradation: Zebrafish (Danio rerio) Embryo Test and Molecular Docking.

    PubMed

    Makarova, Katerina; Siudem, Pawel; Zawada, Katarzyna; Kurkowiak, Justyna

    2016-10-01

    Bisphenol A (BPA) acts as an endocrine-disrupting compound even at a low concentration. Degradation of BPA could lead to the formation of toxic products. In this study, we compare the toxicity of BPA and seven intermediate products of its degradation. The accuracy of three molecular docking programs (Surflex, Autodock, and Autodock Vina) in predicting the binding affinities of selected compounds to human (ERα, ERβ, and ERRγ) and zebrafish (ERα, ERRγA, and ERRγB) estrogen and estrogen-related receptors was evaluated. The docking experiments showed that 4-isopropylphenol could have similar toxicity to that of BPA due to its high affinity to ERRγ and ERRγB and high octanol-water partitioning coefficient. The least toxic compounds were hydroquinone and phenol. Those compounds as well as BPA were screened in the zebrafish (Danio rerio) embryo test. 4-isopropylphenol had the strongest toxic effect on zebrafish embryos and caused 100% lethality shortly after exposure. BPA caused the delay in development, multiple deformations, and low heartbeats (30 bps), whereas hydroquinone had no impact on the development of the zebrafish embryo. Thus, the results of zebrafish screening are in good agreement with our docking experiment. The molecular docking could be used to screen the toxicity of other xenoestrogens and their products of degradation. PMID:27486708

  11. Natural paniceins from mediterranean sponge inhibit the multidrug resistance activity of Patched and increase chemotherapy efficiency on melanoma cells

    PubMed Central

    Fiorini, Laura; Tribalat, Marie-Aude; Sauvard, Lucy; Cazareth, Julie; Lalli, Enzo; Broutin, Isabelle; Thomas, Olivier P.; Mus-Veteau, Isabelle

    2015-01-01

    Multidrug resistance has appeared to mitigate the efficiency of anticancer drugs and the possibility of successful cancer chemotherapy. The Hedgehog receptor Patched is a multidrug transporter expressed in several cancers and as such it represents a new target to circumvent chemotherapy resistance. We report herein that paniceins and especially panicein A hydroquinone, natural meroterpenoids produced by the Mediterranean sponge Haliclona (Soestella) mucosa, inhibit the doxorubicin efflux activity of Patched and enhance the cytotoxicity of this chemotherapeutic agent on melanoma cells in vitro. These results are supported by the molecular docking performed on the structure of the bacterial drug efflux pump AcrB and on the Patched model built from AcrB structure. Docking calculations show that panicein A hydroquinone interacts with AcrB and Patched model close to the doxorubicin binding site. This compound thus appears as the first antagonist of the doxorubicin efflux activity of Patched. The use of inhibitors of Patched drug efflux activity in combination with classical chemotherapy could represent a novel approach to reduce tumor drug resistance, recurrence and metastasis. PMID:26068979

  12. Chemically glycosylation improves the stability of an amperometric horseradish peroxidase biosensor

    PubMed Central

    Hernández-Cancel, Griselle; Suazo-Dávila, Damaris; Medina-Guzmán, Johnsue; Rosado-González, María; Díaz-Vázquez, Liz M.; Griebenow, Kai

    2014-01-01

    We constructed a biosensor by electrodeposition of gold nano-particles (AuNPs) on glassy carbon (GC) and subsequent formation of a 4-mercaptobenzoic acid self-assembled monolayer (SAM). The enzyme horseradish peroxidase (HRP) was then covalently immobilized onto the SAM. Two forms of HRP were employed: non-modified and chemically glycosylated with lactose. Circular dichroism (CD) spectra showed that chemical glycosylation did neither change the tertiary structure of HRP nor the heme environment. The highest sensitivity of the biosensor to hydroquinone was obtained for the biosensor with HRP-lactose 1 (414 nA μM−1 ) compared to 378 nA μM−1 for the one employing non-modified HRP. The chemically glycosylated form of the enzyme catalyzed the reduction of hydroquinone more rapidly than the native form of the enzyme. The sensor employing lactose-modified HRP also had a lower limit of detection (74 μM) than the HRP biosensor (83 μM). However, most importantly, chemically glycosylation improved the long-term stability of the biosensor, which retained 60% of its activity over a four-month storage period compared to only 10% for HRP. These results highlight improvements by an innovative stabilization method when compared to previously reported enzyme-based biosensors. PMID:25479876

  13. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins

    NASA Astrophysics Data System (ADS)

    Reig, Amanda J.; Pires, Marcos M.; Snyder, Rae Ana; Wu, Yibing; Jo, Hyunil; Kulp, Daniel W.; Butch, Susan E.; Calhoun, Jennifer R.; Szyperski, Thomas G.; Solomon, Edward I.; Degrado, William F.

    2012-11-01

    De novo proteins provide a unique opportunity to investigate the structure-function relationships of metalloproteins in a minimal, well-defined and controlled scaffold. Here, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the Due Ferri family. Originally created to catalyse the O2-dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyse the selective N-hydroxylation of arylamines by remodelling the substrate access cavity and introducing a critical third His ligand to the metal-binding cavity. Additional second- and third-shell modifications were required to stabilize the His ligand in the core of the protein. These structural changes resulted in at least a 106-fold increase in the relative rate between the arylamine N-hydroxylation and hydroquinone oxidation reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of the geometric and electronic factors that influence the catalytic tuning of di-iron active sites.

  14. Health-hazard evaluation report HETA 88-346-2030, Graphic Creations, Inc. , Warren, Rhode Island

    SciTech Connect

    Kaiser, E.A.; McManus, K.P.

    1990-04-01

    In response to a request from the management of Graphic Creations, Inc., Warren, Rhode Island, an evaluation was made of employee exposures to hydroquinone and printing press cleaning solvents which contained benzene. The printing process involves photographic art work producing a negative, making a plate, exposing the plate in an exposure frame, and installing the plate on the press. The only ventilation was an air conditioning unit installed in 1972. The evaluation results indicated exposures to isopropyl-alcohol concentrations ranging from nondetectable to 31.4mg/m3, naphtha from 81.74 to 914.8mg/m3, and 2-butoxyethanol from nondetectable to 2.56mg/m3. Personal breathing zone exposures to benzene were observed to range from 0.98 to 1.0 parts per million. Hydroquinone was not detected. The author concludes that a health hazard did exist for employees exposed to naphtha, benzene and 2-butoxyethanol. The author recommends measures to minimize these exposures.

  15. Synthesis of Au-Pd Nanoflowers Through Nanocluster Assembly

    SciTech Connect

    Xu, Jianguang; Howe, Jane Y; Chi, Miaofang; Wilson, Adria; Rathmall, Aaron; Wiley, Benjamin J

    2011-01-01

    Reduction of Pd ions by hydroquinone in the presence of gold nanoparticles and polyvinylpyrrolidone resulted in the formation of nanoflowers with a Au core and Pd petals. Addition of HCl to the synthesis halted the reduction by hydroquinone and enabled the acquisition of snapshots of the nanoflowers at different stages of growth. TEM images of the reaction after 10 s show that the nanoflower morphology resulted from the homogeneous nucleation of Pd clusters in solution and their subsequent attachment to gold seeds coated with a thin (0.8 {+-} 0.1 nm) shell of Pd. UV-visible spectra also indicate Pd clusters formed in the early stages of the reaction and disappeared as the nanoflowers grew. The speed at which this reaction can be halted is useful not only for producing a variety of bimetallic nanostructures with precisely controlled dimensions and morphologies but also for understanding the growth mechanism of these structures. The ability of the AuPd core-shell structure to catalyze the Suzuki coupling reaction of iodobenzene to phenylboronic acid was probed and compared against the activity of Pd nanocubes and thin-shelled AuPd core-shell nanoparticles. The results of this study suggest that Suzuki coupling was not affected by the surface structure or subsurface composition of the nanoparticles, but instead was primarily catalyzed by molecular Pd species that leached from the nanostructures.

  16. Synthesis and Catalytic Properties of Au Pd Nanoflowers

    SciTech Connect

    Xu, Jianguang; Wilson, Adria; Howe, Jane Y; Chi, Miaofang; Wiley, Benjamin J

    2011-01-01

    Reduction of Pd ions by hydroquinone in the presence of gold nanoparticles and polyvinylpyrrolidone resulted in the formation of nanoflowers with a Au core and Pd petals. Addition of HCl to the synthesis halted the reduction by hydroquinone and enabled the acquisition of snapshots of the nanoflowers at different stages of growth. TEM images of the reaction after 10 s show that the nanoflower morphology resulted from the homogeneous nucleation of Pd clusters in solution and their subsequent attachment to gold seeds coated with a thin (0.8 0.1 nm) shell of Pd. UV visible spectra also indicate Pd clusters formed in the early stages of the reaction and disappeared as the nanoflowers grew. The speed at which this reaction can be halted is useful not only for producing a variety of bimetallic nanostructures with precisely controlled dimensions and morphologies but also for understanding the growth mechanism of these structures. The ability of the AuPd core shell structure to catalyze the Suzuki coupling reaction of iodobenzene to phenylboronic acid was probed and compared against the activity of Pd nanocubes and thin-shelled AuPd core shell nanoparticles. The results of this study suggest that Suzuki coupling was not affected by the surface structure or subsurface composition of the nanoparticles, but instead was primarily catalyzed by molecular Pd species that leached from the nanostructures.

  17. GSTT1 deletion is related to polycyclic aromatic hydrocarbons-induced DNA damage and lymphoma progression.

    PubMed

    Yang, Fan; Xiong, Jie; Jia, Xiao-E; Gu, Zhao-Hui; Shi, Jing-Yi; Zhao, Yan; Li, Jun-Min; Chen, Sai-Juan; Zhao, Wei-Li

    2014-01-01

    The interrelationship between genetic susceptibility and carcinogenic exposure is important in cancer development. Polymorphisms in detoxification enzymes of the glutathione-S-transferases (GST) family are associated with an increased incidence of lymphoma. Here we investigated the molecular connection of the genetic polymorphism of GSTT1 to the response of lymphocytes to polycyclic aromatic hydrocarbons (PAH). In neoplastic situation, GSTT1 deletions were more frequently observed in lymphoma patients (54.9%) than in normal controls (42.0%, P = 0.009), resulting in an increased risk for lymphoma in individuals with GSTT1-null genotype (Odds ratio = 1.698, 95% confidence interval = 1.145-2.518). GSTT1 gene and protein expression were accordingly decreased in GSTT1-deleting patients, consistent with activated profile of cell cycle regulation genes. Mimicking environmental exposure using long-term repeat culture with low-dose PAH metabolite Hydroquinone, malignant B- and T-lymphocytes presented increased DNA damage, pCHK1/MYC expression and cell proliferation, which were counteracted by ectopic expression of GSTT1. Moreover, GSTT1 expression retarded xenograft tumor formation of Hydroquinone-treated lymphoma cells in nude mice. In non-neoplastic situation, when zebrafish was exposed to PAH Benzo(a)pyrene, molecular silencing of gstt1 enhanced the proliferation of normal lymphocytes and upregulated myca expression. Collectively, these findings suggested that GSTT1 deletion is related to genetic predisposition to lymphoma, particularly interacting with environmental pollutants containing PAH.

  18. Monodisperse silica nanoparticles coated with gold nanoparticles as a sorbent for the extraction of phenol and dihydroxybenzenes from water samples based on dispersive micro-solid-phase extraction: Response surface methodology.

    PubMed

    Khezeli, Tahere; Daneshfar, Ali

    2015-08-01

    A selective and sensitive method was developed based on dispersive micro-solid-phase extraction for the extraction of hydroquinone, resorcinol, pyrocatechol and phenol from water samples prior to high-performance liquid chromatography with UV detection. SiO2 , SiO2 @MPTES, and SiO2 @MPTES@Au nanoparticles (MPTES = 3-mercaptopropyltriethoxysilane) were synthesized and characterized by scanning electronic microscopy, thermogravimetric analysis, differential thermogravimetric analysis, and infrared spectroscopy. Variables such as the amount of sorbent (mg), pH and ionic strength of sample the solution, the volume of eluent solvent (μL), vortex and ultrasonic times (min) were investigated by Plackett-Burman design. The significant variables optimized by a Box-Behnken design were combined by a desirability function. Under optimized conditions, the calibration graphs of phenol and dihydroxybenzenes were linear in a concentration range of 1-500 μg/L, and with correlation coefficients more than 0.995. The limits of detection for hydroquinone, resorcinol, pyrocatechol, and phenol were 0.54, 0.58, 0.46, and 1.24 μg/L, and the limits of quantification were 1.81, 1.93, 1.54, and 4.23 μg/L, respectively. This procedure was successfully employed to determine target analytes in spiked water samples; the relative mean recoveries ranged from 93.5 to 98.9%.

  19. Propoxur: a novel mechanism for insecticidal action and toxicity.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2012-01-01

    Propoxur is a carbamate insecticide that has recently attracted considerable attention as a possible treatment option for addressing the bedbug epidemic. The generally accepted mechanism of toxicity for propoxur involves the inhibition of ChE, as is the case for many agents in the category. Considerable research supports the concept that most physiologically active substances induce their effects through multi-faceted action. In this review, we provide evidence that ET--ROS--OS participate mechanistically in both the action and in human toxicity of pesticides, including propoxur. Propoxur is a catechol derivative that contains carbamate and isopropyl groups on the oxygens in its moiety. Metabolic studies with propoxur reveal hydrolysis of the carbamate and dealkylation of the isopropyl group to yield the parent catechol. In addition, nuclear hydroxylation produces a hydroquinone derivative. Both the catechol and this hydroquinone derivative are potentially able to undergo redox cycling with the corresponding quinone to produce ROS. It is primarily for these reasons that we believe propoxur may be similar to other classes of physiologically active compounds in producing effects through ET-ROS-OS. Generally, reactive ROS are generated by metabolic processes that yield ET entities, and this occurs with propoxur as well. Although ROS are commonly associated with toxicity, there is little recognition in the literature that they can also play a role in therapeutic action.

  20. Laccase oxidation and removal of toxicants released during combustion processes.

    PubMed

    Prasetyo, Endry Nugroho; Semlitsch, Stefan; Nyanhongo, Gibson S; Lemmouchi, Yahia; Guebitz, Georg M

    2016-02-01

    This study reports for the first time the ability of laccases adsorbed on cellulose acetate to eliminate toxicants released during combustion processes. Laccases directly oxidized and eliminated more than 40% w/v of 14 mM of 1,4-dihydroxybenzene (hydroquinone); 2-methyl-1,4-benzenediol (methylhydroquinone); 1,4-dihydroxy-2,3,5-trimethylbenzene (trimethylhydroquinone); 3-methylphenol (m-cresol); 4-methylphenol (p-cresol); 2-methylphenol (o-cresol); 1,3-benzenediol (resorcinol); 1,2-dihydroxybenzene (catechol); 3,4-dihydroxytoluene (4-methylcatechol) and 2-naphthylamine. Further, laccase oxidized 2-naphthylamine, hydroquinone, catechol, methylhydroquinone and methylcatechol were also able to in turn mediate the elimination of >90% w/v of toxicants which are per-se non-laccase substrates such as 3-aminobiphenyl; 4-aminobiphenyl; benz[a]anthracene; 3-(1-nitrosopyrrolidin-2-yl) pyridine (NNN); formaldehyde; 4-(methyl-nitrosamino-1-(3-pyridyl)-1-butanone (NNK); 2-butenal (crotonaldehyde); nitric oxide and vinyl cyanide (acrylonitrile). These studies demonstrate the potential of laccase immobilized on solid supports to remove many structurally different toxicants released during combustion processes. This system has great potential application for in situ removal of toxicants in the manufacturing, food processing and food service industries. PMID:26408262

  1. Melanosis in Penaeus monodon: Involvement of the Laccase-like Activity of Hemocyanin.

    PubMed

    Bris, Cédric Le; Cudennec, Benoit; Dhulster, Pascal; Drider, Djamel; Duflos, Guillaume; Grard, Thierry

    2016-01-27

    In shrimp, the development of postmortem melanosis resulting from phenoloxidase activities leads to important economic losses. Phenoloxidase enzymes include catechol oxidases, laccases, and tyrosinases, but hemocyanin is also capable of phenoloxidase activities. These activities have been explored in Penaeus monodon, using different substrates. Results highlighted that tyrosinase-specific substrates were little oxidized, whereas hydroquinone (laccase-specific substrate) was more highly oxidized than l-DOPA (nonspecific substrate) in the pereopods and pleopods. Global phenoloxidase activity, assayed with l-DOPA, did not appear thermally stable over time and probably resulted from phenoloxidase enzymes. Conversely, the laccase-like activity assayed with hydroquinone was thermally stable over time, reflecting the thermal stability of hemocyanin. Independently of the anatomical compartment, the temperature, or the substrate, the highest activities were assayed in the cuticular compartments. This study demonstrates the complexity of phenoloxidase activities in P. monodon, and the importance of considering all the activities, including laccase-like activities such as that of hemocyanin. PMID:26671070

  2. Reduction in thermal conductivity and tunable heat capacity of inorganic/organic hybrid superlattices

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Niemelä, Janne-Petteri; Szwejkowski, Chester J.; Karppinen, Maarit; Hopkins, Patrick E.

    2016-01-01

    We study the influence of molecular monolayers on the thermal conductivities and heat capacities of hybrid inorganic/organic superlattice thin films fabricated via atomic/molecular layer deposition. We measure the cross plane thermal conductivities and volumetric heat capacities of TiO2- and ZnO-based superlattices with periodic inclusion of hydroquinone layers via time domain thermoreflectance. In comparison to their homogeneous counterparts, the thermal conductivities in these superlattice films are considerably reduced. We attribute this reduction in the thermal conductivity mainly due to incoherent phonon boundary scattering at the inorganic/organic interface. Increasing the inorganic/organic interface density reduces the thermal conductivity and heat capacity of these films. High-temperature annealing treatment of the superlattices results in a change in the orientation of the hydroquinone molecules to a 2D graphitic layer along with a change in the overall density of the hybrid superlattice. The thermal conductivity of the hybrid superlattice increases after annealing, which we attribute to an increase in crystallinity.

  3. Molecular Mechanism of the Two-Component Suicidal Weapon of Neocapritermes taracua Old Workers.

    PubMed

    Bourguignon, Thomas; Šobotník, Jan; Brabcová, Jana; Sillam-Dussès, David; Buček, Aleš; Krasulová, Jana; Vytisková, Blahoslava; Demianová, Zuzana; Mareš, Michael; Roisin, Yves; Vogel, Heiko

    2016-03-01

    In termites, as in many social insects, some individuals specialize in colony defense, developing diverse weaponry. As workers of the termite Neocapritermes taracua (Termitidae: Termitinae) age, their efficiency to perform general tasks decreases, while they accumulate defensive secretions and increase their readiness to fight. This defensive mechanism involves self-sacrifice through body rupture during which an enzyme, stored as blue crystals in dorsal pouches, converts precursors produced by the labial glands into highly toxic compounds. Here, we identify both components of this activated defense system and describe the molecular basis responsible for the toxicity of N. taracua worker autothysis. The blue crystals are formed almost exclusively by a specific protein named BP76. By matching N. taracua transcriptome databases with amino acid sequences, we identified BP76 to be a laccase. Following autothysis, the series of hydroquinone precursors produced by labial glands get mixed with BP76, resulting in the conversion of relatively harmless hydroquinones into toxic benzoquinone analogues. Neocapritermes taracua workers therefore rely on a two-component activated defense system, consisting of two separately stored secretions that can react only after suicidal body rupture, which produces a sticky and toxic cocktail harmful to opponents. PMID:26609080

  4. GSTT1 deletion is related to polycyclic aromatic hydrocarbons-induced DNA damage and lymphoma progression.

    PubMed

    Yang, Fan; Xiong, Jie; Jia, Xiao-E; Gu, Zhao-Hui; Shi, Jing-Yi; Zhao, Yan; Li, Jun-Min; Chen, Sai-Juan; Zhao, Wei-Li

    2014-01-01

    The interrelationship between genetic susceptibility and carcinogenic exposure is important in cancer development. Polymorphisms in detoxification enzymes of the glutathione-S-transferases (GST) family are associated with an increased incidence of lymphoma. Here we investigated the molecular connection of the genetic polymorphism of GSTT1 to the response of lymphocytes to polycyclic aromatic hydrocarbons (PAH). In neoplastic situation, GSTT1 deletions were more frequently observed in lymphoma patients (54.9%) than in normal controls (42.0%, P = 0.009), resulting in an increased risk for lymphoma in individuals with GSTT1-null genotype (Odds ratio = 1.698, 95% confidence interval = 1.145-2.518). GSTT1 gene and protein expression were accordingly decreased in GSTT1-deleting patients, consistent with activated profile of cell cycle regulation genes. Mimicking environmental exposure using long-term repeat culture with low-dose PAH metabolite Hydroquinone, malignant B- and T-lymphocytes presented increased DNA damage, pCHK1/MYC expression and cell proliferation, which were counteracted by ectopic expression of GSTT1. Moreover, GSTT1 expression retarded xenograft tumor formation of Hydroquinone-treated lymphoma cells in nude mice. In non-neoplastic situation, when zebrafish was exposed to PAH Benzo(a)pyrene, molecular silencing of gstt1 enhanced the proliferation of normal lymphocytes and upregulated myca expression. Collectively, these findings suggested that GSTT1 deletion is related to genetic predisposition to lymphoma, particularly interacting with environmental pollutants containing PAH. PMID:24586676

  5. In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells.

    PubMed

    Cheah, Nuan P; Pennings, Jeroen L A; Vermeulen, Jolanda P; van Schooten, Frederik J; Opperhuizen, Antoon

    2013-04-01

    Tobacco smoke consists of thousands of harmful components. A major class of chemicals found in tobacco smoke is formed by aldehydes, in particular formaldehyde, acetaldehyde and acrolein. The present study investigates the gene expression changes in human lung alveolar epithelial cells upon exposure to formaldehyde, acrolein and acetaldehyde at sub-cytotoxic levels. We exposed A549 cells in vitro to aldehydes and non-aldehyde chemicals (nicotine, hydroquinone and 2,5-dimethylfuran) present in tobacco smoke and used microarrays to obtain a global view of the transcriptomic responses. We compared responses of the individual aldehydes with that of the non-aldehydes. We also studied the response of the aldehydes when present in a mixture at relative concentrations as present in cigarette smoke. Formaldehyde gave the strongest response; a total of 66 genes were more than 1.5-fold differentially expressed mostly involved in apoptosis and DNA damage related processes, followed by acetaldehyde (57 genes), hydroquinone (55 genes) and nicotine (8 genes). For acrolein and the mixture only one gene was upregulated involved in oxidative stress. No gene expression effect was found for exposure to 2,5-dimethylfuran. Overall, aldehyde responses are primarily indicative for genotoxicity and oxidative stress. These two toxicity mechanisms are linked to respiratory diseases such as cancer and COPD, respectively. The present findings could be important in providing further understanding of the role of aldehydes emitted from cigarette smoke in the onset of pulmonary diseases.

  6. Oxidative stress response of Mycosphaerella fijiensis, the causal agent of black leaf streak disease in banana plants, to hydrogen peroxide and paraquat.

    PubMed

    Beltrán-García, Miguel J; Manzo-Sanchez, Gilberto; Guzmán-González, Salvador; Arias-Castro, Carlos; Rodríguez-Mendiola, Martha; Avila-Miranda, Martin; Ogura, Tetsuya

    2009-07-01

    Mycosphaerella fijiensis causes black leaf streak disease in banana and plantain. This fungus is usually attacked by reactive oxygen species secreted by the plant or during exposure to fungicide, however, little is known about the antioxidant response of the fungus. In this study, mycelia were observed to totally decompose 30 mmol/L of hydrogen peroxide (H2O2) within 120 min, liberating oxygen bubbles, and also to survive in concentrations as high as 100 mmol/L H2O2. The oxidative stress responses to H2O2, paraquat, and hydroquinone were characterized in terms of the activities of catalase and superoxide dismutase (SOD). Two active catalase bands were seen in native PAGE induced by H2O2. Band I had monofunctional activity and band II had bifunctional catalase-peroxidase activity. Two isozymes of SOD, distinguishable by their cyanide sensitivity, were found; CuZnSOD was the main one. The combination of H2O2 and 3-aminotriazole reduced the accumulation of biomass up to 40% compared with exposure to H2O2 alone, suggesting that catalase is important for the rapid decomposition of H2O2 and has a direct bearing on cell viability. The results also suggest that the superoxide anion formed through the redox of paraquat and hydroquinone has a greater effect than H2O2 on the cellular viability of M. fijiensis. PMID:19767862

  7. Chemical degradation and toxicity reduction of 4-chlorophenol in different matrices by gamma-ray treatment

    NASA Astrophysics Data System (ADS)

    Kang, Sung-Wook; Shim, Seung-Bo; Park, Young-Kwon; Jung, Jinho

    2011-03-01

    Gamma-ray treatment of 4-chlorophenol (4-CP) in different matrices was studied in terms of both chemical degradation and toxicity reduction. Degradation of 4-CP in a complex effluent matrix was less efficient than that in ultrapure water. This is most likely due to the consumption of reactive radicals by matrix components, such as dissolved organic matter in effluents. The matrix effect caused much more profound changes in toxicity. Gamma-ray treatment of 4-CP in ultrapure water abruptly increased acute toxicity toward Daphnia magna while slightly decreased toxicity of 4-CP in effluent. In the presence of ZrO 2 catalyst, degradation of 4-CP as well as toxicity reduction was substantially improved mostly by adsorption of 4-CP onto the nanoparticles. It was found that benzoquinone, hydroquinone and 4-chlorocatechol were generated for ultrapure water sample while only 4-chlorocatechol was formed for effluent samples by gamma-ray treatment. As determined in this work, EC 50 values of benzoquinone (0.46 μM), hydroquinone (0.61 μM) and chlorocatechol (8.87 μM) were much lower than those of 4-CP (31.50 μM), explaining different toxicity changes of 4-CP in different matrices by gamma-ray treatment. The observed toxicity of gamma-ray treated 4-CP was well correlated with the one calculated from individual toxicity based on EC 50 value.

  8. Advance concepts for conversion of syngas to liquids. Quarterly progress report No. 4, July 30, 1995--October 29, 1995

    SciTech Connect

    Pei-Shing Eugene Dai; Petty, R.H.; Ingram, C.; Szostak, R.

    1996-02-01

    Substitution of transition metals for either aluminum and/or phosphorus in the AlPO{sub 4}-11 framework is found to afford novel heterogeneous catalysts for liquid phase hydroxylation of phenol with hydrogen peroxide. AlPO{sub 4}-11 is more active than SAPO-11 and MgAPO-11 for phenol conversion to hydroquinone. The Bronsted acid sites of SAPO-11 and MgAPO-11 may promote the decomposition of hydrogen peroxide to water and oxygen, thus leading to lower phenol conversions. Substitution of divalent and trivalent metal cations, such as Fe, Co and Mn appears to significantly improve the conversion of phenol. The activity follows the order of FeAPO-11>FeMnAPO-11>CoAPO-11>MnAPO-11{much_gt}ALPO{sub 4}-11. FeAPO-11, FeMnAPO-11 and AlPO{sub 4}-11 give similar product selectivities of about 1:1 hydroquitione (HQ) to catechol (CT). MnAPO-11 and CoAPO-11 favor the production of catechol, particularly at low conversions. FeAPO-11 and TS-1 (titanium silicate with MFI topology) are comparable for the phenol conversions with TS-1 giving higher selectivities toward hydroquinone. The external surfaces of the catalysts plays a significant role in these oxidation reactions. MeAPO molecular sieves may be complementary to the metal silicalite catalysts for the catalytic oxidations in the manufacture of fine chemicals.

  9. Structure-based identification of an inducer of the low-pH conformational change in the influenza virus hemagglutinin: irreversible inhibition of infectivity.

    PubMed Central

    Hoffman, L R; Kuntz, I D; White, J M

    1997-01-01

    Past efforts to employ a structure-based approach to design an inhibitor of the fusion-inducing conformational change in the influenza virus hemagglutinin (HA) yielded a family of small benzoquinones and hydroquinones. The most potent of these, tert-butyl hydroquinone (TBHQ), inhibits both the conformational change in HA from strain X:31 influenza virus and viral infectivity in tissue culture cells with 50% inhibitory concentrations in the micromolar range (D. L. Bodian, R. B. Yamasaki, R. L. Buswell, J. F. Stearns, J. M. White, and I. D. Kuntz, Biochemistry 32:2967-2978, 1993). A new structure-based inhibitor design search was begun which involved (i) the recently refined crystal structure (2.1-A resolution) of the HA ectodomain, (ii) new insights into the conformational change, and (iii) improvements in the molecular docking program, DOCK. As a result, we identified new inhibitors of HA-mediated membrane fusion. Like TBHQ, most of these molecules inhibit the conformational change. One of the new compounds, however, facilitates rather than inhibits the HA conformational change. Nonetheless, the facilitator, diiodofluorescein, inhibits HA-mediated membrane fusion and, irreversibly, infectivity. We further characterized the effects of inhibitors from both searches on the conformational change and membrane fusion activity of HA as well as on viral infectivity. We also isolated and characterized several mutants resistant to each class of inhibitor. The implications of our results for HA-mediated membrane fusion, anti-influenza virus therapy, and structure-based inhibitor design are discussed. PMID:9343241

  10. Characterization of suspected illegal skin whitening cosmetics.

    PubMed

    Desmedt, B; Van Hoeck, E; Rogiers, V; Courselle, P; De Beer, J O; De Paepe, K; Deconinck, E

    2014-03-01

    An important group of suspected illegal cosmetics consists of skin bleaching products, which are usually applied to the skin of the face, hands and décolleté for local depigmentation of hyper pigmented regions or more importantly, for a generalized reduction of the skin tone. These cosmetic products are suspected to contain illegal active substances that may provoke as well local as systemic toxic effects, being the reason for their banning from the EU market. In that respect, illegal and restricted substances in cosmetics, known to have bleaching properties, are in particular hydroquinone, tretinoin and corticosteroids. From a legislative point of view, all cosmetic products containing a prohibited whitening agent are illegal and must be taken off the EU market. A newly developed screening method using ultra high performance liquid chromatography-time off flight-mass spectrometry allows routine analysis of suspected products. 163 suspected skin whitening cosmetics, collected by Belgian inspectors at high risk sites such as airports and so-called ethnic cosmetic shops, were analyzed and 59% were classified as illegal. The whitening agents mostly detected were clobetasol propionate and hydroquinone, which represent a serious health risk when repeatedly and abundantly applied to the skin.

  11. Fermentation scale up for α-arbutin production by Xanthomonas BT-112.

    PubMed

    Wei, Meng; Ren, Yi; Liu, Changxia; Liu, Ruican; Zhang, Peng; Wei, Yi; Xu, Tao; Wang, Fang; Tan, Tianwei; Liu, Chunqiao

    2016-09-10

    α-Arbutin is a glycosylated hydroquinone that has an inhibitory function against tyrosinase. The aim of the present study is to develop an efficient and inexpensive method for large-scale production of α-arbutin by using Xanthomonas BT-112 as biocatalyst. To accomplish this goal, various surfactants were tested to enhance the α-arbutin production, and the optimal operational conditions for 30L jar fermenter were scaled up for a production level of 3000L with using a constant volumetric oxygen transfer coefficient (KLa) and the volumetric aeration rate per volume unit (Q/V) as scale-up criteria. Under the optimized conditions, the α-arbutin produced in the presence of 0.4% (w/v) Tween-80 was 124.8% higher than that of the control, and the yield of α-arbutin in 3000L fermenter was 38.2g/L with a molar conversion ratio of 93.7% based on the amount of hydroquinone supplied. This result is comparable to the results from laboratory-scale fermenter. Hence, 100-fold scale-up was successfully achieved.

  12. Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lymphoma U937 cells.

    PubMed

    Wu, Li-Hua; Li, Peng; Zhao, Qing-Li; Piao, Jin-Lan; Jiao, Yu-Fei; Kadowaki, Makoto; Kondo, Takashi

    2014-11-01

    Ionizing radiation (IR) can generate reactive oxygen species (ROS). Excessive ROS have the potential to damage cellular macromolecules including DNA, proteins, and lipids and eventually lead to cell death. In this study, we evaluated the potential of arbutin, a drug chosen from a series of traditional herbal medicine by measuring intracellular hydroxyl radical scavenging ability in X-irradiated U937 cells. Arbutin (hydroquinone-β-D-glucopyranoside), a naturally occurring glucoside of hydroquinone, has been traditionally used to treat pigmentary disorders. However, there are no reports describing the effect of arbutin on IR-induced apoptosis. We confirmed that arbutin can protect cells from apoptosis induced by X-irradiation. The combination of arbutin and X-irradiation could reduce intracellular hydroxyl radical production and prevent mitochondrial membrane potential loss. It also could down-regulate the expression of phospho-JNK, phospho-p38 in whole cell lysate and activate Bax in mitochondria. Arbutin also inhibits cytochrome C release from mitochondria to cytosol. To verify the role of JNK in X-irradiation-induced apoptosis, the cells were pretreated with a JNK inhibitor, and found that JNK inhibitor could reduce apoptosis induced by X-irradiation. Taken together, our data indicate that arbutin plays an anti-apoptotic role via decreasing intracellular hydroxyl radical production, inhibition of Bax-mitochondria pathway and activation of the JNK/p38 MAPK pathway.

  13. Phenol Decomposition Process by Pulsed-discharge Plasma above a Water Surface in Oxygen and Argon Atmosphere

    NASA Astrophysics Data System (ADS)

    Shiota, Haruki; Itabashi, Hideyuki; Satoh, Kohki; Itoh, Hidenori

    By-products from phenol by the exposure of pulsed-discharge plasma above a phenol aqueous solution are investigated by gas chromatography mass spectrometry, and the decomposition process of phenol is deduced. When Ar is used as a background gas, catechol, hydroquinone and 4-hydroxy-2-cyclohexene-1-on are produced, and no O3 is detected; therefore, active species such as OH, O, HO2, H2O2, which are produced from H2O in the discharge, can convert phenol into those by-products. When O2 is used as a background gas, formic acid, maleic acid, succinic acid and 4,6-dihydroxy-2,4-hexadienoic acid are produced in addition to catechol and hydroquinone. O3 is produced in the discharge plasma, so that phenol is probably decomposed into 4,6-dihydroxy-2,4-hexadienoic acid by 1,3-dipolar addition reaction with O3, and then 4,6-dihydroxy-2,4-hexadienoic acid can be decomposed into formic acid, maleic acid and succinic acid by 1,3-dipolar addition reaction with O3.

  14. Simultaneous separation and purification of (-)-epigallocatechin gallate and caffeine from tea extract by size exclusion effect on modified porous adsorption material.

    PubMed

    Zhang, Xiaofeng; Xu, Yi; Zhang, Qing; Cao, Kun; Mu, Xiuni

    2016-09-15

    A dual-task method for the simultaneous separation and purification of (-)-epigallocatechin gallate (EGCG) and caffeine (CAF) from crude extract of green tea was established by size exclusion effect onto hydroquinone modified porous adsorbents. The results showed that hydroquinone modified porous adsorbents P4 provided the best separation power due to it has more porous structure and phenolic hydroxyl group. The adsorption-desorption behaviors of EGCG and CAF onto P4 adsorbents were investigated. Adsorption kinetics of EGCG and CAF results showed that the adsorption followed the pseudo-second-order kinetic model. The results also indicated that the equilibrium adsorption data best fit the Langmuir model. Meanwhile, EGCG and CAF were separated successfully onto P4 adsorbents packed columns in a gradient eluent process, and P4 adsorbents exhibited the size exclusion effect for small molecules CAF. Based on the phenolic hydroxyl group and size exclusion effect of P4 adsorbents, the high purity EGCG and CAF were obtained with 40% (v/v) ethanol eluent successively. The process fulfilled the task of simultaneous separation and purification of EGCG and CAF, and proved to be a promising basis for preparations of difficult to obtain active components that have similar polarity and different sizes of molecules and derived from the same natural products. PMID:27447930

  15. Bioremediation of p-Nitrophenol by Pseudomonas putida 1274 strain

    PubMed Central

    2014-01-01

    Background p-Nitrophenol (PNP) occurs as contaminants of industrial effluents and it is the most important environmental pollutant and causes significant health and environmental risks, because it is toxic to many living organisms. Nevertheless, the information regarding PNP degradation pathways and their enzymes remain limited. Objective To evaluate the efficacy of the Pseudomonas Putida 1274 for removal of PNP. Methods P. putida MTCC 1274 was obtained from MTCC Chandigarh, India and cultured in the minimal medium in the presence of PNP. PNP degradation efficiency was compared under different pH and temperature ranges. The degraded product was isolated and analyzed with different chromatographic and spectroscopic techniques. Results P. putida 1274 shows good growth and PNP degradation at 37°C in neutral pH. Acidic and alkali pH retarded the growth of P. putida as well as the PNP degradation. On the basis of specialized techniques, hydroquinone was identified as major degraded product. The pathway was identified for the biodegradation of PNP. It involved initial removal of the nitrate group and formation of hydroquinone as one of the intermediates. Conclusion Our results suggested that P. putida 1274 strain would be a suitable aspirant for bioremediation of nitro-aromatic compounds contaminated sites in the environment. PMID:24581307

  16. Doxorubicin inhibits oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) by a lactoperoxidase/H(2)O(2) system by reacting with ABTS-derived radical.

    PubMed

    Reszka, Krzysztof J; Britigan, Bradley E

    2007-10-15

    The effect of doxorubicin on oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) by lactoperoxidase and hydrogen peroxide has been investigated. It was found that: (1) oxidation of ABTS to its radical cation (ABTS*(+)) is inhibited by doxorubicin as evidenced by its induction of a lag period, duration of which depends on doxorubicin concentration; (2) the inhibition is due to doxorubicin hydroquinone reducing the ABTS*(+) radical (stoichiometry 1: 1.8); (3) concomitant with the ABTS*(+) reduction is oxidation of doxorubicin; only when the doxorubicin concentration decreases to a near zero level, net oxidation of ABTS could be detected; (4) oxidation of doxorubicin leads to its degradation to 3-methoxysalicylic acid and 3-methoxyphthalic acid; (5) the efficacy of doxorubicin to quench ABTS*(+) is similar to the efficacy of p-hydroquinone, glutathione and Trolox C. These observations support the assertion that under certain conditions doxorubicin can function as an antioxidant. They also suggest that interaction of doxorubicin with oxidants may lead to its oxidative degradation.

  17. In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells.

    PubMed

    Cheah, Nuan P; Pennings, Jeroen L A; Vermeulen, Jolanda P; van Schooten, Frederik J; Opperhuizen, Antoon

    2013-04-01

    Tobacco smoke consists of thousands of harmful components. A major class of chemicals found in tobacco smoke is formed by aldehydes, in particular formaldehyde, acetaldehyde and acrolein. The present study investigates the gene expression changes in human lung alveolar epithelial cells upon exposure to formaldehyde, acrolein and acetaldehyde at sub-cytotoxic levels. We exposed A549 cells in vitro to aldehydes and non-aldehyde chemicals (nicotine, hydroquinone and 2,5-dimethylfuran) present in tobacco smoke and used microarrays to obtain a global view of the transcriptomic responses. We compared responses of the individual aldehydes with that of the non-aldehydes. We also studied the response of the aldehydes when present in a mixture at relative concentrations as present in cigarette smoke. Formaldehyde gave the strongest response; a total of 66 genes were more than 1.5-fold differentially expressed mostly involved in apoptosis and DNA damage related processes, followed by acetaldehyde (57 genes), hydroquinone (55 genes) and nicotine (8 genes). For acrolein and the mixture only one gene was upregulated involved in oxidative stress. No gene expression effect was found for exposure to 2,5-dimethylfuran. Overall, aldehyde responses are primarily indicative for genotoxicity and oxidative stress. These two toxicity mechanisms are linked to respiratory diseases such as cancer and COPD, respectively. The present findings could be important in providing further understanding of the role of aldehydes emitted from cigarette smoke in the onset of pulmonary diseases. PMID:23416264

  18. Potential involvement of chemicals in liver cancer progression: an alternative toxicological approach combining biomarkers and innovative technologies.

    PubMed

    Peyre, Ludovic; Zucchini-Pascal, Nathalie; de Sousa, Georges; Luzy, Anne-Pascale; Rahmani, Roger

    2014-12-01

    Pesticides as well as many other environmental pollutants are considered as risk factors for the initiation and the progression of cancer. In order to evaluate the in vitro effects of chemicals present in the diet, we began by combining viability, real-time cellular impedance and high throughput screening data to identify a concentration "zone of interest" for the six xenobiotics selected: endosulfan, dioxin, carbaryl, carbendazim, p'p'DDE and hydroquinone. We identified a single concentration of each pollutant allowing a modulation of the impedance in the absence of vital changes (nuclear integrity, mitochondrial membrane potential, cell death). Based on the number of observed modulations known to be involved in hepatic homeostasis dysfunction that may lead to cancer progression such as cell cycle and apoptosis regulators, EMT biomarkers and signal transduction pathways, we then ranked the pollutants in terms of their toxicity. Endosulfan, was able to strongly modulate all the studied cellular processes in HepG2 cells, followed by dioxin, then carbendazim. While p,p'DDE, carbaryl and hydroquinone seemed to affect fewer functions, their effects nevertheless warrant close scrutiny. Our in vitro data indicate that these xenobiotics may contribute to the evolution and worsening of hepatocarcinoma, whether via the induction of the EMT process and/or via the deregulation of liver key processes such as cell cycle and resistance to apoptosis.

  19. Kinetics of successive seeding of monodisperse polystyrene latexes. I - Initiation via potassium persulfate. II - Azo initiators with and without inhibitors

    NASA Technical Reports Server (NTRS)

    Sudol, E. D.; El-Aasser, M. S.; Vanderhoff, J. W.

    1986-01-01

    The polymerization kinetics of monodisperse polystyrene latexes with diameters of 1 micron are studied. The monodisperse latexes were prepared by the successive seeding method using 1 mM K2S2O8 with an 8 percent emulsifier surface coverage and 0.5 mM K2S2O8 with a 4 percent emulsifier surface coverage, and the kinetics were measured in a piston/cylinder dialometer. The data reveal that the polymerization rate decreases with increasing particle size; and the surface charge decreases with increasing particle size. The effects of initiators (AIBN and AMBN) and inhibitors (NH24SCN, NaNO2, and hydroquinone) on the product monodispersity and polymerization kinetics of latexes with diameters greater than 1 micron are investigated in a second experiment. It is observed that hydroquinone combined with AMBN are most effective in reducing nucleation without causing flocculation. It is noted that the kinetic transition from emulsion to bulk is complete for a particle size exceeding 1 micron in which the polymerization rate is independent of the particle size.

  20. Critical issues in benzene toxicity and metabolism: The effect of interactions with other organic chemicals on risk assessment

    SciTech Connect

    Medinsky, M.A.; Schlosser, P.M.; Bond, J.A.

    1994-11-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several investigators have demonstrated that a combination of metabolites (hydroquinone and phenol, for example) is necessary to duplicate the hematotoxic effect of benzene. Enzymes implicated in the metabolic activation of benzene and its metabolites include the cytochrome P450 monooxygenases and myeloperoxidase. Since benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. Other organic molecules that are substrates for cytochrome P450 can inhibit the metabolism of benzene. For example, toluene has been shown to inhibit the oxidation of benzene in a noncompetitive manner. Enzyme inducers, such as ethanol, can alter the target tissue dosimetry of benzene metabolites by inducing enzymes responsible for oxidation reactions involved in benzene metabolism. 24 refs., 6 figs., 2 tabs.

  1. Self-discharge of electrochemical capacitors based on soluble or grafted quinone.

    PubMed

    Shul, Galyna; Bélanger, Daniel

    2016-07-28

    The self-discharge of hybrid electrochemical capacitors based on the redox activity of electrolyte additives or grafted species to the electrode material is investigated simultaneously for the cell and each individual electrode. Electrochemical capacitors using a redox-active electrolyte consisting in hydroquinone added to the electrolyte solution and a redox-active electrode based on anthraquinone-grafted carbon as a negative electrode are investigated. The results are analyzed by using Conway kinetic models and compared to those of a common electrochemical double layer capacitor. The self-discharge investigation is complemented by charge/discharge cycling and it is shown that processes affecting galvanostatic charge/discharge cycling and the self-discharge rate occurring at each electrode of an electrochemical capacitor are different but related to each other. The electrochemical capacitor containing hydroquinone in the electrolyte exhibits a much quicker self-discharge rate than that using a negative electrode based on grafted anthraquinone with a 50% decay of the cell voltage of the fully charged device in 0.6 and 6 h, respectively. The fast self-discharge of the former is due to the diffusion of benzoquinone molecules (formed at the positive electrode during charging) to the negative electrode, where they are reduced, causing a quick depolarization. The grafting of anthraquinone molecules on the carbon material of the negative electrode led to a much slower self-discharge, which nonetheless occurred, by the reaction of the reduced form of the grafted species with electrolyte species.

  2. Electrochemical reactivity of aromatic molecules at nanometer-sized surface domains: from Pt(hkl) single crystal electrodes to preferentially oriented platinum nanoparticles.

    PubMed

    Rodríguez-López, Margarita; Solla-Gullón, Jose; Herrero, Enrique; Tuñón, Paulino; Feliu, Juan M; Aldaz, Antonio; Carrasquillo, Arnaldo

    2010-02-24

    This manuscript compares the electrochemically controlled adsorption of hydroquinone-derived adlayers and their reductive desorption from nanometer-sized Pt(111) domains present on the surface (i) of model stepped single-crystal electrodes and (ii) of preferentially oriented Pt nanoparticles. The results obtained using a stepped surface series, i.e., Pt(S)[(n - 1)(111)x(110)], suggest that in the presence of 2 mM H(2)Q((aq)) the electrochemically detected desorption-adsorption process takes place selectively from ordered Pt(111) domains present as terraces, while being precluded at other available surface sites, i.e., Pt(110) steps, where adsorption takes place irreversibly. This domain-selective electroanalytical detection scheme is employed later to selectively monitor desorption-adsorption of hydroquinone-derived adlayers from ordered, nanometer-scaled Pt(111) domains on the surface of preferentially oriented Pt nanoparticles, confirming the existence of well-ordered (111) domains on the surface of the Pt nanoparticles. A good correlation is noted between the electrochemical behavior at well-ordered Pt(hkl) surfaces and at preferentially oriented Pt nanoparticles. Key learnings and potential applications are discussed. The results demonstrate the technical feasibility of performing domain-selective decapping of nanoparticles by handle of an externally controlled parameter, i.e., the applied potential.

  3. Acrylic resin injection method for blood vessel investigations.

    PubMed

    Suwa, Fumihiko; Uemura, Mamoru; Takemura, Akimichi; Toda, Isumi; Fang, Yi-Ru; Xu, Yuan Jin; Zhang, Zhi Yuan

    2013-01-01

    The injection of acrylic resin into vessels is an excellent method for macroscopically and microscopically observing their three-dimensional features. Conventional methods can be enhanced by removal of the polymerization inhibitor (hydroquinone) without requiring distillation, a consistent viscosity of polymerized resin, and a constant injection pressure and speed. As microvascular corrosion cast specimens are influenced by viscosity, pressure, and speed changes, injection into different specimens yields varying results. We devised a method to reduce those problems. Sodium hydroxide was used to remove hydroquinone from commercial methylmethacrylate. The solid polymer and the liquid monomer were mixed using a 1 : 9 ratio (low-viscosity acrylic resin, 9.07 ± 0.52 mPa•s) or a 3:7 ratio (high-viscosity resin, 1036.33 ± 144.02 mPa•s). To polymerize the acrylic resin for injection, a polymerization promoter (1.0% benzoyl peroxide) was mixed with a polymerization initiator (0.5%, N, N-dimethylaniline). The acrylic resins were injected using a precise syringe pump, with a 5-mL/min injection speed and 11.17 ± 1.60 mPa injection pressure (low-viscosity resin) and a 1-mL/min injection speed and 58.50 ± 5.75 mPa injection pressure (high-viscosity resin). Using the aforementioned conditions, scanning electron microscopy indicated that sufficient resin could be injected into the capillaries of the microvascular corrosion cast specimens.

  4. Electrogenerated poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) interfaces: toward the impedimetric detection of lectins.

    PubMed

    Gondran, Chantal; Dubois, Marie-Pierre; Fort, Sébastien; Cosnier, Serge

    2013-01-01

    This paper reports on the impedimetric transduction of binding reaction between polymerized saccharides and target lectins. The controlled potential electro-oxidation of pyrrole-lactosyl and pyrrole-3'-sialyllactosyl at 0.95 V vs. Ag/AgCl, provides thin and reproducible poly(pyrrole-saccharide) films. The affinity binding of two lectins: Arachis hypogaea, (PNA) and Maackia amurensis (MAA) onto poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) electrodes, was demonstrated by cyclic voltammetry in presence of ruthenium hexamine and hydroquinone. In addition, rotating disk experiments were carried out to determine the permeability of both polypyrrole films and its evolution after incubating with lectin target. Finally, the possibility of using the poly(pyrrole-lactosyl) or poly(pyrrole-3'-siallyllactosyl) films for the impedimetric transduction of the lectin binding reaction, was investigated with hydroquinone (2 × 10(-3) mol L(-1)) as a redox probe in phosphate buffer. The resulting impedance spectra were interpreted and modeled as an equivalent circuit indicating that charge transfer resistance (R ct) and relaxation frequency (f°) parameters are sensitive to the lectin binding. R ct increases from 77 to 97 Ω cm(2) for PNA binding and from 93 to 131 Ω cm(2) for MAA binding. In parallel, f° decreases from 276 to 222 Hz for PNA binding and from 223 to 131 Hz for MAA binding. This evolution of both parameters reflects the steric hindrances generated by the immobilized lectins towards the permeation of the redox probe.

  5. Engineered nanomaterial transformation under oxidative environmental conditions: Development of an in vitro biomimetic assay

    PubMed Central

    Metz, Kevin M.; Mangham, Andrew N.; Bierman, Matthew J.; Jin, Song; Hamers, Robert J.; Pedersen, Joel A.

    2013-01-01

    Once released into the environment, engineered nanomaterials may be transformed by microbially mediated redox processes altering their toxicity and fate. Little information currently exists on engineered nanomaterial transformation under environmentally relevant conditions. Here, we report the development of an in vitro biomimetic assay for investigation of nanomaterial transformation under simulated oxidative environmental conditions. The assay is based on the extracellular hydroquinone-driven Fenton’s reaction used by lignolytic fungi. We demonstrate the utility of the assay using CdSecore/ZnSshell quantum dots (QDs) functionalized with poly(ethylene glycol). QD transformation was assessed by UV-Visible spectroscopy, inductively-coupled plasma-optical emission spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX). QDs were readily degraded under simulated oxidative environmental conditions: the ZnS shell eroded and cadmium was released from the QD core. TEM, electron diffraction analysis and EDX of transformed QDs revealed formation of amorphous Se aggregates. The biomimetic hydroquinone-driven Fenton’s reaction degraded QDs to a larger extent than did H2O2 and classical Fenton’s reagent (H2O2 + Fe2+). This assay provides a new method to characterize transformations of nanoscale materials expected to occur under oxidative environmental conditions. PMID:19350941

  6. Screening of Toxic Effects of Bisphenol A and Products of Its Degradation: Zebrafish (Danio rerio) Embryo Test and Molecular Docking.

    PubMed

    Makarova, Katerina; Siudem, Pawel; Zawada, Katarzyna; Kurkowiak, Justyna

    2016-10-01

    Bisphenol A (BPA) acts as an endocrine-disrupting compound even at a low concentration. Degradation of BPA could lead to the formation of toxic products. In this study, we compare the toxicity of BPA and seven intermediate products of its degradation. The accuracy of three molecular docking programs (Surflex, Autodock, and Autodock Vina) in predicting the binding affinities of selected compounds to human (ERα, ERβ, and ERRγ) and zebrafish (ERα, ERRγA, and ERRγB) estrogen and estrogen-related receptors was evaluated. The docking experiments showed that 4-isopropylphenol could have similar toxicity to that of BPA due to its high affinity to ERRγ and ERRγB and high octanol-water partitioning coefficient. The least toxic compounds were hydroquinone and phenol. Those compounds as well as BPA were screened in the zebrafish (Danio rerio) embryo test. 4-isopropylphenol had the strongest toxic effect on zebrafish embryos and caused 100% lethality shortly after exposure. BPA caused the delay in development, multiple deformations, and low heartbeats (30 bps), whereas hydroquinone had no impact on the development of the zebrafish embryo. Thus, the results of zebrafish screening are in good agreement with our docking experiment. The molecular docking could be used to screen the toxicity of other xenoestrogens and their products of degradation.

  7. Oxidative stress response of Mycosphaerella fijiensis, the causal agent of black leaf streak disease in banana plants, to hydrogen peroxide and paraquat.

    PubMed

    Beltrán-García, Miguel J; Manzo-Sanchez, Gilberto; Guzmán-González, Salvador; Arias-Castro, Carlos; Rodríguez-Mendiola, Martha; Avila-Miranda, Martin; Ogura, Tetsuya

    2009-07-01

    Mycosphaerella fijiensis causes black leaf streak disease in banana and plantain. This fungus is usually attacked by reactive oxygen species secreted by the plant or during exposure to fungicide, however, little is known about the antioxidant response of the fungus. In this study, mycelia were observed to totally decompose 30 mmol/L of hydrogen peroxide (H2O2) within 120 min, liberating oxygen bubbles, and also to survive in concentrations as high as 100 mmol/L H2O2. The oxidative stress responses to H2O2, paraquat, and hydroquinone were characterized in terms of the activities of catalase and superoxide dismutase (SOD). Two active catalase bands were seen in native PAGE induced by H2O2. Band I had monofunctional activity and band II had bifunctional catalase-peroxidase activity. Two isozymes of SOD, distinguishable by their cyanide sensitivity, were found; CuZnSOD was the main one. The combination of H2O2 and 3-aminotriazole reduced the accumulation of biomass up to 40% compared with exposure to H2O2 alone, suggesting that catalase is important for the rapid decomposition of H2O2 and has a direct bearing on cell viability. The results also suggest that the superoxide anion formed through the redox of paraquat and hydroquinone has a greater effect than H2O2 on the cellular viability of M. fijiensis.

  8. NiCu Alloy Nanoparticle-Loaded Carbon Nanofibers for Phenolic Biosensor Applications

    PubMed Central

    Li, Dawei; Lv, Pengfei; Zhu, Jiadeng; Lu, Yao; Chen, Chen; Zhang, Xiangwu; Wei, Qufu

    2015-01-01

    NiCu alloy nanoparticle-loaded carbon nanofibers (NiCuCNFs) were fabricated by a combination of electrospinning and carbonization methods. A series of characterizations, including SEM, TEM and XRD, were employed to study the NiCuCNFs. The as-prepared NiCuCNFs were then mixed with laccase (Lac) and Nafion to form a novel biosensor. NiCuCNFs successfully achieved the direct electron transfer of Lac. Cyclic voltammetry and linear sweep voltammetry were used to study the electrochemical properties of the biosensor. The finally prepared biosensor showed favorable electrocatalytic effects toward hydroquinone. The detection limit was 90 nM (S/N = 3), the sensitivity was 1.5 µA µM−1, the detection linear range was 4 × 10−7–2.37 × 10−6 M. In addition, this biosensor exhibited satisfactory repeatability, reproducibility, anti-interference properties and stability. Besides, the sensor achieved the detection of hydroquinone in lake water. PMID:26610505

  9. Self-discharge of electrochemical capacitors based on soluble or grafted quinone.

    PubMed

    Shul, Galyna; Bélanger, Daniel

    2016-07-28

    The self-discharge of hybrid electrochemical capacitors based on the redox activity of electrolyte additives or grafted species to the electrode material is investigated simultaneously for the cell and each individual electrode. Electrochemical capacitors using a redox-active electrolyte consisting in hydroquinone added to the electrolyte solution and a redox-active electrode based on anthraquinone-grafted carbon as a negative electrode are investigated. The results are analyzed by using Conway kinetic models and compared to those of a common electrochemical double layer capacitor. The self-discharge investigation is complemented by charge/discharge cycling and it is shown that processes affecting galvanostatic charge/discharge cycling and the self-discharge rate occurring at each electrode of an electrochemical capacitor are different but related to each other. The electrochemical capacitor containing hydroquinone in the electrolyte exhibits a much quicker self-discharge rate than that using a negative electrode based on grafted anthraquinone with a 50% decay of the cell voltage of the fully charged device in 0.6 and 6 h, respectively. The fast self-discharge of the former is due to the diffusion of benzoquinone molecules (formed at the positive electrode during charging) to the negative electrode, where they are reduced, causing a quick depolarization. The grafting of anthraquinone molecules on the carbon material of the negative electrode led to a much slower self-discharge, which nonetheless occurred, by the reaction of the reduced form of the grafted species with electrolyte species. PMID:27356866

  10. Diffusion studies of dihydroxybenzene isomers in water-alcohol systems.

    PubMed

    Codling, Dale J; Zheng, Gang; Stait-Gardner, Tim; Yang, Shu; Nilsson, Mathias; Price, William S

    2013-03-01

    Nuclear magnetic resonance diffusion studies can be used to identify different compounds in a mixture. However, because the diffusion coefficient is primarily dependent on the effective hydrodynamic radius, it is particularly difficult to resolve compounds with similar size and structure, such as isomers, on the basis of diffusion. Differential solution interactions between species in certain solutions can afford possibilities for separation. In the present study, the self-diffusion of the three isomers of dihydroxybenzene (i.e., (1,2-) catechol, (1,3-) resorcinol, and (1,4-) hydroquinone) was studied in water, aqueous monohydric alcohols (i.e., ethanol, 1-propanol, tert-butanol), and aqueous ethylene glycol. These systems allowed the effects of isomerism and differential solvent interactions on diffusion to be examined. It was found that, while in aqueous solution these isomers had the same diffusion coefficient, in water-monohydric alcohol systems the diffusion coefficient of catechol differed from those of resorcinol and hydroquinone. The separation was found to increase at higher concentrations of monohydric alcohols. The underlying chemical reasons for these differences were investigated.

  11. Secondary metabolites from Ganoderma.

    PubMed

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites.

  12. Adsorption behaviors of some phenolic compounds onto high specific area activated carbon cloth.

    PubMed

    Ayranci, Erol; Duman, Osman

    2005-09-30

    Adsorption of phenol, hydroquinone, m-cresol, p-cresol and p-nitrophenol from aqueous solutions onto high specific area activated carbon cloth has been studied. The effect of ionization on adsorption of these ionizable phenolic compounds was examined by studying the adsorption from acidic, basic and natural pH solutions. Kinetics of adsorption was followed by in situ UV spectroscopy over a period of 90 min. First-order rate law was found to be valid for the kinetics of adsorption processes and the rate constants were determined. The highest rate constants were obtained for the adsorption from solutions at the natural pH. The lowest rate constants were observed in basic solutions. The rate constants decreased in the order p-nitrophenol approximately m-cresol>p-cresol>hydroquinone approximately phenol. Adsorption isotherms were derived at 30 degrees C and the isotherm data were treated according to Langmuir, Freundlich and Tempkin isotherm equations. The goodness of fit of experimental data to these isotherm equations was tested and the parameters of equations were determined. The possible interactions of compounds with the carbon surface were discussed considering the charge of the surface and the possible ionization of compounds at acidic, basic and natural pH conditions. PMID:15941619

  13. Simultaneous separation and purification of (-)-epigallocatechin gallate and caffeine from tea extract by size exclusion effect on modified porous adsorption material.

    PubMed

    Zhang, Xiaofeng; Xu, Yi; Zhang, Qing; Cao, Kun; Mu, Xiuni

    2016-09-15

    A dual-task method for the simultaneous separation and purification of (-)-epigallocatechin gallate (EGCG) and caffeine (CAF) from crude extract of green tea was established by size exclusion effect onto hydroquinone modified porous adsorbents. The results showed that hydroquinone modified porous adsorbents P4 provided the best separation power due to it has more porous structure and phenolic hydroxyl group. The adsorption-desorption behaviors of EGCG and CAF onto P4 adsorbents were investigated. Adsorption kinetics of EGCG and CAF results showed that the adsorption followed the pseudo-second-order kinetic model. The results also indicated that the equilibrium adsorption data best fit the Langmuir model. Meanwhile, EGCG and CAF were separated successfully onto P4 adsorbents packed columns in a gradient eluent process, and P4 adsorbents exhibited the size exclusion effect for small molecules CAF. Based on the phenolic hydroxyl group and size exclusion effect of P4 adsorbents, the high purity EGCG and CAF were obtained with 40% (v/v) ethanol eluent successively. The process fulfilled the task of simultaneous separation and purification of EGCG and CAF, and proved to be a promising basis for preparations of difficult to obtain active components that have similar polarity and different sizes of molecules and derived from the same natural products.

  14. Isolation of Renewable Phenolics by Adsorption on Ultrastable Hydrophobic MIL-140 Metal-Organic Frameworks.

    PubMed

    Van de Voorde, Ben; Damasceno Borges, Daiane; Vermoortele, Frederik; Wouters, Robin; Bozbiyik, Belgin; Denayer, Joeri; Taulelle, Francis; Martineau, Charlotte; Serre, Christian; Maurin, Guillaume; De Vos, Dirk

    2015-09-21

    The isolation and separation of phenolic compounds from aqueous backgrounds is challenging and will gain in importance as we become more dependent on phenolics from lignocellulose-derived bio-oil to meet our needs for aromatic compounds. Herein, we show that highly stable and hydrophobic Zr metal-organic frameworks of the MIL-140 type are effective adsorbent materials for the separation of different phenolics and far outperform other classes of porous solids (silica, zeolites, carbons). The mechanism of the hydroquinone-catechol separation on MIL-140C was studied in detail by combining experimental results with computational techniques. Although the differences in adsorption enthalpy between catechol and hydroquinone are negligible, the selective uptake of catechol in MIL-140C is explained by its dense π-π stacking in the pores. The interplay of enthalpic and entropic effects allowed separation of a complex, five-compound phenol mixture through breakthrough over a MIL-140C column. Unlike many other metal-organic frameworks, MIL-140C is remarkably stable and maintained structure, porosity and performance after five adsorption-desorption cycles.

  15. Decomposition of gas-phase diphenylether at 473 K by electron beam generated plasma

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Ha; Hakoda, Teruyuki; Kojima, Takuji

    2003-03-01

    Decomposition of gas-phase diphenylether (DPE) in the order of several parts per million by volume (ppmv) was studied as a model compound of dioxin using a flow-type electron-beam reactor at an elevated temperature of 473 K. The ground state oxygen (3P) atoms played an important role in the decomposition of DPE resulting in the formation of 1,4-hydroquinone (HQ) as a major ring retaining product. The high yield of hydroquinone indicated that the breakage of ether bond (C-O) is important in the initial step of DPE decomposition. Ring cleavage products were CO and CO2, and NO2 was also produced from background N2-O2. The sum of the yields of HQ, CO2 and CO accounts for over 90% of the removed DPE. Hydroxyl radicals (OH) were less important in the dilute DPE decomposition at a high water content, and were mostly consumed by recombination reactions to form hydrogen peroxide. The smaller the initial DPE concentrations, the higher the decomposition efficiency and the lower the yields of primary products. NO scavenges oxygen atoms and decreases the DPE decomposition, while the addition of n-butane causes positive effect on the decomposition of DPE due to the several secondary radicals (HO2, alkyl and alkoxy radicals) produced during the decomposition of n-butane.

  16. Benzene toxicity: emphasis on cytosolic dihydrodiol dehydrogenases

    SciTech Connect

    Bolcsak, L.E.

    1982-01-01

    Blood dyscrasias such as leukopenia and anemia have been clearly identified as consequences of chronic benzene exposure. The metabolites, phenol, catechol, and hydroquinone produced inhibition of /sup 59/Fe uptake in mice which followed the same time course as that produced by benzene. The inhibitor of benzene oxidation, 3-amino-1,2,4-triazole, mitigated the inhibitory effects of benzene and phenol only. These data support the contention that benzene toxicity is mediated by a metabolite and suggest that the toxicity of phenol is a consequence of its metabolism to hydroquinone and that the route of metabolism to catechol may also contribute to the production of toxic metabolite(s). The properties of mouse liver cytosolic dihydrodiol dehydrogenases were examined. These enzymes catalyze the NADP/sup +/-dependent oxidation of trans-1,2-dihydro-1,2-dihydroxybenzene (BDD) to catechol, a possible toxic metabolite of benzene produced via this metabolic route. Four distinct dihydrodiol dehydrogenases (DD1, DD2, DD3, and DD4) were purified to apparent homogeneity as judged by SDS polyacrylamide gel electrophoresis and isoelectric focusing. DD1 appeared to be identical to the major ketone reductase and 17..beta..-hydroxysteroid dehydrogenase activity in the liver. DD2 exhibited aldehyde reductase activity. DD3 and DD4 oxidized 17..beta..-hydroxysteroids, but no carbonyl reductase activity was detected. These relationships between BDD dehydrogenases and carbonyl reductase and/or 17..beta..-hydroxysteroid dehydrogenase activities were supported by several lines of evidence.

  17. Multiple activation pathways of benzene leading to products with varying genotoxic characteristics

    SciTech Connect

    Glatt, H.; Ludewig, G.; Platt, K.L.; Klein, J.; Oesch, F. ); Padykula, R.; Berchtold, G.A. )

    1989-07-01

    Benzene and 13 potential metabolites were investigated for genotoxicity in Salmonella typhimurium and V79 Chinese hamster cells. In the presence of NADPH-fortified hepatic postmitochondrial fraction (S9 mix), benzene reverted his S. typhimurium strains. The effect was strongest in strain TA1535. Among the potential metabolites, only the trans-1,2-dihydrodiol, in the presence of S9 mix, and the diol epoxides, in the presence and absence of S9 mix, proved mutagenic in this strain. The anti-diol epoxide was more potent than the syndiastereomer. Both enantiomers of the anti-diastereomer showed similar activities. S9 mix did not appreciably affect the mutagenicity of the anti-diol epoxide. However, detoxification was observed when purified rat liver dihydrodiol dehydrogenase was used at concentrations comparable to that present in the liver. Elevated frequencies of micronucleated cells were observed after treatment with hydroquinone, 1,2,4-trihydroxybenzene, catechol, phenol, 1,2,3-trihydroxybenzene, and quinone. By far the most prominent effect in the whole study was the potent induction of gene mutations by quinone and hydroquinone. This unique and narrow spectrum of genotoxic activities differs from the broad spectrum observed with the antidiol epoxide, suggesting qualitative differences in their interaction with genetic material.

  18. Close correlation between heat shock response and cytotoxicity in Neurospora crassa treated with aliphatic alcohols and phenols

    SciTech Connect

    Meyer, U.; Schweim, P.; Fracella, F.; Rensing, L.

    1995-03-01

    In Neurospora crassa the aliphatic alcohols methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, ethylene glycol, glycerol, and allyl alcohol and the phenolic compounds phenol, hydroquinone, resorcinol, pyrogallol, phloroglucinol, sodium salicylate, and acetylsalicylic acid were analyzed with respect to their capacities to induce heat shock proteins (HSP) and to inhibit protein synthesis. Both the alcohols and phenols showed the greatest levels of HSP induction at concentrations which inhibited the overall protein synthesis by about 50%. The abilities of the different alcohols to induce the heat shock response are proportional to their lipophilicities: the lipophilic alcohol isobutanol is maximally inductive at about 0.6 M, whereas the least lipophilic alcohol, methanol, causes maximal induction at 5.7 M. The phenols, in general, show a higher capability to induce the heat shock response. The concentrations for maximal induction range between 25 mM (sodium salicylate) and 100 mM (resorcinol). Glycerol (4.1 M) shifted the concentration necessary for maximal HSP induction by hydroquinone from 50 to 200 mM. The results reveal that the induction of HSP occurs under conditions which considerably constrain cell metabolism. The heat shock response, therefore, does not represent a sensitive marker for toxicity tests but provides a good estimate for the extent of cell damage.

  19. Reducing capacities and redox potentials of humic substances extracted from sewage sludge.

    PubMed

    Yang, Zhen; Du, Mengchan; Jiang, Jie

    2016-02-01

    Humic substances (HS) are redox active organic materials that can be extracted from sewage sludge generated in wastewater treatment processes. Due to the poor understanding of reducing capacity, redox potentials and redox active functional groups of HS in sewage sludge, the potential contribution of sludge HS in transformation of wastewater contaminants is unclear. In the present study, the number of electrons donated or accepted by sewage sludge HS were quantified before and after reduction by iron compounds that possess different redox potentials and defined as the reducing capacity of the sewage sludge. In contrast to previous studies of soil and commercial humic acids (HA), reduced sludge HA showed a lower reducing capacity than that of native HA, which implies formation of semiquinone radicals since the semiquinone radical/hydroquinone pair has a much higher redox potential than the quinone/hydroquinone pair. It is novel that reducing capacities of sludge HA were determined in the redox potential range from -314 to 430 mV. The formation of semiquinone radicals formed during the reduction of quinone moieties in sludge HA is shown by three-dimensional excitation/emission matrix fluorescence spectroscopies information, increasing fluorescence intensities and blue-shifting of the excitation/emission peak of reduced sludge HA. Knowledge of sludge HS redox potentials and corresponding reducing capacities makes it possible to predict the transformation of redox active pollutants and facilitate manipulation and optimization of sludge loading wastewater treatment processes.

  20. Electroenzymatic reactions with oxygen on laccase-modified electrodes in anhydrous (pure) organic solvent.

    PubMed

    Yaropolov, A; Shleev, S; Zaitseva, E; Emnéus, J; Marko-Varga, G; Gorton, L

    2007-05-01

    The electroenzymatic reactions of Trametes hirsuta laccase in the pure organic solvent dimethyl sulfoxide (DMSO) have been investigated within the framework for potential use as a catalytic reaction scheme for oxygen reduction. The bioelectrochemical characteristics of laccase were investigated in two different ways: (i) by studying the electroreduction of oxygen in anhydrous DMSO via a direct electron transfer mechanism without proton donors and (ii) by doing the same experiments in the presence of laccase substrates, which display in pure organic solvents both the properties of electron donors as well as the properties of weak acids. The results obtained with laccase in anhydrous DMSO were compared with those obtained previously in aqueous buffer. It was shown that in the absence of proton donors under oxygenated conditions, formation of superoxide anion radicals is prevented at bare glassy carbon and graphite electrodes with adsorbed laccase. The influence of the time for drying the laccase solution at the electrode surface on the electroreduction of oxygen was studied. Investigating the electroenzymatic oxidation reaction of catechol and hydroquinone in DMSO reveals the formation of various intermediates of the substrates with different electrochemical activity under oxygenated conditions. The influence of the content of aqueous buffer in the organic solvent on the electrochemical behaviour of hydroquinone/1,4-benzoquinone couple was also studied.

  1. Development and validation of a fast chromatographic method for screening and quantification of legal and illegal skin whitening agents.

    PubMed

    Desmedt, B; Rogiers, V; Courselle, P; De Beer, J O; De Paepe, K; Deconinck, E

    2013-09-01

    During the last years, the EU market is flooded by illegal cosmetics via the Internet and a so-called "black market". Among these, skin-bleaching products represent an important group. They contain, according to the current European cosmetic legislation (Directive 76/768/EEC), a number of illegal active substances including hydroquinone, tretinoin and corticosteroids. These may provoke as well local as systemic toxic effects, being the reason for their banning from the EU market. To control this market there is a need for a fast screening method capable of detecting illegal ingredients in the wide variety of existing bleaching cosmetic formulations. In this paper the development and validation of an ultra high pressure liquid chromatographic (UHPLC) method is described. The proposed method makes use of a Waters Acquity BEH shield RP18 column with a gradient using 25 mM ammonium borate buffer (pH 10) and acetonitrile. This method is not only able to detect the major illegal (hydroquinone, tretinoin and six dermatologic active corticosteroids) and legal whitening agents, the latter having restrictions with respect to concentration and application (kojic acid, arbutin, nicotinamide and salicylic acid), but can also quantify these in a run time of 12 min. The method was successfully validated using the "total error" approach in accordance with the validation requirements of ISO-17025. During the validation a variety of cosmetic matrices including creams, lotions and soaps were taken into consideration. PMID:23708434

  2. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease.

    PubMed

    Tommonaro, Giuseppina; García-Font, Nuria; Vitale, Rosa Maria; Pejin, Boris; Iodice, Carmine; Cañadas, Sixta; Marco-Contelles, José; Oset-Gasque, María Jesús

    2016-10-21

    Avarol is a marine sesquiterpenoid hydroquinone, previously isolated from the marine sponge Dysidea avara Schmidt (Dictyoceratida), with antiinflammatory, antitumor, antioxidant, antiplatelet, anti-HIV, and antipsoriatic effects. Recent findings indicate that some thio-avarol derivatives exhibit acetylcholinesterase (AChE) inhibitory activity. The multiple pharmacological properties of avarol, thio-avarol and/or their derivatives prompted us to continue the in vitro screening, focusing on their AChE inhibitory and neuroprotective effects. Due to the complex nature of Alzheimer's disease (AD), there is a renewed search for new, non hepatotoxic anticholinesterasic compounds. This paper describes the synthesis and in vitro biological evaluation of avarol-3'-thiosalicylate (TAVA) and thiosalycil-prenyl-hydroquinones (TPHs), as non hepatotoxic anticholinesterasic agents, showing a good neuroprotective effect on the decreased viability of SHSY5Y human neuroblastoma cells induced by oligomycin A/rotenone and okadaic acid. A molecular modeling study was also undertaken on the most promising molecules within the series to elucidate their AChE binding modes and in particular the role played by the carboxylate group in enzyme inhibition. Among them, TPH4, bearing a geranylgeraniol substituent, is the most significant Electrophorus electricus AChE (EeAChE) inhibitor (IC50 = 6.77 ± 0.24 μM), also endowed with a moderate serum horse butyrylcholinesterase (eqBuChE) inhibitory activity, being also the least hepatotoxic and the best neuroprotective compound of the series. Thus, TPHs represents a new family of synthetic compounds, chemically related to the natural compound avarol, which has been discovered for the potential treatment of AD. Findings prove the relevance of TPHs as a new possible generation of competitive AChE inhibitors pointing out the importance of the salycilic substituents on the hydroquinone ring. Since these compounds do not belong to the class of

  3. Effects of soap-water wash on human epidermal penetration.

    PubMed

    Zhu, Hanjiang; Jung, Eui-Chang; Phuong, Christina; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Skin decontamination is a primary interventional method used to decrease dermal absorption of hazardous contaminants, including chemical warfare agents, pesticides and industrial pollutants. Soap and water wash, the most common and readily available decontamination system, may enhance percutaneous absorption through the "wash-in effect." To understand better the effect of soap-water wash on percutaneous penetration, and provide insight to improving skin decontamination methods, in vitro human epidermal penetration rates of four C(14) -labeled model chemicals (hydroquinone, clonidine, benzoic acid and paraoxon) were assayed using flow-through diffusion cells. Stratum corneum (SC) absorption rates of these chemicals at various hydration levels (0-295% of the dry SC weights) were determined and compared with the results of the epidermal penetration study to clarify the effect of SC hydration on skin permeability. Results showed accelerated penetration curves of benzoic acid and paraoxon after surface wash at 30 min postdosing. Thirty minutes after washing (60 min postdosing), penetration rates of hydroquinone and benzoic acid decreased due to reduced amounts of chemical on the skin surface and in the SC. At the end of the experiment (90 min postdosing), a soap-water wash resulted in lower hydroquinone penetration, greater paraoxon penetration and similar levels of benzoic acid and clonidine penetration compared to penetration levels in the non-wash groups. The observed wash-in effect agrees with the enhancement effect of SC hydration on the SC chemical absorption rate. These results suggest SC hydration derived from surface wash to be one cause of the wash-in effect. Further, the occurrence of a wash-in effect is dependent on chemical identity and elapsed time between exposure and onset of decontamination. By reducing chemical residue quantity on skin surface and in the SC reservoir, the soap-water wash may decrease the total quantity of chemical absorbed in the

  4. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer's disease.

    PubMed

    Tommonaro, Giuseppina; García-Font, Nuria; Vitale, Rosa Maria; Pejin, Boris; Iodice, Carmine; Cañadas, Sixta; Marco-Contelles, José; Oset-Gasque, María Jesús

    2016-10-21

    Avarol is a marine sesquiterpenoid hydroquinone, previously isolated from the marine sponge Dysidea avara Schmidt (Dictyoceratida), with antiinflammatory, antitumor, antioxidant, antiplatelet, anti-HIV, and antipsoriatic effects. Recent findings indicate that some thio-avarol derivatives exhibit acetylcholinesterase (AChE) inhibitory activity. The multiple pharmacological properties of avarol, thio-avarol and/or their derivatives prompted us to continue the in vitro screening, focusing on their AChE inhibitory and neuroprotective effects. Due to the complex nature of Alzheimer's disease (AD), there is a renewed search for new, non hepatotoxic anticholinesterasic compounds. This paper describes the synthesis and in vitro biological evaluation of avarol-3'-thiosalicylate (TAVA) and thiosalycil-prenyl-hydroquinones (TPHs), as non hepatotoxic anticholinesterasic agents, showing a good neuroprotective effect on the decreased viability of SHSY5Y human neuroblastoma cells induced by oligomycin A/rotenone and okadaic acid. A molecular modeling study was also undertaken on the most promising molecules within the series to elucidate their AChE binding modes and in particular the role played by the carboxylate group in enzyme inhibition. Among them, TPH4, bearing a geranylgeraniol substituent, is the most significant Electrophorus electricus AChE (EeAChE) inhibitor (IC50 = 6.77 ± 0.24 μM), also endowed with a moderate serum horse butyrylcholinesterase (eqBuChE) inhibitory activity, being also the least hepatotoxic and the best neuroprotective compound of the series. Thus, TPHs represents a new family of synthetic compounds, chemically related to the natural compound avarol, which has been discovered for the potential treatment of AD. Findings prove the relevance of TPHs as a new possible generation of competitive AChE inhibitors pointing out the importance of the salycilic substituents on the hydroquinone ring. Since these compounds do not belong to the class of

  5. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    SciTech Connect

    Shah, Kishor Kr.; Nandi, Mithun; Talukdar, Anup K.

    2015-06-15

    the synthesized samples were investigated with respect to hydroxylation of phenol, in which catechol and hydroquinone were found to be the major products. It is observed that under all reaction conditions catechol selectivity was higher than the hydroquinone selectivity. In-MFI zeolites were successfully synthesized and were used as an effective catalyst for the hydroxylation of phenol to synthesize catechol and hydroquinone as the major product.

  6. DT-diaphorase protects cells from the hypoxic cytotoxicity of indoloquinone EO9.

    PubMed Central

    Plumb, J. A.; Gerritsen, M.; Workman, P.

    1994-01-01

    associated with increased toxicity in air, it appears to reduce the cytotoxicity of EO9 in hypoxic conditions. This suggests either that the one-electron reduction product of EO9 metabolism, the semiquinone, is more toxic than the two-electron reduction product, the hydroquinone, or that the hydroquinone is not cytotoxic and aerobic toxicity is due to the transient appearance of the semiquinone upon back oxidation of the hydroquinone. PMID:7526885

  7. Effects of soap-water wash on human epidermal penetration.

    PubMed

    Zhu, Hanjiang; Jung, Eui-Chang; Phuong, Christina; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Skin decontamination is a primary interventional method used to decrease dermal absorption of hazardous contaminants, including chemical warfare agents, pesticides and industrial pollutants. Soap and water wash, the most common and readily available decontamination system, may enhance percutaneous absorption through the "wash-in effect." To understand better the effect of soap-water wash on percutaneous penetration, and provide insight to improving skin decontamination methods, in vitro human epidermal penetration rates of four C(14) -labeled model chemicals (hydroquinone, clonidine, benzoic acid and paraoxon) were assayed using flow-through diffusion cells. Stratum corneum (SC) absorption rates of these chemicals at various hydration levels (0-295% of the dry SC weights) were determined and compared with the results of the epidermal penetration study to clarify the effect of SC hydration on skin permeability. Results showed accelerated penetration curves of benzoic acid and paraoxon after surface wash at 30 min postdosing. Thirty minutes after washing (60 min postdosing), penetration rates of hydroquinone and benzoic acid decreased due to reduced amounts of chemical on the skin surface and in the SC. At the end of the experiment (90 min postdosing), a soap-water wash resulted in lower hydroquinone penetration, greater paraoxon penetration and similar levels of benzoic acid and clonidine penetration compared to penetration levels in the non-wash groups. The observed wash-in effect agrees with the enhancement effect of SC hydration on the SC chemical absorption rate. These results suggest SC hydration derived from surface wash to be one cause of the wash-in effect. Further, the occurrence of a wash-in effect is dependent on chemical identity and elapsed time between exposure and onset of decontamination. By reducing chemical residue quantity on skin surface and in the SC reservoir, the soap-water wash may decrease the total quantity of chemical absorbed in the

  8. Meroterpenoids from a Tropical Dysidea sp. Sponge.

    PubMed

    Kim, Chang-Kwon; Woo, Jung-Kyun; Kim, Seong-Hwan; Cho, Eunji; Lee, Yeon-Ju; Lee, Hyi-Seung; Sim, Chung J; Oh, Dong-Chan; Oh, Ki-Bong; Shin, Jongheon

    2015-11-25

    Six new meroterpenoids (1-6), along with arenarol (7), a known rearranged drimane sesquiterpene hydroquinone, were isolated from a Dysidea sp. sponge collected from the Federated States of Micronesia. On the basis of the results of combined spectroscopic analysis, compound 1 was determined to be the cyclic ether derivative of 7, whereas 2 and 3 were assigned as the corresponding sesquiterpene quinones containing taurine-derived substituents. Compounds 4-6 possess a novel tetracyclic skeleton formed by a direct linkage between the quinone and sesquiterpene moieties. The configurations of these new compounds were assigned on the basis of combined NOESY and ECD analysis. These compounds exhibited cytotoxic and antimicrobial activities and weak inhibition against Na(+)/K(+)-ATPase. PMID:26551342

  9. Periorbital Hyperpigmentation: A Comprehensive Review

    PubMed Central

    Sarkar, Rashmi; Ranjan, Rashmi; Garg, Shilpa; Garg, Vijay K.; Sonthalia, Sidharth; Bansal, Shivani

    2016-01-01

    Periorbital hyperpigmentation is a commonly encountered condition. There is very little scientific data available on the clinical profile and pathogenesis of periorbital hyperpigmentation. Periorbital hyperpigmentation is caused by various exogenous and endogenous factors. The causative factors include genetic or heredity, excessive pigmentation, postinflammatory hyperpigmentation secondary to atopic and allergic contact dermatitis, periorbital edema, excessive vascularity, shadowing due to skin laxity and tear trough associated with aging. There are a number of treatment options available for periorbital hyperpigmentation. Among the available alternatives to treat dark circles are topical depigmenting agents, such as hydroquinone, kojic acid, azelaic acid, and topical retinoic acid, and physical therapies, such as chemical peels, surgical corrections, and laser therapy, most of which are tried scientifically for melasma, another common condition of hyperpigmentation that occurs on the face. The aim of treatment should be to identify and treat the primary cause of hyperpigmentation as well as its contributing factors. PMID:26962392

  10. Exogenous Ochronosis

    PubMed Central

    Bhattar, Prachi A; Zawar, Vijay P; Godse, Kiran V; Patil, Sharmila P; Nadkarni, Nitin J; Gautam, Manjyot M

    2015-01-01

    Exogenous ochronosis (EO) is a cutaneous disorder characterized by blue-black pigmentation resulting as a complication of long-term application of skin-lightening creams containing hydroquinone but may also occur due to topical contact with phenol or resorcinol in dark-skinned individuals. It can also occur following the use of systemic antimalarials such as quinine. EO is clinically and histologically similar to its endogenous counterpart viz., alkaptonuria, which, however, exhibits systemic effects and is an inherited disorder. Dermoscopy and in vivo skin reflectance confocal microscopy are noninvasive in vivo diagnostic tools. It is very difficult to treat EO, a cosmetically disfiguring and troubling disorder with disappointing treatment options. PMID:26677264

  11. Experimental understanding of the viscosity reduction ability of TLCPs with different PEs

    NASA Astrophysics Data System (ADS)

    Tang, Youhong; Zuo, Min; Gao, Ping

    2014-08-01

    In this study, two thermotropic liquid crystalline polyesters (TLCPs) synthesized by polycondensation of p-hydroxybenzoic acid /hydroquinone/ poly dicarboxylic acid were used as viscosity reduction agents for polyethylene (PE). The TLCPs had different thermal, rheological and other physical properties that were quantitatively characterized. The two TLCPs were blended with high density PE (HDPE) and high molecular mass PE (HMMPE) by simple twin screw extrusion under the same weight ratio of 1.0 wt% and were each rheologically characterized at 190°C. The TLCPs acted as processing modifiers for the PEs and the bulk viscosity of the blends decreased dramatically. However, the viscosity reduction ability was not identical: one TLCP had obviously higher viscosity reduction ability on the HDPE, with a maximum viscosity reduction ratio of 68.1%, whereas the other TLCP had higher viscosity reduction ability on the HMMPE, with a maximum viscosity reduction ratio of 98.7%. Proposed explanations for these differences are evaluated.

  12. A novel catabolic activity of Pseudomonas veronii in biotransformation of pentachlorophenol.

    PubMed

    Nam, I-H; Chang, Y-S; Hong, H-B; Lee, Y-E

    2003-08-01

    Pseudomonas veronii PH-05, a bacterial strain capable of transforming pentachlorophenol (PCP) to a metabolic intermediate, was isolated by selective enrichment of soil samples from a timber storage yard. Strain PH-05 was shown to be able to grow using PCP as the sole source of carbon and energy. GC-MS analysis showed that the metabolic intermediate was tetrachlorocatechol, which inhibited the growth of this strain. The formation of tetrachlorocatechol during biotransformation was monitored, and its inhibitory effect on growth of strain PH-05 was analyzed at a range of concentrations. The catabolic activity of the isolated strain differs from that of other PCP-degrading bacteria, which metabolize PCP through a chlorinated hydroquinone intermediate. PMID:12883877

  13. Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4.

    PubMed

    Zhou, Yu-Yang; Chen, Dong-Zhi; Zhu, Run-Ye; Chen, Jian-Meng

    2011-06-01

    The efficient tetrahydrofuran (THF)-degrading bacterium, Pseudomonas oleovorans DT4 was used to investigate the substrate interactions during the aerobic biotransformation of THF and BTEX mixtures. Benzene and toluene could be utilized as growth substrates by DT4, whereas cometabolism of m-xylene, p-xylene and ethylbenzene occurred with THF. In binary mixtures, THF degradation was delayed by xylene, ethylbenzene, toluene and benzene in descending order of inhibitory effects. Conversely, benzene (or toluene) degradation was greatly enhanced by THF leading to a higher degradation rate of 39.68 mg/(h g dry weight) and a shorter complete degradation time about 21 h, possibly because THF acted as an "energy generator". Additionally, the induction experiments suggested that BTEX and THF degradation was initiated by independent and inducible enzymes. The transient intermediate hydroquinone was detected in benzene biodegradation with THF while catechol in the process without THF, suggesting that P. oleovorans DT4 possessed two distinguished benzene pathways. PMID:21511464

  14. Electrochemical and Optical Evaluation of Noble Metal-and Carbon-ITO Hybrid Optically Transparent Electrodes

    SciTech Connect

    Zudans, Imants; Paddock, Jean R.; Kuramitz, Hideki; Maghasi, Anne T.; Wansapura, Chamika M.; Conklin, Sean D.; Kaval, Necati; Shtoyko, Tanya; Monk, David J.; Bryan, Samuel A.; Hubler, Timothy L.; Richardson, John N.; Seliskar, Carl J.; Heineman, William R.

    2004-04-15

    Optically transparent hybrid electrodes were constructed by sputtering or thermally evaporating layers of varying thickness of Au, Pd, Pt, or C onto an existing conductive indium-tin oxide (ITO) layer on glass. These electrodes were characterized using UV-Vis spectroscopy and cyclic voltammetry; redox probes examined were potassium ferricyanide, tris-(2, 2'-bipyridyl)ruthenium(II) chloride, hydroquinone, and para-aminophenol (PAP). Each type of hybrid was evaluated and compared with other hybrids, as well as with bare ITO electrodes and commercially available Au, Pt, and glassy carbon disk electrodes. Our results indicated that these hybrid electrodes are reasonably robust, easy to prepare, and extend the capabilities of bare ITO surfaces with respect to the electrochemical response (especially for organic redox probes), while giving up little in the way of optical transparency. Because of these characteristics, hybrid electrodes should be especially suited to many spectroelectrochemical applications.

  15. The Synthesis of Diquinone and Dihydroquinone Derivatives of Calix[4]arene and Electrochemical Characterization on Au(111) surface.

    PubMed

    Genorio, Boštjan

    2016-01-01

    Several new electroactive diquinone and dihydroquinone derivatives of calix[4]arene bearing anchor functional groups were designed, synthesized and characterized. A method for selective protection of the hydroquinone -OH groups with trimethylsilyl groups (TMS) either on lower-rim or on upper-rim was developed. Four selected molecules - with sulfide anchor groups and carboxylic anchor groups - were adsorbed onto Au(111) single crystal surface using ex-situ and insitu self-assembly methods. Adsorbed molecules were then electrochemically probed with cyclic voltammetry. All adsorbed molecules showed redox response which changed during cycling. After conditioning CVs stabilized and showed two distinct current peaks for all molecules. Synthesized and electrochemically probed molecules are of interest to: Li-ion batteries (as cathode materials and overcharge protection), beyond Li-ion batteries and redox-flow batteries. PMID:27640377

  16. Melasma update

    PubMed Central

    Sarkar, Rashmi; Arora, Pooja; Garg, Vijay Kumar; Sonthalia, Sidharth; Gokhale, Narendra

    2014-01-01

    Melasma is an acquired pigmentary disorder characterized by symmetrical hyperpigmented macules on the face. Its pathogenesis is complex and involves the interplay of various factors such as genetic predisposition, ultraviolet radiation, hormonal factors, and drugs. An insight into the pathogenesis is important to devise treatment modalities that accurately target the disease process and prevent relapses. Hydroquinone remains the gold standard of treatment though many newer drugs, especially plant extracts, have been developed in the last few years. In this article, we review the pathogenetic factors involved in melasma. We also describe the newer treatment options available and their efficacy. We carried out a PubMed search using the following terms “melasma, pathogenesis, etiology, diagnosis, treatment” and have included data of the last few years. PMID:25396123

  17. Purification and partial characterization of lignin peroxidase from Acinetobacter calcoaceticus NCIM 2890 and its application in decolorization of textile dyes.

    PubMed

    Ghodake, Gajanan S; Kalme, Satish D; Jadhav, Jyoti P; Govindwar, Sanjay P

    2009-01-01

    Lignin peroxidase was purified (72-fold) from Acinetobacter calcoaceticus NCIM 2890. The purified lignin peroxidase (55-65 kDa) showed dimeric nature. The maximum enzyme activity was observed at pH 1.0, between a broad temperature range of 50 and 70 degrees C, at H2O2 concentration (40 mM) and the substrate concentration (n-propanol, 100 mM). Purified lignin peroxidase was able to oxidize a variety of substrates including Mn2+, tryptophan, mimosine, L-Dopa, hydroquinone, xylidine, n-propanol, veratryl alcohol, and ten textile dyes of various groups indicating as a versatile peroxidase. Most of the dyes decolorized up to 90%. Tryptophan stabilizes the lignin peroxidase activity during decolorization of dyes.

  18. The unravelling of the complex pattern of tyrosinase inhibition

    PubMed Central

    Deri, Batel; Kanteev, Margarita; Goldfeder, Mor; Lecina, Daniel; Guallar, Victor; Adir, Noam; Fishman, Ayelet

    2016-01-01

    Tyrosinases are responsible for melanin formation in all life domains. Tyrosinase inhibitors are used for the prevention of severe skin diseases, in skin-whitening creams and to avoid fruit browning, however continued use of many such inhibitors is considered unsafe. In this study we provide conclusive evidence of the inhibition mechanism of two well studied tyrosinase inhibitors, KA (kojic acid) and HQ (hydroquinone), which are extensively used in hyperpigmentation treatment. KA is reported in the literature with contradicting inhibition mechanisms, while HQ is described as both a tyrosinase inhibitor and a substrate. By visualization of KA and HQ in the active site of TyrBm crystals, together with molecular modeling, binding constant analysis and kinetic experiments, we have elucidated their mechanisms of inhibition, which was ambiguous for both inhibitors. We confirm that while KA acts as a mixed inhibitor, HQ can act both as a TyrBm substrate and as an inhibitor. PMID:27725765

  19. Rapid endoglin determination in serum samples using an amperometric magneto-actuated disposable immunosensing platform.

    PubMed

    Torrente-Rodríguez, Rebeca M; Campuzano, Susana; Ruiz-Valdepeñas-Montiel, Víctor; Pedrero, María; Fernández-Aceñero, M Jesús; Barderas, Rodrigo; Pingarrón, José M

    2016-09-10

    A sensitive and rapid method for the determination of the clinically relevant biomarker human endoglin (CD105) in serum samples is presented, involving a magneto-actuated immunoassay and amperometric detection at disposable screen-printed carbon electrodes (SPCEs). Micro-sized magnetic particles were modified with a specific antibody to selectively capture the target protein which was further sandwiched with a secondary HRP-labeled antibody. The immunocomplexes attached to the magnetic carriers were amperometrically detected at SPCEs using the hydroquinone (HQ)/H2O2/HRP system. The magneto-actuated immunosensing platform was able to detect 5 pmoles of endoglin (in 25μL of sample, 0.2μM) in 30min providing statistically similar results to those obtained using a commercial ELISA kit for the determination of endogenous content of endoglin in human serum samples. PMID:27448312

  20. Preparation of C{sub 60} charge transfer complexes with organic donor molecules and alkali doping

    SciTech Connect

    Otsuka, A.; Saito, G.; Hirate, S.; Pac, S.; Ishida, T.; Zakhidov, A.A.; Yakushi, K.

    1998-07-01

    Solid charge transfer (CT) complexes of C{sub 60} with TseC{sub 1}-TTF, EDT-TTF, EOET-TTF, and TDAP (1, 3, 6, 8-tetrakis(dimethylamino)pyrene) were newly prepared. All the obtained black crystals were proved to be neutral despite their rather strong electron donor ability. Lattice parameters of them except for EOET-TTF complex were determined together with those of HMTTeF{center_dot}C{sub 60}, which had been reported with different values. Rubidium doping under a mild condition was examined on the complexes of TDAP, EOET-TTF, HMTTeF, BEDT-TTF, hydroquinone and ferrocene to search for the superconductors of new crystal and electronic structures. Among them, the rubidium-doped ferrocene complex easily showed an apparent superconducting signal in SQUID magnetization measurements. The doping effect on these CT complexes is compared to that on OMTTF complex.

  1. Structure of a bacterial homologue of vitamin K epoxide reductase

    SciTech Connect

    Li, Weikai; Schulman, Sol; Dutton, Rachel J.; Boyd, Dana; Beckwith, Jon; Rapoport, Tom A.

    2010-03-19

    Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain {gamma}-carboxylation of many blood coagulation factors. Here, we report the 3.6 {angstrom} crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.

  2. A novel cream formulation containing nicotinamide 4%, arbutin 3%, bisabolol 1%, and retinaldehyde 0.05% for treatment of epidermal melasma.

    PubMed

    Crocco, Elisete I; Veasey, John V; Boin, Maria F; Lellis, Rute F; Alves, Renata O

    2015-11-01

    Epidermal melasma is a common hyperpigmentation disorder that can be challenging to treat. Although current treatment options for melasma are limited, topical skin-lightening preparations have widely been used as alternatives to hydroquinone. In this prospective, single-arm, open-label study, treatment of epidermal melasma with a novel cream formulation containing nicotinamide 4%, arbutin 3%, bisabolol 1%, and retinaldehyde 0.05% was associated with reductions in Melasma Area and Severity Index (MASI) scores as well as total melasma surface area as measured by medical imaging software. Treatment outcomes including tolerance and safety profiles as well as patient satisfaction and product appreciation showed this novel cosmetic compound may be valuable in the treatment of epidermal melasma.

  3. Ecofriendly syntheses of phenothiazones and related structures facilitated by laccase – A comparative study

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2016-07-06

    The biocatalytic synthesis of phenothiazones and related compounds has been achieved in an aqueous system under mild conditions facilitated by laccase oxidation. It was found that by coupling 2-aminothiophenol directly with 1,4-quinones, the product yields could be significantly increased compared to generating the 1,4-quinones in situ from the corresponding hydroquinones via laccase oxidation. However, laccase still proved to be pivotal for achieving highest product yields by catalyzing the final oxidation step. Furthermore, a difference in reactivity of aromatic and aliphatic amines toward 1,4-naphthoquinone is observed. Furthermore, this study provides a sustainable approach to the synthesis of a biologically important classmore » of compounds.« less

  4. Flow-injection determination of trace amounts of dopamine by chemiluminescence detection.

    PubMed

    Zhang, L; Teshima, N; Hasebe, T; Kurihara, M; Kawashima, T

    1999-10-01

    A flow-injection analysis (FIA) for the determination of dopamine has been developed. The method is based on the inhibition effect of dopamine on the iron(II)-induced chemiluminescence (CL) of 10,10'-dimethyl-9,9'-biacridinium dinitrate (lucigenin). The presence of a non-ionic surfactant, polyoxyethylene (23) lauryl ether (Brij 35), caused an increase in the inhibition effect. The present method allows the determination of dopamine over the range 1x10(-8)-2x10(-7) mol dm(-3). The relative standard deviation was 0.7% for eight determinations of 6x10(-8) mol dm(-3) dopamine. The detection limit (S/N=3) was 2x10(-9) mol dm(-3) with the sampling rate of 40 samples h(-1). The effect of other catecholamines and compounds of similar structure on the lucigenin CL reaction was studied: quinone, hydroquinone, norepinephrine, pyrocatechol and l-dopa suppressed the CL intensity.

  5. Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe.

    PubMed

    Desmedt, B; Courselle, P; De Beer, J O; Rogiers, V; Grosber, M; Deconinck, E; De Paepe, K

    2016-06-01

    Lightening skin tone is an ancient and well-documented practice, and remains common practice among many cultures. Whitening agents such as corticosteroids, tretinoin and hydroquinone are medically applied to effectively lighten the skin tone of hyperpigmented lesions. However, when these agents are used cosmetically, they are associated with a variety of side-effect. Alternative agents, such as arbutin and its derivatives kojic acid and nicotinamide have been subsequently developed for cosmetic purposes. Unfortunately, some cosmetics contain whitening agents that are banned for use in cosmetic products. This article provides an overview of the mode of action and potential side-effects of cosmetic legal and illegal whitening agents, and the pattern of use of these types of products. Finally, an EU analysis of the health problems due to the presence of illegal products on the market is summarized.

  6. Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte.

    PubMed

    Shinde, Pragati A; Lokhande, Vaibhav C; Chodankar, Nilesh R; Ji, Taeksoo; Kim, Jin Hyeok; Lokhande, Chandrakant D

    2016-12-01

    To achieve the highest electrochemical performance for supercapacitor, it is very essential to find out a suitable pair of an active electrode material and an electrolyte. In the present work, a simple approach is employed to enhance the supercapacitor performance of WO3 thin film. The WO3 thin film is prepared by a simple and cost effective chemical bath deposition method and its electrochemical performance is tested in conventional (H2SO4) and redox additive [H2SO4+hydroquinone (HQ)] electrolytes. Two-fold increment in electrochemical performance for WO3 thin film is observed in redox additive aqueous electrolyte compared to conventional electrolyte. WO3 thin film showed maximum specific capacitance of 725Fg(-1), energy density of 25.18Whkg(-1) at current density of 7mAcm(-2) with better cycling stability in redox electrolyte. This strategy provides the versatile way for designing the high performance energy storage devices.

  7. [Response of N transformation related soil enzyme activities to inhibitor applications].

    PubMed

    Chen, Lijun; Wu, Zhijie; Jiang, Yong; Zhou, Likai

    2002-09-01

    With an aerobic incubation test, this paper studied the response of soil urease, nitrate reductase, nitrite reductase, and hydroxylamine reductase to urease inhibitor hydroquinone (HQ) applied in combination with nitrification inhibitor encapsulated calcium carbide (HQ + ECC) or dicyandiamide (HQ + DCD). The results showed that HQ + DCD could inhibit urease activity and increase activities of nitrate reductase, nitrite reductase, and hydroxylamine reductase significantly in comparison with CK, HQ and HQ + ECC. Under the condition of our test, there existed a significant relationship between soil urease, nitrate reductase, nitrite reductase, and hydroxylamine reductase activities and soil NH4+ and NO3- contents, NH3 volatilization and N2O emission rate, and regression analysis indicated that there were significantly positive relationships between soil urease, nitrite reductase and hydroxylamine reductase activities.

  8. Widespread use of toxic skin lightening compounds: medical and psychosocial aspects.

    PubMed

    Ladizinski, Barry; Mistry, Nisha; Kundu, Roopal V

    2011-01-01

    Hyperpigmentation disorders and skin lightening treatments have a significant impact on the dermatologic, physiologic, psychologic, economic, social, and cultural aspects of life. Skin lightening compounds, such as hydroquinone and topical corticosteroids, are often used to treat hyperpigmentation disorders, such as melasma, or lighten skin for cosmetic purposes. Despite their established effectiveness, a multitude of dermatologic and systemic complications have been associated with these agents. Regulatory agencies have also recognized the adverse effects of skin lighteners and many countries around the world now forbid the production and sale of these compounds, although this prohibition has not significantly curtailed distribution. Dermatologists and users of cosmetic products should be aware of the various components in bleaching compounds, their potential adverse effects, and alternative options for skin lightening.

  9. Benzene metabolite levels in blood and bone marrow of B6C3F{sub 1} mice after low-level exposure

    SciTech Connect

    Bechtold, W.E.; Strunk, M.R.; Thornton-Manning, J.R.

    1995-12-01

    Studies at the Inhalation Toxicology Research Institute (ITRI) have explored the species-specific uptake and metabolism of benzene. Results have shown that metabolism is dependent on both dose and route of administration. Of particular interest were shifts in the major metabolic pathways as a function of exposure concentration. In these studies, B6C3F{sub 1} mice were exposed to increasing levels of benzene by either gavage or inhalation. As benzene internal dose increased, the relative amounts of muconic acid and hydroquinone decreased. In contrast, the relative amount of catechol increased with increasing exposure. These results show that the relative levels of toxic metabolites are a function of exposure level. Based on these results and assuming a linear relationship between exposure concentration and levels of bone marrow metabolites, it would be difficult to detect an elevation of any phenolic metabolites above background after occupational exposures to the OSHA Permissible Exposure Limit of 1 ppm benzene.

  10. Effect of doping with 3 d elements (Co, Ni, Cu) on the intrinsic defect structure and photocatalytic properties of nanostructured ZnO with tubular morphology of aggregates

    NASA Astrophysics Data System (ADS)

    Melkozerova, M. A.; Krasil'nikov, V. N.; Gyrdasova, O. I.; Shalaeva, E. V.; Baklanova, I. V.; Buldakova, L. Yu.; Yanchenko, M. Yu.

    2013-12-01

    The precursor-derived nanostructured solid solutions Zn0.95 M 0.05O ( M = Co, Ni, Cu) with tubular aggregates have been investigated using optical absorption spectroscopy and electron paramagnetic resonance. The dependences of the concentration of intrinsic defects V {o/+} and the effective band gap on the dopant type have been determined. It has been shown using the oxidation reaction of hydroquinone dissolved in water as an example that an increase in the photocatalytic activity in the series ZnO → Zn0.95Ni0.05O → Zn0.95Co0.05O Zn0.95Cu0.05O in the ultraviolet and visible spectral regions correlates with a decrease in the band gap and with an increase in the concentration of oxygen vacancies V {O/+}.

  11. Functionalized O6-Corona[6]arenes: Synthesis, Structure, and Fullerene Complexation Property.

    PubMed

    Ren, Wen-Sheng; Zhao, Liang; Wang, Mei-Xiang

    2016-07-01

    The synthesis, structure, and fullerene complexation property of novel and functionalized On-corona[n]arenes were reported. Based on the fragment coupling strategy, ester-containing On-corona[n]arenes (n = 6, 8) were obtained readily starting from 1,4-hydroquinone and diethyl 2,5-difluoroterephthalate. Reduction of esters with LiAlH4 produced almost quantitatively hydroxymethylated On-corona[n]arenes, which underwent etherification with MeI to afford methoxymethyl-substituted On-corona[n]arenes (n = 6, 8) in good yields. The macrocycles adopt unique corona-type conformation with a large cylindroid cavity. They are strong macrocyclic host molecules to form 1:1 complexes with fullerenes C60 and C70 in toluene with an associate constant up to (1.59 ± 0.04) × 10(5) M(-1).

  12. Investigation of Damping Liquids for Aircraft Instruments : II

    NASA Technical Reports Server (NTRS)

    Houseman, M R; Keulegan, G H

    1932-01-01

    Data are presented on the kinematic viscosity, in the temperature range -50 degrees to +30 degrees C. of pure liquids and of solutions of animal oils, vegetable oils, mineral oils, glycerine, and ethylene glycol in various low freezing point solvents. It is shown that the thermal coefficient of kinematic viscosity as a function of the kinematic viscosity of the solutions of glycerine and ethylene glycol in alcohols is practically independent of the temperature and the chemical composition of the individual liquids. This is similarly true for the mineral oil group and, for a limited temperature interval, for the pure animal and vegetable oils. The efficiency of naphthol, hydroquinone, and diphenylamine to inhibit the change of viscosity of poppyseed and linseed oils was also investigated.

  13. Enhanced electrochemical performance of monoclinic WO3 thin film with redox additive aqueous electrolyte.

    PubMed

    Shinde, Pragati A; Lokhande, Vaibhav C; Chodankar, Nilesh R; Ji, Taeksoo; Kim, Jin Hyeok; Lokhande, Chandrakant D

    2016-12-01

    To achieve the highest electrochemical performance for supercapacitor, it is very essential to find out a suitable pair of an active electrode material and an electrolyte. In the present work, a simple approach is employed to enhance the supercapacitor performance of WO3 thin film. The WO3 thin film is prepared by a simple and cost effective chemical bath deposition method and its electrochemical performance is tested in conventional (H2SO4) and redox additive [H2SO4+hydroquinone (HQ)] electrolytes. Two-fold increment in electrochemical performance for WO3 thin film is observed in redox additive aqueous electrolyte compared to conventional electrolyte. WO3 thin film showed maximum specific capacitance of 725Fg(-1), energy density of 25.18Whkg(-1) at current density of 7mAcm(-2) with better cycling stability in redox electrolyte. This strategy provides the versatile way for designing the high performance energy storage devices. PMID:27565957

  14. Overview of skin whitening agents with an insight into the illegal cosmetic market in Europe.

    PubMed

    Desmedt, B; Courselle, P; De Beer, J O; Rogiers, V; Grosber, M; Deconinck, E; De Paepe, K

    2016-06-01

    Lightening skin tone is an ancient and well-documented practice, and remains common practice among many cultures. Whitening agents such as corticosteroids, tretinoin and hydroquinone are medically applied to effectively lighten the skin tone of hyperpigmented lesions. However, when these agents are used cosmetically, they are associated with a variety of side-effect. Alternative agents, such as arbutin and its derivatives kojic acid and nicotinamide have been subsequently developed for cosmetic purposes. Unfortunately, some cosmetics contain whitening agents that are banned for use in cosmetic products. This article provides an overview of the mode of action and potential side-effects of cosmetic legal and illegal whitening agents, and the pattern of use of these types of products. Finally, an EU analysis of the health problems due to the presence of illegal products on the market is summarized. PMID:26953335

  15. A Multi-Target Approach toward the Development of Novel Candidates for Antidermatophytic Activity: Ultrastructural Evidence on α-Bisabolol-Treated Microsporum gypseum.

    PubMed

    Romagnoli, Carlo; Baldisserotto, Anna; Malisardi, Gemma; Vicentini, Chiara B; Mares, Donatella; Andreotti, Elisa; Vertuani, Silvia; Manfredini, Stefano

    2015-01-01

    Multi-target strategies are directed toward targets that are unrelated (or distantly related) and can create opportunities to address different pathologies. The antidermatophytic activities of nine natural skin lighteners: α-bisabolol, kojic acid, β-arbutin, azelaic acid, hydroquinone, nicotinamide, glycine, glutathione and ascorbyl tetraisopalmitate, were evaluated, in comparison with the known antifungal drug fluconazole, on nine dermatophytes responsible for the most common dermatomycoses: Microsporum gypseum, Microsporum canis, Trichophyton violaceum, Nannizzia cajetani, Trichophyton mentagrophytes, Epidermophyton floccosum, Arthroderma gypseum, Trichophyton rubrum and Trichophyton tonsurans. α-Bisabolol showed the best antifungal activity against all fungi and in particular; against M. gypseum. Further investigations were conducted on this fungus to evaluate the inhibition of spore germination and morphological changes induced by α-bisabolol by TEM. PMID:26132903

  16. Comparative study of the labial gland secretion in termites (Isoptera).

    PubMed

    Sillam-Dussès, David; Krasulová, Jana; Vrkoslav, Vladimír; Pytelková, Jana; Cvačka, Josef; Kutalová, Kateřina; Bourguignon, Thomas; Miura, Toru; Šobotník, Jan

    2012-01-01

    Labial glands are present in all castes and developmental stages of all termite species. In workers, their secretion contains a food-marking pheromone and digestive enzymes, while soldier secretion plays a defensive role. However, these functions were studied only in a limited set of species, and do not allow drawing general conclusions. Hence, we have investigated the chemical composition of the labial gland extracts from soldiers and workers in 15 termite species belonging to 6 families using an integrative approach based on proteomic and small-molecule profiling. We confirmed the presence of hydroquinone and cellulase in the labial glands of workers, and we identified new toxic compounds in soldiers and workers of several species. Our results highlight the dual role of labial gland secretion, i.e. the defensive role in soldiers and workers of several termite species, and the digestive function in workers.

  17. Screening of high α-arbutin producing strains and production of α-arbutin by fermentation.

    PubMed

    Liu, Chun-Qiao; Deng, Li; Zhang, Peng; Zhang, Shu-Rong; Liu, Luo; Xu, Tao; Wang, Fang; Tan, Tian-Wei

    2013-08-01

    A mutant Xanthomonas maltophilia BT-112 with high α-anomer-selective glycosylation activity was screened by a series of mutation methods including UV light, N-methyl-N-nitro-N-nitroso-guanidine treatment and quick neutron mutation. The α-arbutin titer increased 15-folds compared with the parent strain. The optimal conditions for culture medium and the operational conditions for lab-scale fermenter were investigated. Under optimized conditions, the maximal hydroquinone (HQ) tolerance of cells and yield of α-arbutin were 120 mM and 30.6 g/l, respectively. The molar conversion yield of α-arbutin based on the amount of HQ supplied reached 93.6 %. The product was identified as α-arbutin by (13)C NMR and (1)H NMR analysis. In conclusion, the results in this work provide a one-step and cost-effective method for the large-scale production of α-arbutin.

  18. [Yield of pigment cation-radicals in the reaction of quinone photooxidation of chlorophyll].

    PubMed

    Kostikov, A P; Sadovnikova, N A; Evstigneev, V B

    1976-01-01

    Photoinduced transfer of electrons in alkohol solutions of chlorophyll and its deuterated analog, deuterochlorophyll containing the quinoses: p-benzoquinone, chloranyl, duroquinone, 1,4-naftoquinone and ubiquinone (coenzyme Q6) is studied. It is shown that pigment cation-radical and quinone anion-radical are the primary products of photoreaction. A relationship between stationary concentrations of deuterochlorophyll and p-benzoquinone radicals and quinone concentration in solution is obtained. The reaction mechanism and causes of other authors' (G. Tollin et al.) failure in finding pigment cation-radicals which are formed in the reaction of the latter with quinoses are discussed. It is shown that optimal conditions for accumulating photoinduced cation-radicals of the pigment in pigment solutions of chlorophyll with quinones are lowered temperature, high viscosity of the solvent, low pH of the solution, careful purification of the quinone from hydroquinone admixture.

  19. Cosmeceuticals for Hyperpigmentation: What is Available?

    PubMed Central

    Sarkar, Rashmi; Arora, Pooja; Garg, K Vijay

    2013-01-01

    Cosmeceuticals are topical cosmetic-pharmaceutical hybrids that enhance the beauty through constituents that provide additional health-related benefit. Cosmeceuticals are commonly used for hyperpigmentation. These disorders are generally difficult to treat, hence the need for skin lightening agents including, cosmeceuticals. These agents selectively target hyperplastic melanocytes and inhibit key regulatory steps in melanin synthesis. With the recent safety concern regarding use of hydroquinone, the need for alternative natural, safe and efficacious skin lightening agents is becoming all the more necessary and the article attempts to look at other alternative cosmeceuticals available or maybe upcoming in the future. We carried out a PUBMED search using the following terms “cosmeceuticals, hyperpigmentation, skin lightening agents.” We cited the use of various agents used for the treatment of hyperpigmentation, mainly melasma and post-inflammatory hyperpigmentation. We describe the safety and efficacy of these agents and their advantage over the conventional therapy. PMID:23723597

  20. Sonolytic hydrolysis of peptides in aqueous solution upon addition of catechol.

    PubMed

    Sakakura, M; Takayama, M

    2009-03-01

    The sonolytic hydrolysis of peptides with addition of phenolic reagents to aqueous solutions is described. Sonolysis of an aqueous solution of peptides to which catechol (o-dihydroxybenzene) had been added resulted in hydrolytic products reflecting the amino acid sequence without any side reactions, while sonolysis without any additives resulted in oxidation analytes and degradation products caused by side reactions. Although the use of additives such as resorcinol (m-dihydroxybenzene), hydroquinone (p-dihydroxybenzene) and phenol was also effective in producing sequence related products, several degradation products were produced by side reactions. A characteristic of the sonolysis of peptides is that the N-terminal side of proline, Xxx-Pro, is more susceptible than other amino acid residues to the process. This characteristic of sonolysis is superior to that of acid hydrolysis in which cleavage at the C-terminal side of proline, Pro-Xxx is difficult, and where dehydration products result due to side reactions.

  1. Enzymatic electrochemical detection coupled to multivariate calibration for the determination of phenolic compounds in environmental samples.

    PubMed

    Hernandez, Silvia R; Kergaravat, Silvina V; Pividori, Maria Isabel

    2013-03-15

    An approach based on the electrochemical detection of the horseradish peroxidase enzymatic reaction by means of square wave voltammetry was developed for the determination of phenolic compounds in environmental samples. First, a systematic optimization procedure of three factors involved in the enzymatic reaction was carried out using response surface methodology through a central composite design. Second, the enzymatic electrochemical detection coupled with a multivariate calibration method based in the partial least-squares technique was optimized for the determination of a mixture of five phenolic compounds, i.e. phenol, p-aminophenol, p-chlorophenol, hydroquinone and pyrocatechol. The calibration and validation sets were built and assessed. In the calibration model, the LODs for phenolic compounds oscillated from 0.6 to 1.4 × 10(-6) mol L(-1). Recoveries for prediction samples were higher than 85%. These compounds were analyzed simultaneously in spiked samples and in water samples collected close to tanneries and landfills. PMID:23598144

  2. Ketimine modifications as a route to novel amorphous and derived semicrystalline poly(arylene ether ketone) homo- and copolymers

    NASA Technical Reports Server (NTRS)

    Mohanty, D. K.; Lowery, R. C.; Lyle, G. D.; Mcgrath, J. E.

    1987-01-01

    A series of amine terminal amorphous poly(arylene ether ketone) oligomers of controlled molecular weights (2-15 K) were synthesized. These oligomers have been found to undergo 'self-crosslinking' reactions upon heating above 220 C, via the reaction of the terminal amine groups with the in-chain keto carbonyl functionalities. The resulting networks are ductile, chemically resistant, and nonporous. The networks obtained via generated ketimine functionality were characterized by solid state NMR. They have also been found to be remarkably stable toward hydrolysis. Ketimine functional bishalide monomers have also been synthesized. Such monomers have been utilized to synthesize a wide variety of amorphous poly(arylene ether) ketimine polymers. A high molecular weight hydroquinone functional poly(arylene ether) ketimine has been acid treated to regenerate a poly(arylene ether ketone) backbone in solution. This novel procedure thus allows for the synthesis of important matrix resins under relatively mild conditions.

  3. [Effects of urease and nitrification inhibitors on alleviating the oxidation and leaching of soil urea's hydrolyzed product ammonium].

    PubMed

    Chen, Zhenhua; Chen, Lijun; Wu, Zhijie

    2005-02-01

    With simulation test of in-situ soil column, this paper studied the effects of urease inhibitor hydroquinone (HQ), nitrification inhibitors coated calcium carbide (ECC) and dicyandiamide (DCD),and their different combinations on the persistence, oxidation, and leaching of soil urea's hydrolyzed product ammonium. The results showed that compared with other treatments, the combination of HQ and DCD could effectively inhibit the oxidation of the ammonium, and make it as exchangeable form reserve in soil in a larger amount and a longer period. The inhibition of this oxidation not only decreased the accumulation of oxidized product NO3- in soil, but also decreased the potential of NO3- leaching, making the NO3- only leach to 5-10 cm in depth, and the leached amount significantly decreased. PMID:15852915

  4. Comparative Study of the Labial Gland Secretion in Termites (Isoptera)

    PubMed Central

    Sillam-Dussès, David; Krasulová, Jana; Vrkoslav, Vladimír; Pytelková, Jana; Cvačka, Josef; Kutalová, Kateřina; Bourguignon, Thomas; Miura, Toru; Šobotník, Jan

    2012-01-01

    Labial glands are present in all castes and developmental stages of all termite species. In workers, their secretion contains a food-marking pheromone and digestive enzymes, while soldier secretion plays a defensive role. However, these functions were studied only in a limited set of species, and do not allow drawing general conclusions. Hence, we have investigated the chemical composition of the labial gland extracts from soldiers and workers in 15 termite species belonging to 6 families using an integrative approach based on proteomic and small-molecule profiling. We confirmed the presence of hydroquinone and cellulase in the labial glands of workers, and we identified new toxic compounds in soldiers and workers of several species. Our results highlight the dual role of labial gland secretion, i.e. the defensive role in soldiers and workers of several termite species, and the digestive function in workers. PMID:23071569

  5. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis.

    PubMed

    Liu, Yongjun; Wang, Degao; Sun, Bing; Zhu, Xiaomei

    2010-09-15

    Liquid-phase decomposition of 4-nitrophenol (4-NP) and formation of hydrogen peroxide (H(2)O(2)) induced by contact glow discharge electrolysis (CGDE) were investigated. Experimental results showed that the decays of 4-NP and total organic carbon (TOC) obeyed the first-order and pseudo-first-order reaction kinetics, respectively. The major intermediate products were 4-nitrocatechol, hydroquinone, benzoquinone, hydroxyhydroquinone, organic acids and nitrite ion. The final products were carbon dioxide and nitrate ion. The initial formation rate of H(2)O(2) decreased linearly with increasing initial concentration of 4-NP. Addition of iron ions, especially ferric ion, to the solution significantly enhanced the 4-NP removal due to the additional hydroxyl radical formation through Fenton's reaction. A reaction pathway is proposed based on the degradation kinetics and the distribution of intermediate products.

  6. Simultaneous topographic and amperometric membrane mapping using an AFM probe integrated biosensor.

    PubMed

    Stanca, Sarmiza Elena; Csaki, Andrea; Urban, Matthias; Nietzsche, Sandor; Biskup, Christoph; Fritzsche, Wolfgang

    2011-02-15

    The investigation of the plasma membrane with intercorrelated multiparameter techniques is a prerequisite for understanding its function. Presented here, is a simultaneous electrochemical and topographic study of the cell membrane using a miniaturized amperometric enzymatic biosensor. The fabrication of this biosensor is also reported. The biosensor combines a scanning force microscopy (AFM) gold-coated cantilever and an enzymatic transducer layer of peroxidases (PODs). When these enzymes are brought in contact with the substrate, the specific redox reaction produces an electric current. The intensity of this current is detected simultaneously with the surface imaging. For sensor characterization, hydroquinone-2-carboxylic acid (HQ) is selected as an intrinsic source of H(2)O(2). HQ has been electrochemically regenerated by the reduction of antraquinone-2-carboxylic acid (AQ). The biosensor reaches the steady state value of the current intensity in 1 ± 0.2s.

  7. Aqueous 4-nitrophenol decomposition and hydrogen peroxide formation induced by contact glow discharge electrolysis.

    PubMed

    Liu, Yongjun; Wang, Degao; Sun, Bing; Zhu, Xiaomei

    2010-09-15

    Liquid-phase decomposition of 4-nitrophenol (4-NP) and formation of hydrogen peroxide (H(2)O(2)) induced by contact glow discharge electrolysis (CGDE) were investigated. Experimental results showed that the decays of 4-NP and total organic carbon (TOC) obeyed the first-order and pseudo-first-order reaction kinetics, respectively. The major intermediate products were 4-nitrocatechol, hydroquinone, benzoquinone, hydroxyhydroquinone, organic acids and nitrite ion. The final products were carbon dioxide and nitrate ion. The initial formation rate of H(2)O(2) decreased linearly with increasing initial concentration of 4-NP. Addition of iron ions, especially ferric ion, to the solution significantly enhanced the 4-NP removal due to the additional hydroxyl radical formation through Fenton's reaction. A reaction pathway is proposed based on the degradation kinetics and the distribution of intermediate products. PMID:20576351

  8. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins

    NASA Astrophysics Data System (ADS)

    Harada, Akira; Li, Jun; Kamachi, Mikiharu

    1992-03-01

    THE importance of non-covalent interactions in biological systems motivates much of the current interest in supramolecular assemblies1. A classic example of a supermolecule is provided by the rotaxanes2-5, in which a molecular 'rotor' is threaded by a linear 'axle'. Previous examples have included cyclic crown ethers threaded by polymers6, paraquat-hydroquinone complexes7 and cyclodextrin complexes8,9. We found recently that α-cyclodextrin will form high yields of a crystalline complex with polyethylene glycol (PEG), and suggested that the PEG penetrates the 'beaker-like' tunnel of the cyclodextrin10,11. We report here the preparation of a compound in which several cyclodextrins are threaded on a single PEG chain and are trapped by capping the chain with bulky end groups. This brings a step closer the 'molecular abacus' proposed by Stoddart and coworkers7. We call this supramolecular assembly a 'molecular necklace'.

  9. Functionalized O6-Corona[6]arenes: Synthesis, Structure, and Fullerene Complexation Property.

    PubMed

    Ren, Wen-Sheng; Zhao, Liang; Wang, Mei-Xiang

    2016-07-01

    The synthesis, structure, and fullerene complexation property of novel and functionalized On-corona[n]arenes were reported. Based on the fragment coupling strategy, ester-containing On-corona[n]arenes (n = 6, 8) were obtained readily starting from 1,4-hydroquinone and diethyl 2,5-difluoroterephthalate. Reduction of esters with LiAlH4 produced almost quantitatively hydroxymethylated On-corona[n]arenes, which underwent etherification with MeI to afford methoxymethyl-substituted On-corona[n]arenes (n = 6, 8) in good yields. The macrocycles adopt unique corona-type conformation with a large cylindroid cavity. They are strong macrocyclic host molecules to form 1:1 complexes with fullerenes C60 and C70 in toluene with an associate constant up to (1.59 ± 0.04) × 10(5) M(-1). PMID:27324274

  10. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO{sub 2}@TiO{sub 2} colloidal crystals

    SciTech Connect

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO{sub 2}@TiO{sub 2} core-shell particles is prepared on a TiO{sub 2}-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO{sub 2} interface.

  11. Formation and stabilization of persistent free radicals

    PubMed Central

    Dellinger, Barry; Lomnicki, Slawomir; Khachatryan, Lavrent; Maskos, Zofia; Hall, Randall W.; Adounkpe, Julien; McFerrin, Cheri; Truong, Hieu

    2014-01-01

    We demonstrate that stable and relatively unreactive “environmentally persistent free radicals (PFRs)” can be readily formed in the post-flame and cool-zone regions of combustion systems and other thermal processes. These resonance-stabilized radicals, including semiquinones, phenoxyls, and cyclopentadienyls, can be formed by the thermal decomposition of molecular precursors including catechols, hydroquinones and phenols. Association with the surfaces of fine particles imparts additional stabilization to these radicals such that they can persist almost indefinitely in the environment. A mechanism of chemisorption and electron transfer from the molecular adsorbate to a redox-active transition metal or other receptor is shown through experiment, and supported by molecular orbital calculations, to result in PFR formation. Both oxygen-centered and carbon-centered PFRs are possible that can significantly affect their environmental and biological reactivity. PMID:25598747

  12. [Effect of lignosulfonates on controlling of urea nitrogen transformation and nitrate accumulation in vegetable].

    PubMed

    Wang, Dehan; Peng, Junjie; Lin, Huidong; Liao, Zongwen

    2003-09-01

    Indoor cultivation experiment and plot field experiment were conducted to study the effect of lignosulfonates on urea nitrogen transformation in soil and the mechanism of controlling nitrate pollution in vegetable. Results showed that lignosulfonates behaved inhibition effect on urea hydrolysis compared with the contrast treatment, the contents of remainder urea nitrogen treated with lignosulfonates was more than that of another kind of urease inhibitor hydroquinone in soil after 69 hours' cultivation. Lignosulfonates could reduce contents of nitrate in cabbage, it as well increase contents of vitamin C in a large degree, enhance the nitrate reductase activity, then accelerated nitrogen assimilation in plants. The urease activity was lower and contents of ammonium nitrogen in soil was larger after ingathering, lignosulfonates could keep nitrogen release slowly, and could be used as a kind of effective inhibitor to nitrogen fertilizer in the controlled-release fertilizers. PMID:14719277

  13. Decomposition of aqueous diphenyloxide by ozonolysis and by combined gamma-ray-ozone processing.

    PubMed

    Popov, Petar; Getoff, Nikola

    2004-01-01

    Diphenyloxide (DPO) is one of many, rather toxic pollutants produced by combustion of fossil fuels, which are emitted to the atmosphere with flue gases and brought to ground water by rain and snow. Its decomposition is investigated by ozonolysis at room temperature and the major products like phenol, resorcinol, hydroquinone, dihydroxy-benzoic acid as well as the total yield of aldehydes and carboxylic acids were determined as a function of applied ozone concentration. In addition, the DPO-degradation was studied by a combined action of gamma-ray under continuous bubbling of a known ozone concentration. In this case the formation of the same products is observed, but their yields differ from the above ones. Based on the synergistic action of ozone and gamma-ray the DPO-radiolysis is rather efficient, leading to an initial-G-value of 11.3. Some probable reaction mechanisms are presented for explanation of the degradation process.

  14. Chemically modified polypyrrole

    SciTech Connect

    Inagaki, T.; Skotheim, T.A.; Lee, H.S.; Okamoto, Y.; Samuelson, L.; Tripathy, S.

    1988-01-01

    Polypyrrole (PPy) films have been systematically modified with electroactive groups in the ..beta..-position to design electrode materials with specific electrochemical and surface active properties. Electrochemical copolymerization of pyrrole and 3-(6-ferrocenyl,6-hydroxyhexyl)pyrrole (P-6-Fc) yields a ferrocene functionalized polypyrrole with a controlled amount to ferrocene functionalization. And also, copolymers of pyrrole and 3-(4-(2,5- dimethoxyphenyl)butyl)pyrrole (P-MP) can be made by electrochemical polymerization and converted to the copolymers containing pH dependent electroactive hydroquinone moieties. Derivatized pyrroles have also been incorporated into Langmuir-Blodgett film structures. The surface pressure-area isotherms of 3-(13-ferrocenyl,13-hydroxytridecy)pyrrole (P-13-Fc) and the mixed monolayer of P-13-Fc and 3-n-hexadecylpyrrole (HDP) are shown. 17 refs., 4 figs.

  15. Electronic transport properties of a quinone-based molecular switch

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  16. Synthesis of gold nanorods and their functionalization with bovine serum albumin for optical hyperthermia.

    PubMed

    Zhang, Liming; Xia, Kai; Bai, Ying-Ying; Tang, Yongjun; Deng, Yan; Chen, Juan; Qian, Weiping; Shen, He; Zhang, Zhijun; Ju, Shenghong; He, Nongyue

    2014-08-01

    Although gold nanorods (GNRs) have been investigated extensively for optical hyperthermia therapies, the synthesis of rods is far from ideal. In this report, we optimized the synthesis of gold nanorods using hydroquinone as a reducing agent. Compared with the GNRs prepared by traditional ways, the as-synthesized rods have a flexibly tunable size and wider range of longitudinal surface plasmon resonance (LSPR). Furthermore, a series of small-length gold nanorods with length ranging from 30 to 90 nm were synthesized and they are more suitable for in vivo biomedical applications. Finally, we exploited a convenient approach for preparing water-soluble GNRs with less toxicity, better dispersion and flexible functionalization by exchanging hexadecyltrimethylammonium bromide (CTAB) on the surface of the rods with carboxylated bovine serum albumin (BSA) derivative, the BSA modified GNRs showed significant anticancer efficacy through near infrared (NIR) hyperthermia. We believe that the as-prepared gold nanorods will find promising applications in biomedical fields, especially in cancer therapy.

  17. Identification of sesquiterpene lactones in the Bryophyta (mosses) Takakia: Takakia species are closely related chemically to the Marchantiophyta (liverworts).

    PubMed

    Asakawa, Yoshinori; Nii, Kaeko; Higuchi, Masanobu

    2015-01-01

    Takakia lepidozioides has been considered to be the most primitive liverwort morphologically and classified initially in the Marchantiophyta (liverworts). However, the Takakia have been reclassified from liverworts to mosses on the basis of the similarity of the male sporophyte of T. ceratophylla to that of some mosses. Reinvestigation of secondary metabolites of fresh T. lepidozioides resulted in identification of eudesmane-type sesquiterpene lactones and hydrocarbon that are significant chemical markers of several liverworts. T. lepidozioides also produces a small amount of hop-22(29)-ene, together with coumarin, which produce the characteristic odor of T. lepidozioides, and 1,4-hydroquinone; these are the predominant volatile components, whereas dihydrocoumarin, 1,4-benzoquinone, dihydrobenzofuran, α-asarone and α-tocopherol are minor components. These chemical results indicated that T. lepidozioides is more closely related to the Marchantiophyta than the Bryophyta. T. lepidozioides is morphologically similar to the liverwort Haplomitrium species. However, both species are totally different chemically. PMID:25920208

  18. Rapid endoglin determination in serum samples using an amperometric magneto-actuated disposable immunosensing platform.

    PubMed

    Torrente-Rodríguez, Rebeca M; Campuzano, Susana; Ruiz-Valdepeñas-Montiel, Víctor; Pedrero, María; Fernández-Aceñero, M Jesús; Barderas, Rodrigo; Pingarrón, José M

    2016-09-10

    A sensitive and rapid method for the determination of the clinically relevant biomarker human endoglin (CD105) in serum samples is presented, involving a magneto-actuated immunoassay and amperometric detection at disposable screen-printed carbon electrodes (SPCEs). Micro-sized magnetic particles were modified with a specific antibody to selectively capture the target protein which was further sandwiched with a secondary HRP-labeled antibody. The immunocomplexes attached to the magnetic carriers were amperometrically detected at SPCEs using the hydroquinone (HQ)/H2O2/HRP system. The magneto-actuated immunosensing platform was able to detect 5 pmoles of endoglin (in 25μL of sample, 0.2μM) in 30min providing statistically similar results to those obtained using a commercial ELISA kit for the determination of endogenous content of endoglin in human serum samples.

  19. Controlling formation of gold nanoparticles generated in situ at a polymeric surface

    NASA Astrophysics Data System (ADS)

    Clukay, Christopher J.; Grabill, Christopher N.; Hettinger, Michelle A.; Dutta, Aniruddha; Freppon, Daniel J.; Robledo, Anthony; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.

    2014-02-01

    This work shows that in situ reduction of metal ions bound at a polymer surface can form nanoparticles within the polymer matrix as well as at the interface, and the size and distribution of nanoparticles between the interface and subsurface depends upon the choice of reagents and reaction conditions. Tetrachloroaurate ions were bound to cross-linked SU-8 films that were functionalized using a variety of multi-functional amines, then reduced using one of several reagents. Reduction using sodium borohydride or sodium citrate generates bands of interspersed gold nanoparticles as much as 40 nm deep within the polymer, indicating that both the Au ions and the reducing agent can penetrate the surface enabling formation of nanoparticles within the polymer matrix. Nanoparticle formation can be confined nearer to the polymer interface by reducing with hydroquinone, or by processing the polymer film in aqueous media using high molecular-weight multifunctional amines that confine the gold ions at the interface.

  20. Determination of synthetic phenolic antioxidants in edible oils using microvial insert large volume injection gas-chromatography.

    PubMed

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2016-06-01

    Three synthetic phenolic antioxidants, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ), were determined in different edible vegetable oil samples. The analyses were carried out by gas chromatography-mass spectrometry (GC-MS) using microvial insert large volume injection (LVI). Several parameters affecting this sample introduction step, such as temperatures, times and gas flows, were optimised. Quantification was carried out by the matrix-matched calibration method using carvacrol as internal standard, providing quantification limits between 0.08 and 0.10 ng g(-1), depending on the compound. The three phenolic compounds were detected in several of the samples, BHT being the most frequently found. Recovery assays for oil samples spiked at two concentration levels, 2.5 and 10 ng g(-1), provided recoveries in the 86-115% range. PMID:26830586

  1. Antioxidative effect of sesamol and related compounds on lipid peroxidation.

    PubMed

    Uchida, M; Nakajin, S; Toyoshima, S; Shinoda, M

    1996-04-01

    The effect of sesamol and 20 related compounds on the lipid peroxidation of liposomes induced by Fe(2)+, on the lipid peroxidation of rat liver microsomes induced by CCl(4) or NADPH and on the lipid peroxidation of mitochondria induced by ascorbate/Fe(2)+ were demonstrated. Consequently, sesamol and related compounds, such as 3-methoxy-4-hydroxyquinone, isosafrol, isoeugenol, eugenol, 3,4-methylenedioxyaniline, catechol, hydroxy-hydroquinone, 3,4-dimethoxyaniline and caffeic acid, exhibited powerful inhibitory effects on the lipid peroxidation system investigated. In particular, isoeugenol was the most powerful inhibitor among all the sesamol-related compounds tested on the lipid peroxidation system. In addition, 1,2-methylenedioxybenzene, ferulic acid, and 3,4-methylenedioxynitrobenzene were also effective on the lipid peroxidation system of liposomes induced by Fe(2)+. The correlation between the structures of sesamol-related compounds and their inhibitory effect is discussed. PMID:9132170

  2. Quinones as Reversible Electron Relays in Artificial Photosynthesis.

    PubMed

    Rodenberg, Alexander; Orazietti, Margherita; Mosberger, Mathias; Bachmann, Cyril; Probst, Benjamin; Alberto, Roger; Hamm, Peter

    2016-05-01

    We explore the potential of various hydroquinone/quinone redox couples as electron relays in a homogenous water reduction system between a Re-based photosensitizer and a sacrificial electron donor [tris-(2-carboxyethyl)-phosphine, TCEP]. By using transient IR spectroscopy, flash photolysis as well as stopped-flow techniques covering timescales from picoseconds to 100 ms, we determine quenching rates and cage escape yields, the kinetics of the follow-up chemistry of the semiquinone, the recombination rates, as well as the re-reduction rates by TCEP. The overall quantum yield of hydrogen production is low, and we show that the limiting factors are the small cage escape yields and, more importantly, the slow regeneration rate by TCEP in comparison to the undesired charge recombination with the reduced water reduction catalyst.

  3. [Effect of lignosulfonates on controlling of urea nitrogen transformation and nitrate accumulation in vegetable].

    PubMed

    Wang, Dehan; Peng, Junjie; Lin, Huidong; Liao, Zongwen

    2003-09-01

    Indoor cultivation experiment and plot field experiment were conducted to study the effect of lignosulfonates on urea nitrogen transformation in soil and the mechanism of controlling nitrate pollution in vegetable. Results showed that lignosulfonates behaved inhibition effect on urea hydrolysis compared with the contrast treatment, the contents of remainder urea nitrogen treated with lignosulfonates was more than that of another kind of urease inhibitor hydroquinone in soil after 69 hours' cultivation. Lignosulfonates could reduce contents of nitrate in cabbage, it as well increase contents of vitamin C in a large degree, enhance the nitrate reductase activity, then accelerated nitrogen assimilation in plants. The urease activity was lower and contents of ammonium nitrogen in soil was larger after ingathering, lignosulfonates could keep nitrogen release slowly, and could be used as a kind of effective inhibitor to nitrogen fertilizer in the controlled-release fertilizers.

  4. Responses of the L5178Y tk/sup +//tk/sup -/ mouse lymphoma cell forward mutation assay. II. 18 coded chemicals

    SciTech Connect

    McGregor, D.B.; Brown, A.; Cattanach, P.; Edwards, I.; McBride, D.; Caspary, W.J.

    1988-01-01

    Eighteen chemicals were tested for their mutagenic potential in the L5178Y tk/sup +///sup -/ mouse lymphoma cell forward mutation assay by the use of procedures based upon those described previously. Cultures were exposed to the chemicals for 4 hr, then cultured for 2 days before plating in soft agar with or without trifluorothymidine (TFT), 3 ..mu..g/ml. The chemicals were tested at least twice. Significant responses were obtained with benzofuran, benzyl chloride, bromodichloromethane, butylated hydroxytoluene, chlorendic acid, o-chlorobenzalmalonitrile, 1,2,3,4-diepoxybutane, dimethyl formamide, dimethyl hydrogen phosphite, furfural, glutaraldehyde, hydroquinone, 8-hydroxyquinoline, and resorcinol. Apart from bromodichloromethane, butylated hydroxytoluene and dimethyl hydrogen phosphite, rat liver S9 mix was not a requirement for the activity of any of these compounds. Chemicals not identified as mutagens were water, tert-butyl alcohol, pyridine, and witch hazel.

  5. Determination of synthetic phenolic antioxidants in soft drinks by stir-bar sorptive extraction coupled to gas chromatography-mass spectrometry.

    PubMed

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2015-01-01

    The synthetic phenolic antioxidants butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) were pre-concentrated by stir-bar sorptive extraction and thermally desorbed (SBSE-TD) before analysis by GC-MS. Several parameters affecting the derivatisation step and both SBSE extraction and thermal desorption were carefully optimised. When the analyses of BHA and TBHQ in their acetylated, silylated and underivatised forms were compared, the best results were obtained when the in-situ derivatisation procedure with acetic anhydride was employed. Quantification was carried out using carvacrol as the internal standard, providing quantification limits of between 0.11 and 0.15 ng ml(-1), depending on the compound. Recovery assays for samples spiked at two concentration levels, 1 and 5 ng ml(-1), provided recoveries in the 81-117% range. The proposed method was applied in the analysis canned soft drinks and the analytes were found in five of the 10 samples analysed.

  6. Determination of synthetic phenolic antioxidants in edible oils using microvial insert large volume injection gas-chromatography.

    PubMed

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2016-06-01

    Three synthetic phenolic antioxidants, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ), were determined in different edible vegetable oil samples. The analyses were carried out by gas chromatography-mass spectrometry (GC-MS) using microvial insert large volume injection (LVI). Several parameters affecting this sample introduction step, such as temperatures, times and gas flows, were optimised. Quantification was carried out by the matrix-matched calibration method using carvacrol as internal standard, providing quantification limits between 0.08 and 0.10 ng g(-1), depending on the compound. The three phenolic compounds were detected in several of the samples, BHT being the most frequently found. Recovery assays for oil samples spiked at two concentration levels, 2.5 and 10 ng g(-1), provided recoveries in the 86-115% range.

  7. Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair.

    PubMed

    Gindt, Yvonne M; Messyasz, Adriana; Jumbo, Pamela I

    2015-05-12

    VcCry1, a member of the CRY-DASH family, may serve two diverse roles in vivo, including blue-light signaling and repair of UV-damaged DNA. We have discovered that the electrochemistry of the flavin adenine dinucleotide cofactor of VcCry1 is locked to cycle only between the hydroquinone and neutral semiquinone states when UV-damaged DNA is present. Other potential substrates, including undamaged DNA and ATP, have no discernible effect on the electrochemistry, and the kinetics of the reduction is unaffected by damaged DNA. Binding of the damaged DNA substrate determines the role of the protein and prevents the presumed photochemistry required for blue-light signaling.

  8. Electrochemical Fluorographane: Hybrid Electrocatalysis of Biomarkers, Hydrogen Evolution, and Oxygen Reduction.

    PubMed

    Gusmão, Rui; Sofer, Zdeněk; Šembera, Filip; Janoušek, Zbyněk; Pumera, Martin

    2015-11-01

    Fluorographane (C1 Hx F1-x+δ )n is a new member of the graphene family that exhibits hydrophobicity and a large band gap that is tunable based on the level of fluorination. Herein, sensing and energy applications of fluorographane are reported. The results reveal that the carbon-to-fluoride ratio of fluorographane has a great impact on the electrochemical performance of the materials. Lowered oxidation potentials for ascorbic and uric acids, in addition to a catalytic effect for hydroquinone and dopamine redox processes, are obtained with a high fluoride content. Moreover, fluorographane, together with residual copper- and nickel-based doping, acted as a hybrid electrocatalyst to promote hydrogen evolution and oxygen reduction reactions with considerably lower onset potentials than those of graphane (starting material), which makes this a promising material for a broad range of applications. PMID:26442653

  9. Identification of sesquiterpene lactones in the Bryophyta (mosses) Takakia: Takakia species are closely related chemically to the Marchantiophyta (liverworts).

    PubMed

    Asakawa, Yoshinori; Nii, Kaeko; Higuchi, Masanobu

    2015-01-01

    Takakia lepidozioides has been considered to be the most primitive liverwort morphologically and classified initially in the Marchantiophyta (liverworts). However, the Takakia have been reclassified from liverworts to mosses on the basis of the similarity of the male sporophyte of T. ceratophylla to that of some mosses. Reinvestigation of secondary metabolites of fresh T. lepidozioides resulted in identification of eudesmane-type sesquiterpene lactones and hydrocarbon that are significant chemical markers of several liverworts. T. lepidozioides also produces a small amount of hop-22(29)-ene, together with coumarin, which produce the characteristic odor of T. lepidozioides, and 1,4-hydroquinone; these are the predominant volatile components, whereas dihydrocoumarin, 1,4-benzoquinone, dihydrobenzofuran, α-asarone and α-tocopherol are minor components. These chemical results indicated that T. lepidozioides is more closely related to the Marchantiophyta than the Bryophyta. T. lepidozioides is morphologically similar to the liverwort Haplomitrium species. However, both species are totally different chemically.

  10. A chemiluminescence array sensor based on graphene-magnetite-molecularly imprinted polymers for determination of benzenediol isomers.

    PubMed

    Qiu, Huamin; Luo, Chuannan; Sun, Min; Lu, Fuguang; Fan, Lulu; Li, Xiangjun

    2012-09-26

    A chemiluminescence (CL) array sensor for determination of benzenediol isomers simultaneously using the system of luminol-NaOH-H(2)O(2) based on a graphene-magnetite-molecularly imprinted polymer (GM-MIP) is described. Use of graphene in the GM-MIP thus prepared is helpful to improve the adsorption capacity, while use of magnetite nanoparticles can facilitate the isolation of GM-MIP at end of their synthesis, and rendering easier the use of the polymers in the array sensor. The adsorption performance and properties were characterized. The GM-MIP was used to increase the selectivity in CL analysis. In addition, the sensor was reusable and of good selectivity and adsorption capacity. The array sensor was finally used for the determination of hydroquinone, resorcinol and catechol in waste water samples simultaneously.

  11. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    SciTech Connect

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigated through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.

  12. [Effects of urease and nitrification inhibitors on alleviating the oxidation and leaching of soil urea's hydrolyzed product ammonium].

    PubMed

    Chen, Zhenhua; Chen, Lijun; Wu, Zhijie

    2005-02-01

    With simulation test of in-situ soil column, this paper studied the effects of urease inhibitor hydroquinone (HQ), nitrification inhibitors coated calcium carbide (ECC) and dicyandiamide (DCD),and their different combinations on the persistence, oxidation, and leaching of soil urea's hydrolyzed product ammonium. The results showed that compared with other treatments, the combination of HQ and DCD could effectively inhibit the oxidation of the ammonium, and make it as exchangeable form reserve in soil in a larger amount and a longer period. The inhibition of this oxidation not only decreased the accumulation of oxidized product NO3- in soil, but also decreased the potential of NO3- leaching, making the NO3- only leach to 5-10 cm in depth, and the leached amount significantly decreased.

  13. Voltammetric studies of the behavior of carbon black during phenol oxidation on Ti/Pt electrodes

    SciTech Connect

    Boudenne, J.L.; Cerclier, O.; Bianco, P.

    1998-08-01

    Oxidation of phenol on platinum electrodes rapidly leads to the formation of a passivating film on the surface of these electrodes. Studies of cyclic voltammetry and chronoamperometry combined with high-performance liquid chromatography (HPLC) analyses have shown that the presence of carbon black avoids these phenomena of passivation and thus allows the complete mineralization of phenol. The nature of carbon black and the pH value are two important factors which are studied here. VULCAN XC-72 R, an intrinsic p-type semiconductor, having a large specific area, showed all its efficiency when cyclic voltammetry experiments were carried out in an acid medium (pH 2.2). HPLC analyses revealed the appearance of several by-products such as hydroquinone and benzoquinone, and maleic and fumaric acids.

  14. Engineering a biospecific communication pathway between cells and electrodes.

    PubMed

    Collier, Joel H; Mrksich, Milan

    2006-02-14

    Methods for transducing the cellular activities of mammalian cells into measurable electronic signals are important in many biotechnical applications, including biosensors, cell arrays, and other cell-based devices. This manuscript describes an approach for functionally integrating cellular activities and electrical processes in an underlying substrate. The cells are engineered with a cell-surface chimeric receptor that presents the nonmammalian enzyme cutinase. Action of this cell-surface cutinase on enzyme substrate self-assembled monolayers switches a nonelectroactive hydroxyphenyl ester to an electroactive hydroquinone, providing an electrical activity that can be identified with cyclic voltammetry. In this way, cell-surface enzymatic activity is transduced into electronic signals. The development of strategies to directly interface the activities of cells with materials will be important to enabling a broad class of hybrid microsystems that combine living and nonliving components. PMID:16461913

  15. Engineering a biospecific communication pathway between cells and electrodes

    NASA Astrophysics Data System (ADS)

    Collier, Joel H.; Mrksich, Milan

    2006-02-01

    Methods for transducing the cellular activities of mammalian cells into measurable electronic signals are important in many biotechnical applications, including biosensors, cell arrays, and other cell-based devices. This manuscript describes an approach for functionally integrating cellular activities and electrical processes in an underlying substrate. The cells are engineered with a cell-surface chimeric receptor that presents the nonmammalian enzyme cutinase. Action of this cell-surface cutinase on enzyme substrate self-assembled monolayers switches a nonelectroactive hydroxyphenyl ester to an electroactive hydroquinone, providing an electrical activity that can be identified with cyclic voltammetry. In this way, cell-surface enzymatic activity is transduced into electronic signals. The development of strategies to directly interface the activities of cells with materials will be important to enabling a broad class of hybrid microsystems that combine living and nonliving components. biomaterial | extracellular matrix | signal transduction

  16. Porous Carbon Fibers Containing Pores with Sizes Controlled at the Ångstrom Level by the Cavity Size of Pillar[6]arene.

    PubMed

    Ogoshi, Tomoki; Yoshikoshi, Kumiko; Sueto, Ryuta; Nishihara, Hirotomo; Yamagishi, Tada-Aki

    2015-05-26

    We report a new synthesis method of fibrous carbon material with pores sizes that are precisely controlled at the Ångstrom level, by carbonization of two dimensional (2D) porous sheets of pillar[6]arenes. The 2D porous sheets were prepared by 2D supramolecular polymerization induced by oxidation of hydroquinone units of pillar[6]arenes. Owing to the hexagonal structure of pillar[6]arene, the assembly induced by 2D supramolecular polymerization gave hexagonal 2D porous sheets, and the highly ordered structure of the 2D porous sheets formed regular fibrous structures. Then, carbonization of the 2D porous sheets afforded fibrous carbon materials with micropores. The micropore size of the fibrous porous carbon prepared from pillar[6]arene was the same size as that of the starting material pillar[6]arene assembly.

  17. A novel cream formulation containing nicotinamide 4%, arbutin 3%, bisabolol 1%, and retinaldehyde 0.05% for treatment of epidermal melasma.

    PubMed

    Crocco, Elisete I; Veasey, John V; Boin, Maria F; Lellis, Rute F; Alves, Renata O

    2015-11-01

    Epidermal melasma is a common hyperpigmentation disorder that can be challenging to treat. Although current treatment options for melasma are limited, topical skin-lightening preparations have widely been used as alternatives to hydroquinone. In this prospective, single-arm, open-label study, treatment of epidermal melasma with a novel cream formulation containing nicotinamide 4%, arbutin 3%, bisabolol 1%, and retinaldehyde 0.05% was associated with reductions in Melasma Area and Severity Index (MASI) scores as well as total melasma surface area as measured by medical imaging software. Treatment outcomes including tolerance and safety profiles as well as patient satisfaction and product appreciation showed this novel cosmetic compound may be valuable in the treatment of epidermal melasma. PMID:26682557

  18. Enhancing charge storage of conjugated polymer electrodes with phenolic acids

    NASA Astrophysics Data System (ADS)

    Wagner, Michal; Rębiś, Tomasz; Inganäs, Olle

    2016-01-01

    We here present studies of electrochemical doping of poly(1-aminoanthraquinone) (PAAQ) films with three structurally different phenolic acids. The examined phenolic acids (sinapic, ferulic and syringic acid) were selected due to their resemblance to redox active groups, which can be found in lignin. The outstanding electrochemical stability of PAAQ films synthesized for this work enabled extensive cycling of phenolic acid-doped PAAQ films. Potentiodynamic and charge-discharge studies revealed that phenolic acid-doped PAAQ films exhibited enhanced capacitance in comparison to undoped PAAQ films, together with appearance of redox activity characteristics specific for each dopant. Electrochemical kinetic studies performed on microelectrodes affirmed the fast electron transfer for hydroquinone-to-quinone reactions with these phenolic compounds. These results imply the potential application of phenolic acids in cheap and degradable energy storage devices.

  19. Enzymatic electrochemical detection coupled to multivariate calibration for the determination of phenolic compounds in environmental samples.

    PubMed

    Hernandez, Silvia R; Kergaravat, Silvina V; Pividori, Maria Isabel

    2013-03-15

    An approach based on the electrochemical detection of the horseradish peroxidase enzymatic reaction by means of square wave voltammetry was developed for the determination of phenolic compounds in environmental samples. First, a systematic optimization procedure of three factors involved in the enzymatic reaction was carried out using response surface methodology through a central composite design. Second, the enzymatic electrochemical detection coupled with a multivariate calibration method based in the partial least-squares technique was optimized for the determination of a mixture of five phenolic compounds, i.e. phenol, p-aminophenol, p-chlorophenol, hydroquinone and pyrocatechol. The calibration and validation sets were built and assessed. In the calibration model, the LODs for phenolic compounds oscillated from 0.6 to 1.4 × 10(-6) mol L(-1). Recoveries for prediction samples were higher than 85%. These compounds were analyzed simultaneously in spiked samples and in water samples collected close to tanneries and landfills.

  20. New pterocarpanquinones: synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-alpha modulation in human PBMC cells.

    PubMed

    Netto, Chaquip D; da Silva, Alcides J M; Salustiano, Eduardo J S; Bacelar, Thiago S; Riça, Ingred G; Cavalcante, Moises C M; Rumjanek, Vivian M; Costa, Paulo R R

    2010-02-15

    A new pterocarpanquinone (5a) was synthesized through a palladium catalyzed oxyarylation reaction and was transformed, through electrophilic substitution reaction, into derivatives 5b-d. These compounds showed to be active against human leukemic cell lines and human lung cancer cell lines. Even multidrug resistant cells were sensitive to 5a, which presented low toxicity toward peripheral blood mononuclear cells (PBMC) cells and decreased the production of TNF-alpha by these cells. In the laboratory these pterocarpanquinones were reduced by sodium dithionite in the presence of thiophenol at physiological pH, as NAD(P)H quinone oxidoredutase-1 (NQO1) catalyzed two-electron reduction, and the resulting hydroquinone undergo structural rearrangements, leading to the formation of Michael acceptors, which were intercepted as adducts of thiophenol. These results suggest that these compounds could be activated by bioreduction. PMID:20117936

  1. Total Syntheses of Juglorescein and Juglocombins A and B.

    PubMed

    Kamo, Shogo; Yoshioka, Kai; Kuramochi, Kouji; Tsubaki, Kazunori

    2016-08-22

    Total syntheses of juglorescein and juglocombins A and B are reported. The highly oxygenated 6/6/5/6/6-fused pentacyclic ring system of these natural products was constructed through a bioinspired dimerization of 1,4-naphthoquinone. Notably, five new stereogenic centers were constructed in a single step by the dimerization reaction. The epoxide intermediate obtained from the dimerization was successfully converted into juglocombins A and B through photoinduced reduction of the epoxide, dehydration, and conversion of the resultant quinone into a hydroquinone derivative. The same epoxide intermediate was also converted into a dicarboxylic acid, which was transformed into juglorescein through intramolecular lactonization, hydrolysis of the resulting lactone, and removal of the protecting groups. Furthermore, the relative and absolute configurations of juglorescein and juglocombins A and B were determined. PMID:27460486

  2. Antioxidant, anti-inflammatory potential and chemical constituents of Origanum dubium Boiss., growing wild in Cyprus.

    PubMed

    Karioti, Anastasia; Milošević-Ifantis, Tanja; Pachopos, Nikitas; Niryiannaki, Niki; Hadjipavlou-Litina, Dimitra; Skaltsa, Helen

    2015-02-01

    Origanum dubium Boiss. is a flavouring herb widely used in Cyprus. In this study, both lipophilic and polar extracts of the aerial parts of O. dubium were investigated for their chemical contents and their antioxidant potential. Overall, 20 constituents were isolated and identified, belonging mainly to three significant classes of compounds: terpenes, phenolic derivatives, such as hydroquinone glycosides and flavonoids and alicyclic derivatives. None of them was previously reported as constituent of O. dubium The inhibitory potencies of all total extracts and the isolated compounds on lipid peroxidation and their interaction with 1,1-diphenyl-picrylhydrazyl (DPPH) activity is discussed. The polar extract showed strong interaction with DPPH stable radical and significant inhibition of lipoxygenase and lipid peroxidation.

  3. Oxidation of aqueous sulfur dioxide. 3. The effects of chelating agents and phenolic antioxidants

    SciTech Connect

    Lim, P.K.; Huss, A. Jr.; Eckert, C.A.

    1982-10-14

    The inhibiting effects of chelating agents (1,10-phenanthroline and EDTA) and phenolic antioxidants (phenol, hydroquinone, resorcinol, pyrocatechol, phloroglucinol, and pyrogallol) on the catalyzed oxidations of low- and high-pH aqueous S(IV) solutions were investigated. Both the low-pH Mn(II)- and Fe(II)-catalyzed reactions were inhibited by phenolic antioxidants, with the effect on the Mn(II)-catalyzed reaction being much more pronounced. The chelating agents, on the other hand, had a far greater inhibiting influence on the Fe(II)-catalyzed reaction. The high-pH Cu(II)-catalyzed reaction was markedly inhibited by both chelating agents and antioxidants. The results support our previous conclusion that the previously accepted uncatalyzed oxidations of S(IV) were in fact primarily trace-metal catalyzed. 7 figures.

  4. Extraction of phenols from water with tri-octyl phosphine oxide

    SciTech Connect

    MacGlashan, J.D.

    1982-03-01

    Tri-octyl phosphine oxide (TOPO) was examined as an extractant for removing phenol; the dihydric phenols catechol, resorcinol, and hydroquinone; and the trihydric phenols pyrogallol, phloroglucinol, and 1,2,4-benzenetriol from water. Distribution coefficients were measured and results modelled for extractions with different diluents, solvent compositions, temperatures, and extractant-to-solute stoichiometric ratios. Modelling of the results indicates that the extraction mechanism is complicated, with the diluent probably playing an important role. The most effective diluents are those that have some electron-donating ability and are thus able to solvate the solute-TOPO complex, without competing with the solute for the phosphoryl oxygen on TOPO. The distribution coefficients decrease with increasing temperature, and show a linear dependence when plotted as ln(K/sub D/) vs. l/T.

  5. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    PubMed

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites. PMID:27016252

  6. Kinetic Steering of Quinol Oxidation by ‘Proton Stripping’ at the Cytochrome bc1 Complex Qo Site

    SciTech Connect

    Kramer, David M.; Cape, Jonathan L.; Forquer, Isaac P.; Bowman, Michael K.

    2005-05-13

    The cyt bc1 complex and the related cyt b6f and bc-type complexes are key components of chemiosmotic energy conversion in mitochondria, chloroplasts and many bacteria. These complexes oxidize a range of different quinol or hydroquinone (QH2) molecules—ubihydroquinone (UQH2) in the case of mitochondria and many bacteria, plastohydroquinone (PQH2) in chloroplasts and cyanobacteria, and menahydroquinone in many bacteria—to the corresponding quinone (Q), and reduce a range of soluble electron carriers, e.g. cyt c in purple bacteria and mitochondria, plastocyanin in chloroplasts. The redox reactions are coupled to the translocation of protons across the energetic membrane to store energy in an electrochemical proton gradient, or proton motive force (pmf) which drives ATP synthesis.

  7. Inhibition of melanin content by Punicalagins in the super fruit pomegranate (Punica granatum).

    PubMed

    Rana, Jatinder; Diwakar, Ganesh; Saito, Lisa; Scholten, Jeffrey D; Mulder, Timothy

    2013-01-01

    Current efforts to develop effective skin lightening products through the inhibition of melanin production have focused on compounds that inhibit the function and activity of tyrosinase, the rate-limiting enzyme in the melanin biosynthesis pathway. Synthetic tyrosinase inhibitors, such as hydroquinone, kojic acid, and arbutin, have been reported to cause skin irritation or acute dermatitis, raising concerns about the safety of these compounds. As a result, there is a need for safe natural ingredients that show effective skin lightening. In this report, we have identified a natural ingredient, pomegranate fruit extract, that inhibits melanin production in melanocytes and shows potential for use as a cosmetic skin lightening agent. In addition, we have identified a polyphenolic compound, punicalagins, as the active melanin inhibitor in pomegranate fruit extract based on its capacity to directly inhibit melanin production.

  8. Enhancement of the biodegradability of aromatic groundwater contaminants.

    PubMed

    Bittkau, Anke; Geyer, Roland; Bhatt, Manish; Schlosser, Dietmar

    2004-12-15

    Groundwater (GW) from the Bitterfeld industrial region, Central Germany, is contaminated mainly with monochlorobenzene (MCB). Accordingly, current research addresses the development of feasible in situ groundwater remediation technologies. Although easily degradable under aerobic conditions, MCB persists in the essentially anaerobic Bitterfeld aquifer. Therefore, we focused on primary oxidation of MCB and the subsequent anaerobic biodegradability of MCB oxidation products by the indigenous microbial community. In groundwater microcosms, most efficient MCB removal was observed upon treatment with Fenton's reagent (H2O2 + Fe2+), which produces the highly reactive hydroxyl radical and Fe3+ simultaneously. Phospholipid fatty acid analysis following different treatments suggested respective shifts of the microbial community compositions, and indicated that Fenton's reagent had a rather beneficial than an adverse effect on biomass development. Potential metabolites of hydroxyl radical attack on MCB such as chlorohydroquinone, hydroquinone, catechol, resorcinol, and phenol were anaerobically degraded by the groundwater microbial community under Fe3+ -reducing conditions.

  9. Determination of Quantitative Structure-Property Relationships of Solvent Resistance of Polycarbonate Copolymers Using a Resonant Multisensor System

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Wroczynski, Ronald J.; McCloskey, Patrick J.; Morris, William G.

    In sensor and microfluidic applications, the need is to have an adequate solvent resistance of polymers to prevent degradation of the substrate surface upon deposition of sensor formilations, to prevent contamination of the solvent-containing sensor formulations or contamination of organic liquid reactions in microfluidic channels. Unfortunately, no comprehensive quantitative reference solubility data of unstressed copolymers is available to date. In this study, we evaluate solvent-resistance of several polycarbonate copolymers prepared from the reaction of hydroquinone (HQ), resorcinol (RS), and bisphenol A (BPA). Our high-throughput polymer evaluation approach permitted the construction of detailed solvent-resistance maps, the development of quantitative structure-property relationships for BPA-HQ-RS copolymers and provided new knowledge for the further development of the polymeric sensor and microfluidic components.

  10. Perlite filtration of phenolic compounds from cigarette smoke.

    PubMed

    Rostami-Charati, Faramarz; Robati, Gholamreza Moradi; Naghizadeh, Farhad; Hosseini, Shahnaz; Chaichi, Mohammad Javad

    2013-01-01

    Adsorption of phenolic compounds and chemical analysis of them from a local production cigarette (named by Farvardin cigarette) smoke have been investigated by using perlite filtration. In this research, the mainstream smoke was tested by three filtration methods: Perlite filter, Cambridge filter and general cigarette filter. Then the used filter was extracted by pure methanol as solvent. After that, the extracted solution was analysed by GC-MS. By this consideration, the phenolic derivatives such as phenol, hydroquinone, resorcinol, pyrocatechol, m-cresol, p-cresol and o-cresol were detected. The structure of the perlite filtration after absorption was studied by SEM. In addition, its chemical structure was investigated by XRD and XRF.

  11. Antioxidant activity of twenty five plants from Colombian biodiversity.

    PubMed

    Mosquera, Oscar M; Correa, Yaned M; Buitrago, Diana C; Niño, Jaime

    2007-08-01

    The antioxidant activity of the crude n-hexane, dichloromethane, and methanol extracts from 25 species belonging to the Asteraceae, Euphorbiaceae, Rubiaceae, and Solanaceae families collected at natural reserves from the Eje Cafetero Ecorregión Colombia, were evaluated by using the spectrophotometric 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging method. The strongest antioxidant activities were showed by the methanol and dichloromethane extracts from the Euphorbiaceae, Alchornea coelophylla (IC50 41.14 mg/l) and Acalypha platyphilla (IC50 111.99 mg/l), respectively. These two species had stronger DPPH radical scavenging activities than hydroquinone (IC50 151.19 mg/l), the positive control. The potential use of Colombian flora for their antioxidant activities is discussed.

  12. p-Benzoquinone, a reactive metabolite of benzene, prevents the processing of pre-interleukins-1 alpha and -1 beta to active cytokines by inhibition of the processing enzymes, calpain, and interleukin-1 beta converting enzyme.

    PubMed Central

    Kalf, G F; Renz, J F; Niculescu, R

    1996-01-01

    Chronic exposure of humans of benzene affects hematopoietic stem and progenitor cells and leads to aplastic anemia. The stromal macrophage, a target of benzene toxicity, secretes interleukin-1 (IL-1), which induces the stromal fibroblast to synthesize hematopoietic colony-stimulating factors. In a mouse model, benzene causes an acute marrow hypocellularity that can be prevented by the concomitant administration of IL-1 alpha. The ability of benzene to interfere with the production and secretion of IL-1 alpha was tested. Stromal macrophages from benzene-treated mice were capable of the transcription to the IL-1 alpha gene and the translation of the message but showed an inability to process the 34-kDa pre-IL-1 alpha precursor to the 17-kDa biologically active cytokine. Treatment of normal murine stromal macrophages in culture with hydroquinone (HQ) also showed an inhibition in processing of pre-IL-1 alpha. Hydroquinone is oxidized by a peroxidase-mediated reaction in the stromal macrophage to p-benzoquinone, which interacts with the sulfhydryl (SH) groups of proteins and was shown to completely inhibit the activity of calpain, the SH-dependent protease that cleaves pre-IL-1 alpha. In a similar manner, HQ, via peroxidase oxidation to p-benzoquinone, was capable of preventing the IL-1 beta autocrine stimulation of growth of human B1 myeloid tumor cells by preventing the processing of pre-IL-1 beta to mature cytokine. Benzoquinone was also shown to completely inhibit the ability of the SH-dependent IL-1 beta converting enzyme. Thus benzene-induced bone marrow hypocellularity may result from apoptosis of hematopoietic progenitor cells brought about by lack of essential cytokines and deficient IL-1 alpha production subsequent to the inhibition of calpain by p-benzoquinone and the prevention of pre-IL-1 processing. Images Figure 2. Figure 3. Figure 6. Figure 7. Figure 8. PMID:9118901

  13. p-Benzoquinone, a reactive metabolite of benzene, prevents the processing of pre-interleukins-1{alpha} and -1{beta} to active cytokines by inhibition of the processing enzymes, calpain, and interleukin-1{beta} converting enzyme

    SciTech Connect

    Kalf, G.F.; Renz, J.F.; Niculescu, R.

    1996-12-01

    Chronic exposure of humans to benzene affects hematopoietic stem and progenitor cells and leads to aplastic anemia. The stromal macrophage, a target of benzene toxicity, secretes interieukin-1 (IL-1), which induces the stromal fibroblast to synthesize hematopoietic colony-stimulating factors. In a mouse model, benzene causes an acute marrow hypocellularity that can be prevented by the concomitant administration of IL-1{alpha}. The ability of benzene to interfere with the production and secretion of IL-1{alpha} was tested. Stromal macrophages from benzene-treated mice were capable of the transcription of the IL-1{alpha} gene and the translation of the message but showed an inability to process the 34-kDa pre-IL-1{alpha} precursor to the 17-kDa biologically active cytokine. Treatment of normal murine stromal macrophages in culture with hydroquinone (HQ) also showed an inhibition in processing of pre-IL-1{alpha}. Hydroquinone is oxidized by a peroxidase-mediated reaction in the stromal macrophage to p-benzoquinone, which interacts with the sulfhydryl (SH) groups of proteins and was shown to completely inhibit the activity of calpain, the SH-dependent protease that cleaves pre-IL-1{alpha}. In a similar manner, HQ, via peroxidase oxidation to p-benzoquinone, was capable of preventing the IL-1{beta} autocrine stimulation of growth of human B1 myeloid tumor cells by preventing the processing of pre-IL-1{beta} to mature cytokine. Benzoquinone was also shown to completely inhibit the ability of the SH-dependent IL-1{beta} converting enzyme. Thus benzene-induced bone marrow hypocellularity may result from apoptosis of hematopoietic progenitor cells brought about by lack of essential cylokines and deficient IL-1{alpha} production subsequent to the inhibition of calpain by p-benzoquinone and the prevention of pre-IL-1 processing. 34 refs., 8 figs.

  14. Deoxyarbutin Possesses a Potent Skin-Lightening Capacity with No Discernible Cytotoxicity against Melanosomes

    PubMed Central

    Fan, Zhi-Feng; Jiang, Shan; Xu, Shi-Zheng; Lei, Tie-Chi

    2016-01-01

    Safe and effective ingredients capable of removing undesired hyperpigmentation from facial skin are urgently needed for both pharmaceutical and cosmetic purposes. Deoxyarbutin (4-[(tetrahydro-2H-pyran-2-yl) oxy] phenol, D-Arb) is a glucoside derivative of hydroquinone. Here, we investigated the toxicity and efficacy of D-Arb at the sub-cellular level (directly on melanosomes) and skin pigmentation using in vivo and in vitro models to compare with its parent compound hydroquinone (1,4-benzenediol, HQ). At first, we examined the ultrastructural changes of melanosomes in hyperpigmented guinea pig skin induced by 308-nm monochromatic excimer lightand/or treated with HQ and D-Arb using transmission electron microscopy. The results showed that prominent changes in the melanosomal membrane, such as bulb-like structure and even complete rupture of the outer membranes, were found in the skin after topical application of 5% HQ for 10 days. These changes were barely observed in the skin treated with D-Arb. To further clarify whether membrane toxicity of HQ was a direct result of the compound treatment, we also examinedultrastructural changes of individual melanosomes purified from MNT1 human melanoma cells. Similar observations were obtained from the naked melanosome model in vitro. Finally, we determined the effects of melanosomal fractions exposed to HQ or D-Arb on hydroxyl radical generation in the Fenton reaction utilizing an electron spin resonance assay. D-Arb-treated melanosomesexhibit a moderate hydroxyl radical-scavenging activity, whereas HQ-treated melanosomessignificantly generate more hydroxyl free radicals. This study suggests that D-Arb possesses a potent ability in skin lightening and antioxidation with less melanosome cytotoxicity. PMID:27776184

  15. Melasma--updated treatments.

    PubMed

    Situm, Mirna; Kolić, Maja; Bolanca, Zeljana; Ljubicić, Ivana; Misanović, Bernarda

    2011-09-01

    Melasma is a common, acquired facial skin disorder, mostly involving sun-exposed areas like cheeks, forehead and upper lip. Melasma occurs in both sexes, although almost 90 percent of the affected are women. It is more common in darker skin types (Fitzpatrick skin types IV to VI) especially Hispanics/Latinos, Asians and African-Americans. The onset of the melasma is at puberty or later, with exception of darker skin types, who tend to develop this problem in the first decade of life. The etiology is still unknown, although there are a number of triggering factors related to the onset of melasma. The most important are sun-exposure and genetic factors in both sexes, while hormonal activity has more important role in females. In addition, stress and some cosmetic products and drugs containing phototoxic agents can cause outbreaks of this condition. Melasma should be treated using monotherapies or combination of therapy, mainly fixed triple or dual combinations containing hydroquinone, tretinoin, corticosteroids or azelaic acid. Modified Kligman's formula is also very effective. Above mentioned therapy regimens in combination with UVA and UVB blocking sunscreens are mostly effective in epidermal melasma. Discontinuation of the use of birth control pills, scented cosmetic products, and phototoxic drugs coupled with UV protection are also benefitial in clearing of melasma. Alternative treatment including chemical peels and glicolic acid, seem to have the best result as a second line treatment after bleaching creams. Laser treatments show limited efficacy and should rarely be used in the treatment of melasma. Combining topical agents like hydroquinone, tretinoin and a corticosteroid in addition to sun avoidance, regular use of sunscreen throughout the year and patient education is the best treatment in this difficult to treat condition.

  16. Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage.

    PubMed

    Pryor, W A; Stone, K; Zang, L Y; Bermúdez, E

    1998-05-01

    Previously, we have shown that aqueous cigarette tar (ACT) extracts contain a long-lived tar radical that associates with DNA in isolated rat alveolar macrophages and causes DNA damage in isolated rat thymocytes. These ACT solutions reduce oxygen to produce superoxide and, ultimately, hydrogen peroxide. In this study, we report the fractionation of ACT solutions prepared from the tar from five cigarettes using Sephadex columns. The fractions were analyzed by UV and electron paramagnetic resonance (EPR) spectroscopy and gas chromatography/mass spectrometry (GC/MS). The fractions containing polyphenolic species (principally catechol and hydroquinone, as determined by MS) caused most of the observed DNA damage in rat thymocytes. These DNA-damaging fractions produced superoxide, H2O2, and hydroxyl radicals. Stable free radicals were identified as o- and p-benzosemiquinone radicals by EPR spectroscopy. Hydroxyl radicals were detected by EPR spin-trapping with 5, 5-dimethyl-1-pyrroline N-oxide (DMPO). Catalase inhibited the EPR signal of the DMPO-OH adduct, indicating that H2O2 is the precursor of the hydroxyl radical spin adduct. The Sephadex separation resulted in a 90-fold concentration of the hydrogen peroxide-generating capacity of the fractions that contained polyphenols, relative to the unfractionated ACT solution. Another fraction, which contained nicotine, caused some DNA damage, but this damage was 28-fold less than the damage caused by the most damaging phenolic fraction. These results support our hypothesis that the tar radical system is an equilibrium mixture of semiquinones, hydroquinones, and quinones. The tar radical associates with DNA, causes DNA damage, and very likely is involved in the toxicity associated with cigarette smoking. PMID:9585474

  17. Evidence for strain-specific differences in benzene toxicity as a function of host target cell susceptibility.

    PubMed

    Neun, D J; Penn, A; Snyder, C A

    1992-01-01

    It has long been recognized that benzene exposure produces disparate toxic responses among different species or even among different strains within the same species. There is ample evidence that species- or strain-dependent differences in metabolic activity correlate with the disparate responses to benzene. However, bone marrow cells (the putative targets of benzene toxicity) may also exhibit species- or strain-dependent differences in susceptibility to the toxic effects of benzene. To investigate this hypothesis, two sets of companion experiments were performed. First, two strains of mice, Swiss Webster (SW) and C57B1/6J (C57), were exposed to 300 ppm benzene via inhalation and the effects of the exposures were determined on bone marrow cellularity and the development of bone marrow CFU-e (Colony Forming Unit-erythroid, an early red cell progenitor). Second, bone marrow cells from the same strains were exposed in vitro to five known benzene metabolites (1,4 benzoquinone, catechol, hydroquinone, muconic acid, and phenol) individually and in binary combinations. Benzene exposure, in vivo, reduced bone marrow cellularity and the development of CFU-e in both strains; however, reductions in both these endpoints were more severe in the SW strain. When bone marrow cells from the two strains were exposed in vitro to the five benzene metabolites individually, benzoquinone, hydroquinone, and catechol reduced the numbers of CFU-e in both strains in dose-dependent responses, phenol weakly reduced the numbers of the C57 CFU-e only and in a non-dose-dependent manner, and muconic acid was without effect on cells from either strain.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. 19-Substituted Benzoquinone Ansamycin Heat Shock Protein-90 Inhibitors: Biological Activity and Decreased Off-Target Toxicity

    PubMed Central

    Chang, Chuan-Hsin; Drechsel, Derek A.; Kitson, Russell R. A.; Siegel, David; You, Qiang; Backos, Donald S.; Ju, Cynthia; Moody, Christopher J.

    2014-01-01

    The benzoquinone ansamycins (BQAs) are a valuable class of antitumor agents that serve as inhibitors of heat shock protein (Hsp)-90. However, clinical use of BQAs has resulted in off-target toxicities, including concerns of hepatotoxicity. Mechanisms underlying the toxicity of quinones include their ability to redox cycle and/or arylate cellular nucleophiles. We have therefore designed 19-substituted BQAs to prevent glutathione conjugation and nonspecific interactions with protein thiols to minimize off-target effects and reduce hepatotoxicity. 19-Phenyl– and 19-methyl–substituted versions of geldanamycin and its derivatives, 17-allylamino-17-demethoxygeldanamycin and 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), did not react with glutathione, whereas marked reactivity was observed using parent BQAs. Importantly, although 17-DMAG induced cell death in primary and cultured mouse hepatocytes, 19-phenyl and 19-methyl DMAG showed reduced toxicity, validating the overall approach. Furthermore, our data suggest that arylation reactions, rather than redox cycling, are a major mechanism contributing to BQA hepatotoxicity. 19-Phenyl BQAs inhibited purified Hsp90 in a NAD(P)H:quinone oxidoreductase 1 (NQO1)–dependent manner, demonstrating increased efficacy of the hydroquinone ansamycin relative to its parent quinone. Molecular modeling supported increased stability of the hydroquinone form of 19-phenyl-DMAG in the active site of human Hsp90. In human breast cancer cells, 19-phenyl BQAs induced growth inhibition also dependent upon metabolism via NQO1 with decreased expression of client proteins and compensatory induction of Hsp70. These data demonstrate that 19-substituted BQAs are unreactive with thiols, display reduced hepatotoxicity, and retain Hsp90 and growth-inhibitory activity in human breast cancer cells, although with diminished potency relative to parent BQAs. PMID:24682466

  19. The unusual reaction of semiquinone radicals with molecular oxygen.

    PubMed

    Valgimigli, Luca; Amorati, Riccardo; Fumo, Maria Grazia; DiLabio, Gino A; Pedulli, Gian Franco; Ingold, Keith U; Pratt, Derek A

    2008-03-01

    Hydroquinones (benzene-1,4-diols) are naturally occurring chain-breaking antioxidants, whose reactions with peroxyl radicals yield 1,4-semiquinone radicals. Unlike the 1,2-semiquinone radicals derived from catechols (benzene-1,2-diols), the 1,4-semiquinone radicals do not always trap another peroxyl radical, and instead the stoichiometric factor of hydroquinones varies widely between 0 and 2 as a function of ring-substitution and reaction conditions. This variable antioxidant behavior has been attributed to the competing reaction of the 1,4-semiquinone radical with molecular oxygen. Herein we report the results of experiments and theoretical calculations focused on understanding this key reaction. Our experiments, which include detailed kinetic and mechanistic investigations by laser flash photolysis and inhibited autoxidation studies, and our theoretical calculations, which include detailed studies of the reactions of both 1,4-semiquinones and 1,2-semiquinones with O2, provide many important insights. They show that the reaction of O2 with 2,5-di-tert-butyl-1,4-semiquinone radical (used as model compound) has a rate constant of 2.4 +/- 0.9 x 10(5) M-1 s-1 in acetonitrile and as high as 2.0 +/- 0.9 x 10(6) M-1 s-1 in chlorobenzene, i.e., similar to that previously reported in water at pH approximately 7. These results, considered alongside our theoretical calculations, suggest that the reaction occurs by an unusual hydrogen atom abstraction mechanism, taking place in a two-step process consisting first of addition of O2 to the semiquinone radical and second an intramolecular H-atom transfer concerted with elimination of hydroperoxyl to yield the quinone. This reaction appears to be much more facile for 1,4-semiquinones than for their 1,2-isomers. PMID:18260673

  20. Proton-coupled electron transfer of flavodoxin immobilized on nanostructured tin dioxide electrodes: thermodynamics versus kinetics control of protein redox function.

    PubMed

    Astuti, Yeni; Topoglidis, Emmanuel; Briscoe, Paul B; Fantuzzi, Andrea; Gilardi, Gianfranco; Durrant, James R

    2004-06-30

    In this paper, we report a spectroelectrochemical investigation of proton-coupled electron transfer in flavodoxin D. vulgaris Hildenborough (Fld). Poly-L-lysine is used to promote the binding of Fld to the nanocrystalline, mesoporous SnO(2) electrodes. Two reversible redox couples of the immobilized Fld are observed electrochemically and are assigned by spectroelectrochemistry to the quinone/semiquinone and semiquinone/hydroquinone couples of the protein's flavin mononucleotide (FMN) redox cofactor. Comparison with control data for free FMN indicates no contamination of the Fld data by dissociated FMN. The quinone/semiquinone and semiquinone/hydroquinone midpoint potentials (E(q/sq) and E(sq/hq)) at pH 7 were determined to be -340 and -585 mV vs Ag/AgCl, in good agreement with the literature. E(q/sq) exhibited a pH dependence of 51 mV/pH. The kinetics of these redox couples were studied using cyclic voltammetry, cyclic voltabsorptometry, and chronoabsorptometry. The semiquinone/quinone reoxidation is found to exhibit slow, potential-independent but pH-sensitive kinetics with a reoxidation rate constant varying from 1.56 s(-)(1) at pH 10 to 0.0074 s(-)(1) at pH 5. The slow kinetics are discussed in terms of a simple kinetics model and are assigned to the reoxidation process being rate limited by semiquinone deprotonation. It is proposed that this slow deprotonation step has the physiological benefit of preventing the undesirable loss of reducing equivalents which results from semiquinone oxidation to quinone. PMID:15212550

  1. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.

    PubMed

    Smith, Jeremy D; Kinney, Haley; Anastasio, Cort

    2015-04-21

    Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.

  2. Effects of benzene and its metabolites on global DNA methylation in human normal hepatic L02 cells.

    PubMed

    Hu, Junjie; Ma, Huimin; Zhang, Wenbing; Yu, Zhiqing; Sheng, Guoying; Fu, Jiamo

    2014-01-01

    Benzene is an important industrial chemical that is also widely present in cigarette smoke, automobile exhaust, and gasoline. It is reported that benzene can cause hematopoietic disorders and has been recognized as a human carcinogen. However, the mechanisms by which it increases the risk of carcinogenesis are only partially understood. Aberrant DNA methylation is a major epigenetic mechanism associated with the toxicity of carcinogens. To understand the carcinogenic capacity of benzene, experiments were designed to investigate whether exposure to benzene and its metabolites would change the global DNA methylation status in human normal hepatic L02 cells and then to evaluate whether the changes would be induced by variation of DNA methyltransferase (DNMT) activity in HaeIII DNMT-mediated methylation assay in vitro. Our results showed that hydroquinone and 1,4-benzoquinone could induce global DNA hypomethylation with statistically significant difference from control (p < 0.05), but no significant global DNA methylation changes were observed in L02 cells with benzene, phenol, and 1,2,4-trihydroxybenzene exposure. Benzene metabolites could not influence HaeIII DNMT activity except that 1,4-benzoquinone shows significantly inhibiting effect on enzymatic methylation reaction at concentrations of 5 μM (p < 0.05). These results suggest that benzene metabolites, hydroquinone, and 1,4-benzoquinone can disrupt global DNA methylation, and the potential epigenetic mechanism by which that global DNA hypomethylation induced by 1,4-benzoquinone may work through the inhibiting effects of DNMT activity at 10 μM (p < 0.05).

  3. Electrogenerated poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) interfaces: toward the impedimetric detection of lectins

    PubMed Central

    Gondran, Chantal; Dubois, Marie-Pierre; Fort, Sébastien; Cosnier, Serge

    2013-01-01

    This paper reports on the impedimetric transduction of binding reaction between polymerized saccharides and target lectins. The controlled potential electro-oxidation of pyrrole-lactosyl and pyrrole-3′-sialyllactosyl at 0.95 V vs. Ag/AgCl, provides thin and reproducible poly(pyrrole-saccharide) films. The affinity binding of two lectins: Arachis hypogaea, (PNA) and Maackia amurensis (MAA) onto poly(pyrrole-lactosyl) and poly(pyrrole-3′-sialyllactosyl) electrodes, was demonstrated by cyclic voltammetry in presence of ruthenium hexamine and hydroquinone. In addition, rotating disk experiments were carried out to determine the permeability of both polypyrrole films and its evolution after incubating with lectin target. Finally, the possibility of using the poly(pyrrole-lactosyl) or poly(pyrrole-3′-siallyllactosyl) films for the impedimetric transduction of the lectin binding reaction, was investigated with hydroquinone (2 × 10−3 mol L−1) as a redox probe in phosphate buffer. The resulting impedance spectra were interpreted and modeled as an equivalent circuit indicating that charge transfer resistance (Rct) and relaxation frequency (f°) parameters are sensitive to the lectin binding. Rct increases from 77 to 97 Ω cm2 for PNA binding and from 93 to 131 Ω cm2 for MAA binding. In parallel, f° decreases from 276 to 222 Hz for PNA binding and from 223 to 131 Hz for MAA binding. This evolution of both parameters reflects the steric hindrances generated by the immobilized lectins towards the permeation of the redox probe. PMID:24790939

  4. Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium.

    PubMed Central

    Joshi, D K; Gold, M H

    1993-01-01

    Under secondary metabolic conditions the white rot basidiomycete Phanerochaete chrysosporium rapidly mineralizes 2,4,5-trichlorophenol. The pathway for degradation of 2,4,5-trichlorophenol was elucidated by the characterization of fungal metabolites and oxidation products generated by purified lignin peroxidase (LiP) and manganese peroxidase (MnP). The multistep pathway involves cycles of peroxidase-catalyzed oxidative dechlorination reactions followed by quinone reduction reactions to yield the key intermediate 1,2,4,5-tetrahydroxybenzene, which is presumably ring cleaved. In the first step of the pathway, 2,4,5-trichlorophenol is oxidized to 2,5-dichloro-1,4-benzoquinone by either MnP or Lip. 2,5-Dichloro-1,4-benzoquinone is then reduced to 2,5-dichloro-1,4-hydroquinone. The 2,5-dichloro-1,4-hydroquinone is oxidized by MnP to generate 5-chloro-4-hydroxy-1,2-benzoquinone. The orthoquinone is in turn reduced to 5-chloro-1,2,4-trihydroxybenzene. Finally, the 5-chlorotrihydroxybenzene undergoes another cycle of oxidative dechlorination and reduction reactions to generate 1,2,4,5-tetrahydroxybenzene. The latter is presumably ring cleaved, with subsequent degradation to CO2. In this pathway, the substrate is oxidatively dechlorinated by LiP or MnP in a reaction which produces a quinone. The quinone intermediate is recycled by a reduction reaction to regenerate an intermediate which is again a substrate for peroxidase-catalyzed oxidative dechlorination. This pathway apparently results in the removal of all three chlorine atoms before ring cleavage occurs. PMID:8328802

  5. Acidic-store depletion is required for human platelet aggregation.

    PubMed

    Amor, Nidhal Ben; Zbidi, Hanene; Bouaziz, Aicha; Jardin, Isaac; Isaac, Jardin; Hernández-Cruz, Juan M; Salido, Ginés M; Rosado, Juan A; Bartegi, Aghleb

    2009-10-01

    Platelet stimulation with thrombin induces an elevation in cytoplasmic free Ca(2+) concentration ([Ca(2+)]c) due to Ca(2+) release from intracellular stores and entry from the extracellular medium. Two different intracellular Ca(2+) stores have been described in human platelets: the dense tubular system and the lysosomal-like acidic stores. In the present study, we investigated the contribution of the acidic stores in thrombin-induced platelet aggregation. We have found that platelet aggregation induced by thrombin is reduced in a Ca(2+)-free medium. Discharge of the acidic Ca(2+) stores by treatment with the sarcoendoplasmic Ca(2+)-ATPase (SERCA)3 selective inhibitor 2,5-di-(tert-butyl)-1,4-hydroquinone reduced thrombin-evoked platelet aggregation. In the presence of 2,5-di-(tert-butyl)-1,4-hydroquinone, platelet aggregation induced by the protease-activated receptor (PAR)-1 and PAR-4 agonist peptides, SFLLRN and AYPGKF, respectively, was significantly reduced. In cells with depleted acidic stores, activation of GPIb-IX-V by thrombin resulted in reduced or no platelet aggregation in a medium containing 1 mmol/l Caor in a Ca(2+)-free medium, respectively. This finding suggests that Ca(2+) accumulation in the acidic Ca(2+) compartments is required for platelet aggregation induced by activation of the G-coupled PAR-1 and PAR-4 thrombin receptors and, by the occupation of the leucine-rich glycoprotein GPIb-IX-V and provide evidence supporting a functional role of the lysosomal-like acidic Ca(2+) stores in human platelets. PMID:19587585

  6. Electrogenerated poly(pyrrole-lactosyl) and poly(pyrrole-3'-sialyllactosyl) interfaces: towards the impedimetric detection of lectins

    NASA Astrophysics Data System (ADS)

    Gondran, Chantal; Dubois, Marie-Pierre; Fort, Sebastien; Cosnier, Serge

    2013-07-01

    This paper reports on the impedimetric transduction of binding reaction between polymerized saccharides and target lectins. The controlled potential electro-oxidation of pyrrole-lactosyl and pyrrole-3’-sialyllactosyl at 0.95 V vs Ag/AgCl, provides thin and reproducible poly(pyrrole-saccharide) films. The affinity binding of two lectins: Arachis hypogaea, (PNA) and Maackia amurensis (MAA) onto poly(pyrrole-lactosyl) and poly(pyrrole-3’-sialyllactosyl) electrodes, was demonstrated by cyclic voltammetry in presence of ruthenium hexamine and hydroquinone. In addition, rotating disk experiments were carried out to determine the permeability of both polypyrrole films and its evolution after incubating with lectin target. Finally, the possibility of using the poly(pyrrole-lactosyl) or poly(pyrrole-3’-siallyllactosyl) films for the impedimetric transduction of the lectin binding reaction, was investigated with hydroquinone (2×10-3 mol L-1) as a redox probe in phosphate buffer. The resuting impedance spectra were interpreted and modeled as an equivalent circuit indicating that charge transfer resistance (Rct) and relaxation frequency (f°) parameters are sensitive to the lectin binding. Rct increases from 77 to 97 Ω cm2 for PNA binding and from 93 to 131 Ω cm2 for MAA binding. In parallel, f° decreases from 276 to 222 Hz for PNA binding and from 223 to 131 Hz for MAA binding. This evolution of both parameters reflects the steric hindrances generated by the immobilised lectins towards the permeation of the redox probe.

  7. Kinetic solvent effects on phenolic antioxidants determined by spectrophotometric measurements.

    PubMed

    Foti, M; Ruberto, G

    2001-01-01

    The effects of polar (acetonitrile and tert-butyl alcohol) and apolar (cyclohexane) solvents on the peroxyl-radical-trapping antioxidant activity of some flavonoids, catechol derivatives, hydroquinone, and monophenols have been studied. The inhibition rate constants k(inh) of the antioxidants have been determined by following the increase in absorbance at 234 nm of a dilute solution of linoleic acid at 50 degrees C containing small amounts of antioxidant and radical initiator. Despite the low concentration of linoleic acid, the peroxidation process has been confirmed to be a free radical chain reaction described by the classical kinetic laws for this process. However, in the evaluation of k(inh), a careful analysis of the peroxidation curve, absorbance versus time, must be done because the final oxidation products of phenols may absorb at 234 nm. Phenols with two ortho-hydroxyls are the most active antioxidants, with inhibition rate constants in the range of (3-15) x 10(5) M(-1) x s(-1) (in cyclohexane). Nevertheless, it has been observed that in tert-butyl alcohol (a strong hydrogen bond acceptor) the rate constants dramatically decline to values not detectable by the present kinetic method. In acetonitrile (a weaker hydrogen bond acceptor) instead, the phenols with two ortho-hydroxyls scavenge the peroxyl radicals with rate constants close to those in cyclohexane. From the kinetic solvent effect, the equilibrium constant of the first solvation step of hydroquinone with tert-butyl alcohol has been determined at 50 degrees C, K(1) = 2.5 +/- 0.5 M(-1). PMID:11170597

  8. Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation.

    PubMed Central

    Muñoz, C; Guillén, F; Martínez, A T; Martínez, M J

    1997-01-01

    Two laccase isoenzymes produced by Pleurotus eryngii were purified to electrophoretic homogeneity (42- and 43-fold) with an overall yield of 56.3%. Laccases I and II from this fungus are monomeric glycoproteins with 7 and 1% carbohydrate content, molecular masses (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of 65 and 61 kDa, and pIs of 4.1 and 4.2, respectively. The highest rate of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) oxidation for laccase I was reached at 65 degrees C and pH 4, and that for laccase II was reached at 55 degrees C and pH 3.5. Both isoenzymes are stable at high pH, retaining 60 to 70% activity after 24 h from pH 8 to 12. Their amino acid compositions and N-terminal sequences were determined, the latter strongly differing from those of laccases of other basidiomycetes. Antibodies against laccase I reacted with laccase II, as well as with laccases from Pleurotus ostreatus, Pleurotus pulmonarius, and Pleurotus floridanus. Different hydroxy- and methoxy-substituted phenols and aromatic amines were oxidized by the two laccase isoenzymes from P. eryngii, and the influence of the nature, number, and disposition of aromatic-ring substituents on kinetic constants is discussed. Although both isoenzymes presented similar substrate affinities, the maximum rates of reactions catalyzed by laccase I were higher than those of laccase II. In reactions with hydroquinones, semiquinones produced by laccase isoenzymes were in part converted into quinones via autoxidation. The superoxide anion radical produced in the latter reaction dismutated, producing hydrogen peroxide. In the presence of manganous ion, the superoxide union was reduced to hydrogen peroxide with the concomitant production of manganic ion. These results confirmed that laccase in the presence of hydroquinones can participate in the production of both reduced oxygen species and manganic ions. PMID:9172335

  9. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    SciTech Connect

    Xiong, Rui; Siegel, David; Ross, David

    2014-10-15

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity.

  10. A Two-Component para-Nitrophenol Monooxygenase Initiates a Novel 2-Chloro-4-Nitrophenol Catabolism Pathway in Rhodococcus imtechensis RKJ300

    PubMed Central

    Min, Jun; Zhang, Jun-Jie

    2015-01-01

    Rhodococcus imtechensis RKJ300 (DSM 45091) grows on 2-chloro-4-nitrophenol (2C4NP) and para-nitrophenol (PNP) as the sole carbon and nitrogen sources. In this study, by genetic and biochemical analyses, a novel 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with hydroxyquinol (hydroxy-1,4-hydroquinone or 1,2,4-benzenetriol [BT]) as the ring cleavage substrate. Real-time quantitative PCR analysis indicated that the pnp cluster located in three operons is likely involved in the catabolism of both 2C4NP and PNP. The oxygenase component (PnpA1) and reductase component (PnpA2) of the two-component PNP monooxygenase were expressed and purified to homogeneity, respectively. The identification of chlorohydroquinone (CHQ) and BT during 2C4NP degradation catalyzed by PnpA1A2 indicated that PnpA1A2 catalyzes the sequential denitration and dechlorination of 2C4NP to BT and catalyzes the conversion of PNP to BT. Genetic analyses revealed that pnpA1 plays an essential role in both 2C4NP and PNP degradations by gene knockout and complementation. In addition to catalyzing the oxidation of CHQ to BT, PnpA1A2 was also found to be able to catalyze the hydroxylation of hydroquinone (HQ) to BT, revealing the probable fate of HQ that remains unclear in PNP catabolism by Gram-positive bacteria. This study fills a gap in our knowledge of the 2C4NP degradation mechanism in Gram-positive bacteria and also enhances our understanding of the genetic and biochemical diversity of 2C4NP catabolism. PMID:26567304

  11. Role of aromatic stacking interactions in the modulation of the two-electron reduction potentials of flavin and substrate/product in Megasphaera elsdenii short-chain acyl-coenzyme A dehydrogenase.

    PubMed

    Pellett, J D; Becker, D F; Saenger, A K; Fuchs, J A; Stankovich, M T

    2001-06-26

    The effects of aromatic stacking interactions on the stabilization of reduced flavin adenine dinucleotide (FAD) and substrate/product have been investigated in short-chain acyl-coenzyme A dehydrogenase (SCAD) from Megasphaera elsdenii. Mutations were made at the aromatic residues Phe160 and Tyr366, which flank either face of the noncovalently bound flavin cofactor. The electrochemical properties of the mutants were then measured in the presence and absence of a butyryl-CoA/crotonyl-CoA mixture. Results from these redox studies suggest that the phenylalanine and tyrosine both engage in favorable pi-sigma interactions with the isoalloxazine ring of the flavin to help stabilize formation of the anionic flavin hydroquinone. Disruption of these interactions by replacing either residue with a leucine (F160L and Y366L) causes the midpoint potential for the oxidized/hydroquinone couple (E(ox/hq)) to shift negative by 44-54 mV. The E(ox/hq) value was also found to decrease when aromatic residues containing electron-donating heteroatoms were introduced at the 160 position. Potential shifts of -32 and -43 mV for the F160Y and F160W mutants, respectively, are attributed to increased pi-pi repulsive interactions between the ring systems. This study also provides evidence for thermodynamic regulation of the substrate/product couple in the active site of SCAD. Binding to the wild-type enzyme caused the midpoint potential for the butyryl-CoA/crotonyl-CoA couple (E(BCoA/CCoA)) to shift 14 mV negative, stabilizing the oxidized product. Formation of product was found to be even more favorable in complexes with the F160Y and F160W mutants, suggesting that the electrostatic environment around the flavin plays a role in substrate/product activation.

  12. Different effects of genistein and resveratrol on oxidative DNA damage in vitro.

    PubMed

    Win, William; Cao, Zhuoxiao; Peng, Xingxiang; Trush, Michael A; Li, Yunbo

    2002-01-15

    Previous studies have demonstrated that phenolic compounds, including genistein (4',5,7-trihydroxyisoflavone) and resveratrol (3,4',5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in phi X-174 plasmid DNA. H(2)O(2)/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H(2)O(2)/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H(2)O(2) suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H(2)O(2)/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H(2)O(2) were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro.

  13. Study of the steam distillation of phenolic compounds using ultraviolet spectrometry

    SciTech Connect

    Norwitz, G.; Nataro, N.; Keliher, P.N.

    1986-03-01

    The steam distillation of 42 phenolic compounds was studied by use of a semimicro steam distillation apparatus and ultraviolet spectrometry. In the distillation, the following gave recoveries greater than 95%: phenol, 2-nitrophenol, 2-methoxyphenol, 2-bromophenol, 2-chlorophenol, 2,3- and 2,4-dichlorophenol, 2,4,5- and 2,4,6-trichlorophenol, 2,4-dibromophenol, 2-, 3-, and 4-methylphenol, 4-chloro-2-methylphenol, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-dimethylphenol, 4-tert-butylphenol, 4-tert-amylpheno,, thymol, and carvacrol. The percent recovery for the other phenolic compounds was as follows: 3-nitrophenol, 3.7%; 4-nitrophenol, 1.8; 3-methoxyphenol, 31.1; 4-methoxyphenol, 23.2; 3-bromophenol, 79.6; 4-bromophenol, 67.8; 3-chlorophenol, 93.5; 4-chlorophenol, 91.6; 3,4-dichlorophenol, 64.1; 2,4-dinitrophenol, 21.2; 2,4,6-trinitrophenol, 0.0; 2-aminophenol, 0.1; 3-aminophenol, 0.2; 4-aminophenol, 0.1; pyrocatechol, 1.6; resorcinol, 04.; hydroquinone, 0.0; pyrogallol, 0.7; and phloroglucinol, 0.1. By the examination of the spectra of the undistilled, distilled, and residual solutions, it is concluded that the aminophenols undergo some decomposition and the hydroquinone is almost completely destroyed during the distillation. The important role that hydrogen bonding (intermolecular and intramolecular) plays in the recovery in the steam distillation is examined. 9 references, 2 tables.

  14. Pathogenic Roles for Fungal Melanins

    PubMed Central

    Jacobson, Eric S.

    2000-01-01

    Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidized enzymatically to quinones, polymerize spontaneously to melanin. It follows that melanizing intermediates are cross-linking reagents; melanization stabilizes the external cell wall against hydrolysis and is thought to determine semipermeability in the osmotic ram (the appressorium) of certain plant pathogens. Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species. The amount of buffering per cell approximately neutralizes the amount of oxidant generated by a single macrophage. Moreover, the intermediate oxidation state, the semiquinone, is a very stable free radical and is thought to trap unpaired electrons. We have suggested that the oxidation state of external melanin may be regulated by external Fe(II). An independent hypothesis holds that in Cryptococcus neoformans, an important function of the melanizing enzyme (apart from melanization) is the oxidation of Fe(II) to Fe(III), thereby forestalling generation of the harmful hydroxyl radical from H2O2. Thus, problems in fungal pathogenesis have led to evolving hypotheses regarding melanin functioning. PMID:11023965

  15. The photophysics of fac-[Re(CO)3(NN)(bpa)](+) complexes: a theoretical/experimental study.

    PubMed

    Sousa, S F; Sampaio, R N; Barbosa Neto, N M; Machado, A E H; Patrocinio, A O T

    2014-08-01

    The influence of the polypyridyl ligand on the photophysics of fac-[Re(CO)3(NN)(bpa)](+), bpa = 1,2-bis-(4-pyridyl)ethane and NN = 1,10-phenanthroline (phen), pyrazino[2,3-f][1,10]-phenanthroline (dpq), and dipyrido[3,2-a:2'3'-c]phenazine (dppz) has been investigated by steady state and time-resolved emission spectroscopy combined with theoretical calculations using time-dependent density functional theory (TD-DFT). The fac-[Re(CO)3(phen)(bpa)](+) is a typical MLCT emitter in acetonitrile with ϕ = 0.11 and τ = 970 ns. The emission lifetime and quantum yield decrease significantly in fac-[Re(CO)3(dpq)(bpa)](+) (ϕ = 0.05; τ = 375 ns) due to the presence of a close lying dark charge transfer state located at the pyrazine ring of dpq, as indicated by TD-DFT data. The luminescence of these complexes is quenched by hydroquinone with kq = (2.9 ± 0.1) × 10(9) and (2.6 ± 0.1) × 10(9) L mol(-1) s(-1), respectively, for NN = phen or dpq. These values are increased respectively to (4.6 ± 0.1) × 10(9) and (4.2 ± 0.1) × 10(9) L mol(-1) s(-1) in the 1 : 1 H2O-CH3CN mixture. In this medium Stern-Volmer constants determined by steady-state and time-resolved measurements differ from each other, which is indicative of static quenching, i.e. the pre-association of hydroquinone and the complexes through hydrogen bonding between the remote N-atom in the bpa ligand (KA ≅ 1-2 × 10(1) L mol(-1)), followed by a concerted proton-electron transfer. In contrast to other investigated complexes, fac-[Re(CO)3(dppz)(bpa)](+) is weakly emissive in acetonitrile at room temperature (ϕ ≅ 10(-4)) and does not exhibit a rigidochromic effect. This photophysical behaviour as well as TD-DFT data indicate that the lowest lying triplet excited state can be described as (3)ILdppz. The results provide additional insight into the influence of the polypyridyl ligand on the photophysical properties of Re(I) complexes.

  16. Characterization of coenzyme binding and selectivity determinants in Mycobacterium tuberculosis flavoprotein reductase A: analysis of Arg(199) and Arg(200) mutants at the NADP(H) 2'-phosphate binding site.

    PubMed

    Sabri, Muna; Dunford, Adrian J; McLean, Kirsty J; Neeli, Rajasekhar; Scrutton, Nigel S; Leys, David; Munro, Andrew W

    2009-01-01

    Mycobacterium tuberculosis FprA (flavoprotein reductase A) is an NAD(P)H- and FAD-binding reductase that is structurally/evolutionarily related to adrenodoxin reductase. Structural analysis implicates Arg(199) and Arg(200) in interactions with the NADP(H) 2'-phosphate group. R199A, R200A and R199A/R200A mutants were characterized to explore the roles of these basic residues. All mutations abolished neutral FAD semiquinone stabilization in the NADPH-reduced enzyme, owing to weakened NADPH affinity. Instead, FAD hydroquinone was formed in all mutants, and each displayed substantially enhanced autooxidation rates (20-40-fold) compared with NADPH-reduced WT (wild-type) FprA. Steady-state ferricyanide reduction studies revealed diminished NADPH affinity (higher K(m) values), but lower NADH K(m) values. Despite a lowered k(cat), the R199A/R200A mutant exhibited a 200-fold coenzyme specificity switch towards NADH, although substrate inhibition was observed at high NADH concentrations (K(i)=250 microM). Stopped-flow FAD reduction studies confirmed substantially increased NADPH K(d) values, although the limiting flavin reduction rate constant was similar in all mutants. The R199A mutation abolished electron transfer between hydroquinone FprA and NADP+, while this reaction progressed (via an FADH(2)-NADP+ charge-transfer intermediate) for R200A FprA, albeit more slowly (k(lim)=58.1 s(-1) compared with >300 s(-1)) than in WT. All mutations caused positive shifts in FAD potential (approximately 40-65 mV). Binding of an NADPH analogue (tetrahydro-NADP) induced negative shifts in potential ( approximately 30-40 mV) only for variants with the R200A mutation, indicating distinctive effects of Arg(199)/Arg(200) on coenzyme binding mode and FAD potential. Collectively, these data reveal important roles for the phylogenetically conserved arginines in controlling FprA FAD environment, thermodynamics, coenzyme selectivity and reactivity.

  17. Pillararenes, a new class of macrocycles for supramolecular chemistry.

    PubMed

    Xue, Min; Yang, Yong; Chi, Xiaodong; Zhang, Zibin; Huang, Feihe

    2012-08-21

    Because of the importance of novel macrocycles in supramolecular science, interest in the preparation of these substances has grown considerably. However, the discovery of a new class of macrocycles presents challenges because of the need for routes to further functionalization of these molecules and good host-guest complexation. Furthermore, useful macrocylic hosts must be easily synthesized in large quantities. With these issues in mind, the recently discovered pillararenes attracted our attention. These macrocycles contain hydroquinone units linked by methylene bridges at para positions. Although the composition of pillararenes is similar to that of calixarenes, they have different structural characteristics. One conformationally stable member of this family is pillar[5]arene, which consists of five hydroquinone units. The symmetrical pillar architecture and electron-donating cavities of these macrocycles are particularly intriguing and afford them with some special and interesting physical, chemical, and host-guest properties. Due to these features and their easy accessibility, pillararenes, especially pillar[5]arenes, have been actively studied and rapidly developed within the last 4 years. In this Account, we provide a comprehensive overview of pillararene chemistry, summarizing our results along with related studies from other researchers. We describe strategies for the synthesis, isomerization, and functionalization of pillararenes. We also discuss their macrocyclic cavity sizes, their host-guest properties, and their self-assembly into supramolecular polymers. The hydroxyl groups of the pillararenes can be modified at all positions or selectively on one or two positions. Through a variety of functionalizations, researchers have developed many pillararene derivatives that exhibit very interesting host-guest properties both in organic solvents and in aqueous media. Guest molecules include electron acceptors such as viologen derivatives and (bis

  18. Genotoxicity of intermittent co-exposure to benzene and toluene in male CD-1 mice.

    PubMed

    Wetmore, Barbara A; Struve, Melanie F; Gao, Pu; Sharma, Sheela; Allison, Neil; Roberts, Kay C; Letinski, Daniel J; Nicolich, Mark J; Bird, Michael G; Dorman, David C

    2008-06-17

    Benzene is an important industrial chemical. At certain levels, benzene has been found to produce aplastic anemia, pancytopenia, myeloblastic anemia and genotoxic effects in humans. Metabolism by cytochrome P450 monooxygenases and myeloperoxidase to hydroquinone, phenol, and other metabolites contributes to benzene toxicity. Other xenobiotic substrates for cytochrome P450 can alter benzene metabolism. At high concentrations, toluene has been shown to inhibit benzene metabolism and benzene-induced toxicities. The present study investigated the genotoxicity of exposure to benzene and toluene at lower and intermittent co-exposures. Mice were exposed via whole-body inhalation for 6h/day for 8 days (over a 15-day time period) to air, 50 ppm benzene, 100 ppm toluene, 50 ppm benzene and 50 ppm toluene, or 50 ppm benzene and 100 ppm toluene. Mice exposed to 50 ppm benzene exhibited an increased frequency (2.4-fold) of micronucleated polychromatic erythrocytes (PCE) and increased levels of urinary metabolites (t,t-muconic acid, hydroquinone, and s-phenylmercapturic acid) vs. air-exposed controls. Benzene co-exposure with 100 ppm toluene resulted in similar urinary metabolite levels but a 3.7-fold increase in frequency of micronucleated PCE. Benzene co-exposure with 50 ppm toluene resulted in a similar elevation of micronuclei frequency as with 100 ppm toluene which did not differ significantly from 50 ppm benzene exposure alone. Both co-exposures - 50 ppm benzene with 50 or 100 ppm toluene - resulted in significantly elevated CYP2E1 activities that did not occur following benzene or toluene exposure alone. Whole blood glutathione (GSH) levels were similarly decreased following exposure to 50 ppm benzene and/or 100 ppm toluene, while co-exposure to 50 ppm benzene and 100 ppm toluene significantly decreased GSSG levels and increased the GSH/GSSG ratio. The higher frequency of micronucleated PCE following benzene and toluene co-exposure when compared with mice exposed to

  19. Influence of chemical kinetics on postcolumn reaction in a capillary Taylor reactor with catechol analytes and photoluminescence following electron transfer.

    PubMed

    Jung, Moon Chul; Weber, Stephen G

    2005-02-15

    Postcolumn derivatization reactions can enhance detector sensitivity and selectivity, but their successful combination with capillary liquid chromatography has been limited because of the small peak volumes in capillary chromatography. A capillary Taylor reactor (CTR), developed in our laboratory, provides simple and effective mixing and reaction in a 25-microm-radius postcolumn capillary. Homogenization of reactant streams occurs by radial diffusion, and a chemical reaction follows. Three characteristic times for a given reaction process can be predicted using simple physical and chemical parameters. Two of these times are the homogenization time, which governs how long it takes the molecules in the analyte and reagent streams to mix, and the reaction time, which governs how long the molecules in a homogeneous solution take to react. The third characteristic time is an adjustment to the reaction time called the start time, which represents an estimate of the average time the analyte stream spends without exposure to reagent. In this study, laser-induced fluorescence monitored the extent of the postcolumn reaction (reduction of Os(bpy)3(3+) by analyte to the photoluminescent Os(bpy)3(2+)) in a CTR. The reaction time depends on the reaction rates. Analysis of product versus time data yielded second-order reaction rate constants between the PFET reagent, tris(2,2'-bipyridine)osmium, and standards ((ferrocenylmethyl)trimethylammonium cation and p-hydroquinone) or catechols (dopamine, epinephrine, norepinephrine, 3, 4-dihydroxyphenylacetic acid. The extent of the reactions in a CTR were then predicted from initial reaction conditions and compared to experimental results. Both the theory and experimental results suggested the reactions of catechols were generally kinetically controlled, while those of the standards were controlled by mixing time (1-2 s). Thus, the extent of homogenization can be monitored in a CTR using the relatively fast reaction of the reagent and p-hydroquinone

  20. Genes Involved in Degradation of para-Nitrophenol Are Differentially Arranged in Form of Non-Contiguous Gene Clusters in Burkholderia sp. strain SJ98

    PubMed Central

    Vikram, Surendra; Pandey, Janmejay; Kumar, Shailesh; Raghava, Gajendra Pal Singh

    2013-01-01

    Biodegradation of para-Nitrophenol (PNP) proceeds via two distinct pathways, having 1,2,3-benzenetriol (BT) and hydroquinone (HQ) as their respective terminal aromatic intermediates. Genes involved in these pathways have already been studied in different PNP degrading bacteria. Burkholderia sp. strain SJ98 degrades PNP via both the pathways. Earlier, we have sequenced and analyzed a ~41 kb fragment from the genomic library of strain SJ98. This DNA fragment was found to harbor all the lower pathway genes; however, genes responsible for the initial transformation of PNP could not be identified within this fragment. Now, we have sequenced and annotated the whole genome of strain SJ98 and found two ORFs (viz., pnpA and pnpB) showing maximum identity at amino acid level with p-nitrophenol 4-monooxygenase (PnpM) and p-benzoquinone reductase (BqR). Unlike the other PNP gene clusters reported earlier in different bacteria, these two ORFs in SJ98 genome are physically separated from the other genes of PNP degradation pathway. In order to ascertain the identity of ORFs pnpA and pnpB, we have performed in-vitro assays using recombinant proteins heterologously expressed and purified to homogeneity. Purified PnpA was found to be a functional PnpM and transformed PNP into benzoquinone (BQ), while PnpB was found to be a functional BqR which catalyzed the transformation of BQ into hydroquinone (HQ). Noticeably, PnpM from strain SJ98 could also transform a number of PNP analogues. Based on the above observations, we propose that the genes for PNP degradation in strain SJ98 are arranged differentially in form of non-contiguous gene clusters. This is the first report for such arrangement for gene clusters involved in PNP degradation. Therefore, we propose that PNP degradation in strain SJ98 could be an important model system for further studies on differential evolution of PNP degradation functions. PMID:24376843

  1. One-pot synthesis of active copper-containing carbon dots with laccase-like activities

    NASA Astrophysics Data System (ADS)

    Ren, Xiangling; Liu, Jing; Ren, Jun; Tang, Fangqiong; Meng, Xianwei

    2015-11-01

    Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching.Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching

  2. Functional Characterization of the re-Face Loop Spanning Residues 536 to 541 and its Interactions with the Cofactor in the Flavin Mononucleotide-Binding Domain of the Flavocytochrome P450 from Bacillus megaterium†

    PubMed Central

    Kasim, Mumtaz; Chen, Huai-Chun; Swenson, Richard P.

    2009-01-01

    Flavocytochrome P450BM-3, a bacterial monooxygenase, contains a flavin mononucleotide (FMN) binding domain bearing a strong structural homology to the bacterial flavodoxin. The FMN serves as the one-electron donor to the heme iron but, in contrast to the electron transfer mechanism of mammalian cytochrome P450 reductase, the FMN semiquinone state is not thermodynamically stable and appears transiently as the anionic rather than the neutral form. A unique loop region comprised of residues -536Y-N-G-H-P-P541-, which forms a Type I′ reverse turn, provides several interactions with the FMN isoalloxazine ring, was targeted in this study. Nuclear magnetic resonance studies support the presence of a strong hydrogen bond between the backbone amide of Asn537 and FMN N5, the anionic ionization state of the hydroquinone, and for a change in the hybridization state of the N5 upon reduction. Replacement of Tyr536, which flanks the flavin ring, by the basic residues histidine or arginine did not significantly influence the redox properties of the FMN or the accumulation of the anionic semiquinone. The central residues of the Type I′ turn (-Asn-Gly-) were replaced with various combinations of glycine and alanine as a means to alter the turn and its interactions. Gly538 was found to be crucial in maintaining the type I′ turn conformation of the loop and the strong H-bonding interaction at N5. The functional role of the tandem –Pro-Pro- sequence which anchors and possible “rigidifies” the loop was investigated through alanine replacements. Despite changes in stabilities of the oxidized and hydroquinone redox states of the FMN, none of the replacements studied significantly altered the two-electron midpoint potentials. Pro541 does contribute to some degree to the strength of the N5 interaction, the formation of the anionic semiquinone. Unlike the flavodoxin, it would appear that the conformation of the FMN rather than the loop changes in response to reduction in this

  3. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    PubMed

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  4. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    PubMed

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  5. The photophysics of fac-[Re(CO)3(NN)(bpa)](+) complexes: a theoretical/experimental study.

    PubMed

    Sousa, S F; Sampaio, R N; Barbosa Neto, N M; Machado, A E H; Patrocinio, A O T

    2014-08-01

    The influence of the polypyridyl ligand on the photophysics of fac-[Re(CO)3(NN)(bpa)](+), bpa = 1,2-bis-(4-pyridyl)ethane and NN = 1,10-phenanthroline (phen), pyrazino[2,3-f][1,10]-phenanthroline (dpq), and dipyrido[3,2-a:2'3'-c]phenazine (dppz) has been investigated by steady state and time-resolved emission spectroscopy combined with theoretical calculations using time-dependent density functional theory (TD-DFT). The fac-[Re(CO)3(phen)(bpa)](+) is a typical MLCT emitter in acetonitrile with ϕ = 0.11 and τ = 970 ns. The emission lifetime and quantum yield decrease significantly in fac-[Re(CO)3(dpq)(bpa)](+) (ϕ = 0.05; τ = 375 ns) due to the presence of a close lying dark charge transfer state located at the pyrazine ring of dpq, as indicated by TD-DFT data. The luminescence of these complexes is quenched by hydroquinone with kq = (2.9 ± 0.1) × 10(9) and (2.6 ± 0.1) × 10(9) L mol(-1) s(-1), respectively, for NN = phen or dpq. These values are increased respectively to (4.6 ± 0.1) × 10(9) and (4.2 ± 0.1) × 10(9) L mol(-1) s(-1) in the 1 : 1 H2O-CH3CN mixture. In this medium Stern-Volmer constants determined by steady-state and time-resolved measurements differ from each other, which is indicative of static quenching, i.e. the pre-association of hydroquinone and the complexes through hydrogen bonding between the remote N-atom in the bpa ligand (KA ≅ 1-2 × 10(1) L mol(-1)), followed by a concerted proton-electron transfer. In contrast to other investigated complexes, fac-[Re(CO)3(dppz)(bpa)](+) is weakly emissive in acetonitrile at room temperature (ϕ ≅ 10(-4)) and does not exhibit a rigidochromic effect. This photophysical behaviour as well as TD-DFT data indicate that the lowest lying triplet excited state can be described as (3)ILdppz. The results provide additional insight into the influence of the polypyridyl ligand on the photophysical properties of Re(I) complexes. PMID:24967638

  6. Mitigating crosslinking reactions through preconversion strategies. Quarterly report Number 7, July--September 1993

    SciTech Connect

    Not Available

    1994-03-01

    The ultimate goal of this research is to help develop preconversion techniques that will mitigate crosslinking reactions and thereby substantially increase liquid yields during subsequent liquefaction. The immediate objective is to determine the potential for augmenting pretreatment of low-rank coals through the use of electron-transfer agents. This potential will be explored in laboratory studies through determination of the impact on the evolution of oxygen functions, crosslinking, and conversion. The pretreatments explored include several that hold promise for effecting deoxygenation (or other reduction), for example, treatment with CO/water/base and hydroquinones or other electron-transfer agents in various combinations. The effects of these pretreatments on functional group distribution, macromolecular structure, and liquefaction are to be compared with those that have shown promise in the past for improved conversions, such as simple hydrothermal pretreatment, mild hydrogenation with dispersed catalysts, and demineralization. Additional objectives are to improve test procedures for assessing the effect of the pretreatment on subsequent liquefaction and achieve also some understanding of the chemical origins of the effects observed. These tests are: (1) proton magnetic resonance thermal analysis (PMRTA) for determining the effect of pretreatment on fluidity as liquefaction conditions (temperature, pressure) are approached; and (2) a TGA-based simulated distillation for convenient measurement of product volatility following small scale batch liquefaction. Results are presented on the following: PMRTA analyses of pretreated coals; and Development of a TGA-based simulated distillation technique.

  7. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation.

    PubMed

    Fang, Guodong; Liu, Cun; Gao, Juan; Dionysiou, Dionysios D; Zhou, Dongmei

    2015-05-01

    This study investigated the effects of metals (Fe3+, Cu2+, Ni2+, and Zn2+) and phenolic compounds (PCs: hydroquinone, catechol, and phenol) loaded on biomass on the formation of persistent free radicals (PFRs) in biochar. It was found that metal and phenolic compound treatments not only increased the concentrations of PFRs in biochar but also changed the types of PFRs formed, which indicated that manipulating the amount of metals and PCs in biomass may be an efficient method to regulate PFRs in biochar. These results provided direct evidence to elucidate the mechanism of PFR formation in biochar. Furthermore, the catalytic ability of biochar toward persulfate activation for the degradation of contaminants was evaluated. The results indicated that biochar activates persulfate to produce sulfate radicals (SO4•-) and degraded polychlorinated biphenyls (PCBs) efficiently. It was found that both the concentration and type of PFRs were the dominant factors controlling the activation of persulfate by biochar and that superoxide radical anions account for 20-30% of sulfate radical generation in biochar/persulfate. This conclusion was supported by linear correlations between the concentration of PFRs consumed and the formation of SO4•- and between λ (λ=[formed sulfate radicals]/[consumed PFRs]) and g-factors. The findings of this study provide new methods to manipulate PFR concentration in biochar for the transformation of contaminants and development of new alternative activators for persulfate-based remediation of contaminated soils.

  8. Photocatalytic degradation of 4-chlorophenol under P-modified TiO2/UV system: kinetics, intermediates, phytotoxicity and acute toxicity.

    PubMed

    Elghniji, Kais; Hentati, Olfa; Mlaik, Najwa; Mahfoudh, Ayman; Ksibi, Mohamed

    2012-01-01

    A series of phosphorus-modified titanium dioxide samples with varying P/Ti atomic ratio were conveniently prepared via a conventional solgel route. The effects of phosphorus content and calcination temperature on the crystalline structure, grain growth, surface area, and the photocatalytic activity of P-modified TiO2 were investigated. The XRD results showed that P species slow down the particle growth of anatase and increase the anatase-to-rutile phase transformation temperature to more than 900 degrees C. Kinetic studies on the P-modified TiO2 to degraded 4-chlorophenol had found that the TP5(500) prepared by adopting a P/Ti atomic ratio equal to 0.05 and calcined at 500 degrees C had an apparent rate constant equal to 0.0075 min(-1), which is superior to the performance of a commercial photocatalyst Degussa P25 K(app) = 0.0045 min(-1) and of unmodified TiO2 (TP0(500)) K(app) = 0.0022 min(-1). From HPLC analyses, various hydroxylated intermediates formed during oxidation had been identified, including hydroquinone (HQ), benzoquinone (BQ) and (4CC) 4-chlorocatechol as main products. Phytotoxicity was assessed before and after irradiation against seed germination of tomato (Lycopersicon esculentum) whereas acute toxicity was assessed by using Folsomia candida as the test organism. Intermediates products were all less toxic than 4-chlorophenol and a significant removal of the overall toxicity was accomplished. PMID:22655362

  9. [Impact factors and degradation mechanism for the ozonation of acetaminophen in aqueous solution].

    PubMed

    Cao, Fei; Yuan, Shou-Jun; Zhang, Meng-Tao; Wang, Wei; Hu, Zhen-Hu

    2014-11-01

    The effect and mechanism of O3 on the degradation of acetaminophen in aqueous solution were studied by the batch experiment. The results showed that acetaminophen could be degraded effectively by ozone and degradation of acetaminophen fitted well with the pseudo-first-order kinetics model (R2 > 0.992). The degradation of acetaminophen was promoted with the increase of pH, the concentration of bicarbonate and ozone. The results of gas chromatography-mass spectrometry (GC-MS) and ion chromatography analysis showed that degradation products such as hydroquinone and a series of carboxylic acids were firstly formed during ozonation of acetaminophen. Then, the products were further oxidized. The degradation pathways of acetaminophen were also discussed by the identified products. The result of TOC showed that the mineralization of acetaminophen was ultimately lower. When the initial concentration of acetaminophen was 20 mg x L(-1) and the concentration of ozone was 9.10 mg x L(-1), the mineralization was only 16.42% after 130 min.

  10. Kinetics and mechanism of the oxidation of S(IV) by ozone in aqueous solution with particular reference to SO2 conversion in nonurban tropospheric clouds

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1983-01-01

    Results are presented from a laboratory study of the kinetics of the S(IV)-O3 reaction in aqueous solution, including measurements of the effects of UV radiation, dissolved transition metals, and an antioxidant (hydroquinone) on the rate. On the basis of the results, relative rates of S(IV) conversion by O3 in tropospheric cloud water are compared with those predicted for H2O2 and for O2. The reaction mechanism is discussed, with an outline given of the elements of a possible reaction scheme. Application of the rate constants obtained to SO2 conversion in cloud water predicts conversion rates by ozone to be competitive with those by H2O2 at pH above about 4.5 and to dominate at pH above about 5.5. It is pointed out that since these pH's are typical for nonurban tropospheric cloud water, ozone is a potentially important contributor to the overall oxidative conversion of SO2 to sulfate in the nonurban troposphere.

  11. Antioxidants Inhibit Formation of 3-Monochloropropane-1,2-diol Esters in Model Reactions.

    PubMed

    Li, Chang; Jia, Hanbing; Shen, Mingyue; Wang, Yuting; Nie, Shaoping; Chen, Yi; Zhou, Yongqiang; Wang, Yuanxing; Xie, Mingyong

    2015-11-11

    The capacities of six antioxidants to inhibit the formation of 3-monochloropropane-1,2 diol (3-MCPD) esters were examined in this study. Inhibitory capacities of the antioxidants were investigated both in chemical models containing the precursors (tripalmitoyl glycerol, 1,2-dipalmitoyl-sn-glycerol, monopalmitoyl glycerol, and sodium chloride) of 3-MCPD esters and in oil models (rapeseed oil and sodium chloride). Six antioxidants, butylated hydroxytoluene (BHT), butylated hydroxy anisole (BHA), tert-butyl hydroquinone (TBHQ), propyl gallate (PG), L-ascorbyl palmitate (AP), and α-tocopherol (VE), were found to exhibit inhibiting capacities on 3-MCPD ester formation both in chemical models and in oil models. TBHQ provided the highest inhibitory capacity both in chemical models and in oil models; 44% of 3-MCPD ester formation was inhibited in the presence of TBHQ (66 mg/kg of oil) after heating of rapeseed oil at 230 °C for 30 min, followed by PG and AP. BHT, BHA, and VE appeared to have weaker inhibitory abilities in both models. VE exhibited the lowest inhibition rate; 22% of 3-MCPD esters were inhibited in the presence of VE (172 mg/kg of oil) after heating of rapeseed oil at 230 °C for 30 min. In addition, the inhibition rates of PG and VE decreased dramatically with an increase in temperature or heating time. The results suggested that some antioxidants, such as TBHQ, PG, and AP, could be the potential inhibitors of 3-MCPD esters in practice.

  12. Imidazolium Ionic Liquid Functionalized Carbon Nanotubes for Improved Interfacial Charge Transfer and Simultaneous Determination of Dihydroxybenzene Isomers.

    PubMed

    Wei, Huan; Wu, Xiao-Shuai; Wen, Guo-Yun; Qiao, Yan

    2016-01-01

    In this paper; an imidazolium ionic liquid (IL) is used to functionalize multi-walled carbon nanotubes (MWNTs) by covalent bonding on the MWNT surface. The functionalization not only provides a hydrophilic surface for ion accessibility but also prevents the aggregation of MWNTs. The IL-functionalized MWNTs were then applied for the electrochemical determination of the dihydroxybenzene isomers hydroquinone (HQ); catechol (CC); and resorcinol (RC), exhibiting excellent recognition ability towards the three compounds. The linear calibration ranges for HQ; CC and RC are 0.9-150 μM; 0.9-150 μM and 1.9-145 μM and the detection limits are found to be 0.15 μM for HQ; 0.10 μM for CC and 0.38 μM for RC based on S/N of 3. The proposed electrochemical sensor was also found to be useful for the determination of the dihydroxybenzene isomers in Yellow River water with reliable recovery. PMID:27187344

  13. Thermal diffusivity measurement for urchin-like gold nanofluids with different solvents, sizes and concentrations/shapes

    PubMed Central

    2012-01-01

    The thermal properties of nanofluids are an especially interesting research topic because of the variety of potential applications, which range from bio-utilities to next-generation heat-transfer fluids. In this study, photopyroelectric calorimetry for measuring the thermal diffusivity of urchin-like colloidal gold nanofluids as a function of particle size, concentration and shape in water, ethanol and ethylene glycol is reported. Urchin-like gold nanoparticles were synthesised in the presence of hydroquinone through seed-mediated growth with homogeneous shape and size ranging from 55 to 115 nm. The optical response, size and morphology of these nanoparticles were characterised using UV-visible spectroscopy and transmission electron microscopy. The thermal diffusivity of these nanofluids decreased as the size of the nanoparticles increased, and the enhancement depended on the thermal diffusivity of the solvent. The opposite effect (increase in thermal diffusivity) was observed when the nanoparticle concentration was increased. These effects were more evident for urchin-like gold nanofluids than for the corresponding spherical gold nanofluids. PMID:23216772

  14. Influence of phenolic substrates utilised by yeast Trichosporon cutaneum on the degradation kinetics

    PubMed Central

    Gerginova, Maria; Zlateva, Plamena; Peneva, Nadejda; Alexieva, Zlatka

    2014-01-01

    The degradation kinetics of different phenolic substrates utilised by Trichosporon cutaneum R57 was studied. The following compounds were used as substrates: phenol, resorcinol, hydroquinone, 3-nitrophenol, 2,6-dinitrophenol, 3-chloro phenol and p-cresol. The specific degradation rates (Qs) were described by a Haldane kinetic model. The unknown model parameters were estimated using the mathematical optimisation procedure for direct search. The results obtained demonstrated that Qs varied greatly in the experiments carried out. The level of biodegradability depended on the different structure and toxicity of compounds used as carbon substrates. The highest Qs values were observed for less toxic hydroxylated phenols (0.77–0.85 h−1), while the most toxic chlorinated phenols were characterised with the lowest Qs values (0.224 h−1). The results obtained with different concentrations of resorcinol (from 0.2 to 0.8 g L−1) and 2,6-dinitrophenol (from 0.2 to 0.7 g L−1) demonstrated a growing inhibitory effect directly correlating with the extended time necessary for complete degradation of both compounds. PMID:26692781

  15. Biodegradation of phenol by Antarctic strains of Aspergillus fumigatus.

    PubMed

    Gerginova, Maria; Manasiev, Jordan; Yemendzhiev, Husein; Terziyska, Anna; Peneva, Nadejda; Alexieva, Zlatka

    2013-01-01

    Taxonomic identification of three newly isolated Antarctic fungal strains by their 18S rDNA sequences revealed their affiliation with Aspergillus fumigatus. Phenol (0.5 g/l) as the sole carbon source was completely degraded by all strains within less than two weeks. Intracellular activities of three key enzymes involved in the phenol catabolism were determined. Activities of phenol hydroxylase (EC 1.14.13.7), hydroquinone hydroxylase (EC 1.14.13.x), and catechol 1,2-dioxygenase (EC 1.13.11.1) varied significantly between strains. The rates of phenol degradation in the three strains correlated best with the activity of catechol 1,2-dioxygenase. Six pairs of oligonucleotide primers were designed on the basis of the Aspergillus fumigatus Af293 genome sequence (NCBI Acc. No. XM_743491.1) and used to amplify phenol hydroxylase-related gene sequences. DNA sequences of about 1200 bp were amplified from all three strains and found to have a high degree of sequence identity with the corresponding gene of Aspergillus fumigatus Af293.

  16. Multifunctional Polyphenols- and Catecholamines-Based Self-Defensive Films for Health Care Applications.

    PubMed

    Dhand, Chetna; Harini, Sriram; Venkatesh, Mayandi; Dwivedi, Neeraj; Ng, Alice; Liu, Shouping; Verma, Navin Kumar; Ramakrishna, Seeram; Beuerman, Roger W; Loh, Xian Jun; Lakshminarayanan, Rajamani

    2016-01-20

    In an era of relentless evolution of antimicrobial resistance, there is an increasing demand for the development of efficient antimicrobial coatings or surfaces for food, biomedical, and industrial applications. This study reports the laccase-catalyzed room-temperature synthesis of mechanically robust, thermally stable, broad spectrum antimicrobial films employing interfacial interactions between poly(vinyl alcohol), PVA, and 14 naturally occurring catecholamines and polyphenols. The oxidative products of catecholamines and polyphenols reinforce the PVA films and also alter their surface and bulk properties. Among the catecholamines-reinforced films, optimum surface and bulk properties can be achieved by the oxidative products of epinephrine. For polyphenols, structure-property correlation reveals an increase in surface roughness and elasticity of PVA films with increasing number of phenolic groups in the precursors. Interestingly, PVA films reinforced with oxidized/polymerized products of pyrogallol (PG) and epinephrine (EP) display potent antimicrobial activity against pathogenic Gram-positive and Gram-negative strains, whereas hydroquinone (HQ)-reinforced PVA films display excellent antimicrobial properties against Gram-positive bacteria only. We further demonstrate that HQ and PG films retain their antimicrobial efficacy after steam sterilization. With an increasing trend of giving value to natural and renewable resources, our results have the potential as durable self-defensive antimicrobial surfaces/films for advanced healthcare and industrial applications. PMID:26709441

  17. Electrochemical immunosensor for interferon-γ based on disposable ITO detector and HRP-antibody-conjugated nano gold as signal tag.

    PubMed

    Zhang, Yaru; Zhang, Bin; Ye, Xiaoli; Yan, Yuqi; Huang, Langhuan; Jiang, Zhenyou; Tan, Shaozao; Cai, Xiang

    2016-02-01

    Tuberculosis is the most frequent cause of infection-related death worldwide. A new disposable electrochemical immunosensor with low cost and simple fabrication was proposed to detect interferon-γ (IFN-γ). Diallyldimethylammonium chloride (PDDA) and Au nanoparticle (AuNP) composite were used to provide an efficient biointerface, horseradish peroxidase (HRP)-labeled antibody-conjugated AuNP (HRP-Ab2-AuNP) bioconjugates were used as a novel signal tag. The large amounts of HRP on the signal tag can catalyze the oxidation of Hydroquinone (HQ) by H2O2, which can induce an amplified reductive current. The catalytic reduction current was related to the amount of HRP immobilized on the surface, which itself was related to the concentration of IFN-γ. Under optimized conditions, the proposed immunosensor showed a high sensitivity and a linear range of 0.1-10,000pg/mL with a detection limit of 0.048pg/mL. The assay results of clinical serum samples obtained by the immunosensor were in acceptable agreement with the reference values. Therefore, the immunosensor possessed excellent clinical value in early diagnosis and control of tuberculosis. PMID:26652410

  18. An adhesive conducting electrode material based on commercial mesoporous titanium dioxide as a support for Horseradish peroxidase for bioelectrochemical applications.

    PubMed

    Rahemi, Vanoushe; Trashin, Stanislav; Meynen, Vera; De Wael, Karolien

    2016-01-01

    An adhesive conducting electrode material containing of graphite, biocompatible ion exchange polymer nafion(®) and commercial mesoporous TiO2 impregnated with horseradish peroxidase (HRP) is prepared and characterized by amperometric, UV-vis and N2 sorption methods. The factors influencing the performance of the resulting biosensor are studied in detail. The optimal electrode material consists of 45% graphite, 50% impregnated HRP-TiO2 and 5% nafion(®). The optimum conditions for H2O2 reduction are an applied potential of -0.3 V and 0.1 mM hydroquinone. Sensitivity and limit of detection in the optimum conditions are 1 A M(-1) cm(-2) and 1 µM correspondingly. The N2 sorption results show that the pore volume of TiO2 decreases sharply upon adsorption of HRP. The preparation process of the proposed enzyme electrode is straightforward and potentially can be used for preparation of carbon paste electrodes for bioelectrochemical detections. PMID:26695318

  19. Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein

    PubMed Central

    Jensen, Gary C.; Krause, Colleen E.; Sotzing, Gregory A.; Rusling, James F.

    2011-01-01

    Electrochemical detection combined with nanostructured sensor surfaces offers potentially low-cost, high-throughput solutions for detection of clinically significant proteins. Inkjet printing offers an inexpensive non-contact fabrication method for microelectronics that is easily adapted for incorporating into protein immunosensor devices. Herein we report the first direct fabrication of inkjet-printed gold nanoparticle arrays, and apply them to electrochemical detection of the cancer biomarker interleukin-6 (IL-6) in serum. The gold nanoparticle ink was printed on a flexible, heat resistant polyimide Kapton substrate and subsequently sintered to create eight-electrode arrays costing <0.2 euro per array. The inkjet-printed working electrodes had reproducible surface areas with RSD <3%. Capture antibodies for IL-6 were linked onto the eight-electrode array, and used in sandwich immunoassays. A biotinylated secondary antibody with 16-18 horseradish peroxidase labels was used, and detection was achieved by hydroquinone-mediated amperometry. The arrays provided a clinically relevant detection limit of 20 pg mL−1 in calf serum, sensitivity of 11.4 nA pg−1 cm−2, and a linear dynamic range of 20–400 pg mL−1. PMID:21212889

  20. Enhanced photo-degradation of paracetamol on n-platinum-loaded TiO2: The effect of ultrasound and OH/hole scavengers.

    PubMed

    Ziylan-Yavaş, Asu; Ince, Nilsun H

    2016-11-01

    Elimination/mineralization of paracetamol (PCT) was investigated by catalytic oxidation under ultrasound, UV and both. The catalyst was synthesized by immobilization of nPt on TiO2 to benefit from the ability of Pt to facilitate charge transfer processes and to separate e(-)/h(+) pairs. It was found that increasing the Pt-loading enhanced the rate of sonochemical reactions, but retarded that of photolytic reactions, due to reduced UV absorption on the surface. Simultaneous application of sonolysis and photolysis was synergistic due to disaggregation of the particles and homogenization of the active species over the catalyst surface. The decay of PCT was highly dependent on the availability of OH, as the reactions were nearly terminated in the presence of a strong OH scavenger-2-propanol. However, a remarkable rate enhancement was observed in the presence of a suitable dose of I(-), which scavenges both OH and hvb(+). The result was explained by the production of excess radicals upon sonolysis of iodide solutions, and the reactivity of PCT with them. Finally, carbon mineralization was significantly hindered in the presence of both scavengers due to increased competition for OH and inefficient formation of hydroquinone arising from reduced availability of hvb(+).

  1. Bivoltametric titrations using electrodes with innovative geometry.

    PubMed

    Surmann, P; Peter, B; Stark, C

    1996-09-01

    Electrodes with different surface areas were investigated for the determination of reversible, quasireversible, irreversible or electroinactive substrates. Two kinds of electrodes were constructed, a helical electrode with a given asymmetry and a platinum array electrode with a variable area. These electrodes were applied for the cerimetry of ammonium iron(II) sulfate and for the bromatometry of various organic substances. The theoretically derived effects on the shape of the voltametric titration curve are verified experimentally. It is possible to sharpen one side of the peak and to broaden the other side, depending on the system and the side of the peak one is interested in. It is possible to improve the bivoltametric determination of hydroquinone, benzocaine and sulfaguanidine by bromatometry by the directed employment of electrodes of different areas. For the bromatometric determination of electrochemically irreversible substrates the use of the electrode geometries proposed is a way to obtain a sharp bend and a steep decrease of titration curves with low values of the constant current which is a basic requirement for the accuracy.

  2. Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C

    PubMed Central

    Mulla, Sikandar I.; Wang, Han; Sun, Qian; Hu, Anyi; Yu, Chang-Ping

    2016-01-01

    Triclosan (TCS) is one of the most widespread emerging contaminants and has adverse impact on aquatic ecosystem, yet little is known about its complete biodegradation mechanism in bacteria. Sphingomonas sp, strain YL-JM2C, isolated from activated sludge of a wastewater treatment plant, was very effective on degrading TCS. Response surface methodology (RSM) was applied to optimize the conditions like temperature and pH. From RSM, the optimal TCS degradation conditions were found to be 30 °C and pH 7.0. Under optimal conditions, strain YL-JM2C completely mineralized TCS (5 mg L−1) within 72 h. Gas chromatography-mass spectrometry analysis revealed that 2,4-dichlorophenol, 2-chlorohydroquinone and hydroquinone are three main by-products of TCS. Furthermore, stable isotope experimental results revealed that the 13C12-TCS was completely mineralized into CO2 and part of heavier carbon (13C) of labeled TCS was utilized by strain YL-JM2C to synthesize fatty acids (PLFAs). Cell surface hydrophobicity (CSH) and degradation test results suggested that the strain could enhance degradation capacity of TCS through increasing CSH. In addition, the bacterium also completely degraded spiked TCS (5 mg L−1) in wastewater collected from the wastewater treatment plant. Hence, these results suggest that the strain has potential to remediate TCS in the environment. PMID:26912101

  3. One-pot synthesis of active copper-containing carbon dots with laccase-like activities.

    PubMed

    Ren, Xiangling; Liu, Jing; Ren, Jun; Tang, Fangqiong; Meng, Xianwei

    2015-12-14

    Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching. PMID:26548709

  4. Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi-physiological conditions.

    PubMed

    Akagawa, Mitsugu; Shigemitsu, Tomoko; Suyama, Kyozo

    2003-12-01

    To investigate the ability of the production of H(2)O(2) by polyphenols, we incubated various phenolic compounds and natural polyphenols under a quasi-physiological pH and temperature (pH 7.4, 37 degrees C), and then measured the formation of H(2)O(2) by the ferrous ion oxidation-xylenol orange assay. Pyrocatechol, hydroquinone, pyrogallol, 1,2,4-benzenetriol, and polyphenols such as catechins yielded a significant amount of H(2)O(2). We also examined the effects of a metal chelator, pH, and O(2) on the H(2)O(2)-generating property, and the generation of H(2)O(2) by the polyphenol-rich beverages, green tea, black tea, and coffee, was determined. The features of the H(2)O(2)-generating property of green tea, black tea, and coffee were in good agreement with that of phenolic compounds, suggesting that polyphenols are responsible for the generation of H(2)O(2) in beverages. From the results, the possible significances of the H(2)O(2)-generating property of polyphenols for biological systems are discussed.

  5. Evaluation of the potential of p-nitrophenol degradation in dredged sediment by pulsed discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2015-11-01

    Hazardous pollutants in dredged sediment pose great threats to ecological environment and human health. A novel approach, named pulsed discharge plasma (PDP), was employed for the degradation of p-nitrophenol (PNP) in dredged sediment. Experimental results showed that 92.9% of PNP in sediment was smoothly removed in 60 min, and the degradation process fitted the first-order kinetic model. Roles of some active species in PNP degradation in sediment were studied by various gas plasmas, OH radical scavenger, hydrated electron scavenger and O2(·-) scavenger; and the results presented that O3, OH radical, eaq(-) and O2(·-) all played significant roles in PNP removal, and eaq(-) and O2(·-) mainly participated in other oxidising active species formation. FTIR analysis showed that PNP molecular structure was destroyed after PDP treatment. The main degradation intermediates were identified as hydroquinone, benzoquinone, phenol, acetic acid, NO2(-) and NO3(-). PNP degradation pathway in dredged sediment was proposed. It is expected to contribute to an alternative for sediment remediation by pulse discharge plasma. PMID:26207876

  6. Formation of a porphyrin pi-cation radical in the fluoride complex of horseradish peroxidase.

    PubMed

    Farhangrazi, Z S; Sinclair, R; Powers, L; Yamazaki, I

    1995-11-21

    Horseradish peroxidase (HRP) was oxidized by IrCl6(2-) to a mixture of compounds I and II, the rate of oxidation and the ratio of the mixture being greatly affected by pH (Hayashi & Yamazaki, 1979). Oxidation of HRP by IrCl6(2-) in the presence of fluoride was significantly accelerated. This resulted in the formation of a new compound which is a ferric fluoride complex containing a porphyrin pi-cation radical. The spectrum of the new compound showed a decreased absorption band in the Soret region and a broad band at 570 nm; which was converted to that of the original ferric fluoride complex by addition of ascorbate or hydroquinone. Addition of cyanide slowed down the oxidation of HRP by IrCl6(2-), and the oxidation product was the same as that obtained in the absence of cyanide. Compound I was formed when H2O2 was added to HRP in the presence of fluoride or cyanide. The one-electron reduction potential (Eo') of the oxidized HRP-fluoride complex was measured at several pH values, the Eo' value at pH 7 being 861 +/- 4 mV. The ratio of delta Eo' to delta pH was 49 mV/pH unit.

  7. N-Doped Ordered Mesoporous Carbon Originated from a Green Biological Dye for Electrochemical Sensing and High-Pressure CO2 Storage.

    PubMed

    Zhou, Shenghai; Xu, Hongbo; Yuan, Qunhui; Shen, Hangjia; Zhu, Xuefeng; Liu, Yi; Gan, Wei

    2016-01-13

    Herein, a series of nitrogen-doped ordered mesoporous carbons (NOMCs) with tunable porous structure were synthesized via a hard-template method with a green biological dye as precursor, under various carbonization temperatures (700-1100 °C). Compared with the ordered mesoporous silica-modified and unmodified electrodes, the use of electrodes coated by NOMCs (NOMC-700-NOMC-1100) resulted in enhanced signals and well-resolved oxidation peaks in electrocatalytic sensing of catechol and hydroquinone isomers, attributable to NOMCs' open porous structures and increased edge-plane defect sites on the N-doped carbon skeleton. Electrochemical sensors using NOMC-1000-modified electrode were fabricated and proved feasible in tap water sample analyses. The NOMCs were also used as sorbents for high-pressure CO2 storage. The NOMC with the highest N content exhibits the best CO2 absorption capacities of 800.8 and 387.6 mg/g at 273 and 298 K (30 bar), respectively, which is better than those of other NOMC materials and some recently reported CO2 sorbents with well-ordered 3D porous structures. Moreover, this NOMC shows higher affinity for CO2 than for N2, a benefit of its higher nitrogen content in the porous carbon framework.

  8. Order of functionality loss during photodegradation of aquatic humic substances.

    PubMed

    Thorn, Kevin A; Younger, Steven J; Cox, Larry G

    2010-01-01

    The time course photodegradation of the Nordic aquatic fulvic and humic acids and Suwannee River XAD-4 acids subjected to UV irradiation with an unfiltered medium pressure mercury lamp was studied by liquid-state 13C nuclear magnetic resonance. Photodecarboxylation was a significant pathway in all cases. Decreases in ketone, aromatic, and O-alkyl carbons were observed throughout the course of the irradiations, whereas C-alkyl carbons resisted photodegradation. Peaks attributable to the low-molecular-weight photodegradation products bicarbonate, formate, acetate, and succinate grew in intensity with irradiation time. The final products of the irradiations were decarboxylated, hydrophobic, predominantly C-alkyl and O-alkyl materials that were resistant to further photodegradation. The total amount of carbon susceptible to loss appeared to be related mainly to the total concentration of carbonyl and aromatic carbons and partly to the concentration of O-alkyl carbons in the fulvic, humic, and XAD-4 acids. The carbon losses for Nordic fulvic, Nordic Humic, Suwannee fulvic, and Suwannee XAD-4 acids were estimated to be 75, 63, 56, and 17%, respectively. More detailed analyses of the effects of irradiation on the carbonyl functionality in Nordic humic acid and Laurentian soil fulvic acid through reaction with hydroxylamine in conjunction with 15N nuclear magnetic resonance analysis confirmed preferential photodegradation of the quinone/hydroquinone functionality over ketone groups and the loss of ester groups in Laurentian fulvic acid.

  9. A high-performance liquid chromatographic determination of major phenolic compounds in tobacco smoke

    SciTech Connect

    Risner, C.H.; Cash, S.L. )

    1990-05-01

    A high-performance liquid chromatographic (HPLC) method is developed that simultaneously quantifies the dihydroxy compounds hydroquinone, resorcinol, and catechol and the monohydroxy compounds phenol, m + p-cresol and o-cresol in cigarette smoke. Particulate matter samples collected on Cambridge pads and in impingers by conventional trapping techniques are simply (no derivatization required) subjected to reversed-phase gradient liquid chromatography. Samples of both mainstream and sidestream smoke can be analyzed. Selective fluorescence detection is used to monitor the mobile phase effluent, by which these phenolic compounds are detected in the nanogram range. The detector response is linear, overall precision is good, and recoveries are greater than 95 percent. The total run time, excluding extraction, is one hour. The procedure has been applied to tobacco products whose smoke contains varying amounts of these phenols. Kentucky Reference Cigarette 1R4F was found to contain substantially more of these compounds than a new cigarette that heats but does not burn tobacco (New Cigarette). The method is compared with other procedures used to determine phenolics in cigarette smoke.

  10. Metal-free aqueous redox capacitor via proton rocking-chair system in an organic-based couple

    PubMed Central

    Tomai, Takaaki; Mitani, Satoshi; Komatsu, Daiki; Kawaguchi, Yuji; Honma, Itaru

    2014-01-01

    Safe and inexpensive energy storage devices with long cycle lifetimes and high power and energy densities are mandatory for the development of electrical power grids that connect with renewable energy sources. In this study, we demonstrated metal-free aqueous redox capacitors using couples comprising low-molecular-weight organic compounds. In addition to the electric double layer formation, proton insertion/extraction reactions between a couple consisting of inexpensive quinones/hydroquinones contributed to the energy storage. This energy storage mechanism, in which protons are shuttled back and forth between two electrodes upon charge and discharge, can be regarded as a proton rocking-chair system. The fabricated capacitor showed a large capacity (>20 Wh/kg), even in the applied potential range between 0–1 V, and high power capability (>5 A/g). The support of the organic compounds in nanoporous carbon facilitated the efficient use of the organic compounds with a lifetime of thousands of cycles. PMID:24395117

  11. PbO2(s, plattnerite) reductive dissolution by natural organic matter: reductant and inhibitory subfractions.

    PubMed

    Shi, Zhi; Stone, Alan T

    2009-05-15

    Natural organic matter (NOM) is a diverse collection of molecules, each possessing its own reductant, complexant, and adsorption properties. Here, we are interested in the ability of NOM to bring about the reductive dissolution of Pb(IV)O2(s). Adding the coagulants FeCl3 or Al2(SO4)3 followed by membrane filtration is one way to remove a subset of NOM molecules from surface water samples. Another is to pass water samples through a granular activated carbon (GAC) column. Results from applying these treatments to Great Dismal Swamp water (DSW) and Nequasset Bog Water (NBW) can best be explained as follows: (i) GAC column treatment is more efficient at removing the NOM fraction most responsible for reductive dissolution. (ii) Coagulation/filtration, with either coagulant, is most efficient at removing a second, inhibitory fraction. Inhibition may arise from (i) adsorption at the mineral/water interface, which blocks approach of reductant molecules and (ii) a micelle-like aggregate nature, which provides hydrophobic pockets that capture reductantmolecules, again keeping them away from the mineral/water interface. Hypotheses regarding reductant and inhibitory fractions are further evaluated using representative low-molecular-weight compounds. Substituted hydroquinones are used as mimics of the reductant fraction, and malonic acid, quinic acid, trehalose, alginic acid, and polygalacturonic acid are used as mimics of the inhibitory fraction. PMID:19544861

  12. Synthesis, structure and luminescence of novel co-crystals based on bispyridyl-substituted α,β-unsaturated ketones with coformers

    NASA Astrophysics Data System (ADS)

    Li, Hong-Juan; Wang, Lei; Zhao, Juan-Juan; Sun, Ju-Feng; Sun, Ji-Liang; Wang, Chun-Hua; Hou, Gui-Ge

    2015-01-01

    Based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A) and N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (B) with coformers, three novel macrocyclic co-crystals, (A)ṡ(resorcinol) (1), (A)ṡ(1,3,5-benzenetriol) (2), (B)2ṡ(1,3,5-benzenetriol)2 (3) and three chain co-crystals, (A)ṡ(hydroquinone) (4), (A)ṡ(isophthalic acid) (5), (B)ṡ(isophthalic acid) (6) have been synthesized and structurally characterized by IR, 1H NMR and X-ray crystal structure analysis. Structural analysis indicates that four-component macrocycles in 1-3 are generated from "clip-like" resorcinol templates and building blocks, while 4-6 show infinite H-bonding chains. In addition, the luminescent properties of A, B and 1-6 are investigated primarily in the solid state. Compared with free building blocks, 1-6 are blue-shifted 55-60 nm with decreasing emission intensities in spite of the enhancement in 6. The change of luminescent properties might be caused mainly by incorporation of coformers into co-crystals, including H-bonds, molecular conformations, arranging dispositions and π-π characteristics. It might have potential applications for crystal engineering to construct patentable crystals with interesting luminescent properties.

  13. A putative multicopper oxidase, IoxA, is involved in iodide oxidation by Roseovarius sp. strain A-2.

    PubMed

    Shiroyama, Kanna; Kawasaki, Yasutaka; Unno, Yusuke; Amachi, Seigo

    2015-01-01

    Roseovarius sp. strain A-2 is an aerobic heterotrophic bacterium with a capacity for oxidizing iodide ion (I(-)) to form molecular iodine (I2). In this study, iodide-oxidizing enzyme of strain A-2 was characterized. The enzyme was an extracellular protein, and Cu(2+) ion significantly enhanced the enzyme activity in the culture supernatant. When iodide was used as the substrate, the crude enzyme showed Km and Vmax values of 4.78 mM and 25.1 U mg(-1), respectively. The enzyme was inhibited by NaN3, EDTA, KCN, and o-phenanthroline, and also had significant activities toward p-phenylenediamine and hydroquinone. Tandem mass spectrometric analysis of an active band excised from SDS-PAGE gel revealed that at least two proteins are involved in the enzyme. One of these proteins was closely related with IoxA, a multicopper oxidase previously found as a component of iodide-oxidizing enzyme of Alphaproteobacterium strain Q-1. Furthermore, a terrestrial bacterium Rhodanobacter denitrificans 116-2, which possesses an ioxA-like gene in its genome, was found to oxidize iodide. These results suggest that IoxA catalyzes the oxidation of iodide in phylogenetically distinct bacteria.

  14. Development of the sensitive lateral flow immunoassay with silver enhancement for the detection of Ralstonia solanacearum in potato tubers.

    PubMed

    Panferov, Vasily G; Safenkova, Irina V; Varitsev, Yury A; Drenova, Natalia V; Kornev, Konstantin P; Zherdev, Anatoly V; Dzantiev, Boris B

    2016-05-15

    Ralstonia solanacearum is a dangerous and economically important pathogen of potatoes and other agricultural crops. Therefore, rapid and sensitive methods for its routine diagnostics are necessary. The aim of this study was to develop a rapid control method for R. solanacearum with a low limit of detection (LOD) based on a lateral flow immunoassay (LFIA) with silver enhancement. To minimize the LOD, the membrane type, antibody amount for conjugation with gold nanoparticles, conjugate concentration and antibody concentration in the analytical zone were optimized. Silver enhancement was used to decrease the LOD of the LFIA. For silver enhancement, release fiberglass membranes with pre-absorbed silver lactate and hydroquinone were placed on the analytical zone, and a drop of silver lactate was added. The LFIA with silver enhancement was found to be 10-fold more sensitive (LOD 2×10(2) CFU/mL; 20 min) in comparison with the common analysis (LOD 2×10(3) CFU/mL; 10 min). The specificity of the developed LFIA was studied using different strains of R. solanacearum (54 samples) and other widespread bacterial pathogens (18 samples). The LFIA detected all tested strains, whereas non-specific reactions were not observed. The developed tests were used for the control of bacteria in extracts of infected and non-infected potato tubers, and the quantitative analysis results (based on the densitometry of line colouration) were confirmed by ELISA with a correlation coefficient equal to 0.965. PMID:26992550

  15. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties.

    PubMed

    Wenk, Jannis; Aeschbacher, Michael; Salhi, Elisabeth; Canonica, Silvio; von Gunten, Urs; Sander, Michael

    2013-10-01

    In water treatment dissolved organic matter (DOM) is typically the major sink for chemical oxidants. The resulting changes in DOM, such as its optical properties have been measured to follow the oxidation processes. However, such measurements contain only limited information on the changes in the oxidation states of and the reactive moieties in the DOM. In this study, we used mediated electrochemical oxidation to quantify changes in the electron donating capacities (EDCs), and hence the redox states, of three different types of DOM during oxidation with chlorine dioxide (ClO2), chlorine (as HOCl/OCl(-)), and ozone (O3). Treatment with ClO2 and HOCl resulted in comparable and prominent decreases in EDCs, while the UV light absorbances of the DOM decreased only slightly. Conversely, ozonation resulted in only small decreases of the EDCs but pronounced absorbance losses of the DOM. These results suggest that ClO2 and HOCl primarily reacted as oxidants by accepting electrons from electron-rich phenolic and hydroquinone moieties in the DOM, while O3 reacted via electrophilic addition to aromatic moieties, followed by ring cleavage. This study highlights the potential of combined EDC-UV measurements to monitor chemical oxidation of DOM, to assess the nature of the reactive moieties and to study the underlying reaction pathways.

  16. Altering the O2-Dependent Reactivity of de novo Due Ferri Proteins

    PubMed Central

    Reig, Amanda J.; Pires, Marcos M.; Snyder, Rae Ana; Wu, Yibing; Jo, Hyunil; Kulp, Daniel W.; Butch, Susan E.; Calhoun, Jennifer R.; Szyperski, Thomas; Solomon, Edward I.; DeGrado, William F.

    2012-01-01

    De novo proteins provide a unique opportunity for investigating the structure-function relationships of metalloproteins in a minimal, well-defined, and controlled scaffold. Herein, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the due ferri family. Originally created to catalyze O2-dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyze the selective N-hydroxylation of arylamines by remodeling the substrate access cavity and introducing a critical third His ligand to the metal binding cavity. Additional second-and third-shell modifications were required to stabilize the His ligand in the core of the protein. These changes resulted in at least a 106 –fold increase in the relative rates of the two reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of geometric and electronic factors that influence the catalytic tuning of di-iron active sites. PMID:23089864

  17. Ansamycin inhibitors of Hsp90: nature's prototype for anti-chaperone therapy.

    PubMed

    Porter, James R; Ge, Jie; Lee, John; Normant, Emmanuel; West, Kip

    2009-01-01

    The ansamycin class of natural products is well known for its anti-tumor effects and has been extensively studied by cancer researchers for nearly four decades. The first description of geldanamycin in the scientific literature appeared in 1970 and nearly thirty years later the semi-synthetic derivative 17-AAG, or tanespimycin, entered Phase 1 clinical trials. In the subsequent years, three additional geldanamycin derivatives have entered clinical evaluation. Kosan Biosciences developed 17-DMAG or alvespimycin hydrochloride for clinical evaluation as both an intravenous and oral product. Infinity Pharmaceuticals is developing IPI-504 or retaspimycin hydrochloride as an intravenous product, which is in several Phase 2 clinical trials; IPI-504 is the hydroquinone hydrochloride salt of 17-AAG. More recently, Infinity Pharmaceuticals initiated a Phase 1 clinical trial with an oral formulation of 17-AG (IPI-493), the major metabolite of 17-AAG and IPI-504. Since a vast amount of scientific literature exists regarding the ansamycin field and Hsp90 inhibition, this review will survey key milestones in the development of the natural product class as anti-cancer drugs including discovery of the compounds and their anti-tumor effects, identification of Hsp90 as their biological target, the structure-activity relationships that have been identified in this interesting class of compounds, and development of clinical candidates for the treatment of cancer patients. A brief overview of important pre-clinical development data from each clinical lead is also provided.

  18. Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches.

    PubMed

    Milić, Jovana; Zalibera, Michal; Pochorovski, Igor; Trapp, Nils; Nomrowski, Julia; Neshchadin, Dmytro; Ruhlmann, Laurent; Boudon, Corinne; Wenger, Oliver S; Savitsky, Anton; Lubitz, Wolfgang; Gescheidt, Georg; Diederich, François

    2016-07-01

    The development of semiquinone-based resorcin[4]arene cavitands expands the toolbox of switchable molecular grippers by introducing the first paramagnetic representatives. The semiquinone (SQ) states were generated electrochemically, chemically, and photochemically. We analyzed their electronic, conformational, and binding properties by cyclic voltammetry, ultraviolet/visible (UV/vis) spectroelectrochemistry, electron paramagnetic resonance (EPR) and transient absorption spectroscopy, in conjunction with density functional theory (DFT) calculations. The utility of UV/vis spectroelectrochemistry and EPR spectroscopy in evaluating the conformational features of resorcin[4]arene cavitands is demonstrated. Guest binding properties were found to be enhanced in the SQ state as compared to the quinone (Q) or the hydroquinone (HQ) states of the cavitands. Thus, these paramagnetic SQ intermediates open the way to six-state redox switches provided by two conformations (open and closed) in three redox states (Q, SQ, and HQ) possessing distinct binding ability. The switchable magnetic properties of these molecular grippers and their responsiveness to electrical stimuli has the potential for development of efficient molecular devices. PMID:27300355

  19. A study of normoxic polymer gel using monomer 2-hydroxyethyl methacrylate (HEMA)

    NASA Astrophysics Data System (ADS)

    Ishak, Siti Atiqah; Mustafa, Iskandar Shahrim; Rahman, Azhar Abdul; Moktar, Mohd; Min, Ung Ngie

    2015-04-01

    The aim of this study is to determine the sensitivity of HEMA-polymer gel mixture consist of monomer 2-hydroxyethyl methacrylate (HEMA) with different types of composition. Several composition of HEMA-polymer gel were fabricated and the gels were irradiated with radiation dose between 10 cGy to 100cGy by using x-ray machine and 100 cGy to 1400 cGy by using 6 MV photon beam energy of linear accelerator. The degree of polymerization was evaluated by using magnetic resonance imaging (MRI) with dependence of R2-dose response. Polymer gel consists of cross-linker, anti-oxidant Tetrakis(Hydroxymethyl)phosphonium chloride solution (THPC) and oxygen scavenger hydroquinone shows a stable sensitivity with highest dose dependency. Besides, the results shows the stage polymerization consist of induction, propagation, termination, and chain transfer were dependence with type of chemical mixture and radiation dose. Thus, normoxic HEMA-polymer gel with the different gel formulations can have a better dose resolution and an appropriate recipe must be selected to increase of the sensitivity required and the stability of the dosimeter.

  20. A Combined Desorption Ionization by Charge Exchange (DICE) and Desorption Electrospray Ionization (DESI) Source for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.

  1. Evaluation of the degradation of acetaminophen by the filamentous fungus Scedosporium dehoogii using carbon-based modified electrodes.

    PubMed

    Mbokou, Serge Foukmeniok; Pontié, Maxime; Razafimandimby, Bienvenue; Bouchara, Jean-Philippe; Njanja, Evangéline; Tonle Kenfack, Ignas

    2016-08-01

    The nonpathogenic filamentous fungus Scedosporium dehoogii was used for the first time to study the electrochemical biodegradation of acetaminophen (APAP). A carbon fiber microelectrode (CFME) modified by nickel tetrasulfonated phthalocyanine (p-NiTSPc) and a carbon paste electrode (CPE) modified with coffee husks (CH) were prepared to follow the kinetics of APAP biodegradation. The electrochemical response of APAP at both electrodes was studied by cyclic voltammetry and square wave voltammetry. p-NiTSPc-CFME was suitable to measure high concentrations of APAP, whereas CH-CPE gave rise to high current densities but was subject to the passivation phenomenon. p-NiTSPc-CFME was then successfully applied as a sensor to describe the kinetics of APAP biodegradation: this was found to be of first order with a kinetics constant of 0.11 day(-1) (at 25 °C) and a half-life of 6.30 days. APAP biodegradation by the fungus did not lead to the formation of p-aminophenol (PAP) and hydroquinone (HQ) that are carcinogenic, mutagenic, and reprotoxic (CMR). Graphical Abstract The kinetics of APAP biodegradation, followed by a poly-nickel tetrasulfonated phtalocyanine modified carbon fiber microelectrode. PMID:27349916

  2. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid.

    PubMed

    Rury, Aaron S; Sorenson, Shayne; Dawlaty, Jahan M

    2016-03-14

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm(-1) oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.

  3. Multifunctional Polyphenols- and Catecholamines-Based Self-Defensive Films for Health Care Applications.

    PubMed

    Dhand, Chetna; Harini, Sriram; Venkatesh, Mayandi; Dwivedi, Neeraj; Ng, Alice; Liu, Shouping; Verma, Navin Kumar; Ramakrishna, Seeram; Beuerman, Roger W; Loh, Xian Jun; Lakshminarayanan, Rajamani

    2016-01-20

    In an era of relentless evolution of antimicrobial resistance, there is an increasing demand for the development of efficient antimicrobial coatings or surfaces for food, biomedical, and industrial applications. This study reports the laccase-catalyzed room-temperature synthesis of mechanically robust, thermally stable, broad spectrum antimicrobial films employing interfacial interactions between poly(vinyl alcohol), PVA, and 14 naturally occurring catecholamines and polyphenols. The oxidative products of catecholamines and polyphenols reinforce the PVA films and also alter their surface and bulk properties. Among the catecholamines-reinforced films, optimum surface and bulk properties can be achieved by the oxidative products of epinephrine. For polyphenols, structure-property correlation reveals an increase in surface roughness and elasticity of PVA films with increasing number of phenolic groups in the precursors. Interestingly, PVA films reinforced with oxidized/polymerized products of pyrogallol (PG) and epinephrine (EP) display potent antimicrobial activity against pathogenic Gram-positive and Gram-negative strains, whereas hydroquinone (HQ)-reinforced PVA films display excellent antimicrobial properties against Gram-positive bacteria only. We further demonstrate that HQ and PG films retain their antimicrobial efficacy after steam sterilization. With an increasing trend of giving value to natural and renewable resources, our results have the potential as durable self-defensive antimicrobial surfaces/films for advanced healthcare and industrial applications.

  4. Medicinal Uses, Phytochemistry, and Pharmacology of Origanum onites (L.): A Review.

    PubMed

    Tepe, Bektas; Cakir, Ahmet; Sihoglu Tepe, Arzuhan

    2016-05-01

    Origanum onites L., known as Turkish oregano, has great traditional, medicinal, preservative, and commercial importance. It is used for the treatment of several kinds of ailments, such as gastrointestinal disorders, diabetes, high cholesterol, leukemia, bronchitis, etc. In this review, traditional use, phytochemistry, and pharmacology of O. onites reported between 1988 and 2014 were discussed. This review was prepared based on literature survey on scientific journals and books from libraries and electronic sources, such as Web of Science, PubMed, Scopus, Google Scholar, etc. All databases were searched up to June 2014. Several different classes of terpenoids, triterpene acids, phenolic acids, hydroquinones, flavonoids, hydrocarbons, sterols, pigments, fatty acids, tocopherols, and inorganic compounds were detected mainly in the aerial parts of this plant. Pharmacological studies revealed that extracts obtained from several solvents and individual compounds exhibited antimicrobial, antiviral, antioxidant, insecticidal, anticancer, hepatoprotective, genotoxic, antidiabetic, cholinesterase inhibitory, anti-inflammatory, analgesic activities, etc. O. onites, in general, exhibited remarkable activity potential in almost all test systems. The results of toxicity studies indicated that O. onites did not show any significant toxicity and mutagenicity on Drosophila and Salmonella. Toxicity of the extracts/essential oils and also individual compounds should be evaluated on mammalian cells to ensure their safety. The bioactivity of individual compounds aside from terpenoids should also be assessed in detail. Additionally, mode of action for the bioactive compounds should be evaluated to understand the complex pharmacological effects of these phytochemicals. PMID:27062715

  5. Evaluation of the potential of soil remediation by direct multi-channel pulsed corona discharge in soil.

    PubMed

    Wang, Tie Cheng; Qu, Guangzhou; Li, Jie; Liang, Dongli

    2014-01-15

    A novel approach, named multi-channel pulsed corona discharge in soil, was developed for remediating organic pollutants contaminated soil, with p-nitrophenol (PNP) as the model pollutant. The feasibility of PNP degradation in soil was explored by evaluating effects of pulse discharge voltage, air flow rate and soil moisture on PNP degradation. Based on roles of chemically active species and evolution of degradation intermediates, PNP degradation processes were discussed. Experimental results showed that about 89.4% of PNP was smoothly degraded within 60min of discharge treatment at pulse discharge voltage 27kV, soil moisture 5% and air flow rate 0.8Lmin(-1), and the degradation process fitted the first-order kinetic model. Increasing pulse discharge voltage was found to be favorable for PNP degradation, but not for energy yield. There existed appropriate air flow rate and soil moisture for obtaining gratifying PNP degradation efficacy. Roles of radical scavenger and measurement of active species suggested that ozone, H2O2, and OH radicals played very important roles in PNP degradation. CN bond in PNP molecule was cleaved, and the main intermediate products such as hydroquinone, benzoquinone, catechol, phenol, acetic acid, formic acid, oxalic acid, NO2(-) and NO3(-) were identified. Possible pathway of PNP degradation in soil in such a system was proposed.

  6. Mineralization of sulfanilamide by electro-Fenton and solar photoelectro-Fenton in a pre-pilot plant with a Pt/air-diffusion cell.

    PubMed

    El-Ghenymy, Abdellatif; Cabot, Pere Lluís; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Arias, Conchita; Brillas, Enric

    2013-05-01

    The mineralization of sulfanilamide solutions at pH 3.0 was comparatively studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF) using a 2.5 L pre-pilot plant containing a Pt/air-diffusion cell coupled with a solar photoreactor. Organics were primordially oxidized by hydroxyl radical (OH) formed from Fenton's reaction between H₂O₂ generated at the cathode and added Fe(2+) and/or under the action of sunlight. A mineralization up to 94% was achieved using SPEF, whereas EF yielded much poorer degradation. The effect of current density and Fe(2+) and drug concentrations on the degradation rate, mineralization current efficiency and energy cost per unit DOC mass of EF and/or SPEF was examined. The sulfanilamide decay always followed a pseudo first-order kinetics, being more rapid in SPEF due to the additional generation of OH induced by sunlight on Fe(III) species. Catechol, resorcinol, hydroquinone and p-benzoquinone were identified as aromatic intermediates. The final solutions treated by EF contained Fe(III) complexes of maleic, fumaric, oxamic and mainly oxalic acids, which are hardly destroyed by OH. The quick photolysis of Fe(III)-oxalate complexes by sunlight explains the higher oxidation ability of SPEF. The N content of sulfanilamide was mainly mineralized as NH₄⁺ ion and in much lesser extent as NO₃⁻ ion, whereas most of its initial S was converted into SO₄²⁻ ion. PMID:23561569

  7. Electrochemical magnetic beads-based immunosensing platform for the determination of α-lactalbumin in milk.

    PubMed

    Ruiz-Valdepeñas Montiel, Víctor; Campuzano, Susana; Torrente-Rodríguez, Rebeca M; Reviejo, A Julio; Pingarrón, José M

    2016-12-15

    Alpha-lactalbumin (α-LA) is one of the whey proteins in cows' milk that has been identified as allergenic. In this work, we present, for the first time, a very sensitive magnetic beads (MBs)-based immunosensor for the determination of α-LA. A sandwich configuration involving selective capture and horseradish peroxidase-labeled detector antibodies was implemented on carboxylic acid-modified magnetic beads, captured magnetically under the surface of a disposable screen-printed carbon electrode for amperometric detection using the hydroquinone (HQ)/H2O2 system. The α-LA immunosensor exhibited a wide linear range (37.0-5000pg/ml), a low limit of detection (LOD, 11.0pg/ml) and noteworthy selectivity against other non-target proteins. The MBs-based immunosensing platform was applied successfully for the determination of α-LA in several varieties of milk (raw and UHT cows' milk as well as human milk) and infant formulations. The results were corroborated with those obtained using a commercial ELISA method, thereby substantiating the analytical merits of this unique method. PMID:27451223

  8. The role of contact chemoreception in egg-laying behaviour of locusts.

    PubMed

    Newland, Philip L; Yates, Paul

    2008-01-01

    Following selection of an appropriate egg-laying site desert locusts lay their eggs at depths in soil by digging their abdomen into the substrate using rhythmic movements of their abdomen and hard, sclerotised ovipositor valves. We have analysed the role of contact chemoreception on egg-laying behaviour and on the rhythmic digging movements of the valves. All chemicals tested acted aversively and reduced both the duration spent egg-laying and the number of eggs laid, with the concentration at which they became aversive being dependent on whether the chemical was normally present in the diet. Chemicals such as sucrose and a lysine glutamate salt prevented egg-laying only at much higher concentrations than known anti-feedants such as nicotine hydrogen tartrate and hydroquinine. Similarly for animals in which fictive digging movements were induced all chemicals stopped the digging rhythm, with sucrose and sodium chloride inhibiting the rhythm at relatively high concentrations compared to NHT and hydroquinone. We conclude that for both egg-laying behaviour and rhythmic digging that the aversiveness of a chemical rather than its identity per se plays a major role in regulating behaviour.

  9. Characterization of Truncated Tumor-Associated NADH Oxidase (ttNOX)

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Malone, Christine C.; Burk, Melissa; Moore, Blake P.; Achari, Aniruddha; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Bacterial, plant and animal cells possess novel surface proteins that exhibit both NADH oxidation (NOX) or hydroquinone and protein disulfide-thiol interchange. These enzymatic activities alternate to yield oscillating patterns wjth period lengths of approximately 24 minutes. The catalytic period of NOX proteins are temperature compensated and gravity responsive. We report the cloning, expression and characterization of truncated tumor-associated NADH oxidase (ttNOX), in which the membrane spanning region has been deleted. The cDNA (originated from HeLa cells) was cloned into pET-34b and pET-14b (Novagen) vectors for E. coli expression. Optimized expression and purification protocols yielded greater than 300mg per liter of culture with greater than 95% purity. Circular dichroism data was collected from a 2.7mg/ml solution in a 0.1mm cuvette with variable scanning using an Olis RSM CD spectrophotometer. The ellipticity values were scanned from 190 to 260nm. The spectra recorded have characteristics for alpha proteins with band maxima at 216nm and a possible shoulder at 212nm at 12OC and 250 C. Protein crystal screens are in progress and, to date, only small crystals have been observed. The regular periodic oscillatory change in the ttNOX protein is indicative of a possible time-keeping functional role. A single protein possessing alternating catalytic activities, with a potential biological clock function, is unprecedented and structural determination is paramount to understanding this role.

  10. A study of normoxic polymer gel using monomer 2-hydroxyethyl methacrylate (HEMA)

    SciTech Connect

    Ishak, Siti Atiqah; Mustafa, Iskandar Shahrim; Rahman, Azhar Abdul; Moktar, Mohd; Min, Ung Ngie

    2015-04-24

    The aim of this study is to determine the sensitivity of HEMA-polymer gel mixture consist of monomer 2-hydroxyethyl methacrylate (HEMA) with different types of composition. Several composition of HEMA-polymer gel were fabricated and the gels were irradiated with radiation dose between 10 cGy to 100cGy by using x-ray machine and 100 cGy to 1400 cGy by using 6 MV photon beam energy of linear accelerator. The degree of polymerization was evaluated by using magnetic resonance imaging (MRI) with dependence of R2-dose response. Polymer gel consists of cross-linker, anti-oxidant Tetrakis(Hydroxymethyl)phosphonium chloride solution (THPC) and oxygen scavenger hydroquinone shows a stable sensitivity with highest dose dependency. Besides, the results shows the stage polymerization consist of induction, propagation, termination, and chain transfer were dependence with type of chemical mixture and radiation dose. Thus, normoxic HEMA-polymer gel with the different gel formulations can have a better dose resolution and an appropriate recipe must be selected to increase of the sensitivity required and the stability of the dosimeter.

  11. Crystal Structure of Saccharomyces cerevisiae ECM4, a Xi-Class Glutathione Transferase that Reacts with Glutathionyl-(hydro)quinones

    PubMed Central

    Schwartz, Mathieu; Didierjean, Claude; Hecker, Arnaud; Girardet, Jean-Michel; Morel-Rouhier, Mélanie; Gelhaye, Eric; Favier, Frédérique

    2016-01-01

    Glutathionyl-hydroquinone reductases (GHRs) belong to the recently characterized Xi-class of glutathione transferases (GSTXs) according to unique structural properties and are present in all but animal kingdoms. The GHR ScECM4 from the yeast Saccharomyces cerevisiae has been studied since 1997 when it was found to be potentially involved in cell-wall biosynthesis. Up to now and in spite of biological studies made on this enzyme, its physiological role remains challenging. The work here reports its crystallographic study. In addition to exhibiting the general GSTX structural features, ScECM4 shows extensions including a huge loop which contributes to the quaternary assembly. These structural extensions are probably specific to Saccharomycetaceae. Soaking of ScECM4 crystals with GS-menadione results in a structure where glutathione forms a mixed disulfide bond with the cysteine 46. Solution studies confirm that ScECM4 has reductase activity for GS-menadione in presence of glutathione. Moreover, the high resolution structures allowed us to propose new roles of conserved residues of the active site to assist the cysteine 46 during the catalytic act. PMID:27736955

  12. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation.

  13. Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Stewart, Michael H.; Trammell, Scott A.; Susumu, Kimihiro; Delehanty, James B.; Mei, Bing C.; Melinger, Joseph S.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi

    2010-08-01

    The use of semiconductor quantum dots (QDs) for bioimaging and sensing has progressively matured over the past decade. QDs are highly sensitive to charge-transfer processes, which can alter their optical properties. Here, we demonstrate that QD-dopamine-peptide bioconjugates can function as charge-transfer coupled pH sensors. Dopamine is normally characterized by two intrinsic redox properties: a Nernstian dependence of formal potential on pH and oxidation of hydroquinone to quinone by O2 at basic pH. We show that the latter quinone can function as an electron acceptor quenching QD photoluminescence in a manner that depends directly on pH. We characterize the pH-dependent QD quenching using both electrochemistry and spectroscopy. QD-dopamine conjugates were also used as pH sensors that measured changes in cytoplasmic pH as cells underwent drug-induced alkalosis. A detailed mechanism describing the QD quenching processes that is consistent with dopamine's inherent redox chemistry is presented.

  14. Functional K-doping of eumelanin thin films: Density functional theory theory and soft x-ray spectroscopy experiments in the frame of the macrocyclic protomolecule model

    NASA Astrophysics Data System (ADS)

    Borghetti, P.; Ghosh, P.; Castellarin-Cudia, C.; Goldoni, A.; Floreano, L.; Cossaro, A.; Verdini, A.; Gebauer, R.; Drera, G.; Sangaletti, L.

    2012-05-01

    We demonstrate the possibility to achieve the doping of eumelanin thin films through K+ incorporation during the electrodeposition of the film. K-doping changes the optical properties of the eumelanin thin films, reducing the energy gap from 1.0 to 0.6 eV, with possible implications for the photophysical properties. We have identified the doping-related occupied and unoccupied electronic states and their spectral weight using resonant photoemission spectroscopy (ResPES) and x-ray absorption at the C and N K-edges (near edge x-ray absorption fine spectroscopy, NEXAFS). All data are consistently interpreted by ab initio calculations of the electronic structure within the frame of the macrocycle model developed for the eumelanin protomolecule. Our analysis puts in evidence the intercalation of K with one specific oligomer (a tetramer composed of one indolequinone and 3 hydroquinone monomers) in correspondence of the nitrogen macrocycle. The predicted variation of the tetramer spacing is also in agreement with the recent x-ray diffraction experiments. The charge donation from K to N and C atoms gives rise to new electronic states at the top of the valence band and in NEXAFS resonances of the unoccupied orbitals. The saturation of the tetramer macrocycles leaves an excess of K that bind to N and C atoms in alternative configurations, as witnessed by the occurrence of additional spectral features in the carbon-related ResPES measurements.

  15. Quantitative Aspects of the Interfacial Catalytic Oxidation of Dithiothreitol by Dissolved Oxygen in the Presence of Carbon Nanoparticles.

    PubMed

    Sauvain, Jean-Jacques; Rossi, Michel J

    2016-01-19

    The catalytic nature of particulate matter is often advocated to explain its ability to generate reactive oxygen species, but quantitative data are lacking. We have performed molecular characterization of three different carbonaceous nanoparticles (NP) by 1. identifying and quantifying their surface functional groups based on probe gas-particle titration; 2. studying the kinetics of dissolved oxygen consumption in the presence of suspended NP's and dithiothreitol (DTT). We show that these NP's can reversibly change their oxidation state between oxidized and reduced functional groups present on the NP surface. By comparing the amount of O2 consumed and the number of strongly reducing sites on the NP, its average turnover ranged from 35 to 600 depending on the type of NP. The observed quadratic rate law for O2 disappearance points to a Langmuir-Hinshelwood surface-based reaction mechanism possibly involving semiquinone radical. In the proposed model, the strongly reducing surface site is assumed to be a polycyclic aromatic hydroquinone whose oxidation to the corresponding conjugated quinone is rate-limiting in the catalytic chain reaction. The presence and strength of the reducing surface functional groups are important for explaining the catalytic activity of NP in the presence of oxygen and a reducing agent like DTT. PMID:26683500

  16. High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive.

    PubMed

    Kim, Doyeon; Lee, Geumbee; Kim, Daeil; Yun, Junyeong; Lee, Sang-Soo; Ha, Jeong Sook

    2016-08-25

    In this study, we report the fabrication of a high performance flexible micro-supercapacitor (MSC) with an organic gel electrolyte containing a redox-active additive, referred to as poly(methyl methacrylate)-propylene carbonate-lithium perchlorate-hydroquinone (PMMA-PC-LiClO4-HQ). Hexagonal MSCs fabricated on thin polyethylene terephthalate (PET) films had interdigitated electrodes made of spray-coated multi-walled carbon nanotubes (MWNTs) on Au. The addition of HQ as a redox-active additive enhanced not only the specific capacitance but also the energy density of the MSCs dramatically, which is approximately 35 times higher than that of MSCs without the HQ additive. In addition, both areal capacitance and areal energy density could be doubled by fabrication of double-sided MSCs, where two MSCs are connected in parallel. The double-sided MSCs exhibited stable electrochemical performance during repeated deformation by bending. By dry-transferring the double-sided MSCs based on PMMA-PC-LiClO4-HQ on a deformable polymer substrate, we fabricated a stretchable MSC array, which also retained its electrochemical performance during a uniaxial strain of 40%. Furthermore, a wearable energy storage bracelet made of such an MSC array could operate a μ-LED on the wrist. PMID:27511060

  17. A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery towards Sustainable Energy Storage.

    PubMed

    Ding, Yu; Yu, Guihua

    2016-04-01

    Wide-scale exploitation of renewable energy requires low-cost efficient energy storage devices. The use of metal-free, inexpensive redox-active organic materials represents a promising direction for environmental-friendly, cost-effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g(-1) and stable capacity retention about 99.7% per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio-electrochemical process of quinones in nature, using such a bio-inspired organic compound in batteries enables access to greener and more sustainable energy-storage technology.

  18. [Utilization of melanin precursors for experimental chemotherapy of malignant melanoma].

    PubMed

    Jimbow, K; Miura, S; Ito, Y; Kasuga, T; Ito, S

    1984-10-01

    Melanin synthesis is a metabolic pathway unique and specific to melanocytes. It occurs by conversion of tyrosine to dopa and dopaquinone in the presence of tyrosinase. It is highly accelerated in malignant melanoma with a marked increase of tyrosinase activity. This study summarizes the recent progress in experimental chemotherapeutic approaches to malignant melanoma by utilizing melanin precursors, and presents our current results. Our studies indicated (a) that hydroquinone and 4-isopropylcatechol are selectively toxic to melanocytes and melanoma cells, (b) that their actions are mediated through tyrosinase, and (c) that dopa is selectively and highly incorporated into melanoma cells and melanocytes depending on the tyrosinase activity. In addition, our new compounds, i.e., 4-S-cysteinylphenol and 4-S-cysteaminylphenol were highly toxic to melanoma cells, increasing the life span of B16 melanoma bearing mice and decreasing melanoma growth in C57 BL mice. Other synthetic compounds, e.g., cysteinylcatechols and their devivatives, were, however, not toxic to melanoma cells. 4-S-cysteinylphenol and 4-S-cysteaminylphenol appeared to exert their cytotoxicity through the action of tyrosinase present in melanoma cells, thus providing a kind of "guided missile" approach to melanoma chemotherapy. PMID:6435538

  19. Electro-fenton and photoelectro-fenton degradation of sulfanilic acid using a boron-doped diamond anode and an air diffusion cathode.

    PubMed

    El-Ghenymy, Abdellatif; Garrido, José Antonio; Centellas, Francesc; Arias, Conchita; Cabot, Pere Lluís; Rodríguez, Rosa María; Brillas, Enric

    2012-04-01

    The mineralization of sulfanilic acid has been studied by electro-Fenton (EF) and photoelectro-Fenton (PEF) reaction with UVA light using an undivided electrochemical cell with a boron-doped diamond (BDD) anode and an air diffusion cathode able to generate H(2)O(2). Organics were then oxidized by hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between generated H(2)O(2) and added Fe(2+). The UVA irradiation in PEF enhanced the production of hydroxyl radicals in the bulk, accelerating the removal of organics and photodecomposed intermediates like Fe(III)-carboxylate complexes. Partial decontamination of 1.39 mM sulfanilic acid solutions was achieved by EF until 100 mA cm(-2) at optimum conditions of 0.4 mM Fe(2+) and pH 3.0. The increase in current density and substrate content led to an almost total mineralization. In contrast, the PEF process was more powerful, yielding almost complete mineralization in less electrolysis time under comparable conditions. The kinetics for sulfanilic acid decay always followed a pseudo-first-order reaction. Hydroquinone and p-benzoquinone were detected as aromatic intermediates, whereas acetic, maleic, formic, oxalic, and oxamic acids were identified as generated carboxylic acids. NH(4)(+) ion was preferentially released in both treatments, along with NO(3)(-) ion in smaller proportion.

  20. Hydrogen peroxide induced relaxation in porcine pulmonary arteries in vitro is mediated by EDRF and cyclic GMP

    SciTech Connect

    Zellers, T.; McCormick, J. )

    1991-03-15

    Xanthine and xanthine oxidase induced relaxations in porcine pulmonary arteries in vitro are augmented in the presence of the endothelium and abolished by catalase, implicating hydrogen peroxide as an endothelium-dependent effector. To determine the mechanism whereby H{sub 2}O{sub 2} causes relaxations, isolated rings of fifth order porcine pulmonary artery, with (E{sup +}) and without (E{sup {minus}}) endothelium, were suspended in organ baths filled with buffer, and isometric tension was recorded. Hydrogen peroxide caused concentration-dependent, endothelium-augmented relaxations which were abolished by catalase and hydroquinone and reversed by L-nitroarginine and methylene blue. Prostacyclin (PGI{sub 2}) levels, measured after a two minute exposure to H{sub 2}O{sub 2} in rings with endothelium were comparable to controls. This concentration of PGI{sub 2} does not cause relaxations in these rings. These data suggest that H{sub 2}O{sub 2} stimulates the release of an EDRF, causing relaxations mediated by cyclic GMP, which is independent of prostacyclin.

  1. Waterpipe smoke: source of toxic and carcinogenic VOCs, phenols and heavy metals?

    PubMed

    Schubert, Jens; Müller, Frederic D; Schmidt, Roman; Luch, Andreas; Schulz, Thomas G

    2015-11-01

    The use of the waterpipe, a traditional aid for the consumption of tobacco, has spread worldwide and is steadily increasing especially among the youth. On the other hand, there is a lack of knowledge regarding the composition of mainstream waterpipe smoke and the toxicological risks associated with this kind of smoking habit. Using a standardized machine smoking protocol, mainstream waterpipe smoke was generated and further analyzed for twelve volatile organic compounds (VOCs) and eight phenolic compounds by applying gas chromatography-mass spectrometry and reverse-phase high-performance liquid chromatography-fluorescence detection, respectively. Additionally, seventeen elements were analyzed in waterpipe tobacco and charcoal prior to and after smoking, applying inductively coupled plasma-mass spectrometry to assess the maximum exposure of these elements. For the first time ever, we have been able to show that waterpipe mainstream smoke contains high levels of the human carcinogen benzene. Compared with cigarette smoke yields, the levels were 6.2-fold higher, thus representing a significant health hazard for the waterpipe smoker. Furthermore, we found that waterpipe mainstream smoke contains considerable amounts of catechol, hydroquinone and phenol, each of which causing some health concern at least. The analysis of waterpipe tobacco and charcoal revealed that both matrices contained considerable amounts of the toxic elements nickel, cadmium, lead and chromium. Altogether, the data on VOCs, phenols and elements presented in this study clearly point to the health hazards associated with the consumption of tobacco using waterpipes.

  2. CD/AuNPs/MWCNTs based electrochemical sensor for quercetin dual-signal detection.

    PubMed

    Kan, Xianwen; Zhang, Tingting; Zhong, Min; Lu, Xiaojing

    2016-03-15

    A dual-signal strategy was developed in the present work for quercetin (QR) electrochemical recognition and detection. Mercapto-β-cyclodextrin (HS-β-CD) self-assembled on gold nanoparticles and multi-walled carbon nanotubes modified electrode surface to fabricate an electrochemical sensor. Scanning electron microscope, electrochemical impedance spectroscopy, and cyclic voltammetry were employed to characterize the preparation process of the sensor. Hydroquinone (HQ) was chosen as an electrochemical marker for QR detection due to its small molecular size for the formation of inclusion with HS-β-CD. The results of UV-vis and differential pulse voltammetry demonstrate that the added QR can replace the included HQ in CD cavities, resulting in the dual-signal in electrochemical experiments composed of the decrease of oxidized current of HQ and the increase of oxidized current of QR. Compared with the sensor for QR detection in the absence of HQ, the sensor based dual-signal strategy exhibited a higher sensitivity with a wider detection range from 5.0 × 10(-9) to 7.0 × 10(-6)mol/L. With good selectivity, reproducibility, and stability, the sensor was applied for real samples detection with satisfactory results. The proposed dual-signal strategy can be readily extended to the selective recognition and sensitive detection of other molecules.

  3. Distribution of capillary transit times in isolated lungs of oxygen-tolerant rats.

    PubMed

    Ramakrishna, Madhavi; Gan, Zhuohui; Clough, Anne V; Molthen, Robert C; Roerig, David L; Audi, Said H

    2010-11-01

    Rats pre-exposed to 85% O₂ for 5-7 days tolerate the otherwise lethal effects of 100% O₂. The objective was to evaluate the effect of rat exposure to 85% O₂ for 7 days on lung capillary mean transit time t(c) and distribution of capillary transit times (h(c)(t)). This information is important for subsequent evaluation of the effect of this hyperoxia model on the redox metabolic functions of the pulmonary capillary endothelium. The venous concentration vs. time outflow curves of fluorescein isothiocyanate labeled dextran (FITC-dex), an intravascular indicator, and coenzyme Q₁ hydroquinone (CoQ₁H₂), a compound which rapidly equilibrates between blood and tissue on passage through the pulmonary circulation, were measured following their bolus injection into the pulmonary artery of isolated perfused lungs from rats exposed to room air (normoxic) or 85% O₂ for 7 days (hyperoxic). The moments (mean transit time and variance) of the measured FITC-dex and CoQ₁H₂ outflow curves were determined for each lung, and were then used in a mathematical model [Audi et al. J. Appl. Physiol. 77: 332-351, 1994] to estimate t(c) and the relative dispersion (RD(c)) of h (c)(t). Data analysis reveals that exposure to hyperoxia decreases lung t(c) by 42% and increases RD(c), a measure h(c)(t) heterogeneity, by 40%.

  4. PAMAM dendrimers as nano carriers to investigate inflammatory responses induced by pulmonary exposure of PCB metabolites in Sprague-Dawley rats.

    PubMed

    Wangpradit, Orarat; Adamcakova-Dodd, Andrea; Heitz, Katharina; Robertson, Larry; Thorne, Peter S; Luthe, Gregor

    2016-02-01

    Polychlorinated biphenyls (PCBs) persist and accumulate in the ecosystem depending upon the degree of chlorination of the biphenyl rings. Airborne PCBs are especially susceptible to oxidative metabolism, yielding mono- and di-hydroxy metabolites. We have previously demonstrated that 4-chlorobiphenyl hydroquinones (4-CB-HQs) acted as cosubstrates for arachidonic acid metabolism by prostaglandin H synthase (PGHS) and resulted in an increase of prostaglandin production in vitro. In the present study, we tested the capability of 4-CB-HQ to act as a co-substrate for PGHS catalysis in vivo. BQ and 4-CB-2',5'-HQ were administered intratracheally to male Sprague-Dawley rats (2.5 μmol/kg body weight) using nanosized polyamidoamine (PAMAM) dendrimers as carriers. We found that 24 h post application, PGE2 metabolites in kidney of rats treated with 4-CB-2',5'-HQ were significantly increased compared to the controls. The increase of PGE2 metabolites was correlated with increased alveolar macrophages in lung lavage fluid. The elevation of PGE2 synthesis is of great interest since it plays a crucial role in balancing homeostasis and inflammation where a chronic disturbance may increase risk of cancer. PAMAM dentrimers proved to be an effective transport medium and did not stimulate an inflammatory response themselves. PMID:26400242

  5. Communication: Estimating the initial biasing potential for λ-local-elevation umbrella-sampling (λ-LEUS) simulations via slow growth

    NASA Astrophysics Data System (ADS)

    Bieler, Noah S.; Hünenberger, Philippe H.

    2014-11-01

    In a recent article [Bieler et al., J. Chem. Theory Comput. 10, 3006-3022 (2014)], we introduced a combination of the λ-dynamics (λD) approach for calculating alchemical free-energy differences and of the local-elevation umbrella-sampling (LEUS) memory-based biasing method to enhance the sampling along the alchemical coordinate. The combined scheme, referred to as λ-LEUS, was applied to the perturbation of hydroquinone to benzene in water as a test system, and found to represent an improvement over thermodynamic integration (TI) in terms of sampling efficiency at equivalent accuracy. However, the preoptimization of the biasing potential required in the λ-LEUS method requires "filling up" all the basins in the potential of mean force. This introduces a non-productive pre-sampling time that is system-dependent, and generally exceeds the corresponding equilibration time in a TI calculation. In this letter, a remedy is proposed to this problem, termed the slow growth memory guessing (SGMG) approach. Instead of initializing the biasing potential to zero at the start of the preoptimization, an approximate potential of mean force is estimated from a short slow growth calculation, and its negative used to construct the initial memory. Considering the same test system as in the preceding article, it is shown that of the application of SGMG in λ-LEUS permits to reduce the preoptimization time by about a factor of four.

  6. HPLC/QTOF-MS/MS application to investigate phenolic constituents from Ficus pandurata H. aerial roots.

    PubMed

    Zhang, Xiaoping; Lv, Huiqing; Li, Zuguang; Jiang, Kezhi; Lee, Maw-Rong

    2015-06-01

    Ficus pandurata H. aerial roots are used as a traditional Chinese medicine for the treatment of uarthritis, indigestion and hyperuricemia. However, the bioactive constituents responsible for the pharmacological effects of F. pandurata H. are unclear. A simple and efficient HPLC/QTOF-MS/MS (high-performance liquid chromatography/electrospray ionization with quadrupole time-of-flight tandem mass spectrometry) method was established to detect and identify active constituents in the n-butanol extract of F. pandurata H. aerial roots. Chemical constituents were separated and investigated by HPLC/QTOF-MS/MS in the negative-ion mode. Thirty-seven compounds, including hydroxycinnamic acid derivatives, hydroxybenzoic acid derivatives, hydroquinone glycosides, flavonoid glycosides, etc., were identified or tentatively characterized in the n-butanol extract of F. pandurata H. aerial roots by comparing the UV spectra, accurate mass spectra and fragmentation pathways and retrieving the reference literatures. Moreover, the flavonoid trisaccharides and hydroxybenzoic acid derivatives were tentatively characterized in F. pandurata H. for the first time. The analytical tool used here is very valuable in the rapid separation and identification of the multiple and minor constituents in the n-butanol extract of F. pandurata H. aerial roots.

  7. Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2016-05-01

    A purified papaya laccase was immobilized in chitosan beads using entrapment approach and its physico-chemical properties were investigated and compared with that of free enzyme. Increase in properties of the laccase such as optimum temperature (by 10 °C), thermostability (by 3-folds) and optimum pH (from 8.0 to 10.0) was observed after immobilization. Immobilization led to increased tolerance of enzyme to a number of metal ions (including heavy metals) and organic solvents namely, ethanol, isopropanol, methanol, benzene and DMF. The catalytic efficiency (Kcat/Km) of the immobilized enzyme was found to increase more than ten folds, in comparison to that of the free enzyme, with hydroquinone as substrate. Immobilization of laccase also led to improvement in dye decolorization such that the synthetic dye indigo carmine (50 μg/ml) was completely decolorized within 8h of incubation as compared to that of the free laccase which decolorized the same dye to only 56% under similar conditions. Thus, immobilization of laccase into chitosan beads led to tremendous improvement in various useful attributes of this enzyme thereby making it more versatile for its industrial exploitation. PMID:26812115

  8. Order of functionality loss during photodegradation of aquatic humic substances

    USGS Publications Warehouse

    Thorn, Kevin A.; Younger, Steven J.; Cox, Larry G.

    2009-01-01

    The time course photodegradation of the Nordic aquatic fulvic and humic acids and Suwannee River XAD-4 acids subjected to UV irradiation with an unfiltered medium pressure mercury lamp was studied by liquid-state 13C nuclear magnetic resonance. Photodecarboxylation was a significant pathway in all cases. Decreases in ketone, aromatic, and O-alkyl carbons were observed throughout the course of the irradiations, whereas C-alkyl carbons resisted photodegradation. Peaks attributable to the low-molecular-weight photodegradation products bicarbonate, formate, acetate, and succinate grew in intensity with irradiation time. The final products of the irradiations were decarboxylated, hydrophobic, predominantly C-alkyl and O-alkyl materials that were resistant to further photodegradation. The total amount of carbon susceptible to loss appeared to be related mainly to the total concentration of carbonyl and aromatic carbons and partly to the concentration of O-alkyl carbons in the fulvic, humic, and XAD-4 acids. The carbon losses for Nordic fulvic, Nordic Humic, Suwannee fulvic, and Suwannee XAD-4 acids were estimated to be 75, 63, 56, and 17%, respectively. More detailed analyses of the effects of irradiation on the carbonyl functionality in Nordic humic acid and Laurentian soil fulvic acid through reaction with hydroxylamine in conjunction with 15N nuclear magnetic resonance analysis confirmed preferential photodegradation of the quinone/hydroquinone functionality over ketone groups and the loss of ester groups in Laurentian fulvic acid.

  9. Metabolism of benzene and phenol by a reconstituted purified phenobarbital induced rat liver mixed function oxidase system

    SciTech Connect

    Griffiths, J.C.

    1986-01-01

    Cytochrome P-450 and the electron-donor, NADPH-cytochrome c reductase were isolated from phenobarbital induced rat liver microsomes. Both benzene and its primary metabolite phenol, were substrates for the reconstituted purified phenobarbital induced rat liver mixed function oxidase system. Benzene was metabolized to phenol and the polyhydroxylated metabolites; catechol, hydroquinone and 1,2,4 benzenetriol. Benzene elicited a Type I spectral change upon its interaction with the cytochrome P-450 while phenol's interaction with the cytochrome P-450 produced a reverse Type I spectra. The formation of phenol showed a pH optimum of 7.0 compared with 6.6-6.8 for the production of the polyhyrdoxylated metabolites. Cytochrome P-450 inhibitors, such as metyrapone and SKF 525A, diminished the production of phenol from benzene but not the production of the polyhydroxylated metabolites from phenol. The radical trapping agents, DMSO, KTBA and mannitol, decreased the recovery of polyhydroxylated metabolites, from /sup 14/C-labeled benzene and/or phenol. As KTBA and DMSO interacted with OH. There was a concomitant release of ethylene and methane, which was measured. Desferrioxamine, an iron-chelator and catalase also depressed the recovery of polyhydroxylated metabolites. In summary, benzene and phenol were both substrates for this reconstituted purified enzyme system, but they differed in binding to cytochrome P-450, pH optima and mode of hydroxylation.

  10. The dissolution of calcite in aqueous acid: The influence of humic species

    SciTech Connect

    Compton, R.G.; Sanders, G.H.W. )

    1993-07-01

    The kinetics of proton-induced calcite dissolution in aqueous solution in the presence of humic acids and their sodium salts are reported. In equilibrated acid solutions (pH <4) there is no inhibition by humic material and dissolution proceeds at a rate simply determined by the solution pH. Contrastingly the sodium salts of humic acids were found to have a significant inhibitory effect on the acid catalyzed dissolution. This was quantified using a novel channel flow cell experiment which employed two electrodes, the upstream of which was used to inject protons into a neutral solution, which also contained sodium salts of humic acid, via electrolytic oxidation of dissolved hydroquinone. The two electrodes were located immediately upstream and downstream of a calcite crystal so that the proton injection served to dissolve the calcite in the (inhibiting) presence of humic salts unequilibrated with the solution pH. The amount of H[sup +] which survived passage to the downstream detector'' electrode was used to quantify the rate of dissolution and hence the inhibitory effects of the humic acid. The latter were found to operate in a manner not inconsistent with Langmuirian adsorption.

  11. Widespread ability of fungi to drive quinone redox cycling for biodegradation.

    PubMed

    Krueger, Martin C; Bergmann, Michael; Schlosser, Dietmar

    2016-06-01

    Wood-rotting fungi possess remarkably diverse extracellular oxidation mechanisms, including enzymes, such as laccase and peroxidases, and Fenton chemistry. The ability to biologically drive Fenton chemistry by the redox cycling of quinones has previously been reported to be present in both ecologically diverging main groups of wood-rotting basidiomycetes. Therefore, we investigated whether it is even more widespread among fungal organisms. Screening of a diverse selection of a total of 18 ascomycetes and basidiomycetes for reduction of the model compound 2,6-dimethoxy benzoquinone revealed that all investigated strains were capable of reducing it to its corresponding hydroquinone. In a second step, depolymerization of the synthetic polymer polystyrene sulfonate was used as a proxy for quinone-dependent Fenton-based biodegradation capabilities. A diverse subset of the strains, including environmentally ubiquitous molds, white-rot fungi, as well as peatland and aquatic isolates, caused substantial depolymerization indicative for the effective employment of quinone redox cycling as biodegradation tool. Our results may also open up new paths to utilize diverse fungi for the bioremediation of recalcitrant organic pollutants. PMID:27190290

  12. Effect of trace metals and electron shuttle on simultaneous reduction of reactive black-5 azo dye and hexavalent chromium in liquid medium by Pseudomonas sp.

    PubMed

    Mahmood, Shahid; Khalid, Azeem; Arshad, Muhammad; Ahmad, Riaz

    2015-11-01

    This study demonstrates the role of electron shuttles and trace metals in the biotransformation of azo dye reactive black-5 and hexavalent chromium (CrVI) that are released simultaneously in tannery effluent. Previously isolated bacterial strain Pseudomonas putida KI was used for the simultaneous reduction of the dye (100 mg L(-1)) and CrVI (2 mg L(-1)) in a mineral salts medium (MSM). Among various trace metals, only Cu(II) had a stimulating effect on the bacterial-mediated reduction process. Application of electron shuttles such as hydroquinone and uric acid at a low concentration (1mM) had a positive effect on the reduction process and caused simultaneous reduction of 100% dye and 97% CrVI in 12-18 h. Mannitol, EDTA and sodium benzoate at all concentrations (ranging from 1 to 9 mM) showed an inhibitory effect on the reduction of reactive black-5 and CrVI. An inverse linear relationship between the velocity of reaction (V) and the concentration [S] of electron shuttles was observed. The results imply that both types and concentration of an electron shuttle and trace metals can affect the simultaneous reduction of reactive black-5 and CrVI.

  13. [Biocatalyst of redox mediators on the denitrification by Paracoccus versutus strain GW1].

    PubMed

    Li, Hai-Bo; Lian, Jing; Guo, Yan-Kai; Zhao, Li-Jun; Du, Hai-Feng; Yang, Jing-Liang; Guo, Jian-Bo

    2012-07-01

    The quinone respiration process of Paracoccus versutus strain GW1 was characterized and the effects of the four redox mediators on the denitrification process were studied. The experiment results suggested that quinones were utilized by Paracoccus versutus strain GW1 as electron acceptors in the respiratory chain and reduced to hydroquinone. Batch experiments were carried out to investigate the biocatalyst effect of redox mediators as catalyst on the denitrification process at 35 degrees C. All four redox mediators tested were able to enhance the nitrate removal efficiency and the denitrification efficiency by 1.14-1.63 fold and 1.12-2.02 fold, respectively. The accelerating effect from high to low was AQDS > 1,5-AQDS > AQS > alpha-AQS. In the presence of redox mediators, the stabilized ORP values in the nitrate decomposition process were reduced by 33-75 mV. The pH variations in denitrification with redox mediators showed similar tendency to that of the conventional nitrate removal process. In the concentration range of 0-0.32 mmol x L(-1), AQDS had the best accelerating effect and a linear correlation was found for the denitrification rate K and the AQDS concentration cAQDS. This study indicated that the application of redox mediators significantly improved the denitrification process by enhancing the decomposition rate. PMID:23002627

  14. Density functional theory study of semiquinone radical anions of polychlorinated biphenyls in the syn- and anti-like conformation.

    PubMed

    Ambati, Jyothirmai; Song, Yang; Rankin, Stephen E; Lehmler, Hans-Joachim

    2012-02-16

    Polychlorinated biphenyls (PCBs) can be metabolized to reactive metabolites, such as PCB semiquinone radical anions (SQ(•-)), whose structure and role in PCB-induced toxicity are difficult to investigate due to their relative instability. The unrestricted UB3LYP/6-311G** method was used to investigate several molecular descriptors of the syn- and anti-like conformation of SQs(•-). The bond lengths and angles of the quinone moiety of the SQs(•-) were in between the values reported for PCB quinones and hydroquinones, which is consistent with the distribution of the α highest occupied molecular orbital (α-HOMO). The dihedral angles between the two ring systems increased in the presence of ortho chlorine substituents and were smaller compared to the corresponding PCB quinones. The ground-state energies indicate that the anti-like conformation of the SQs(•-) is more favorable than the syn-like conformation. Molecular descriptor used for modeling of quantitative structure-activity relationships displayed some dependence on the conformation. These findings suggest that SQs(•-) in both the syn- and antilike conformation may interact differently with target molecules, which may have implications for the toxicity of PCBs.

  15. [Prevalence of the use of skin bleaching cosmetics in two areas in Dakar (Sénégal)].

    PubMed

    Wone, I; Tal-Dia, A; Diallo, O F; Badiane, M; Touré, K; Diallo, I

    2000-01-01

    The use of skin bleaching cosmetics is an increasingly widespread phenomenon in Africa. If the negative sanitary effects of this practice are today well known, reliable statistics on the importance of the problem within the global population are rare. Our study, conducted in two popular areas in Dakar, Usine bene taly and Usine Niary Taly, had 2 objectives: to determine the prevalence of the use of skin bleaching cosmetics in the studied zones, to describe the prevalence according to the following variables: age, matrimonial situation, level and/or type of instruction, job, type of agents used. For that purpose, we conducted a transverse study on a representative sample of 600 women from 15 to 55 years old. This study reveals a prevalence of the use of skin bleaching cosmetics of 67.2%. The agents found are hydroquinone derivatives (61%), topical corticosteroids (37%) and agents from unknown origin (2%). The use of skin bleaching cosmetics is more important among young women between 30 to 44 years (72.5%), married (72.2%), analphabets (75%), working (77.6%). Studies conducted in Mali and Togo gave comparable results, which give perspectives for a prevention based on education an awareness.

  16. [Dermocosmetic management of hyperpigmentations].

    PubMed

    Guerrero, D

    2012-11-01

    Hyperpigmentations are very frequent situations that can have considerable impact on the quality of life of affected individuals. However, even if the esthetic prejudice they generate is undeniable, lentigo and melasma are benign conditions that require above all a risk-free management. In addition to the dermatological procedures (peeling, laser, etc.) and the topical drugs available to the dermatologist, there remains significant room for depigmenting dermocosmetic products. These products succeeded to transpose features of the classic pharmaceutical formula invented by Kligman from which they were inspired to the field of dermocosmetics. They comprise activators of epidermal turn-over, skin exfoliants, and active ingredients that interfere with the different stages of melanogenesis, without having the side effects of hydroquinone whose usage remains limited to the field of prescription drugs. Antioxidants are a particularly interesting addition because they participate in reducing cutaneous inflammation and efficiently complete the action of the other components of a depigmenting formula. It is important to remind the aggravating role that sun exposure has on hyperpigmentations. Therefore, measures of rigorous photoprotection are mandatory. Medical makeup, transitory or definite, is an interesting option for the management of hyperpigmentations. Consequently, depigmenting dermocosmetics, used in monotherapy but - most frequently - in combination with dermatological procedures, can be used in literally all types of hyperpigmentations with an efficacy that is dependent on the specific etiology. They are suited to be part of a treatment program that has to be adapted on a case-by-case basis.

  17. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study

    PubMed Central

    BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert

    2016-01-01

    Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources.

  18. Contact allergies to cosmetics: testing with 52 cosmetic ingredients and personal products.

    PubMed

    Tomar, Jyoti; Jain, Vijay Kumar; Aggarwal, Kamal; Dayal, Surbhi; Gupta, Sanjeev

    2005-12-01

    Fifty patients of both sexes with clinically suspected cosmetic dermatitis were subjected to patch testing with a cosmetic and fragrance series, approved by the Contact and Occupational Dermatosis Forum of India (CODFI), and with selected allergens from the Indian Standard Series (ISS). Most of these patients were young adults between 10-29 years; the mean age was 27.5 years. The majority of the patients had cosmetic dermatitis of <1 year duration (68%). The occupational profiles of the patients included students (46%), housewives (18%), teachers (10%) and laborers (4%). A miscellaneous group, comprised of tailors, farmers, staff nurses, beauticians, jewellers and engineers, accounted for the remaining 22%. The most commonly involved site was the face, followed by the forehead, neck and scalp. Patch testing of these patients revealed that, out of the 50 subjects tested, thirty-three (66%) reacted to one or more allergens. Fragrance components were the most common offending allergen (51.5%) followed by preservatives (39.3%), paraphenylenediamine (PPD) (21.2%), and cetrimide and tertiary butyl hydroquinone (12.1% each), in descending order of frequency. Hence, patch testing, with the standard series supplemented by personal cosmetics; should be considered for patients with cosmetic dermatitis to determine the offending allergen so as to avoid further contact with that allergen.

  19. Environmental chemicals relevant for respiratory hypersensitivity: the indoor environment.

    PubMed

    Becher, R; Hongslo, J K; Jantunen, M J; Dybing, E

    1996-08-01

    The allergenic constituents of non-industrial indoor environments are predominantly found in the biologic fraction. Several reports have related biological particles such as mites and their excreta, dander from pets and other furred animals, fungi and bacteria to allergic manifestations including respiratory hypersensitivity among the occupants of buildings. Also, bacterial cell-wall components and the spores of toxin-producing moulds may contribute to the induction of hypersensitivity, but the relevance for human health is not yet determined. The knowledge regarding hypersensitivity and asthmatic reactions after exposure to chemical agents is primarily based on data from occupational settings with much higher exposure levels than usually found in non-industrial indoor environments. However, there is evidence that indoor exposure to tobacco smoke, some volatile organic compounds (VOC) and various combustion products (either by using unvented stoves or from outdoor sources) can be related to asthmatic symptoms. In some susceptible individuals, the development of respiratory hypersensitivity or elicitation of asthmatic symptoms may also be related to the indiscriminate use of different household products followed by exposure to compounds such as diisocyanates, organic acid anhydrides, formaldehyde, styrene and hydroquinone. At present, the contribution of the indoor environment both to the development of respiratory hypersensitivity and for triggering asthmatic symptoms is far from elucidated.

  20. Functional anatomy of the explosive defensive system of bombardier beetles (Coleoptera, Carabidae, Brachininae).

    PubMed

    Di Giulio, Andrea; Muzzi, Maurizio; Romani, Roberto

    2015-09-01

    This paper provides the first comparative anatomical study of the explosive pygidial defensive system of bombardier beetles in species classified in three brachinine subtribes: Brachinus (Brachinina), Pheropsophus (Pheropsophina) and Aptinus (Aptinina). We investigated the morphology and ultrastructure of this system using optical, fluorescence, and focused ion beam (FIB/SEM) microscopy. In doing so, we characterized and comparatively discussed: (1) the ultrastructure of the gland tissues producing hydroquinones and hydrogen peroxide (secretory lobes), and those producing catalases and peroxidases (accessory glands); (2) the complex anatomy of the collecting duct; (3) the arrangement of the muscular bundles and the folding of the cuticle of the reservoir, suggesting a functional division of this chamber (dynamic part and storage part); (4) the great structural diversity of sculpticles inside the reaction chamber, where we could recognize six main types of microsculpture located in specific districts of the chamber. Additionally, using fluorescence microscopy, we highlighted the presence of resilin in two structures strongly subjected to mechanical stress during the discharge, the valve and the turrets of the reaction chamber. The results of this paper give a solid anatomic overview of the most popular beetle defensive system, contributing to the debate on its evolution within the Carabidae.