Science.gov

Sample records for hydrostatic bearings

  1. Hybrid Hydrostatic/Transient Roller Bearing Assembly

    NASA Technical Reports Server (NTRS)

    Justak, John F.

    1992-01-01

    Proposed bearing assembly for shaft of high-speed turbopump includes both hydrostatic and rolling-element bearings. Rolling-element bearing unloaded at high speed by centrifugal expansion of outer race and transient retainer.

  2. The dynamic characteristics of hydrostatic bearings

    NASA Astrophysics Data System (ADS)

    Pang, Zhicheng; Sun, Jingwu; Zhai, Wenjie; Liu, Qingming; Chi, Wei

    1993-07-01

    Results of a theoretical study of the characteristics of hydrostatic bearings performed in terms of the compressibility of the air-contained oil are presented. A formula for the stability criterion of a hydrostatic bearing system and a dynamic stiffness formula is derived. It is found that, under the sinusoidal load, each of the pressure compensation systems has its own load frequency-film characteristics. The greater that compressible volume, V(oa), of oil, the smaller the dynamic stiffness. V(oa) must be reduced in the design of high-precision hydrostatic bearings. If the load frequency is in the low-stiffness area, the dynamic stiffness is small. Methods to enhance the dynamic stiffness are discussed.

  3. Modifications Of Hydrostatic-Bearing Computer Program

    NASA Technical Reports Server (NTRS)

    Hibbs, Robert I., Jr.; Beatty, Robert F.

    1991-01-01

    Several modifications made to enhance utility of HBEAR, computer program for analysis and design of hydrostatic bearings. Modifications make program applicable to more realistic cases and reduce time and effort necessary to arrive at a suitable design. Uses search technique to iterate on size of orifice to obtain required pressure ratio.

  4. Annular Pressure Seals and Hydrostatic Bearings

    DTIC Science & Technology

    2006-11-01

    affecting the rotordynamics of liquid turbopumps, in particular those handling large density fluids. Highlights on the bulk-flow analysis of annular seals... rotordynamic stability. Hydrostatic bearings rely on external fluid pressurization to generate load support and large centering stiffnesses, even in...SEALS IN PUMP APPLICATIONS Seal rotordynamic characteristic have a primary influence on the stability response of high-performance turbomachinery [1

  5. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, James R.

    1982-01-01

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  6. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  7. Hydrostatic shoe bearing system for the TIM

    NASA Astrophysics Data System (ADS)

    Ruiz Schneider, Elfego; Sohn, Erika; Quiros-Pacheco, Fernando; Godoy, Javier; Farah Simon, Alejandro; Quintanilla, R.; Soto, P.; Salas, Luis; Cruz-Gonzales, Irene

    2000-08-01

    We present an active, low cost hydrostatic shoe bearing system for the Mexican Infrared Telescope which solves the suspension and motion of a 100 ton, 7.8 m telescope. Different geometries are analyzed to optimize the shoe's pressure print. These designs offer a self-adjusting action between the shoe's sliding path and the girth track. Different parameters such as pressure, temperature and proximity are measured and implemented into a control system in order to stabilize the bearing from the fluid's thermal viscosity effects. A simple method for fluid injection is discussed.

  8. Hydrostatic bearings for a turbine fluid flow metering device

    DOEpatents

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  9. Hybrid hydrostatic/ball bearings in high-speed turbomachinery

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.

    1983-01-01

    A high speed, high pressure liquid hydrogen turbopump was designed, fabricated, and tested under a previous contract. This design was then modified to incorporate hybrid hydrostatic/ball bearings on both the pump end and turbine end to replace the original conventional ball bearing packages. The design, analysis, turbopump modification, assembly, and testing of the turbopump with hybrid bearings is presented here. Initial design considerations and rotordynamic performance analysis was made to define expected turbopump operating characteristics and are reported. The results of testing the turbopump to speeds of 9215 rad/s (88,000 rpm) using a wide range of hydrostatic bearing supply pressures are presented. The hydrostatic bearing test data and the rotordynamic behavior of the turbopump was closely analyzed and are included in the report. The testing of hybrid hydrostatic/ball bearings on a turbopump to the high speed requirements has indicated the configuration concept is feasible. The program has presented a great deal of information on the technology requirements of integrating the hybrid bearing into high speed turbopump designs for improved bearing life.

  10. Evaluation of a hybrid hydrostatic bearing for cryogenic turbopump application

    NASA Technical Reports Server (NTRS)

    Spica, P. W.; Hannum, N. P.; Meyer, S. D.

    1986-01-01

    A hybrid hydrostatic bearing was designed to operate in liquid hydrogen at speeds to 80,000 rpm and radial loads to 440 n (100 lbf). The bearing assembly consisted of a pair of 20-mm angular-contact ball bearings encased in a journal, which was in turn supported by a fluid film of liquid hydrogen. The size and operating conditions of the bearing were selected to be compatible with the operating requirements of an advanced technology turbopump. Several test parameters were varied to characterize the bearing's steady-state operation. The rotation of the tester shaft was varied between 0 and 80,000 rpm. Bearing inlet fluid pressure was varied between 2.07 and 4.48 MPa (300 and 650 psia), while the fluid sump pressure was independently varied between 0.34 and 2.07 MPa (50 and 300 psia). The maximum radial load applied to the bearing was 440 N (110 lbf). Measured hybrid-hydrostatic-bearing stiffness was 1.5 times greater than predicted, while the fluid flow rate through the bearing was 35 to 65 percent less than predicted. Under two-phase fluid conditions, the stiffness was even greater and the flow rate was less. The optimal pressure ratio for the bearing should be between 0.2 and 0.55 depending on the balance desired between bearing efficiency and stiffness. Startup and shutdown cyclic tests were conducted to demonstrate the ability of the hybrid-hydrostatic-bearing assembly to survive at least a 300-firing-duty cycle. For a typical cycle, the shaft was accelerated to 50,000 rpm in 1.8 sec. The bearing operated for 337 start-stop cycles without failure.

  11. Dynamic analysis of liquid-lubricated hydrostatic journal bearings

    SciTech Connect

    Kocur, J.A. Jr.

    1990-01-01

    A hybrid bearing reduces the dependency of its behavior on the lubricant viscosity, bearing clearance, bearing surface area by combining the hydrostatic and hydrodynamic effects. The combination permits the hybrid bearing to be incorporated into rotor designs, where the working fluids of the rotor may be used in place of externally supplied lubricants. An effective and practical method to predict the static and dynamic behavior of hybrid bearings is developed. The model includes the three major fluid effects in the bearing; the orifice restriction, inertia losses at the pocket edges, and hydrodynamic effects on the bearing land regions. Lubrication is modeled and calculated using a finite element solution of Reynolds equation with turbulence corrections.

  12. NASA. Marshall Space Flight Center Hydrostatic Bearing Activities

    NASA Technical Reports Server (NTRS)

    Benjamin, Theodore G.

    1991-01-01

    The basic approach for analyzing hydrostatic bearing flows at the Marshall Space Flight Center (MSFC) is briefly discussed. The Hydrostatic Bearing Team has responsibility for assessing and evaluating flow codes; evaluating friction, ignition, and galling effects; evaluating wear; and performing tests. The Office of Aerospace and Exploration Technology Turbomachinery Seals Tasks consist of tests and analysis. The MSFC in-house analyses utilize one-dimensional bulk-flow codes. Computational fluid dynamics (CFD) analysis is used to enhance understanding of bearing flow physics or to perform parametric analysis that are outside the bulk flow database. As long as the bulk flow codes are accurate enough for most needs, they will be utilized accordingly and will be supported by CFD analysis on an as-needed basis.

  13. A technique to measure rotordynamic coefficients in hydrostatic bearings

    NASA Astrophysics Data System (ADS)

    Capaldi, Russell J.

    1993-11-01

    An experimental technique is described for measuring the rotordynamic coefficients of fluid film journal bearings. The bearing tester incorporates a double-spool shaft assembly that permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit. This configuration yields data that enables determination of the full linear anisotropic rotordynamic coefficient matrices. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Some results are presented for a four-recess, oil-fed hydrostatic journal bearing.

  14. A technique to measure rotordynamic coefficients in hydrostatic bearings

    NASA Technical Reports Server (NTRS)

    Capaldi, Russell J.

    1993-01-01

    An experimental technique is described for measuring the rotordynamic coefficients of fluid film journal bearings. The bearing tester incorporates a double-spool shaft assembly that permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit. This configuration yields data that enables determination of the full linear anisotropic rotordynamic coefficient matrices. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Some results are presented for a four-recess, oil-fed hydrostatic journal bearing.

  15. A Hydrostatic Bearing Test System for Measuring Bearing Load Using Magnetic-Fluid Lubricants.

    PubMed

    Weng, Huei Chu; Chen, Lu-Yu

    2016-05-01

    This paper conducts a study on the design of a hydrostatic bearing test system. It involves the determination of viscous properties of magnetic-fluid lubricants. The load of a hydrostatic thrust bearing using a water-based magnetite nanofluid of varying volume flow rate is measured under an applied external induction field via the test system. Results reveal that the presence of nanoparticles in a carrier liquid would cause an enhanced bearing load. Such an effect could be further magnified by increasing the lubricant volume flow rate or the external induction field strength.

  16. An analysis of the 70-meter antenna hydrostatic bearing by means of computer simulation

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1993-01-01

    Recently, the computer program 'A Computer Solution for Hydrostatic Bearings with Variable Film Thickness,' used to design the hydrostatic bearing of the 70-meter antennas, was modified to improve the accuracy with which the program predicts the film height profile and oil pressure distribution between the hydrostatic bearing pad and the runner. This article presents a description of the modified computer program, the theory upon which the computer program computations are based, computer simulation results, and a discussion of the computer simulation results.

  17. Fluid Compressibility Effects on the Dynamic Response of Hydrostatic Journal Bearings

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis A.

    1991-01-01

    A theoretical analysis for the dynamic performance characteristics of laminar flow, capillar/orifice compensated hydrostatic journal bearings is presented. The analysis considers in detail the effect of fluid compressibility in the bearing recesses. At high frequency excitations beyond a break frequency, the bearing hydrostatic stiffness increases sharply and it is accompanied by a rapid decrease in direct damping. Also, the potential of pneumatic hammer instability (negative damping) at low frequencies is likely to occur in hydrostatic bearing applications handling highly compressible fluids. Useful design criteria to avoid undesirable dynamic operating conditions at low and high frequencies are determined. The effect of fluid recess compressibility is brought into perspective, and found to be of utmost importance on the entire frequency spectrum response and stability characteristics of hydrostatic/hybrid journal bearings.

  18. DEVELOPMENT OF A HYDROSTATIC JOURNAL BEARING WITH SLIT-STEP COMPENSATION

    SciTech Connect

    Hale, L C; Donaldson, R R; Castro, C; Chung, C A; Hopkins, D J

    2006-07-28

    This paper describes the mathematical modeling and initial testing of an oil-hydrostatic bearing that derives compensation from both a central radial slit where fluid enters and stepped clearances near each end. Bearings using either a radial slit or stepped clearances for compensation were well studied over forty years ago by Donaldson. These bearings have smooth bores uninterrupted with multiple recesses around the circumference. The present slit-step bearing achieves the best of both types with somewhat higher hydrostatic stiffness than the slit bearing and fluid shear drag lower than the step bearing. This is apparent in TABLE 1, which compares calculated values of initial (i.e., centered) hydrostatic stiffness for each type. The slit-step bearing is one of several types being studied at Lawrence Livermore National Laboratory for possible use on the Precision Optical Grinder and Lathe (POGAL).

  19. Theoretical and experimental study of the dynamic transient characteristics of a hydrostatic bearing

    NASA Astrophysics Data System (ADS)

    Pang, Zhicheng; Wang, Shuguo; Liu, Qingming; Chi, Wei

    1993-01-01

    The transient characteristics of a hydrostatic bearing under a step load have been studied by considering the compressibility of oil (containing air bubbles). The characteristic equations of the beating during the transient stage have been set up, the duration of the transient stage has been obtained and the effects of the main parameters of the bearing system on the transient characteristics have been analyzed. This study provides a new theoretical basis for improving the dynamic support precision of high quality bearings.

  20. Clearance sensing hydrostatic bearing restrictor for the homopolar generator systems tester

    SciTech Connect

    Vaughn, M.R.

    1985-01-01

    This work documents the development of an advanced hydrostatic bearing system for the subcritical operation of the Homopolar Generator Systems Tester. Since this Systems Tester is unique in that it was built with stationary shaft bearings, several new hydrostatic bearing ideas were developed. First, a new clearance sensing variable restrictor was developed to accommodate the almost five fold increase in radial bearing clearance intrinsic to the machine geometry encountered during each machine cycle. A new dynamic hydrostatic thrust-bearing model was developed that permits tilt about any axis perpendicular to the axis of rotation as well as axial motion. These bearings are well instrumented providing data to verify the models both at rest and during operation. In addition to the bearing advances, overall machine design decisions, as well as the factors which influenced them, are examined. Magnetic effects are discussed with respect to both rotor dynamic effects and thrust bearing loading. Bearing sump and sealing philosophies are also discussed. Decisions concerning rotor geometry are similarly reviewed. Finally, the results of the experiment are evaluated in terms of the future impact on not only homopolar generators, but on rotating machinery in general.

  1. Experimental equipment for measuring physical properties of the annular hydrostatic thrust bearing

    NASA Astrophysics Data System (ADS)

    Kozdera, Michal; Drábková, Sylva; Bojko, Marian

    2014-03-01

    The hydraulic circuit, through which the mineral oil is brought, is an important part of hydrostatic bearings. The annular hydrostatic thrust bearing consists of two sliding plates divided by a layer of mineral oil. In the lower plate, there are oil grooves which distribute the liquid between the sliding areas. The hydraulic circuit is made of two basic parts: the energy source and the controlling part. The hydraulic pump, which brings the liquid into the sliding bearing, is the source of the pressure energy. The sliding bearing is weighted down by axial force, which can be changed during the process. That's why in front of the particular oil grooves control components adjusting pressure and flow size are located. This paper deals with a project of a hydraulic circuit for regulation of fluid layer in the annular hydrostatic thrust bearing and the testing equipment for measuring its physical properties. It will include the issue of measuring loading capacity and height of the fluid layer in the annular hydrostatic thrust bearing.

  2. Dynamic force response of spherical hydrostatic journal bearings for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Andres, Luis San

    1994-07-01

    Hydrostatic journal bearings are ideal elements to replace roller bearings as rotor support elements in cryogenic turbomachinery. These bearings will be used for primary space-power applications due to their long lifetime, low friction and wear, large load capacity, and direct stiffness and damping force coefficients. The performance characteristics of turbulent flow, orifice compensated, spherical hydrostatic journal bearings are presented. These bearing allow tolerance for shaft misalignment without force degradation and are able to support axial loads, thus providing a design configuration which could be used efficiently on high-performance turbomachinery. Bulk-flow mass and momentum equations for the motion of a variable properties liquid on the thin film bearing lands are solved numerically. Predictions of load capacity and force coefficients for a six recess, spherical hydrostatic bearing in a liquid oxygen environment are presented. Fluid film axial forces and dynamic coefficients of a magnitude about 20 percent of the radial load capacity are calculated for the case analyzed. Fluid inertia effects, advective and centrifugal, are found to greatly affect the static and dynamic force characteristics of the bearing studied.

  3. The effect of journal misalignment on the operation of a turbulent flow hydrostatic bearing

    NASA Astrophysics Data System (ADS)

    San Andres, Luis

    1993-07-01

    An analysis for calculation of the dynamic force and moment response in turbulent flow, orifice compensated hydrostatic journal bearings is presented. The fully developed flow of a barotropic liquid is described by variable properties, bulk-flow equations and local turbulent friction factors based on bearing surface condition. Bearing load and moments and, dynamic force and moment coefficients are calculated for perturbations in journal center displacements and misaligned journal axis rotations. Numerical results for the effect of static misalignment angles in the plane of the eccentricity vector are presented for a water lubricated hydrostatic bearing. The predictions show that journal axis misalignment causes a reduction in load capacity due to loss in film thickness, increases the flow rate and produces significant restoring moments (couples). Force and moment coefficients due to dynamic journal axis rotations are also discussed.

  4. Hydrodynamic and hydrostatic modelling of hydraulic journal bearings considering small displacement condition

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Yin; Chuang, Jen-Chen; Tu, Jia-Ying

    2016-09-01

    This paper proposes modified coefficients for the dynamic model of hydraulic journal bearing system that integrates the hydrodynamic and hydrostatic properties. In recent years, design of hydraulic bearing for machine tool attracts worldwide attention, because hydraulic bearings are able to provide higher capacity and accuracy with lower friction, compared to conventional bearing systems. In order to achieve active control of the flow pressure and enhance the operation accuracy, the dynamic model of hydraulic bearings need to be developed. Modified coefficients of hydrostatic stiffness, hydrodynamic stiffness, and squeeze damping of the dynamic model are presented in this work, which are derived referring to small displacement analysis from literature. The proposed modified coefficients and model, which consider the pressure variations, relevant geometry size, and fluid properties of the journal bearings, are able to characterise the hydrodynamic and hydrostatic properties with better precision, thus offering the following pragmatic contribution: (1) on-line prediction of the eccentricity and the position of the shaft in the face of external force that results in vibration; (2) development of active control system to regulate the supply flow pressure and to minimize the eccentricity of the shaft. Theoretical derivation and simulation results with different vibration cases are discussed to verify the proposed techniques.

  5. Mixed Lubrication Simulation of Hydrostatic Spherical Bearings for Hydraulic Piston Pumps and Motors

    NASA Astrophysics Data System (ADS)

    Kazama, Toshiharu

    Mixed and fluid film lubrication characteristics of hydrostatic spherical bearings for swash-plate-type axial piston pumps and motors are studied theoretically under non-steady-state conditions. The basic equations incorporating interference and contact of surface roughness are derived fundamentally through combination of the GW and PC models. Furthermore, a programming code that is applicable to the caulked-socket-type and open-socket-type bearings is developed. Effects of caulking, operating conditions, and the bearing dimension on the motion of the sphere and tribological performance of the bearings are examined. Salient conclusions are the following: The sphere's eccentricity increases in the low supply pressure period. The time-lag of the load change engenders greater motion of the sphere. Caulking of the bearing socket suppresses the sphere's motion. The bearing stiffness increases and power loss decreases for smaller recess angles. Minimum power loss is given under the condition that the bearing socket radius nearly equals the equivalent load radius.

  6. Investigation of a hydrostatic azimuth thrust bearing for a large steerable antenna

    NASA Technical Reports Server (NTRS)

    Rumbarger, J.; Castelli, V.; Rippel, H.

    1972-01-01

    The problems inherent in the design and construction of a hydrostatic azimuth thrust bearing for a tracking antenna of very large size were studied. For a load of 48,000,000 lbs., it is concluded that the hydrostatic bearing concept is feasible, provided that a particular multiple pad arrangement, high oil viscosity, and a particular load spreading arrangement are used. Presently available computer programs and techniques are deemed to be adequate for a good portion of the design job but new integrated programs will have to be developed in the area of the computation of the deflections of the supporting bearing structure. Experimental studies might also be indicated to ascertain the life characteristics of grouting under cyclic loading, and the optimization of hydraulic circuits and pipe sizes to insure the long life operation of pumps with high viscosity oil while avoiding cavitation.

  7. NASTRAN structural model for the large ground antenna pedestal with applications to hydrostatic bearing of film

    NASA Technical Reports Server (NTRS)

    Chian, C. T.

    1986-01-01

    Investigations were conducted on the 64-meter antenna hydrostatic bearing oil film thickness under a variety of loads and elastic moduli. These parametric studies used a NASTRAN pedestal structural model to determine the deflections under the hydrostatic bearing pad. The deflections formed the input for a computer program to determine the hydrostratic bearing oil film thickness. For the future 64-meter to 70-meter antenna extension and for the 2.2-meter (86-in.) haunch concrete replacement cases, the program predicted safe oil film thickness (greater than 0.13 mm (0.005 in.) at the corners of the pad). The effects of varying moduli of elasticity for different sections of the pedestal and the film height under stressed runner conditions were also studied.

  8. Dynamic force response of spherical hydrostatic journal bearing for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis

    1994-01-01

    Hydrostatic Journal Bearings (HJB's) are reliable and resilient fluid film rotor support elements ideal to replace roller bearings in cryogenic turbomachinery. HJB' will be used for primary space-power applications due to their long lifetime, low friction and wear, large load capacity, large direct stiffness, and damping force coefficients. An analysis for the performance characteristics of turbulent flow, orifice compensated, spherical hydrostatic journal bearings (HJB's) is presented. Spherical bearings allow tolerance for shaft misalignment without force performance degradation and have also the ability to support axial loads. The spherical HJB combines these advantages to provide a bearing design which could be used efficiently on high performance turbomachinery. The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass and momentum equations. These equations are solved numerically using an efficient CFD method. Numerical predictions of load capacity and force coefficients for a 6 recess, spherical HJB in a LO2 environment are presented. Fluid film axial forces and force coefficients of a magnitude about 20% of the radial load capacity are predicted for the case analyzed. Fluid inertia effects, advective and centrifugal, are found to affect greatly the static and dynamic force performance of the bearing studied.

  9. Vibration of a hydrostatic gas bearing due to supply pressure oscillations

    NASA Technical Reports Server (NTRS)

    Branch, H. D.; Watkins, C. B.; Eronini, I. E.

    1984-01-01

    The vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating supply pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and the sleeve is solved numerically together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The results presented include Bode plots of bearing oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency. The results are compared with the results of an earlier study involving the response of a similar bearing to oscillating exhaust pressure.

  10. A test apparatus and facility to identify the rotordynamic coefficients of high-speed hydrostatic bearings

    NASA Technical Reports Server (NTRS)

    Childs, Dara; Hale, Keith

    1994-01-01

    A facility and apparatus are described which determine stiffness, damping, and added-mass rotordynamic coefficients plus steady-state operating characteristics of high speed hydrostatic journal bearings. The apparatus has a current top speed of 29,800 rpm with a bearing diameter of 7.62 cm (3 in.). Purified warm water, 55 C (130 F), is used as a test fluid to achieve elevated Reynolds numbers during operation. The test-fluid pump yields a bearing maximum inlet pressure of 6.9 Mpa (1000 psi). Static load on the bearing is independently controlled and measured. Orthogonally mounted external shakers are used to excite the test stator in the direction of, and perpendicular to, the static load. The apparatus can independently calculate all rotordynamic coefficients at a given operating condition.

  11. Analysis of a two row hydrostatic journal bearing with variable properties, inertia effects and surface roughness

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Adams, M. L.; Mullen, R. L.

    1985-01-01

    A computer algorithm for simulation of hydrostatic journal bearing pressure-flow behavior has been generated. The effects taken into account are inertia, cavitation, variable properties (isothermal bearing) and roughness. The program has been specifically tailored for simulation of the hybrid bearing of the cryogenic turbopumps of the main shuttle engine. Due to the high pressure (515 psia) of the supply line no cavitation has been found. The influence of the roughness effects have been found to become important only when the surface-roughness order of magnitude is comparable with that of the bearing clearance itself. Pocket edge inertia and variable properties have been found to have quite an important influence upon the pocket pressure, field pressure distribution and lubricant mass flow.

  12. Dynamic characteristics of a hydrostatic gas bearing driven by oscillating exhaust pressure

    NASA Technical Reports Server (NTRS)

    Watkins, C. B.; Eronini, I. E.; Branch, H. D.

    1984-01-01

    Vibration of a statically loaded, inherently compensated hydrostatic journal bearing due to oscillating exhaust pressure is investigated. Both angular and radial vibration modes are analyzed. The time-dependent Reynolds equation governing the pressure distribution between the oscillating journal and sleeve is solved together with the journal equation of motion to obtain the response characteristics of the bearing. The Reynolds equation and the equation of motion are simplified by applying regular perturbation theory for small displacements. The numerical solutions of the perturbation equations are obtained by discretizing the pressure field using finite-difference aproximations with a discrete, nonuniform line-source model which excludes effects due to feeding hole volume. An iterative scheme is used to simultaneously satisfy the equations of motion for the journal. The results presented include Bode plots of bearing-oscillation gain and phase for a particular bearing configuration for various combinations of parameters over a range of frequencies, including the resonant frequency.

  13. Measurements versus Predictions for a Hybrid (Hydrostatic Plus Hydrodynamic) Thrust Bearing for a Range of Orifice Diameters

    DTIC Science & Technology

    2010-05-01

    1819-1825. [13] Wang, X. and Yamaguchi, A., 2002, “ Characteristics of Hydrostatic Bearing/Seal Parts for Water Hydraulic Pumps and Motors. Part 1...NOTES For submission to Texas A&M University. 14. ABSTRACT A fixed geometry hybrid thrust bearing is investigated with three different supply...orifice diameters. The test rig uses a face-to-face thrust bearing design, with the test bearing acting as the rotor loading mechanism. A hydraulic

  14. Development of a polymetric grout for the hydrostatic bearing at DSS 14

    NASA Technical Reports Server (NTRS)

    Mcclung, C. E.; Schwendeman, J. L.; Ball, G. L., III; Jenkins, G. H.; Casperson, R. D.; Gale, G. P.; Riewe, A. A.

    1981-01-01

    Results of an investigation into the causes of the deterioration and premature failure of the grout under the hydrostatic bearing runner at DSS 14 are reported. Generic types of materials were screened and tested to find a grout material more resistive to the causes of grout failure. Emphasis was placed on the physical properties, strength, modulus of elasticity, and resistance to erosion and chemical attack by oil and unique requirements imposed by each material for mixing, placing, compacting, and cooling. The polymetric grout developed to replace the dry grout is described.

  15. High Speed, High Temperature, Fault Tolerant Operation of a Combination Magnetic-Hydrostatic Bearing Rotor Support System for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan

    2004-01-01

    Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.

  16. Predicted characteristics of an optimized series-hybrid conical hydrostatic ball bearing

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Hamrock, B. J.; Scibbe, H. W.; Anderson, W. J.

    1971-01-01

    Optimized series-hybrid fluid-film ball bearings are described and operating characteristics are calculated and discussed. It is predicted that a series-hybrid bearing may be constructed which will reduce ball-bearing speed by 30 percent thereby increasing bearing fatigue life by factors of up to 5.9. Flow rates required are less than 9 kilograms per minute.

  17. Orbital Transfer Vehicle Oxygen Turbopump Technology. Final Report, Volume 1. Design, Fabrication, and Hydrostatic Bearing Testing

    DTIC Science & Technology

    1990-12-01

    cc c 58 uju CD C:> ɘ CDC L.) C) 0 crc> 01 2Li L-1 c-.l0 I CD C.- 2.5,Detail Design, cont. assembly error . The most sensitive area for contact is the...exit ports sealed. All transducers sensed within their typi- cal error tolerance at the low pressures being used in the initial tests. Chilldown tests...exterior temp. at turbine TIPO OF (0.25,0) bearing IPmp bearing exit tenperature TPBEC OF PBEI Pmp bearing exit temperature TPBEC OF PBE2 SPump bearing

  18. Hotfire testing of a SSME HPOTP with an annular hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    Nolan, Steven A.; Hibbs, Robert I.; Genge, Gary G.

    1994-01-01

    A new fluid film bearing package has been tested in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP). This fluid film element functions as both the pump end bearing and the preburner pump rear wear ring seal. Most importantly, it replaces a duplex ball bearing package which has been the primary life limiting component in the turbopump. The design and predicted performance of the turbopump are reviewed. Results are presented for measured pump and bearing performance during testing on the NASA Technology Test Bed (TTB) Engine located at MSFC. The most significant results were obtained from proximity probes located in the bearing bore which revealed large subsynchronous precession at ten percent of shaft speed during engine start which subsided prior to mainstage power levels and reappeared during engine shutdown at equivalent power levels below 65% of nominal. This phenomenon has been attributed to rotating stall in the diffuser. The proximity probes also revealed the location of the bearing in the bore for different operating speeds. Pump vibration characteristics were improved as compared to pumps tested with ball bearings. After seven starts and more than 700 seconds of testing, the pump showed no signs of performance degradation.

  19. Amplitude effects on the dynamic performance of hydrostatic gas thrust bearings

    NASA Technical Reports Server (NTRS)

    Stiffler, A. K.; Tapia, R. R.

    1979-01-01

    A strip gas film bearing with inherently compensated inlets is analyzed to determine the effect of disturbance amplitude on its dynamic performance. The governing Reynolds' equation is solved using finite-difference techniques. The time dependent load capacity is represented by a Fourier series up to and including the third harmonics. For the range of amplitudes investigated the linear stiffness was independent of the amplitude, and the linear damping was inversely proportional to (1 - epsilon-squared) to the 1.5 power where epsilon is the amplitude relative to the film thickness.

  20. Amplitude effects on the dynamic performance of a hydrostatic gas thrust bearing

    NASA Technical Reports Server (NTRS)

    Stiffler, A. K.; Tapia, R. R.

    1975-01-01

    The Reynolds' equation is applied to a strip gas thrust bearing to analyze amplitude disturbance effects on its dynamic performance. The Reynolds' equation is numerically approximated using finite difference techniques. The time dependent load carrying capacity is represented by a Fourier series up to and including the third harmonics. Design curves for the load capacity and the linear stiffness and damping are presented as a function of inlet location, restrictor coefficient, supply pressure, amplitude of oscillation, and squeeze number. For the range of amplitudes investigated the dimensionless load capacity, stiffness and damping does not exhibit an appreciable change in magnitude; thus, only one design curve is needed to represent each relationship. A design methodology is presented.

  1. The effect of hydrostatic pressure up to 1.61 GPa on the Morin transition of hematite-bearing rocks: Implications for planetary crustal magnetization

    NASA Astrophysics Data System (ADS)

    Bezaeva, Natalia S.; Demory, François; Rochette, Pierre; Sadykov, Ravil A.; Gattacceca, Jérôme; Gabriel, Thomas; Quesnel, Yoann

    2015-12-01

    We present new experimental data on the dependence of the Morin transition temperature (TM) on hydrostatic pressure up to 1.61 GPa, obtained on a well-characterized multidomain hematite-bearing sample from a banded iron formation. We used a nonmagnetic high-pressure cell for pressure application and a Superconducting Quantum Interference Device magnetometer to measure the isothermal remanent magnetization (IRM) under pressure on warming from 243 K to room temperature (T0). IRM imparted at T0 under pressure in 270 mT magnetic field (IRM270mT) is not recovered after a cooling-warming cycle. Memory effect under pressure was quantified as IRM recovery decrease of 10%/GPa. TM, determined on warming, reaches T0 under hydrostatic pressure 1.38-1.61 GPa. The pressure dependence of TM up to 1.61 GPa is positive and essentially linear with a slope dTM/dP = (25 ± 2) K/GPa. This estimate is more precise than previous ones and allows quantifying the effect of a pressure wave on the upper crust magnetization, with special emphasis on Mars.

  2. Performance of gas-lubricated nonconforming pivoted-pad journal bearings and a flexibly mounted spiral-groove thrust bearing

    NASA Technical Reports Server (NTRS)

    Ream, L. W.

    1973-01-01

    A test program was conducted to determine the performance characteristics of gas-lubricated nonconforming pivoted-pad journal bearings and a spiral-groove thrust bearing designed for the Brayton cycle rotating unit (BRU). Hydrostatic, hybrid (simultaneously hydrostatic and hydrodynamic), and hydrodynamic tests were conducted in argon gas at ambient pressure and temperature ranges representative of hydrostatic operation up to the 10.5-kWe BRU power-generating level. Performance of the gas lubricated bearings is presented, including hydrostatic gas flow rates, bearing clearances, bearing temperatures, and transient performance.

  3. A Hydrostatic Paradox Revisited

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2012-01-01

    This paper revisits a well-known hydrostatic paradox, observed when turning upside down a glass partially filled with water and covered with a sheet of light material. The phenomenon is studied in its most general form by including the mass of the cover. A historical survey of this experiment shows that a common misunderstanding of the phenomenon…

  4. Optimal speed sharing characteristics of a series-hybrid bearing.

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Scibbe, H. W.; Hamrock, B. J.

    1972-01-01

    A series-hybrid bearing assembly consisting of a conical hydrostatic fluid-film bearing and a ball bearing is described. Computer studies are used to predict friction torque and life characteristics of a 150-mm ball bearing. A conical hydrostatic fluid-film bearing is designed for minimum friction and maximum speed reduction of the ball-bearing component of the series-hybrid bearing. At a thrust load of 4000 lb and speeds corresponding to DN (bearing bore in millimeters times shaft speed in rpm) values of 3 and 4 million, ball-bearing speed may be reduced to 30%. This speed reduction corresponds to ball-bearing fatigue life improvement factors of 3.4 at 3 million DN and 5.9 at 4 million DN. An oil flow rate at 18.2 lb/min is required to maintain a fluid-film thickness of 0.001 in. in the hydrostatic bearing.

  5. Optimal speed sharing characteristics of a series-hybrid bearing

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Scibbe, H. W.; Hamrock, B. J.

    1972-01-01

    A series-hybrid bearing assembly consisting of a conical hydrostatic fluid-film bearing and a ball bearing is described. Computer studies are used to predict friction torque and life characteristics of a 150-millimeter ball bearing. A conical hydrostatic fluid-film bearing is designed for minimum friction and maximum speed reduction of the ball-bearing component of the series-hydrid bearing. At a thrust load of 4000 pounds and speeds corresponding to DN (bearing bore in millimeters times shaft speed in rpm) values of 3 and 4 million, ball-bearing speed may be reduced by 30 percent. This speed reduction corresponds to ball-bearing fatigue life improvement factors of 3.4 at 3 million DN and 5.9 at 4 million DN. An oil flow rate of 18.2 pounds per minute is required to maintain a fluid-film thickness of 0.001 inch in the hydrostatic bearing.

  6. Hybrid bearings for turbopumps and the like

    NASA Technical Reports Server (NTRS)

    Justak, John F. (Inventor); Owens, Gregg R. (Inventor)

    1994-01-01

    In rocket engines power is usually obtained by burning fuel and oxidizer which are mixed, pressurized, and directed to a combustion chamber by means of turbopumps. Roller bearings are generally used in these turbopumps, but because of bearing demands hydrostatic bearings were proposed. The use of such bearings is quite feasible because during flight hydrostatic lubrication can reduce roller bearing wear. A disadvantage of such proposals is that during startup, acceleration, and shutdown high pressure fluids are not available for hydrostatic bearings. The fluid lubrication film is not always present in bearings of turbopumps. During these periods a second bearing is required to carry the load. This requirement suggests the use of hybrid bearings in rocket engine turbopumps. Such duplex bearings were provided, but when their inner races are keyed to the shaft or journal two of them are required. And such duplex bearings do not wear evenly. A hybrid hydrostatic-rolling element bearing was provided wherein the rolling element bearing is locked on the stationary housing rather than on the rotating journal.

  7. Nonlinear Hydrostatic Adjustment.

    NASA Astrophysics Data System (ADS)

    Bannon, Peter R.

    1996-12-01

    The final equilibrium state of Lamb's hydrostatic adjustment problem is found for finite amplitude heating. Lamb's problem consists of the response of a compressible atmosphere to an instantaneous, horizontally homogeneous heating. Results are presented for both isothermal and nonisothermal atmospheres.As in the linear problem, the fluid displacements are confined to the heated layer and to the region aloft with no displacement of the fluid below the heating. The region above the heating is displaced uniformly upward for heating and downward for cooling. The amplitudes of the displacements are larger for cooling than for warming.Examination of the energetics reveals that the fraction of the heat deposited into the acoustic modes increases linearly with the amplitude of the heating. This fraction is typically small (e.g., 0.06% for a uniform warming of 1 K) and is essentially independent of the lapse rate of the base-state atmosphere. In contrast a fixed fraction of the available energy generated by the heating goes into the acoustic modes. This fraction (e.g., 12% for a standard tropospheric lapse rate) agrees with the linear result and increases with increasing stability of the base-state atmosphere.The compressible results are compared to solutions using various forms of the soundproof equations. None of the soundproof equations predict the finite amplitude solutions accurately. However, in the small amplitude limit, only the equations for deep convection advanced by Dutton and Fichtl predict the thermodynamic state variables accurately for a nonisothermal base-state atmosphere.

  8. Hybrid bearings for LH2 and LO2 turbopumps

    NASA Technical Reports Server (NTRS)

    Butner, M. F.; Lee, F. C.

    1985-01-01

    Hybrid combinations of hydrostatic and ball bearings can improve bearing performance for liquid hydrogen and liquid oxygen turbopumps. Analytic studies were conducted to optimize hybrid bearing designs for the SSME-type turbopump conditions. A method to empirically determine damping coefficients was devised. Four hybrid bearing configurations were designed, and three were fabricated. Six hybrid and hydrostatic-only bearing configurations will be tested for steady-state and transient performance, and quantification of damping coefficients. The initial tests were conducted with the liquid hydrogen bearing.

  9. Orbit transfer vehicle engine technology program. Task B-6 high speed turbopump bearings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Bearing types were evaluated for use on the Orbit Transfer Vehicle (OTV) high pressure fuel pump. The high speed, high load, and long bearing life requirements dictated selection of hydrostatic bearings as the logical candidate for this engine. Design and fabrication of a bearing tester to evaluate these cryogenic hydrostatic bearings was then conducted. Detailed analysis, evaluation of bearing materials, and design of the hydrostatic bearings were completed resulting in fabrication of Carbon P5N and Kentanium hydrostatic bearings. Rotordynamic analyses determined the exact bearing geometry chosen. Instrumentation was evaluated and data acquisition methods were determined for monitoring shaft motion up to speeds in excess of 200,000 RPM in a cryogenic atmosphere. Fabrication of all hardware was completed, but assembly and testing was conducted outside of this contract.

  10. Performance of gas-lubricated cruciform-mounted tilting-pad journal bearings and a damped flexibly mounted spiral-groove thrust bearing

    NASA Technical Reports Server (NTRS)

    Ream, L. W.

    1974-01-01

    A test program was conducted to determine the performance characteristics of gas-lubricated cruciform-mounted tilting-pad journal bearings and a damped spiral-groove thrust bearing designed for the Brayton cycle rotating unit (BRU). Hydrostatic, hybrid (simultaneously hydrostatic and hydrodynamic), and hydrodynamic tests were conducted in argon gas at ambient pressure and temperature ranges representative of operation to the 10.5 kWe BRU power-generating level. Performance of the gas lubricated bearings is presented including hydrostatic gas flow rates, bearing clearances, bearing temperatures, and transient performance.

  11. SSME Long-life Bearings

    NASA Technical Reports Server (NTRS)

    Butner, M. F.; Murphy, B. T.

    1986-01-01

    Hybrid hydrostatic/ball bearings for LH2 and LO2 service in turbopumps were studied as a means of improving speed and life capabilities. Four hybrid bearing configurations were designed with emphasis on achieving maximum stiffness and damping. Parallel load bearings were tested at steady-state and transient conditions with LH2 (externally fed) and LN2 (internally fed). The hydrostatic elements were tested with Freon 113 for empirical determination of dynamic characteristics. Tests using an eccentric journal for loading showed the externally and internally fed hydrostatic bearings to have significant separated coefficients of direct stiffness and damping. For the internally fed bearing, the strongly speed-dependent cross-coupling stiffness arising from fluid swirl, along with significant cross-coupling damping, resulted in low net effective stiffness and damping. The test method used can produce separated coefficients with a sufficiently elliptic journal orbit; otherwise, only net effective coefficients combining direct and cross-coupling terms can be determined. Testing with nonsynchronous excitation is recommended to avoid this restriction. Investigation of hard materials, including ceramics, is recommended as a means of eliminating the need for the rolling bearing for startup and shutdown support. The testing was performed in 1984 (LH2), 1985 (LN2) and 1985-86 (Freon).

  12. High-temperature ''hydrostatic'' extrusion

    NASA Technical Reports Server (NTRS)

    Hunt, J. G.; Rice, R. W.

    1970-01-01

    Quasi-fluids permit hydrostatic extrusion of solid materials. The use of sodium chloride, calcium fluoride, or glasses as quasi-fluids reduces handling, corrosion, and sealing problems, these materials successfully extrude steel, molybdenum, ceramics, calcium carbonate, and calcium oxide. This technique also permits fluid-to-fluid extrusion.

  13. Worm Gear With Hydrostatic Engagement

    NASA Technical Reports Server (NTRS)

    Chaiko, Lev I.

    1994-01-01

    In proposed worm-gear transmission, oil pumped at high pressure through meshes between teeth of gear and worm coil. Pressure in oil separates meshing surfaces slightly, and oil reduces friction between surfaces. Conceived for use in drive train between gas-turbine engine and rotor of helicopter. Useful in other applications in which weight critical. Test apparatus simulates and measures some loading conditions of proposed worm gear with hydrostatic engagement.

  14. ANSYS Modeling of Hydrostatic Stress Effects

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.

    1999-01-01

    Classical metal plasticity theory assumes that hydrostatic pressure has no effect on the yield and postyield behavior of metals. Plasticity textbooks, from the earliest to the most modem, infer that there is no hydrostatic effect on the yielding of metals, and even modem finite element programs direct the user to assume the same. The object of this study is to use the von Mises and Drucker-Prager failure theory constitutive models in the finite element program ANSYS to see how well they model conditions of varying hydrostatic pressure. Data is presented for notched round bar (NRB) and "L" shaped tensile specimens. Similar results from finite element models in ABAQUS are shown for comparison. It is shown that when dealing with geometries having a high hydrostatic stress influence, constitutive models that have a functional dependence on hydrostatic stress are more accurate in predicting material behavior than those that are independent of hydrostatic stress.

  15. Switching skeletons: hydrostatic support in molting crabs

    NASA Technical Reports Server (NTRS)

    Taylor, Jennifer R A.; Kier, William M.; Walker, I. D. (Principal Investigator)

    2003-01-01

    Skeletal support systems are essential for support, movement, muscular antagonism, and locomotion. Crustaceans shed their rigid exoskeleton at each molt yet are still capable of forceful movement. We hypothesize that the soft water-inflated body of newly molted crabs may rely on a hydrostatic skeleton, similar to that of worms and polyps. We measured internal hydrostatic pressure and the force exerted during claw adduction and observed a strong correlation between force and hydrostatic pressure, consistent with hydrostatic skeletal support. This alternation between the two basic skeletal types may be widespread among arthropods.

  16. PELLISSIER H5 HYDROSTATIC LEVEL

    SciTech Connect

    Imfeld, Hans L.

    2003-05-01

    Conventional spirit leveling using double scale invar rods has been in use at SLAC for some time as the standard method of obtaining very precise height difference information. Typical accuracy of {+-} 100 {micro}m and better can routinely be achieved. Procedures and software have evolved to the point where the method is relatively fast and reliable. However, recent projects such as the Final Focus Test Beam have pushed the requested vertical positioning tolerances for alignment of quadrupoles to the 30 {mu}m level. It is apparent that conventional spirit leveling cannot achieve this level of accuracy. To meet the challenge, the alignment group contracted with Pellissier, Inc. to develop a portable hydrostatic leveling system. The H5 grew out of this development effort and is expected to provide the needed accuracy and ease of use required for such vertical positioning projects. The H5 hydrostatic level is a portable instrument that under ideal operating conditions will provide elevation differences with an accuracy of +/- 5 {mu}m over double leg closed loop surveys. The H5 incorporates several features that eliminate problems common with hydrostatic leveling, primarily errors due to thermal gradients along the fluid tube. It utilizes self-checking software and automatic water level detection to reduce observational errors. Design features also have made the instrument reasonably quick and easy to operate when used on a flat surface. The instrument can be adapted for use in a wide variety of environments by using support fixtures and brackets. The H5 is robust and operators require little training to become proficient in its use. It has been successfully employed on several projects including the FFTB project at SLAC, as well as the Green Bank Telescope project for the NRAO and the SSC project in Texas.

  17. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam M.

    2011-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications, including the treatment of medical conditions. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy available in the developing world for the treatment of a variety of medical conditions. Specifically, hyperbaric oxygen therapy is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. Hyperbaric oxygen therapy is simply too expensive and too dangerous to implement in the developing world using standard equipment. The hydrostatic hyperbaric chamber technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system that will provide controlled pressurization of the system, and provide adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the

  18. Static characteristics design of hydrostatic guide-ways based on fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Lin, Shuo; Yin, YueHong

    2016-10-01

    With the raising requirements in micro optical systems, the available machines become hard to achieve the process dynamic and accuracy in all aspects. This makes compact design based on fluid/structure interactions (FSI) important. However, there is a difficulty in studying FSI with oil film as fluid domain. This paper aims at static characteristic design of a hydrostatic guide-way with capillary restrictors based on FSI. The pressure distribution of the oil film land is calculated by solving the Reynolds-equation with Galerkin technique. The deformation of structure is calculated by commercial FEM software, MSC. Nastran. A matlab program is designed to realize the coupling progress by modifying the load boundary in the submitting file and reading the deformation result. It's obvious that the stiffness of the hydrostatic bearing decreases with the weakening of the bearing structure. This program is proposed to make more precise prediction of bearing stiffness.

  19. Hydrostatic compaction of Microtherm HT.

    SciTech Connect

    Broome, Scott Thomas; Bauer, Stephen J.

    2010-09-01

    Two samples of jacketed Microtherm{reg_sign}HT were hydrostatically pressurized to maximum pressures of 29,000 psi to evaluate both pressure-volume response and change in bulk modulus as a function of density. During testing, each of the two samples exhibited large irreversible compactive volumetric strains with only small increases in pressure; however at volumetric strains of approximately 50%, the Microtherm{reg_sign}HT stiffened noticeably at ever increasing rates. At the maximum pressure of 29,000 psi, the volumetric strains for both samples were approximately 70%. Bulk modulus, as determined from hydrostatic unload/reload loops, increased by more than two-orders of magnitude (from about 4500 psi to over 500,000 psi) from an initial material density of {approx}0.3 g/cc to a final density of {approx}1.1 g/cc. An empirical fit to the density vs. bulk modulus data is K = 492769{rho}{sup 4.6548}, where K is the bulk modulus in psi, and {rho} is the material density in g/cm{sup 3}. The porosity decreased from 88% to {approx}20% indicating that much higher pressures would be required to compact the material fully.

  20. 46 CFR 64.83 - Hydrostatic test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... on the metal identification plate without leaking; and (6) If fitted with an internal heating coil, the heating coil passing a hydrostatic test at a pressure of 200 psig or more or 50 percent or more above the rated pressure of the coil, whichever is greater. (b) If the tank passes the hydrostatic...

  1. Hydrostatic Modeling of Buoyant Plumes

    NASA Astrophysics Data System (ADS)

    Stroman, A.; Dewar, W. K.; Wienders, N.; Deremble, B.

    2014-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico has led to increased interest in understanding point source convection dynamics. Most of the existing oil plume models use a Lagrangian based approach, which computes integral measures such as plume centerline trajectory and plume radius. However, this approach doesn't account for feedbacks of the buoyant plume on the ambient environment. Instead, we employ an Eulerian based approach to acquire a better understanding of the dynamics of buoyant plumes. We have performed a series of hydrostatic modeling simulations using the MITgcm. Our results show that there is a dynamical response caused by the presence of the buoyant plume, in that there is a modification of the background flow. We find that the buoyant plume becomes baroclinically unstable and sheds eddies at the neutral buoyancy layer. We also explore different scenarios to determine the effect of the buoyancy source and the temperature stratification on the evolution of buoyant plumes.

  2. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  3. Marshall Space Flight Center High Speed Turbopump Bearing Test Rig

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Moore, Chip; Thom, Robert

    2000-01-01

    The Marshall Space Flight Center has a unique test rig that is used to test and develop rolling element bearings used in high-speed cryogenic turbopumps. The tester is unique in that it uses liquid hydrogen as the coolant for the bearings. This test rig can simulate speeds and loads experienced in the Space Shuttle Main Engine turbopumps. With internal modifications, the tester can be used for evaluating fluid film, hydrostatic, and foil bearing designs. At the present time, the test rig is configured to run two ball bearings or a ball and roller bearing, both with a hydrostatic bearing. The rig is being used to evaluate the lifetimes of hybrid bearings with silicon nitride rolling elements and steel races.

  4. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    NASA Technical Reports Server (NTRS)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  5. Hydrostatic Stress Effects in Metal Plasticity

    NASA Technical Reports Server (NTRS)

    Wilson, Christopher D.

    1999-01-01

    Since the 1940s, the theory of plasticity has assumed that hydrostatic stress does not affect the yield or postyield behavior of metals. This assumption is based on the early work of Bridgman. Bridgman found that hydrostatic pressure (compressive stress) does not affect yield behavior until a substantial amount of pressure (greater than 100 ksi) is present. The objective of this study was to determine the effect of hydrostatic tension on yield behavior. Two different specimen geometries were examined: an equal-arm bend specimen and a double edge notch specimen. The presence of a notch is sufficient to develop high enough hydrostatic tensile stresses to affect yield. The von Mises yield function, which does not have a hydrostatic component, and the Drucker-Prager yield function, which includes a hydrostatic component, were used in finite element analyses of the two specimen geometries. The analyses were compared to test data from IN 100 specimens. For both geometries, the analyses using the Drucker-Prager yield function more closely simulated the test data. The von Mises yield function lead to 5-10% overprediction of the force-displacement or force-strain response of the test specimens.

  6. Fault Tolerant Magnetic Bearing Testing and Conical Magnetic Bearing Development for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Clark, Daniel

    2004-01-01

    During the six month tenure of the grant, activities included continued research of hydrostatic bearings as a viable backup-bearing solution for a magnetically levitated shaft system in extreme temperature environments (1000 F), developmental upgrades of the fault-tolerant magnetic bearing rig at the NASA Glenn Research Center, and assisting in the development of a conical magnetic bearing for extreme temperature environments, particularly turbomachinery. It leveraged work from the ongoing Smart Efficient Components (SEC) and the Turbine-Based Combined Cycle (TBCC) program at NASA Glenn Research Center. The effort was useful in providing technology for more efficient and powerful gas turbine engines.

  7. Dynamic Cores in Hydrostatic Disguise

    NASA Astrophysics Data System (ADS)

    Ballesteros-Paredes, Javier; Klessen, Ralf S.; Vázquez-Semadeni, Enrique

    2003-07-01

    project are small (<~0.18 pc). As a consequence, different projections of the same core may give very different values of the BE fits. Finally, we briefly discuss recent results claiming that Bok globule B68 is in hydrostatic equilibrium, stressing that they imply that this core is unstable by a wide margin. We conclude that fitting BE profiles to observed cores is not an unambiguous test of hydrostatic equilibrium and that fit-estimated parameters such as mass, central density, density contrast, temperature, or radial profile of the BE sphere may differ significantly from the actual values in the cores.

  8. Demagnetization of terrestrial and extraterrestrial rocks under hydrostatic pressure up to 1.2 GPa

    NASA Astrophysics Data System (ADS)

    Bezaeva, Natalia S.; Gattacceca, Jérôme; Rochette, Pierre; Sadykov, Ravil A.; Trukhin, Vladimir I.

    2010-03-01

    We carried out hydrostatic pressure demagnetization experiments up to 1.24 GPa on samples of terrestrial and extraterrestrial rocks and minerals of different lithologies as well as on synthetic samples. The magnetic remanence of samples was measured directly under pressure using a non-magnetic high-pressure cell of piston-cylinder type that was inserted into a high sensitivity SQUID magnetometer. In order to bring light on the pressure demagnetization effect, we investigated 50 samples with different magnetic mineralogies, remanent coercivities ( Bcr) and hysteresis parameters. The samples consisted of pyrrhotite-, magnetite- and titanomagnetite-bearing Martian meteorites, taenite-, tetrataenite- and kamacite-bearing ordinary chondrites and pyrrhotite-bearing Rumuruti chondrite; magnetite- and titanomagnetite-bearing basalts, andesites, ignimbrites, obsidians and granites; a variety of pyrrhotite- and hematite-bearing rocks and minerals (jasper, schist, rhyolite, radiolarite); samples of goethite and greigite as well as synthetic samples of dispersed powders of magnetite, hematite, pyrrhotite and native iron set into epoxy resin. Under hydrostatic pressure of 1.24 GPa, applied in a low magnetic field (<5 μT), the samples lost up to 84% of their initial saturation isothermal remanent magnetization (SIRM) without any changes in their intrinsic magnetic properties. We found that the efficiency of the pressure demagnetization is not exclusively controlled by the magnetic hardness of the samples ( Bcr), but that it is strongly dependent on their magnetic mineralogy. For a given magnetic mineralogy the resistance to hydrostatic pressure is roughly proportional to ln( Bcr). It was shown that there is no simple equivalence between pressure demagnetization and alternating field demagnetization effects. The pressure demagnetization was shown to be time-independent but repeated application of the same pressure level resulted in further demagnetization.

  9. Phase stability limit of c-BN under hydrostatic and non-hydrostatic pressure conditions

    SciTech Connect

    Xiao, Jianwei; Du, Jinglian; Wen, Bin Zhang, Xiangyi; Melnik, Roderick; Kawazoe, Yoshiyuki

    2014-04-28

    Phase stability limit of cubic boron nitride (c-BN) has been investigated by the crystal structure search technique. It indicated that this limit is ∼1000 GPa at hydrostatic pressure condition. Above this pressure, c-BN turns into a metastable phase with respect to rocksalt type boron nitride (rs-BN). However, rs-BN cannot be retained at 0 GPa owing to its instability at pressure below 250 GPa. For non-hydrostatic pressure conditions, the phase stability limit of c-BN is substantially lower than that under hydrostatic pressure conditions and it is also dramatically different for other pressure mode.

  10. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Testing of Non-bulk Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification of all metal, plastic, and...

  11. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... required for inner packagings of combination packagings. For internal pressure requirements for...

  12. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... required for inner packagings of combination packagings. For internal pressure requirements for...

  13. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... required for inner packagings of combination packagings. For internal pressure requirements for...

  14. 49 CFR 178.605 - Hydrostatic pressure test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... required for inner packagings of combination packagings. For internal pressure requirements for...

  15. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test at ambient temperature of at least one and a half times its specified maximum working pressure but not more... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo hose: Hydrostatic test. 154.562 Section...

  16. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test at ambient temperature of at least one and a half times its specified maximum working pressure but not more... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo hose: Hydrostatic test. 154.562 Section...

  17. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test at ambient temperature of at least one and a half times its specified maximum working pressure but not more... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo hose: Hydrostatic test. 154.562 Section...

  18. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test at ambient temperature of at least one and a half times its specified maximum working pressure but not more... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo hose: Hydrostatic test. 154.562 Section...

  19. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test at ambient temperature of at least one and a half times its specified maximum working pressure but not more... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Hydrostatic test. 154.562 Section...

  20. 46 CFR 61.30-10 - Hydrostatic test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-10 Hydrostatic test. All new installations of thermal fluid heaters must be given a hydrostatic test of 11/2 times the maximum allowable... condition of the heater warrants such a test. Where hydrostatic tests are required, an inspection is made...

  1. A Load Cell for Hydrostatic Weighing

    ERIC Educational Resources Information Center

    Fahey, Thomas D.; Schroeder, Richard

    1978-01-01

    Although a load cell is more expensive than the autopsy scale for hydrostatic weighing, it is more accurate, easier to read, has no moving parts, is less susceptible to rust, and is less likely to be damaged by large subjects exceeding its capacity. (Author)

  2. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  3. Gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2003-01-01

    A gear bearing having a first gear and a second gear, each having a plurality of teeth. Each gear operates on two non-parallel surfaces of the opposing gear teeth to perform both gear and bearing functions simultaneously. The gears are moving at substantially the same speed at their contact points. The gears may be roller gear bearings or phase-shifted gear bearings, and may be arranged in a planet/sun system or used as a transmission.

  4. Journal bearing

    DOEpatents

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  5. A Multipurpose Device for Some Hydrostatics Questions

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2008-01-01

    A number of well-known hydrostatics problems dealing with Archimedes' principle concern a loaded boat floating in a pool. Examples of this sort of problem include: 1. (a) If a stone is thrown overboard from a boat floating in a pool, does the water level in the pool rise, fall, or remain unchanged? (b) If a hole is made in the bottom of the boat…

  6. Hydrostatic Adjustment in Vertically Stratified Atmospheres

    NASA Technical Reports Server (NTRS)

    Duffy, Dean G.

    2000-01-01

    Hydrostatic adjustment due to diabatic heat in two nonisothermal atmospheres is examined. In the first case the temperature stratification is continuous; in the second case the atmosphere is composed of a warm, isothermal troposphere and a colder, isothermal semi-infinitely deep stratosphere.In both cases hydrostatic adjustment, to a good approximation, follows the pattern found in the Lamb problem (semi-infinitely deep. isothermal atmosphere): Initially we have acoustic waves with the kinetic energy increasing or decreasing at the expense of available elastic energy. After this initial period the acoustic waves evolve into acoustic-gravity waves with the kinetic, available potential and available elastic energies interacting with each other. Relaxation to hydrostatic balance occurs within a few oscillations. Stratification in an atmosphere with a continuous temperature profile affects primarily the shape and amplitude of the disturbances. In the two-layer atmosphere, a certain amount of energy is trapped in the tropospheric waveguide as disturbances reflect off the tropopause and back into the troposphere. With each internal reflection a portion of this trapped energy escapes and radiates to infinity.

  7. GAS BEARING

    DOEpatents

    Skarstrom, C.W.

    1960-09-01

    A gas lubricated bearing for a rotating shaft is described. The assembly comprises a stationary collar having an annular member resiliently supported thereon. The collar and annular member are provided with cooperating gas passages arranged for admission of pressurized gas which supports and lubricates a bearing block fixed to the rotatable shaft. The resilient means for the annular member support the latter against movement away from the bearing block when the assembly is in operation.

  8. Grizzly bear

    USGS Publications Warehouse

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  9. Arsenolite: a quasi-hydrostatic solid pressure-transmitting medium

    NASA Astrophysics Data System (ADS)

    Sans, J. A.; Manjón, F. J.; Popescu, C.; Muñoz, A.; Rodríguez-Hernández, P.; Jordá, J. L.; Rey, F.

    2016-11-01

    This study reports the experimental characterization of the hydrostatic properties of arsenolite (As4O6), a molecular solid which is one of the softest minerals in the absence of hydrogen bonding. The high compressibility of arsenolite and its stability up to 15 GPa have been proved by x-ray diffraction measurements, and the progressive loss of hydrostaticity with increasing pressure up to 20 GPa has been monitored by ruby photoluminescence. Arsenolite has been found to exhibit hydrostatic behavior up to 2.5 GPa and a quasi-hydrostatic behavior up to 10 GPa at room temperature. This result opens the way to explore other molecular solids as possible quasi-hydrostatic pressure-transmitting media. The validity of arsenolite as an insulating, stable, non-penetrating and quasi-hydrostatic medium is explored by the study of the x-ray diffraction of zeolite ITQ-29 at high pressure.

  10. Polar Bear

    USGS Publications Warehouse

    Amstrup, S.D.; ,; Lentfer, J.W.

    1988-01-01

    Polar bears are long-lived, late-maturing carnivores that have relatively low rates of reproduction and natural mortality. Their populations are susceptible to disturbance from human activities, such as the exploration and development of mineral resources or hunting. Polar bear populations have been an important renewable resource available to coastal communities throughout the Arctic for thousands of years.

  11. The performance and application of high speed long life LH2 hybrid bearings for reusable rocket engine turbomachinery

    NASA Technical Reports Server (NTRS)

    Hannum, N. P.; Nielson, C. E.

    1983-01-01

    Data are presented for two different experimental programs which were conducted to investigate the characteristics of a hybrid (hydrostatic/ball) bearing operating in liquid hydrogen. The same bearing design was used in both programs. Analytical predictions were made of the bearing characteristics and are compared with the experimental results when possible. The first program used a bearing tester to determine the steady state, transient, and cyclic life characteristics of the bearing over a wide range of operating conditions. The second program demonstrated the feasibility of applying hybrid bearings to an actual high speed turbopump by retrofitting and then testing an existing liquid hydrogen turbopump with the bearings.

  12. Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.

  13. Hydrostatic compression in glycerinated rabbit muscle fibers.

    PubMed

    Ranatunga, K W; Fortune, N S; Geeves, M A

    1990-12-01

    Glycerinated muscle fibers isolated from rabbit psoas muscle, and a number of other nonmuscle elastic fibers including glass, rubber, and collagen, were exposed to hydrostatic pressures of up to 10 MPa (100 Atm) to determine the pressure sensitivity of their isometric tension. The isometric tension of muscle fibers in the relaxed state (passive tension) was insensitive to increased pressure, whereas the muscle fiber tension in rigor state increased linearly with pressure. The tension of all other fiber types (except rubber) also increased with pressure; the rubber tension was pressure insensitive. The pressure sensitivity of rigor tension was 2.3 kN/m2/MPa and, in comparison with force/extension relation determined at atmospheric pressure, the hydrostatic compression in rigor muscle fibers was estimated to be 0.03% Lo/MPa. As reported previously, the active muscle fiber tension is depressed by increased pressure. The possible underlying basis of the different pressure-dependent tension behavior in relaxed, rigor, and active muscle is discussed.

  14. Foil bearings

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1993-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  15. Foil bearings

    NASA Astrophysics Data System (ADS)

    Elrod, David A.

    1993-11-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  16. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  17. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  18. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  19. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  20. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test....

  1. A Simple Explanation of the Classic Hydrostatic Paradox

    ERIC Educational Resources Information Center

    Kontomaris, Stylianos-Vasileios; Malamou, Anna

    2016-01-01

    An interesting problem in fluid mechanics, with significant educational importance, is the classic hydrostatic paradox. The hydrostatic paradox states the fact that in different shaped containers, with the same base area, which are filled with a liquid of the same height, the applied force by the liquid on the base of each container is exactly the…

  2. 46 CFR 61.30-10 - Hydrostatic test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Hydrostatic test. 61.30-10 Section 61.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-10 Hydrostatic test. All...

  3. Mechanical design problems associated with turbopump fluid film bearings

    NASA Technical Reports Server (NTRS)

    Evces, Charles R.

    1990-01-01

    Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.

  4. Computer simulations of 3C-SiC under hydrostatic and non-hydrostatic stresses.

    PubMed

    Guedda, H Z; Ouahrani, T; Morales-García, A; Franco, R; Salvadó, M A; Pertierra, P; Recio, J M

    2016-03-21

    The response of 3C-SiC to hydrostatic pressure and to several uni- and bi-axial stress conditions is thoroughly investigated using first principles calculations. A topological interpretation of the chemical bonding reveals that the so-called non-covalent interactions enhance only at high pressure while the nature of the covalent Si-C bonding network keeps essentially with the same pattern. The calculated low compressibility agrees well with experimental values and is in concordance with the high structural stability of this polymorph under hydrostatic pressure. Under uniaxial [001] stress, the c/a ratio shows a noticeable drop inducing a closure of the band gap and the emergence of a metallic state around 40 GPa. This behavior correlates with a plateau of the electron localization function exhibiting a roughly constant and non-negligible value surrounding CSi4 and SiC4 covalent bonded units.

  5. Food processing by high hydrostatic pressure.

    PubMed

    Yamamoto, Kazutaka

    2017-04-01

    High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm(2)) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.

  6. Simultaneous influence of hydrostatic pressure and temperature on diamagnetic susceptibility of impurity doped quantum dots under the aegis of noise

    NASA Astrophysics Data System (ADS)

    Saha, Surajit; Ganguly, Jayanta; Bera, Aindrila; Ghosh, Manas

    2016-11-01

    We explore the diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise and under the combined influence of hydrostatic pressure (HP) and temperature (T). Presence of noise and also its mode of application discernibly affect the DMS profile. Application of HP and T invites greater delicacies in the observed DMS profiles. However, whereas the interplay between T and noise comes out to be extremely sensitive in fabricating the DMS profile, the pressure-noise interplay appears to be not that much noticeable. Under all conditions of temperature and pressure, the presence of multiplicative noise diminishes the value of DMS in comparison with that in presence of its additive analogue. The present study renders a deep insight into the remarkable role played by the interplay between noise, hydrostatic pressure and temperature in controlling the effective confinement imposed on the system which bears unquestionable relevance.

  7. Hydrostatic Stress Effect On the Yield Behavior of Inconel 100

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wilson, Christopher D.

    2002-01-01

    Classical metal plasticity theory assumes that hydrostatic stress has no effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of notched geometries. New experiments and nonlinear finite element analyses (FEA) of Inconel 100 (IN 100) equal-arm bend and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions was performed. In all test cases, the von Mises constitutive model, which is independent of hydrostatic pressure, overestimated the load for a given displacement or strain. Considering the failure displacements or strains, the Drucker-Prager FEMs predicted loads that were 3% to 5% lower than the von Mises values. For the failure loads, the Drucker Prager FEMs predicted strains that were 20% to 35% greater than the von Mises values. The Drucker-Prager yield function seems to more accurately predict the overall specimen response of geometries with significant internal hydrostatic stress influence.

  8. Gravity, the hydrostatic indifference concept and the cardiovascular system.

    PubMed

    Hinghofer-Szalkay, Helmut

    2011-02-01

    Gravity, like any acceleration, causes a hydrostatic pressure gradient in fluid-filled bodily compartments. At a force of 1G, this pressure gradient amounts to 10 kPa/m. Postural changes alter the distribution of hydrostatic pressure patterns according to the body's alignment to the acceleration field. At a certain location--referred to as hydrostatically indifferent--within any given fluid compartment, pressure remains constant during a given change of position relative to the acceleration force acting upon the body. At this specific location, there is probably little change in vessel volume, wall tension, and the balance of Starling forces after a positional manoeuvre. In terms of cardiac function, this is important because arterial and venous hydrostatic indifference locations determine postural cardiac preload and afterload changes. Baroreceptors pick up pressure signals that depend on their respective distance to hydrostatic indifference locations with any change of body position. Vascular shape, filling volume, and compliance, as well as temperature, nervous and endocrine factors, drugs, and time all influence hydrostatic indifference locations. This paper reviews the physiology of pressure gradients in the cardiovascular system that are operational in a gravitational/acceleration field, offers a broadened hydrostatic indifference concept, and discusses implications that are relevant in physiological and clinical terms.

  9. Camshaft bearing arrangement

    SciTech Connect

    Aoi, K.; Ozawa, T.

    1986-06-10

    A bearing arrangement is described for the camshaft of an internal combustion engine or the like which camshaft is formed along its length in axial order with a first bearing surface, a first cam lobe, a second bearing surface, a second cam lobe, a third bearing surface, a third cam lobe and a fourth bearing surface, the improvement comprising first bearing means extending around substantially the full circumference of the first bearing surface and journaling the first bearing surface, second bearing means extending around substantially less than the circumference of the second bearing surface and journaling the second bearing surface, third bearing means extending around substantially less than the circumference of the third bearing surface and journaling the third bearing surface, and fourth bearing means extending around substantially the full circumference of the fourth bearing surface and journaling the first bearing surface.

  10. CUSHIONED BEARING

    DOEpatents

    Rushing, F.C.

    1960-09-01

    A vibration damping device effective to dampen vibrations occurring at the several critical speeds encountered in the operation of a high-speed centrifuge is described. A self-centering bearing mechanism is used to protect both the centrifuge shaft and the damping mechanism. The damping mechanism comprises spaced-apant, movable, and stationary sleeve members arranged concentrically of a rotating shaft with a fluid maintained between the members. The movable sleeve member is connected to the shaft for radial movement therewith.

  11. Tooling Converts Stock Bearings To Custom Bearings

    NASA Technical Reports Server (NTRS)

    Fleenor, E. N., Jr.

    1983-01-01

    Technique for reworking stock bearings saves time and produces helicopter-rotor bearings ground more precisely. Split tapered ring at one end of threaded bolt expands to hold inside of inner race bearing assembly; nut, at other end of bolt, adjusts amount of spring tension. Piece of hardware grasps bearing firmly without interfering with grinding operation. Operation produces bearing of higher quality than commercially available bearings.

  12. Control of hydrostatic transmission wind turbine

    NASA Astrophysics Data System (ADS)

    Rajabhandharaks, Danop

    In this study, we proposed a control strategy for a wind turbine that employed a hydrostatic transmission system for transmitting power from the wind turbine rotor via a hydraulic transmission line to a ground level generator. Wind turbine power curve tracking was achieved by controlling the hydraulic pump displacement and, at the other end of the hydraulic line, the hydraulic motor displacement was controlled so that the overall transmission loss was minimized. Steady state response, dynamic response, and system stability were assessed. The maximum transmission efficiency obtained ranged from 79% to 84% at steady state when the proposed control strategy was implemented. The leakage and friction losses of the hydraulic components were the main factors that compromised the efficiency. The simulation results showed that the system was stable and had fast and well-damped transient response. Double wind turbine system sharing hydraulic pipes, a hydraulic motor, and a generator were also studied. The hydraulic pipe diameter used in the double-turbine system increased by 27% compared to the single-turbine system in order to make the transmission coefficient comparable between both systems. The simulation results suggested that the leakage losses were so significant that the efficiency of the system was worsened compared with the single-turbine system. Future studies of other behavioral aspects and practical issues such as fluid dynamics, structure strength, materials, and costs are needed.

  13. Mechanical stability of iron under hydrostatic stresses

    NASA Astrophysics Data System (ADS)

    Mishra, K. L.; Thakur, O. P.; Thakur, K. P.

    1991-09-01

    A comprehensive investigation of the mechanics of iron subjected to arbitrary fluid pressure has been carried out. Apart from the classical elastic moduli ( k, μ, and μ') and conventional elastic moduli (Green and stretch moduli) computations are carried out for a family of generalised moduli of which the conventional moduli are just specific members. With the generalised moduli the mechanical stability of iron is investigated through Born criteria. It is found that classical stability, Green stability and stretch stability are all represented uniquely by the present generalised scheme. The definition of effective classical moduli under stresses enabled the amalgamation of the Born criteria of lattice stability into the single classical criteria of lattice stability of cubic crystal under hydrostatic loading environment. Computations are also carried out to investigate the coordinate and stress dependence of Young's modulus of elasticity, Poisson's ratio, mean velocity of elastic wave, and Debye temperature. Surprisingly, it is found that all these properties of solids play an important role in representing the mechanical stability of the solid. The path of uniaxial loading of iron is also investigated along with its internal energy variation on this path. This indicated the existance of stress-free fcc phase of iron on the path of uniaxial deformation at cell length a=3.6444 Å giving enthalpy of transformation (bcc→fcc) of 1.1 kJ/mol in good agreement with experimental results.

  14. A hydrostatic pressure-cycle energy harvester

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; Hahn, Gregory; Morgan, Eric

    2015-04-01

    There have been a number of new applications for energy harvesting with the ever-decreasing power consumption of microelectronic devices. In this paper we explore a new area of marine animal energy harvesting for use in powering tags known as bio-loggers. These devices record data about the animal or its surroundings, but have always had limited deployment times due to battery depletion. Reduced solar irradiance below the water's surface provides the impetus to explore other energy harvesting concepts beyond solar power for use on marine animals. We review existing tag technologies in relation to this application, specifically relating to energy consumption. Additionally, we propose a new idea for energy harvesting, using hydrostatic pressure changes as a source for energy production. We present initial testing results of a bench-top model and show that the daily energy harvesting potential from this technology can meet or exceed that consumed by current marine bio-logging tags. The application of this concept in the arena of bio-logging technology could substantially increase bio-logger deployment lifetimes, allowing for longitudinal studies over the course of multiple breeding and/or migration cycles.

  15. SPR Hydrostatic Column Model Verification and Validation.

    SciTech Connect

    Bettin, Giorgia; Lord, David; Rudeen, David Keith

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  16. Advances In Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Fleming, David P.

    1994-01-01

    NASA technical memorandum reviews state of technology of magnetic bearings, focusing mainly on attractive bearings rather than repulsive, eddy-current, or Lorentz bearings. Attractive bearings offer greater load capacities and preferred for aerospace machinery.

  17. Influence of boundary conditions and turntable speeds on the stability of hydrostatic oil cavity

    NASA Astrophysics Data System (ADS)

    Liu, Zhaomiao; Zhang, Chengyin; Shen, Feng

    2011-09-01

    The flow, bearing, and carrying capacity of the cycloidal hydrostatic oil cavity in hydrostatic turntable systems are numerically simulated, considering the rotation speeds of a turntable from 0 to 5 m/s and different boundary conditions. The vortex effect is weakened, and the stability of the oil cavity is enhanced with the increase in lubricant viscosity. However, the increase in inlet speed, depth, and inlet radius of the oil cavity causes the vortex effect to increase and the stability of oil cavity to reduce. With the increase in the oil film thickness, the carrying capacity of the oil cavity diminishes. The oil cavity pressure increases along the direction of the motion of the turntable; it is distributed unevenly because of the rotation of the turntable. With the increase in turntable speed, the location and size of the vortex scope in the oil cavity flow field and the strength of the vortex near the entrance gradually weaken and move away from the entry. The distribution of pressure is determined by the locations of the vortex. When the vortex is close to the wall, the wall pressure increases at its location. Otherwise, the wall pressure decreases first and then increases after the center of the vortex.

  18. The performance of hybrid journal bearings in the superlaminar flow regimes

    NASA Astrophysics Data System (ADS)

    Ives, D.; Rowe, W. B.

    1992-10-01

    Previous work conducted on hybrid journal bearings has shown that a combination of hydrostatic and hydrodynamic lubrication principles leads to good load support over a wide range of speed, including zero speed. Above the transition speed, particularly with large bearing diameters or low-viscosity lubricants, the mode of flow within the fluid film degenerates from that of pure laminar flow, through a transitional or vortex flow regime, to fully developed turbulent flow. This work presents a theoretical investigation of slot entry hybrid journal bearings operating in the superlaminar flow regimes. In particular, the work considers the effects of superlaminar flow on the optimization of slot entry hybrid journal bearings.

  19. An in-vitro traumatic model to evaluate the response of myelinated cultures to sustained hydrostatic compression injury.

    PubMed

    Frieboes, Laura R; Gupta, Ranjan

    2009-12-01

    While a variety of in-vitro models have been employed to investigate the response of load-bearing tissues to hydrostatic pressure, long-term studies are limited by the need to provide for adequate gas exchange during pressurization. Applying compression in vitro may alter the equilibrium of the system and thereby disrupt the gas exchange kinetics. To address this, several sophisticated compression chamber designs have been developed. However, these systems are limited in the magnitude of pressure that can be applied and may require frequent media changes, thereby eliminating critical autocrine and paracrine signaling factors. To better isolate the cellular response to long-term compression, we created a model that features continuous gas flow through the chamber during pressurization, and a negative feedback control system to rigorously control dissolved oxygen levels. Monitoring dissolved oxygen continuously during pressurization, we find that the ensuing response exhibits characteristics of a second- or higher-order system which can be mathematically modeled using a second-order differential equation. Finally, we use the system to model chronic nerve compression injuries, such as carpal tunnel syndrome and spinal nerve root stenosis, with myelinated neuron-Schwann cell co-cultures. Cell membrane integrity assay results show that co-cultures respond differently to hydrostatic pressure, depending on the magnitude and duration of stimulation. In addition, we find that myelinated Schwann cells proliferate in response to applied hydrostatic compression.

  20. Magnetic bearings for free-piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Curwen, P. W.; Fleming, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  1. Fluid lubricated bearing construction

    DOEpatents

    Dunning, John R.; Boorse, Henry A.; Boeker, Gilbert F.

    1976-01-01

    1. A fluid lubricated thrust bearing assembly comprising, in combination, a first bearing member having a plain bearing surface, a second bearing member having a bearing surface confronting the bearing surface of said first bearing member and provided with at least one spiral groove extending inwardly from the periphery of said second bearing member, one of said bearing members having an axial fluid-tight well, a source of fluid lubricant adjacent to the periphery of said second bearing member, and means for relatively rotating said bearing members to cause said lubricant to be drawn through said groove and to flow between said bearing surfaces, whereby a sufficient pressure is built up between said bearing surfaces and in said well to tend to separate said bearing surfaces.

  2. Hydrostatic Stress Effect on the Yield Behavior of Inconel 100

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wilson, Christopher D.

    2003-01-01

    Classical metal plasticity theory assumes that hydrostatic stress has negligible effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of various geometries. Fatigue tests and nonlinear finite element analyses (FEA) of Inconel 100 (IN100) equal-arm bend specimens and new monotonic tests and nonlinear finite element analyses of IN100 smooth tension, smooth compression, and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions were performed. A new FEA constitutive model was developed that incorporates a pressure-dependent yield function with combined multilinear kinematic and multilinear isotropic hardening using the ABAQUS user subroutine (UMAT) utility. In all monotonic tensile test cases, the von Mises constitutive model, overestimated the load for a given displacement or strain. Considering the failure displacements or strains for the DENT specimen, the Drucker-Prager FEM s predicted loads that were approximately 3% lower than the von Mises values. For the failure loads, the Drucker Prager FEM s predicted strains that were up to 35% greater than the von Mises values. Both the Drucker-Prager model and the von Mises model performed equally-well in simulating the equal-arm bend fatigue test.

  3. Hydrostatic pressure mimics gravitational pressure in characean cells

    NASA Technical Reports Server (NTRS)

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1992-01-01

    Hydrostatic pressure applied to one end of a horizontal Chara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl-, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.

  4. Hydrostatic Water Level Systems At Homestake DUSEL

    NASA Astrophysics Data System (ADS)

    Stetler, L. D.; Volk, J. T.

    2009-12-01

    Two arrays of Fermilab-style hydrostatic water level sensors have been installed in the former Homestake gold mine in Lead, SD, the site of the new Deep Underground Science and Engineering Laboratory (DUSEL). Sensors were constructed at Fermilab from 8.5 cm diameter PVC pipe (housing) that was sealed on the ends and fit with a proximity sensor. The instrument have a height of 10 cm. Two ports in each sensor housing provide for connectivity, the upper port for air and the bottom port for water. Multiple instruments connected in series provide a precise water level and differences in readings between successive sensors provide for ground tilt to be resolved. Sensor resolution is 5 μm per count and has a range of approximately 1.25 cm. Data output from each sensor is relayed to a Fermilab-constructed readout card that also has temperature/relative humidity and barometric pressure sensors connected. All data are relayed out of the mine by fiber optic cable and can be recorded by Ethernet at remote locations. The current arrays have been installed on the 2000-ft level (610 m) and consist of six instruments in each array. Three sensors were placed in a N-S oriented drift and three in an E-W oriented drift. Using this orientation, it is anticipated that tilt direction may be resolved in addition to overall tilt magnitude. To date the data show passage of earth tides and frequency analysis has revealed five components to this signal, three associated with the semi-diurnal (~12.4 hr) and two with the diurnal (~24.9 hr) tides. Currently, installation methods are being analyzed between concrete pillar and rib-mounting using the existing setup on the 2000-ft level. Using these results, two additional arrays of Fermilab instruments will be installed on the 4550-ft and 4850-ft levels (1387 and 1478 m, respectively). In addition to Fermilab instruments, several high resolution Budker tiltmeters (1 μm resolution) will be installed in the mine workings in the near future, some

  5. Hydrostatic Microextrusion of Steel and Copper

    SciTech Connect

    Berti, Guido; Monti, Manuel; D'Angelo, Luciano

    2011-05-04

    The paper presents an experimental investigation based on hydrostatic micro extrusion of billets in low carbon steel and commercially pure copper, and the relevant results. The starting billets have a diameter of 0.3 mm and are 5 mm long; a high pressure generator consisting of a manually operated piston screw pump is used to pressurize the fluid up to 4200 bar, the screw pump is connected through a 3-way distribution block to the extrusion die and to a strain gauge high pressure sensor. The sensor has a full scale of 5000 bar and the extrusion pressure is acquired at a sampling rate of 2 kHz by means of an acquisition program written in the LabVIEW environment. Tests have been conducted at room temperature and a lubricant for wire drawing (Chemetall Gardolube DO 338) acts both as the pressurizing fluid and lubricant too. In addition, billets were graphite coated. Different fluid pressures and process durations have been adopted, resulting in different extrusion lengths. The required extrusion pressure is much higher than in non-micro forming operations (this effect is more evident for steel). On the cross section of the extruded parts, hardness and grain size distribution have been measured, the former through Vickers micro hardness (10 g load) tests. In the case of the extrusion of copper, the material behaves as in microdrawing process. In the case of the extrusion of steel, the hardness increases from the core to the surface as in the drawing process, but with lower values. The analysis evidenced the presence of the external layer, but its thickness is about 1/3 of the external layer in the drawn wire and the grains appear smaller than in the layer of the drawn wire. The extruding force required along the extruding direction is higher (22-24 N) than the drawing force along the same direction (12 N): being the material, the reduction ratio, the die sliding length the same in both cases, the higher extrusion force should be caused by a higher tangential friction

  6. Hydrostatic Microextrusion of Steel and Copper

    NASA Astrophysics Data System (ADS)

    Berti, Guido; Monti, Manuel; D'Angelo, Luciano

    2011-05-01

    The paper presents an experimental investigation based on hydrostatic micro extrusion of billets in low carbon steel and commercially pure copper, and the relevant results. The starting billets have a diameter of 0.3 mm and are 5 mm long; a high pressure generator consisting of a manually operated piston screw pump is used to pressurize the fluid up to 4200 bar, the screw pump is connected through a 3-way distribution block to the extrusion die and to a strain gauge high pressure sensor. The sensor has a full scale of 5000 bar and the extrusion pressure is acquired at a sampling rate of 2 kHz by means of an acquisition program written in the LabVIEW environment. Tests have been conducted at room temperature and a lubricant for wire drawing (Chemetall Gardolube DO 338) acts both as the pressurizing fluid and lubricant too. In addition, billets were graphite coated. Different fluid pressures and process durations have been adopted, resulting in different extrusion lengths. The required extrusion pressure is much higher than in non-micro forming operations (this effect is more evident for steel). On the cross section of the extruded parts, hardness and grain size distribution have been measured, the former through Vickers micro hardness (10 g load) tests. In the case of the extrusion of copper, the material behaves as in microdrawing process. In the case of the extrusion of steel, the hardness increases from the core to the surface as in the drawing process, but with lower values. The analysis evidenced the presence of the external layer, but its thickness is about 1/3 of the external layer in the drawn wire and the grains appear smaller than in the layer of the drawn wire. The extruding force required along the extruding direction is higher (22-24 N) than the drawing force along the same direction (12 N): being the material, the reduction ratio, the die sliding length the same in both cases, the higher extrusion force should be caused by a higher tangential friction

  7. Further improvement of hydrostatic pressure sample injection for microchip electrophoresis.

    PubMed

    Luo, Yong; Zhang, Qingquan; Qin, Jianhua; Lin, Bingcheng

    2007-12-01

    Hydrostatic pressure sample injection method is able to minimize the number of electrodes needed for a microchip electrophoresis process; however, it neither can be applied for electrophoretic DNA sizing, nor can be implemented on the widely used single-cross microchip. This paper presents an injector design that makes the hydrostatic pressure sample injection method suitable for DNA sizing. By introducing an assistant channel into the normal double-cross injector, a rugged DNA sample plug suitable for sizing can be successfully formed within the cross area during the sample loading. This paper also demonstrates that the hydrostatic pressure sample injection can be performed in the single-cross microchip by controlling the radial position of the detection point in the separation channel. Rhodamine 123 and its derivative as model sample were successfully separated.

  8. Characterization and measurement of hybrid gas journal bearings

    NASA Astrophysics Data System (ADS)

    Lawrence, Tom Marquis

    developed to study in unprecedented detail the aerostatic component of the hybrid bearings. It is used to definitively compare the feedhole bearings to the porous liner bearings. The hydrostatic bearing efficiency (HBE) is defined and it is determined that the maximum achievable hydrostatic bearing efficiency (MAHBE) is determined solely by the bearing's mass addition configuration. The MAHBE of the porous liner bearings is determined to be over 5 times that of the feedhole bearings. The method also presents a means to tune the Kmeas to the clearance to achieve the MAHBE as well as giving a complete mapping of the hitherto misunderstood complex shapes of aerostatic load versus radial deflection curves. This method also rediscovers the obscure phenomenon of static instability which is called in this thesis the "near surface effect" and appears to be the first work to present a practical method to predict the range of static instability and quantify its resultant stiffness fall-off. It determines that porous liner type bearings are not subject to the phenomenon which appears for feedhole type bearings when the clearance exceeds a critical value relative to its mass-addition compensation. The standing pressure waves of hydrostatic and hybrid bearings with the 2 configurations of external pressurization as well as a geometrically identical hydrodynamic bearing are studied in detail under the methodology of the "CFD microscope". This method is used to characterize and identify the development, growth, and movement of the pressure wave extrema with increased hydrodynamic action (either increasing speed or increasing eccentricity). This method is also used to determine the "cause" of the "near surface effect". A gedanken experiment is performed based on these results which indicates that a bearing with a "stronger aerostatic strength" component should be more stable than one with a low aerostatic strength component. Numerical instability "speed limits" are found that are also

  9. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  10. A model for hydrostatic consolidation of Pierre shale

    USGS Publications Warehouse

    Savage, W.Z.; Braddock, W.A.

    1991-01-01

    This paper presents closed-form solutions for consolidation of transversely isotropic porous media under hydrostatic stress. The solutions are applied to model the time variation of pore pressure, volume strain and strains parallel and normal to bedding, and to obtain coefficients of consolidation and permeability, as well as other properties, and the bulk modulus resulting from hydrostatic consolidation of Pierre shale. It is found that the coefficients consolidation and permeability decrease and the bulk moduli increase with increasing confining pressure, reflecting the closure of voids in the rock. ?? 1991.

  11. Orbital transfer vehicle oxygen turbopump technology. Volume 1: Design, fabrication, and hydrostatic bearing testing

    NASA Technical Reports Server (NTRS)

    Buckmann, P. S.; Hayden, W. R.; Lorenc, S. A.; Sabiers, R. L.; Shimp, N. R.

    1990-01-01

    The design, fabrication, and initial testing of a rocket engine turbopump (TPA) for the delivery of high pressure liquid oxygen using hot oxygen for the turbine drive fluid are described. This TPA is basic to the dual expander engine which uses both oxygen and hydrogen as working fluids. Separate tasks addressed the key issue of materials for this TPA. All materials selections emphasized compatibility with hot oxygen. The OX TPA design uses a two-stage centrifugal pump driven by a single-stage axial turbine on a common shaft. The design includes ports for three shaft displacement/speed sensors, various temperature measurements, and accelerometers.

  12. Wheel drives for large telescopes: save the cost and keep the performance over hydrostatic bearings

    NASA Astrophysics Data System (ADS)

    Campbell, Marvin F.

    2014-07-01

    The use of steel wheels on steel tracks has been around since steel was invented, and before that it was iron wheels on iron tracks. Not to be made obsolete by the passage of time, this approach for moving large objects is still valid, even optimal, but the detailed techniques for achieving high performance and long life have been much improved. The use of wheel-and-track designs has been very popular in radio astronomy for the largest of the large radio telescopes (RT), including such notables as the 305m Arecibo RT, the 100m telescopes at Effelsberg, Germany (at 3600 tonnes) and the Robert C. Byrd, Greenbank Telescope (GBT, 7600 tonnes) at Greenbank, West Virginia. Of course, the 76m Lovell Telescope at Jodrell Bank is the grandfather of all large aperture radio telescopes that use wheel drives. Smaller sizes include NRAO's Very Long Baseline Array (VLBA) telescopes at 25m and others. Wheel drives have also been used on large radars of significance such as the 410 tonne Ground Based Radar-Prototype (GBR-P) and the 150 foot (45.7m) Altair Radar, and the 2130 tonne Sea Based X-Band Radar (SBX). There are also many examples of wheel driven communications antennas of 18 meters and larger. All of these instruments have one thing in common: they all use steel wheels that run in a circle on one or more flat, level, steel tracks. This paper covers issues related to designing for wheel driven systems. The intent is for managing motion to sub arc-second levels, and for this purpose it is primary for the designer to manage measurement and alignment errors, and to establish repeatability through dimensional control, structural and drive stiffness management, adjustability and error management. In a practical sense, there are very few, if any, fabricators that can machine structural and drive components to sufficiently small decimal places to matter. In fact, coming within 2-3 orders of magnitude of the precision needed is about the best that can be expected. Further, it is incumbent on the design team to develop the servo control system features, correction algorithms and structural features in concert with each other. Telescope designers are generally adept at many of these practices, so the scope of this paper is not that, but is limited to those items that pertain to a precision wheel driven system.

  13. Angled Injection: Turbulent Flow Hybrid Bearings Comparison to Test Results

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis; Childs, Dara

    1997-01-01

    Hydrostatic/hydrodynamic (hybrid) journal bearings handling process liquids have limited dynamic stability characteristics and their application as support elements to high speed flexible rotating systems is severely restricted. Measurements on water hybrid bearings with angled orifice injection have demonstrated improved rotordynamic performance with virtual elimination of cross-coupled stiffness coefficients and null or negative whirl frequency ratios. A bulk-flow model for prediction of the static performance and force coefficients of hybrid bearings with angled orifice injection is advanced. The analysis reveals that the fluid momentum exchange at the orifice discharge produces a pressure rise in the hydrostatic recess retards the shear flow induced by journal rotation, and thus, reduces cross-coupling forces. The predictions from the model are compared with experimental measurements for a 45 deg. angled orifice injection, 5 recess water hybrid bearing operating at 10.2, 17.4, and 24.6 krpm and with supply pressures of 4, 5.5, and 7 MPa. The correlations include recess pressures, flow rates, and rotordynamic force coefficients at the journal centered position.

  14. Active control of multi-input hydraulic journal bearing system

    NASA Astrophysics Data System (ADS)

    Chuang, Jen-Chen; Chen, Chi-Yin; Tu, Jia-Ying

    2016-09-01

    Because of the advantages of high accuracy, high capacity, and low friction, the development of hydrostatic bearing for machine tool receives significant attention in the last decades. The mechanics and mechanical design of hydrostatic journal bearing with capillary restrictors has been discussed in literature. However, pragmatically, the undesired loading effects of cutting force tend to result in resonance and instability of the rotor and damage the shaft during operation. Therefore, multi-input, active flow control using state feedback design is proposed in this paper. To this purpose, the proportional pressure valves are added to the hydraulic system as active control devices, and the linearised models of the bearing and valve are discussed and identified. Simulation and experimental work is conducted to verify the proposed active control and parameter identification techniques. The results show that the unbalance responses of the rotor are reduced by the proposed state feedback controller, which is able to regulate the flow pressure effectively, thus enhancing the stability and accuracy of the hydraulic journal bearing.

  15. 46 CFR 54.10-10 - Standard hydrostatic test (modifies UG-99).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... supporting structure during the hydrostatic test should be considered. The design shall consider the combined stress during hydrostatic testing due to pressure and the support reactions. This stress shall not exceed... the supporting structure during hydrostatic testing should be considered in the design. (c)...

  16. 46 CFR 54.10-10 - Standard hydrostatic test (modifies UG-99).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... supporting structure during the hydrostatic test should be considered. The design shall consider the combined stress during hydrostatic testing due to pressure and the support reactions. This stress shall not exceed... the supporting structure during hydrostatic testing should be considered in the design. (c)...

  17. 46 CFR 54.10-10 - Standard hydrostatic test (modifies UG-99).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... supporting structure during the hydrostatic test should be considered. The design shall consider the combined stress during hydrostatic testing due to pressure and the support reactions. This stress shall not exceed... the supporting structure during hydrostatic testing should be considered in the design. (c)...

  18. 46 CFR 54.10-10 - Standard hydrostatic test (modifies UG-99).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... supporting structure during the hydrostatic test should be considered. The design shall consider the combined stress during hydrostatic testing due to pressure and the support reactions. This stress shall not exceed... the supporting structure during hydrostatic testing should be considered in the design. (c)...

  19. 46 CFR 54.10-10 - Standard hydrostatic test (modifies UG-99).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... supporting structure during the hydrostatic test should be considered. The design shall consider the combined stress during hydrostatic testing due to pressure and the support reactions. This stress shall not exceed... the supporting structure during hydrostatic testing should be considered in the design. (c)...

  20. Implausibility of Hydrostatic Funnels Constituting the Sun's Upper Transition Region

    NASA Astrophysics Data System (ADS)

    Oluseyi, Hakeem M.; Carpio, Melisa M.; Sheung, Janet

    2007-09-01

    Over the past thirty years, two bodies of literature have developed in parallel presenting mutually exclusive views of the Sun’s upper transition region. One model holds that the Sun’s upper-transition-region plasmas are confined primarily in hydrostatic funnels with a substantial backheating component. The other model holds that discrete structures, which are effectively isolated from the corona, predominate in the Sun’s upper transition region. Purveyors of the latter position have recently begun to present near-resolved observations of discrete structures. The funnel scenario, in contrast, has only been addressed by modeling unresolved upper transition region emission. To address this paradox we have constructed hydrostatic funnel models and tested them against a wider set of solar observations than previously performed. We reproduce the results of the previous analyses, yet find that the hydrostatic funnels are unable to self-consistently match the wider set of observations against which we test the models. We show that it is not possible for a class of funnels having peak temperatures in the transition region or in the corona to match the observations. We conclude that it is implausible that a class of hydrostatic funnels constitutes the dominant emitting component of the Sun’s upper-transition-region plasmas as has been suggested.

  1. Comparison of hydrostatic and hydrodynamic pressure to inactivate foodborne viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of high hydrostatic pressure (HPP) and hydrodynamic pressure (HDP), in combination with chemical treatments, was evaluated for inactivation of foodborne viruses and non-pathogenic surrogates in a pork sausage product. Sausages were immersed in water, 100 ppm EDTA, or 2 percent lactoferrin...

  2. Hydrostatic self-aligning axial/torsional mechanism

    DOEpatents

    O'Connor, Daniel G.; Gerth, Howard L.

    1990-01-01

    The present invention is directed to a self-aligning axial/torsional loading mechanism for testing the strength of brittle materials which are sensitive to bending moments. Disposed inside said self-aligning loading mechanism is a frictionless hydrostatic ball joint with a flexure ring to accommodate torsional loads through said ball joint.

  3. Design and fabrication of gas bearings for Brayton cycle rotating unit

    NASA Technical Reports Server (NTRS)

    Frost, A.; Tessarzik, J. M.; Arwas, E. B.; Waldron, W. D. (Editor)

    1973-01-01

    Analysis, design, and testing of two types of pivoted pad journal bearings and a spiral-grooved thrust bearing suitable for direct installation into the NASA 2 to 15 KW Brayton Cycle Rotating Unit (BRU) have been accomplished. Both types of tilting pad bearing assemblies are of the preloaded type, consisting of three pads with one pad flexibly mounted. One type utilizes a non-conforming pivot, while the other replaces the conventional spherical pivot with a cruciform flexible member. The thrust bearing is flexure mounted to accommodate static machine mislinement. Test results indicate that both types of journal bearings should satisfy the requirements imposed by the BRU. Hydrostatic tests of the spiral-grooved thrust bearing showed it to be free of pneumatic hammer with as many as 24 orifices over the BRU pressure and load range.

  4. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  5. Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Anderson, W. J.

    1983-01-01

    Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.

  6. Cryogenic foil bearing turbopumps

    NASA Technical Reports Server (NTRS)

    Gu, Alston L.

    1993-01-01

    Cryogenic foil bearing turbopumps offer high reliability and low cost. The fundamental cryogenic foil bearing technology has been validated in both liquid hydrogen and liquid oxygen. High load capacity, excellent rotor dynamics, and negligible bearing wear after over 100 starts and stops, and over many hours of testing, were observed in both fluids. An experimental liquid hydrogen foil bearing turbopump was also successfully demonstrated. The results indicate excellent stability, high reliability, wide throttle-ability, low bearing cooling flow, and two-phase bearing operability. A liquid oxygen foil bearing turbopump has been built and is being tested at NASA MSFC.

  7. Measurement of small values of hydrostatic pressure difference / Pomiar małych wartości różnicy ciśnień hydrostatycznych

    NASA Astrophysics Data System (ADS)

    Broda, Krzysztof; Filipek, Wiktor

    2012-10-01

    In order to describe the fluid flow through the porous centre, made of identical spheres, it is necessary to know the pressure, but in fact - the pressure distribution. For the flows in the range that was traditionally called laminar flow (i. e. for Reynolds numbers (Bear, 1988; Duckworth, 1983; Troskolański, 1957) from the range 0,01 to 3) it is virtually impossible with the use of the tools directly available on the market. Therefore, many scientists who explore this problem have concentrated only on the research of the velocity distribution of the medium that penetrates the intended centre (Bear, 1988) or pressure distribution at high hydraulic gradients (Trzaska & Broda, 1991, 2000; Trzaska et al., 2005). It may result from the inaccessibility to the measurement methods that provide measurement of very low hydrostatic pressures, such as pressure resulting from the weight of liquid located in the gravitational field (Duckworth, 1983; Troskolański, 1957). The pressure value c. 10 Pa (Troskolański, 1957) can be generated even by 1 mm height difference between the two levels of the free water surface, which in fact constitutes the definition of gauging tools of today measuring the level of the hydrostatic pressure. Authors proposed a method of hydrostatic pressure measurement and devised a gauging tool. Then a series of tests was conducted aiming at establishing what is the influence of various factors, such as temperature, atmospheric pressure, velocity of measurement completion, etc. on the accuracy and method of measurements. A method for considerable reduction of hysteresis that occurs during measurement was also devised. The method of measurement of small hydrostatic difference measurements allows for the accuracy of measurement of up to 0.5 Pa. Measurement results can be improved successfully by one order of magnitude, which for sure would entail necessary temperature stabilization of the tool. It will be more difficult though to compensate the influence

  8. Introduction to ball bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    The purpose of a ball bearing is to provide a relative positioning and rotational freedom while transmitting a load between two structures, usually a shaft and a housing. For high rotational speeds (e.g., in gyroscope ball bearings) the purpose can be expanded to include rotational freedom with practically no wear in the bearing. This condition can be achieved by separating the bearing parts with a coherent film of fluid known as an elastohydrodynamic film. This film can be maintained not only when the bearing carries the load on a shaft, but also when the bearing is preloaded to position the shaft to within micro- or nano-inch accuracy and stability. Background information on ball bearings is provided, different types of ball bearings and their geometry and kinematics are defined, bearing materials, manufacturing processes, and separators are discussed. It is assumed, for the purposes of analysis, that the bearing carries no load.

  9. Hydrostatic pressure sensing with high birefringence photonic crystal fibers.

    PubMed

    Fávero, Fernando C; Quintero, Sully M M; Martelli, Cicero; Braga, Arthur M B; Silva, Vinícius V; Carvalho, Isabel C S; Llerena, Roberth W A; Valente, Luiz C G

    2010-01-01

    The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution.

  10. Oil-free bearing development for high-speed turbomachinery in distributed energy systems - dynamic and environmental evaluation

    NASA Astrophysics Data System (ADS)

    Tkacz, Eliza; Kozanecka, Dorota; Kozanecki, Zbigniew; Łagodziński, Jakub

    2015-09-01

    Modern distributed energy systems, which are used to provide an alternative to or an enhancement of traditional electric power systems, require small size highspeed rotor turbomachinery to be developed. The existing conventional oil-lubricated bearings reveal performance limits at high revolutions as far as stability and power loss of the bearing are concerned. Non-conventional, oil-free bearings lubricated with the machine working medium could be a remedy to this issue. This approach includes a correct design of the machine flow structure and an accurate selection of the bearing type. Chosen aspects of the theoretical and experimental investigations of oil-free bearings and supports; including magnetic, tilting pad, pressurized aerostatic and hydrostatic bearings as well as some applications of oil-free bearing technology for highspeed turbomachinery; are described in the paper.

  11. Steel pressure vessels for hydrostatic pressures to 50 kilobars.

    PubMed

    Lavergne, A; Whalley, E

    1978-07-01

    Cylindrical steel pressure vessels are described that can be used for hydrostatic pressures up to 50 kilobars. Monoblock vessels of 350 maraging steel can be used to 40 kilobars and compound vessels with an inner vessel of 350 maraging steel and an outer vessel of 300 maraging steel to 50 kilobars. Neither requires the cylinder to be end loaded, and so they are much easier to use than the more usual compound vessels with a tungsten carbide inner and steel outer vessel.

  12. Hydrostatic levelling systems: Measuring at the system limits

    NASA Astrophysics Data System (ADS)

    Meier, Edi; Geiger, Alain; Ingensand, Hilmar; Licht, Hans; Limpach, Philippe; Steiger, Andreas; Zwyssig, Roger

    2010-09-01

    Three hydrostatic displacement monitoring system applications in Switzerland are discussed; the first concerns experience gained monitoring the foundation of the Albigna dam, the second relating to the underground stability of the Swiss Light Source synchrotron and the third concerning the deformation of a bridge near the city of Lucerne. Two different principles were applied, the Hydrostatic Levelling System (HLS) using the “half-filled pipe principle” developed by the Paul Scherrer Institute and the Large Area Settlement System (LAS) using the “differential pressure principle”. With both systems ground deformations induced by tidal forces can be seen. However, high accuracy of single sensors is not sufficient. A well-designed configuration of the complete system is equally important. On the other hand there are also limits imposed by installation logistics and by the environmental conditions. An example is the bridge monitoring application, where the acceleration along the bridge due to the passage of heavy trucks limits the feasibility of using hydrostatic levelling measurements.

  13. Investigating Science through Bears (and Teddy Bears).

    ERIC Educational Resources Information Center

    Smith, Karlene Ray

    1997-01-01

    Presents cooperative classroom projects using science as the initial basis for the study of bears. These projects may also involve other areas of the curriculum such as mathematics, art, and music. "Black Bear" activities include following a park ranger to study our National Parks and researching and building a full-sized brown bear…

  14. A new generation of the regional climate model REMO: REMO non-hydrostatic

    NASA Astrophysics Data System (ADS)

    Sieck, Kevin; Raub, Thomas; Marien, Lennart; Buntemeyer, Lars; Jacob, Daniela

    2016-04-01

    The regional climate model REMO is well established and has proofed it's value in regional climate simulations for more than a decade. However, due to the hydrostatic formulation REMO is not able to produce useful regional climate information on scales smaller than ~10 km. The demand for higher resolution data especially in the climate service sector is evident. Often climate change information on urban district or even point level is needed. A previous development of a non-hydrostatic dynamical core for REMO utilizing ideas of Miller and Pearce (1974) and Janjic (2001) has been picked up and implemented into the latest hydrostatic REMO version. One of the advantages of the Janjic formulation is that hydrostatic and non-hydrostatic computations are well separated. This offers a straightforward implementation of the non-hydrostatic calculations into an existing hydrostatic model. Other advantages are the easy quantification of the error done by the hydrostatic approximation and the lower computational costs at lower resolutions by switching of the non-hydrostatic part. We will show results from climate simulations on the EURO-CORDEX domain with and without non-hydrostatic option.

  15. Compression of α-cristobalite under different hydrostatic conditions

    NASA Astrophysics Data System (ADS)

    Cernok, Ana; Marquardt, Katharina; Bykova, Elena; Liermann, Hanns-Peter; Dubrovinsky, Leonid

    2015-04-01

    The response of α-cristobalite to high-pressure has been a subject of numerous experimental and theoretical studies for more than two decades. The results indicated prolific polymorphism under high pressures, yet no consensus has emerged on what is the sequence of these pressure-induced transformations. In particular, the structure of the high-pressure polymorph that appears above ~10 GPa (hereafter cristobalite X-I), which is believed to be a direct link between the low-pressure (silicon in SiO4 tetrahedra) and the high-pressure (SiO6 octahedra) forms of silica remained elusive. This study examined the response of α-cristobalite when compressed at different levels of hydrostaticity, with the special focus on formation and stability of cristobalite X-I. The structural behavior of cristobalite under pressure was investigated up to ~80 GPa and at ambient temperature. We investigated behavior of single crystals and powders, in either (quasy)-hydrostatic or non-hydrostatic environment. In situ high pressure transformation path and structural behavior was studied by means of Raman spectroscopy and synchrotron X-ray diffraction (XRD). The samples recovered after pressure release were additionally investigated by transmission electron microscopy (TEM). Low- or α-cristobalite responds differently to high pressure depending on the degree of the hydrostaticity. The highest attainable hydrostaticity preserves the initial structure of cristobalite at least up to ~15 GPa. When the crystal experiences even slight stresses during an experiment, transformation sequence leads to cristobalite X-I - a monoclinic polymorph with silicon in octahedral coordination. This polymorph belongs to the family of the high-pressure silica phases that are comprised of distorted close-packed array of oxygen ions in which silicon atoms fully or partially occupy octahedral sites. The reflections collected on a single crystal at ~11 GPa can be indexed by a monoclinic unit cell a=6.658(9) Å, b=4

  16. Mechanical spin bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1998-01-01

    A spin bearing assembly including, a pair of mutually opposing complementary bearing support members having mutually spaced apart bearing support surfaces which may be, for example, bearing races and a set of spin bearings located therebetween. Each spin bearing includes a pair of end faces, a central rotational axis passing through the end faces, a waist region substantially mid-way between the end faces and having a first thickness dimension, and discrete side surface regions located between the waist region and the end faces and having a second thickness dimension different from the first thickness dimension of the waist region and wherein the side surface regions further have respective curvilinear contact surfaces adapted to provide a plurality of bearing contact points on the bearing support members.

  17. Axial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  18. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  19. TOPICAL REVIEW: Superconducting bearings

    NASA Astrophysics Data System (ADS)

    Hull, John R.

    2000-02-01

    The physics and technology of superconducting bearings is reviewed. Particular attention is given to the use of high-temperature superconductors (HTSs) in rotating bearings. The basic phenomenology of levitational forces is presented, followed by a brief discussion of the theoretical models that can be used for conceptual understanding and calculations. The merits of various HTS bearing designs are presented, and the behaviour of HTS bearings in typical situations is discussed. The article concludes with a brief survey of various proposed applications for HTS bearings.

  20. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  1. Single-molecule imaging at high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Vass, Hugh; Lucas Black, S.; Flors, Cristina; Lloyd, Diarmuid; Bruce Ward, F.; Allen, Rosalind J.

    2013-04-01

    Direct microscopic fluorescence imaging of single molecules can provide a wealth of mechanistic information, but up to now, it has not been possible under high pressure conditions, due to limitations in microscope pressure cell design. We describe a pressure cell window design that makes it possible to image directly single molecules at high hydrostatic pressure. We demonstrate our design by imaging single molecules of Alexa Fluor 647 dye bound to DNA, at 120 and 210 bar, and following their fluorescence photodynamics. We further show that the failure pressure of this type of pressure cell window can be in excess of 1 kbar.

  2. Pasteurization of food by hydrostatic high pressure: chemical aspects.

    PubMed

    Tauscher, B

    1995-01-01

    Food pasteurized by hydrostatic high pressure have already been marketed in Japan. There is great interest in this method also in Europe and USA. Temperature and pressure are the essential parameters influencing the state of substances including foods. While the influence of temperature on food has been extensively investigated, effects of pressure, also in combination with temperature, are attracting increasing scientific attention now. Processes and reactions in food governed by Le Chatelier's principle are of special interest; they include chemical reactions of both low- and macromolecular compounds. Theoretical fundamentals and examples of pressure affected reactions are presented.

  3. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  4. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.

    1998-09-08

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.

  5. Hydrostatic pressure studies of polyvinylidine fluoride (PVDF) and its copolymers

    SciTech Connect

    Samara, G.A.; Bauer, F.

    1987-01-01

    The frequency, temperature and hydrostatic pressure (less than or equal to10 kbar) dependences of the dielectric properties, molecular relaxations and phase transitions in PVDF and a copolymer with a 30% trifluorethylene were investigated. For the copolymer, both the ferroelectric transition (T/sub c/) and dynamic melting (T/sub m/) temperatures exhibit large increases with pressure. PVDF itself does not exhibit a T/sub c/ below T/sub m/, but its T/sub m/ also shows a large increase with pressure. The pressure and frequency dependences suggest an explanation for why it is possible to use these polymers as piezoelectric shock wave gauges to relatively high shock pressures.

  6. Hydrostatic pressure sensing with surface-core fibers

    NASA Astrophysics Data System (ADS)

    Osório, Jonas H.; Franco, Marcos A. R.; Cordeiro, Cristiano M. B.

    2015-09-01

    In this paper, we report the employment of surface-core fibers for hydrostatic pressure sensing. To our knowledge, this is the first demonstration of the use of these fibers for the referenced purpose. Theoretical simulations of the fiber structure were performed in order to estimate fiber phase and group birefringence values and its pressure sensitivity coefficient. In order to test fiber performance when acting as a pressure sensor, the same was placed in an polarimetric setup and its spectral response was measured. A sensitivity of 4.8 nm/MPa was achieved, showing good resemblance to the expected sensitivity value (4.6 nm/MPa).

  7. Nonaxisymmetric incompressible hydrostatic pressure effects in radial face seals

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1976-01-01

    A flat seal having an angular misalinement is analyzed, taking into account the radial variations in seal clearance. An analytical solution for axial force, tilting moment, and leakage is presented that covers the whole range from zero to full angular misalinement. Nonaxisymmetric hydrostatic pressures due to the radial variations in the film thickness have a considerable effect on seal stability. When the high pressure is on the outer periphery of the seal, both the axial force and the tilting moment are nonrestoring. The case of high-pressure seals where cavitation is eliminated is discussed, and the possibility of dynamic instability is pointed out.

  8. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    NASA Technical Reports Server (NTRS)

    Curwen, Peter W.; Rao, Dantam K.; Wilson, Donald R.

    1992-01-01

    This report describes a design and analysis study performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061. The objective of the study was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in long-term space missions. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) system consisting of two 25-kWe free-piston Stirling engine modules. Two different versions of the RSSPC engine modules have been defined under NASA Contract NAS3-25463. These modules currently use hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Results of this study show that active magnetic bearings of the attractive electromagnetic type are technically feasible for RSSPC application provided that wire insulation with 60,000-hr life capability at 300 C can be developed for the bearing coils. From a design integration standpoint, both versions of the RSSPC were found to be conceptually amenable to magnetic support of the power piston assembly. However, only one version of the RSSPC was found to be amendable to magnetic support of the displacer assembly. Unacceptable changes to the basic engine design would be required to incorporate magnetic displacer bearings into the second version. Complete magnetic suspension of the RSSPC can potentially increase overall efficiency of the Stirling cycle power converter by 0.53 to 1.4 percent (0.15 to 0.4 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. However, these advantages are accompanied by a 5 to 8 percent increase in specific mass of the RSSPC, depending on the RSSPC version employed. Additionally, magnetic bearings are much more complex, both mechanically and particularly electronically, than hydrostatic bearings. Accordingly, long

  9. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    DOE PAGES

    Chambliss, K.; Diwan, M.; Simos, N.; ...

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less

  10. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    SciTech Connect

    Chambliss, K.; Diwan, M.; Simos, N.; Sundaram, S. K.

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for all measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.

  11. Meso-NH: Non-hydrostatic mesoscale atmospheric model

    NASA Astrophysics Data System (ADS)

    Laboratoire d'Aérologie; Centre National de Recherches Météorologiques

    2016-12-01

    Meso-NH is the non-hydrostatic mesoscale atmospheric model of the French research community jointly developed by the Laboratoire d'Aérologie (UMR 5560 UPS/CNRS) and by CNRM (UMR 3589 CNRS/Météo-France). Meso-NH incorporates a non-hydrostatic system of equations for dealing with scales ranging from large (synoptic) to small (large eddy) scales while calculating budgets and has a complete set of physical parameterizations for the representation of clouds and precipitation. It is coupled to the surface model SURFEX for representation of surface atmosphere interactions by considering different surface types (vegetation, city, ocean, lake) and allows a multi-scale approach through a grid-nesting technique. Meso-NH is versatile, vectorized, parallelized, and operates in 1D, 2D or 3D; it is coupled with a chemistry module (including gas-phase, aerosol, and aqua-phase components) and a lightning module, and has observation operators that compare model output directly with satellite observations, radar, lidar and GPS.

  12. L1448 IRS2E: A CANDIDATE FIRST HYDROSTATIC CORE

    SciTech Connect

    Chen Xuepeng; Arce, Hector G.; Zhang Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Schmalzl, Markus; Henning, Thomas

    2010-06-01

    Intermediate between the prestellar and Class 0 protostellar phases, the first core is a quasi-equilibrium hydrostatic object with a short lifetime and an extremely low luminosity. Recent magnetohydrodynamic (MHD) simulations suggest that the first core can even drive a molecular outflow before the formation of the second core (i.e., protostar). Using the Submillimeter Array and the Spitzer Space Telescope, we present high angular resolution observations toward the embedded dense core IRS2E in L1448. We find that source L1448 IRS2E is not visible in the sensitive Spitzer infrared images (at wavelengths from 3.6 to 70 {mu}m) and has weak (sub-) millimeter dust continuum emission. Consequently, this source has an extremely low bolometric luminosity (<0.1 L {sub sun}). Infrared and (sub-) millimeter observations clearly show an outflow emanating from this source; L1448 IRS2E represents thus far the lowest luminosity source known to be driving a molecular outflow. Comparisons with prestellar cores and Class 0 protostars suggest that L1448 IRS2E is more evolved than prestellar cores but less evolved than Class 0 protostars, i.e., at a stage intermediate between prestellar cores and Class 0 protostars. All these results are consistent with the theoretical predictions of the radiative/MHD simulations, making L1448 IRS2E the most promising candidate of the first hydrostatic core revealed so far.

  13. Study of glass hydrometer calibration by hydrostatic weighting

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyun; Wang, Jintao; Li, Zhihao; Zhang, Peiman

    2016-01-01

    Glass hydrometers are simple but effective instruments for measuring the density of liquids. Glass hydrometers calibration based on the Archimedes law, using silicon ring as a reference standard solid density, n-tridecane with density stability and low surface tension as the standard working liquid, based on hydrostatic weighing method designs a glass hydrometer calibration system. Glass hydrometer calibration system uses CCD image measurement system to align the scale of hydrometer and liquid surface, with positioning accuracy of 0.01 mm. Surface tension of the working liquid is measured by Whihemy plate. According to twice glass hydrometer weighing in the air and liquid can calculate the correction value of the current scale. In order to verify the validity of the principle of the hydrostatic weighing method of glass hydrometer calibration system, for measuring the density range of (770-790) kg/m3, with a resolution of 0.2 kg/m3 of hydrometer. The results of measurement compare with the Physikalisch-Technische Bundesanstalt(PTB) ,verifying the validity of the calibration system.

  14. Collapse of composite tubes under uniform external hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Smith, P. T.; Ross, C. T. F.; Little, A. P. F.

    2009-08-01

    This paper describes an experimental and a theoretical investigation into the collapse of 22 circular cylindrical composite tubes under external hydrostatic pressure. The investigations were on the collapse of fibre reinforced plastic tube specimens made from a mixture of three carbon and two E-glass fibre layers. The theoretical investigations were carried out using an in-house finite element computer program called BCLAM, together with the commercial computer package, namely ANSYS. It must be emphasised here that BS 5500 does not appear to exclusively cater for the buckling of composite shells under external hydrostatic pressure, so the work presented here is novel and should be useful to industry. The experimental investigations showed that the composite specimens behaved similarly to isotropic materials previously tested, in that the short vessels collapsed through axisymmetric deformation while the longer tubes collapsed through non-symmetric bifurcation buckling. Furthermore it was discovered that the models failed at changes of the composite lay-up due to the manufacturing process of these models. These changes seemed to be the weak points of the specimens.

  15. DX centers in III-V semiconductors under hydrostatic pressure

    SciTech Connect

    Wolk, J.A.

    1992-11-01

    DX centers are deep level defects found in some III-V semiconductors. They have persistent photoconductivity and large difference between thermal and optical ionization energies. Hydrostatic pressure was used to study microstructure of these defects. A new local vibrational mode (LVM) was observed in hydrostatically stressed, Si-doped GaAs. Corresponding infrared absorption peak is distinct from the Si{sub Ga} shallow donor LVM peak, which is the only other LVM peak observed in our samples, and is assigned to the Si DX center. Analysis of the relative intensities of the Si DX LVM and the Si shallow donor LVM peaks, combined with Hall effect and resistivity indicate that the Si DX center is negatively charged. Frequency of this new mode provides clues to the structure of this defect. A pressure induced deep donor level in S-doped InP was also discovered which has the properties of a DX center. Pressure at which the new defect becomes more stable than the shallow donor is 82 kbar. Optical ionization energy and energy dependence of the optical absorption cross section was measured for this new effect. Capture barrier from the conduction band into the DX state were also determined. That DX centers can be formed in InP by pressure suggests that DX states should be common in n-type III-V semiconductors. A method is suggested for predicting under what conditions these defects will be the most stable form of the donor impurity.

  16. Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2011-04-01

    As a means to improve versatility and safety of dielectric elastomer actuators (DEAs) for several fields of application, so-called 'hydrostatically coupled' DEAs (HC-DEAs) have recently been described. HC-DEAs are based on an incompressible fluid that mechanically couples a DE-based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. This paper presents ongoing developments of HC-DEAs and potential applications in the field of haptics. Three specific examples are considered. The first deals with a wearable tactile display used to provide users with tactile feedback during electronic navigation in virtual environments. The display consists of HCDEAs arranged in contact with finger tips. As a second example, an up-scaled prototype version of an 8-dots refreshable cell for dynamic Braille displays is shown. Each Braille dot consists of a miniature HC-DEA, with a diameter lower than 2 mm. The third example refers to a device for finger rehabilitation, conceived to work as a sort of active version of a rehabilitation squeezing ball. The device is designed to dynamically change its compliance according to an electric control. The three examples of applications intend to show the potential of the new technology and the prospective opportunities for haptic interfaces.

  17. Bearings: Technology and needs

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1982-01-01

    A brief status report on bearing technology and present and near-term future problems that warrant research support is presented. For rolling element bearings a material with improved fracture toughness, life data in the low Lambda region, a comprehensive failure theory verified by life data and incorporated into dynamic analyses, and an improved corrosion resistant alloy are perceived as important needs. For hydrodynamic bearings better definition of cavitation boundaries and pressure distributions for squeeze film dampers, and geometry optimization for minimum power loss in turbulent film bearings are needed. For gas film bearings, foil bearing geometries that form more nearly optimum film shapes for maximum load capacity, and more effective surface protective coatings for high temperature operation are needed.

  18. Bear Spray Safety Program

    USGS Publications Warehouse

    Blome, C.D.; Kuzniar, R.L.

    2009-01-01

    A bear spray safety program for the U.S. Geological Survey (USGS) was officially initiated by the Firearms Safety Committee to address accident prevention and to promote personnel training in bear spray and its transportation, storage, and use for defense against wild animals. Used as part of a system including firearms, or used alone for those who choose not to carry a firearm, bear spray is recognized as an effective tool that can prevent injury in a wild animal attack.

  19. Bearing restoration by grinding

    NASA Technical Reports Server (NTRS)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  20. Linear magnetic bearing

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A linear magnetic bearing system having electromagnetic vernier flux paths in shunt relation with permanent magnets, so that the vernier flux does not traverse the permanent magnet, is described. Novelty is believed to reside in providing a linear magnetic bearing having electromagnetic flux paths that bypass high reluctance permanent magnets. Particular novelty is believed to reside in providing a linear magnetic bearing with a pair of axially spaced elements having electromagnets for establishing vernier x and y axis control. The magnetic bearing system has possible use in connection with a long life reciprocating cryogenic refrigerator that may be used on the space shuttle.

  1. The tensile deformation behavior of nuclear-grade isotropic graphite posterior to hydrostatic loading

    NASA Astrophysics Data System (ADS)

    Yoda, S.; Eto, M.

    1983-10-01

    The effects of prehydrostatic loading on microstructural changes and tensile deformation behavior of nuclear-grade isotropic graphite have been examined. Scanning electron micrographs show that formation of microcracks associated with delamination between basal planes occurs under hydrostatic loading. Hydrostatic loading on specimens results in the decrease in tensile strength and increase in residual strain generated by the applied tensile stress at various levels, indicating that the graphite material is weakened by hydrostatic loading. A relationship between residual strain and applied tensile stress for graphite hydrostatically-loaded at several pressure levels can be approximately expressed as ɛ = ( AP + B) σn over a wide range hydrostatic pressure, where ɛ, P and σ denote residual strain, hydrostatic pressure and applied tensile stress, respectively; A, B and n are constants. The effects of prehydrostatic loading on the tensile stress-strain behavior of the graphite were examined in more detail. The ratio of stress after hydrostatic loading to that before hydrostatic loading on the stress-strain relationship remains almost unchanged irrespective of strain.

  2. 46 CFR 56.97-30 - Hydrostatic tests (modifies 137.4).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exceed the maximum test pressure of any component such as vessels, pumps, or valves in the system. (2) At... SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-30 Hydrostatic tests (modifies 137.4). (a) Provision of... system is filling. (b) Test medium and test temperature. (1) Water will be used for a hydrostatic...

  3. 46 CFR 56.97-30 - Hydrostatic tests (modifies 137.4).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... exceed the maximum test pressure of any component such as vessels, pumps, or valves in the system. (2) At... SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-30 Hydrostatic tests (modifies 137.4). (a) Provision of... system is filling. (b) Test medium and test temperature. (1) Water will be used for a hydrostatic...

  4. 46 CFR 56.97-30 - Hydrostatic tests (modifies 137.4).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... exceed the maximum test pressure of any component such as vessels, pumps, or valves in the system. (2) At... SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-30 Hydrostatic tests (modifies 137.4). (a) Provision of... system is filling. (b) Test medium and test temperature. (1) Water will be used for a hydrostatic...

  5. 46 CFR 56.97-30 - Hydrostatic tests (modifies 137.4).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... exceed the maximum test pressure of any component such as vessels, pumps, or valves in the system. (2) At... SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-30 Hydrostatic tests (modifies 137.4). (a) Provision of... system is filling. (b) Test medium and test temperature. (1) Water will be used for a hydrostatic...

  6. 46 CFR 56.97-30 - Hydrostatic tests (modifies 137.4).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... exceed the maximum test pressure of any component such as vessels, pumps, or valves in the system. (2) At... SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-30 Hydrostatic tests (modifies 137.4). (a) Provision of... system is filling. (b) Test medium and test temperature. (1) Water will be used for a hydrostatic...

  7. Effect of Eccentricity on the Static and Dynamic Performance of a Turbulent Hybrid Bearing

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis A.

    1991-01-01

    The effect of journal eccentricity on the static and dynamic performance of a water lubricated, 5-recess hybrid bearing is presented in detail. The hydrostatic bearing has been designed to operate at a high speed and with a large level of external pressurization. The operating conditions determine the flow in the bearing to be highly turbulent and strongly dominated by fluid inertia effects. The analysis covers the spectrum of journal center displacements directed towards the middle of a recess and towards the mid-land portion between two consecutive recesses. Predicted dynamic force coefficients are uniform for small to moderate eccentricities. For large journal center displacements, fluid cavitation and recess position determine large changes in the bearing dynamic performance. The effect of fluid inertia force coefficients on the threshold speed of instability and whirl ratio of a single mass flexible rotor is discussed.

  8. Experimental determination of the rotor dynamic coefficients of a gas-lubricated foil journal bearing

    NASA Astrophysics Data System (ADS)

    Hurley, Keith Alan

    1998-12-01

    This thesis describes an experimental investigation of the dynamic stiffness and damping characteristics of an air lubricated leaf-type foil journal bearing. A test bed with dynamic force and response measurement capabilities has been designed and fabricated as a part of the research effort. The test bed consists of a two inch diameter rotor which is supported on two hydrostatic air bearings. The test bearing is centered on the test rotor. The test bed has rotor speed capability of up to 30,000 rpm. Transverse static and dynamic loads of up to 100 lbs can be applied to the test bearing. Direct and cross-coupled transverse stiffness and damping coefficients for a two inch diameter by two inch long eight-leaf foil bearing are obtained using a frequency domain estimation algorithm. Foil bearing dynamic coefficient data is presented for a range of average bearing loads, rotor speeds, and whirl frequency ratios. Experimental predictions of dynamic coefficients for a plain rigid test bearing have been obtained for test bed validation purposes. These experimental results are shown to be in good agreement with corresponding theoretical predictions of rigid bearing dynamic coefficients obtained using a linearized perturbation analysis method. Simulated data has been used to investigate the effects of sensor calibration error and quantization error on the prediction of dynamic coefficients. The results of these investigations are also presented. A rotordynamic analysis is also presented and demonstrates how the dynamic coefficient data can be used to obtain a quantitative assessment of rotor/bearing system stability and frequency response characteristics. Dynamic response characteristics for rigid and compliant surface bearings are compared. The results substantiate the notion that foil bearings have enhanced dynamic performance characteristics in comparison to their rigid bearing counterparts.

  9. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings, phase 2

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis

    1994-01-01

    The Phase 2 (1994) Annual Progress Report presents two major report sections describing the thermal analysis of tilting- and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings. A literature review on the subject of two-phase flow in fluid film bearings and part of the proposed work for 1995 are also included. The programs delivered at the end of 1994 are named hydroflext and hydrotran. Both codes are fully compatible with the hydrosealt (1993) program. The new programs retain the same calculating options of hydrosealt plus the added bearing geometries, and unsteady flow and transient forced response. Refer to the hydroflext & hydrotran User's Manual and Tutorial for basic information on the analysis and instructions to run the programs. The Examples Handbook contains the test bearing cases along with comparisons with experimental data or published analytical values. The following major tasks were completed in 1994 (Phase 2): (1) extension of the thermohydrodynamic analysis and development of computer program hydroflext to model various bearing geometries, namely, tilting-pad hydrodynamic journal bearings, flexure-pad cylindrical bearings (hydrostatic and hydrodynamic), and cylindrical pad bearings with a simple elastic matrix (ideal foil bearings); (2) improved thermal model including radial heat transfer through the bearing stator; (3) calculation of the unsteady bulk-flow field in fluid film bearings and the transient response of a point mass rotor supported on bearings; and (4) a literature review on the subject of two-phase flows and homogeneous-mixture flows in thin-film geometries.

  10. Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure

    PubMed Central

    Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.

    2012-01-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and

  11. Low cost lobed bearing

    NASA Technical Reports Server (NTRS)

    Schuller, F. T.

    1970-01-01

    Separate sectors for each lobed area of the bearing are assembled into the bearing housing individually and bolted tightly against the housing inside diameter. The center of a grinding wheel and the center of the housing are offset, resulting in the desired inner radius and tilt of the sector.

  12. Damper bearing rotordynamics

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1990-01-01

    High side loads reduce the life of the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP) bearings. High stiffness damper seals were recommended to reduce the loads on the pump and turbine end bearings in the HPOTP. The seals designed for use on the pump end are expected to adequately reduce the bearing loads; the predicted performance of the planned turbine end seal is marginal. An alternative to the suggested turbine end seal design is a damper bearing with radial holes from the pressurized center of the turbopump rotor, feeding a smooth land region between two rough-stator/smooth-rotor annular seals. An analysis was prepared to predict the leakage and rotor dynamic coefficients (stiffness, damping, and added mass) of the damper bearing. Governing equations of the seal analysis modified to model the damper bearing; differences between the upstream conditions of the damper bearing and a typical annular seal; prediction of the damper bearing analysis; and assumptions of the analysis which require further investigation are described.

  13. Bearing fatigue investigation 3

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.; Bamberger, E. N.; Signer, H. R.

    1982-01-01

    The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.

  14. Cylindrical bearing analysis

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Pirvics, J.

    1981-01-01

    Program CYBEAN computes behavior of rolling-element bearings including effects of bearing geometry, shaft misalinement, and temperature. Accurate assessment is possible for various outer-ring and housing configurations. CYBEAN is structured for coordinated execution of modules that perform specific analytical tasks. It is written in FORTRAN IV for use on the UNIVAC 1100/40 computer.

  15. Arcturus and the Bears

    NASA Astrophysics Data System (ADS)

    Antonello, E.

    2009-08-01

    Arcturus is the brightest star in Bootes. The ancient Greek name Arktouros means Bear Guard. The star, however, is not close to Ursa Maior (Big She-Bear) and Ursa Minor (Little She-Bear), as the name would suggest. This curious discrepancy could be explained by the star proper motion, assuming the name Bear Guard is a remote cultural heritage. The proper motion analysis could allow us to get an insight also into an ancient myth regarding Ursa Maior. Though we cannot explain scientifically such a myth, some interesting suggestions can be obtained about its possible origin, in the context of the present knowledge of the importance of the cult of the bear both during the Palaeolithic times and for several primitive populations of modern times, as shown by the ethnological studies.

  16. Ultrahigh hydrostatic pressure extraction of flavonoids from Epimedium koreanum Nakai

    NASA Astrophysics Data System (ADS)

    Hou, Lili; Zhang, Shouqin; Dou, Jianpeng; Zhu, Junjie; Liang, Qing

    2011-02-01

    Herba Epimedii is one of the most famous Chinese herbal medicines listed in the Pharmacopoeia of the People's Republic of China, as one of the representatives of traditional Chinese herb, it has been widely applied in the field of invigorate the kidney and strengthen 'Yang'. The attention to Epimedium extract has more and more increased in recent years. In this work, a novel extraction technique, ultra-high hydrostatic pressure extraction (UPE) technology was applied to extract the total flavonoids of E. koreanum. Three factors (pressure, ethanol concentration and extraction time) were chosen as the variables of extraction experiments, and the optimum UPE conditions were pressure 350 MPa; ethanol concentration 50% (v/v); extraction time 5 min. Compared with Supercritical CO2 extraction, Reflux extraction and Ultrasonic-assisted extraction, UPE has excellent advantages (shorter extraction time, higher yield, better antioxidant activity, lower energy consumption and eco-friendly).

  17. Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure.

    PubMed

    Ritz, M; Tholozan, J L; Federighi, M; Pilet, M F

    2002-11-15

    High hydrostatic pressure is a new food preservation technology known for its capacity to inactivate spoilage and pathogenic microorganisms. This study investigated the damages inflicted on Listeria monocytogenes cells treated by high pressure for 10 min at 400 MPa in pH 5.6 citrate buffer. Under these conditions, no cell growth occurred after 48 h on plate count agar. Scanning electron microscopy (SEM) revealed that cellular morphology was not really affected. Measuring propidium iodide (PI) staining followed by flow cytometry demonstrated that membrane integrity was damaged in a small part of the population, although the membrane potential evaluated by oxonol fluorescence or measured by analytical methods was reduced from - 86 to - 5 mV. These results for the first time showed that such combined methods as fluorescent dyes monitored by flow cytometry and physiological activity measurements provide valuable indications on cellular viability.

  18. Hydrostatic equilibrium and stellar structure in f(R) gravity

    SciTech Connect

    Capozziello, S.; De Laurentis, M.; Odintsov, S. D.; Stabile, A.

    2011-03-15

    We investigate the hydrostatic equilibrium of stellar structure by taking into account the modified Lane-Emden equation coming out from f(R) gravity. Such an equation is obtained in a metric approach by considering the Newtonian limit of f(R) gravity, which gives rise to a modified Poisson equation, and then introducing a relation between pressure and density with polytropic index n. The modified equation results an integro-differential equation, which, in the limit f(R){yields}R, becomes the standard Lane-Emden equation. We find the radial profiles of the gravitational potential by solving for some values of n. The comparison of solutions with those coming from general relativity shows that they are compatible and physically relevant.

  19. Hydrostatic factors affect the gravity responses of algae and roots

    NASA Technical Reports Server (NTRS)

    Staves, Mark P.; Wayne, Randy; Leopold, A. C.

    1991-01-01

    The hypothesis of Wayne et al. (1990) that plant cells perceive gravity by sensing a pressure differential between the top and the bottom of the cell was tested by subjecting rice roots and cells of Caracean algae to external solutions of various densities. It was found that increasing the density of the external medium had a profound effect on the polar ratio (PR, the ratio between velocities of the downwardly and upwardly streaming cytoplasm) of the Caracean algae cells. When these cells were placed in solutions of denser compound, the PR decreased to less than 1, as the density of the external medium became higher than that of the cell; thus, the normal gravity-induced polarity was reversed, indicating that the osmotic pressure of the medium affects the cell's ability to respond to gravity. In rice roots, an increase of the density of the solution inhibited the rate of gravitropism. These results agree with predictions of a hydrostatic model for graviperception.

  20. On the Resistance of Nanofibrous Superhydrophobic Coatings to Hydrostatic Pressures

    NASA Astrophysics Data System (ADS)

    Bucher, T. M.; Emami, B.; Vahedi Tafreshi, H.; Gad-El-Hak, M.; Tepper, G. C.

    2011-11-01

    We present a numerical study aimed at investigating the influence of microstructural parameters on the resistance of submerged fibrous superhydrophobic coatings to elevated hydrostatic pressures. In particular, we generate 3-D virtual geometries comprised of randomly or orthogonally oriented horizontal fibers with bimodal diameter distributions resembling the microstructure of coatings produced via DC and AC electrospinning, respectively. These virtual geometries are then used as the computational domain for performing Full Morphology (FM) simulations to establish a relationship between the coatings' critical pressure--pressure beyond which the surface departs from the Cassie state--and their microstructures. Our numerical simulations are aimed at providing guidelines for the design and optimization of the coatings' microstructures. Financial support from DARPA, contract number W91CRB-10-1-0003, is acknowledged.

  1. Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning

    NASA Astrophysics Data System (ADS)

    Aguilera, Jesus; Wright, John D.; Bean, Vern E.

    2008-01-01

    We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 106 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 106 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 106 or larger due to surface tension, contact angle and temperature effects.

  2. High hydrostatic pressure tolerance of four different anhydrobiotic animal species.

    PubMed

    Horikawa, Daiki D; Iwata, Ken-Ichi; Kawai, Kiyoshi; Koseki, Shigenobu; Okuda, Takashi; Yamamoto, Kazutaka

    2009-03-01

    High hydrostatic pressure (HHP) can induce physical changes in DNA, proteins, and lipids, causing lethal or sublethal damage to organisms. However, HHP tolerance of animals has not been studied sufficiently. In this study, HHP tolerance of four species of invertebrate anhydrobiotes (the tardigrade Milnesium tardigradum, a nematode species in the family Plectidae, larvae of Polypedilum vanderplanki, and cysts of Artemia franciscana), which have the potential to enter anhydrobiosis upon desiccation, were investigated by exposing them to 1.2 GPa for 20 minutes. This exposure killed the anhydrobiotes in their ordinary hydrated state, but did not affect their survival in the anhydrobiotic state. The results indicated that the hydrated anhydrobiotes were vulnerable to HHP, but that HHP of 1.2 GPa was not sufficient to kill them in anhyrdobiosis.

  3. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    NASA Astrophysics Data System (ADS)

    Lemay, Serge G.; Panja, Debabrata; Molineux, Ian J.

    2013-02-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.

  4. Porcine radial artery decellularization by high hydrostatic pressure.

    PubMed

    Negishi, Jun; Funamoto, Seiichi; Kimura, Tsuyoshi; Nam, Kwangoo; Higami, Tetsuya; Kishida, Akio

    2015-11-01

    Many types of decellularized tissues have been studied and some have been commercially used in clinics. In this study, small-diameter vascular grafts were made using HHP to decellularize porcine radial arteries. One decellularization method, high hydrostatic pressure (HHP), has been used to prepare the decellularized porcine tissues. Low-temperature treatment was effective in preserving collagen and collagen structures in decellularized porcine carotid arteries. The collagen and elastin structures and mechanical properties of HHP-decellularized radial arteries were similar to those of untreated radial arteries. Xenogeneic transplantation (into rats) was performed using HHP-decellularized radial arteries and an untreated porcine radial artery. Two weeks after transplantation into rat carotid arteries, the HHP-decellularized radial arteries were patent and without thrombosis. In addition, the luminal surface of each decellularized artery was covered by recipient endothelial cells and the arterial medium was fully infiltrated with recipient cells.

  5. Oscillatory high hydrostatic pressure inactivation of Zygosaccharomyces bailii.

    PubMed

    Palou, E; López-Malo, A; Barbosa-Cánovas, G V; Welti-Chanes, J; Swanson, B G

    1998-09-01

    Zygosaccharomyces bailii inactivation was evaluated in oscillatory high hydrostatic pressure (HHP) treatments at sublethal pressures (207, 241, or 276 MPa) and compared with continuous HHP treatments in laboratory model systems with a water activity (aw) of 0.98 and pH 3.5. The yeast was inoculated into laboratory model systems and subjected to HHP in sterile bags. Two HHP treatments were conducted: continuous (holding times of 5, 10, 15, 20, 30, 60, or 90 min) and oscillatory (two, three, or four cycles with holding times of 5 min and two cycles with holding times of 10 min). Oscillatory pressure treatments increased the effectiveness of HHP processing. For equal holding times, Z. bailii counts decreased as the number of cycles increased. Holding times of 20 min in HHP oscillatory treatments at 276 MPa assured inactivation (< 10 CFU/ml) of Z. bailii initial inoculum. Oscillatory pressurization could be useful to decrease Z. bailii inactivation time.

  6. Multi-Pulsed High Hydrostatic Pressure Treatment of Foods

    PubMed Central

    Buzrul, Sencer

    2015-01-01

    Multi-pulsed high hydrostatic pressure (mpHHP) treatment of foods has been investigated for more than two decades. It was reported that the mpHHP treatment, with few exceptions, is more effective than the classical or single-pulsed HHP (spHHP) treatment for inactivation of microorganisms in fruit juice, dairy products, liquid whole egg, meat products, and sea foods. Moreover, the mpHHP treatment could be also used to inactivate enzymes in foods and to increase the shelf-life of foods. The effects of the mpHHP treatment of foods are summarized and the differences between the mpHHP and spHHP are also emphasized. PMID:28231197

  7. Cell Membranes Under Hydrostatic Pressure Subjected to Micro-Injection

    NASA Astrophysics Data System (ADS)

    Vassilev, Vassil M.; Kostadinov, Kostadin G.; Mladenov, Ivaïlo M.; Shulev, Assen A.; Stoilov, Georgi I.; Djondjorov, Peter A.

    2011-04-01

    The work is concerned with the determination of the mechanical behaviour of cell membranes under uniform hydrostatic pressure subject to micro-injections. For that purpose, assuming that the shape of the deformed cell membrane is axisymmetric a variational statement of the problem is developed on the ground of the so-called spontaneous curvature model. In this setting, the cell membrane is regarded as an axisymmetric surface in the three-dimensional Euclidean space providing a stationary value of the shape energy functional under the constraint of fixed total area and fixed enclosed volume. The corresponding Euler-Lagrange equations and natural boundary conditions are derived, analyzed and used to express the forces and moments in the membrane. Several examples of such surfaces representing possible shapes of cell membranes under pressure subjected to micro injection are determined numerically.

  8. Touchdown Ball-Bearing System for Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Kingsbury, Edward P.; Price, Robert; Gelotte, Erik; Singer, Herbert B.

    2003-01-01

    The torque-limited touchdown bearing system (TLTBS) is a backup mechanical-bearing system for a high-speed rotary machine in which the rotor shaft is supported by magnetic bearings in steady-state normal operation. The TLTBS provides ball-bearing support to augment or supplant the magnetic bearings during startup, shutdown, or failure of the magnetic bearings. The TLTBS also provides support in the presence of conditions (in particular, rotational acceleration) that make it difficult or impossible to control the magnetic bearings or in which the magnetic bearings are not strong enough (e.g., when the side load against the rotor exceeds the available lateral magnetic force).

  9. Thermal conductivity and compressive strain of foam neoprene insulation under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Bardy, Erik; Mollendorf, Joseph; Pendergast, David

    2005-10-01

    The purpose of this study was to show that the thermal properties of foam neoprene under hydrostatic pressure cannot be predicted by theoretical means, and that uni-axial pressure cannot simulate hydrostatic compression. The thermal conductivity and compressive strain of foam neoprene were measured under hydrostatic pressure. In parallel, uni-axial compressive strain data were collected. The experimental set-up and data were put into perspective with past published studies. It was shown that uni-axial compression yielded strains 20-25% greater than did hydrostatic compression. This suggests the need for direct hydrostatic pressure measurement. For comparison to hydrostatic experimental data, a series of thermal conductivity theories of two phase composites based on particulate phase geometry were utilized. Due to their dependence on the porosity and constituent thermal conductivities, a model to predict porosity under hydrostatic pressure was used and an empirical correlation was derived to calculate the thermal conductivity of pure neoprene rubber from experimental data. It was shown that, although some agreement between experimental data and thermal conductivity theories was present, no particular theory can be used because they all fail to model the complex structure of the pores. It was therefore concluded that an experimental programme, such as reported here, is necessary for direct measurement.

  10. HTS magnetic bearings

    NASA Astrophysics Data System (ADS)

    Werfel, Frank N.; Flögel-Delor, Uta; Rothfeld, Rolf; Wippich, Dieter; Riedel, Thomas

    2002-08-01

    Radial HTS magnetic bearings (SMB) up to 200 mm size are developed and tested in prototype fast rotating machines to demonstrate the potential to replace conventional bearings. The individual rotational bearing components HTS and PM, their physical interaction and technology is reviewed. Characterisation experiments are conducted to understand the rotor dynamic behaviour. In terms of unbalance and critical speeds the suspended wheels and rotors compare favourably with conventional bearing devices. The rationale of our present bearing technology lies in the assembling of both low-speed magnetic bearings for centrifugal and wafer processing units up to 20,000 rpm as well as a high-speed optical mirror accelerated to rim speed of more than 500 m/s (174,000 rpm) confirming stable low-drag and low energy operation. Two new-type U shaped semicircle HTS bearings coupled each with a 6 W/80 K cryocooler of the Stirling type allow the contact-free operation of a Si wafer carrier in semiconductor wet processes.

  11. Ball and Roller Bearings. A Teaching Reference.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    The manual provides a subject reference for ball and roller bearings. The following topics are included: (1) bearing nomenclature, (2) bearing uses, (3) bearing capacities, (4) shop area working conditions, (5) bearing removal, (6) bearing cleaning and inspection, (7) bearing replacement, (8) bearing lubrication, (9) bearing installation, (10)…

  12. Ball Bearing Mechanics

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Load-deflection relationships for different types of elliptical contacts such as those found in a ball bearing are developed. Simplified expressions that allow quick calculations of deformation to be made simply from a knowledge of the applied load, the material properties, and the geometry of the contacting elements are presented. Ball bearings subjected to radial, thrust and combined ball loads are analyzed. A design criterion for fatigue life of ball bearings is developed. The section of a satisfactory lubricant, as well as describing systems that provide a constant flow of lubricant to the contact, is considered.

  13. Arkansas black bear hunter survey

    USGS Publications Warehouse

    Pharris, Larry D.; Clark, Joseph D.

    1987-01-01

    Questionnaires were mailed to black bear (Ursus americanus) hunters in Arkansas following the 1980-84 bear seasons to determine participation, hunter success, and number of bears observed by hunters. Man-days of hunting to harvest a bear ranged from 148 to 671 and hunter success ranged from 0.4% to 2.2%. With the exception of 1980, number of permits issued, man-days of bear hunting, and bears harvested appear affected by hunting permit cost. 

  14. A 2D Unified (Non-) Hydrostatic Model of the Atmosphere with a Discontinuous Galerkin Method

    DTIC Science & Technology

    2011-11-07

    hydrostatic equations can be implemented in a unified way and their differences are controlled by a hydrostatic switch parameter δH . As described above...gravitational constant g. σ(x, z) ≥ 0 is the prescribed Raleigh damping parameter and ρσ, Uσ, Θσ the cor- responding fields that realize the non...reflecting boundary within a sponge layer, see section 4. For the parameter switch δH = 1, Eq. (1) describes the non-hydrostatic system, for δH = 0 these

  15. Roller bearing geometry design

    NASA Technical Reports Server (NTRS)

    Savage, M.; Pinkston, B. H. W.

    1976-01-01

    A theory of kinematic stabilization of rolling cylinders is extended and applied to the design of cylindrical roller bearings. The kinematic stabilization mechanism puts a reverse skew into the rolling elements by changing the roller taper. Twelve basic bearing modification designs are identified amd modeled. Four have single transverse convex curvature in their rollers while eight have rollers which have compound transverse curvature made up of a central cylindrical band surrounded by symmetric bands with slope and transverse curvature. The bearing designs are modeled for restoring torque per unit axial displacement, contact stress capacity, and contact area including dynamic loading, misalignment sensitivity and roller proportion. Design programs are available which size the single transverse curvature roller designs for a series of roller slopes and load separations and which design the compound roller bearings for a series of slopes and transverse radii of curvature. The compound rollers are proportioned to have equal contact stresses and minimum size. Design examples are also given.

  16. Gear bearing drive

    NASA Technical Reports Server (NTRS)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  17. High speed hybrid bearing comprising a fluid bearing and a rolling bearing convected in series

    NASA Technical Reports Server (NTRS)

    Anderson, W. J. (Inventor)

    1973-01-01

    A description is given of an antifriction bearing and a process by which its fatigue life may be extended. The method involves a rotating shaft supported by a fluid bearing and a rolling element bearing coupled in series. Each bearing turns at a fraction of the rotational speed of the shaft. The fluid bearing is preferably conical, thereby providing thrust and radial load support in a single bearing structure.

  18. Magnetic bearing and motor

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A magnetic bearing for passively suspending a rotatable element subjected to axial and radial thrust forces is disclosed. The magnetic bearing employs a taut wire stretched along the longitudinal axis of the bearing between opposed end pieces and an intermediate magnetic section. The intermediate section is segmented to provide oppositely directed magnetic flux paths between the end pieces and may include either an axially polarized magnets interposed between the segments. The end pieces, separated from the intermediate section by air gaps, control distribution of magnetic flux between the intermediate section segments. Coaxial alignment of the end pieces with the intermediate section minimizes magnetic reluctance in the flux paths endowing the bearing with self-centering characteristics when subjected to radial loads. In an alternative embodiment, pairs of oppositely wound armature coils are concentrically interposed between segments of the intermediate section in concentric arcs adjacent to radially polarized magnets to equip a magnetic bearing as a torsion drive motor. The magnetic suspension bearing disclosed provides long term reliability without maintenance with application to long term space missions such as the VISSR/VAS scanning mirror instrument in the GOES program.

  19. Load responsive hydrodynamic bearing

    DOEpatents

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  20. Investigation of Pressurized Wave Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dimofte, Florin

    2003-01-01

    The wave bearing has been pioneered and developed by Dr. Dimofte over the past several years. This bearing will be the main focus of this research. It is believed that the wave bearing offers a number of advantages over the foil bearing, which is the bearing that NASA is currently pursuing for turbomachinery applications. The wave bearing is basically a journal bearing whose film thickness varies around the circumference approximately sinusoidally, with usually 3 or 4 waves. Being a rigid geometry bearing, it provides precise control of shaft centerlines. The wave profile also provides good load capacity and makes the bearing very stable. Manufacturing techniques have been devised that should allow the production of wave bearings almost as cheaply as conventional full-circular bearings.

  1. FILAMENT FORMATION BY ESCHERICHIA COLI AT INCREASED HYDROSTATIC PRESSURES1

    PubMed Central

    Zobell, Claude E.; Cobet, Andre B.

    1964-01-01

    ZoBell, Claude E. (University of California, La Jolla), and Andre B. Cobet. Filament formation by Escherichia coli at increased hydrostatic pressures. J. Bacteriol. 87:710–719. 1964.—The reproduction as well as the growth of Escherichia coli is retarded by hydrostatic pressures ranging from 200 to 500 atm. Reproduction was indicated by an increase in the number of cells determined by plating on EMB Agar as well as by direct microscopic counts. Growth, which is not necessarily synonymous with reproduction, was indicated by increase in dry weight and protein content of the bacterial biomass. At increased pressures, cells of three different strains of E. coli tended to form long filaments. Whereas most normal cells of E. coli that developed at 1 atm were only about 2 μ long, the mean length of those that developed at 475 atm was 2.93 μ for strain R4, 3.99 μ for strain S, and 5.82 μ for strain B cells. Nearly 90% of the bacterial biomass produced at 475 atm by strain B was found in filaments exceeding 5 μ in length; 74.7 and 16.4% of the biomass produced at 475 atm by strains S and R4, respectively, occurred in such filaments. Strain R4 formed fewer and shorter (5 to 35 μ) filaments than did the other two strains, whose filaments ranged in length from 5 to >100 μ. The bacterial biomass produced at all pressures had approximately the same content of protein and nucleic acids. But at increased pressures appreciably more ribonucleic acid (RNA) and proportionately less deoxyribonucleic acid (DNA) was found per unit of biomass. Whereas the RNA content per cell increased with cell length, the amount of DNA was nearly the same in long filaments formed at increased pressure as in cells of normal length formed at 1 atm. The inverse relationship between the concentration of DNA and cell length in all three strains of E. coli suggests that the failure of DNA to replicate at increased pressure may be responsible for a repression of cell division and consequent filament

  2. Intraband optical absorption in a single quantum ring: Hydrostatic pressure and intense laser field effects

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.

    2016-11-01

    The intraband optical absorption in GaAs/Ga0.7Al0.3As two-dimensional single quantum ring is investigated. Considering the combined effects of hydrostatic pressure and intense laser field the energy of the ground and few excited states has been found using the effective mass approximation and exact diagonalization technique. The energies of these states and the corresponding threshold energy of the intraband optical transitions are examined as a function of hydrostatic pressure for the different values of the laser field parameter. We also investigated the dependencies of the intraband optical absorption coefficient as a function of incident photon energy for different values of hydrostatic pressure and laser field parameter. It is found that the effects of hydrostatic pressure and intense laser field lead to redshift and blueshift of the intraband optical spectrum respectively.

  3. String and Sticky Tape Experiments: Light Pipes, Hydrostatics, Surface Tension and a Milk Carton.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1984-01-01

    Describes a demonstration of light pipes using low-cost materials, relating it to fiber optics communication. Also provides several experiments in hydrostatics and hydrodynamics using the materials for light pipe. (JM)

  4. Effect of high hydrostatic pressure on overall quality parameters of watermelon juice.

    PubMed

    Liu, Y; Zhao, X Y; Zou, L; Hu, X S

    2013-06-01

    High hydrostatic pressure as a kind of non-thermal processing might maintain the quality of thermo-sensitive watermelon juice. So, the effect of high hydrostatic pressure treatment on enzymes and quality of watermelon juice was investigated. After high hydrostatic pressure treatment, the activities of polyphenol oxidase, peroxidase, and pectin methylesterase of juice decreased significantly with the pressure (P < 0.05). Inactivation of polyphenol oxidase and peroxidase could be fitted by two-fraction model and that of pectin methylesterase could be described by first-order reaction model. Titratable acidity, pH, and total soluble solid of juice did not change significantly (P > 0.05). No significant difference was observed in lycopene and total phenolics after high hydrostatic pressure treatment when compared to the control (P > 0.05). Cloudiness and viscosity increased with pressure (P < 0.05) but did not change significantly with treatment time (P > 0.05). a*- and b*-value both unchanged after high hydrostatic pressure treatment (P > 0.05) while L*-value increased but the values had no significant difference among treated juices. Browning degree after high hydrostatic pressure treatment decreased with increase in pressure and treatment time (P < 0.05). Through the comparison of total color difference values, high hydrostatic pressure had little effect on color of juice. The results of this study demonstrated the efficacy of high hydrostatic pressure in inactivating enzymes and maintaining the quality of watermelon juice.

  5. Installation and Test of a Hydrostatic Drive Transmission in a Government Furnished M-113 Vehicle

    DTIC Science & Technology

    1986-11-10

    attractive to the designer; but in the past, poor efficiency, lack of inter-track torque transfer during powered turns and lack of control stability have...forced further development prior to adoption. The Rexroth Corporation Hydrostatic Drive with Secondary Regulation (HDSR) is a unique and inovative form of...hydrostatic drive system which will provide an effective and efficient means of transmitting power from the engine to the tracks of the vehicle

  6. The Development of the Non-hydrostatic Unified Model of the Atmosphere (NUMA)

    DTIC Science & Technology

    2011-09-19

    Space-Time) Spatial Discretization Methods •  Element-based Galerkin Methods –  Continuous Galerkin –  Discontinuous Galerkin Element-based Galerkin ...Challenges Remain •  Continuous and Discontinuous Galerkin methods are good choices for hydrostatic and non-hydrostatic atmospheric models. •  The...capabilities: 1.  Highly scalable on current and future computer architectures (exascale computing: this means CPUs and GPUs ) 2.  Flexibility to use a

  7. Climate Drives Polar Bear Origins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  8. Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure.

    PubMed

    Scoma, Alberto; Yakimov, Michail M; Boon, Nico

    2016-01-01

    The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  9. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology.

    PubMed

    Wang, Chung-Yi; Huang, Hsiao-Wen; Hsu, Chiao-Ping; Yang, Binghuei Barry

    2016-01-01

    High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications.

  10. Carbon Nanotubes under Hydrostatic Pressure: The Deformation Transition

    NASA Astrophysics Data System (ADS)

    Cohen, Marvin L.; Capaz, Rodrigo B.; Tangney, Paul

    2005-03-01

    Isolated single-wall carbon nanotubes (SWNTs) deform from their usual cylindrical shape to a collapsed or oval cross-section upon increase of hydrostatic pressure. We use classical molecular-dynamics simulations to study the structural properties of isolated SWNTs under pressure near this deformation transition. Within our model, we find two distinct behaviors depending on the nanotube diameter d. For d > dc 12 ,WNTs collapse from a circle to a peanut or racetrack cross-section at a critical pressure Pc with a discontinuous change in volume. The van der Waals interactions between the opposite walls of the tube play a crucial role in driving this discontinuous transition. For a range of pressures, both circle and collapsed cross-sections are locally stable and the system shows hysteresis. For d < dc, the transition is continuous, from a circle to an oval cross-section. RBC acknowledges financial support from the John Simon Guggenheim Memorial Foundation and Brazilian funding agencies CNPq, CAPES, FAPERJ, Instituto de Nanociências, FUJB-UFRJ and PRONEX-MCT. This work was supported by NSF Grant No. DMR04-39768 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. DOE under Contract No. DE-AC03-76SF00098. Computational resources have been provided by NERSC and NPACI.

  11. Raman study of radiation-damaged zircon under hydrostatic compression

    NASA Astrophysics Data System (ADS)

    Nasdala, Lutz; Miletich, Ronald; Ruschel, Katja; Váczi, Tamás

    2008-12-01

    Pressure-induced changes of Raman band parameters of four natural, gem-quality zircon samples with different degrees of self-irradiation damage, and synthetic ZrSiO4 without radiation damage, have been studied under hydrostatic compression in a diamond anvil cell up to ~10 GPa. Radiation-damaged zircon shows similar up-shifts of internal SiO4 stretching modes at elevated pressures as non-damaged ZrSiO4. Only minor changes of band-widths were observed in all cases. This makes it possible to estimate the degree of radiation damage from the width of the ν3(SiO4) band of zircon inclusions in situ, almost independent from potential “fossilized pressures” or compressive strain acting on the inclusions. An application is the non-destructive analysis of gemstones such as corundum or spinel: broadened Raman bands are a reliable indicator of self-irradiation damage in zircon inclusions, whose presence allows one to exclude artificial color enhancement by high-temperature treatment of the specimen.

  12. Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure

    PubMed Central

    Scoma, Alberto; Yakimov, Michail M.; Boon, Nico

    2016-01-01

    The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation. PMID:27536290

  13. Optimization of hydrostatic transmissions by means of virtual instrumentation technique

    NASA Astrophysics Data System (ADS)

    Ion Guta, Dragos Daniel; Popescu, Teodor Costinel; Dumitrescu, Catalin

    2010-11-01

    Obtaining mathematical models, as close as possible to physical phenomena which are intended to be replicated or improved, help us in deciding how to optimize them. The introduction of computers in monitoring and controlling processes caused changes in technological systems. With support from the methods for identification of processes and from the power of numerical computing equipment, researchers and designers can shorten the period for development of applications in various fields by generating a solution as close as possible to reality, since the design stage [1]. The paper presents a hybrid solution of modeling / simulation of a hydrostatic transmission with mixed adjustment. For simulation and control of the examined process we have used two distinct environments, AMESim and LabVIEW. The proposed solution allows coupling of the system's model to the software control modules developed using virtual instrumentation. Simulation network of the analyzed system was "tuned" and validated by an actual model of the process. This paper highlights some aspects regarding energy and functional advantages of hydraulic transmissions based on adjustable volumetric machines existing in their primary and secondary sectors [2].

  14. Low hydrostatic head electrolyte addition to fuel cell stacks

    DOEpatents

    Kothmann, Richard E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces.

  15. Hydraulic efficiency of a hydrostatic transmission with a variable displacement pump and motor

    NASA Astrophysics Data System (ADS)

    Coombs, Daniel

    Pumps and motors are commonly connected hydraulically to create hydrostatic drives, also known as hydrostatic transmissions. A typical hydrostatic transmission consists of a variable displacement pump and a fixed displacement motor. Maximum efficiency is typically created for the system when the motor operates at maximum volumetric displacement. The objective of this research is to determine if a hydrostatic transmission with a variable displacement motor can be more efficient than one with a fixed displacement motor. A work cycle for a Caterpillar 320D excavator was created and the efficiency of the hydrostatic drive system, controlling the swing circuit, with a fixed displacement motor was compared to the efficiency with a variable displacement motor. Both multiplicative and additive uncertainty analysis were performed to determine uncertainty models that could be used to analyze the robustness of the system with feedback control applied. A PID and an H∞ controller were designed for a position control model, as well as velocity control. It was found that while it may seem obvious to achieve maximum efficiency at maximum displacement, there are some cases where maximum efficiency is achieved at a lower displacement. It was also found that for the given work cycle, a hydrostatic transmission with a variable displacement motor can be more efficient.

  16. Fluid lubricated bearing assembly

    DOEpatents

    Boorse, Henry A.; Boeker, Gilbert F.; Menke, John R.

    1976-01-01

    1. A support for a loaded rotatable shaft comprising in combination on a housing having a fluid-tight cavity encasing an end portion of said shaft, a thrust bearing near the open end of said cavity for supporting the axial thrust of said shaft, said thrust bearing comprising a thrust plate mounted in said housing and a thrust collar mounted on said shaft, said thrust plate having a central opening the peripheral portion of which is hermetically sealed to said housing at the open end of said cavity, and means for supplying a fluid lubricant to said thrust bearing, said thrust bearing having a lubricant-conducting path connecting said lubricant supplying means with the space between said thrust plate and collar intermediate the peripheries thereof, the surfaces of said plate and collar being constructed and arranged to inhibit radial flow of lubricant and, on rotation of said thrust collar, to draw lubricant through said path between the bearing surfaces and to increase the pressure therebetween and in said cavity and thereby exert a supporting force on said end portion of said shaft.

  17. Fault tolerant magnetic bearings

    SciTech Connect

    Maslen, E.H.; Sortore, C.K.; Gillies, G.T.; Williams, R.D.; Fedigan, S.J.; Aimone, R.J.

    1999-07-01

    A fault tolerant magnetic bearing system was developed and demonstrated on a large flexible-rotor test rig. The bearing system comprises a high speed, fault tolerant digital controller, three high capacity radial magnetic bearings, one thrust bearing, conventional variable reluctance position sensors, and an array of commercial switching amplifiers. Controller fault tolerance is achieved through a very high speed voting mechanism which implements triple modular redundancy with a powered spare CPU, thereby permitting failure of up to three CPU modules without system failure. Amplifier/cabling/coil fault tolerance is achieved by using a separate power amplifier for each bearing coil and permitting amplifier reconfiguration by the controller upon detection of faults. This allows hot replacement of failed amplifiers without any system degradation and without providing any excess amplifier kVA capacity over the nominal system requirement. Implemented on a large (2440 mm in length) flexible rotor, the system shows excellent rejection of faults including the failure of three CPUs as well as failure of two adjacent amplifiers (or cabling) controlling an entire stator quadrant.

  18. Tribology of alternative bearings.

    PubMed

    Fisher, John; Jin, Zhongmin; Tipper, Joanne; Stone, Martin; Ingham, Eileen

    2006-12-01

    The tribological performance and biological activity of the wear debris produced has been compared for highly cross-linked polyethylene, ceramic-on-ceramic, metal-on-metal, and modified metal bearings in a series of in vitro studies from a single laboratory. The functional lifetime demand of young and active patients is 10-fold greater than the estimated functional lifetime of traditional polyethylene. There is considerable interest in using larger diameter heads in these high demand patients. Highly cross-linked polyethylene show a four-fold reduction in functional biological activity. Ceramic-on-ceramic bearings have the lowest wear rates and least reactive wear debris. The functional biological activity is 20-fold lower than with highly cross-linked polyethylene. Hence, ceramic-on-ceramic bearings address the tribological lifetime demand of highly active patients. Metal-on-metal bearings have substantially lower wear rates than highly cross-linked polyethylene and wear decreases with head diameter. Bedding in wear is also lower with reduced radial clearance. Differential hardness ceramic-on-metal bearings and the application of ceramic-like coatings reduce metal wear and ion levels.

  19. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  20. Magnetic bearings for spacecraft

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1972-01-01

    Magnetic bearings have been successfully applied to motorized rotor systems in the multi-kilogram range, at speeds up to 1200 radians per second. These engineering models also indicated the need for continued development in specific areas to make them feasible for spacecraft applications. Significant power reductions have recently been attained. A unique magnetic circuit, combining permanent magnets with electromagnetic control, has a bidirectional forcing capability with improved current sensitivity. The multi-dimensional nature of contact-free rotor support is discussed. Stable continuous radial suspension is provided by a rotationally symmetric permanent magnet circuit. Two bearings, on a common shaft, counteract the normal instability perpendicular to the rotational axis. The axial direction is servoed to prevent contact. A new bearing technology and a new field of application for magnetics is foreseen.

  1. Solving bearing overheating problems

    SciTech Connect

    Jendzurski, T.

    1995-05-08

    Overheating is a major indicator, along with vibration and noise, of an underlying problem affecting a bearing or related components. Because normal operating temperatures vary widely from one application to another, no single temperature is a reliable sign of overheating in every situation. By observing an application when it is running smoothly, a technician can establish a benchmark temperature for a particular bearing arrangement. Wide deviations from this accepted norm generally indicate troublesome overheating. The list of possible causes of over-heating ranges from out-of-round housings and oversize shaft diameters to excessive lubrication and bearing preloading. These causes fall into two major categories: improper or faulty lubrication and mechanical problems, such as incorrect fits and tolerances. These are discussed along with solutions.

  2. Radial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  3. The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock

    SciTech Connect

    Fournier, R.O. )

    1991-05-01

    Fluid flow at hydrostatic pressure (P{sub h}) is relatively common through fractures in silicic and in mafic crystalline rocks where temperatures are less than about 350-370C. In contrast, pore-fluid pressure (P{sub f}) > P{sub h} has been encountered at the bottom of 3 geothermal exploration wells that attained temperatures >370C (at Larderello, Italy, at Nesjavellir, Iceland, and at The Geysers, California). Chemical sealing by deposition of minerals in veins appears to have allowed the development of the high P{sub f} encountered in the above wells. The upper limit for the magnitude of P{sub f} that can be attained is controlled by either the onset of shear fracturing (where differential stress is relatively high) that reopens clogged veins, or the hydraulic opening of new or old fractures (at relatively low values of differential stress). The brittle-plastic transition for silicic rocks can occur at temperatures as high as 370-400C in tectonically active regions. In regions where high-temperature geothermal systems develop and persist, it appears that either strain rates commonly are in the range 10{sup {minus}12} to 10{sup {minus}13}, or that silicic rocks in the shallow crust generally behave rheologically more like wet quartz diorite than wet Westerly granite.

  4. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  5. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  6. Non-Newtonian Temperature and Pressure Effects of a Powder Lubricant Slurry in a Rotating Hydrostatic Step Bearing.

    DTIC Science & Technology

    1993-01-01

    TechnologyI Utilization Division, National Aeronautics and Space Administration. Washington, D.C.: Government Printing I Office, 1972. 7. Dareing, D.W., and...1989, I was transferred to Naval Mobile Construction Battalion 133, completing deployments to Guam; Rota, Spain; and northern Iraq as a company

  7. Modular gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  8. Single acetylcholine receptor channel currents recorded at high hydrostatic pressures.

    PubMed Central

    Heinemann, S H; Stühmer, W; Conti, F

    1987-01-01

    A technique for performing patch-clamp experiments under high hydrostatic (oil) pressure is described. The method allows the transfer of whole cell or membrane patches in a recording configuration into a pressure vessel, where pressure can be increased up to 60 MPa (approximately equal to 600 bar). We have studied in this way the pressure dependence of single acetylcholine receptor channels in excised "outside-out" membrane patches from cultured rat muscle cells. In the range of 0.1 to 60 MPa the open channel conductance in 140 mM NaCl solutions did not vary by more than 2%, which implies that the translocation of sodium ions through the channel pore does not involve steps with significant activation volumes. At high acetylcholine concentrations (20 microM) bursts of single-channel activity allowed measurements of the mean open and mean closed times of the channel. Pressurization to 40 MPa increased both mean open and mean closed times giving apparent activation volumes of about 59 and 139 A3, respectively. This implies a net volume increase of 80 A3, associated with the transition from the agonist-free state to the open state of the channel, which may be partially associated with the agonist-binding step. All the observed pressure effects were reversible. The activation volumes for the gating of acetylcholine receptor channels are comparable to those of sodium and potassium channels in the squid giant axon, suggesting that there is some basic common mechanism in the operation of ion-channel proteins. Images PMID:2437577

  9. A conservative method for hydrostatic flow in isentropic coordinates

    NASA Astrophysics Data System (ADS)

    Peeters, B.; Bokhove, O.; Frank, J.

    2010-05-01

    Although our climate is ultimately driven by (nonuniform) solar heating, many aspects of the flow can be understood qualitatively from forcing-free and frictionless dynamics. In the limit of zero forcing and dissipation, our weather system falls under the realm of Hamiltonian fluid dynamics and the flow conserves potential vorticity (PV), energy and phase-space structure. We have found a conservative numerical scheme for a hydrostatic atmosphere based on a mixed Eulerian-Lagrangian approach, the so-called parcel formulation [1]. For adiabatic flow, the entropy is materially conserved. Under stable stratifications, we introduce isentropic coordinates to simplify the governing equations. The entropic direction is discretized using finite elements. The discretization of horizontal Lagrangian label space (from infinitesimal fluid parcels to discrete fluid particles) yields a discrete Poisson bracket. New is that we apply the Hamiltonian Particle-Mesh method [2], and view the potential as an Eulerian function, reconstructed from the particle data. The use of an Eulerian grid makes the method more efficient and stable. The Hamiltonian consists of a Lagrangian kinetic energy and an Eulerian potential energy. The discrete system of ODE's is thus a Hamiltonian system conserving mass, PV, energy and phase-space structure. If we incorporate a symplectic time integrator, the resulting fully discrete system conserves energy approximately without any drift in energy. Several challenging (nonlinear) solutions will be tested, such a flow over a rising bump. Also, preliminary results for bottom-intersecting isentropes will be demonstrated. REFERENCES [1] O. Bokhove and M. Oliver, Parcel Eulerian-Lagrangian fluid dynamics for rotating geophysical flows, Proc. Roy. Soc. A. 462, pp. 2563-2573 (2006) [2] J. Frank, G. Gottwald, S. Reich, A Hamiltonian particle-mesh method for the rotating shallow-water equations, Lecture Notes in Computational Science and Engineering, Vol. 26, Springer

  10. Hydrostatic equilibrium profiles for gas in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Capelo, Pedro R.; Natarajan, Priyamvada; Coppi, Paolo S.

    2010-09-01

    We present an analytic formulation for the equilibrium gas density profile of early-type galaxies that explicitly includes the contribution of stars in the gravitational potential. We build a realistic model for an isolated elliptical galaxy and explore the equilibrium gas configurations as a function of multiple parameters. For an assumed central gas temperature kBT0 = 0.6 keV, we find that neglecting the gravitational effects of stars, which can contribute substantially in the innermost regions, leads to an underestimate of the enclosed baryonic gas mass by up to ~65 per cent at the effective radius and by up to ~15 per cent at the Navarro-Frenk-White (NFW) scale radius, depending on the stellar baryon fraction. This formula is therefore important for estimating the baryon fraction in an unbiased fashion. These new hydrostatic equilibrium solutions, derived for the isothermal and polytropic cases, can also be used to generate more realistic initial conditions for simulations of elliptical galaxies. Moreover, the new formulation is relevant when interpreting X-ray data. We compare our composite isothermal model to the standard β-model used to fit X-ray observations of early-type galaxies, to determine the value of the NFW scale radius rs. Assuming a 10 per cent stellar baryon fraction, we find that the exclusion of stars from the gravitational potential leads to (i) an underestimate of rs by ~80 per cent and (ii) an overestimate of the enclosed dark matter at rs by a factor of ~2, compared to the equivalent β-model fit results when stars are not taken into account. For higher stellar mass fractions, a β-model is unable to accurately reproduce our solution, indicating that when the observed surface brightness profile of an isolated elliptical galaxy is found to be well fitted by a β-model, the stellar mass fraction cannot be much greater than ~10 per cent.

  11. Lamb's Hydrostatic Adjustment for Heating of Finite Duration.

    NASA Astrophysics Data System (ADS)

    Sotack, Timothy; Bannon, Peter R.

    1999-01-01

    Lamb's hydrostatic adjustment problem for the linear response of an infinite, isothermal atmosphere to an instantaneous heating of infinite horizontal extent is generalized to include the effects of heating of finite duration. Three different time sequences of the heating are considered: a top hat, a sine, and a sine-squared heating. The transient solution indicates that heating of finite duration generates broader but weaker acoustic wave fronts. However, it is shown that the final equilibrium is the same regardless of the heating sequence provided the net heating is the same.A Lagrangian formulation provides a simple interpretation of the adjustment. The heating generates an entropy anomaly that is initially realized completely as a pressure excess with no density perturbation. In the final state the entropy anomaly is realized as a density deficit with no pressure perturbation. Energetically the heating generates both available potential energy and available elastic energy. The former remains in the heated layer while the latter is carried off by the acoustic waves.The wave energy generation is compared for the various heating sequences. In the instantaneous case, 28.6% of the total energy generation is carried off by waves. This fraction is the ratio of the ideal gas constant R to the specific heat at constant pressure cp. For the heatings of finite duration considered, the amount of wave energy decreases monotonically as the heating duration increases and as the heating thickness decreases. The wave energy generation approaches zero when (i) the duration of the heating is comparable to or larger than the acoustic cutoff period, 2/NA 300 s, and (ii) the thickness of the heated layer approaches zero. The maximum wave energy occurs for a thick layer of heating of small duration and is the same as that for the instantaneous case.The effect of a lower boundary is also considered.

  12. Controlled hydrostatic pressure stress downregulates the expression of ribosomal genes in preimplantation embryos: a possible protection mechanism?

    PubMed

    Bock, I; Raveh-Amit, H; Losonczi, E; Carstea, A C; Feher, A; Mashayekhi, K; Matyas, S; Dinnyes, A; Pribenszky, C

    2016-04-01

    The efficiency of various assisted reproductive techniques can be improved by preconditioning the gametes and embryos with sublethal hydrostatic pressure treatment. However, the underlying molecular mechanism responsible for this protective effect remains unknown and requires further investigation. Here, we studied the effect of optimised hydrostatic pressure treatment on the global gene expression of mouse oocytes after embryonic genome activation. Based on a gene expression microarray analysis, a significant effect of treatment was observed in 4-cell embryos derived from treated oocytes, revealing a transcriptional footprint of hydrostatic pressure-affected genes. Functional analysis identified numerous genes involved in protein synthesis that were downregulated in 4-cell embryos in response to hydrostatic pressure treatment, suggesting that regulation of translation has a major role in optimised hydrostatic pressure-induced stress tolerance. We present a comprehensive microarray analysis and further delineate a potential mechanism responsible for the protective effect of hydrostatic pressure treatment.

  13. A non-hydrostatic algorithm for free-surface ocean modelling

    NASA Astrophysics Data System (ADS)

    Auclair, Francis; Estournel, Claude; Floor, Jochem W.; Herrmann, Marine; Nguyen, Cyril; Marsaleix, Patrick

    An original implementation of a non-hydrostatic, free-surface algorithm based on a pressure correction method is proposed for ocean modelling. The free surface is implemented through an explicit scheme combined with a mode-spitting method but the depth-averaged velocity and the position of the free surface are updated at each non-hydrostatic iteration. The vertical momentum equation is also integrated up to the surface enabling a natural and accurate treatment of the surface layer. The consistent specification of the numerical schemes provides balanced transfers of potential and kinetic energy. This algorithm is well-suited for implementation as a non-hydrostatic kernel on originally hydrostatic free-surface ocean models such as Symphonie ( http://poc.obs-mip.fr/pages/research_topics/modelling/symphonie/symphonie.htm) for which it has originally been developed. Energy balances associated with the propagation of short surface waves and solitary waves are presented for two dedicated well-documented configurations over closed domains. The buoyancy flux, the work rate of the pressure force together with the power of the advective terms are evaluated and discussed for the generation and the propagation of these two types of waves. The dissipation rate is in particular shown to be several orders of magnitude smaller than the work rates of the hydrostatic and non-hydrostatic pressure forces confirming the necessity for the exchanges of energy to be numerically balanced. The algorithm is subsequently applied to the complex generation of non-linear solitary internal waves by surface tides over Georges Bank, in the Gulf of Maine. The generation and the propagation of the observed non-linear and non-hydrostatic features in this region are correctly reproduced.

  14. A non-hydrostatic pressure distribution solver for the nonlinear shallow water equations over irregular topography

    NASA Astrophysics Data System (ADS)

    Aricò, Costanza; Lo Re, Carlo

    2016-12-01

    We extend a recently proposed 2D depth-integrated Finite Volume solver for the nonlinear shallow water equations with non-hydrostatic pressure distribution. The proposed model is aimed at simulating both nonlinear and dispersive shallow water processes. We split the total pressure into its hydrostatic and dynamic components and solve a hydrostatic problem and a non-hydrostatic problem sequentially, in the framework of a fractional time step procedure. The dispersive properties are achieved by incorporating the non-hydrostatic pressure component in the governing equations. The governing equations are the depth-integrated continuity equation and the depth-integrated momentum equations along the x, y and z directions. Unlike the previous non-hydrostatic shallow water solver, in the z momentum equation, we retain both the vertical local and convective acceleration terms. In the former solver, we keep only the local vertical acceleration term. In this paper, we investigate the effects of these convective terms and the possible improvements of the computed solution when these terms are not neglected in the governing equations, especially in strongly nonlinear processes. The presence of the convective terms in the vertical momentum equation leads to a numerical solution procedure, which is quite different from the one of the previous solver, in both the hydrostatic and dynamic steps. We discretize the spatial domain using unstructured triangular meshes satisfying the Generalized Delaunay property. The numerical solver is shock capturing and easily addresses wetting/drying problems, without any additional equation to solve at wet/dry interfaces. We present several numerical applications for challenging flooding processes encountered in practical aspects over irregular topography, including a new set of experiments carried out at the Hydraulics Laboratory of the University of Palermo.

  15. Composite Bear Canister

    NASA Technical Reports Server (NTRS)

    Chung, W. Richard; Jara, Steve; Suffel, Susan

    2003-01-01

    To many national park campers and mountain climbers saving their foods in a safe and unbreakable storage container without worrying being attacked by a bear is a challenging task. In some parks, the park rangers have mandated that park visitors rent a bear canister for their food storage. Commercially available bear canisters are made of ABS plastic, weigh 2.8 pounds, and have a 180 cubic inch capacity for food storage. A new design with similar capacity was conducted in this study to reduce its weight and make it a stiffer and stronger canister. Two prototypes incorporating carbon prepreg with and without honeycomb constructions were manufactured using hand lay-up and vacuum bag forming techniques. A 6061-T6-aluminum ring was machined to dimensions in order to reinforce the opening area of the canister. Physical properties (weight and volume) along with mechanical properties (flexural strength and specific allowable moment) of the newly fabricated canisters are compared against the commercial ones. The composite canister weighs only 56% of the ABS one can withstand 9 times of the force greater. The advantages and limitations of using composite bear canisters will be discussed in the presentation.

  16. Hybrid superconductor magnet bearings

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Kan

    1995-04-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  17. The Teddy Bears' Disc.

    ERIC Educational Resources Information Center

    Laurillard, Diana

    1985-01-01

    Reports an evaluation of the Teddy Bear disc, an interactive videodisc developed at the Open University for a second-level course in metallurgy and materials technology. Findings from observation of students utilizing the videodisc are reviewed; successful design features and design problems are considered; and development costs are outlined. (MBR)

  18. Hybrid superconductor magnet bearings

    NASA Technical Reports Server (NTRS)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  19. History of ball bearings

    NASA Technical Reports Server (NTRS)

    Dowson, D.; Hamrock, B. J.

    1981-01-01

    The familiar precision rolling-element bearings of the twentieth century are products of exacting technology and sophisticated science. Their very effectiveness and basic simplicity of form may discourage further interest in their history and development. Yet the full story covers a large portion of recorded history and surprising evidence of an early recognition of the advantages of rolling motion over sliding action and progress toward the development of rolling-element bearings. The development of rolling-element bearings is followed from the earliest civilizations to the end of the eighteenth century. The influence of general technological developments, particularly those concerned with the movement of large building blocks, road transportation, instruments, water-raising equipment, and windmills are discussed, together with the emergence of studies of the nature of rolling friction and the impact of economic factors. By 1800 the essential features of ball and rolling-element bearings had emerged and it only remained for precision manufacture and mass production to confirm the value of these fascinating machine elements.

  20. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  1. Optimal Synchronizability of Bearings

    NASA Astrophysics Data System (ADS)

    Araújo, N. A. M.; Seybold, H.; Baram, R. M.; Herrmann, H. J.; Andrade, J. S., Jr.

    2013-02-01

    Bearings are mechanical dissipative systems that, when perturbed, relax toward a synchronized (bearing) state. Here we find that bearings can be perceived as physical realizations of complex networks of oscillators with asymmetrically weighted couplings. Accordingly, these networks can exhibit optimal synchronization properties through fine-tuning of the local interaction strength as a function of node degree [Motter, Zhou, and Kurths, Phys. Rev. E 71, 016116 (2005)PLEEE81539-3755]. We show that, in analogy, the synchronizability of bearings can be maximized by counterbalancing the number of contacts and the inertia of their constituting rotor disks through the mass-radius relation, m˜rα, with an optimal exponent α=α× which converges to unity for a large number of rotors. Under this condition, and regardless of the presence of a long-tailed distribution of disk radii composing the mechanical system, the average participation per disk is maximized and the energy dissipation rate is homogeneously distributed among elementary rotors.

  2. Hybrid superconductor magnet bearings

    SciTech Connect

    Chu, W.

    1995-04-01

    Hybrid superconductor magnet bearings (HSMB`s) utilize high temperature superconductors (HTS`s) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS`s, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, the authors present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  3. Bearings Incorporating Deadband Rollers

    NASA Technical Reports Server (NTRS)

    Gualtieri, Guy V.

    1996-01-01

    Bearings in high-pressure turbopump redesigned to incorporate rollers allowing limited axial motion within small deadband. Does not permit radial deadband motion. Axial deadband motion used for rotor-thrust-balance control. Design eliminates some nonlinearities in dynamics of pump rotor and assists in suppressing vibrations at harmonics of frequency of rotation.

  4. Magnetic-Bearing Test Fixture

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Poole, William L.

    1991-01-01

    Microcomputer-controlled magnetic-bearing test fixture used to develop approaches to design of controls for magnetic bearing actuators designed and constructed. Includes load cells connected to bar, in turn, connected through screw positioners to geared drive motors. Position of equivalent suspended element sensed by position sensors and controlled by drive motors. Provides control of gap in magnetic bearing and of current in electromagnet coil. Measurements made include magnetic-bearing gaps, magnetic flux in bearing gaps, and bearing forces. Approaches to linearization and control developed by use of fixture applicable to wide range of small-gap suspension systems.

  5. Bearing-Cartridge Damping Seal

    NASA Technical Reports Server (NTRS)

    Goggins, David G.; Scharrer, Joseph K.; Chen, Wei C.

    1991-01-01

    In proposed design for improved ball-bearing cartridge, damping seal in form of thin-layer fluid journal bearing incorporated into cartridge. Damping seal acts as auxiliary bearing, relieving bearing balls of significant portions of both static and dynamic bearing loads. Damping from seal reduces dynamic loads even further by reducing amplitude of vibrations in second vibrational mode of rotor, which mode occurs when rotor turning at nearly full operating speed. Intended for use in high-pressure-oxygen turbopump of Space Shuttle main engine, also applicable to other turbomachinery bearings.

  6. Flexure Bearing Reduces Startup Friction

    NASA Technical Reports Server (NTRS)

    Clingman, W. Dean

    1991-01-01

    Design concept for ball bearing incorporates small pieces of shim stock, wire spokes like those in bicycle wheels, or other flexing elements to reduce both stiction and friction slope. In flexure bearing, flexing elements placed between outer race of ball bearing and outer ring. Elements flex when ball bearings encounter small frictional-torque "bumps" or even larger ones when bearing balls encounter buildups of grease on inner or outer race. Flexure of elements reduce high friction slopes of "bumps", helping to keep torque between outer ring and inner race low and more nearly constant. Concept intended for bearings in gimbals on laser and/or antenna mirrors.

  7. Lubricant effects on bearing life

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1986-01-01

    Lubricant considerations for rolling-element bearings have within the last two decades taken on added importance in the design and operation of mechanical systems. The phenomenon which limits the useful life of bearings is rolling-element or surface pitting fatigue. The elastohydrodynamic (EHD) film thickness which separates the ball or roller surface from those of the raceways of the bearing directly affects bearing life. Chemical additives added to the lubricant can also significantly affect bearings life and reliability. The interaction of these physical and chemical effects is important to the design engineer and user of these systems. Design methods and lubricant selection for rolling-element bearings are presented and discussed.

  8. Beta-adrenergic agonist therapy accelerates the resolution of hydrostatic pulmonary edema in sheep and rats.

    PubMed

    Frank, J A; Wang, Y; Osorio, O; Matthay, M A

    2000-10-01

    To determine whether beta-adrenergic agonist therapy increases alveolar liquid clearance during the resolution phase of hydrostatic pulmonary edema, we studied alveolar and lung liquid clearance in two animal models of hydrostatic pulmonary edema. Hydrostatic pulmonary edema was induced in sheep by acutely elevating left atrial pressure to 25 cmH(2)O and instilling 6 ml/kg body wt isotonic 5% albumin (prepared from bovine albumin) in normal saline into the distal air spaces of each lung. After 1 h, sheep were treated with a nebulized beta-agonist (salmeterol) or nebulized saline (controls), and left atrial pressure was then returned to normal. beta-Agonist therapy resulted in a 60% increase in alveolar liquid clearance over 3 h (P < 0.001). Because the rate of alveolar fluid clearance in rats is closer to human rates, we studied beta-agonist therapy in rats, with hydrostatic pulmonary edema induced by volume overload (40% body wt infusion of Ringer lactate). beta-Agonist therapy resulted in a significant decrease in excess lung water (P < 0.01) and significant improvement in arterial blood gases by 2 h (P < 0.03). These preclinical experimental studies support the need for controlled clinical trials to determine whether beta-adrenergic agonist therapy would be of value in accelerating the resolution of hydrostatic pulmonary edema in patients.

  9. Plasma steroid hormone levels in female flounder Platichthys flesus and the influence of fluctuating hydrostatic pressure.

    PubMed

    Damasceno-Oliveira, A; Fernández-Durán, B; Gonçalves, J; Couto, E; Canário, A V M; Coimbra, J

    2012-11-01

    The reproductive cycle in teleosts is timed to guarantee that eggs hatch in the right place at the right time, with environmental factors playing important roles in entraining and controlling the entire process. The effects of some environmental factors, like temperature and photoperiod, are now well understood. There are only a few studies regarding the effects of hydrostatic pressure (HP) on the reproductive cycle, in spite of its importance as a ubiquitous factor in all biological environments and affecting all living organisms. Hydrostatic pressure is of particular importance in fish because they can also experience rapid and cyclic changes in HP due to vertical movements in the water column. The aim of the present research was to investigate the effects of vertical migrations on the reproductive steroids of maturing female flounder. After a 14 day exposure to cyclic hydrostatic pressure (with a period of 12.4h and with a maximum peak of 800 kPa of absolute hydrostatic pressure), fish showed significantly lower plasmatic concentrations of "5β,3α" steroids, metabolites of the putative maturation-inducing steroid in flounder (17α,20β-dihydroxy-4-pregnen-3-one). Results indicate that environmentally realistic cyclic changes of hydrostatic pressure can influence the metabolism of reproductive steroids. This suggests a physiological role of tidally-associated vertical migrations, affecting oocyte maturation and retarding the reproductive cycle in this species until the spawning ground is attained.

  10. An Experimental Study of Dynamic Tensile Failure of Rocks Subjected to Hydrostatic Confinement

    NASA Astrophysics Data System (ADS)

    Wu, Bangbiao; Yao, Wei; Xia, Kaiwen

    2016-10-01

    It is critical to understand the dynamic tensile failure of confined rocks in many rock engineering applications, such as underground blasting in mining projects. To simulate the in situ stress state of underground rocks, a modified split Hopkinson pressure bar system is utilized to load Brazilian disc (BD) samples hydrostatically, and then exert dynamic load to the sample by impacting the striker on the incident bar. The pulse shaper technique is used to generate a slowly rising stress wave to facilitate the dynamic force balance in the tests. Five groups of Laurentian granite BD samples (with static BD tensile strength of 12.8 MPa) under the hydrostatic confinement of 0, 5, 10, 15, and 20 MPa were tested with different loading rates. The result shows that the dynamic tensile strength increases with the hydrostatic confining pressure. It is also observed that under the same hydrostatic pressure, the dynamic tensile strength increases with the loading rate, revealing the so-called rate dependency for engineering materials. Furthermore, the increment of the tensile strength decreases with the hydrostatic confinement, which resembles the static tensile behavior of rock under confining pressure, as reported in the literature. The recovered samples are examined using X-ray micro-computed tomography method and the observed crack pattern is consistent with the experimental result.

  11. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  12. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy alsomore » eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  13. Vygotsky and the Three Bears

    ERIC Educational Resources Information Center

    Kulczewski, Peggy

    2004-01-01

    Peggy Kulczewski, a kindergarten classroom teacher, remembers the day when students enjoyed a story she told them from the book "The Three Bears". The students' discussion about comparison of the bears was very helpful to the whole group.

  14. Renal interstitial hydrostatic pressure and pressure natriuresis in pregnant rats.

    PubMed

    Khraibi, A A

    2000-08-01

    The objective of this study was to test the hypothesis that a decrease in renal interstitial hydrostatic pressure (RIHP) accounts for the blunted pressure natriuresis during pregnancy. RIHP was measured in nonpregnant (NP; n = 9), midterm pregnant (MP; 12-14 days after conception; n = 10), and late-term pregnant (LP; 18-21 days after conception; n = 12) female Sprague-Dawley rats at two renal perfusion pressure (RPP) levels (99 and 120 mmHg). At the lower RPP level, RIHP was 5.9 +/- 0.3 mmHg for NP, 3.4 +/- 0.4 mmHg for MP (P < 0.05 vs. NP), and 2.9 +/- 0.1 mmHg for LP (P < 0.05 vs. NP) rats. The increase in RPP from 99 to 120 mmHg resulted in pressure natriuretic and diuretic responses in all groups; however, the increases in fractional excretion of sodium (DeltaFE(Na)), urine flow rate (DeltaV), and DeltaRIHP were significantly greater (P < 0. 05) in NP compared with both MP and LP rats. DeltaFE(Na), DeltaV, and DeltaRIHP were 2.06 +/- 0.28%, 81.44 +/- 14.10 microl/min, and 3. 0 +/- 0.5 mmHg for NP; 0.67 +/- 0.13%, 28.03 +/- 5.28 microl/min, and 0.5 +/- 0.2 mmHg for MP; and 0.48 +/- 0.12%, 18.14 +/- 4.70 microl/min, and 0.4 +/- 0.1 mmHg for LP rats. In conclusion, RIHP is significantly lower in pregnant compared with nonpregnant rats at similar RPP levels. Also, the ability of pregnant rats to increase RIHP in response to an increase in RPP is blunted. These changes in RIHP may play an important role in the blunted pressure natriuresis and contribute to the conservation of sodium and water that is critical for fetal growth and development during normal pregnancy.

  15. A self-lubricating bearing

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Inventor)

    1974-01-01

    An improved bearing structure is described which includes a permanently magnetized porous body filled with an interstitial magnetic lubricant for extending the operational life of self-lubricating bearings. The bearing structure is characterized by a permanently magnetized retainer formed of a porous material and filled with an interstitial magnetic lubricant, whereby the pores serve as lubricant reservoirs from which the lubricant continuously is delivered to a film disposed between contiguous bearing surfaces.

  16. Magnetic bearing and motor

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A magnetic bearing assembly (10) has an intermediate rotatable section (33) having an outer cylindrical member (30) coaxially suspended by a torsion wire (72) around an axially polarized cylindrical magnet (32). Axial alignment between the pole faces (40-43) of the intermediate section (33) and end surfaces (50-53) of opposed end bells (20, 22) provides a path of least reluctance across intervening air gaps (60-63) for the magnetic flux emanating from magnet (32). Radial dislocation increases the reluctance and creates a radial restoring force. Substitution of radially polarized magnets 107 fixed to a magnetically permeable cylinder (32') and insertion of pairs of armature coil windings (109-112) between the cylinder pair (33') provides an integral magnetic bearing and torsion motor (100) able to provide arcuately limited rotational drive.

  17. Centrifugally decoupling touchdown bearings

    DOEpatents

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  18. Passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  19. Rotating plug bearing and seal

    DOEpatents

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  20. Magnetic translator bearings

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  1. The series hybrid bearing - A new high speed bearing concept.

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Fleming, D. P.; Parker, R. J.

    1971-01-01

    The series-hybrid bearing couples a fluid-film bearing with a rolling-element bearing such that the rolling-element bearing inner race runs at a fraction of shaft speed. A series-hybrid bearing was analyzed and experiments were run at thrust loads from 100 to 300 lb and speeds from 4000 to 30,000 rpm. Agreement between theoretical and experimental speed sharing was good. The lowest speed ratio (ratio of ball bearing inner-race speed to shaft speed) obtained was 0.67. This corresponds to an approximate reduction in DN value of 1/3. For a ball bearing in a 3 million DN application, fatigue life would theoretically be improved by a factor as great as 8.

  2. On variable hydrostatic transmission for road vehicles, powered by supply of fluid at constant pressure

    NASA Technical Reports Server (NTRS)

    Magi, M.; Freivald, A.; Andersson, I.; Ericsson, U.

    1981-01-01

    Various hydrostatic power transmission systems for automotive applications with power supply at constant pressure and unrestricted flow and with a Volvo Flygmotor variable displacement motor as the principal unit were investigated. Two most promising concepts were analyzed in detail and their main components optimized for minimum power loss at the EPA Urban Driving Cycle. The best fuel consumption is less than 10 lit. per 100 kM for a 1542 kG vehicle with a hydrostatic motor and a two speed gear box in series (braking power not recovered). Realistic system pressure affects the fuel consumption just slightly, but the package volume/weight drastically. Back pressure increases losses significantly. Special attention was paid to description of the behavior and modeling of the losses of variable displacement hydrostatic machines.

  3. Molecular determinant of the effects of hydrostatic pressure on protein folding stability

    PubMed Central

    Chen, Calvin R.; Makhatadze, George I.

    2017-01-01

    Hydrostatic pressure is an important environmental variable that plays an essential role in biological adaptation for many extremophilic organisms (for example, piezophiles). Increase in hydrostatic pressure, much like increase in temperature, perturbs the thermodynamic equilibrium between native and unfolded states of proteins. Experimentally, it has been observed that increase in hydrostatic pressure can both increase and decrease protein stability. These observations suggest that volume changes upon protein unfolding can be both positive and negative. The molecular details of this difference in sign of volume changes have been puzzling the field for the past 50 years. Here we present a comprehensive thermodynamic model that provides in-depth analysis of the contribution of various molecular determinants to the volume changes upon protein unfolding. Comparison with experimental data shows that the model allows quantitative predictions of volume changes upon protein unfolding, thus paving the way to proteome-wide computational comparison of proteins from different extremophilic organisms. PMID:28169271

  4. Steady State Performance Analysis of Hydrostatic Transmission System using Two Motor Summation Drive

    NASA Astrophysics Data System (ADS)

    Dasgupta, K.; Kumar, N.; Kumar, R.

    2013-10-01

    Hydrostatic transmission (HST) system used in heavy earth moving machineries (HEMMs) has high power density, wide range of speed control and good overall efficiency. Hydrostatically coupled two motor summation drive is an alternative power transmission system, compared to existing closed-loop HST system with low speed high torque motor, used in HEMM. Such drive arrangement has made the possibility to design the transmission system, used in heavy vehicles, in an efficient way to cover wide range of torque-speed demand. This article studies the concept of two motor summation drive and its steady state performance. Experiments have been carried out to analyze the performance of such system. The characteristics of single and two motor drive systems are compared at different load-torque and speed levels. It is concluded that two motor hydrostatic drive systems is more effective at high load-torque and low speed compared to single motor drive system.

  5. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells.

    PubMed

    Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi

    2014-01-22

    Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes.

  6. On variable hydrostatic transmission for road vehicles, powered by supply of fluid at constant pressure

    SciTech Connect

    Magi, M.; Freivald, A.; Anderson, I.

    1981-05-01

    Various hydrostatic power transmission systems for automotive applications with power supply at constant pressure and unrestricted flow and with a Volvo Flygmotor variable displacement motor as the principal unit were investigated. Two most promising concepts were analyzed in detail and their main components optimized for minimum power loss at the EPA Urban Driving Cycle. The best fuel consumption is less than 10 lit. per 100 kM for a 1542 kG vehicle with a hydrostatic motor and a two speed gear box in series (braking power not recovered). Realistic system pressure affects the fuel consumption just slightly, but the package volume/weight drastically. Back pressure increases losses significantly. Special attention was paid to description of the behavior and modeling of the losses of variable displacement hydrostatic machines.

  7. Practical applications of hydrostatic pressure to refold proteins from inclusion bodies for NMR structural studies.

    PubMed

    Ogura, Kenji; Kobashigawa, Yoshihiro; Saio, Tomohide; Kumeta, Hiroyuki; Torikai, Shinnosuke; Inagaki, Fuyuhiko

    2013-06-01

    Recently, the hydrostatic pressure refolding method was reported as a practical tool for solubilizing and refolding proteins from inclusion bodies; however, there have been only a few applications for protein structural studies. Here, we report the successful applications of the hydrostatic pressure refolding method to refold proteins, including the MOE-2 tandem zinc-finger, the p62 PB1 domain, the GCN2 RWD domain, and the mTOR FRB domain. Moreover, the absence of aggregation and the correct folding of solubilized protein samples were evaluated with size exclusion chromatography and NMR experiments. The analyses of NMR spectra for MOE-2 tandem zinc-finger and GCN2 RWD further led to the determination of tertiary structures, which are consistent with those from soluble fractions. Overall, our results indicate that the hydrostatic pressure method is effective for preparing samples for NMR structural studies.

  8. Primary Cilia Modulate IHH Signal Transduction in Response to Hydrostatic Loading of Growth Plate Chondrocytes

    PubMed Central

    Shao, Y, Yvonne Y.; Wang, Lai; Welter, J, Jean F.; Ballock, R. Tracy

    2011-01-01

    Indian Hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. PMID:21930256

  9. Differential Stability of Dimeric and Monomeric Cytochrome c Oxidase Exposed to Elevated Hydrostatic Pressure†

    PubMed Central

    Staničová, Jana; Sedlák, Erik; Musatov, Andrej; Robinson, Neal C.

    2007-01-01

    Detergent-solubilized dimeric and monomeric cytochrome c oxidase (CcO) have significantly different quaternary stability when exposed to 2−3 kbar of hydrostatic pressure. Dimeric, dodecyl maltoside-solubilized cytochrome c oxidase is very resistant to elevated hydrostatic pressure with almost no perturbation of its quaternary structure or functional activity after release of pressure. In contrast to the stability of dimeric CcO, 3 kbar of hydrostatic pressure triggers multiple structural and functional alterations within monomeric cytochrome c oxidase. The perturbations are either irreversible or slowly reversible since they persist after the release of high pressure. Therefore, standard biochemical analytical procedures could be used to quantify the pressure-induced changes after the release of hydrostatic pressure. The electron transport activity of monomeric cytochrome c oxidase decreases by as much as 60% after exposure to 3 kbar of hydrostatic pressure. The irreversible loss of activity occurs in a time- and pressure-dependent manner. Coincident with the activity loss is a sequential dissociation of four subunits as detected by sedimentation velocity, high-performance ion-exchange chromatography, and reversed-phase and SDS–PAGE subunit analysis. Subunits VIa and VIb are the first to dissociate followed by subunits III and VIIa. Removal of subunits VIa and VIb prior to pressurization makes the resulting 11-subunit form of CcO even more sensitive to elevated hydrostatic pressure than monomeric CcO containing all 13 subunits. However, dimeric CcO, in which the association of VIa and VIb is stabilized, is not susceptible to pressure-induced inactivation. We conclude that dissociation of subunit III and/or VIIa must be responsible for pressure-induced inactivation of CcO since VIa and VIb can be removed from monomeric CcO without significant activity loss. These results are the first to clearly demonstrate an important structural role for the dimeric form of

  10. Numerical Simulation of Damage during Forging with Superimposed Hydrostatic Pressure by Active Media

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Hagen, T.; Röhr, S.; Sidhu, K. B.

    2007-05-01

    The effective reduction of energy consumption and a reasonable treatment of resources can be achieved by minimizing a component's weight using lightweight metals. In this context, aluminum alloys play a major role. Due to their material-sided restricted formability, the mentioned aluminum materials are difficult to form. The plasticity of a material is ascertained by its maximum forming limit. It is attained, when the deformation causes mechanical damage within the material. Damage of that sort is reached more rapidly, the greater the tensile strength rate in relation to total tension rate. A promising approach of handling these low ductile, high-strength aluminum alloys within a forming process, is forming with a synchronized superposition of comprehensive stress by active media such as by controlling oil pressure. The influence of superimposed hydrostatic pressure on the flow stress was analyzed as well as the formability for different procedures at different hydrostatic pressures and temperature levels. It was observed that flow stress is independent of superimposed hydrostatic pressure. Neither the superimposed pressure has an influence on the plastic deformation, nor does a pressure dependent material hardening due to increasing hydrostatic pressure take place. The formability increases with rising hydrostatic pressure. The relative gain at room temperature and increase of the superimposed pressure from 0 to 600 bar for tested materials was at least 140 % and max. 220 %. Therefore in this paper, based on these experimental observations, it is the intended to develop a numerical simulation in order to predict ductile damage that occurs in the bulk forging process with superimposed hydrostatic pressure based Lemaitre's damage model.

  11. Numerical Simulation of Damage during Forging with Superimposed Hydrostatic Pressure by Active Media

    SciTech Connect

    Behrens, B.-A.; Hagen, T.; Roehr, S.; Sidhu, K. B.

    2007-05-17

    The effective reduction of energy consumption and a reasonable treatment of resources can be achieved by minimizing a component's weight using lightweight metals. In this context, aluminum alloys play a major role. Due to their material-sided restricted formability, the mentioned aluminum materials are difficult to form. The plasticity of a material is ascertained by its maximum forming limit. It is attained, when the deformation causes mechanical damage within the material. Damage of that sort is reached more rapidly, the greater the tensile strength rate in relation to total tension rate. A promising approach of handling these low ductile, high-strength aluminum alloys within a forming process, is forming with a synchronized superposition of comprehensive stress by active media such as by controlling oil pressure. The influence of superimposed hydrostatic pressure on the flow stress was analyzed as well as the formability for different procedures at different hydrostatic pressures and temperature levels. It was observed that flow stress is independent of superimposed hydrostatic pressure. Neither the superimposed pressure has an influence on the plastic deformation, nor does a pressure dependent material hardening due to increasing hydrostatic pressure take place. The formability increases with rising hydrostatic pressure. The relative gain at room temperature and increase of the superimposed pressure from 0 to 600 bar for tested materials was at least 140 % and max. 220 %. Therefore in this paper, based on these experimental observations, it is the intended to develop a numerical simulation in order to predict ductile damage that occurs in the bulk forging process with superimposed hydrostatic pressure based Lemaitre's damage model.

  12. The bear that never was

    USGS Publications Warehouse

    Smith, T.S.; Amstrup, Steven C.; Herrero, Stephen

    2005-01-01

    From campfire stories to sensational books detailing gory attacks, Alaska's bears have long been maligned as deadly marauders capable of acquiring a taste for human flesh. Tall tales make for good storytelling but force bad reputations on the bears. When myth is compared to fact, the three North American's leading bear experts show that Alaska's three bear species are not the huge, unpredictable monsters they often are made out to be. Here, Smith, Amstrup, and Herrero examine the conventional wisdom people often hear regarding bears in the Great Land.

  13. Anti-backlash gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gear bearing having a first gear and a second gear, each having a plurality of teeth. Each gear operates on two non-parallel surfaces of the opposing gear teeth to perform both gear and bearing functions simultaneously. The gears are moving at substantially the same speed at their contact points. The gears may be roller gear bearings or phase-shifted gear bearings, and may be arranged in a planet/sun system or used as a transmission. One preferred embodiment discloses and describes an anti-backlash feature to counter ''dead zones'' in the gear bearing movement.

  14. Bearing for liquid metal pump

    DOEpatents

    Dickinson, Robert J.; Wasko, John; Pennell, William E.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance.

  15. Designing the brawny gas bearing.

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1971-01-01

    Discussion of a graphic technique for matching specific groove parameters to operating conditions in order to optimize the load carrying capacity of a herringbone-grooved bearing. Details are given on the optimization of the film thickness ratio, the groove width ratio, the groove angle, and the groove length ratio to obtain a maximum radial load capacity. The effect of the dimensionless bearing number on optimal groove configuration parameters is shown in diagrams. Curves are also plotted to compare the capacities of a herringbone-grooved bearing and a plain bearing, showing the former has a higher load capacity than the latter when the dimensionless bearing number is large.

  16. Hybrid Bearing Prognostic Test Rig

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Certo, Joseph M.; Handschuh, Robert F.; Dimofte, Florin

    2005-01-01

    The NASA Glenn Research Center has developed a new Hybrid Bearing Prognostic Test Rig to evaluate the performance of sensors and algorithms in predicting failures of rolling element bearings for aeronautics and space applications. The failure progression of both conventional and hybrid (ceramic rolling elements, metal races) bearings can be tested from fault initiation to total failure. The effects of different lubricants on bearing life can also be evaluated. Test conditions monitored and recorded during the test include load, oil temperature, vibration, and oil debris. New diagnostic research instrumentation will also be evaluated for hybrid bearing damage detection. This paper summarizes the capabilities of this new test rig.

  17. Bearing, gearing, and lubrication technology

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1978-01-01

    Results of selected NASA research programs on rolling-element and fluid-film bearings, gears, and elastohydrodynamic lubrication are reported. Advances in rolling-element bearing material technology, which have resulted in a significant improvement in fatigue life, and which make possible new applications for rolling bearings, are discussed. Research on whirl-resistant, fluid-film bearings, suitable for very high-speed applications, is discussed. An improved method for predicting gear pitting life is reported. An improved formula for calculating the thickness of elastohydrodynamic films (the existence of which help to define the operating regime of concentrated contact mechanisms such as bearings, gears, and cams) is described.

  18. Nonlinear Control of Wind Turbines with Hydrostatic Transmission Based on Takagi-Sugeno Model

    NASA Astrophysics Data System (ADS)

    Schulte, Horst; Georg, Soren

    2014-06-01

    A nonlinear model-based control concept for wind turbines with hydrostatic transmission is proposed. The complete mathematical model of a wind turbine drive train with variable displacement pump and variable displacement motor is presented. The controller design takes into consideration the nonlinearity of the aerodynamic maps and hydrostatic drive train by an convex combination of state space controller with measurable generator speed and hydraulic motor displacement as scheduling parameters. The objectives are the set point control of generator speed and tracking control of the rotor speed to reach the maximum power according to the power curve in the partial-load region.

  19. Internal Heat Source in a Thermoelastic Hydrostatically Initially Stressed Plate Immersed in a Liquid

    NASA Astrophysics Data System (ADS)

    Ailawalia, P.; Singla, A.

    2016-09-01

    An infinite homogeneous isotropic generalized thermoelastic hydrostatically initially stressed plate involving an internal heat source and bordering on inviscid liquid half-spaces is considered. The normal mode analysis is used to obtain exact expressions for the displacement component, force stress, and temperature distributions. The numerical results are presented graphically for the Lord-Shulman theory of thermoelasticity when a mechanical force is applied to both of the plate sides. A comparison of the results in the presence and absence of a hydrostatic initial stress is made.

  20. Hydrostatic pressure sensor based on micro-cavities developed by the catastrophic fuse effect

    NASA Astrophysics Data System (ADS)

    Domingues, M. F.; Paixão, T.; Mesquita, E.; Alberto, N.; Antunes, P.; Varum, H.; André, P. S.

    2015-09-01

    In this work, an optical fiber hydrostatic pressure sensor based in Fabry-Perot micro-cavities is presented. These micro structures were generated by the recycling of optical fiber previously damaged by the fiber fuse effect, resulting in a cost effective solution when compared with the traditional methods used to produce similar micro-cavities. The developed sensor was tested for pressures ranging from 20.0 to 190.0 cmH2O and a sensitivity of 53.7 +/- 2.6 pm/cmH2O for hydrostatic pressures below to 100 cmH2O was achieved.

  1. [X-ray diffraction study of high hydrostatic pressure on crystalline structure of different type starches].

    PubMed

    Liu, Pei-Ling; Shen, Qun; Hu, Xiao-Song; Wu, Ji-Hong

    2012-09-01

    Crystalline changes of different type starches after high hydrostatic pressure treated under 300, 450, 600 MPa were studied by X-ray diffraction. Waxy maize (A type, 100% amylopectin), hylon VII (B type, 30% amylopectin) and tapioca starch (C type, 83% amylopectin) were chosen. The results indicated that for waxy maize starch, annealing effect was observed at 300 MPa, disappearance of crystalline structure happened at 450 MPa and retrogradation at 600 MPa. The results proved that the granule under high hydrostatic pressure processing experiences "three development stages" including annealling effect, disappearance of crystalline structure and recrystalline after granule disintegration.

  2. Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1998-01-01

    A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs

  3. Bearing construction for refrigeration compresssor

    DOEpatents

    Middleton, Marc G.; Nelson, Richard T.

    1988-01-01

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

  4. History of Space Shuttle Main Engine Turbopump Bearing Testing at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Thom, Robert; Moore, Chip; Haluck, Dave

    2010-01-01

    bronze filled polytetrafluoroethylene (PTFE) cage inserts into the bearings and the anchoring of the SHABERTH bearing model and SINDA thermal computer model for cryogenic bearing analysis. In the mid 1990's, Pratt and Whitney (P&W) won the contract to deliver new high pressure turbopumps for the Shuttle s engines. P&W used two new bearing materials for the rings, Cronidur 30 and AISI 9310 steel and testing was needed on these new materials. A test rig had been designed and delivered to MSFC for testing hydrostatic bearings but with the need by Pratt to validate their bearings, the rig was reconfigured for testing of two ball bearings or a ball bearing and a roller bearing. The P&W bearings are larger than the Rocketdyne bearings and could not be installed in the BSMT. This new test rig was called the LH2 test rig and began operation in 1995. The LH2 test rig accumulated 75,000 seconds of run time in hydrogen. This test rig was valuable in two areas: validating the use of silicon nitride balls and rollers in Alternate Turbopump Development (ATD) bearings, which Pratt eventually used, and in proving the robustness of the balls and rollers after river marks appeared on the surface of the rolling elements. Individual test reports have been presented at conferences and symposiums throughout the years. This paper is a comprehensive report of all the bearing testing done at Marshall. It represents thousands of hours of dedication and labor in all engineering and technical fields that made this program a success.

  5. Effect of Bearing Cleaning on Long Term Bearing Life

    NASA Technical Reports Server (NTRS)

    Jett, Tim; Thom, R. L.

    1999-01-01

    For many years chlorofluorocarbon (CFC) based solvents, such as CFC-113 and 1,1,1, trichloroethane (TCA), were used as bearing cleaning solvents for space mechanism bearings. The 1995 ban on the production of ozone depleting chemicals (ODC) such as CFCs caused a change requiring the use of ODC-free cleaners for precision bearing cleaning. With this change the question arises; what effect if any do these new cleaners have on long term bearing life? The purpose of this study was to evaluate this effect. A one year test using 60 small electrical motors (two bearings per motor) was conducted in a high vacuum environment (2.0 x 10(exp -6) torr) at a temperature of 90 C. Prior to testing the bearings were cleaned with one of four cleaners. These cleaners included two aqueous based cleaners, a CFC based cleaner and supercritical carbon dioxide. Three space compatible greases were tested. After testing, the mass of each lubricated bearing was measured both pre and post test. Along with mass loss measurements a profilometer trace of each bearing was taken to measure post test wear of the bearings. In addition, the bearings were visually examined and analyzed using an optical microscope.

  6. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    PubMed

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach.

  7. Titan's Hydrostatic Figure and a Possible Dynamic Tidal Variation

    NASA Astrophysics Data System (ADS)

    Anderson, J. D.; Schubert, G.

    2012-12-01

    An archive of radio Doppler data from the Cassini mission can be found in NASA's PDS Atmospheres Node as a series of binary files called Orbit Data Files (ODF). We have downloaded six ODFs from the Cassini mission for six Titan gravity passes T11 (27-Feb-2006), T22 (28-Dec-2006), T33 (29-Jun-2007), T45 (31-Jul-2008), T68 (20-May-2010) and T74 (18-Feb-2011). After converting to text files with JPL space-navigation software (ODDUMP), we convert the observed Doppler shift for the Cassini spacecraft to radial velocity along the line of sight (LOS) at one-second sample interval. These data can be fit by a numerical integration of the equations of motion for the craft with respect to Titan, and a subsequent projection of the velocity so obtained along the LOS. The orbital parameters are represented by six standard Kepler elements with the plane of sky as the fundamental reference system, the system used for spectroscopic binary stars. While the systemic velocity Vs is taken as a constant for binary stars, it is represented for spacecraft by six parameters in a function developed for the Doppler detection of gravitational waves. We adopt well-determined values for the GM of Titan and Saturn and add a 13th gravity parameter C22 for an ellipsoidal hydrostatic Titan distorted by the Saturn tide and synchronous rotation (J2 = (10/3) C22). Also, we adopt the IAU definition for the pole and prime meridian of Titan in the ICRF/J2000 reference system. The interval of observation for each flyby is held to two hours, centered as closely as possible on the time of closest approach to Titan. This interval is sufficiently long for purposes of including all the detectable signal from C22, but short enough that spacecraft-generated translational forces can be neglected. By iterating on a linear least-squares system, 13 converged parameters and associated covariance matrix are found by singular-value decomposition of the least-squares design matrix for each of the six flybys. With

  8. Gold-bearing skarns

    USGS Publications Warehouse

    Theodore, Ted G.; Orris, Greta J.; Hammerstrom, Jane M.; Bliss, James D.

    1991-01-01

    In recent years, a significant proportion of the mining industry's interest has been centered on discovery of gold deposits; this includes discovery of additional deposits where gold occurs in skarn, such as at Fortitude, Nevada, and at Red Dome, Australia. Under the classification of Au-bearing skarns, we have modeled these and similar gold-rich deposits that have a gold grade of at least 1 g/t and exhibit distinctive skarn mineralogy. Two subtypes, Au-skarns and byproduct Au-skarns, can be recognized on the basis of gold, silver, and base-metal grades, although many other geological factors apparently are still undistinguishable largely because of a lack of detailed studies of the Au-skarns. Median grades and tonnage for 40 Au-skarn deposits are 8.6 g/t Au, 5.0 g/t Ag, and 213,000 t. Median grades and tonnage for 50 byproduct and Au-skarn deposits are 3.7 g/t Au, 37 g/t Ag, and 330,000 t. Gold-bearing skarns are generally calcic exoskarns associated with intense retrograde hydrosilicate alteration. These skarns may contain economic amounts of numerous other commodities (Cu, Fe, Pb, Zn, As, Bi, W, Sb, Co, Cd, and S) as well as gold and silver. Most Au-bearing skarns are found in Paleozoic and Cenozoic orogenic-belt and island-arc settings and are associated with felsic to intermediate intrusive rocks of Paleozoic to Tertiary age. Native gold, electru, pyrite, pyrrhotite, chalcopyrite, arsenopyrite, sphalerite, galena, bismuth minerals, and magnetite or hematite are the most common opaque minerals. Gangue minerals typically include garnet (andradite-grossular), pyroxene (diopside-hedenbergite), wollastonite, chlorite, epidote, quartz, actinolite-tremolite, and (or) calcite.

  9. A new method for measuring the rotational accuracy of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Zhao, Xiangsong; Gao, Weiguo; Hu, Gaofeng; Zhang, Shizhen; Zhang, Dawei

    2016-12-01

    The rotational accuracy of a machine tool spindle has critical influence upon the geometric shape and surface roughness of finished workpiece. The rotational performance of the rolling element bearings is a main factor which affects the spindle accuracy, especially in the ultra-precision machining. In this paper, a new method is developed to measure the rotational accuracy of rolling element bearings of machine tool spindles. Variable and measurable axial preload is applied to seat the rolling elements in the bearing races, which is used to simulate the operating conditions. A high-precision (radial error is less than 300 nm) and high-stiffness (radial stiffness is 600 N/μm) hydrostatic reference spindle is adopted to rotate the inner race of the test bearing. To prevent the outer race from rotating, a 2-degrees of freedom flexure hinge mechanism (2-DOF FHM) is designed. Correction factors by using stiffness analysis are adopted to eliminate the influences of 2-DOF FHM in the radial direction. Two capacitive displacement sensors with nano-resolution (the highest resolution is 9 nm) are used to measure the radial error motion of the rolling element bearing, without separating the profile error as the traditional rotational accuracy metrology of the spindle. Finally, experimental measurements are performed at different spindle speeds (100-4000 rpm) and axial preloads (75-780 N). Synchronous and asynchronous error motion values are evaluated to demonstrate the feasibility and repeatability of the developed method and instrument.

  10. Experimental investigation of the flow in a simplified model of water lubricated axial thrust bearing

    NASA Astrophysics Data System (ADS)

    Kirschner, O.; Ruprecht, A.; Riedelbauch, S.

    2014-03-01

    In hydropower plants the axial thrust bearing takes up the hydraulic axial thrust of the runner and, in case of vertical shafts, the entire weight of all rotating masses. The use of water lubricated bearings can eliminate the oil leakage risk possibly contaminating the environment. A complex flow is generated by the smaller film thickness due to the lower viscosity of water compared with oil. Measurements on a simplified hydrostatic axial trust bearing model were accomplished for validating CFD analysis of water lubricated bearings. In this simplified model, fixed pads are implemented and the width of the gap was enlarged to create a higher resolution in space for the measurements. Most parts of the model were manufactured from acrylic glass to get optical access for measurement with PIV. The focus of these measurements is on the flow within the space between two pads. Additional to the PIV- measurement, the pressure on the wall of the rotating disk is captured by pressure transducers. The model bearing measurement results are presented for varied operating conditions.

  11. Development of hybrid bearing system with thrust superconducting magnetic bearing and radial active electromagnetic bearing

    NASA Astrophysics Data System (ADS)

    Nicolsky, R.; Pereira, A. S.; de Andrade, R.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Ripper, A.; Gawalek, W.; Habisreuther, T.; Strasser, T.

    A superconducting/electromagnetic hybrid bearing system is currently under development and test. This system consists of a thrust superconducting magnetic bearing and a double radial active electromagnetic bearing/motor devices. The thrust bearing has been designed using NdFeB permanent magnets levitating on a set of superconducting monoliths of YBCO, prepared by top seeded melt texturing technique, which supports the weight of the rotor. The bearing/motor devices were conceived as 4-pole 2-phase induction machine using stator windings for delivering torque and radial positioning simultaneously. Using this superconducting axial bearing and the active bearings for the rotor radial positioning, a fully levitating vertical-shaft inductive machine has been tested. The tests were successful in reaching a controlled levitation up to 6,300 rpm.

  12. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  13. Aerospace applications of magnetic bearings

    NASA Astrophysics Data System (ADS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-05-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  14. Reduction in bearing size due to superconductors in magnetic bearings

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Lewis, Paul; Dill, James F.

    1991-01-01

    A design concept that reduces the size of magnetic bearings is assessed. The small size will enable magnetic bearings to fit into limited available bearing volume of cryogenic machinery. The design concept, called SUPERC, uses (high Tc) superconductors or high-purity aluminum conductors in windings instead of copper. The relatively high-current density of these conductors reduces the slot radial thickness for windings, which reduces the size of the bearings. MTI developed a sizing program called SUPERC that translates the high-current density of these conductors into smaller sized bearings. This program was used to size a superconducting bearing to carry a 500 lb. load. The sizes of magnetic bearings needed by various design concepts are as follows: SUPERC design concept = 3.75 in.; magnet-bias design concept = 5.25 in.; and all electromagnet design concept = 7.0 in. These results indicate that the SUPERC design concept can significantly reduce the size of the bearing. This reduction, in turn, reduces the weight and yields a lighter bearing. Since the superconductors have inherently near-zero resistance, they are also expected to save power needed for operation considerably.

  15. Effect of Bearing Cleaning on Long Term Bearing Life

    NASA Technical Reports Server (NTRS)

    Jett, Timothy Raymond; Thom, Robert L.

    1998-01-01

    For many years chlorofluorocarbon (CFC ) based solvents, such as Freon and 1,1,1, Trichloroethane (TCA), were used as bearing cleaning solvents for space mechanisms. The 1995 ban on the production of ozone depleting chemicals (ODC) such as CFCs caused a change to new ODC-free cleaners for the precision bearing cleaning. With this change the question arises what effect if any do these new cleaners have on long term bearing life. The purpose of this study was to evaluate this effect. A one year test using 60 small electrical motors (two bearings per motor) was conducted in a high vacuum environment (2.0* 10(exp -6) torr) at a temperature of 90C. Prior to testing the bearings were cleaned with one of four cleaners. These cleaners included two aqueous based cleaners, a CFC based cleaner and supercritical carbon dioxide. Three space compatible greases were tested. After testing the mass of each lubricated bearing was measured both pre and post test. Along with mass loss measurements a profilometer trace of each bearing was taken to measure post test wear of the bearings. In addition the bearings were visually examined and analyzed using an optical microscope.

  16. Human norovirus inactivation in oysters by high hydrostatic pressure processing: A randomized double-blinded study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This randomized, double-blinded, clinical trial assessed the effect of high hydrostatic pressure processing (HPP) on genogroup I.1 human norovirus (HuNoV) inactivation in virus-seeded oysters when ingested by subjects. The safety and efficacy of HPP treatments were assessed in three study phases wi...

  17. Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10 days at 4 degrees C. Freshly prepared, double sealed and double bagged CP (ca. 5 g) was pressure tr...

  18. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-3, Hydrostatic Tests.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This third in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the principles and practices associated with hydrostatic testing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student,…

  19. Critical current density in wire drawn and hydrostatically extruded Nb-Ti superconductors

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Woollam, J. A.; Collings, E. W.

    1979-01-01

    Critical current studies have been made on copper-clad Nb-Ti composite wire prepared under area reductions of 100:1 and 10,000:1 by hydrostatic extrusion (HE), wire drawing and HE plus drawing. Comparative evaluation of the thermomechanical processing equivalent of HE was performed.

  20. Elevated hydrostatic pressure activates sodium/hydrogen exchanger-1 in rat optic nerve head astrocytes.

    PubMed

    Mandal, Amritlal; Shahidullah, Mohammad; Delamere, Nicholas A; Terán, Marcos A

    2009-07-01

    Optic nerve head astrocytes become abnormal in eyes that have elevated intraocular pressure, and cultured astrocytes display altered protein expression after being subjected for > or = 1 days to elevated hydrostatic pressure. Here we show that 2-h elevated hydrostatic pressure (15 or 30 mmHg) causes phosphorylation of ERK1/2, ribosomal S6 protein kinase (p90(RSK)), and Na/H exchanger (NHE)1 in cultured rat optic nerve head astrocytes as judged by Western blot analysis. The MEK/ERK inhibitor U0126 abolished phosphorylation of NHE1 and p90(RSK) as well as ERK1/2. To examine NHE1 activity, cytoplasmic pH (pH(i)) was measured with BCECF and, in some experiments, cells were acidified by 5-min exposure to 20 mM ammonium chloride. Although baseline pH(i) was unaltered, the rate of pH(i) recovery from acidification was fourfold higher in pressure-treated astrocytes. In the presence of either U0126 or dimethylamiloride (DMA), an NHE inhibitor, hydrostatic pressure did not change the rate of pH(i) recovery. The findings are consistent with NHE1 activation due to phosphorylation of ERK1/2, p90(RSK), and NHE1 that occurs in response to hydrostatic pressure. These responses may precede long-term changes of protein expression known to occur in pressure-stressed astrocytes.

  1. A class-A GPCR solubilized under high hydrostatic pressure retains its ligand binding ability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of high hydrostatic pressure (HHP) on the solubilization of a class-A G protein-coupled receptor, the silkmoth pheromone biosynthesis-activating neuropeptide receptor (PBANR), was investigated. PBANR was expressed in expresSF+ insect cells as a C-terminal fusion protein with EGFP. The mem...

  2. Inactivation of human norovirus in contaminated oysters and clams by high-hydrostatic pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (NoV) is the most frequent causative agent of foodborne disease associated with shellfish consumption. In this study, the effect of high-hydrostatic pressure (HHP) on inactivation of NoV was determined. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) NoV were inoculated into oyster ho...

  3. Electrical transport measurements of thin film samples under high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Zabaleta, J.; Parks, S. C.; Baum, B.; Teker, A.; Syassen, K.; Mannhart, J.

    2017-03-01

    We present a method to perform electrical measurements of epitaxial films and heterostructures a few nanometers thick under high hydrostatic pressures in a diamond anvil cell (DAC). Hydrostatic pressure offers the possibility to tune the rich landscape of properties shown by epitaxial heterostructures, systems in which the combination of different materials, performed with atomic precision, can give rise to properties not present in their individual constituents. Measuring electrical conductivity under hydrostatic pressure in these systems requires a robust method that can address all the challenges: the preparation of the sample with side length and thickness that fits in the DAC setup, a contacting method compatible with liquid media, a gasket insulation that resists high forces, as well as an accurate procedure to place the sample in the pressure chamber. We prove the robustness of the method described by measuring the resistance of a two dimensional electron system buried at the interface between two insulating oxides under hydrostatic conditions up to ˜5 GPa. The setup remains intact until ˜10 GPa, where large pressure gradients affect the two dimensional conductivity.

  4. Split TSHD hydrostatic particulars calculation for cargo discharge phase using polynomial RBF

    NASA Astrophysics Data System (ADS)

    Ban, Dario; Bašić, Josip; Dobrota, Đorđe

    2017-01-01

    Split Trailing Suction Hopper Dredgers (TSHD) are a special type of working ships, whose hull opens to discharge cargo to certain unloading positions while being at sea. Although they have variable hull geometry, their hydrostatic and stability characteristics are usually calculated for unchanged initial hull geometry loading conditions only, and such calculations are supported by classification society stability regulations for that ship type. Nevertheless, in this study, we show that hydrostatic particulars for intermediate loading conditions of variable ship geometry, too, can be calculated by using analytical solutions of basic hydrostatic integrals for arbitrary list angles, obtained for polynomial radial basis function description of ship geometry. The calculations will be performed for symmetric hopper opening during cargo discharge procedure, thus covering all Split TSHD regular unloading conditions, without examination of ship hull opening failure modes. Thus, all ship hydrostatic properties will be pre-calculated analytically and prepared for further stability calculations, as opposed to the usual numerical calculations for initial geometry and even keel only, as currently used in naval architecture design.

  5. Solidification and loss of hydrostaticity in liquid media used for pressure measurements

    SciTech Connect

    Torikachvili, M. S.; Kim, S. K.; Colombier, E.; Bud’ko, S. L.; Canfield, P. C.

    2015-12-16

    We carried out a study of the pressure dependence of the solidification temperature in nine pressure transmitting media that are liquid at ambient temperature, under pressures up to 2.3 GPa. These fluids are 1:1 isopentane/n-pentane, 4:6 light mineral oil/n-pentane, 1:1 isoamyl alcohol/n-pentane, 4:1 methanol/ethanol, 1:1 FC72/FC84 (Fluorinert), Daphne 7373, isopentane, and Dow Corning PMX silicone oils 200 and 60,000 cS. We relied on the high sensitivity of the electrical resistivity of Ba(Fe1–xRux)2As2 single crystals to the freezing of the pressure media and cross-checked with corresponding anomalies observed in the resistance of the manganin coil that served as the ambient temperature resistive manometer. In addition to establishing the temperature-pressure line separating the liquid (hydrostatic) and frozen (non-hydrostatic) phases, these data permit rough estimates of the freezing pressure of these media at ambient temperature. As a result, this pressure establishes the extreme limit for the medium to be considered hydrostatic. For higher applied pressures, the medium has to be treated as non-hydrostatic.

  6. Solidification and loss of hydrostaticity in liquid media used for pressure measurements

    DOE PAGES

    Torikachvili, M. S.; Kim, S. K.; Colombier, E.; ...

    2015-12-16

    We carried out a study of the pressure dependence of the solidification temperature in nine pressure transmitting media that are liquid at ambient temperature, under pressures up to 2.3 GPa. These fluids are 1:1 isopentane/n-pentane, 4:6 light mineral oil/n-pentane, 1:1 isoamyl alcohol/n-pentane, 4:1 methanol/ethanol, 1:1 FC72/FC84 (Fluorinert), Daphne 7373, isopentane, and Dow Corning PMX silicone oils 200 and 60,000 cS. We relied on the high sensitivity of the electrical resistivity of Ba(Fe1–xRux)2As2 single crystals to the freezing of the pressure media and cross-checked with corresponding anomalies observed in the resistance of the manganin coil that served as the ambient temperaturemore » resistive manometer. In addition to establishing the temperature-pressure line separating the liquid (hydrostatic) and frozen (non-hydrostatic) phases, these data permit rough estimates of the freezing pressure of these media at ambient temperature. As a result, this pressure establishes the extreme limit for the medium to be considered hydrostatic. For higher applied pressures, the medium has to be treated as non-hydrostatic.« less

  7. Behavior of plant plasma membranes under hydrostatic pressure as monitored by fluorescent environment-sensitive probes.

    PubMed

    Roche, Yann; Klymchenko, Andrey S; Gerbeau-Pissot, Patricia; Gervais, Patrick; Mély, Yves; Simon-Plas, Françoise; Perrier-Cornet, Jean-Marie

    2010-08-01

    We monitored the behavior of plasma membrane (PM) isolated from tobacco cells (BY-2) under hydrostatic pressures up to 3.5kbar at 30 degrees C, by steady-state fluorescence spectroscopy using the newly introduced environment-sensitive probe F2N12S and also Laurdan and di-4-ANEPPDHQ. The consequences of sterol depletion by methyl-beta-cyclodextrin were also studied. We found that application of hydrostatic pressure led to a marked decrease of hydration as probed by F2N12S and to an increase of the generalized polarization excitation (GPex) of Laurdan. We observed that the hydration effect of sterol depletion was maximal between 1 and 1.5 kbar but was much less important at higher pressures (above 2 kbar) where both parameters reached a plateau value. The presence of a highly dehydrated gel state, insensitive to the sterol content, was thus proposed above 2.5 kbar. However, the F2N12S polarity parameter and the di-4-ANEPPDHQ intensity ratio showed strong effect on sterol depletion, even at very high pressures (2.5-3.5 kbar), and supported the ability of sterols to modify the electrostatic properties of membrane, notably its dipole potential, in a highly dehydrated gel phase. We thus suggested that BY-2 PM undergoes a complex phase behavior in response to the hydrostatic pressure and we also emphasized the role of phytosterols to regulate the effects of high hydrostatic pressure on plant PM.

  8. Hydrostatic Pressure Project: Linked-Class Problem-Based Learning in Engineering

    ERIC Educational Resources Information Center

    Davis, Freddie J.; Lockwood-Cooke, Pamela; Hunt, Emily M.

    2011-01-01

    Over the last few years, WTAMU Mathematics, Engineering and Science faculty has used interdisciplinary projects as the basis for implementation of a linked-class approach to Problem-Based Learning (PBL). A project that has significant relevance to engineering statics, fluid mechanics, and calculus is the Hydrostatic Pressure Project. This project…

  9. First-principles simulations on bonding pathways of chemical transformations under hydrostatic compression

    NASA Astrophysics Data System (ADS)

    Hu, Anguang; Zhang, Fan

    2012-02-01

    High pressure as a thermodynamic parameter provides a strong structural constraint to lead chemical transformations with selective ways. Thus, chemical transformations under pressure can create novel materials which may not be accessible by covalent synthesis. However, bonding evolution toward high pressure chemical transformations can be a complex process and may happen over widely different pressures. To understand bonding evolution pathways of high pressure chemical transformations, first-principles simulations were performed following hydrostatic compression enthalpy minimization paths to obtain experimentally and theoretically established phase transitions of carbon. The results showed that the chemical transformations from hydrostatic compression carbon to single-bonded phases were characterized by a sudden decrease in principal stress components, indicating the onset of chemical transformation. On this basis, a number of hydrostatic compression chemical transformations from molecular precursors to novel materials were predicted, such as hydrocarbon graphane, a hydrogenated carbon nitride sheet, and carbon nitrides. All predicted hydrostatic compression transformations are featured as a sudden change in principal stress components, representing chemical bonding destruction and formation reactions with a cell volume collapse.

  10. Effect of high hydrostatic pressure processing on in vitro digestion of milk proteins and fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of high hydrostatic pressure processing (HPP) is increasing in popularity in the food industry. Its ability to modify milk proteins and fats suggests that it may be useful in creating foods that suppress appetite; however, its effect on the digestibility of proteins and fats is unclear. The...

  11. Thermal fluid-solid interaction model and experimental validation for hydrostatic mechanical face seals

    NASA Astrophysics Data System (ADS)

    Huang, Weifeng; Liao, Chuanjun; Liu, Xiangfeng; Suo, Shuangfu; Liu, Ying; Wang, Yuming

    2014-09-01

    Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants. More accurate models on the operating mechanism of the seals are needed to help improve their performance. The thermal fluid-solid interaction (TFSI) mechanism of the hydrostatic seal is investigated in this study. Numerical models of the flow field and seal assembly are developed. Based on the mechanism for the continuity condition of the physical quantities at the fluid-solid interface, an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method. Dynamic mesh technology is adopted to adapt to the changing boundary shape. Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure. The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data. Using the TFSI model, the behavior of the seal is presented, including mechanical and thermal deformation, and the temperature field. The influences of the rotating speed and differential pressure of the sealing device on the temperature field, which occur widely in the actual use of the seal, are studied. This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals, and the model is validated by full-sized experiments.

  12. Effects of hydrostatic pressure, agitation and CO2 stress on Phytophthora nicotianae zoospore survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora nicotianae Breda de Haan was used as a model pathogen to investigate the effects of hydrostatic pressure, agitation, and aeration with CO2 or breathable air on the survival of Phytophthora zoospores in water. Injecting CO2 into 2 liters of zoospore-infested water for 5 min at 110.4 ml ...

  13. Assessment of the non-hydrostatic effect in general circulation models (GCMs)

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Richmond, A. D.; Ridley, A. J.; Liu, H.

    2007-12-01

    Under hydrostatic equilibrium, a typical assumption used in global thermosphere ionosphere models, the pressure gradient in the vertical direction is exactly balanced by the gravity force. Using the Global Ionosphere Thermosphere Model (GITM), which solves the complete vertical momentum equation, the primary characteristics of non-hydrostatic effects on the upper atmosphere are investigated. Our results show that after a sudden intense enhancement of high-latitude Joule heating, the vertical pressure gradient force can locally be 25 percent larger than the gravity force, resulting in a significant disturbance away from hydrostatic equilibrium. This disturbance is transported from the lower altitude source region to high altitudes through an acoustic wave, which has been simulated in a global circulation model for the first time. Due to the conservation of perturbation energy, the magnitude of the vertical wind perturbation increases with altitude and reaches 150 (250) m/s at 300 (430) km during the disturbance. The upward neutral wind lifts the atmosphere and raises the neutral density at high altitudes by a factor of two. While the time scale of the buoyancy acceleration perturbation is around 5-10 minutes in this case, the large vertical wind (above 50 m/s) at 300 km altitude lasts for a significantly longer time, and depends on the lifetime of the forcing. These large vertical winds are observed and are not typically reproduced by hydrostatic models of the thermosphere and ionosphere.

  14. Strength Differential Measured in Inconel 718: Effects of Hydrostatic Pressure Studied

    NASA Technical Reports Server (NTRS)

    Lewandowski, John J.; Wesseling, Paul; Prabhu, Nishad S.; Larose, Joel; Lissenden, Cliff J.; Lerch, Bradley A.

    2003-01-01

    Aeropropulsion components, such as disks, blades, and shafts, are commonly subjected to multiaxial stress states at elevated temperatures. Experimental results from loadings as complex as those experienced in service are needed to help guide the development of accurate viscoplastic, multiaxial deformation models that can be used to improve the design of these components. During a recent study on multiaxial deformation (ref. 1) on a common aerospace material, Inconel 718, it was shown that the material in the aged state exhibits a strength differential effect (SDE), whereby the uniaxial compressive yield and subsequent flow behavior are significantly higher than those in uniaxial tension. Thus, this material cannot be described by a standard von Mises yield formulation. There have been other formulations postulated (ref. 2) that involve other combinations of the stress invariants, including the effect of hydrostatic stress. The question remained as to which invariants are necessary in the flow model. To capture the physical mechanisms occurring during deformation and reflect them in the plasticity formulation, researchers examined the flow of Inconel 718 under various amounts of hydrostatic stress to determine whether or not hydrostatic stress is needed in the formulation. Under NASA Grant NCC3-464, monitored by the NASA Glenn Research Center, a series of tensile tests were conducted at Case Western Reserve University on aged (precipitation hardened) Inconel 718 at 650 C and with superimposed hydrostatic pressure. Dogbone shaped tensile specimens (3-mm-diameter gauge by 16-mm gauge length) and cylindrical compression specimens (3-mm-diameter gauge by 6-mm gauge length) were strain gauged and loaded in a high-pressure testing apparatus. Hydrostatic pressures were obtained with argon and ranged from 210 to 630 MPa. The aged Inconel 718 showed a pronounced difference in the tension and compression yield strength (i.e., an SDE), as previously observed. Also, there were

  15. Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem

    NASA Astrophysics Data System (ADS)

    Tianwei, LAI; Bao, FU; Shuangtao, CHEN; Qiyong, ZHANG; Yu, HOU

    2017-02-01

    The EAST superconducting tokamak, an advanced steady-state plasma physics experimental device, has been built at the Institute of Plasma Physics, Chinese Academy of Sciences. All the toroidal field magnets and poloidal field magnets, made of NbTi/Cu cable-in-conduit conductor, are cooled with forced flow supercritical helium at 3.8 K. The cryogenic system of EAST consists of a 2 kW/4 K helium refrigerator and a helium distribution system for the cooling of coils, structures, thermal shields, bus-lines, etc. The high-speed turbo-expander is an important refrigerating component of the EAST cryogenic system. In the turbo-expander, the axial supporting technology is critical for the smooth operation of the rotor bearing system. In this paper, hydrostatic thrust bearings are designed based on the axial load of the turbo-expander. Thereafter, a computational fluid dynamics-based numerical model of the aerostatic thrust bearing is set up to evaluate the bearing performance. Tilting effect on the pressure distribution and bearing load is analyzed for the thrust bearing. Bearing load and stiffness are compared with different static supply pressures. The net force from the thrust bearings can be calculated for different combinations of bearing clearance and supply pressure.

  16. Robust and intelligent bearing estimation

    DOEpatents

    Claassen, John P.

    2000-01-01

    A method of bearing estimation comprising quadrature digital filtering of event observations, constructing a plurality of observation matrices each centered on a time-frequency interval, determining for each observation matrix a parameter such as degree of polarization, linearity of particle motion, degree of dyadicy, or signal-to-noise ratio, choosing observation matrices most likely to produce a set of best available bearing estimates, and estimating a bearing for each observation matrix of the chosen set.

  17. Prototype testing of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Plant, David P.; Jayaraman, Chaitanya P.; Frommer, David A.; Kirk, James A.; Anand, Davinder K.

    1987-01-01

    The testing and evaluation of the performance of a magnetic bearing assembly for flywheel energy storage applications are discussed. The experimental set up for determining the passive radial stiffness, active radial stiffness, and curent force sensitivity of the coils follows the method developed by Frommer (1986). Magnetic bearings design should preclude saturation and current limiting in the desired operating range, so that the system will be linear. A larger linear range will lead to a more stable magnetic bearing.

  18. Effect of working position on vertical motion straightness of open hydrostatic guideways in grinding machine

    NASA Astrophysics Data System (ADS)

    Zha, Jun; Wang, Zhiwei; Xue, Fei; Chen, Yaolong

    2017-01-01

    Hydrostatic guideways have various applications in precision machine tools due to their high motion accuracy. The analysis of motion straightness in hydrostatic guideways is generally ignoring the external load on the slider. A variation force also exists, caused by the different working positions, together with the dead load of the slider and that of other auxiliary devices. The effect of working position on vertical motion straightness is investigated based on the equivalent static model, considering the error averaging effort of pressured oil film in open hydrostatic guideways. Open hydrostatic guideways in LGF1000 are analyzed with this approach. The theoretical results show that the slider has maximum vertical motion straightness when the working position is closer the guiderail of Y axis. The vertical motion straightness reaches a minimum value as the working position is located at the center of the two guiderails on the Y axis. The difference between the maximum and minimum vertical motion straightness is 34.7%. The smaller vertical motion straightness is attributed to the smaller spacing of the two pads centers, along the Y direction. The experimental results show that the vertical motion straightness is 4.15 μm/1200 mm, when the working position is located in the middle of the X beam, and 5.08 μm/1200 mm, when the working position is approaching the Y guiderails, denoting an increase of 18.3%. The changing trends of the measured results validate the correctness of the theoretical model. The research work can be used to reveal the variation law of accuracy of the open hydrostatic guideways, under different working positions, to predict the machining precision, and provides the basis for an error compensation strategy for gantry type grinding machines.

  19. Series-hybrid bearing - An approach to extending bearing fatigue life at high speeds

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Coe, H. H.; Fleming, D. P.; Parker, R. J.

    1971-01-01

    Fluid film bearing of hybrid device consists of orifice compensated annular thrust bearing and self-acting journal bearing. In series hybrid bearing, both ball bearing and annular thrust bearing carry full system thrust load, but two bearings share speed. Operation of system is stable and automatically fail-safe.

  20. Evaluation of shuttle turbopump bearings

    NASA Technical Reports Server (NTRS)

    Dufrane, K. F.; Kannel, J. W.

    1978-01-01

    Because the high pressure turbopumps used on the space shuttle main engine (SSME) are high speed machines and rotor dynamics analysis of these units is very complicated, it was considered necessary to verify calculated turbomachinery shaft bearing loads by analysis of ball bearing load tracks. This report presents the methods used and the results of load track analysis on one set of bearings removed from a high pressure liquid oxygen turbopump which had been subjected to SSME static firing tests. This type of analysis was found useful in determining bearing operating conditions and for verifying rotor dynamics computer models.

  1. The role of ontogeny in physiological tolerance: decreasing hydrostatic pressure tolerance with development in the northern stone crab Lithodes maja

    PubMed Central

    Munro, Catriona; Morris, James P.; Brown, Alastair; Hauton, Chris; Thatje, Sven

    2015-01-01

    Extant deep-sea invertebrate fauna represent both ancient and recent invasions from shallow-water habitats. Hydrostatic pressure may present a significant physiological challenge to organisms seeking to colonize deeper waters or migrate ontogenetically. Pressure may be a key factor contributing to bottlenecks in the radiation of taxa and potentially drive speciation. Here, we assess shifts in the tolerance of hydrostatic pressure through early ontogeny of the northern stone crab Lithodes maja, which occupies a depth range of 4–790 m in the North Atlantic. The zoea I, megalopa and crab I stages were exposed to hydrostatic pressures up to 30.0 MPa (equivalent of 3000 m depth), and the relative fold change of genes putatively coding for the N-methyl-d-aspartate receptor-regulated protein 1 (narg gene), two heat-shock protein 70 kDa (HSP70) isoforms and mitochondrial Citrate Synthase (CS gene) were measured. This study finds a significant increase in the relative expression of the CS and hsp70a genes with increased hydrostatic pressure in the zoea I stage, and an increase in the relative expression of all genes with increased hydrostatic pressure in the megalopa and crab I stages. Transcriptional responses are corroborated by patterns in respiratory rates in response to hydrostatic pressure in all stages. These results suggest a decrease in the acute high-pressure tolerance limit as ontogeny advances, as reflected by a shift in the hydrostatic pressure at which significant differences are observed. PMID:26041343

  2. The polar bear phenomena

    SciTech Connect

    Maw, P.K. ); Lane, M.T.

    1990-02-01

    Results from measuring the thermal profile of polar bear pelts, reflectiveness of the pelts, and total thermal conversion data lead to the conclusion that the pelts from an ultra-efficient thermal diode for solar-thermal conversion. The transfer of the thermal energy from the surface of the fur to the skin where it is absorbed cannot be thermal, and therefore must be radiative. This process must have an efficiency of better than 90:0090 percent to account for measured values. The radiative transfer process is not known at present. To understand it, a detailed knowledge of the microscopic parameters of the pelts must be obtained. This is the current thrust of the polar solar research. If the process can be understood and synthesized,it will provide a major breakthrough in the area of solar-thermal energy conversion.

  3. Introduction to magnetic bearings

    NASA Technical Reports Server (NTRS)

    Skowronski, Lori; Bisese, Anne

    1993-01-01

    Multi-axis suspension has several advantages over single axis system, in that it provides control of an object with precision in two or three orthogonal axes. In this report, we discuss the primary use of magnetic-bearing suspension and it's relevance to what was formally known as NASA's Annular Suspension and Pointing System (ASPS). This system is an experimental pointing system with applications for the space shuttle and the space station programs. The objectives behind this magnetic suspension research project are to provide insight to the use of the ASPS configuration, to control the solar panels of the space station. This is important to maintain the correct position of the panels in relation to the sun and orbiting space station for the continuous supply of solar energy. Since the panels are suspended, they can be aligned with minimum outside interference. The approach of using magnetic suspension technology guarantees mechanical isolation since there are no contacting surfaces. This isolation reduces vibration transmission and mechanical wear which in turn extends the life of the payload and of the carrier. It should be noted that ASPS has a high pointing accuracy along the line of 0.01 arc-second. This research will be done in a laboratory setting by incorporating five bearing stations and one motion control station. We will attempt to suspend an object of dead weight similar to that of a solar panel. The long term applications may include deep-space navigation, fire control in weapon systems, and an improved mass transit system.

  4. HYDROSTATIC GAS CONSTRAINTS ON SUPERMASSIVE BLACK HOLE MASSES: IMPLICATIONS FOR HYDROSTATIC EQUILIBRIUM AND DYNAMICAL MODELING IN A SAMPLE OF EARLY-TYPE GALAXIES

    SciTech Connect

    Humphrey, Philip J.; Buote, David A.; Brighenti, Fabrizio; Gebhardt, Karl; Mathews, William G.

    2009-10-01

    We present new mass measurements for the supermassive black holes (SMBHs) in the centers of three early-type galaxies. The gas pressure in the surrounding, hot interstellar medium (ISM) is measured through spatially resolved spectroscopy with the Chandra X-ray Observatory, allowing the SMBH mass (M {sub BH}) to be inferred directly under the hydrostatic approximation. This technique does not require calibration against other SMBH measurement methods and its accuracy depends only on the ISM being close to hydrostatic, which is supported by the smooth X-ray isophotes of the galaxies. Combined with results from our recent study of the elliptical galaxy NGC 4649, this brings the number of galaxies with SMBHs measured in this way to four. Of these, three already have mass determinations from the kinematics of either the stars or a central gas disk, and hence join only a handful of galaxies with M {sub BH} measured by more than one technique. We find good agreement between the different methods, providing support for the assumptions implicit in both the hydrostatic and the dynamical models. The stellar mass-to-light ratios for each galaxy inferred by our technique are in agreement with the predictions of stellar population synthesis models assuming a Kroupa initial mass function (IMF). This concurrence implies that no more than {approx}10%-20% of the ISM pressure is nonthermal, unless there is a conspiracy between the shape of the IMF and nonthermal pressure. Finally, we compute Bondi accretion rates (M-dot{sub bondi}), finding that the two galaxies with the highest M-dot{sub bondi} exhibit little evidence of X-ray cavities, suggesting that the correlation with the active galactic nuclei jet power takes time to be established.

  5. The effects of hydrostatic pressure on the nonlinear intersubband transitions and refractive index changes of different QW shapes

    NASA Astrophysics Data System (ADS)

    Ozturk, Emine; Sokmen, Ismail

    2012-11-01

    In this study, the effects of hydrostatic pressure on the linear and nonlinear intersubband transitions and the refractive index changes in the conduction band of different quantum well shapes are theoretically calculated within framework of the effective mass approximation. Results obtained show that intersubband properties and the energy levels in different QWs can be modified and controlled by the hydrostatic pressure. The modulation of the absorption coefficients and the refractive index changes which can be suitable for good performance optical modulators and various infrared optical device applications can be easily obtained by tuning the hydrostatic pressure strength.

  6. Permanent-Magnet Meissner Bearing

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1994-01-01

    Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.

  7. Spherical-Bearing Analysis Program

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.

    1984-01-01

    Computer program SPHERBEAN, developed to predict thermomechanical performance characteristics of double-row spherical roller bearings over wide range of operating conditions. Analysis allows six degrees of freedom for each roller and three for each half of an optionally split cage. Program capabilities provide sufficient generality to allow detailed simulation of both high-speed and conventional bearing operation.

  8. Space Station alpha joint bearing

    NASA Technical Reports Server (NTRS)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  9. Geophagy by yellowstone grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.; Green, G.I.; Swalley, R.

    1999-01-01

    We documented 12 sites in the Yellowstone ecosystem where grizzly bears (Ursus arctos horribilis) had purposefully consumed soil (an activity known as geophagy). We also documented soil in numerous grizzly bear feces. Geophagy primarily occurred at sites barren of vegetation where surficial geology had been modified by geothermal activity. There was no evidence of ungulate use at most sites. Purposeful consumption of soil by bears peaked first from March to May and again from August to October, synchronous with peaks in consumption of ungulate meat and mushrooms. Geophageous soils were distinguished from ungulate mineral licks and soils in general by exceptionally high concentrations of potassium (K) and high concentrations of magnesium (Mg) and sulphur (S). Our results do not support the hypotheses that bears were consuming soil to detoxify secondary compounds in grazed foliage, as postulated for primates, or to supplement dietary sodium, as known for ungulates. Our results suggest that grizzly bears could have been consuming soil as an anti-diarrheal.

  10. Nonlinear control of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Pradeep, A. K.; Gurumoorthy, R.

    1994-01-01

    In this paper we present a variety of nonlinear controllers for the magnetic bearing that ensure both stability and robustness. We utilize techniques of discontinuous control to design novel control laws for the magnetic bearing. We present in particular sliding mode controllers, time optimal controllers, winding algorithm based controllers, nested switching controllers, fractional controllers, and synchronous switching controllers for the magnetic bearing. We show existence of solutions to systems governed by discontinuous control laws, and prove stability and robustness of the chosen control laws in a rigorous setting. We design sliding mode observers for the magnetic bearing and prove the convergence of the state estimates to their true values. We present simulation results of the performance of the magnetic bearing subject to the aforementioned control laws, and conclude with comments on design.

  11. Basic Expeditionary Airfield Resources (BEAR) Mission Brief

    DTIC Science & Technology

    2011-11-02

    FL BEAR Holloman AFB, NM Kadena, JP McAlester, OK Diego Garcia Saipan Munitions Storage Location General WRM Storage Location Capabilities • BEAR...Global BEAR Management MSgt Pedro Ramos , Supt, Global BEAR E i t & S (2G MSgt) (Vacant), Global BEAR Systems and Readiness Management (2G MSgt

  12. Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.

    1988-01-01

    The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.

  13. Effects of bearing cleaning and lube environment on bearing performance

    NASA Technical Reports Server (NTRS)

    Ward, Peter C.

    1995-01-01

    Running torque data of SR6 ball bearings are presented for different temperatures and speeds. The data are discussed in contrast to generally used torque prediction models and point out the need to obtain empirical data in critical applications. Also, the effects of changing bearing washing techniques from old, universally used CFC-based systems to CFC-free aqueous/alkaline solutions are discussed. Data on wettability, torque and lubricant life using SR3 ball bearings are presented. In general, performance is improved using the new aqueous washing techniques.

  14. Electronic structure computation and differential capacitance profile in δ-doped FET as a function of hydrostatic pressure

    SciTech Connect

    Carlos-Pinedo, C.; Rodríguez-Vargas, I.; Martínez-Orozco, J. C.

    2014-05-15

    In this work we present the results obtained from the calculation of the level structure of a n-type delta-doped well Field Effect Transistor when is subjected to hydrostatic pressure. We study the energy level structure as a function of hydrostatic pressure within the range of 0 to 6 kbar for different Schottky barrier height (SBH). We use an analytical expression for the effect of hydrostatic pressure on the SBH and the pressure dependence of the basic parameters of the system as the effective mass m(P) and the dielectric constant ε(P) of GaAs. We found that due to the effects of hydrostatic pressure, in addition to electronic level structure alteration, the profile of the differential capacitance per unit area C{sup −2} is affected.

  15. Highly birefringent polymer side-hole fiber for hydrostatic pressure sensing.

    PubMed

    Martynkien, Tadeusz; Wojcik, Grzegorz; Mergo, Pawel; Urbanczyk, Waclaw

    2015-07-01

    We report on the fabrication of a birefringent side-hole polymer optical fiber with an elliptical core made of polymethyl metacrylate-polystyrene (PMMA/PS) copolymer and pure PMMA cladding. The fiber core is located in a narrow PMMA bridge separating the holes. Two fibers with different bridge thickness were fabricated and characterized. We demonstrate, experimentally and numerically, that, by narrowing the bridge between the holes, one can increase simultaneously the fiber birefringence and the polarimetric sensitivity to hydrostatic pressure. In the fiber with the bridge as narrow as 5 μm, we achieved a record-high polarimetric sensitivity to hydrostatic pressure ranging between 175 and 140 rad/MPa/m in the spectral range of 600-830 nm. The phase modal birefringence in this fiber is also high and exceeds 3×10(-5) at 600 nm, which results in small polarization cross talk.

  16. Hydrostatic pressure effect on magnetic phase transition and magnetocaloric effect of metamagnetic TmZn compound

    PubMed Central

    Li, Lingwei; Hu, Guanghui; Qi, Yang; Umehara, Izuru

    2017-01-01

    The magnetocaloric effect (MCE) is an intrinsic thermal response of all magnetic solids which has a direct and strong correlation with the corresponding magnetic phase transition. It has been well recognized that the magnetic phase transition can be tuned by adjusting applied pressure. Therefore, we perform the high hydrostatic pressure magnetization measurements (up to 1.4 GPa) on a recently reported giant MCE material of TmZn. The results indicate that the Curie temperature of TC increases from 8.4 K at the ambient pressure to 11.5 K under the pressure of 1.4 GPa. The field-induced first order metamagnetic transition is getting weak with increasing pressure, which results in a reduction of MCE. The hydrostatic pressure effect on the magnetic phase transition and MCE in the metamagnetic TmZn is discussed. PMID:28205628

  17. Function and hydrostatics in the telson of the Burgess Shale arthropod Burgessia.

    PubMed

    Lin, Jih-Pai

    2009-06-23

    Burgessia bella is a characteristic Burgess Shale arthropod (508 Ma), but the unusual preservation of its telson in both straight and bent modes leads to contradictory interpretations of its function. A reinvestigation of the fossil material, including burial attitudes, combined with a comparison with the decay sequence and mechanics of the telson in living Limulus, demonstrates that the telson of Burgessia was flexible in its relaxed state but could be stiffened in life. Evidence of fluid within the telson indicates that this manoeuvrability was achieved by changes in hydrostatic pressure and muscular control. The dual mode in the Burgessia telson is, to my knowledge, the first documented among fossil arthropods. It indicates that the requirement for a rigid telson, which is resolved by a thick sclerotized cuticle in most arthropods, may first have been achieved by hydrostatic means.

  18. Function and hydrostatics in the telson of the Burgess Shale arthropod Burgessia

    PubMed Central

    Lin, Jih-Pai

    2009-01-01

    Burgessia bella is a characteristic Burgess Shale arthropod (508 Ma), but the unusual preservation of its telson in both straight and bent modes leads to contradictory interpretations of its function. A reinvestigation of the fossil material, including burial attitudes, combined with a comparison with the decay sequence and mechanics of the telson in living Limulus, demonstrates that the telson of Burgessia was flexible in its relaxed state but could be stiffened in life. Evidence of fluid within the telson indicates that this manoeuvrability was achieved by changes in hydrostatic pressure and muscular control. The dual mode in the Burgessia telson is, to my knowledge, the first documented among fossil arthropods. It indicates that the requirement for a rigid telson, which is resolved by a thick sclerotized cuticle in most arthropods, may first have been achieved by hydrostatic means. PMID:19324649

  19. The Effect of Hydrostatic Pressure and Seismic Load on ITER Lower Cryopump Ports

    NASA Astrophysics Data System (ADS)

    Cai, Yingxiang; Yu, Jie; Wu, Songtao

    2007-04-01

    The lower cryopump ports in International Thermonuclear Experimental Reactor (ITER) as a part of the vacuum vessel play many important roles. As the boundary of vacuum it must be ensured against structural damage. In this study a finite element model of the lower cryopump ports was developed by ANSYS code with a purpose to evaluate the stress and displacement level on it. Two kinds of loads were taken into account. One was the hydrostatic pressure including the normal operation pressure and test pressure. The other was the seismic load. The analysis results show that the peak stress does not exceed the allowable stress for either the hydrostatic pressure or the seismic load according to the ITER structural design criterion, which indicates that the structure has a good safety margin.

  20. Hydrostatic pressure effect on magnetic phase transition and magnetocaloric effect of metamagnetic TmZn compound

    NASA Astrophysics Data System (ADS)

    Li, Lingwei; Hu, Guanghui; Qi, Yang; Umehara, Izuru

    2017-02-01

    The magnetocaloric effect (MCE) is an intrinsic thermal response of all magnetic solids which has a direct and strong correlation with the corresponding magnetic phase transition. It has been well recognized that the magnetic phase transition can be tuned by adjusting applied pressure. Therefore, we perform the high hydrostatic pressure magnetization measurements (up to 1.4 GPa) on a recently reported giant MCE material of TmZn. The results indicate that the Curie temperature of TC increases from 8.4 K at the ambient pressure to 11.5 K under the pressure of 1.4 GPa. The field-induced first order metamagnetic transition is getting weak with increasing pressure, which results in a reduction of MCE. The hydrostatic pressure effect on the magnetic phase transition and MCE in the metamagnetic TmZn is discussed.

  1. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    PubMed Central

    Michoud, Grégoire; Jebbar, Mohamed

    2016-01-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins. PMID:27250364

  2. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    NASA Astrophysics Data System (ADS)

    Michoud, Grégoire; Jebbar, Mohamed

    2016-06-01

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins.

  3. The effects of hydrostatic pressure on optical fibers (fiscal year 1983 report)

    NASA Astrophysics Data System (ADS)

    Kamikawa, N.

    1985-04-01

    This report stems from a project tasked to investigate experimentally the effects of deep-ocean hydrostatic pressure on (polymer-coated) optical fiber transmission. It was concluded that optical fibers could be designed so that pressure equivalent to a 6-km (20,000-ft) ocean depth does not increase fiber losses. This conclusion was based on an axial compression model and experiments performed on polymercoated graded-index fibers. Defects in the coating were identified as additional causes of loss increase. Defectively coated fibers exhibited very large excess loss in hydrostatic environments. This report summarizes work performed in FY 83. A pressure model and fiber and coating material experiments are described and conclusions and recommendations stated.

  4. The effect of hydrostatic vs. shock pressure treatment on plant seeds

    NASA Astrophysics Data System (ADS)

    Mustey, Adrian; Leighs, James; Appleby-Thomas, Gareth; Wood, David; Hazael, Rachael; McMillan, Paul; Hazell, Paul

    2013-06-01

    The hydrostatic pressure and shock response of plant seeds have both been previously investigated (primarily driven by an interest in reducing bacterial contamination of crops and the theory of panspermia respectively). However, comparisons have not previously been made between these two methods of applying pressure to plant seeds. Here such a comparison has been undertaken based on the premise that any correlations in such data may provide a route to inform understanding of damage mechanisms in the seeds under test. In this work two varieties of plant seeds were subjected to hydrostatic pressure via a non-end-loaded piston cylinder set-up and shock compression via employment of a 50-mm bore, single stage gas gun using the flyer-plate technique. Results from germination tests of recovered seed samples have been compared and contrasted, and initial conclusions made regarding causes of trends in the resultant data-set.

  5. SSME turbopump bearing analytical study

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Merriman, T.

    1980-01-01

    Three shuttle pump bearings operating under severe overspeed and shut-down conditions are evaluated. The specific parameters investigated include outer race stresses, cage stresses, cage-race drag, bearing heating, and crush loading. A quasi-dynamic version of the BASDAP computer code was utilized which involved the calculation of ball-race forces (inner and outer), contact pressures, contact dimensions, and contact angles as a function of (1) axial load, (2) radial load, and (3) centrifugal load on the bearing. Generally, radial loads on the order of 13,300 N (3000 pounds) per bearing or 26,700 N (6000 pounds) per bearing pair, could be expected to cause severe problems to any of the bearings with a 17,800 N (4000 pounds) axial load. Further, when possible temperature excursions are considered, even a load of 8900 N (2000 pounds) may be excessive. However, high momentary radial loads with a 3800 N (850 pounds) axial load would not be anticipated to cause catastrophic failure of the fuel pump bearing.

  6. Magnetic Bearings at Draper Laboratory

    NASA Technical Reports Server (NTRS)

    Kondoleon, Anthony S.; Kelleher, William P.; Possel, Peter D.

    1996-01-01

    Magnetic bearings, unlike traditional mechanical bearings, consist of a series of components mated together to form a stabilized system. The correct design of the actuator and sensor will provide a cost effective device with low power requirements. The proper choice of a control system utilizes the variables necessary to control the system in an efficient manner. The specific application will determine the optimum design of the magnetic bearing system including the touch down bearing. Draper for the past 30 years has been a leader in all these fields. This paper summarizes the results carried out at Draper in the field of magnetic bearing development. A 3-D radial magnetic bearing is detailed in this paper. Data obtained from recently completed projects using this design are included. One project was a high radial load (1000 pound) application. The second was a high speed (35,000 rpm), low loss flywheel application. The development of a low loss axial magnetic bearing is also included in this paper.

  7. WEIGHING GALAXY CLUSTERS WITH GAS. I. ON THE METHODS OF COMPUTING HYDROSTATIC MASS BIAS

    SciTech Connect

    Lau, Erwin T.; Nagai, Daisuke; Nelson, Kaylea

    2013-11-10

    Mass estimates of galaxy clusters from X-ray and Sunyeav-Zel'dovich observations assume the intracluster gas is in hydrostatic equilibrium with their gravitational potential. However, since galaxy clusters are dynamically active objects whose dynamical states can deviate significantly from the equilibrium configuration, the departure from the hydrostatic equilibrium assumption is one of the largest sources of systematic uncertainties in cluster cosmology. In the literature there have been two methods for computing the hydrostatic mass bias based on the Euler and the modified Jeans equations, respectively, and there has been some confusion about the validity of these two methods. The word 'Jeans' was a misnomer, which incorrectly implies that the gas is collisionless. To avoid further confusion, we instead refer these methods as 'summation' and 'averaging' methods respectively. In this work, we show that these two methods for computing the hydrostatic mass bias are equivalent by demonstrating that the equation used in the second method can be derived from taking spatial averages of the Euler equation. Specifically, we identify the correspondences of individual terms in these two methods mathematically and show that these correspondences are valid to within a few percent level using hydrodynamical simulations of galaxy cluster formation. In addition, we compute the mass bias associated with the acceleration of gas and show that its contribution is small in the virialized regions in the interior of galaxy clusters, but becomes non-negligible in the outskirts of massive galaxy clusters. We discuss future prospects of understanding and characterizing biases in the mass estimate of galaxy clusters using both hydrodynamical simulations and observations and their implications for cluster cosmology.

  8. Cosmology and astrophysics from relaxed galaxy clusters - IV. Robustly calibrating hydrostatic masses with weak lensing

    NASA Astrophysics Data System (ADS)

    Applegate, D. E.; Mantz, A.; Allen, S. W.; der Linden, A. von; Morris, R. Glenn; Hilbert, S.; Kelly, Patrick L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; Schmidt, R. W.

    2016-04-01

    This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within a characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9 per cent (stat) ± 9 per cent (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c_{200} = 3.0_{-1.8}^{+4.4}. Anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30-50 per cent, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.

  9. Simulation of Storm Surge by a Depth-integrated Non-hydrostatic Nested-gird Model

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Lin; Wu, Tso-Ren; Terng, Chuen-Teyr; Cheung, Mei-Hui

    2015-04-01

    This paper presents COMCOT-SS (COrnell Multi-grid Coupled of Tsunami Model - Storm Surge) operational model, a depth integrated non-hydrostatic storm surge model developed for the Central Weather Bureau (CWB) in Taiwan. This model is based on the widely-validated COMCOT tsunami model. However, the governing equations were modified to be a depth-integrated vertical momentum equation, and the nonlinear shallow water equations including extra terms, such as the non-hydrostatic pressure, weather forcing, and tidal terms. The non-hydrostatic term enables the model to simulate relatively steep waves in the near-shore region. The conventional features in COMCOT, such as the nested-grid system, spherical and Cartesian coordinate systems, and the moving boundary scheme for inundation prediction were preserved. In this study, we carefully validated the model with analytic solutions for wind shear stress and pressure gradient terms. TWRF (Typhoon Weather Research and Forecasting) model was coupled for providing the meteorological forces generated by typhoons. Besides, parametric typhoon models such as Holland model (1980) and CWB model were also coupled with COMCOT-SS in which the drag coefficient was advised by Large and Pond (1981) and Powell (2003). Astronomical tide provided by the TPXO global tidal model was imported from the domain boundaries. As for the model performance, COMCOT-SS spends less than 30 minutes to finish a 48-hrs forecasting with a large computational domain which covers Taiwan Strait and most parts of Western Pacific Ocean and South China Sea and satisfies the requirement of early warning. In this paper, we also presented the results of nine typical typhoon routes defined by CWB in Taiwan for the model verification. The simulation results accompanied with the non-hydrostatic effect presented good agreement with observation data. Detailed results and discussion will be presented in EGU, 2015.

  10. The Effect of Size and Species on Lens Intracellular Hydrostatic Pressure

    PubMed Central

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; Brink, Peter R.; White, Thomas W.; Mathias, Richard T.

    2013-01-01

    Purpose. Previous experiments showed that mouse lenses have an intracellular hydrostatic pressure that varied from 335 mm Hg in central fibers to 0 mm Hg in surface cells. Model calculations predicted that in larger lenses, all else equal, pressure should increase as the lens radius squared. To test this prediction, lenses of different radii from different species were studied. Methods. All studies were done in intact lenses. Intracellular hydrostatic pressures were measured with a microelectrode-manometer–based system. Membrane conductances were measured by frequency domain impedance analysis. Intracellular Na+ concentrations were measured by injecting the Na+-sensitive dye sodium-binding benzofuran isophthalate. Results. Intracellular hydrostatic pressures were measured in lenses from mice, rats, rabbits, and dogs with radii (cm) 0.11, 0.22, 0.49, and 0.57, respectively. In each species, pressure varied from 335 ± 6 mm Hg in central fiber cells to 0 mm Hg in surface cells. Further characterization of transport in lenses from mice and rats showed that the density of fiber cell gap junction channels was approximately the same, intracellular Na+ concentrations varied from 17 mM in central fiber cells to 7 mM in surface cells, and intracellular voltages varied from −45 mV in central fiber cells to −60 mV in surface cells. Fiber cell membrane conductance was a factor of 2.7 times larger in mouse than in rat lenses. Conclusions. Intracellular hydrostatic pressure is an important physiological parameter that is regulated in lenses from these different species. The most likely mechanism of regulation is to reduce the density of open Na+-leak channels in fiber cells of larger lenses. PMID:23211824

  11. DETECTION OF A BIPOLAR MOLECULAR OUTFLOW DRIVEN BY A CANDIDATE FIRST HYDROSTATIC CORE

    SciTech Connect

    Dunham, Michael M.; Chen Xuepeng; Arce, Hector G.; Bourke, Tyler L.; Schnee, Scott; Enoch, Melissa L.

    2011-11-20

    We present new 230 GHz Submillimeter Array observations of the candidate first hydrostatic core Per-Bolo 58. We report the detection of a 1.3 mm continuum source and a bipolar molecular outflow, both centered on the position of the candidate first hydrostatic core. The continuum detection has a total flux density of 26.6 {+-} 4.0 mJy, from which we calculate a total (gas and dust) mass of 0.11 {+-} 0.05 M{sub Sun} and a mean number density of 2.0 {+-} 1.6 Multiplication-Sign 10{sup 7} cm{sup -3}. There is some evidence for the existence of an unresolved component in the continuum detection, but longer-baseline observations are required in order to confirm the presence of this component and determine whether its origin lies in a circumstellar disk or in the dense inner envelope. The bipolar molecular outflow is observed along a nearly due east-west axis. The outflow is slow (characteristic velocity of 2.9 km s{sup -1}), shows a jet-like morphology (opening semi-angles {approx}8 Degree-Sign for both lobes), and extends to the edges of the primary beam. We calculate the kinematic and dynamic properties of the outflow in the standard manner and compare them to several other protostars and candidate first hydrostatic cores with similarly low luminosities. We discuss the evidence both in support of and against the possibility that Per-Bolo 58 is a first hydrostatic core, and we outline future work needed to further evaluate the evolutionary status of this object.

  12. Properties of hydrostatically extruded in situ MgB2 wires doped with SiC

    NASA Astrophysics Data System (ADS)

    Pachla, W.; Morawski, A.; Kovác, P.; Husek, I.; Mazur, A.; Lada, T.; Diduszko, R.; Melisek, T.; Strbík, V.; Kulczyk, M.

    2006-01-01

    In situ nano-SiC doped MgB2 wires were fabricated from MgH2 and B powders. Hydrostatic extrusion, followed by rotary swaging and two-axial rolling, were applied as the forming processes. The critical current Jc of MgB2 wires, made from MgH2 and B powders, was significantly improved by nano-SiC doping. Nano-SiC doping substantially increased the upper critical (irreversibility) field Bc 2 above 20 T. The maximum Jc values were measured for samples having 6 at.% SiC in low field and for those having 12 at.% SiC in high field, above 10 T. During the final sintering at 670 °C, the SiC decomposed and formed an Si-rich layer at the inner circumference of the Fe sheath. The composition of the core of SiC doped wires is more inhomogeneous in comparison to undoped ones, with MgO, Mg2Si and probably Mg2SiO4 as the major segregated phases. Strong segregation of Si within the MgB2 core was also observed. The highest Tc-mid = 39.3 K was measured for undoped wire. For the optimal SiC doping amount ~6 at.%, at high field, there was no difference in Jc between hydrostatically extruded and hydrostatically extruded plus two-axially rolled wire. This can be attributed to the beneficial effect of hydrostatic extrusion, which causes higher density of the core in comparison to traditional deformation processes.

  13. Filtration coefficient of the axon membrane as measured with hydrostatic and osmotic methods.

    PubMed

    Vargas, F F

    1968-01-01

    The hydraulic conductivity of the membranes surrounding the giant axon of the squid, Dosidicus gigas, was measured. In some axons the axoplasm was partially removed by suction. Perfusion was then established by insertion of a second pipette. In other axons the axoplasm was left intact and only one pipette was inserted. In both groups hydrostatic pressure was applied by means of a water column in a capillary manometer. Displacement of the meniscus in time gave the rate of fluid flowing across the axon sheath. In both groups osmotic differences across the membrane were established by the addition of a test molecule to the external medium which was seawater. The hydraulic conductivity determined by application of hydrostatic pressure was 10.6 +/- 0.8.10(-8) cm/sec cm H(2)O in perfused axons and 3.2 +/- 0.6.10(-8) cm/sec cm H(2)O in intact axons. When the driving force was an osmotic pressure gradient the conductivity was 4.5 +/- 0.6 x 10(-10) cm/sec cm H(2)O and 4.8 +/- 0.9 x 10(-10) cm/sec cm H(2)O in perfused and intact axons, respectively. A comparable result was found when the internal solution was made hyperosmotic. The fluid flow was a linear function of the hydrostatic pressure up to 70 cm of water. Glycerol outflux and membrane conductance were increased 1.6 and 1.1 times by the application of hydrostatic pressure. These increments do not give an explanation of the difference between the filtration coefficients. Other possible explanations are suggested and discussed.

  14. Cosmology and astrophysics from relaxed galaxy clusters - IV: Robustly calibrating hydrostatic masses with weak lensing

    SciTech Connect

    Applegate, D. E; Mantz, A.; Allen, S. W.; von der Linden, A.; Morris, R. G.; Hilbert, S.; Kelly, P. L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; Schmidt, R. W.

    2016-02-04

    This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within a characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9% (stat) ± 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c200 = 3.0+4.4–1.8. In conclusion, anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30–50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.

  15. Cosmology and astrophysics from relaxed galaxy clusters - IV: Robustly calibrating hydrostatic masses with weak lensing

    DOE PAGES

    Applegate, D. E; Mantz, A.; Allen, S. W.; ...

    2016-02-04

    This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within amore » characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9% (stat) ± 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c200 = 3.0+4.4–1.8. In conclusion, anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30–50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.« less

  16. The effects of defects on copper melting under hydrostatic and shock loading

    SciTech Connect

    Luo, Shengnian; An, Qi; Germann, Timothy C; Han, Li - Bo

    2009-07-24

    With molecular dynamics (MD) simulations, we investigate the effects of defects on Cu melting under hydrostatic and shock wave loading. We explore preexistent defects including vacancies, stacking faults and grain boundaries, as well as shock-induced defects. Depending on defect characteristics (energy and concentration), defects may have negligible or considerable effects on melting at MD scales However, it is expected that defects have more pronounced effects at heating rates lower than the MD rates.

  17. The Effect of Hydrostatic Weighting on the Vertical Temperature Structure of the Solar Corona.

    PubMed

    Aschwanden; Nitta

    2000-05-20

    We investigate the effect of hydrostatic scale heights lambda(T) in coronal loops on the determination of the vertical temperature structure T&parl0;h&parr0; of the solar corona. Every method that determines an average temperature at a particular line of sight from optically thin emission (e.g., in EUV or soft X-ray wavelengths) of a mutlitemperature plasma is subject to the emission measure-weighted contributions dEM&parl0;T&parr0;&solm0;dT from different temperatures. Because most of the coronal structures (along open or closed field lines) are close to hydrostatic equilibrium, the hydrostatic temperature scale height introduces a height-dependent weighting function that causes a systematic bias in the determination of the temperature structure T&parl0;h&parr0; as function of altitude h. The net effect is that the averaged temperature seems to increase with altitude, dT&parl0;h&parr0;&solm0;dh>0, even if every coronal loop (of a multitemperature ensemble) is isothermal in itself. We simulate this effect with differential emission measure distributions observed by SERTS for an instrument with a broadband temperature filter such as Yohkoh/Soft X-Ray Telescope and find that the apparent temperature increase due to hydrostatic weighting is of order DeltaT approximately T0h&solm0;r middle dot in circle. We suggest that this effect largely explains the systematic temperature increase in the upper corona reported in recent studies (e.g., by Sturrock et al., Wheatland et al., or Priest et al.), rather than being an intrinsic signature of a coronal heating mechanism.

  18. High-pressure, high-temperature bioreactor for comparing effects of hyperbaric and hydrostatic pressure on bacterial growth.

    PubMed Central

    Nelson, C M; Schuppenhauer, M R; Clark, D S

    1992-01-01

    We describe a high-pressure reactor system suitable for simultaneous hyperbaric and hydrostatic pressurization of bacterial cultures at elevated temperatures. For the deep-sea thermophile ES4, the growth rate at 500 atm (1 atm = 101.29 kPa) and 95 degrees C under hydrostatic pressure was ca. three times the growth rate under hyperbaric pressure and ca. 40% higher than the growth rate at 35 atm. PMID:1622255

  19. Bears, Big and Little. Young Discovery Library Series.

    ERIC Educational Resources Information Center

    Pfeffer, Pierre

    This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume describes: (1) the eight species of bears, including black bear, brown bear, grizzly bear, spectacled bear, sun bear, sloth bear, polar bear, and giant panda; (2) geographical habitats of bears; (3)…

  20. A 3D unstructured non-hydrostatic ocean model for internal waves

    NASA Astrophysics Data System (ADS)

    Ai, Congfang; Ding, Weiye

    2016-10-01

    A 3D non-hydrostatic model is developed to compute internal waves. A novel grid arrangement is incorporated in the model. This not only ensures the homogenous Dirichlet boundary condition for the non-hydrostatic pressure can be precisely and easily imposed but also renders the model relatively simple in its discretized form. The Perot scheme is employed to discretize horizontal advection terms in the horizontal momentum equations, which is based on staggered grids and has the conservative property. Based on previous water wave models, the main works of the present paper are to (1) utilize a semi-implicit, fractional step algorithm to solve the Navier-Stokes equations (NSE); (2) develop a second-order flux-limiter method satisfying the max-min property; (3) incorporate a density equation, which is solved by a high-resolution finite volume method ensuring mass conservation and max-min property based on a vertical boundary-fitted coordinate system; and (4) validate the developed model by using four tests including two internal seiche waves, lock-exchange flow, and internal solitary wave breaking. Comparisons of numerical results with analytical solutions or experimental data or other model results show reasonably good agreement, demonstrating the model's capability to resolve internal waves relating to complex non-hydrostatic phenomena.

  1. A hydrostatic weighing method using total lung capacity and a small tank.

    PubMed Central

    Warner, J G; Yeater, R; Sherwood, L; Weber, K

    1986-01-01

    The purpose of this study was to establish the validity and reliability of a hydrostatic weighing method using total lung capacity (measuring vital capacity with a respirometer at the time of weighing) the prone position, and a small oblong tank. The validity of the method was established by comparing the TLC prone (tank) method against three hydrostatic weighing methods administered in a pool. The three methods included residual volume seated, TLC seated and TLC prone. Eighty male and female subjects were underwater weighed using each of the four methods. Validity coefficients for per cent body fat between the TLC prone (tank) method and the RV seated (pool), TLC seated (pool) and TLC prone (pool) methods were .98, .99 and .99, respectively. A randomised complete block ANOVA found significant differences between the RV seated (pool) method and each of the three TLC methods with respect to both body density and per cent body fat. The differences were negligible with respect to HW error. Reliability of the TLC prone (tank) method was established by weighing twenty subjects three different times with ten-minute time intervals between testing. Multiple correlations yielded reliability coefficients for body density and per cent body fat values of .99 and .99, respectively. It was concluded that the TLC prone (tank) method is valid, reliable and a favourable method of hydrostatic weighing. PMID:3697596

  2. TESTING STRICT HYDROSTATIC EQUILIBRIUM IN SIMULATED CLUSTERS OF GALAXIES: IMPLICATIONS FOR A1689

    SciTech Connect

    Molnar, S. M.; Umetsu, K.; Chiu, I.-N.; Chen, P.; Hearn, N.; Broadhurst, T.; Bryan, G.; Shang, C.

    2010-11-20

    Accurate mass determination of clusters of galaxies is crucial if they are to be used as cosmological probes. However, there are some discrepancies between cluster masses determined based on gravitational lensing and X-ray observations assuming strict hydrostatic equilibrium (i.e., the equilibrium gas pressure is provided entirely by thermal pressure). Cosmological simulations suggest that turbulent gas motions remaining from hierarchical structure formation may provide a significant contribution to the equilibrium pressure in clusters. We analyze a sample of massive clusters of galaxies drawn from high-resolution cosmological simulations and find a significant contribution (20%-45%) from non-thermal pressure near the center of relaxed clusters, and, in accord with previous studies, a minimum contribution at about 0.1 R {sub vir}, growing to about 30%-45% at the virial radius, R {sub vir}. Our results strongly suggest that relaxed clusters should have significant non-thermal support in their core region. As an example, we test the validity of strict hydrostatic equilibrium in the well-studied massive galaxy cluster A1689 using the latest high-resolution gravitational lensing and X-ray observations. We find a contribution of about 40% from non-thermal pressure within the core region of A1689, suggesting an alternate explanation for the mass discrepancy: the strict hydrostatic equilibrium is not valid in this region.

  3. Artificial induction of mito-gynogenetic diploids in large yellow croaker ( Pseudosciaena crocea) by hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Cai, Mingyi; Wu, Qingming; Liu, Xiande; Yao, Cuiluan; Chen, Qingkai; Wang, Zhiyong

    2010-07-01

    The present study investigated conditions for inducing mito-gynogenetic (endomitosis) diploids by hydrostatic pressure in the large yellow croaker Pseudosciaena crocea. In haploid control groups, the development of eggs was activated with ultraviolet radiated semen. All fry presented typical haploid syndrome in the haploid control groups, and were verified as haploids using cytometry. After hydrostatic pressure treatment, morphologically normal fry reappeared at different frequencies according to the intensity and time of pressure shock. Fry with normal appearance in the pressure treated groups were verified as gynogenetic double haploids (GDHs), containing only one allele from the female parent at all four diagnostic microsatellite loci. For a fixed duration of 3 min, the optimal intensity of blocking the first mitosis was determined to be 40 Mpa, which was similar to that of blocking the second meiosis. There was a “window” of starting time, from 36.1 min to 38.1 min post-insemination at 25.0±1.0°C, within which the production of GDHs was not significantly different. Maximum production of morphologically normal fries, 9.36%±2.97% of developed eggs, was found when the eggs were shocked with hydrostatic pressure at 40 Mpa for 3 min, starting from 38.1 min post insemination at 25.0±1.0°C.

  4. The effects of hydrostatic pressure on matrix synthesis in articular cartilage

    SciTech Connect

    Hall, A.C.; Urban, J.P.; Gehl, K.A. )

    1991-01-01

    The direct effects of hydrostatic pressure on matrix synthesis in articular cartilage can be studied independently of the other factors that change during loading. We have found that the influence of hydrostatic pressure on incorporation rates of {sup 35}SO{sub 4} and ({sup 3}H)proline into adult bovine articular cartilage slices in vitro depends on the pressure level and on the time at pressure. Pressures in the physiological range (5-15 MPa) applied for 20 s or for 5 min could stimulate tracer incorporation (30-130%) during the following 2 h, but higher pressures (20-50 MPa) had no effect on incorporation rates. The degree of stimulation in cartilage obtained from different animals was found to vary; in some animals none was seen. Stimulation also varied with position along the joint. Physiological pressures (5-10 MPa) applied continuously for the 2-h incubation period also stimulated incorporation rates, but pressures greater than 20 MPa always produced a decrease that was related to the applied pressure and that was reversible. These results suggests that the hydrostatic pressure that occurs during loading is a signal that can stimulate matrix synthesis rates in articular cartilage.

  5. A novel technique towards deployment of hydrostatic pressure based level sensor in nuclear fuel reprocessing facility

    NASA Astrophysics Data System (ADS)

    Praveen, K.; Rajiniganth, M. P.; Arun, A. D.; Sahoo, P.; Satya Murty, S. A. V.

    2016-02-01

    A novel approach towards deployment of a hydrostatic pressure based level monitoring device is presented for continuous monitoring of liquid level in a reservoir with high resolution and precision. Some of the major drawbacks such as spurious information of measured level due to change in ambient temperature, requirement of high resolution pressure sensor, and bubbling effect by passing air or any gaseous fluid into the liquid are overcome by using such a newly designed hydrostatic pressure based level monitoring device. The technique involves precise measurement of hydrostatic pressure exerted by the process liquid using a high sensitive pulsating-type differential pressure sensor (capacitive type differential pressure sensor using a specially designed oil manometer) and correlating it to the liquid level. In order to avoid strong influence of temperature on liquid level, a temperature compensation methodology is derived and used in the system. A wireless data acquisition feature has also been provided in the level monitoring device in order to work in a remote area such as a radioactive environment. At the outset, a prototype level measurement system for a 1 m tank is constructed and its test performance has been well studied. The precision, accuracy, resolution, uncertainty, sensitivity, and response time of the prototype level measurement system are found to be less than 1.1 mm in the entire range, 1%, 3 mm, <1%, 10 Hz/mm, and ˜4 s, respectively.

  6. A Passive Magnetic Bearing Flywheel

    NASA Technical Reports Server (NTRS)

    Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew

    2002-01-01

    A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  7. Mixed-mu superconducting bearings

    DOEpatents

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  8. Gas bearing operates in vacuum

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1975-01-01

    Bearing has restrictions to reduce air leaks and is connected to external pumpout facility which removes exhausted air. Token amount of air which is lost to vacuum is easily removed by conventional vacuum pump.

  9. Optimizing journal bearing bit performance

    SciTech Connect

    Moerbe, O.E.; Evans, W.

    1986-10-01

    This article explains that continuous progress in the field of rock bit technology has produced many new designs and improved features in the tri-cone rock bits used today. Much of the research and advancements have centered around journal bearing systems, seals and lubricants leading to greatly extended bearing life. These improved bearing systems, incorporated into both tooth and insert-type bits, have not only increased the effective life of a rock bit, but have also allowed greater energy levels to be applied. This, in turn, has allowed for higher rates of penetration and lower costs per foot of hole drilled. Continuous improvements in journal bearing bits allowing them to run longer and harder have required similar advancements to be made in cutting structures. In tooth bit designs, these improvements have been basically limited to the areas of gauge protection and to application of hardfacing materials.

  10. Flex bearing UUEC, volume 2

    NASA Technical Reports Server (NTRS)

    Clapper, M. L.

    1993-01-01

    This volume, Volume 2, of this Flex Bearing UUEC Final Report documents findings and data pertaining to Team B's tasks. Team B was organized as one of two sub-teams of the Unplanned/Unintended Event or Condition (UUEC) board established per InterOffice Memorandum (IOM) A100-FY93-072. Team A determined the cause of the unacceptable unbonds (referred to as 'heat-affect' unbonds), including the initial, light rust film, in the FSM #3 flex bearing was overheating of the Forward End Ring (FER) during cure, specifically in zone 8 of the mold. Team A's findings are documented in Volume 1 of this report. Team B developed flight rationale for existing bearings, based on absence or presence of an unpropitious unbond condition like that in FSM #3's flex bearing.

  11. Mixed-mu superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  12. ATM CMG bearing failure analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The cause or causes for the failure of ATM CMG S/N 5 (Skylab 1) and the anomalies associated with ATM CMG S/N 6 (Skylab 2) were investigated. Skylab telemetry data were reviewed and presented in the form of parameter distributions. The theory that the problems were caused by marginal bearing lubrication was studied along with the effects of orbital conditions on lubricants. Bearing tests were performed to investigate the effect of lubricant or lack of lubricant in the ATM CMG bearings and the dispersion and migration of the lubricant. The vacuum and weightless conditions of space were simulated in the bearing tests. Analysis of the results of the tests conducted points to inadequate lubrication as the predominant factor causing the failure of ATM CMG S/N 5 (Skylab 1) and the anomalies associated with ATM CMG S/N 6 (Skylab 2).

  13. Myrmecophagy by Yellowstone grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.

    2001-01-01

    I used data collected during a study of radio-marked grizzly bears (Ursus arctos horribilis) in the Yellowstone region from 1977 to 1992 to investigate myrmecophagy by this population. Although generally not an important source of energy for the bears (averaging 8 mm long) nested in logs over small ants (6 mm long) nested under stones. Optimal conditions for consumption of ants occurred on the warmest sites with ample substrate suitable for ant nests. For ants in mounds, this occurred at low elevations at non-forested sites. For ants in logs, this occurred at low elevations or on southerly aspects where there was abundant, large-diameter, well-decomposed woody debris under an open forest canopy. Grizzly bears selected moderately decomposed logs 4a??5 dm in diameter at midpoint. Ants will likely become a more important food for Yellowstone's grizzly bears as currently important foods decline, owing to disease and warming of the regional climate.

  14. Reaction Rates in Deformation and Hydrostatic Experiments in the Anhydrous System Anorthite - Forsterite

    NASA Astrophysics Data System (ADS)

    Stunitz, H.; de Ronde, A.; Tullis, J.

    2004-12-01

    The reaction anorthite + forsterite --> cpx + opx + spinel ± gnt proceeds at high temperatures and elevated pressures in the lower crust and upper mantle. This solid-solid reaction was studied experimentally at 900° C in the pressure range of 1000 to 1600 MPa in both shearing deformation and hydrostatic experiments. Powder mixtures (1:1 by vol) of anorthite (An92) and forsterite (Fo93) are hot pressed at 970° C, 750 MPa for 48 hrs in a Griggs apparatus and deformed (˙ γ = 5 × 105 sec-1) after adjustment of P and T to run conditions. H2O content of the samples has been measured by FTIR and is < 30 ppm. At small pressure overstepping (ca. 200 to 300 MPa) undeformed samples show only 10 % reaction progress after 168 hrs, whereas reaction progress in deformed samples after 72 hrs is 60 %. At greater pressure overstepping (700 to 800 MPa) the difference between deformed and undeformed samples is less pronounced (95 % after 60 hrs deformed, 75 % after 168 hrs undeformed) but still present. At greater pressure overstepping, undeformed samples show an exponential reaction rate, whereas that of deformed samples is always linear. Samples initially deformed and then kept hydrostatically show a fast initial reaction rate (85 % of total reaction progress after 0.25 of total run time), followed by a slower reaction progress (15 % reaction after 0.75 of total time) under hydrostatic conditions. The difference in reaction progress is mainly attributed to different nucleation rates. In all experiments, enstatite rims form around olivine grains separating those from other reaction products. Such coronas are indicative of diffusion-controlled reactions. Plots of rim thickness vs time indicate a relative increase of the bulk diffusion coefficient by a factor 5 in the deformed samples compared to undeformed. However, as the grain size of reaction products of deformed samples is 10 times smaller than in undeformed ones, the nucleation rate in deformed samples is ˜ 5000 times

  15. Predicting Temperatures In Ball Bearings

    NASA Technical Reports Server (NTRS)

    Wagner, William R.; Hemmings, Brad R.

    1988-01-01

    Computer simulations speed design studies. Analyses performed in two or three dimensions. Sizes and shapes of components approximated by zones or nodes connected by gridlines. From geometric information about grids and boundary conditions, properties of bearing and lubricant materials, and information supplied by users, thermal-analysis programs generate mathematical models for thermal transport. Thermal analysis of high-speed rolling contact bearings matured so much that computerized numerical simulations replace expensive time consuming full scale experiments.

  16. Lateral dampers for thrust bearings

    NASA Technical Reports Server (NTRS)

    Hibner, D. H.; Szafir, D. R.

    1985-01-01

    The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face.

  17. Polyurethane retainers for ball bearings

    NASA Technical Reports Server (NTRS)

    Christy, R. I.

    1973-01-01

    Evaluation of a new ball bearing retainer material is reported. A special composite polyurethane foam ball retainer has been developed that has virtually zero wear, is chemically inert to hydrocarbon lubricants, and stores up to 60 times as much lubricant per unit volume as the most commonly used retainer material, cotton phenolic. This new retainer concept shows promise of years of ball bearing operation without reoiling, based on life testing in high vacuum.

  18. Improved Superconducting Magnetic Rotary Bearings

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Royston, James

    1992-01-01

    Improved magnetic rotary bearings designed by exploiting properties of type-II superconducting materials. Depending on design and application, bearing provides fixed or adjustable compensation for lateral vector component of weight or other lateral load on rotor. Allows applied magnetic field to penetrate partially in clusters of field lines, with concomitant establishment of undamped circulating electrical currents within material. Type-II superconductors have critical magnetic fields and critical temperatures greater than type-I superconductors.

  19. Simplified installation of thrust bearings

    NASA Technical Reports Server (NTRS)

    Sensenbaugh, N. D.

    1980-01-01

    Special handling sleeve, key to method of installing thrust bearings, was developed for assembling bearings on shaft of low-pressure oxygen turbo-pump. Method eliminates cooling and vacuum-drying steps which saves time, while also eliminating possibility of corrosion formation. Procedure saves energy because it requires no liquid nitrogen for cooling shaft and no natural gas or electric power for operating vacuum oven.

  20. Testing and Lubrication for Single Race Bearings

    SciTech Connect

    Steinhoff, R.G.

    1998-03-04

    Three ES and H-compatible lubricants (Environment, Safety and Health) for single race bearing applications and one hybrid-material single race bearings were evaluated and compared against single race bearings with trichlorotrifluoroethane (Freon) deposition of low molecular weight polytetrafluoroethylene (PTFE) bearing lubricant extracted from Vydax{trademark}. Vydax is a product manufactured by DuPont consisting of various molecular weights of PTFE suspended in trichlorotrifluoroethane (Freon), which is an ozone-depleting solvent. Vydax has been used as a bearing lubricant in stronglink mechanisms since 1974. Hybrid bearings with silicon nitride balls and molded glass-nylon-Teflon retainers, bearings lubricated with titanium carbide (TiC) on the balls, bearings lubricated with sputtered MoS{sub 2} on races and retainers, and bearings lubricated with electrophoretically deposited MoS{sub 2} were evaluated. The bearings were maintained in a preloaded state in bearing cartridges during cycling and vibration tests. Bearings with electrophoretically deposited MoS{sub 2} performed as well as bearings lubricated with Vydax and were the best performing candidate. All candidates were suitable for low preload applications. Bearings with TiC coated balls and bearings lubricated with sputtered MoS{sub 2} on the races and retainers performed well at high preloads, though not as well as bearings lubricated with electrophoretic deposition of MoS{sub 2}. Bearings with silicon nitride balls were not suitable for high preload applications.

  1. 77 FR 70423 - Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Energy Regulatory Commission Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of Application for Partial Transfer of Licenses, and Soliciting Comments and Motions To Intervene On October 25, 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor)...

  2. Bear reintroduction: Lessons and challenges

    USGS Publications Warehouse

    Clark, Joseph D.; Huber, Djuro; Servheen, Christopher

    2002-01-01

    Reintroduction is defined as an attempt to establish a species in an area that was once part of its historical range, but from which it has been extirpated or become extinct. Historically, one of the most successful programs was the reintroduction of 254 American black bears (Ursus americanus) from Minnesota to the Interior Highlands of Arkansas in the 1960s; that population has grown to >2,500 today. More recent efforts have involved fewer but better monitored animals and have sometimes employed techniques to improve site fidelity and survival. In Pennsylvania, for example, pregnant female American black bears were successfully translocated from winter dens, the premise being that the adult females would be less likely to return because of the presence of young cubs. That winter-release technique was compared to summer trapping and release in Tennessee; winter releases resulted in greater survival and reduced post-release movements. Homing has not been a problem for small numbers of brown bears (Ursus arctos) reintroduced to the Cabinet-Yaak ecosystem in Montana and Idaho and to the mountains of Austria and France. Reintroduction success appears to be correlated with translocation distance and is greater for subadults and females. As with any small population, reintroduced bear populations are susceptible to environmental variation and stochastic demographic and genetic processes. Although managers have focused on these biological barriers, sociopolitical impediments to bear reintroduction are more difficult to overcome. Poor public acceptance and understanding of bears are the main reasons some reintroduction programs have been derailed. Consequently, the public should be involved in the reintroduction process from the outset; overcoming negative public perceptions about bear reintroduction will be our greatest challenge.

  3. Journal gas bearing for curved surfaces

    NASA Technical Reports Server (NTRS)

    Redmon, J. W.

    1969-01-01

    Optimizing bearing length and permissible axis curvature alleviates distortion of film gap of gas lubricated journal bearing in deployment mechanisms. Required bearing length is divided into two shorter bearings interconnected by links which allow satisfactory conformity with the bent, load-carrying member.

  4. 49 CFR 229.69 - Side bearings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Side bearings. 229.69 Section 229.69....69 Side bearings. (a) Friction side bearings with springs designed to carry weight may not have more than 25 percent of the springs in any one nest broken. (b) Friction side bearings may not be run...

  5. 36 CFR 13.1236 - Bear orientation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Bear orientation. 13.1236... Developed Area § 13.1236 Bear orientation. All persons visiting the BCDA must receive an NPS-approved Bear Orientation. Failure to receive an NPS-approved Bear Orientation is prohibited....

  6. 49 CFR 229.69 - Side bearings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Side bearings. 229.69 Section 229.69....69 Side bearings. (a) Friction side bearings with springs designed to carry weight may not have more than 25 percent of the springs in any one nest broken. (b) Friction side bearings may not be run...

  7. 36 CFR 13.1236 - Bear orientation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Bear orientation. 13.1236... Developed Area § 13.1236 Bear orientation. All persons visiting the BCDA must receive an NPS-approved Bear Orientation. Failure to receive an NPS-approved Bear Orientation is prohibited....

  8. 36 CFR 13.1236 - Bear orientation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Bear orientation. 13.1236... Developed Area § 13.1236 Bear orientation. All persons visiting the BCDA must receive an NPS-approved Bear Orientation. Failure to receive an NPS-approved Bear Orientation is prohibited....

  9. 49 CFR 229.69 - Side bearings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Side bearings. 229.69 Section 229.69....69 Side bearings. (a) Friction side bearings with springs designed to carry weight may not have more than 25 percent of the springs in any one nest broken. (b) Friction side bearings may not be run...

  10. 36 CFR 13.1236 - Bear orientation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Bear orientation. 13.1236... Developed Area § 13.1236 Bear orientation. All persons visiting the BCDA must receive an NPS-approved Bear Orientation. Failure to receive an NPS-approved Bear Orientation is prohibited....

  11. 49 CFR 229.69 - Side bearings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Side bearings. 229.69 Section 229.69....69 Side bearings. (a) Friction side bearings with springs designed to carry weight may not have more than 25 percent of the springs in any one nest broken. (b) Friction side bearings may not be run...

  12. 49 CFR 229.69 - Side bearings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Side bearings. 229.69 Section 229.69....69 Side bearings. (a) Friction side bearings with springs designed to carry weight may not have more than 25 percent of the springs in any one nest broken. (b) Friction side bearings may not be run...

  13. 36 CFR 13.1236 - Bear orientation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Bear orientation. 13.1236... Developed Area § 13.1236 Bear orientation. All persons visiting the BCDA must receive an NPS-approved Bear Orientation. Failure to receive an NPS-approved Bear Orientation is prohibited....

  14. Cryogenic Magnetic Bearing Test Facility (CMBTF)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Cryogenic Magnetic Bearing Test Facility (CMBTF) was designed and built to evaluate compact, lightweight magnetic bearings for use in the SSME's (space shuttle main engine) liquid oxygen and liquid hydrogen turbopumps. State of the art and tradeoff studies were conducted which indicated that a hybrid permanent magnet bias homopolar magnetic bearing design would be smaller, lighter, and much more efficient than conventional industrial bearings. A test bearing of this type was designed for the test rig for use at both room temperature and cryogenic temperature (-320 F). The bearing was fabricated from state-of-the-art materials and incorporated into the CMBTF. Testing at room temperature was accomplished at Avcon's facility. These preliminary tests indicated that this magnetic bearing is a feasible alternative to older bearing technologies. Analyses showed that the hybrid magnetic bearing is one-third the weight, considerably smaller, and uses less power than previous generations of magnetic bearings.

  15. Superconductor bearings, flywheels and transportation

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  16. Therapeutic Vaccination against Adjuvant Arthritis Using Autoimmune T Cells Treated with Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Lider, Ofer; Karin, Nathan; Shinitzky, Meir; Cohen, Irun R.

    1987-07-01

    An ideal treatment for autoimmune diseases would be a nontoxic means of specifically neutralizing the autoreactive lymphocytes responsible for the disease. This goal has been realized in experimental autoimmunity models by immunizing rats or mice against their own autoimmune cells such that the animals generate an immune response specifically repressive to the disease-producing lymphocytes. This maneuver, termed lymphocyte vaccination, was demonstrated to be effective using some, but not all, autoimmune helper T-lymphocyte lines. We now report that T lymphocytes, otherwise incapable of triggering an immune response, can be transformed into effective immunogens by treating the cells in vitro with hydrostatic pressure. Clone A2b, as effector clone that recognized cartilage proteoglycan and caused adjuvant arthritis in Lewis rats, is such a cell. Untreated A2b could not trigger an immune response, but inoculating rats with pressure-treated A2b induced early remission of established adjuvant arthritis as well as resistance to subsequent disease. Specific resistance to arthritis was associated with anti-idiotypic T-cell reactivity to clone A2b and could be transferred from vaccinated rats to naive recipients using donor lymphoid cells. Aggregation of T-lymphocyte membrane components appeared to be important for an immune response because the effects of hydrostatic pressure could be reproduced by treatment of A2b with chemical cross-linkers or with agents disrupting the cytoskeleton. Populations of lymph node cells from antigen-primed rats, when treated with hydrostatic pressure, could also induce suppression of disease. Thus, effective vaccines can be developed without having to isolate the autoimmune T lymphocytes as lines or clones. These results demonstrate that effector T lymphocytes suitably treated may serve as agents for specifically controlling the immune system.

  17. 'Dodo' and 'Baby Bear' Trenches

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 11 (June 5, 2008), the eleventh day after landing. It shows the trenches dug by Phoenix's Robotic Arm. The trench on the left is informally called 'Dodo' and was dug as a test. The trench on the right is informally called 'Baby Bear.' The sample dug from Baby Bear will be delivered to the Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA. The Baby Bear trench is 9 centimeters (3.1 inches) wide and 4 centimeters (1.6 inches) deep.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Wormgear geometry adopted for implementing hydrostatic lubrication and formulation of the lubrication problem

    NASA Technical Reports Server (NTRS)

    Sun, D. C.; Yuan, Qin

    1995-01-01

    The geometrical parameters for a wormgear intended to be used as the transmission in advanced helicopters are finalized. The resulting contact pattern of the meshing tooth surfaces is suitable for the implementation of hydrostatic lubrication Fluid film lubrication of the contact is formulated considering external pressurization as well as hydrodynamic wedge and squeeze actions. The lubrication analysis is aimed at obtaining the oil supply pressure needed to separate the worm and gear surfaces by a prescribed minimum film thickness. The procedure of solving the mathematical problem is outlined.

  19. Transport properties of single-walled nanotube mats under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Liu, B. B.; Sundqvist, B.; Andersson, O.; Wâgberg, T.; Zou, G.

    2000-11-01

    We present electrical transport studies of single-walled carbon nanotube mats, synthesized by the arc discharge method with Ce/Ni as catalysts, under hydrostatic pressure up to 1.5 GPa with a liquid pressure medium. These data were compared with the results at ambient pressure. The transport phenomena were described in terms of Mott's 2D variable range hopping (VRH) conduction up to 1.05 GPa. An irreversible change is induced below 0.5 GPa, and the resistance behavoiur is reversible due to the strong interaction between tubes above 0.5 GPa. These results indicate that 2D VRH occurs within bundles.

  20. Three-Dimensional Digital Image Correlation of a Composite Overwrapped Pressure Vessel During Hydrostatic Pressure Tests

    NASA Technical Reports Server (NTRS)

    Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.

    2007-01-01

    Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.

  1. Hydrostatic-pressure-induced changes of magnetic anisotropy in (Ga, Mn)As thin films

    NASA Astrophysics Data System (ADS)

    Gryglas-Borysiewicz, Marta; Juszyński, Piotr; Kwiatkowski, Adam; Przybytek, Jacek; Sadowski, Janusz; Sawicki, Maciej; Tokarczyk, Mateusz; Kowalski, Grzegorz; Dietl, Tomasz; Wasik, Dariusz

    2017-03-01

    The impact of hydrostatic pressure on magnetic anisotropy energies in (Ga, Mn)As thin films with in-plane and out-of-plane magnetic easy axes predefined by epitaxial strain was investigated. In both types of sample we observed a clear increase in both in-plane and out-of-plane anisotropy parameters with pressure. The out-of-plane anisotropy constant is well reproduced by the mean-field p–d Zener model; however, the changes in uniaxial anisotropy are much larger than expected in the Mn–Mn dimer scenario.

  2. Hydrostatic Response of Submarine Nickel Aluminum Bronze Valves with Corrosion Damage

    DTIC Science & Technology

    2008-07-01

    Engineering PO Box 1000 Halifax, Nova Scotia B3J 2X4 Project Manager: Dr. T.S. Koko , 902-425-5101 Contract Number: W7707-078022/001/HAL Contract...Manager: Dr. T.S. Koko , 902-425-5101 ext 243 Contract Number: W7707-078022/001/HAL Contract Scientific Authority: Dr. Y. Wang, 902-427-3035...Hydrostatic Response of Submarine Nickel Aluminum Bronze Valves with Corrosion Damage B.K.C. Yuen; T.S. Koko ; R. Warner; DRDC Atlantic CR 2008

  3. Hydrostatic level sensors as high precision ground motion instrumentation for Tevatron and other energy frontier accelerators

    NASA Astrophysics Data System (ADS)

    Volk, J.; Hansen, S.; Johnson, T.; Jostlein, H.; Kiper, T.; Shiltsev, V.; Chupyra, A.; Kondaurov, M.; Medvedko, A.; Parkhomchuk, V.; Singatulin, S.; Stetler, L.; Van Beek, J.; Fratta, D.; Roberts, J.; Wang, H.

    2012-01-01

    Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.

  4. Hydrostatic Level Sensors as High Precision Ground Motion Instrumentation for Tevatron and Other Energy Frontier Accelerators

    SciTech Connect

    Volk, James; Hansen, Sten; Johnson, Todd; Jostlein, Hans; Kiper, Terry; Shiltsev, Vladimir; Chupyra, Andrei; Kondaurov, Mikhail; Medvedko, Anatoly; Parkhomchuk, Vasily; Singatulin, Shavkat

    2012-01-01

    Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.

  5. A High Precision Double Tubed Hydrostatic Leveling System for Accelerator Alignment Applications

    SciTech Connect

    Singatulin, Shavkat; Volk, J.; Shiltsev, V.; Chupyra, A.; Medvedko, A.; Kondaurov, M.

    2006-09-01

    Since 1998 several hydrostatic leveling systems (HLS) have been installed in different locations at Fermilab. This work was in collaboration with Budker Institute and SLAC. All systems were either half-filled pipe (HF) or full-filled pipe (FF). Issues assembling HLS are covered in this article. An improved and cost-effective water system with temperature stabilized of water media is presented. This proposal is a double-tube full-filled DT-FF system. Examples of hardware configurations are included for systems located at Fermilab.

  6. A New Experimental System for the Extended Application of Cyclic Hydrostatic Pressure to Cell Culture

    PubMed Central

    Maul, Timothy M.; Hamilton, Douglas W.; Nieponice, Alejandro; Soletti, Lorenzo

    2007-01-01

    Mechanical forces have been shown to be important stimuli for the determination and maintenance of cellular phenotype and function. Many cells are constantly exposed in vivo to cyclic pressure, shear stress, and/or strain. Therefore, the ability to study the effects of these stimuli in vitro is important for understanding how they contribute to both normal and pathologic states. While there exist commercial as well as custom-built devices for the extended application of cyclic strain and shear stress, very few cyclic pressure systems have been reported to apply stimulation longer than 48 h. However, pertinent responses of cells to mechanical stimulation may occur later than this. To address this limitation, we have designed a new cyclic hydrostatic pressure system based upon the following design variables: minimal size, stability of pressure and humidity, maximal accessibility, and versatility. Computational fluid dynamics (CFD) was utilized to predict the pressure and potential shear stress within the chamber during the first half of a 1.0 Hz duty cycle. To biologically validate our system, we tested the response of bone marrow progenitor cells (BMPCs) from Sprague Dawley rats to a cyclic pressure stimulation of 120/80 mm Hg, 1.0 Hz for 7 days. Cellular morphology was measured using Scion Image, and cellular proliferation was measured by counting nuclei in ten fields of view. CFD results showed a constant pressure across the length of the chamber and no shear stress developed at the base of the chamber where the cells are cultured. BMPCs from Sprague Dawley rats demonstrated a significant change in morphology versus controls by reducing their size and adopting a more rounded morphology. Furthermore, these cells increased their proliferation under cyclic hydrostatic pressure. We have demonstrated that our system imparts a single mechanical stimulus of cyclic hydrostatic pressure and is capable of at least 7 days of continuous operation without affecting cellular

  7. X-ray and calorimetric detection of a hydrostatic pressure-induced AgI polytype

    NASA Astrophysics Data System (ADS)

    Radha Krishna Murphy, N.; Sunandana, C. S.

    1992-07-01

    Freshly prepared hexagonal polycrystalline AgI( a0, c0) subjected to hydrostatic pressures up to 12.75 MPa yield a major, metastable phase with a = a0, c ≌ √2 c0. This phase which is stable upon release of pressure, is further characterised by an additional endotherm in DSC at 150.2°C, besides the minor endotherm at 148.6°C both characteristic of the transformation of AgI to the disordered b.c.c. structure. The metastable phase is, however, restored upon thermal cycling from high temperature. SEM of pressurised samples support these observations.

  8. Solid Lubricated Rolling Element Bearings

    DTIC Science & Technology

    1980-02-15

    gyro bearing balls (as received), at various SEM magnifications 16 • VVi 7. TMI TiC/ MoS2 sputtered 52100 gyro bearing inner and outer race...outer race ball path (MoS^ removed with Oakite 126 HD), at 800X SEM magnification and EDX scrutiny 21 12. TMI TiC/ MoS2 sputtered 52100...target (Reference 4) 23 14. Overall top view of a 5-station, 15 gyro component, planetary rotating sputtering fixture of TMI for TiC/ U ^-■ MoS2

  9. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  10. Wave Journal Bearing. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1995-01-01

    A wave journal bearing concept features a waved inner bearing diameter of the non-rotating bearing side and it is an alternative to the plain journal bearing. The wave journal bearing has a significantly increased load capacity in comparison to the plain journal bearing operating at the same eccentricity. It also offers greater stability than the plain circular bearing under all operating conditions. The wave bearing's design is relatively simple and allows the shaft to rotate in either direction. Three wave bearings are sensitive to the direction of an applied stationary side load. Increasing the number of waves reduces the wave bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the wave bearing design for a specific application. It is concluded that the stiffness of an air journal bearing, due to hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  11. Iron reduction and mineralization of deep-sea iron reducing bacterium Shewanella piezotolerans WP3 at elevated hydrostatic pressures.

    PubMed

    Wu, W F; Wang, F P; Li, J H; Yang, X W; Xiao, X; Pan, Y X

    2013-11-01

    In this study, iron reduction and concomitant biomineralization of a deep-sea iron reducing bacterium (IRB), Shewanella piezotolerans WP3, were systematically examined at different hydrostatic pressures (0.1, 5, 20, and 50 MPa). Our results indicate that bacterial iron reduction and induced biomineralization are influenced by hydrostatic pressure. Specifically, the iron reduction rate and extent consistently decreases with the increase in hydrostatic pressure. By extrapolation, the iron reduction rate should drop to zero by ~68 MPa, which suggests a possible shut-off of enzymatic iron reduction of WP3 at this pressure. Nano-sized superparamagnetic magnetite minerals are formed under all the experimental pressures; nevertheless, even as magnetite production decreases, the crystallinity and grain size of magnetite minerals increase at higher pressure. These results imply that IRB may play an important role in iron reduction, biomineralization, and biogeochemical cycling in deep-sea environments.

  12. Donor impurity-related intraband optical absorption in a single quantum ring: Hydrostatic pressure and intense laser field effects

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.

    2016-10-01

    The simultaneous influence of hydrostatic pressure and intense laser field on hydrogenic donor impurity states and intraband optical absorption has been investigated in GaAs/Ga_{1-tilde{x}}Al_{tilde{x}}As quantum ring. The one-electron energy spectrum and wave functions have been found using the effective mass approximation and exact diagonalization technique. The intraband absorption coefficient is calculated for different values of the hydrostatic pressure, intense laser field parameter and different locations of hydrogenic donor impurity. The simultaneous influence of hydrostatic pressure and intense laser field shows that while the increment of the first one leads only to the blueshift of the absorption spectrum, the augmentation of the second one makes the redshift. In addition, both blueshift and redshift of the spectrum have been obtained with the changes of impurity location. The obtained theoretical results indicate good controlling means of the optical spectrum of ring-like structures by the combined influence of the considered factors.

  13. Sedimentation behaviour of sludge particles in a biogas tower reactor and the function of a hydrostatically pressurized sedimenter.

    PubMed

    Pietsch, Torsten; Mehrwald, Ralf; Grajetzki, Ralf; Sens, Jan; Märkl, Herbert

    2003-03-01

    It was found that anaerobic sludge particles contain gas bubbles. Due to the compressibility of the bubbles, which are entrapped in the sludge agglomerates, a pressure-dependent sedimentation characteristic of the sludge particles was found and mathematically described. Enhanced hydrostatic pressure results in a considerable increase of the settling velocity of sludge particles. On this basis the concept of a hydrostatically pressurized sedimenter is presented and its performance analyzed. Due to the hydrostatical pressurization of the sedimenter the produced gas is kept in the liquid phase until the liquid phase is saturated. To avoid a degassing of the liquid which results in the undesired release of gas bubbles a maximum liquid dwell time in the sedimenter must not be exceeded.

  14. Losses of Superconductor Journal Bearing

    NASA Astrophysics Data System (ADS)

    Han, Y. H.; Hull, J. R.; Han, S. C.; Jeong, N. H.; Oh, J. M.; Sung, T. H.

    2004-06-01

    A high-temperature superconductor (HTS) journal bearing was studied for rotational loss. Two HTS bearings support the rotor at top and bottom. The rotor weight is 4 kg and the length is about 300 mm. Both the top and bottom bearings have two permanent magnet (PM) rings with an iron pole piece separating them. Each HTS journal bearing is composed of six pieces of superconductor blocks of size 35×25×10 mm. The HTS blocks are encased in a cryochamber through which liquid nitrogen flows. The inner spool of the cryochamber is made from G-10 to reduce eddy current loss, and the rest of the cryochamber is stainless steel. The magnetic field from the PM rings is < 10 mT on the stainless part. The rotational drag was measured over the same speed range at several chamber pressures. Results indicate that a chamber pressure of 0.4 mtorr is sufficiently low to minimize windage loss, and the 10 mT design criterion for the magnetic field on the stainless part of the cryochamber is too high.

  15. Inserts Automatically Lubricate Ball Bearings

    NASA Technical Reports Server (NTRS)

    Hager, J. A.

    1983-01-01

    Inserts on ball-separator ring of ball bearings provide continuous film of lubricant on ball surfaces. Inserts are machined or molded. Small inserts in ball pockets provide steady supply of lubricant. Technique is utilized on equipment for which maintenance is often poor and lubrication interval is uncertain, such as household appliances, automobiles, and marine engines.

  16. Technology advances for magnetic bearings

    NASA Astrophysics Data System (ADS)

    Nolan, Steve; Hung, John Y.

    1996-03-01

    This paper describes the state-of-the-art in magnetic bearing technology and applications, and some of advances under development through the joint efforts of Rocketdyne Division of Rockwell International and Auburn University. Advances in the areas of nonlinear control systems design, digital controller implementation, and power electronics are discussed.

  17. Beth Starts Like Brown Bear!

    ERIC Educational Resources Information Center

    Fawcett, Gay

    1994-01-01

    Recounts a reading teacher's illuminating experience with a first grader who enjoyed reading Bill Martin's "Brown Bear" books, despite being labeled as dyslexic. Dyslexia is an elusive condition that is biological in origin and distinct from other reading problems. New research shows that reading difficulties, including dyslexia, occur as part of…

  18. Satellite monitoring of black bear.

    NASA Technical Reports Server (NTRS)

    Craighead, J. J.; Craighead, F. C., Jr.; Varney, J. R.; Cote, C. E.

    1971-01-01

    Description of a feasibility experiment recently performed to test the use of a satellite system for telemetering environmental and physiological data from the winter den of a 'hibernating' black bear, Ursus americanus. The instrumentation procedure and evaluations of the equipment performance and sensory data obtained are discussed in detail.

  19. We still need Smokey Bear!

    USGS Publications Warehouse

    Keeley, Jon E.

    2001-01-01

    It was gratifying to see articles in recent issues of Fire Management Today clarifying the role of Smokey Bear in wildland fire management strategies (Baily 1999; Brown 1999). These articles clearly spelled out Smokey’s importance in reducing unplanned human-ignited wildland fires and rightly criticized attempts to detract from Smokey’s campaign (Williams 1995; see also Vogl 1973).

  20. Clarification of the recovery mechanism of Escherichia coli after hydrostatic pressure treatment

    NASA Astrophysics Data System (ADS)

    Ohshima, Shuto; Nomura, Kazuki; Iwahashi, Hitoshi

    2013-06-01

    High hydrostatic pressure (HP) technology has gained more attention as a non-thermal food pasteurization technology. Recently, a limitation of the HP technology was reported by Koseki and Yamamoto [Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Int. J. Food Microbiol. 2006;110:108-111], who completely recovered Escherichia coli species after HP treatment. We investigated the recovery mechanism of E. coli after HP treatment. The cells were treated with 200-300 MPa at 0-25°C for 24 h. The HP-treated E. coli was recovered in phosphate-buffered saline (PBS) during 120 h of incubation at 25°C, confirming the results reported by them. However, E. coli did not grow in PBS but grew with inactivated cells in PBS. In addition, the results of our "population size experiments" demonstrated that the recovery of E. coli cells depended on both the degree of pressure and the population size. These results suggest that some portion of cells recovered from the damage and then grew by using inactivated cells.

  1. Hydrostatic pressure response of an oxide-based two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Zabaleta, J.; Borisov, V. S.; Wanke, R.; Jeschke, H. O.; Parks, S. C.; Baum, B.; Teker, A.; Harada, T.; Syassen, K.; Kopp, T.; Pavlenko, N.; Valentí, R.; Mannhart, J.

    2016-06-01

    Two-dimensional electron systems with fascinating properties exist in multilayers of standard semiconductors, on helium surfaces, and in oxides. Compared to the two-dimensional (2D) electron gases of semiconductors, the 2D electron systems in oxides are typically more strongly correlated and more sensitive to the microscopic structure of the hosting lattice. This sensitivity suggests that the oxide 2D systems are highly tunable by hydrostatic pressure. Here we explore the effects of hydrostatic pressure on the well-characterized 2D electron system formed at LaAlO3-SrTiO3 interfaces [A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004), 10.1038/nature02308] and measure a pronounced, unexpected response. Pressure of ˜2 GPa reversibly doubles the 2D carrier density ns at 4 K. Along with the increase of ns, the conductivity and mobility are reduced under pressure. First-principles pressure simulations reveal the same behavior of the carrier density and suggest a possible mechanism of the mobility reduction, based on the dielectric properties of both materials and their variation under external pressure.

  2. Hyperbaric chamber for evaluating hydrostatic pressure effects on tissues and cells.

    PubMed

    Hogan, P M; Ornhagen, H C; Doubt, T J; Laraway, B S; Morin, R A; Zaharkin, J

    1981-03-01

    A chamber system is described for the study of pure hydrostatic pressure effects on tissues and cells. The small chamber has an internal volume of 7.6 liters and is rated for working pressures up to 400 ATA. Sliding doors at each end permit easy access and quick sealing. A cam-driven pump provides constant flow of physiological solution to the tissue bath containing the preparation. Connections to the pump allow a variety of test solutions to be used in the course of an experiment. The tissue bath is designed to prevent chamber gas from diffusing in to the perfusate, thus allowing for pure hydrostatic compression of the bath contents. The bath is coupled to a motorized stage to facilitate placement of recording devices once the bath is placed inside the chamber. Temperature is controlled within 0.05 degrees C of set point by thermoelectric modules coupled to a feedback amplifier. This system has been used for electrical and mechanical studies of cardiac muscle, but its versatility makes it suitable for a wide range of other biomedical applications.

  3. Non-linear lattice response of Sm oxypnictides to hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Liarokapis, E.; Calamiotou, M.; Zhigadlo, N. D.; Katrych, S.; Karpinski, J.

    2013-10-01

    Hydrostatic pressure Raman measurements at room temperature have been carried out on the SmFeAsO (Sm1111) series of oxypnictides with various substitutions (F for O and Co for Fe) and transition temperature in order to investigate lattice modifications and their connection to doping and superconductivity. Synchrotron XRD data on some of these compounds indicated that at low doping the lattice constants vary smoothly with pressure, but with further increasing of the carrier concentration there is a deviation from the normal equation of state and these effects are related with modifications in the superconducting FeAs4 tetrahedra. The hydrostatic pressure Raman measurements indicate that the A1g mode of the rare earth atom for the superconducting compounds deviates from the linear pressure dependence at the same pressures where the XRD results show pressure-induced lattice anomalies. A similar anomaly is found for the As phonon of the same symmetry. As in cuprates, the effect is diminished in the non-superconducting compounds and it is not related with the F substitution being present in the Sm(Fe1-xCox)AsO as well. The calculated Grüneisen parameters indicate a more anharmonic phonon for the Fe atom compared with the Sm and As atoms.

  4. Hydrostatically coupled dielectric elastomer actuators for tactile displays and cutaneous stimulators

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2010-04-01

    Hydrostatic coupling has been recently reported as a means to improve versatility and safety of dielectric elastomer (DE) actuators. Hydrostatically coupled DE actuators rely on an incompressible fluid that mechanically couples a DE-based active part to a passive part interfaced to the load. In this paper, we present ongoing development of bubble-like versions of such transducers, made of silicone and oil. In particular, the paper describes millimeter-scale actuators, currently being developed as soft, light, acoustically silent and cheap devices for two types of applications: tactile displays and cutaneous stimulators. In both cases, the most significant advantages of the proposed technology are represented by high versatility for design (due to the fluid based transmission mechanism), tailorable stiffness perceived by the user (obtained by adjusting the internal fluid pressure), and suitable electrical safety (enabled by both a passive interface with the user and the insulating internal fluid). Millimeter-scale prototypes showed a resonance frequency of about 250 Hz, which represents the value at which Pacinian cutaneous mechanoreceptors exhibit maximum sensitivity; this provides an optimum condition to eventually code tactile information dynamically, either in combination or as an alternative to static driving.

  5. Prediction of acid lactic-bacteria growth in turkey ham processed by high hydrostatic pressure

    PubMed Central

    Mathias, S.P.; Rosenthal, A.; Gaspar, A.; Aragão, G.M.F.; Slongo-Marcusi, A.

    2013-01-01

    High hydrostatic pressure (HHP) has been investigated and industrially applied to extend shelf life of meat-based products. Traditional ham packaged under microaerophilic conditions may sometimes present high lactic acid bacteria population during refrigerated storage, which limits shelf life due to development of unpleasant odor and greenish and sticky appearance. This study aimed at evaluating the shelf life of turkey ham pressurized at 400 MPa for 15 min and stored at 4, 8 and 12 °C, in comparison to the non pressurized product. The lactic acid bacteria population up to 107 CFU/g of product was set as the criteria to determine the limiting shelf life According to such parameter the pressurized sample achieved a commercial viability within 75 days when stored at 4 °C while the control lasted only 45 days. Predictive microbiology using Gompertz and Baranyi and Roberts models fitted well both for the pressurized and control samples. The results indicated that the high hydrostatic pressure treatment greatly increased the turkey ham commercial viability in comparison to the usual length, by slowing down the growth of microorganisms in the product. PMID:24159279

  6. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents.

    PubMed

    Burgaud, Gaëtan; Hué, Nguyen Thi Minh; Arzur, Danielle; Coton, Monika; Perrier-Cornet, Jean-Marie; Jebbar, Mohamed; Barbier, Georges

    2015-11-01

    Hydrostatic pressure plays a significant role in the distribution of life in the biosphere. Knowledge of deep-sea piezotolerant and (hyper)piezophilic bacteria and archaea diversity has been well documented, along with their specific adaptations to cope with high hydrostatic pressure (HHP). Recent investigations of deep-sea microbial community compositions have shown unexpected micro-eukaryotic communities, mainly dominated by fungi. Molecular methods such as next-generation sequencing have been used for SSU rRNA gene sequencing to reveal fungal taxa. Currently, a difficult but fascinating challenge for marine mycologists is to create deep-sea marine fungus culture collections and assess their ability to cope with pressure. Indeed, although there is no universal genetic marker for piezoresistance, physiological analyses provide concrete relevant data for estimating their adaptations and understanding the role of fungal communities in the abyss. The present study investigated morphological and physiological responses of fungi to HHP using a collection of deep-sea yeasts as a model. The aim was to determine whether deep-sea yeasts were able to tolerate different HHP and if they were metabolically active. Here we report an unexpected taxonomic-based dichotomic response to pressure with piezosensitve ascomycetes and piezotolerant basidiomycetes, and distinct morphological switches triggered by pressure for certain strains.

  7. Failure assessment of aluminum liner based filament-wound hybrid riser subjected to internal hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Dikshit, Vishwesh; Seng, Ong Lin; Maheshwari, Muneesh; Asundi, A.

    2015-03-01

    The present study describes the burst behavior of aluminum liner based prototype filament-wound hybrid riser under internal hydrostatic pressure. The main objective of present study is to developed an internal pressure test rig set-up for filament-wound hybrid riser and investigate the failure modes of filament-wound hybrid riser under internal hydrostatic burst pressure loading. The prototype filament-wound hybrid riser used for burst test consists of an internal aluminum liner and outer composite layer. The carbon-epoxy composites as part of the filament-wound hybrid risers were manufactured with [±55o] lay-up pattern with total composite layer thickness of 1.6 mm using a CNC filament-winding machine. The burst test was monitored by video camera which helps to analyze the failure mechanism of the fractured filament-wound hybrid riser. The Fiber Bragg Grating (FBG) sensor was used to monitor and record the strain changes during burst test of prototype filament-wound hybrid riser. This study shows good improvements in burst strength of filament-wound hybrid riser compared to the monolithic metallic riser. Since, strain measurement using FBG sensors has been testified as a reliable method, we aim to further understand in detail using this technique.

  8. Fourier analysis for hydrostatic pressure sensing in a polarization-maintaining photonic crystal fiber.

    PubMed

    Childs, Paul; Wong, Allan C L; Fu, H Y; Liao, Yanbiao; Tam, Hwayaw; Lu, Chao; Wai, P K A

    2010-12-20

    We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated. Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of 9.45 nm/MPa and an accuracy of ±7.8 kPa using wavelength-encoded data and an effective sensitivity of -55.7 cm(-1)/MPa and an accuracy of ±4.4 kPa using wavenumber-encoded data. Chirp-based measurements, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges with an accuracy of ±5.5 kPa for the full range of measured pressures using wavelength-encoded data and dropping to within ±2.5 kPa in the range of 0.17 to 0.4 MPa using wavenumber-encoded data. Improvements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sensing purposes.

  9. Response of superconductivity and crystal structure of LiFeAs to hydrostatic pressure.

    PubMed

    Mito, Masaki; Pitcher, Michael J; Crichton, Wilson; Garbarino, Gaston; Baker, Peter J; Blundell, Stephen J; Adamson, Paul; Parker, Dinah R; Clarke, Simon J

    2009-03-04

    On the application of hydrostatic pressures of up to 1.3 GPa, the superconducting transition temperatures (T(c)) of samples of LiFeAs are lowered approximately monotonically at approximately -2 K GPa(-1). Measurements of the X-ray powder diffraction pattern at hydrostatic pressures of up to 17 GPa applied by a He gas pressure medium in a diamond anvil cell reveal a bulk modulus for LiFeAs of 57.3(6) GPa which is much smaller than that of other layered arsenide and oxyarsenide superconductors. LiFeAs also exhibits much more isotropic compression than other layered iron arsenide superconductors. The higher and more isotropic compressibility is presumably a consequence of the small size of the lithium ion. At ambient pressure the FeAs(4) tetrahedra are the most compressed in the basal plane of those in any of the superconducting iron arsenides. On increasing the pressure the Fe-Fe distance contracts more rapidly than the Fe-As distance so that the FeAs(4) tetrahedra become even more distorted from the ideal tetrahedral shape. The decrease in T(c) with applied pressure is therefore consistent with the observations that in the iron arsenides and related materials investigated thus far, T(c) is maximized for a particular electron count when the FeAs(4) tetrahedra are close to regular.

  10. Magnetotransport investigations of (Ga,Mn)As/GaAs Esaki diodes under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Gryglas-Borysiewicz, M.; Kwiatkowski, A.; Lemaître, A.; Przybytek, J.; Budzik, K.; Balcerzak, Ł.; Sawicki, M.; Wasik, D.

    2017-02-01

    First investigations of ferromagnetic (Ga,Mn)As/GaAs Esaki diodes under hydrostatic pressure were performed. The I(V) characteristics had bi-exponential character with two excess current regions related to impurity-assisted tunneling, which concealed band-to-band tunneling, resolved only in the logarithmic derivative of current upon bias. A decrease of tunneling current was observed under pressure. This is understood as a combined effect of the increase of the energy gap with pressure and a possible decrease of density of states in the forbidden gap. Tunneling anisotropic magnetocurrent (TAMI) showed nonmonotonic bias dependence, which stays in a reasonable agreement with the theory by Sankowski (2007). The overall character of the TAMI did not change with pressure, however, at negative bias an increase of TAMI was observed and at positive bias the minimum became shallower. The magnetic anisotropy of (Ga,Mn)As valence band subbands seems unaltered by hydrostatic pressure, but more in-depth description of TAMI is necessary to explain the observed pressure variation.

  11. Development and evaluation of a hydrostatic dynamical core using the spectral element/discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.

    2014-06-01

    In this paper, we present a dynamical core for the atmospheric primitive hydrostatic equations using a unified formulation of spectral element (SE) and discontinuous Galerkin (DG) methods in the horizontal direction with a finite difference (FD) method in the radial direction. The CG and DG horizontal discretization employs high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points, which define the common machinery. The atmospheric primitive hydrostatic equations are solved on the cubed-sphere grid using the flux form governing equations in a three-dimensional (3-D) Cartesian space. By using Cartesian space, we can avoid the pole singularity problem due to spherical coordinates and this also allows us to use any quadrilateral-based grid naturally. In order to consider an easy way for coupling the dynamics with existing physics packages, we use a FD in the radial direction. The models are verified by conducting conventional benchmark test cases: the Rossby-Haurwitz wavenumber 4, Jablonowski-Williamson tests for balanced initial state and baroclinic instability, and Held-Suarez tests. The results from those tests demonstrate that the present dynamical core can produce numerical solutions of good quality comparable to other models.

  12. Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction.

    PubMed

    Xi, Jun; Shen, Deji; Zhao, Shou; Lu, Bingbing; Li, Ye; Zhang, Rui

    2009-12-01

    A new extraction technique, high hydrostatic pressure extraction (HHPE), was used to obtain polyphenols from green tea leaves. Various experimental conditions, such as different solvents (acetone, methanol, ethanol and water), pressure (100, 200, 300, 400, 500, 600 MPa), holding time (1, 4, 7, 10 min), ethanol concentration (0-100% mL/mL), and liquid/solid ratio (10:1 to 25:1 mL/g) for the HHPE procedure, were investigated to optimize the extraction. The optimal conditions were as follows: 50% (mL/mL) of ethanol concentration, 20:1 (mL/g) of liquid/solid ratio and 500 MPa of high hydrostatic pressure for 1 min. Under such conditions the extraction yield of polyphenols was up to 30+/-1.3%. The extraction yields of polyphenols with HHPE for only 1 min were the same as those of extraction at room temperature for 20 h, ultrasonic extraction for 90 min and heat reflux extraction for 45 min, respectively. On the basis of the extraction yields of polyphenols, extraction time and the percentages of polyphenols in extracts, the HHPE is more effective than the conventional extraction methods studied.

  13. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method

    NASA Astrophysics Data System (ADS)

    Choi, S. J.; Kim, J.; Shin, S.

    2014-12-01

    In this presentation, a new non-hydrostatic (NH) dynamical core using the spectral element method (SEM) in the horizontal discretization and the finite difference method (FDM) in the vertical discretization will be presented. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, we can achieve a high level of scalability. Also by using vertical FDM, we provide an easy way for coupling the dynamics and existing physics packages. The Euler equations used here are in a flux form based on the hybrid sigma hydrostatic pressure vertical coordinate, which are similar to those used in the Weather Research and Forecasting (WRF) model. Within these Euler equations, we use a time-split third-order Runge-Kutta (RK3) for the time discretization. In order to establish robustness, firstly the NH dynamical core is verified in a simplified two dimensional (2D) slice framework by conducting widely used standard benchmark tests, and then we verify the global three dimensional (3D) dynamical core on the cubed-sphere grid with several test cases introduced by Dynamical Core Model Intercomparison Project (DCMIP).

  14. Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees.

    PubMed

    Ishii, Hiroaki T; Jennings, Gregory M; Sillett, Stephen C; Koch, George W

    2008-07-01

    We studied changes in morphological and physiological characteristics of leaves and shoots along a height gradient in Sequoia sempervirens, the tallest tree species on Earth, to investigate whether morphological and physiological acclimation to the vertical light gradient was constrained by hydrostatic limitation in the upper crown. Bulk leaf water potential (Psi) decreased linearly and light availability increased exponentially with increasing height in the crown. During the wet season, Psi was lower in the outer than inner crown. C isotope composition of leaves (delta(13)C) increased with increasing height indicating greater photosynthetic water use efficiency in the upper crown. Leaf and shoot morphology changed continuously with height. In contrast, their relationships with light availability were discontinuous: morphological characteristics did not correspond to increasing light availability above 55-85 m. Mass-based chlorophyll concentration (chl) decreased with increasing height and increasing light availability. In contrast, area-based chl remained constant or increased with increasing height. Mass-based maximum rate of net photosynthesis (P (max)) decreased with increasing height, whereas area-based P (max) reached maximum at 78.4 m and decreased with increasing height thereafter. Mass-based P (max) increased with increasing shoot mass per area (SMA), whereas area-based P (max) was not correlated with SMA in the upper crown. Our results suggest that hydrostatic limitation of morphological development constrains exploitation of light in the upper crown and contributes to reduced photosynthetic rates and, ultimately, reduced height growth at the tops of tall S. sempervirens trees.

  15. Prokaryotic responses to hydrostatic pressure in the ocean--a review.

    PubMed

    Tamburini, Christian; Boutrif, Mehdi; Garel, Marc; Colwell, Rita R; Deming, Jody W

    2013-05-01

    Effects of hydrostatic pressure on pure cultures of prokaryotes have been studied extensively but impacts at the community level in the ocean are less well defined. Here we consider hydrostatic pressure effects on natural communities containing both unadapted (piezosensitive) prokaryotes originating from surface water and adapted (including piezophilic) prokaryotes from the deep sea. Results from experiments mimicking pressure changes experienced by particle-associated prokaryotes during their descent through the water column show that rates of degradation of organic matter (OM) by surface-originating microorganisms decrease with sinking. Analysis of a much larger data set shows that, under stratified conditions, deep-sea communities adapt to in situ conditions of high pressure, low temperature and low OM. Measurements made using decompressed samples and atmospheric pressure thus underestimate in situ activity. Exceptions leading to overestimates can be attributed to deep mixing events, large influxes of surface particles, or provision of excessive OM during experimentation. The sediment-water interface, where sinking particles accumulate, will be populated by a mixture of piezosensitive, piezotolerant and piezophilic prokaryotes, with piezophilic activity prevailing deeper within sediment. A schematic representation of how pressure shapes prokaryotic communities in the ocean is provided, allowing a reasonably accurate interpretation of the available activity measurements.

  16. Qualitative novelty in seventeenth-century science: Hydrostatics from Stevin to Pascal.

    PubMed

    Chalmers, Alan F

    2015-06-01

    Two works on hydrostatics, by Simon Stevin in 1586 and by Blaise Pascal in 1654, are analysed and compared. The contrast between the two serves to highlight aspects of the qualitative novelty involved in changes within science in the first half of the seventeenth century. Stevin attempted to derive his theory from unproblematic postulates drawn from common sense but failed to achieve his goal insofar as he needed to incorporate assumptions involved in his engineering practice but not sanctioned by his postulates. Pascal's theory went beyond common sense by introducing a novel concept, pressure. Theoretical reflection on novel experiments was involved in the construction of the new concept and experiment also provided important evidence for the theory that deployed it. The new experimental reasoning was qualitatively different from the Euclidean style of reasoning adopted by Stevin. The fact that a conceptualization of a technical sense of pressure adequate for hydrostatics was far from obvious is evident from the work of those, such as Galileo and Descartes, who did not make significant moves in that direction.

  17. The effect of hydrostatic vs. shock pressure treatment of plant seeds

    NASA Astrophysics Data System (ADS)

    Mustey, A.; Leighs, J. A.; Appleby-Thomas, G. J.; Wood, D. C.; Hazael, R.; McMillan, P. F.; Hazell, P. J.

    2014-05-01

    The hydrostatic pressure and shock response of plant seeds has been investigated antecedently, primarily driven by interest in reducing bacterial contamination of crops and the theory of panspermia, respectively. However, comparisons have not previously been made between these two methods ofapplying pressure to plant seeds. Here such a comparison has been undertaken based on the premise that any correlations in collected data may provide a route to inform understanding of damage mechanisms in the seeds under test. In this work two varieties of plant seeds were subjected to hydrostatic pressure via a non-end-loaded piston cylinder setup and shock compression via employment of a 50 mm bore, single stage gas gun using the flyer plate technique. Results from germination tests of recovered seed samples have been compared and contrasted, and initial conclusions made regarding causes of trends in the resultant data-set. Data collected has shown that cress seeds are extremely resilient to static loading, whereas the difference in the two forms of loading is negligible for lettuce seeds. Germination time has been seen to extend dramatically following static loading of cress seeds to greater than 0.4 GPa. In addition, the cut-off pressure previously seen to cause 0% germination in dynamic experiments performed on cress seeds has now also been seen in lettuce seeds.

  18. The DX centers in three to five semiconductors under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Wolk, J. A.

    1992-11-01

    The DX centers are deep level defects found in some 3-5 semiconductors. They have persistent photoconductivity and large difference between thermal and optical ionization energies. Hydrostatic pressure was used to study microstructure of these defects. A new local vibrational mode (LVM) was observed in hydrostatically stressed, Si-doped GaAs. Corresponding infrared absorption peak is distinct from the Si(sub Ga) shallow donor LVM peak, which is the only other LVM peak observed in our samples, and is assigned to the Si DX center. Analysis of the relative intensities of the Si DX LVM and the Si shallow donor LVM peaks, combined with Hall effect and resistivity indicate that the Si DX center is negatively charged. Frequency of this new mode provides clues to the structure of this defect. A pressure induced deep donor level in S-doped InP was also discovered which has the properties of a DX center. Pressure at which the new defect becomes more stable than the shallow donor is 82 kbar. Optical ionization energy and energy dependence of the optical absorption cross section was measured for this new effect. The capture barriers from the conduction band into the DX state were also determined. That DX centers can be formed in InP by pressure suggests that DX states should be common in n-type 3-5 semiconductors. A method is suggested for predicting under what conditions these defects will be the most stable form of the donor impurity.

  19. Hydrostatic pressure effect on hydrophobic hydration and pairwise hydrophobic interaction of methane

    NASA Astrophysics Data System (ADS)

    Graziano, Giuseppe

    2014-03-01

    At room temperature, the Ben-Naim standard hydration Gibbs energy of methane is a positive quantity that increases markedly with hydrostatic pressure [M. S. Moghaddam and H. S. Chan, J. Chem. Phys. 126, 114507 (2007)]. This finding is rationalized by showing that the magnitude of the reversible work to create a suitable cavity in water increases with pressure due to both the increase in the volume packing density of water and the contribution of the pressure-volume work. According to the present approach, at room temperature, the Gibbs energy of the contact-minimum configuration of two methane molecules is a negative quantity that increases in magnitude with hydrostatic pressure. This result is not in line with the results of several computer simulation studies [T. Ghosh, A. E. Garcia, and S. Garde, J. Am. Chem. Soc. 123, 10997-11003 (2001)], and emerges because pairwise association causes a decrease in solvent-excluded volume that produces a gain of configurational/translational entropy of water molecules, whose magnitude increases with the volume packing density of the liquid phase.

  20. Fourier analysis for hydrostatic pressure sensing in a polarization-maintaining photonic crystal fiber

    SciTech Connect

    Childs, Paul; Wong, Allan C. L.; Fu, H. Y.; Liao, Yanbiao; Tam, Hwayaw; Lu Chao; Wai, P. K. A.

    2010-12-20

    .We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated. Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of 9.45nm/MPa and an accuracy of {+-}7.8kPa using wavelength-encoded data and an effective sensitivity of -55.7cm{sup -1}/MPa and an accuracy of {+-}4.4kPa using wavenumber-encoded data. Chirp-based measurements, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges with an accuracy of {+-}5.5kPa for the full range of measured pressures using wavelength-encoded data and dropping to within {+-}2.5kPa in the range of 0.17 to 0.4MPa using wavenumber-encoded data. Improvements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sensing purposes.

  1. Non-Hydrostatic Modelling of Waves and Currents over Subtle Bathymetric Features

    NASA Astrophysics Data System (ADS)

    Gomes, E.; Mulligan, R. P.; McNinch, J.

    2014-12-01

    Localized areas with high rates of shoreline erosion on beaches, referred to as erosional hotspots, can occur near clusters of relict shore-oblique sandbars. Wave transformation and wave-driven currents over these morphological features could provide an understanding of the hydrodynamic-morphologic coupling mechanism that connects them to the occurrence of erosional hotspots. To investigate this, we use the non-hydrostatic SWASH model that phase-resolves the free surface and fluid motions throughout the water column, allowing for high resolution of wave propagation and breaking processes. In this study we apply a coupled system of nested models including SWAN over a large domain of the North Carolina shelf with smaller nested SWASH domains in areas of interest to determine the hydrodynamic processes occurring over shore oblique bars. In this presentation we focus on a high resolution grid (10 vertical layers, 10 m horizontal resolution) applied to the Duck region with model validation from acoustic wave and current data, and observations from the Coastal Lidar And Radar Imaging System (CLARIS). By altering the bathymetry input for each model run based on bathymetric surveys and comparing the predicted and observed wave heights and current profiles, the effects of subtle bathymetric perturbations have on wave refraction, wave breaking, surf zone currents and vorticity are investigated. The ability to predict wave breaking and hydrodynamics with a non-hydrostatic model may improve our understanding of surf zone dynamics in relation to morphologic conditions.

  2. Hydrostatic Simulation of Earth's Atmospheric Gas Using Multi-particle Collision Dynamics

    NASA Astrophysics Data System (ADS)

    Pattisahusiwa, Asis; Purqon, Acep; Viridi, Sparisoma

    2016-01-01

    Multi-particle collision dynamics (MPCD) is a mesoscopic simulation method to simulate fluid particle-like flows. MPCD has been widely used to simulate various problems in condensed matter. In this study, hydrostatic behavior of gas in the Earth's atmospheric layer is simulated by using MPCD method. The simulation is carried out by assuming the system under ideal state and is affected only by gravitational force. Gas particles are homogeneous and placed in 2D box. Interaction of the particles with the box is applied through implementation of boundary conditions (BC). Periodic BC is applied on the left and the right side, specular reflection on the top side, while bounce-back on the bottom side. Simulation program is executed in Arch Linux and running in notebook with processor Intel i5 @2700 MHz with 10 GB DDR3 RAM. The results show behaviors of the particles obey kinetic theory for ideal gas when gravitational acceleration value is proportional to the particle mass. Density distribution as a function of altitude also meets atmosphere's hydrostatic theory.

  3. Microstructure and mechanical properties of duplex stainless steel subjected to hydrostatic extrusion

    SciTech Connect

    Maj, P.; Adamczyk-Cieślak, B.; Mizera, J.; Pachla, W.; Kurzydłowski, K.J.

    2014-07-01

    The nanostructure and mechanical properties of ferritic-austenitic duplex stainless steel subjected to hydrostatic extrusion were examined. The refinement of the structure in the initial state and in the two deformation states (ε = 1.4 and ε = 3.8) was observed in an optical microscope (OM) and a transmission electron microscope (TEM). The results indicate that the structure evolved from microcrystalline with a grain size of about 4 μm to nanocrystalline with a grain size of about 150 nm in ferrite and 70 nm in austenite. The material was characterized mechanically by tensile tests performed in the two deformation states. The ultimate strength appeared to increase significantly compared to that in the initial deformation stages, which can be attributed to the grain refinement and plastic deformation. The heterogeneity observed in microregions results from the dual-phase structure of the steel. The results indicate that hydrostatic extrusion is a highly potential technology suitable for improving the properties of duplex steels. - Highlights: • Duplex stainless steel was hydro extruded to a total strain of 3.8 • After the last stage of deformation heterogeneous structure was obtained in the material • As a result of stresses non-diffusive transformation γ→α’ occurred in the material • Nanometric (sub)grains were obtained in the austenite regions.

  4. Himalayan black bear mauling: offense or defense?

    PubMed

    Thakur, Jagdeep Singh; Mohan, Chander; Sharma, Dev R

    2007-01-01

    The Asiatic Black Bear (Ursus thibetanus or Selenarctos thibetanus), also known as the Tibetan black bear, the Himalayan black bear, or the moon bear is a omnivorous mammal. This animal is declared threatened animal and rarely comes in human contact. Recent decrease in forest area has, however, increased the chances of bear-human interaction, hence causing injuries to humans. There is only one published report in English literature on Himalayan black bear mauling. We present 5 cases referred to our department over a period of 1 year.

  5. Characteristics of high-stiffness superconducting bearing

    SciTech Connect

    Okano, M.; Tamada, N.; Fuchino, S.; Ishii, I.

    1996-07-01

    Magnetic bearings using a high-Tc superconductor have been studied. Generally the bearing makes use of the pinning effects to get the levitation force. The stiffness of the bearing, however, is extremely low as compared with industrial-scale conventional one. To improve the bearing stiffness the authors propose a disc-type repulsive superconducting thrust bearing with a slit for the restraint of the flux. Both theoretical and experimental evaluation on the load performance was carried out, and it is clarified that the proposed superconducting bearing has higher stiffness.

  6. Active magnetic bearings give systems a lift

    NASA Astrophysics Data System (ADS)

    O'Connor, Leo

    1992-07-01

    While the active magnetic bearings currently being used in such specialized applications as centrifugal compressors for natural gas pumps are more expensive than conventional bearings, they furnish improved machine service life, controlled damping of high-speed rotors to eliminate critical-speed vibrations, and the obviation of lubrication systems. Attention is presently given to magnetic bearings used by the electric power industry, homopolar magnetic radial and thrust bearings, weapon-system and gas turbine engine applications of magnetic bearings, and the benefits of magnetic bearings for energy-storage flywheels.

  7. TOOL ASSEMBLY WITH BI-DIRECTIONAL BEARING

    DOEpatents

    Longhurst, G.E.

    1961-07-11

    A two-direction motion bearing which is incorporated in a refueling nuclear fuel element trsnsfer tool assembly is described. A plurality of bi- directional bearing assembliesare fixed equi-distantly about the circumference of the transfer tool assembly to provide the tool assembly with a bearing surface- for both axial and rotational motion. Each bi-directional bearing assembly contains a plurality of circumferentially bulged rollers mounted in a unique arrangement which will provide a bearing surface for rotational movement of the tool assembly within a bore. The bi-direc tional bearing assembly itself is capable of rational motion and thus provides for longitudinal movement of the tool assembly.

  8. Simultaneous measurement of temperature, hydrostatic pressure and acoustic signal using a single distributed Bragg reflector fiber laser

    NASA Astrophysics Data System (ADS)

    Tan, Yan-Nan; Zhang, Yang; Guan, Bai-Ou

    2011-05-01

    A fiber-optic sensor based on a dual polarization fiber grating laser for simultaneous measurement of temperature, hydrostatic pressure and acoustic signal is proposed and experimentally demonstrated. The acoustic wave induces a frequency modulation (FM) of the carrier in radio frequency (RF) range generated by the fiber laser and can be easily extracted by using the FM demodulation technique. The temperature can be determined by the laser wavelength. The hydrostatic pressure can be determined by monitoring the static shift of the carrier frequency and deducting the effect of the temperature.

  9. Suppression of the ferromagnetic order in the Heusler alloy Ni50Mn35In15 by hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Salazar Mejía, C.; Mydeen, K.; Naumov, P.; Medvedev, S. A.; Wang, C.; Hanfland, M.; Nayak, A. K.; Schwarz, U.; Felser, C.; Nicklas, M.

    2016-06-01

    We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni50Mn35In15. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to the magnetic properties.

  10. Journal and Wave Bearing Impedance Calculation Software

    NASA Technical Reports Server (NTRS)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  11. Alaskan brown bears, humans, and habituation

    USGS Publications Warehouse

    Smith, Thomas; Herrero, Stephen; DeBruyn, Terry D.

    2005-01-01

    We present a new paradigm for understanding habituation and the role it plays in brown bear (Ursus arctos) populations and interactions with humans in Alaska. We assert that 3 forms of habituation occur in Alaska: bear-to-bear, bear-to-human, and human-to-bear. We present data that supports our theory that bear density is an important factor influencing a bear’s overt reaction distance (ORD); that as bear density increases, overt reaction distance decreases, as does the likelihood of bear– human interactions. We maintain that the effects of bear-to-bear habituation are largely responsible for not only shaping bear aggregations but also for creating the relatively safe environment for bear viewing experienced at areas where there are high densities of brown bears. By promoting a better understanding of the forces that shape bear social interactions within populations and with humans that mingle with them, we can better manage human activities and minimize bear–human conflict.

  12. Mobile bearing and fixed bearing total knee arthroplasty

    PubMed Central

    Dolfin, Marco; Saccia, Francesco

    2016-01-01

    The mobile bearing (MB) concept in total knee arthroplasty (TKA) was developed as an alternative to fixed bearing (FB) implants in order to reduce wear and improve range of motion (ROM), especially focused on younger patients. Unfortunately, its theoretical advantages are still controversial. In this paper we exhibit a review of the more recent literature available comparing FB and MB designs in biomechanical and clinical aspects, including observational studies, clinical trials, national and international registries analyses, randomized controlled trials, meta-analyses and Cochrane reviews. Except for some minor aspects, none of the studies published so far has reported a significant improvement related to MBs regarding patient satisfaction, clinical, functional and radiological outcome or medium and long-term survivorship. Thus the presumed superiority of MBs over FBs appears largely inconsistent. The routine use of MB is not currently supported by adequate evidences; implant choice should be therefore made on the basis of other factors, including cost and surgeon experience. PMID:27162777

  13. Short-bearing approximation for full journal bearings

    NASA Technical Reports Server (NTRS)

    Ocvirk, F W

    1952-01-01

    A short-bearing approximation of pressure distribution in the oil film is presented which is an extension of the pressure-distribution function of Michell and Cardullo and includes end-leakage effects. Equations giving applied load, attitude angle, location and magnitude of peak film pressure, friction, and required oil flow rate as functions of the eccentricity ratio are also given. The capacity number, a basic non dimensional quantity resulting from this analysis is the product of the Sommerfeld number and the square of the length-diameter ratio. Curves determined by this analysis are compared with previously published experimental data and theoretical curves of Sommerfeld and Cameron and Wood. Conclusions reached indicate that this approximation is of practical value for analysis of short bearings.

  14. Increase in telencephalic dopamine and cerebellar norepinephrine contents by hydrostatic pressure in goldfish: the possible involvement in hydrostatic pressure-related locomotion.

    PubMed

    Ikegami, Taro; Takemura, Akihiro; Choi, Eunjung; Suda, Atsushi; Tomonaga, Shozo; Badruzzaman, Muhammad; Furuse, Mitsuhiro

    2015-10-01

    Fish are faced with a wide range of hydrostatic pressure (HP) in their natural habitats. Additionally, freshwater fish are occasionally exposed to rapid changes in HP due to heavy rainfall, flood and/or dam release. Accordingly, variations in HP are one of the most important environmental cues for fish. However, little information is available on how HP information is perceived and transmitted in the central nervous system of fish. The present study examined the effect of HP (water depth of 1.3 m) on the quantities of monoamines and their metabolites in the telencephalon, optic tectum, diencephalon, cerebellum (including partial mesencephalon) and vagal lobe (including medulla oblongata) of the goldfish, Carassius auratus, using high-performance liquid chromatography. HP affected monoamine and metabolite contents in restricted brain regions, including the telencephalon, cerebellum and vagal lobe. In particular, HP significantly increased the levels of dopamine (DA) in the telencephalon at 15 min and that of norepinephrine (NE) in the cerebellum at 30 min. In addition, HP also significantly increased locomotor activity at 15 and 30 min after HP treatment. It is possible that HP indirectly induces locomotion in goldfish via telencephalic DA and cerebellar NE neuronal activity.

  15. Effects of bearing deadbands on bearing loads and rotor stability

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A generic model of a turbopump, simplified to bring out these effects is examined. This model demonstrates that bearing deadbands which are of the same order of magnitude or larger than the center-of-mass offset of a rotor due to mass imbalances cause significantly different dynamic behavior than would be expected of a linear, dynamical system. This fundamentally nonlinear behavior yields altered stability characteristics and altered bearing loading tendencies. It is shown that side forces can enhance system stability in the small, i.e., as long as the mass imbalance does not exceed some thresholds value or as long as no large, impulsive disturbances cause the motion to depart significantly from the region of stability. Limit cycles are investigated in this report and techniques for determining these limit cycles are developed. These limit cycles are the major source of bearing loading and appear in both synchronous and nonsynchronous forms. The synchronous limit cycles are driven by rotor imbalances. The nonsynchronous limit cycles (also called subsynchronous whirls) are self-excited and are the sources of instability.

  16. Happy Birthday Smokey Bear from Joe Acaba

    NASA Video Gallery

    Expedition 32 Flight Engineer Joe Acaba wishes Smokey Bear a Happy Birthday. For 68 years Smokey Bear has been promoting fire safety and prevention through the message, “Only You Can Prevent Wild...

  17. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    SciTech Connect

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  18. A Preliminary Foil Gas Bearing Performance Map

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2006-01-01

    Recent breakthrough improvements in foil gas bearing load capacity, high temperature tribological coatings and computer based modeling have enabled the development of increasingly larger and more advanced Oil-Free Turbomachinery systems. Successful integration of foil gas bearings into turbomachinery requires a step wise approach that includes conceptual design and feasibility studies, bearing testing, and rotor testing prior to full scale system level demonstrations. Unfortunately, the current level of understanding of foil gas bearings and especially their tribological behavior is often insufficient to avoid developmental problems thereby hampering commercialization of new applications. In this paper, a new approach loosely based upon accepted hydrodynamic theory, is developed which results in a "Foil Gas Bearing Performance Map" to guide the integration process. This performance map, which resembles a Stribeck curve for bearing friction, is useful in describing bearing operating regimes, performance safety margins, the effects of load on performance and limiting factors for foil gas bearings.

  19. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management

    USGS Publications Warehouse

    Hopkins, John B.; Koch, Paul L.; Schwartz, Charles C.; Ferguson, Jake M.; Greenleaf, Schuyler S.; Kalinowski, Steven T.

    2012-01-01

    We used genetic and stable isotope analysis of hair from free-ranging black bears (Ursus americanus) in Yosemite National Park, California, USA to: 1) identify bears that consume human food, 2) estimate the diets of these bears, and 3) evaluate the Yosemite human–bear management program. Specifically, we analyzed the isotopic composition of hair from bears known a priori to be food-conditioned or non-food-conditioned and used these data to predict whether bears with an unknown management status were food-conditioned (FC) or non-food-conditioned (NFC). We used a stable isotope mixing model to estimate the proportional contribution of natural foods (plants and animals) versus human food in the diets of FC bears. We then used results from both analyses to evaluate proactive (population-level) and reactive (individual-level) human–bear management, and discussed new metrics to evaluate the overall human–bear management program in Yosemite. Our results indicated that 19 out of 145 (13%) unknown bears sampled from 2005 to 2007 were food-conditioned. The proportion of human food in the diets of known FC bears likely declined from 2001–2003 to 2005–2007, suggesting proactive management was successful in reducing the amount of human food available to bears. In contrast, reactive management was not successful in changing the management status of known FC bears to NFC bears, or in reducing the contribution of human food to the diets of FC bears. Nine known FC bears were recaptured on 14 occasions from 2001 to 2007; all bears were classified as FC during subsequent recaptures, and human–bear management did not reduce the amount of human food in the diets of FC bears. Based on our results, we suggest Yosemite continue implementing proactive human–bear management, reevaluate reactive management, and consider removing problem bears (those involved in repeated bear incidents) from the population.

  20. Dynamic Tester For Rotor Seals And Bearings

    NASA Technical Reports Server (NTRS)

    Von Pragenau, George L.

    1991-01-01

    Simplified apparatus measures performance under vibration. Measures some of dynamic parameters of rotor seals and bearings. Tests damping seals, damping bearings, conventional seals, and conventional bearings. Used with variety of pumped liquids, from water to liquid oxygen or hydrogen. Designed to test bearings and seals of turbopumps, tester rotates shaft at high speed while liquid flows much as it would in real turbopump. Also measures deflections of components.

  1. Mercury in polar bears from Alaska

    SciTech Connect

    Lentfer, J.W.; Galster, W.A.

    1987-04-01

    Alaskan polar bear (Ursus maritimus) muscle and liver samples collected in 1972 were analyzed for total mercury. Bears north of Alaska had more mercury than bears west of Alaska. The only difference between young and adult animals was in the northern area where adults had more mercury in liver tissue than young animals. Levels were probably not high enough to be a serious threat to bears.

  2. Characterization of Fault Size in Bearings

    DTIC Science & Technology

    2014-12-23

    Characterization of Fault Size in Bearings Matan Mendelovich 1, Yitschak Sanders 1, Gideon Kogan 1, Mor Battat 1, Dr. Renata Klein 2, and Prof...D.N. Misgav 20103, Israel Renata.Klein@RKDiagnostics.co.il ABSTRACT Bearings are important components in rotating machines. An initial small...damage in the bearing may cause a fast degradation, which may lead to the machine breakdown. The health condition of bearings can be monitored using

  3. Human impacts on bear habitat use

    USGS Publications Warehouse

    Mattson, David J.

    1990-01-01

    : Human effects on bear habitat use are mediated through food biomass changes, bear tolerance of humans and their impacts, and human tolerance of bears. Large-scale changes in bear food biomass have been caused by conversion of wildlands and waterways to intensive human use, and by the introduction of exotic pathogens. Bears consume virtually all human foods that have been established in former wildlands, but bear use has been limited by access. Air pollution has also affected bear food biomass on a small scale and is likely to have major future impacts on bear habitat through climatic warming. Major changes in disturbance cycles and landscape mosaics wrought by humans have further altered temporal and spatial pulses of bear food production. These changes have brought short-term benefits in places, but have also added long-term stresses to most bear populations. Although bears tend to avoid humans, they will also use exotic and native foods in close proximity to humans. Subadult males and adult females are more often impelled to forage closer to humans because of their energetic predicament and because more secure sites are often preempted by adult males. Although male bears are typically responsible for most livestock predation, adult females and subadult males are more likely to be habituated to humans because they tend to forage closer to humans. Elimination of human-habituated bears predictably reduces effective carrying capacity and is more likely to be a factor in preserving bear populations where humans are present in moderate-to-high densities. If humans desire to preserve viable bear populations, they will either have to accept increased risk of injury associated with preserving habituated animals, or continue to crop habituated bears while at the same time preserving large tracts of wildlands free from significant human intrusion.

  4. Towards an energy-conserving quasi-hydrostatic deep-atmosphere dynamical core

    NASA Astrophysics Data System (ADS)

    Tort, Marine; Dubos, Thomas

    2014-05-01

    Towards an energy-conserving quasi-hydrostatic deep-atmosphere dynamical core Marine Tort1 & Thomas Dubos1 1 Laboratoire Météorologique Dynamique, Ecole Polytechnique, Palaiseau, FRANCE Atmosphere dynamics of our planet is quite well described by traditional primitive equations based on the so-called shallow-atmosphere approximation. Thus, the model is dynamically consistent (in the sense that it possesses conservation principles for mass, energy, potential vorticity and angular momentum) when certain metric terms and the cosφ Coriolis terms are neglected (Phillips, 1966). Nevertheless, to simulate planetary atmospheres, the shallow-atmosphere approximation should be relaxed because of the low planet radius (such as Titan) or the depth of their atmospheres (such as Jupiter or Saturne). Non-traditional terms have some dynamical effects (Gerkema and al., 2008) but they are little-known and rarely integrated into general circulation dynamical cores (Wood and Staniforth, 2002). As an example, the french GCM of the Laboratoire Météorologique Dynamique (LMD-Z) integrates the traditional primitive equations discretized from their curl (vector-invariant) form based on a finite different scheme whose conserves exactly potential vorticity (Sadourny, 1975a,b). We considered an orthogonal curvilinear system and we first derived a curl form of global, deep-atmosphere quasi-hydrostatic model in which prognostic variable is absolute axial momentum instead of relative velocity vector. Given the close relationship between the curl form and Hamiltonian formulation of the previous equations, we generalized Sadourny's energy-conserving formulation by discretizing the Poisson bracket and the energy themselves (Salmon, 1983; Gassmann, 2013). The substantial computing infrastructure of the dynamical core is the same but the modification of the hydrostatic balance requires a mass-based vertical coordinate (Wood and Staniforth, 2003). The new discretization has been implemented into

  5. Precipitation of anion inclusions and plasticity under hydrostatic pressure in II-VI crystals

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Weinstein, B. A.

    2016-10-01

    Precipitation of anion nanocrystals (NCs) in initially stoichiometric II-VI crystals under hydrostatic pressure and light exposure is explored by Raman spectroscopy, and the mechanism for this effect is analyzed by model calculations. ZnSe, ZnTe, and CdSe crystals are studied in bulk and/or epitaxial-film forms. Se and Te NCs in the trigonal (t) phase precipitate in ZnSe and ZnTe, but the effect is absent or minimal in CdSe. The precipitation is induced by pressure and assisted by sub-band-gap light. In ZnSe, t-Se NCs appear for pressure exceeding 4.8 GPa and light flux above 50 -70 W /m m2 . In ZnTe, the precipitation of t-Te NCs requires less pressure to initiate, and there is a clear upper-pressure limit for t-Te nuclei to form. We find also that ZnTe samples with cleavage damage or elevated zinc-vacancy content are more prone to form t-Te NCs at lower pressures (even 1 atm in some cases) and lower flux. The precipitation seen in ZnSe and ZnTe occurs at pressures far below their phase transitions, and cannot be due to those transitions. Rather, we propose that the NCs nucleate on dislocations that arise from hydrostatic-pressure induced plastic flow triggered by noncubic defect sites. Calculations of the kinetic barrier for growth of an optimally shaped nucleus are performed, including hydrostatic pressure in the energy minimization scheme. Using sensible values for the model parameters related to the cohesive energies of Se and Te, the calculations account for our main observations, including the existence of an upper pressure limit for precipitation, and the absence of precipitation in CdSe. We consider the effects of pressure-induced precipitate formation on the I-II phase transitions in a variety of binary semiconductors and make predictions of when this effect should be important.

  6. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers.

    PubMed Central

    Bernsdorff, C; Wolf, A; Winter, R; Gratton, E

    1997-01-01

    The effect of high hydrostatic pressure on the lipid bilayer hydration, the mean order parameter, and rotational dynamics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) cholesterol vesicles has been studied by time-resolved fluorescence spectroscopy up to 1500 bar. Whereas the degree of hydration in the lipid headgroup and interfacial region was assessed from fluorescence lifetime data using the probe 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), the corresponding information in the upper acyl chain region was estimated from its effect on the fluorescence lifetime of and 3-(diphenylhexatrienyl)propyl-trimethylammonium (TMAP-DPH). The lifetime data indicate a greater level of interfacial hydration for DPPC bilayers than for POPC bilayers, but there is no marked difference in interchain hydration of the two bilayer systems. The addition of cholesterol at levels from 30 to 50 mol% to DPPC has a greater effect on the increase of hydrophobicity in the interfacial region of the bilayer than the application of hydrostatic pressure of several hundred to 1000 bar. Although the same trend is observed in the corresponding system, POPC/30 mol% cholesterol, the observed effects are markedly less pronounced. Whereas the rotational correlation times of the fluorophores decrease in passing the pressure-induced liquid-crystalline to gel phase transition of DPPC, the wobbling diffusion coefficient remains essentially unchanged. The wobbling diffusion constant of the two fluorophores changes markedly upon incorporation of 30 mol% cholesterol, and increases at higher pressures, also in the case of POPC/30 mol% cholesterol. The observed effects are discussed in terms of changes in the rotational characteristics of the fluorophores and the phase-state of the lipid mixture. The results demonstrate the ability of cholesterol to adjust the structural and dynamic properties of membranes composed of

  7. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  8. Passive Thermal Management of Foil Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J. (Inventor)

    2015-01-01

    Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.

  9. Effects of Bearing Clearance on Turbopump Stability

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Effects of bearing clearances, or "dead bands," on bearing loads and rotor stability in turbopumps examined in a 194-page report. Relatively simple mathematical force model for analyzing effects highlighted. Report shows nonlinear characteristics resulting from bearing dead bands have significant effect on dynamics of turbomachinery and not ignored as in the past.

  10. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  11. 14 CFR 29.623 - Bearing factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Bearing factors. 29.623 Section 29.623... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.623 Bearing factors. (a... subject to pounding or vibration, must have a bearing factor large enough to provide for the effects...

  12. 14 CFR 29.623 - Bearing factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Bearing factors. 29.623 Section 29.623... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.623 Bearing factors. (a... subject to pounding or vibration, must have a bearing factor large enough to provide for the effects...

  13. 14 CFR 25.623 - Bearing factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Bearing factors. 25.623 Section 25.623... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.623 Bearing factors. (a) Except... subject to pounding or vibration, must have a bearing factor large enough to provide for the effects...

  14. 14 CFR 27.623 - Bearing factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Bearing factors. 27.623 Section 27.623... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.623 Bearing factors. (a) Except... subject to pounding or vibration, must have a bearing factor large enough to provide for the effects...

  15. 14 CFR 25.623 - Bearing factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Bearing factors. 25.623 Section 25.623... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.623 Bearing factors. (a) Except... subject to pounding or vibration, must have a bearing factor large enough to provide for the effects...

  16. 14 CFR 23.623 - Bearing factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Bearing factors. 23.623 Section 23.623... Bearing factors. (a) Each part that has clearance (free fit), and that is subject to pounding or vibration, must have a bearing factor large enough to provide for the effects of normal relative motion. (b)...

  17. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  18. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  19. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  20. 14 CFR 29.623 - Bearing factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Bearing factors. 29.623 Section 29.623... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.623 Bearing factors. (a... subject to pounding or vibration, must have a bearing factor large enough to provide for the effects...