Science.gov

Sample records for hydrothermally altered crustal

  1. Hydrothermal alteration in an exhumed crustal fault zone: geochemical mobility in the Caleta Coloso Fault, Atacama Fault System, Northern Chile

    NASA Astrophysics Data System (ADS)

    Arancibia, G.; Fujita, K.; Hoshino, K.; Mitchell, T. M.; Cembrano, J. M.; Gomila, R.; Morata, D.; Faulkner, D. R.; Rempe, M.

    2013-12-01

    Fault zones must be considered as complex and heterogeneous systems, with areas of high permeability that alternate with very low permeability bands. Strike-slip fault zones play an important role in fluid migration in the crust, and exhumed faults can provide insights into the interrelationships of deformation mechanisms, fluid-rock interactions and bulk chemical redistributions. We determined the mineral chemistry and whole-rock geochemistry of the damage zone and fault core of the Caleta Coloso Fault, a complex major crustal scale strike-slip fault in Northern Chile, in order to constrain the physical and chemical conditions of fluids that lead to strong hydrothermal alteration. Caleta Coloso Fault consists of variably altered protocataclasites, cataclasites and discrete bands of ultracataclasite derived from a protolith of Jurassic tonalite. Hydrothermal alteration associated with fault-related fluid flow is characterized by a very low-grade association composed by chlorite, epidote, albite, quartz and calcite. Chlorite thermometry indicates T-values in the range of 284 to 352 °C (average temperature of 323 °C) and no differences in mineral composition or T-values were observed among different cataclastic rock types. Mass balance and volume change calculations document that the major chemical mobility was observed in protocataclasite, whereas cataclasite and ultracataclasite show smaller changes. This suggests that fluid flow and chemical alteration post-dated the faulting, when the protocataclasite was relatively permeable and the cataclasite and ultracataclasite acted as a barrier for fluid flow having a very low permeability due to extreme grain size reduction during cataclasis.

  2. Crustal magmatism under a hydrothermal system, and the imprints of assimilation of hydrothermally altered protolith: an investigation of geochemical signatures in rhyolitic magmas at Yellowstone caldera

    NASA Astrophysics Data System (ADS)

    Girard, G.

    2014-12-01

    Yellowstone caldera, Wyoming, hosts one of the largest hydrothermal systems on Earth, fueled by heat and volatiles released from hotspot-derived basalt magmas that stall in the crust. Prolonged hydrothermal activity has pervasively altered the subsurface and such altered material is presumed to have acted as a source for magmas erupted after the two largest caldera eruptions, as evidenced by low-δ18O signatures in these magmas. This study focuses on the youngest Yellowstone volcanic units, the ~ 255 ka to ~ 70 ka large volume (~ 360 km3) Central Plateau Member (CPM) rhyolites. New laser-ablation ICP-MS whole rock, glass and mineral trace element data were obtained in order to refine existing constraints on CPM petrogenesis. Small temporal increases in elements such as As (3.1-4.1 ppm), Rb (170-200 ppm), Cs (3.6-4.3 ppm), Pb (26-31 ppm), Th (23-27 ppm) and U (5.4-6.8 ppm) contrast with increases of ~ 40-50 % in HFSE and REE in the same samples. The highest observed temporal increase is that of Zn, from 65 to 105 ppm. Caesium is highly incompatible with mineral/glass partition coefficients KD < 0.05 measured in all investigated mineral phases. Rubidium is also incompatible but its sanidine/glass KD ~ 0.4 results in a larger bulk distribution coefficient DRb ~ 0.2. For Pb, sanidine/glass KD ~ 0.8 leads to DPb > 0.4. Zinc is observed to be compatible in clinopyroxene, fayalite, zircon, chevkinite (KD ~ 5-12), and Fe-Ti oxides (KD ~ 40), such that DZn may approach 1. Fractional crystallization or partial melting processes alone cannot explain the same small increase rate of elements with diverse degrees of incompatibility (Rb, Cs and Pb), nor a larger increase rate in nearly compatible Zn. Assimilation by the juvenile CPM magmas of a crustal material of distinct composition appears to be required, and hydrothermally altered rhyolites, comprising much of the Yellowstone subsurface represent the most likely assimilant. Lower Rb, Cs, Pb (perhaps also As and U) and higher

  3. The Martian Soil as a Geochemical Sink for Hydrothermally Altered Crustal Rocks and Mobile Elements: Implications of Early MER Results

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Draper, D. S.

    2005-01-01

    Hydrothermal and aqueous alteration can explain some of the exciting results from the MER team s analyses of the martian soil, including the major elements, mobile elements, and the nickel enrichment. Published results from the five lander missions lead to the following conclusions: 1) The soil appears to be globally mixed and basaltic with only small local variations in chemistry. Relative to martian basaltic meteorites and Gusev rocks the soils are depleted in the fluid-mobile element calcium, but only slightly enriched to somewhat depleted in iron oxide. 2) The presence of olivine in the soils based on M ssbauer data argues that the soil is only partly weathered and is more akin to a lunar regolith than a terrestrial soil. 3) The presence of bromine along with sulfur and chlorine in the soils is consistent with addition of a mobile element component to the soil.

  4. Modes of crustal accretion and their implications for hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, Sonja; Rüpke, Lars H.; Hasenclever, Jörg

    2016-02-01

    Hydrothermal convection at mid-ocean ridges links the ocean's long-term chemical evolution to solid earth processes, forms hydrothermal ore deposits, and sustains the unique chemosynthetic vent fauna. Yet the depth extent of hydrothermal cooling and the inseparably connected question of how the lower crust accretes remain poorly constrained. Here based on coupled models of crustal accretion and hydrothermal circulation, we provide new insights into which modes of lower crust formation and hydrothermal cooling are thermally viable and most consistent with observations at fast-spreading ridges. We integrate numerical models with observations of melt lens depth, thermal structure, and melt fraction. Models matching all these observations always require a deep crustal-scale hydrothermal flow component and less than 50% of the lower crust crystallizing in situ.

  5. (238)U/(235)U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance.

    PubMed

    Noordmann, Janine; Weyer, Stefan; Georg, R Bastian; Jöns, Svenja; Sharma, Mukul

    2016-01-01

    In this study, the U isotope composition, n((238)U)/n((235)U), of major components of the upper continental crust, including granitic rocks of different age and post-Archaean shales, as well as that of rivers (the major U source to the oceans) was investigated. Furthermore, U isotope fractionation during the removal of U at mid-ocean ridges, an important sink for U from the oceans, was investigated by the analyses of hydrothermal water samples (including low- and high-temperature fluids), low-temperature altered basalts and calcium carbonate veins. All analysed rock samples from the continental crust fall into a limited range of δ(238)U between -0.45 and -0.21 ‰ (relative to NBL CRM 112-A), with an average of -0.30 ± 0.15 ‰ (2 SD, N = 11). Despite differences in catchment lithologies, all major rivers define a relatively narrow range between -0.31 and -0.13 ‰, with a weighted mean isotope composition of -0.27 ‰, which is indistinguishable from the estimate for the upper continental crust (-0.30 ‰). Only some tributary rivers from the Swiss Alps display a slightly larger range in δ(238)U (-0.29 to +0.01 ‰) and lower U concentrations (0.87-3.08 nmol/kg) compared to the investigated major rivers (5.19-11.69 nmol/kg). These findings indicate that only minor net U isotope fractionation occurs during weathering and transport of material from the continental crust to the oceans. Altered basalts display moderately enriched U concentrations (by a factor of 3-18) compared to those typically observed for normal mid-ocean ridge basalts. These, and carbonate veins within altered basalts, show large U isotope fractionation towards both heavy and light U isotope compositions (ranging from -0.63 to +0.27 ‰). Hydrothermal water samples display low U concentrations (0.3-1 nmol/kg) and only limited variations in their U isotope composition (-0.43 ± 0.25 ‰) around the seawater value. Nevertheless, two of the investigated fluids display

  6. (238)U/(235)U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance.

    PubMed

    Noordmann, Janine; Weyer, Stefan; Georg, R Bastian; Jöns, Svenja; Sharma, Mukul

    2016-01-01

    In this study, the U isotope composition, n((238)U)/n((235)U), of major components of the upper continental crust, including granitic rocks of different age and post-Archaean shales, as well as that of rivers (the major U source to the oceans) was investigated. Furthermore, U isotope fractionation during the removal of U at mid-ocean ridges, an important sink for U from the oceans, was investigated by the analyses of hydrothermal water samples (including low- and high-temperature fluids), low-temperature altered basalts and calcium carbonate veins. All analysed rock samples from the continental crust fall into a limited range of δ(238)U between -0.45 and -0.21 ‰ (relative to NBL CRM 112-A), with an average of -0.30 ± 0.15 ‰ (2 SD, N = 11). Despite differences in catchment lithologies, all major rivers define a relatively narrow range between -0.31 and -0.13 ‰, with a weighted mean isotope composition of -0.27 ‰, which is indistinguishable from the estimate for the upper continental crust (-0.30 ‰). Only some tributary rivers from the Swiss Alps display a slightly larger range in δ(238)U (-0.29 to +0.01 ‰) and lower U concentrations (0.87-3.08 nmol/kg) compared to the investigated major rivers (5.19-11.69 nmol/kg). These findings indicate that only minor net U isotope fractionation occurs during weathering and transport of material from the continental crust to the oceans. Altered basalts display moderately enriched U concentrations (by a factor of 3-18) compared to those typically observed for normal mid-ocean ridge basalts. These, and carbonate veins within altered basalts, show large U isotope fractionation towards both heavy and light U isotope compositions (ranging from -0.63 to +0.27 ‰). Hydrothermal water samples display low U concentrations (0.3-1 nmol/kg) and only limited variations in their U isotope composition (-0.43 ± 0.25 ‰) around the seawater value. Nevertheless, two of the investigated fluids display

  7. In-Situ pH Measurements in Mid-Ocean Ridge Hydrothermal Vent Fluids: Constraints on Subseafloor Alteration Processes at Crustal Depths

    NASA Astrophysics Data System (ADS)

    Schaen, A. T.; Ding, K.; Seyfried, W. E.

    2013-12-01

    Developments in electrochemistry and material science have facilitated the construction of ceramic (YSZ) based chemical sensor systems that can be used to measure and monitor pH and redox in aqueous fluids at elevated temperatures and pressures. In recent years, these sensor systems have been deployed to acquire real-time and time series in-situ data for high-temperature hydrothermal vent fluids at the Main Endeavour Field (Juan de Fuca Ridge), 9oN (East Pacific Rise), and at the ultramafic-hosted Rainbow field (36oN, Mid-Atlantic Ridge). Here we review in-situ pH data measured at these sites and apply these data to estimate the pH of fluids ascending to the seafloor from hydrothermal alteration zones deeper in the crust. In general, in-situ pH measured at virtually all vent sites is well in excess of that measured shipboard owing to the effects of temperature on the distribution of aqueous species and the solubility of metal sulfides, especially Cu and Zn, originally dissolved in the vent fluids. In situ pH measurements determined at MEF (Sully vent) and EPR 9oN (P-vent) in 2005 and 2008 were 4.4 ×0.02 and 5.05×0.05, respectively. The temperature and pressure (seafloor) of the vent fluids at each of the respective sites were 356oC and 220 bar, and 380oC and 250 bar. Plotting these data with respect to fluid density reveals that the in-situ pH of each vent fluid is approximately 1.5 pH units below neutrality. The density-pH (in-situ) correlation, however, is important because it provides a means from which the vent fluids were derived. Using dissolved silica and chloride from fluid samples at the MEF (Sully) suggest T/P conditions of approximately 435oC, 380 bar, based on quartz-fluid and NaCl-H2O systems. At the fluid density calculated for these conditions, pH (in-situ) is predicted to be ~6.2. Attempts are presently underway to assess the effect of the calculated pH on metal sulfide and silicate (e.g., plagioclase, chlorite) solubility in comparison with

  8. The hydrothermal alteration of cooling lava domes

    NASA Astrophysics Data System (ADS)

    Ball, Jessica L.; Stauffer, Philip H.; Calder, Eliza S.; Valentine, Greg A.

    2015-12-01

    Hydrothermal alteration is a recognized cause of volcanic instability and edifice collapse, including that of lava domes or dome complexes. Alteration by percolating fluids transforms primary minerals in dome lavas to weaker secondary products such as clay minerals; moreover, secondary mineral precipitation can affect the porosity and permeability of dome lithologies. The location and intensity of alteration in a dome depend heavily on fluid pathways and availability in conjunction with heat supply. Here we investigate postemplacement lava dome weakening by hydrothermal alteration using a finite element numerical model of water migration in simplified dome geometries. This is combined with the rock alteration index (RAI) to predict zones of alteration and secondary mineral precipitation. Our results show that alteration potential is highest at the interface between the hot core of a lava dome and its clastic talus carapace. The longest lived alteration potential fields occur in domes with persistent heat sources and permeabilities that allow sufficient infiltration of water for alteration processes, but not so much that domes cool quickly. This leads us to conclude that alteration-induced collapses are most likely to be shallow seated and originate in the talus or talus/core interface in domes which have a sustained supply of magmatic heat. Mineral precipitation at these zones of permeability contrast could create barriers to fluid flow, potentially causing gas pressurization which might promote deeper seated and larger volume collapses. This study contributes to our knowledge of how hydrothermal alteration can affect lava domes and provides constraints on potential sites for alteration-related collapses, which can be used to target hazard monitoring.

  9. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  10. Biogeochemistry of hydrothermally and adjacent non-altered soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

  11. The influence of isotropic and anisotropic crustal permeability on hydrothermal flow at fast spreading ridges

    NASA Astrophysics Data System (ADS)

    Hasenclever, Jörg; Rüpke, Lars; Theissen-Krah, Sonja; Morgan, Jason

    2016-04-01

    We use 3-D numerical models of hydrothermal fluid flow to assess the magnitude and spatial distribution of hydrothermal mass and energy fluxes within the upper and lower oceanic crust. A better understanding of the hydrothermal flow pattern (e.g. predominantly on-axis above the axial melt lens vs. predominantly off-axis and ridge-perpendicular over the entire crustal thickness) is essential for quantifying the volume of oceanic crust exposed to high-temperature fluid flow and the associated leaching and redistribution of economically interesting metals. The initial setup of all 3-D models is based on our previous 2-D studies (Theissen-Krah et al., 2011), in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these 2-D calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data at the East Pacific Rise. Our reference 3-D model for hydrothermal flow at fast-spreading ridges predicts the existence of a hybrid hydrothermal system (Hasenclever et al., 2014) with two interacting flow components that are controlled by different physical mechanisms. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle-ductile transition. About ˜60% of the discharging fluid mass is replenished on-axis by warm (up to 300oC) recharge flow surrounding the hot thermal plumes. The remaining ˜40%, however, occurs as colder and broader recharge up to several kilometres away from the ridge axis that feeds hot (500-700oC) deep off-axis flow in the lower crust towards the ridge. Both flow components merge above the melt lens to feed ridge-centred vent sites. In a suite of 3-D model calculations we vary the isotropic crustal permeability to quantify its influence on on-axis vs. off-axis hydrothermal fluxes as well as on along-axis hydrothermal

  12. Hydraulic characterization of hydrothermally altered Nopal tuff

    SciTech Connect

    Green, R.T.; Meyer-James, K.A.; Rice, G.

    1995-07-01

    Understanding the mechanics of variably saturated flow in fractured-porous media is of fundamental importance to evaluating the isolation performance of the proposed high-level radioactive waste repository for the Yucca Mountain site. Developing that understanding must be founded on the analysis and interpretation of laboratory and field data. This report presents an analysis of the unsaturated hydraulic properties of tuff cores from the Pena Blanca natural analog site in Mexico. The basic intent of the analysis was to examine possible trends and relationships between the hydraulic properties and the degree of hydrothermal alteration exhibited by the tuff samples. These data were used in flow simulations to evaluate the significance of a particular conceptual (composite) model and of distinct hydraulic properties on the rate and nature of water flow.

  13. Geologic and hydrologic controls on the economic potential of hydrothermal systems associated with upper crustal plutons

    NASA Astrophysics Data System (ADS)

    Weis, Philipp; Driesner, Thomas; Scott, Samuel; Lecumberri-Sanchez, Pilar

    2016-04-01

    Heat and mass transport in hydrothermal systems associated with upper crustal magmatic intrusions can result in resources with large economic potential (Kesler, 1994). Active hydrothermal systems can form high-enthalpy geothermal reservoirs with the possibility for renewable energy production. Fossil continental or submarine hydrothermal systems may have formed ore deposits at variable crustal depths, which can be mined near today's surface with an economic profit. In both cases, only the right combination of first-order geologic and hydrologic controls may lead to the formation of a significant resource. To foster exploration for these hydrothermal georesources, we need to improve our understanding of subsurface fluxes of mass and energy by combining numerical process modelling, observations at both active and fossil systems, as well as knowledge of fluid and rock properties and their interactions in natural systems. The presentation will highlight the role of non-linear fluid properties, phase separation, salt precipitation, fluid mixing, permeability structure, hydraulic fracturing and the transition from brittle to ductile rock behavior as major geologic and hydrologic controls on the formation of high-enthalpy and supercritical geothermal resources (Scott et al., 2015), and magmatic-hydrothermal mineral resources, such as porphyry copper, massive sulfide and epithermal gold deposits (Lecumberri-Sanchez et al., 2015; Weis, 2015). References: Kesler, S. E., 1994: Mineral Resources, economics and the environment, New York, McMillan, 391. Lecumberri-Sanchez, P., Steele-MacInnis, M., Weis, P., Driesner, T., Bodnar, R.J. (2015): Salt precipitation in magmatic-hydrothermal systems associated with upper crustal plutons. Geology, v. 43, p. 1063-1066, doi:10.1130/G37163.1 Scott, S., Driesner, T., Weis, P. (2015): Geologic controls on supercritical geothermal resources above magmatic intrusions. Nature Communications, 6:7837 doi: 10.1038/ncomms8837 Weis, P. (2015): The

  14. Regional hydrothermal alteration in Noctis Labyrinthus: scattered, yet pervasive

    NASA Astrophysics Data System (ADS)

    Thollot, P.; Mangold, N.; Le Mouélic, S.

    2015-10-01

    We analyzed 113 CRISM cubes in Noctis Labyrinthus. We found 10 classes of alteration minerals including clays and sulfates, sometimes associated in the same setting. Fe and Al sulfates argue for acidic hydrothermal alteration.

  15. Radiochemical constraints on the crustal residence time of submarine hydrothermal fluids: Endeavour Ridge

    SciTech Connect

    Kadko, D. ); Moore, W. )

    1988-03-01

    The {sup 210}Pb/Pb and {sup 228}Ra/{sup 226}Ra ratios measured in fluids and particles venting from the Endeavour Ridge are used to constrain the crustal residence time of the convecting hydrothermal fluid from the initiation of basalt alteration where Mg{sup +2} loss from seawater results in rapidly falling pH conditions, to termination at seafloor venting. The {sup 210}Pb/Pb ratios of hot, low Mg fluids are close to that of the basalts, suggesting a residence time of no greater than ten years. Particles associated with these vents have slightly higher ratios which may in part be due to scavenging of seawater {sup 210}Pb. The {sup 228}Ra/{sup 226}Ra ratios of the fluids and an associated Ba-rich particle samples were also close to the basalt ratios, further constraining the residence time to 3 years or less. These estimates indicate that the mass of fluid interacting with newly formed crust at any one time is less than 9 x 10{sup 13}kg, if the axial heat flux is to be no greater than 30% of the total advective heat loss from the oceanic crust.

  16. Modeling Crustal-Scale Hydrothermal Flows through a Seamount Network

    NASA Astrophysics Data System (ADS)

    Lauer, R. M.; Fisher, A. T.; Winslow, D. M.

    2014-12-01

    The current study represents the first efforts to model 3D hydrothermal circulation in fast-spreading oceanic crust, using a network of outcrops patterned after a region of the Cocos plate offshore Costa Rica, where heat extraction is exceptionally high, resulting in heat flow values ~30% of those predicted by conductive lithospheric cooling models. Previous studies of this region attribute the heat deficit to vigorous hydrothermal circulation through basaltic basement outcrops that provide a hydraulic connection between the igneous oceanic crust and the seafloor, resulting in efficient mining of heat by large-scale lateral fluid flow. Seafloor bathymetry indicates that outcrops in this region are spaced 20-50-km apart, although there are likely additional unmapped structures that facilitate recharge and discharge of hydrothermal fluids. The modeled outcrop network consists of 20-km and 40-km square grids, with outcrops located at the corners. We vary the number, size, permeability, and orientation of the outcrops to consider what combination of these parameters achieve the observed pattern and/or quantity of heat loss. Additionally, we consider the effect of aquifer permeability and thickness on the modeled heat flow distribution. Model results suggest that extremely high aquifer permeability is required to match the observed heat loss and low heat flow, together with a heterogeneous outcrop permeability distribution. In particular, we find that an aquifer permeability of 10-9 m2 is required to achieve the measured heat flow distribution in this region, which estimates a mean value of 29 ±13 mW/m2 in areas of flat lying basement, overlain by 400-500-m of sediment. In addition to high aquifer permeability, heterogeneous outcrop permeability is required to initiate the hydraulic connection between outcrops, with higher permeability outcrops acting as recharge sites, and lower permeability outcrops as discharge sites.

  17. Conodont color and textural alteration: an index to regional metamorphism, contact metamorphism, and hydrothermal alteration.

    USGS Publications Warehouse

    Rejebian, V.A.; Harris, A.G.; Huebner, J.S.

    1987-01-01

    Experimental and field data are used to extend the utility of conodonts as semi-quantitative thermal indices into the regimes of regional and contact metamorphism, as well as hydrothermal alteration. These experiments approximate the type of Colour Alteration Indices mixture characteristically found in conodonts recovered from hydrothermally altered rocks. These data indicate that CAI values of 6 to 8 cannot be used to assess precise temperatures of hydrothermally altered rocks but may serve as useful indicators of potential mineralization. - from Authors

  18. Tularosa Basin Play Fairway Analysis: Hydrothermal Alteration Map

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This is a hydrothermal alteration map of the Tularosa Basin area, New Mexico and Texas that was created using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral data band ratios based upon diagnostic features of clay, calcite, silica, gypsum, ferric iron, and ferrous iron. Mesoproterozoic granite in the San Andreas Range often appeared altered, but this may be from clays produced by weathering or, locally, by hydrothermal alteration. However, no field checking was done. This work was done under U.S. D.O.E. Contract #DE-EE0006730

  19. Crustal accretion at fast spreading ridges and implications for hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, S.; Rupke, L.; Hasenclever, J.

    2015-12-01

    Oceanic crust is continuously created at mid-ocean ridges, but the location of lower crust crystallization continues to be debated since the proposal of the gabbro glacier and many sills end-member models. Geophysical and geochemical studies find evidence for either of the models. The crust is cooled by a combination of heat diffusion and advection, and hydrothermal circulation is thought to play a key role in distinguishing between both models. We use our numerical model for joint modeling of crustal accretion and hydrothermal circulation1 to test different accretion and hydrothermal cooling scenarios. The results match the seismic and structural observations from the East Pacific Rise2 and the Oman Ophiolite3, with a shallow melt lens at the correct location overlaying a narrow volume of partially molten rocks. Our results show that no more than 25-50% of the lower crust crystallizes in situ and that deep circulation is likely to occur at fast and intermediate spreading ridges. The occurrence of deep hydrothermal cooling however does not rule out that a major portion of the lower crust is formed in the shallow melt lens; our simulations rather suggest that it is necessary independent of where in the lower crust crystallization takes place. 1 Theissen-Krah, S., Iyer, K., Rupke, L. H. & Morgan, J. P. Coupled mechanical and hydrothermal modeling of crustal accretion at intermediate to fast spreading ridges. Earth and Planetary Science Letters 311, 275-286, doi:10.1016/j.epsl.2011.09.018 (2011). 2 Dunn, R. A., Toomey, D. R. & Solomon, S. C. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9 degrees 30'N. Journal of Geophysical Research-Solid Earth 105, 23537-23555 (2000). 3 Nicolas, A. & Boudier, F. Structural contribution from the Oman ophiolite to processes of crustal accretion at the East Pacific Rise. Terra Nova 27, 77-96, doi:10.1111/ter.12137 (2015).

  20. Did a whole-crustal hydrothermal system generate the Irish Zn-Pb orefield?

    NASA Astrophysics Data System (ADS)

    Daly, J. Stephen; Badenszki, Eszter; Chew, David; Kronz, Andreas; O'Rourke, Helen; Whitehouse, Martin; Menuge, Julian; van den Berg, Riana

    2016-04-01

    Current models[1] for the genesis of the giant Irish Carboniferous-hosted Zn-Pb orefield propose shallow (<10 km depth) hydrothermal circulation within Lower Palaeozoic basement rocks of the Iapetus Suture Zone as the main metal source. However several lines of evidence, e.g., from He[2], S[2,3] and Os[4] isotopes, and the possible role of contemporary volcanism[5] point to deeper, including mantle, fluid source(s) and/or pathways. The Iapetus Suture Zone in Ireland is uniquely favoured to evaluate the scale of hydrothermal circulation because of the presence there of granulite-facies lower crustal xenoliths at four widely separated localities. These were carried to the surface from ~22-28km (and deeper levels) by Lower Carboniferous alkali basaltic lavas and diatremes[6,7]. They provide the only possible direct samples of the lower crust and are of appropriate age. U-Pb zircon geochronology demonstrates that the xenoliths experienced high temperature (>700°C) metamorphism and melting during the Acadian orogeny at ~390Ma and during separate episodes of extension at ~ 381-373Ma and ~362Ma. Sm-Nd garnet dating shows that the lower crust remained hot or was re-heated to ~600°C at ~341Ma during Lower Carboniferous volcanism, also associated with extension and, in part, coincident with the mineralization[1]. Isotopic data from the xenoliths correspond closely to Sr and Nd isotopic analyses of gangue calcite[8] and galena Pb[9] isotopic data from the major ore deposits. While Zn contents of the xenoliths permit them to be metal sources, their mineralogy and texture provide an enriched template and a plausible extraction mechanism. In situ analyses of modally-abundant biotite and garnet show significant enrichment in Zn (and other relevant metals) as well as order of magnitude depletion of Zn during retrograde alteration, providing a metal-release mechanism and pointing to a hydrothermal fluid system operating at least to depths of ~ 25km. References [1] Wilkinson, J

  1. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  2. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    SciTech Connect

    Ridley, W.I.; Perfit, M.R.; Smith, M.F.; Jonasson, I.R.

    1994-06-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85{degree}49 feet W and 85{degree} 55 feet W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens` equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (<10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. 50 refs., 10 figs., 4 tabs.

  3. Hydrothermal alteration minerals in Aluto Langano geothermal wells, Ethiopia

    SciTech Connect

    Gebregzabher, Z.

    1986-01-01

    Aluto Langano geothermal field is characterized by alteration mineral assemblages of calcite, quartz, chlorite, undifferentiated clays, hematite, biotite and epidote. The presence of garnet and sphene is also reported for one of the wells. The measured temperature for the reservoir is above 300/sup 0/C. Permeability of the reservoir is highly influenced by the deposition of hydrothermal minerals.

  4. Pore Pressure Distribution and Flank Instability in Hydrothermally Altered Stratovolcanoes

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Taron, J.; Hurwitz, S.; Reid, M. E.

    2015-12-01

    Field and geophysical investigations of stratovolcanoes with long-lived hydrothermal systems commonly reveal that initially permeable regions (such as brecciated layers of pyroclastic material) can become both altered and water-bearing. Hydrothermal alteration in these regions, including clay formation, can turn them into low-permeability barriers to fluid flow, which could increase pore fluid pressures resulting in flank slope instability. We examined elevated pore pressure conditions using numerical models of hydrothermal flow in stratovolcanoes, informed by geophysical data about internal structures and deposits. Idealized radially symmetric meshes were developed based on cross-sectional profiles and alteration/permeability structures of Cascade Range stratovolcanoes. We used the OpenGeoSys model to simulate variably saturated conditions in volcanoes heated only by regional heat fluxes, as well as 650°C intrusions at two km depth below the surface. Meteoric recharge was estimated from precipitation rates in the Cascade Range. Preliminary results indicate zones of elevated pore pressures form: 1) where slopes are underlain by continuous low-permeability altered layers, or 2) when the edifice has an altered core with saturated, less permeable limbs. The first scenario might control shallow collapses on the slopes above the altered layers. The second could promote deeper flank collapses that are initially limited to the summit and upper slopes, but could progress to the core of an edifice. In both scenarios, pore pressures can be further elevated by shallow intrusions, or evolve over longer time scales under forcing from regional heat flux. Geometries without confining low-permeability layers do not show these pressure effects. Our initial scenarios use radially symmetric models, but we are also simulating hydrothermal flow under real 3D geometries with asymmetric subsurface structures (Mount Adams). Simulation results will be used to inform 3D slope

  5. Uranium (VI) and Neptunium (V) Transport Fractured, Hydrothermally Altered Concrete

    SciTech Connect

    Matzen, S.L.; Beiriger, J.M.; Torretto, P.C.; Zhao, P.

    1999-11-04

    In a high level waste repository in which temperatures are elevated due to waste decay, concrete structures will be subjected to hydrothermal conditions that will alter their physical and chemical properties. Virtually no studies have examined the interaction of hydrothermally altered concrete with radionuclides. We present the results of experiments in which soluble and colloid-associated actinides, uranium (U) and neptunium (Np), were eluted into a fractured, hydrothermally altered concrete core. Although the fluid residence time in the fracture was estimated to be on the order of 1 minute, U and Np were below detection (10{sup -9}-10{sup -8} M) in the effluent from the core, for both soluble and colloid-associated species. Inorganic colloids and latex microspheres were similarly immobilized within the core. Post-test analysis of the core identified the immobilized U and Np at or near the fracture surface, with a spatial distribution similar to that of the latex microspheres. Because hydrothermal alteration followed fracturing, the growth of crystalline calcium silicate hydrate and clay mineral alteration products on, and possibly across the fracture, resulted in a highly reactive fracture that was effective at capturing both soluble and colloidal radionuclides. Comparison of results from batch experiments [1] with these experiments indicate that partitioning of U and Np to the solid phase, and equilibration of the incoming fluid with the concrete, occurs rapidly in the fractured system. Transport of U through the concrete may be solubility and/or sorption limited; transport of Np appears to be limited primarily by sorption.

  6. Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks

    USGS Publications Warehouse

    Stakes, D.S.; O'Neil, J.R.

    1982-01-01

    Mineralogical and isotopic variations observed in altered glassy and crystalline rocks from the East Pacific Rise and the Mid-Atlantic Ridge provide information about the temperatures of alteration and seawater/rock ratios for various hydrothermal regimes within the oceanic crust. A systematic increase in alteration temperature is evident for the glassy rocks in the sequence: (1) nontronite and celadonite vesicle fillings (35??C), (2) saponite-rich pillow breccias (130-170??C), (3) calcite-rich greenstone breccias and epidote-rich greenstone (200-350??C). These results include the highest temperatures thus far reported for saponite formation. The "seawater-dominated" hydrothermal alteration process that formed the saponite-rich pillow breccias is characterized by high water/rock ratios (>50:1), low to moderate temperatures, a seawater origin of most of the carbon in vein calcites (??13 C ??? 0) and the predominance of Fe-rich saponite and calcite as secondary phases. Greenstones (chlorite-quartz-epidote) and greenstone breccias (chlorite-quartz-albite-calcite) are altered in a "rock-dominated" system with lower water/rock ratios (50:1 to < 1:1), higher temperatures, and vein calcites with carbon that is principally of magmatic origin (??13 C ??? -4). The crystalline rocks (diabase, gabrro, and metagabbro) are affected to varying degrees by pervasive high-temperature seawater interactions that commence soon after solidification, producing varying proportions of fine-grained secondary minerals including talc, smectite, chlorite, vermiculite, actinolite, and sodic plagioclase. Hydrothermal solutions, derived from alteration of the crystalline rocks, are of the appropriate temperature and isotopic composition to alter the overlying glassy rocks to the observed mineralogies as well as being the source of metal-rich deposits associated with the oceanic spreading centers. ?? 1982.

  7. A study of the hydrothermal alteration in Paleoproterozoic volcanic centers, São Félix do Xingu region, Amazonian Craton, Brazil, using short-wave infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; de Almeida, Teodoro Isnard Ribeiro; Lagler, Bruno; de Carvalho Carneiro, Cleyton; Misas, Carlos Mario Echeverri

    2015-10-01

    Hypogene hydrothermal minerals have been identified by short-wave infrared spectroscopy in hydrothermally altered rocks from the Sobreiro and Santa Rosa formations, which belong to a Paleoproterozoic volcano-plutonic system in Amazonian craton. Three clay minerals are spectrally recognized: montmorillonite, kaolinite, and illite. The integration of these data with those available in the literature, including gold occurrences, suggests that those rocks are hydrothermal products of both volcanic thermal sources and later crustal intrusions, as evidenced by variable styles of propylitic, sericitic, potassic, and intermediate argillic alteration. The influence of meteoric fluids is emphasized. This low cost exploratory technique, which can be applied to hand samples, seems to be promising in the separation of hydrothermally altered volcano-plutonic centers in regions submitted to severe weathering conditions, in addition to aid elaborating models for prospecting mineral deposits.

  8. Aluminum speeds up the hydrothermal alteration of olivine

    NASA Astrophysics Data System (ADS)

    Andreani, Muriel; Daniel, Isabelle; Pollet-Villard, Marion

    2014-05-01

    The reactivity of ultramafic rocks toward hydrothermal fluids controls chemical fluxes at the interface between the internal and external reservoirs of silicate planets. On Earth, hydration of ultramafic rocks is ubiquitous and operates from deep subduction zones to shallow lithospheric environments where it considerably affects the physical and chemical properties of rocks and can interact with the biosphere. This process also has key emerging societal implications, such as the production of hydrogen as a source of carbon-free energy. To date, the chemical model systems used to reproduce olivine hydrothermal alteration lead to the formation of serpentine with sluggish reaction rates. Although aluminum is common in geological environments and in hydrothermal systems in particular, its role in serpentinization or olivine dissolution has not been investigated under hydrothermal conditions. Nevertheless, abundant Al supply is expected in fluids released from dehydration of metapelites in subduction zones as well as during the hydrothermal alteration of gabbros at mid-ocean ridges. Aluminum was also abundant in primitive environments of both the Earth and Mars, stored in either Al-rich minerals like plagioclase or Al-enriched ultramafic lavas. We have investigated the role of Al on the hydrothermal alteration of olivine in a series of experiments performed in a low-pressure diamond anvil cell while following the reaction progress in situ by optical imaging and Raman spectroscopy. Experiments were run for 4.5 to 7.5 days with two olivine grains reacted in saline water (0.5 molal NaCl) at 200°C and 300°C, and P=200 MPa. After two days, olivine crystals were fully transformed to an aluminous serpentine, also enriched in iron. The presence of Al in the hydrothermal fluid increases the rate of olivine serpentinization by more than one order of magnitude by enhancing olivine solubility and serpentine precipitation. The mechanism responsible for this increased solubility

  9. Crustal faults exposed in the Pito Deep Rift: Conduits for hydrothermal fluids on the southeast Pacific Rise

    NASA Astrophysics Data System (ADS)

    Hayman, Nicholas W.; Karson, Jeffrey A.

    2009-02-01

    The escarpments that bound the Pito Deep Rift (northeastern Easter microplate) expose in situ upper oceanic crust that was accreted ˜3 Ma ago at the superfast spreading (˜142 mm/a, full rate) southeast Pacific Rise (SEPR). Samples and images of these escarpments were taken during transects utilizing the human-occupied vehicle Alvin and remotely operated vehicle Jason II. The dive areas were mapped with a "deformation intensity scale" revealing that the sheeted dike complex and the base of the lavas contain approximately meter-wide fault zones surrounded by fractured "damage zones." Fault zones are spaced several hundred meters apart, in places offset the base of the lavas, separate areas with differently oriented dikes, and are locally crosscut by (younger) dikes. Fault rocks are rich in interstitial amphibole, matrix and vein chlorite, prominent veins of quartz, and accessory grains of sulfides, oxides, and sphene. These phases form the fine-grained matrix materials for cataclasites and cements for breccias where they completely surround angular to subangular clasts of variably altered and deformed basalt. Bulk rock geochemical compositions of the fault rocks are largely governed by the abundance of quartz veins. When compositions are normalized to compensate for the excess silica, the fault rocks exhibit evidence for additional geochemical changes via hydrothermal alteration, including the loss of mobile elements and gain of some trace metals and magnesium. Microstructures and compositions suggest that the fault rocks developed over multiple increments of deformation and hydrothermal fluid flow in the subaxial environment of the SEPR; faults related to the opening of the Pito Deep Rift can be distinguished by their orientation and fault rock microstructure. Some subaxial deformation increments were likely linked with violent discharge events associated with fluid pressure fluctuations and mineral sealing within the fault zones. Other increments were linked with

  10. Influence of aluminum on the hydrothermal alteration rate of olivine

    NASA Astrophysics Data System (ADS)

    Andreani, M.; Daniel, I.; Pollet-Villard, M.

    2013-12-01

    The reactivity of ultramafic rocks under hydrothermal conditions controls chemical fluxes at the interface between the internal and external reservoirs of silicate planets. On Earth, hydration of ultramafic rocks is ubiquitous and operates from deep subduction zones to shallow lithospheric environments where it considerably affects the physical and chemical properties of rocks and can interact with the biosphere. This process also has key emerging societal implications, such as the production of hydrogen as a source of carbon-free energy. To date, the chemical model systems used to reproduce olivine hydrothermal alteration lead to the formation of serpentine with sluggish reaction rates. Although aluminum is common in geological environments and in hydrothermal systems in particular, its role in serpentinization or olivine dissolution has not been investigated under hydrothermal conditions. Nevertheless, abundant Al supply is expected in fluids released from dehydration of metapelites in subduction zones as well as during the hydrothermal alteration of gabbros at mid-ocean ridges. Aluminum was also abundant in primitive environments of both the Earth and Mars, stored in either Al-rich minerals like plagioclase or Al-enriched ultramafic lavas. We have investigated the role of Al on the hydrothermal alteration of olivine in a series of experiments performed in a low-pressure diamond anvil cell while following the reaction progress in situ by optical imaging and by confocal Raman spectroscopy. Experiments were run for 4.5 to 7.5 days with two olivine grains reacted in saline water (0.5 molal NaCl) at 200°C and 300°C, and P=200 MPa. After two days, olivine crystals were fully transformed to an aluminous serpentine, also enriched in iron. The very fast precipitation of serpentine may inhibit magnetite nucleation here. However, this does not rule out an H2 production since serpentines classically incorporate non negligible amount of ferric iron in their structure. The

  11. Controls on thallium uptake during hydrothermal alteration of the upper ocean crust

    NASA Astrophysics Data System (ADS)

    Coggon, Rosalind M.; Rehkämper, Mark; Atteck, Charlotte; Teagle, Damon A. H.; Alt, Jeffrey C.; Cooper, Matthew J.

    2014-11-01

    Hydrothermal circulation is a fundamental component of global biogeochemical cycles. However, the magnitude of the high temperature axial hydrothermal fluid flux remains disputed, and the lower temperature ridge flank fluid flux is difficult to quantify. Thallium (Tl) isotopes behave differently in axial compared to ridge flank systems, with Tl near-quantitatively stripped from the intrusive crust by high temperature hydrothermal reactions, but added to the lavas during low temperature reaction with seawater. This contrasting behavior provides a unique approach to determine the fluid fluxes associated with axial and ridge flank environments. Unfortunately, our understanding of the Tl isotopic mass balance is hindered by poor knowledge of the mineralogical, physical and chemical controls on Tl-uptake by the ocean crust. Here we use analyses of basaltic volcanic upper crust from Integrated Ocean Drilling Program Hole U1301B on the Juan de Fuca Ridge flank, combined with published analyses of dredged seafloor basalts and upper crustal basalts from Holes 504B and 896A, to investigate the controls on Tl-uptake by mid-ocean ridge basalts and evaluate when in the evolution of the ridge flank hydrothermal system Tl-uptake occurs. Seafloor basalts indicate an association between basaltic uptake of Tl from cold seawater and uptake of Cs and Rb, which are known to partition into K-rich phases. Although there is no clear relationship between Tl and K contents of seafloor basalts, the data do not rule out the incorporation of at least some Tl into the same minerals as the alkali elements. In contrast, we find no relationship between the Tl content and either the abundance of secondary phyllosilicate minerals, or the K, Cs or Rb contents in upper crustal basalts. We conclude that the uptake of Tl and alkali elements during hydrothermal alteration of the upper crust involves different processes and/or mineral phases compared to those that govern seafloor weathering. Furthermore

  12. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    SciTech Connect

    Mas, G.R.; Bengochea, L.; Mas, L.C.

    1996-12-31

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Maquinas, Tennas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H{sub 2}SO{sub 4}, by atmospheric oxidation at the water table in a steam heated environment of H{sub 2}S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hydrothermal solutions and the major structures of the area are analyzed.

  13. Hydrothermal spinel, corundum and diaspore in lower oceanic crustal troctolites from the Hess Deep Rift

    NASA Astrophysics Data System (ADS)

    Nozaka, Toshio; Meyer, Romain; Wintsch, Robert P.; Wathen, Bryan

    2016-06-01

    Aluminous spinel, corundum and diaspore are reported from intensely altered parts of primitive troctolites recovered from IODP Site U1415 at the Hess Deep Rift. The spinel is green-colored, has an irregular shape, has low Cr concentrations, and is so distinct from primary igneous chromite. Corundum and diaspore occur mainly at the rims of green spinel grains with a texture suggesting a sequential replacement of spinel by corundum, and then corundum by diaspore. The green spinel is associated with anorthite and pargasite, which is overgrown by tremolite that forms coronitic aggregates with chlorite around olivine. These petrographic observations are supported by pressure-temperature pseudosections, which predict spinel + pargasite stability field, and tremolite/hornblende + chlorite field at lower temperature conditions. From these pseudosections and simplified system phase diagrams, estimated formation temperature conditions calculated at 2 kbar are 650-750 °C for spinel + pargasite, 410-690 °C for tremolite/hornblende + chlorite, 400-710 °C for corundum, and <400 °C for diaspore. Because the aluminous spinel occurs in the domains that were previously occupied by magmatic plagioclase, and because spinel-bearing rocks characteristically have high Al2O3/CaO and Al2O3/SiO2 ratios, it is likely that the stabilization of spinel was caused by the loss of Ca2+ and SiO2(aq) in high-temperature hydrothermal fluids. The results of this study suggest that (1) the concentrations of aluminous phases in the lower oceanic crust are presently underestimated, and (2) chemical modification of the lower oceanic crust due to high-temperature hydrothermal metasomatic reactions could be common near spreading axes.

  14. Preliminary map of limonitic hydrothermal alteration for portions of the Needles 1° x 2° quadrangle, Arizona and California

    USGS Publications Warehouse

    Raines, Gary L.

    1983-01-01

    The map shows areas of limonitic hydrothermal alteration but does not show hydrothermally altered areas lacking limonitic materials. Table 1 lists, for each hydrothermally altered area detected, the type of alteration and the anomalous trace-element geochemical suite found in that area.

  15. Thermodynamics of Organic Compound Alteration in Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Shock, E. L.

    2005-12-01

    Organic compounds enter hydrothermal systems through infiltrating surface waters, zones of microbial productivity in the subsurface, extracts of organic matter in surrounding host rocks, and abiotic synthesis. Owing to variations in pH, oxidation state, composition, temperature, and pressure throughout the changing pathways of fluid migration over the duration of the system, organic compounds from all of these sources are introduced to conditions where their relative stabilities and reactivities can be dramatically transformed. If those transformations were predictable, then the extent to which organic alteration reactions have occurred could be used to reveal flowpaths and histories of hydrothermal systems. Speciation and mass transfer calculations permit some insight into the underlying thermodynamic driving forces that result in organic compound alteration. As an example, the speciation of many geochemist's canonical organic matter: CH2O depends strongly on oxidation state, temperature, and total concentration of dissolved organic matter. Calculations show that at oxidation states buffered by iron-bearing mineral assemblages, organic acids dominate the speciation of CH2O throughout hydrothermal systems, with acetic acid (itself equivalent to 2 CH2O by bulk composition) and propanoic acid generally the most abundant compounds. However, at more reduced conditions, which may prevail in organic-rich iron-poor sediments, the drive is to form ketones and especially alcohols at the expense of organic acids. The distribution of organic carbon among the various members of these compound classes is strongly dependent on the total concentration of dissolved organic matter. As an example, at a bulk concentration equivalent to average dissolved organic matter in seawater (45μm), the dominant alcohols at 100°C are small compounds like ethanol and 1-propanol. In contrast, at a higher bulk concentration of 500μm, there is a drive to shift large percentages of dissolved

  16. Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Chenery, Simon; Bland, David J.

    1996-12-01

    In spite of the major importance of monazite as a repository for the rare earths and Th in the continental crust, for U-Th-Pb geochronology, and as a possible form for high-level nuclear waste, very little work has been carried out so far on the behaviour of this mineral during fluid-rock events. This contribution describes two contrasting examples of the hydrothermal alteration of monazite. The first case comes from a sample of the Carnmenellis granite (Cornwall, Southwest England), chloritized at 284 ± 16°C, whereas the other occurs in the Skiddaw granite (Lake District, Northwest England), which underwent greisenization at 200 ± 30°C. An integrated study involving backscattered scanning electron microscopy, electron microprobe analyses, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) reveals that the chloritization event was characterized by the coupled substitution 2REE 3+ ⇌ Th 4+ + Ca 2+ in the altered parts of the monazite, thus leaving the P-O framework of the crystal untouched. In contrast, greisenization led to the coupled substitution REE 3+ + P 5+ ⇌ Th 4+ + Si 4+, and therefore involved a partial destruction of the phosphate framework. The resulting rare earth element patterns are quite different for these two examples, with a maximum depletion for Dy and Er in the altered parts of the Carnmenellis monazite, whereas the Skiddaw monazite shows a light rare earth depletion but an Yb and Er enrichment during alteration. This latter enrichment, accompanied by an increase in U but roughly unchanged Pb concentrations, probably resulted from a decrease in the size of the 9-coordinated site in monazite, thereby favouring the smaller rare earths. These contrasted styles of monazite alteration show that the conditions of fluid-rock interaction will not only affect the aqueous geochemistry of the lanthanides, actinides and lead, and the relative stability of the different minerals holding these elements. Variations in these

  17. Distribution of buried hydrothermal alteration deduced from high-resolution magnetic surveys in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Bouligand, Claire; Glen, Jonathan M. G.; Blakely, Richard J.

    2014-04-01

    Yellowstone National Park (YNP) displays numerous and extensive hydrothermal features. Although hydrothermal alteration in YNP has been extensively studied, the volume, geometry, and type of rock alteration at depth remain poorly constrained. In this study, we use high-resolution airborne and ground magnetic surveys and measurements of remanent and induced magnetization of field and drill core samples to provide constraints on the geometry of hydrothermal alteration within the subsurface of three thermal areas in YNP (Firehole River, Smoke Jumper Hot Springs, and Norris Geyser Basin). We observe that hydrothermal zones from both liquid- and vapor-dominated systems coincide with magnetic lows observed in aeromagnetic surveys and with a decrease of the amplitude of short-wavelength anomalies seen in ground magnetic surveys. This suggests a strong demagnetization of both the shallow and deep substratum within these areas associated with the removal of magnetic minerals by hydrothermal alteration processes. Such demagnetization is confirmed by measurements of rock samples from hydrothermal areas which display significantly decreased total magnetization. A pronounced negative anomaly is observed over the Lone Star Geyser and suggests a significant demagnetization of the substratum associated with areas displaying large-scale fluid flow. The ground and airborne magnetic surveys are used to evaluate the distribution of magnetization in the subsurface. This study shows that significant demagnetization occurs over a thickness of at least a few hundred meters in hydrothermal areas at YNP and that the maximum degree or maximum thickness of demagnetization correlates closely with the location of hydrothermal activity and mapped alteration.

  18. Soil-plant-microbial relations in hydrothermally altered soils of Northern California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils developed on relict hydrothermally altered soils throughout the Western United States present unique opportunities to study the role of geology on above and belowground biotic activity and composition. Soil and vegetation samples were taken at three unaltered andesite and three hydrothermally ...

  19. Central Remnant Craters on Mars - Localization of Hydrothermal Alteration at the Edge of Crater Floors?

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.

    2001-01-01

    Localized erosion at the edge of crater floors may be caused by hydrothermal alteration due to focusing of fluid flow around an impact melt sheet following crater formation, coupled with hydrothermal self-sealing under the center of the crater. Additional information is contained in the original extended abstract.

  20. The origin of massive hydrothermal alterations: what drives fluid flow?

    NASA Astrophysics Data System (ADS)

    Gomez-Rivas, Enrique; Bons, Paul D.; Martín-Martín, Juan-Diego; Corbella, Mercè; Stafford, Sherry L.; Griera, Albert; Teixell, Antonio; Salas, Ramón; Travé, Anna

    2014-05-01

    Hydrothermal alterations form when fluids warmer than the host rocks flow through them dissolving and precipitating minerals. These fluids typically flow upwards from deeper geologic units using faults as major conduits. In some cases, hydrothermal alterations affect large (km-scale) rock volumes. One example of such process is the massive high-temperature dolostones that crop out at the Benicàssim outcrop analogue (Maestrat Basin, E Spain). In this area, seismic-scale fault-controlled stratabound dolostone bodies extend over several kilometres away from large-scale faults, replacing Lower Cretaceous limestones. The fluid responsible for such alteration is a seawater-derived brine that interacted with underlying Permian-Triassic and Paleozoic basement rocks. The estimated volume of fluid required to produce the Benicàssim dolomitization is huge, with fluid-rock ratios in the order of several tens to a few hundreds, depending on composition and reaction temperature (Gomez-Rivas et al., 2014). An open key question is what brought this warm fluid (80 - 150 ºC) upwards to a depth of less than 1 km, where the dolomitization reaction took place. The driving forces should have been able not only to provide sufficient fluid volumes at shallow depths but also to heat up the whole host rock, including the non-replaced limestones. There are two hyphoteses for driving a warm fluid upwards in the Maestrat Basin: (a) rapid release through faults of overpressured solutions in recurrent pulses and (b) thermal convection. We present a series of heat and fluid flow numerical simulations to constrain the dolomitization conditions under these two end-member cases. The results indicate that in a pulsating model the fluid must flow upwards at velocities higher than cm/s to keep their elevated temperature. Otherwise they cool down quickly, and the host rocks cannot be heated. Such velocities can be reached if the fluid flow velocity equals that of fracture propagation, as in mobile

  1. Petrology and Geochemistry of Hydrothermally Altered Volcanic Rocks in the Iheya North Hydrothermal Field, Middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.

    2015-12-01

    The Iheya North hydrothermal field is located in the middle Okinawa Trough, a young and actively spreading back-arc basin extending behind the Ryukyu arc-trench system in the southeastern margin of the East China Sea. In this hydrothermal field, two scientific drilling expeditions (IODP Exp 331 and SIP CK14-04) were conducted using a deep-sea drilling vessel "Chikyu," and samples from a total of 27 holes were taken. Through these expeditions, Kuroko-type volcanogenic massive sulfide deposits (VMS), hydrothermally altered volcanic rocks, and pumiceous and pelagic sediments were recovered. The recovered core provided important information about the relationship between hydrothermal activity, alteration, and ore mineralization. Whole-rock major element composition and trace element (TE) patterns of pumices were very similar to those of rhyolites in the middle Okinawa Trough (RMO). However, pumices were relatively enriched in chalcophile elements Sr and Nb, which suggest incipient mineralization. Volcanic rock generally demonstrated strong silicification and was greenish pale gray in color. Regardless of severe alteration, some rock displayed major element composition broadly similar to the RMO. Alteration was evidenced by an increase in the content of SiO2 and MgO, and decrease in Al2O3, Na2O, and K2O content. The most striking geochemical feature of altered volcanic rock was the discordance between texture and the degree of modification of TEs. Some samples showed decussate texture occupied by petal-like quartz with severe silicification, but no prominent disturbance of concentration and patterns of TEs were observed. In contrast, samples with well-preserved igneous porphyritic texture showed very low TE content and modification of TE patterns. These results suggest that the modification of texture and composition of TEs, as well as silicification, do not occur by a uniform process, but several processes. This may reflect the differences in temperature and the

  2. Hydrothermal alteration of cementitious materials, Part II: second and third batch of samples

    SciTech Connect

    Meike, A.; Myers, K. B. L.

    1997-10-25

    This report describes experiments designed to provide data for a quick engineering assessment of the microstructural, mineralogical, and mechanical changes in hydrothermally altered concrete and changes in associated water chemistry.

  3. Variability of low temperature hydrothermal alteration in upper ocean crust: Juan de Fuca Ridge and North Pond, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Rutter, J.; Harris, M.; Coggon, R. M.; Alt, J.; Teagle, D. A. H.

    2014-12-01

    Over 2/3 of the global hydrothermal heat flux occurs at low temperatures (< 150°) on the ridge flanks carried by fluid volumes comparable to riverine discharge. Understanding ridge flank hydrothermal exchange is important to quantify global geochemical cycles. Hydrothermal chemical pathways are complex and the effects of water-rock reactions remain poorly constrained. Factors controlling fluid flow include volcanic structure, sediment thickness, and basement topography. This study compares the effects of low temperature alteration in two locations with contrasting hydrogeological regimes. The intermediate spreading Juan de Fuca ridge flank (JdF) in the northeast Pacific sports a thick sediment blanket. Rare basement outcrops are sites of fluid recharge and discharge. The average alteration extent (~10% secondary minerals), oxidation ratio (Fe3+/FeTOT=34%), and alteration character (orange, green, grey halos) of basement is constant with crustal age and depth along a 0.97-3.6 m.yr transect of ODP basement holes. However, vesicle fills record an increasingly complex history of successive alteration with age. In contrast, North Pond, a ~8 m.yr-old sediment-filled basin at 22N on the slow spreading Mid Atlantic Ridge, hosts rapid, relatively cool SE to NW basinal fluid flow. Average alteration extent (~10%) and oxidation ratio (33%) of Hole 395A basalts are similar to JdF. However, 395A cores are dominated by orange alteration halos, lack celadonite, but have abundant zeolite. Vesicle fill combinations are highly variable, but the most common fill progression is from oxidising to less oxidising secondary assemblages. The comparable extent of alteration between these two sites and the absence of an age relationship on the JdF suggests that the alteration extent of the upper crust is uniform and mostly established by 1 Myr. However, the variable alteration character reflects the influence of regional hydrology on hydrothermal alteration.

  4. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs

  5. Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Yanagawa, Katsunori; Sunamura, Michinari; Takano, Yoshinori; Ishibashi, Jun-ichiro; Kakegawa, Takeshi; Utsumi, Motoo; Yamanaka, Toshiro; Toki, Tomohiro; Noguchi, Takuroh; Kobayashi, Kensei; Moroi, Arimichi; Kimura, Hiroyuki; Kawarabayasi, Yutaka; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2009-12-01

    To extend knowledge of subseafloor microbial communities within the oceanic crust, the abundance, diversity and composition of microbial communities in crustal fluids at back-arc hydrothermal fields of the Southern Mariana Trough (SMT) were investigated using culture-independent molecular techniques based on 16S rRNA gene sequences. Seafloor drilling was carried out at two hydrothermal fields, on- and off-ridge of the back-arc spreading centre of the SMT. 16S rRNA gene clone libraries for bacterial and archaeal communities were constructed from the fluid samples collected from the boreholes. Phylotypes related to Thiomicrospira in the Gammaproteobacteria (putative sulfide-oxidizers) and Mariprofundus in the Zetaproteobacteria (putative iron-oxidizers) were recovered from the fluid samples. A number of unique archaeal phylotypes were also recovered. Fluorescence in situ hybridization (FISH) analysis indicated the presence of active bacterial and archaeal populations in the fluids. The Zetaproteobacteria accounted for up to 32% of the total prokaryotic cell number as shown by FISH analysis using a specific probe designed in this study. Our results lead to the hypothesis that the Zetaproteobacteria play a role in iron oxidation within the oceanic crust.

  6. Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Yanagawa, Katsunori; Sunamura, Michinari; Takano, Yoshinori; Ishibashi, Jun-ichiro; Kakegawa, Takeshi; Utsumi, Motoo; Yamanaka, Toshiro; Toki, Tomohiro; Noguchi, Takuroh; Kobayashi, Kensei; Moroi, Arimichi; Kimura, Hiroyuki; Kawarabayasi, Yutaka; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2009-12-01

    To extend knowledge of subseafloor microbial communities within the oceanic crust, the abundance, diversity and composition of microbial communities in crustal fluids at back-arc hydrothermal fields of the Southern Mariana Trough (SMT) were investigated using culture-independent molecular techniques based on 16S rRNA gene sequences. Seafloor drilling was carried out at two hydrothermal fields, on- and off-ridge of the back-arc spreading centre of the SMT. 16S rRNA gene clone libraries for bacterial and archaeal communities were constructed from the fluid samples collected from the boreholes. Phylotypes related to Thiomicrospira in the Gammaproteobacteria (putative sulfide-oxidizers) and Mariprofundus in the Zetaproteobacteria (putative iron-oxidizers) were recovered from the fluid samples. A number of unique archaeal phylotypes were also recovered. Fluorescence in situ hybridization (FISH) analysis indicated the presence of active bacterial and archaeal populations in the fluids. The Zetaproteobacteria accounted for up to 32% of the total prokaryotic cell number as shown by FISH analysis using a specific probe designed in this study. Our results lead to the hypothesis that the Zetaproteobacteria play a role in iron oxidation within the oceanic crust. PMID:19691504

  7. Environmental effects of hydrothermal alteration and historical mining on water and sediment quality in Central Colorado

    USGS Publications Warehouse

    Church, S.E.; Fey, D. L.; Klein, T.L.; Schmidt, T.S.; Wanty, R.B.; deWitt, E.H.; Rockwell, B.W.; San, Juan C.A.

    2009-01-01

    The U.S. Geological Survey conducted an environmental assessment of 198 catchments in a 54,000-km2 area of central Colorado, much of which is on Federal land. The Colorado Mineral Belt, a northeast-trending zone of historical base- and precious-metal mining, cuts diagonally across the study area. The investigation was intended to test the hypothesis that degraded water and sediment quality are restricted to catchments in which historical mining has occurred. Water, streambed sediment, and aquatic insects were collected from (1) catchments underlain by single lithogeochemical units, some of which were hydrothermally altered, that had not been prospected or mined; (2) catchments that contained evidence of prospecting, most of which contain hydrothermally altered rock, but no historical mining; and (3) catchments, all of which contain hydrothermally altered rock, where historical but now inactive mines occur. Geochemical data determined from catchments that did not contain hydrothermal alteration or historical mines met water quality criteria and sediment quality guidelines. Base-metal concentrations from these types of catchments showed small geochemical variations that reflect host lithology. Hydrothermal alteration and mineralization typically are associated with igneous rocks that have intruded older bedrock in a catchment. This alteration was regionally mapped and characterized primarily through the analysis of remote sensing data acquired by the ASTER satellite sensor. Base-metal concentrations among unaltered rock types showed small geochemical variations that reflect host lithology. Base-metal concentrations were elevated in sediment from catchments underlain by hydrothermally altered rock. Classification of catchments on the basis of mineral deposit types proved to be an efficient and accurate method for discriminating catchments that have degraded water and sediment quality. Only about 4.5 percent of the study area has been affected by historical mining

  8. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs

  9. Application of hyperspectral infrared analysis of hydrothermal alteration on Earth and Mars.

    PubMed

    Thomas, Matilda; Walter, Malcolm R

    2002-01-01

    An integrated analysis of both airborne and field short-wave infrared hyperspectral measurements was used in conjunction with conventional field mapping techniques to map hydrothermal alteration in the central portion of the Mount Painter Inlier in the Flinders Ranges, South Australia. The airborne hyperspectral data show the spatial distribution of spectrally distinct minerals occurring as primary minerals and as weathering and alteration products. Field spectral measurements, taken with a portable infrared mineral analyzer spectrometer and supported by thin-section analyses, were used to verify the mineral maps and enhance the level of information obtainable from the airborne data. Hydrothermal alteration zones were identified and mapped separately from the background weathering signals. A main zone of alteration, coinciding with the Paralana Fault zone, was recognized, and found to contain kaolinite, muscovite, biotite, and K-feldspar. A small spectral variation associated with a ring-like feature around Mount Painter was tentatively determined to be halloysite and interpreted to represent a separate hydrothermal fluid and fluid source, and probably a separate system. The older parts of the alteration system are tentatively dated as Permo-Carboniferous. The remote sensing of alteration at Mount Painter confirms that hyperspectral imaging techniques can produce accurate mineralogical maps with significant details that can be used to identify and map hydrothermal activity. Application of hyperspectral surveys such as that conducted at Mount Painter would be likely to provide similar detail about putative hydrothermal deposits on Mars.

  10. The formation of alteration rims in basaltic lava flows upon hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Driesner, Thomas; Kosakowski, Georg; Kulik, Dmitrii

    2016-04-01

    We investigated fossil hydrothermal systems in the North of the Reykjavik peninsula (Iceland), in order to better understand water-rock interactions occurring during hydrothermal fluid circulation. The observation of a lava flow formation showed that the basalt is practically not altered, except in zones of a few cm thickness around the largest fractures (i.e. alteration rims). XRD analysis and observations of polished thin sections by optical microscope evidenced a severe alteration of the protolith in the alteration rim. Secondary minerals mostly consist in pyrite, calcite and chlorite, indicating a temperature of 250°C during the hydrothermal event. The presence of pyrite and calcite in the alteration rim and their absence in the rest of the rock suggest that the fluid contained significant amount of volcanic gasses H2S and CO2 and probably followed an ascending path. Most of the calcite is located in fractures that have been formed after the precipitation of the other secondary minerals. This observation, coupled with fluid inclusions analysis, indicates a second hydrothermal event that happened at lower temperature and pressure. We reproduced those observations by using a geochemical reactive transport model (OpenGeoSys-GEM code). The purpose was to decipher how diffusion and mineral reaction kinetics (protolith dissolution and secondary minerals precipitation) influence the alteration, and to establish the time duration of the hydrothermal circulation.

  11. Application of hyperspectral infrared analysis of hydrothermal alteration on Earth and Mars.

    PubMed

    Thomas, Matilda; Walter, Malcolm R

    2002-01-01

    An integrated analysis of both airborne and field short-wave infrared hyperspectral measurements was used in conjunction with conventional field mapping techniques to map hydrothermal alteration in the central portion of the Mount Painter Inlier in the Flinders Ranges, South Australia. The airborne hyperspectral data show the spatial distribution of spectrally distinct minerals occurring as primary minerals and as weathering and alteration products. Field spectral measurements, taken with a portable infrared mineral analyzer spectrometer and supported by thin-section analyses, were used to verify the mineral maps and enhance the level of information obtainable from the airborne data. Hydrothermal alteration zones were identified and mapped separately from the background weathering signals. A main zone of alteration, coinciding with the Paralana Fault zone, was recognized, and found to contain kaolinite, muscovite, biotite, and K-feldspar. A small spectral variation associated with a ring-like feature around Mount Painter was tentatively determined to be halloysite and interpreted to represent a separate hydrothermal fluid and fluid source, and probably a separate system. The older parts of the alteration system are tentatively dated as Permo-Carboniferous. The remote sensing of alteration at Mount Painter confirms that hyperspectral imaging techniques can produce accurate mineralogical maps with significant details that can be used to identify and map hydrothermal activity. Application of hyperspectral surveys such as that conducted at Mount Painter would be likely to provide similar detail about putative hydrothermal deposits on Mars. PMID:12530243

  12. Hydrothermally altered impact melt rock and breccia - Contributions to the soil of Mars

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Keil, K.; Gooding, J. L.

    1982-01-01

    An examination is made of samples of melt rock and breccia from 12 terrestrial impact craters to identify alteration minerals and their conditions of formation. It is found that in most cases the dominant assemblage is clay-silica-K feldspar-zeolite, suggesting hydrothermal alteration at low pressures and temperatures of 100-300 C. The clays are in the main Fe-chlorites and smectites, in most cases depleted in Al and enriched in Fe and Mg relative to their source rocks. The alteration of impact glass is found often to be complete, whereas the alteration of crystalline melt rock is limited to a few percent of the rock volume. Impact breccia is altered to only a slight extent compared with the alteration of glass. It is believed that impact-induced hydrothermal alteration is to be expected at Martian impact sites if significant quantities of ground ice and/or water are present.

  13. Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemite-komatiite contact at Tarmoola, Western Australia

    USGS Publications Warehouse

    Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A.

    2004-01-01

    studies and stage II mineral equilibria, gold deposited from a homogeneous, neutral to slightly alkaline (pH 5.1-5.5), reduced, low-salinity (<5.5 wt % NaCl equiv) fluid that had a bulk composition of 78 mole percent H2O and 21 mole percent CO2, and trace amounts of CH4, C2H6, H2, Ar, H2S, and He. Gold deposition occurred at 300?? ?? 50??C and 0.5 to 3.0 kbars. Assuming lithostatic fluid pressures, gold precipitated at a 2- to 10-km depth. Stage II gray quartz ??18Ofluid values range from 5.9 to 7.5 per mil, whereas ??Dfluid values calculated from the dehydration of muscovite grains and measured directly from bulk fluid inclusion analyses of stage II gray quartz have ranges of -9 to -35 and -27 to -28 per mil, respectively. Hydrothermal ore fluids were transported from greater crustal depths to the site of gold deposition during the district-scale D3 event by shallowly W dipping, reverse brittle-ductile shear zones in supracrustal rock and along the steeply east dipping trondhjemite contact. Associated subhorizontal east-west shortening caused the reactivation of the eastern trondhjemite margin and subparallel foliation, which facilitated the transport of hydrothermal fluids and the generation of gold-bearing veins and hydrothermal alteration zones in komatiite. East-west-striking fractures in trondhjemite aided the lateral migration of ore fluids away from trondhjemite margins and the formation of east-west-striking gold-bearing veins and broad alteration zones. Gold was most likely transported in the stage II fluid as bisulfide complexes. The sulfidation of trondhjemite and komatiite wall rock by the stage II fluid caused the destabilization of An bisulfide complexes and gold deposition. Potassium, Ca, and CO2 metasomatism of komatiite wall rock may have enhanced gold deposition via the acidification of the stage II fluid. The physicochemical characteristics of the Tarmoola ore fluid and relative timing of gold mineralization are consistent with the Yilgarn-wide,

  14. A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland

    NASA Astrophysics Data System (ADS)

    Bell, Robin-Marie; Kolb, Jochen; Waight, Tod Earle; Bagas, Leon; Thomsen, Tonny B.

    2016-07-01

    Nalunaq is an orogenic, high gold grade deposit situated on the Nanortalik Peninsula, South Greenland. Mineralisation is hosted in shear zone-controlled quartz veins, located in fine- and medium-grained amphibolite. The deposit was the site of Greenland's only operating metalliferous mine until its closure in 2014, having produced 10.67 t of gold. This study uses a combination of field investigation, petrography and U/Pb zircon and titanite geochronology to define a multi-stage hydrothermal alteration system at Nalunaq. A clinopyroxene-plagioclase-garnet(-sulphide) alteration zone (CPGZ) developed in the Nanortalik Peninsula, close to regional peak metamorphism and prior to gold-quartz vein formation. The ca. 1783-1762-Ma gold-quartz veins are hosted in reactivated shear zones with a hydrothermal alteration halo of biotite-arsenopyrite-sericite-actinolite-pyrrhotite(-chlorite-plagioclase-löllingite-tourmaline-titanite), which is best developed in areas of exceptionally high gold grades. Aplite dykes dated to ca. 1762 Ma cross-cut the gold-quartz veins, providing a minimum age for mineralisation. A hydrothermal calcite-titanite alteration assemblage is dated to ca. 1766 Ma; however, this alteration is highly isolated, and as a result, its field relationships are poorly constrained. The hydrothermal alteration and mineralisation is cut by several generations of ca. 1745-Ma biotite granodiorite accompanied by brittle deformation. A ca. 1745-Ma lower greenschist facies hydrothermal epidote-calcite-zoisite alteration assemblage with numerous accessory minerals forms halos surrounding the late-stage fractures. The contrasting hydrothermal alteration styles at Nalunaq indicate a complex history of exhumation from amphibolite facies conditions to lower greenschist facies conditions in an orogenic belt which resembles modern Phanerozoic orogens.

  15. Hydrothermal alteration facies within the intrusive-hosted Salave gold prospect, NW Spain

    SciTech Connect

    Harris, M.

    1985-01-01

    The Salave gold prospect occurs within an Hercynian granodioritic complex intruding Cambro-Ordovician metasediments and a heterogeneous gabbroic body. Mineralization consists mostly of disseminated and veinlet pyrite, arsenopyrite, molybdenite, stibnite, and lesser sphalerite associated with a zoned sequence of hydrothermal alteration. Gold occurs as free particles and/or intergrown with the sulfides. Mathematical appraisal of analytical data suggests that the hydrothermal alteration resulted from largely isochemical redistribution processes imposed on the mineralogy of the host granodiorite by influxes of sporadically boiling fluids rich in CO/sub 2/. Hydrothermal alteration is described in terms of a zonal sequence inward from unaltered host rock through (1) chlorite-sericite alteration-(2) propylitic to advanced propylitic alterations-(3)albitites-(4) an auriferous (greater than or equal to 1g/t Au) sericite-carbonate-albite-(+/-)quartz-sulfide cataclastic facies. The zonation corresponds to increasing carbonatization, sericitization, albitization, desilification, and destruction of the original igneous texture. Aventurine alteration is common and is thought to be the product of late stage hydrothermal oxidizing conditions. Potassic alteration in the form of K-feldspar or biotite was occasionally observed.

  16. Influence of hydrothermal alteration on phreatic eruption processes in Solfatara (Campi Flegrei)

    NASA Astrophysics Data System (ADS)

    Mayer, K.; Scheu, B.; Montanaro, C.; Isaia, R.; Dingwell, D. B.

    2014-12-01

    The strong hydrothermal activity exhibited at Campi Flegrei by the Solfatara and Pisciarelli fumaroles points to a significant risk for phreatic eruptions in this densely populated area. Phreatic eruptions, triggered by various processes are hardly predictable in occurrence time and size. Despite their hazard potential, these eruptions, as well as the influence of hydrothermal alteration on their likelihood, magnitude and style, have so far been largely overlooked in experimental volcanology. The physical properties and the mechanical behavior of volcanic rocks are highly dependent on their original magmatic microstructure and on any eventual alteration of those microstructures due to hydrothermal reactions. We have therefore investigated the potential effects of hydrothermal alteration on rock microstructure and, as a consequence, on fragmentation dynamics. Rock samples from the vicinity of the Solfatara fumaroles have been characterized 1) geochemically (X-ray fluorescence, X-ray diffraction), 2) physically (density, porosity, permeability and elastic wave velocity) and 3) mechanically (uniaxial compressive strength, tensile strength). We have investigated the effects of hydrothermal alteration on fragmentation processes using a shock-tube apparatus, operating with Argon gas, water vapor and superheated water at temperatures up to 400°C and maximum pressures of 20 MPa. The three different energy sources within the pores initiating fragmentation, have been investigated: overpressure by 1) Argon gas; or 2) water vapor and due to 3) steam flashing of water. Fragmentation speed, fragmentation efficiency and fragmented particle ejection velocity were measured. Our results indicate, that steam flashing provides the highest energy - resulting in increased particle ejection velocity and higher fragmentation efficiency. Based on our results, we aim to constrain the influence of hydrothermal alteration on the dynamics of phreatic explosions and the effect on the amount of

  17. Crustal controls on magmatic-hydrothermal systems: A geophysical comparison of White River, Washington, with Goldfield, Nevada

    USGS Publications Warehouse

    Blakely, R.J.; John, D.A.; Box, S.E.; Berger, B.R.; Fleck, R.J.; Ashley, R.P.; Newport, G.R.; Heinemeyer, G.R.

    2007-01-01

    The White River altered area, Washington, and the Goldfield mining district, Nevada, are nearly contemporaneous Tertiary (ca.20 Ma) calc-alkaline igneous centers with large exposures of shallow (<1 km depth) magmatic-hydrothermal, acid-sulfate alteration. Goldfield is the largest known high-sulfidation gold deposit in North America. At White River, silica is the only commodity exploited to date, but, based on its similarities with Goldfield, White River may have potential for concealed precious and/or base metal deposits at shallow depth. Both areas are products of the ancestral Cascade arc Goldfield lies within the Great Basin physiographic province in an area of middle Miocene and younger Basin and Range and Walker Lane faulting, whereas White River is largely unaffected by young faults. However, west-northwest-striking magnetic anomalies at White River do correspond with mapped faults synchronous with magmatism, and other linear anomalies may reflect contemporaneous concealed faults. The White River altered area lies immediately south of the west-northwest-striking White River fault zone and north of a postulated fault with similar orientation. Structural data from the White River altered area indicate that alteration developed synchronously with an anomalous stress field conducive to left-lateral, strike-slip displacement on west-north-west-striking faults. Thus, the White River alteration may have developed in a transient transtensional region between the two strike-slip faults, analogous to models proposed for Goldfield and other mineral deposits in transverse deformational zones. Gravity and magnetic anomalies provide evidence for a pluton beneath the White River altered area that may have provided heat and fluids to overlying volcanic rocks. East- to east- northeast-striking extensional faults and/or fracture zones in the step-over region, also expressed in magnetic anomalies, may have tapped this intrusion and provided vertical and lateral transport of

  18. Crustal flushing and its relationship to magnetic and hydrothermal processes on the East Pacific Rise crest

    NASA Technical Reports Server (NTRS)

    Wright, Dawn J.; Haymon, Rachel M.; Fornari, Daniel J.

    1995-01-01

    The deep-towed Argo I optical/acoustical vehicle and a geographic information system (GIS) have been used to establish the abundance, widths, and spatial distribution of fissures, as well as the relative age distribution of lavas along the narrow (less than 500 m wide) axial zone of the East Pacific Rise (EPR) from 9 deg 12 min to 9 deg 54 min N. On a second-order scale (approximately 78 km long), wider but less numerous fissures are found in the northern portion of the survey area; this changes to narrower, more abundant fissures in the south. A profile of the cumulative width added by fissures to the axial zone exhibits minima in three areas along strike (near 9 deg 49 min, 9 deg 35 min, and 9 deg 15 min N), where the most recent eruptions have occurred above sites of magmatic injection from the upper mantle, filling and covering older fissures. On a fourth-order scale (5-15 km long) the mean density of fissuring on a given segment is greater where relative axial lava age is greater. Fissure density also correlates with hydrothermal vent abundance and type. Increased cracking toward segment tips is observed at the second-order scale, whereas fourth-order segments tend to be more cracked in the middle. Cracking on a fourth-order scale may be driven by the propagation of dikes, rather than by the far-field plate stresses. The above relations constrain the model of Haymon et al. (1991) in which individual fourth-order segments are in different phases of a volcanic-hydrothermal-tectonic cycle.

  19. Application of radium isotopes to determine crustal residence times of hydrothermal fluids from two sites on the Reykjanes Peninsula, Iceland

    NASA Astrophysics Data System (ADS)

    Kadko, David; Gronvold, Karl; Butterfield, David

    2007-12-01

    Radium isotopes were used to determine the crustal residence times of hydrothermal fluids from two geothermal wells (Svartsengi and Reykjanes) from the Reykjanes Peninsula, Iceland. The availability of rock samples from the subsurface (to depths of 2400 m) allowed direct comparison of the radium isotopic characteristics of the fluids with those of the rocks within the high temperature and pressure reaction zone. The 226Ra activity of the Svartsengi fluid was ˜one-fourth of the Reykjanes fluid and the 228Ra/ 226Ra ratio of the Svartsengi fluid was ˜twice that of Reykjanes. The fluid isotopic characteristics were relatively stable for both sites over the 6 years (2000-2006) of the study. It was determined, using a model that predicts the evolution of the fluid 228Ra/ 226Ra ratio with time, that both sites had fluid residence times, from the onset of high temperature water-rock reaction, of less than 5 years. Measurement of the short-lived 224Ra and 223Ra allowed estimation of the recoil input parameter used in the model. The derived timescale is consistent with results from similar studies of fluids from submarine systems, and has implications for the use of terrestrial systems in Iceland as an exploited energy resource.

  20. Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano

    USGS Publications Warehouse

    Finn, C.A.; Sisson, T.W.; Deszcz-Pan, M.

    2001-01-01

    Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows1. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes1-4 and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows5,6 and future collapses could threaten areas that are now densely populated7. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit3-5,8. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.

  1. IODP Expedition 345: Hydrothermal Alteration of Fast-Spreading EPR Lower Crust

    NASA Astrophysics Data System (ADS)

    Marks, N.; Faak, K.; Gillis, K. M.; McCaig, A. M.; Nozaka, T.; Python, M.

    2013-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 345 sampled lower crustal primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise (EPR) and are exposed at the Hess Deep Rift. Site U1415 is located along the southern slope of the intrarift ridge at ~ 4850 m water depth. The primary science results were obtained from coring of two ~110 m deep reentry holes (U1415J and U1415P) and one 35-m-deep single-bit hole (U1415I), all co-located within an ~200-m-wide area. The metamorphic mineral assemblages in the rocks recovered at Site U1415 record the cooling of primitive gabbroic lithologies from magmatic (>1000°C) to zeolite facies conditions (<200°C) associated with EPR spreading, Cocos-Nazca rifting and exposure onto the seafloor. Amphibolite facies alteration (including rare brown amphibole, secondary clinopyroxene and tremolite-chlorite corona textures between olivine and plagioclase) is sparsely developed in the core, and is intense in only a few samples. Lower grade greenschist (<400°C) and subgreenschist facies (<200°C) alteration of olivine to talc, serpentine, or clay minerals is more pervasive, and is commonly accompanied by prehnite microveins in plagioclase. The intensity of alteration varies with igneous lithology, in particular, the modal abundance of olivine, as well as proximity to zones of brittle fracturing and cataclasis. Mesh textured serpentinization is the most common alteration after olivine, although tremolite-chlorite corona textures are variably developed in all of the olivine-bearing gabbroic lithologies recovered at Site U1415. The freshest lithologies at Site U1415 are found in the Layered Series (Unit II) of Holes U1415I and J and Multi-textured Layered Olivine Gabbro Series (Unit II) in Hole U1415P. The Troctolite Series in Holes U1415J (Unit III) and U1415P (Unit III) are more pervasively altered than the gabbroic series, with U1415J troctolites being more altered (~80%) than in Hole U1415P (~65%). This likely

  2. Mesozoic hydrothermal alteration associated with gold mineralization in the Mercur district, Utah

    SciTech Connect

    Wilson, P.N.; Parry, W.T. )

    1990-09-01

    K/Ar dates and chemical data show that a Mesozoic gold-bearing hydrothermal system altered black shales of the Mississippian Great Blue Limestone throughout an area encompassing the Mercur gold district, Utah. K/Ar dates of illite veins and illite-rich, clay-sized separates of altered shales that are enriched in Au, As, Hg, Sc, and other heavy metals indicate that hydrothermal activity occurred from 193 to 122 Ma. Several ages from within the Mercur district cluster near 160 Ma and may date the minimum age of gold mineralization.

  3. Isotopically-diverse rhyolites coeval with the Columbia River Basalts Large Igneous Province: evidence for widespread mantle-plume driven hydrothermal alteration and remelting of the crust

    NASA Astrophysics Data System (ADS)

    Colon, D.; Bindeman, I. N.; Stern, R. A.; Fisher, C. M.

    2014-12-01

    The formation of the most recent flood basalt province on Earth, the Columbia River Flood Basalts (CRBs) of the northwestern USA, was accompanied by eruptions of several thousand km3 of rhyolite in a short time window from 16.7 to 15 Ma. These rhyolites span from low (+1‰) to high (+11‰) in δ18O values as recorded by major phenocrysts, and alteration-resistant zircons within each rhyolite commonly display diversity of up to 6‰ δ18O, indicative of batch assembly prior to eruption. Significant variation in ɛHf also exists in zircons, ranging from -39 to 0 in rhyolites erupted through the North American cratonic crust, and from -1 to +9 in rhyolites erupted through accreted oceanic terranes to the east of the Sr87/86Sr = 0.706 line. This isotopic diversity cannot be accounted for by fractionation of a CRB-like parent magma, demonstrating that the syn-CRB rhyolites must have been derived from melting of the crust. Abundant low-δ18Omelt values among syn-CRB rhyolites further constrains this crustal melting to shallow depths of 5-10 km, due to the shallow depths of the necessary hydrothermal alteration of the protolith. By contrast, high-δ18O rhyolites must have been formed by remelting of sedimentary or metasedimentary rocks. Low-δ18O rhyolites are also most common in the vicinity of the crustal suture between the thick lithosphere of the Archean craton and the thin lithosphere of the accreted terranes. Thermomechanical modeling suggests that this contrast concentrates crustal heating and deformation, creating pathways for meteoric water to penetrate the crust and cause extensive hydrothermal alteration less than 1 Ma before those same rocks remelt to form low-δ18O rhyolites. Finally, we suggest that this extensive crustal hydrothermal alteration and melting may be typical of continental flood basalt provinces world wide, and particularly when there is syn-volcanic extension.

  4. Hydrothermal Alteration at Lonar Crater, India and Elemental Variations in Impact Crater Clays

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.; Narasimham, V.

    2005-01-01

    The role of hydrothermal alteration and chemical transport involving impact craters could have occurred on Mars, the poles of Mercury and the Moon, and other small bodies. We are studying terrestrial craters of various sizes in different environments to better understand aqueous alteration and chemical transport processes. The Lonar crater in India (1.8 km diameter) is particularly interesting being the only impact crater in basalt. In January of 2004, during fieldwork in the ejecta blanket around the rim of the Lonar crater we discovered alteration zones not previously described at this crater. The alteration of the ejecta blanket could represent evidence of localized hydrothermal activity. Such activity is consistent with the presence of large amounts of impact melt in the ejecta blanket. Map of one area on the north rim of the crater containing highly altered zones at least 3 m deep is shown.

  5. Mapping Hydrothermal Alterations in the Muteh Gold Mining Area in Iran by using ASTER satellite Imagery data

    NASA Astrophysics Data System (ADS)

    Asadi Haroni, Hooshang; Hassan Tabatabaei, Seyed

    2016-04-01

    Muteh gold mining area is located in 160 km NW of Isfahan town. Gold mineralization is meso-thermal type and associated with silisic, seresitic and carbonate alterations as well as with hematite and goethite. Image processing and interpretation were applied on the ASTER satellite imagery data of about 400 km2 at the Muteh gold mining area to identify hydrothermal alterations and iron oxides associated with gold mineralization. After applying preprocessing methods such as radiometric and geometric corrections, image processing methods of Principal Components Analysis (PCA), Least Square Fit (Ls-Fit) and Spectral Angle Mapper (SAM) were applied on the ASTER data to identify hydrothermal alterations and iron oxides. In this research reference spectra of minerals such as chlorite, hematite, clay minerals and phengite identified from laboratory spectral analysis of collected samples were used to map the hydrothermal alterations. Finally, identified hydrothermal alteration and iron oxides were validated by visiting and sampling some of the mapped hydrothermal alterations.

  6. Signature of hydrothermal alteration in ground-magnetic surveys at Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Bouligand, C.; Glen, J. M.; McPhee, D. K.

    2011-12-01

    Yellowstone National Park (YNP) hosts a very large hydrothermal system with over 10,000 thermal features. Although hydrothermal alteration in YNP has been extensively studied with field observations, remote-sensing imagery, and core drilling, the volume and geometry of hydrothermal systems at depth remain poorly constrained. Magnetic surveys can help to investigate buried hydrothermal alteration as demonstrated by the high-resolution aeromagnetic survey of YNP (Finn and Morgan, J. Volcanol. Geotherm. Res., 115, 207-231, 2002). Results of this survey show that magnetic lows extend over and beyond areas of hydrothermal activity. This suggests large volumes of buried demagnetized rocks due to hydrothermal alteration of the volcanic substratum. Although the interpretation of magnetic anomalies is non-unique, Finn and Morgan (2002) used these magnetic lows to estimate a minimum volume of buried altered rock assuming complete demagnetization of the substratum. This aeromagnetic survey was of relatively high resolution (flight line spacing < 500 m and flight elevation <350 m above ground), but it was insufficient for detailed mapping of individual thermal areas. In order to obtain a closer look at several areas, we performed ground-based magnetic surveys within YNP using a cesium-vapor magnetometer along 4-5 km long transects crossing four thermal areas (Norris Geyser Basin, Lower Geyser Basin, Lone Star Geyser Basin, and Smoke Jumper Hot-springs). We also performed a detailed survey over an area of about 800 m x 500 m around Lone Star Geyser. We also collected gravity data to help characterize the subsurface geologic structures and performed magnetic susceptibility, magnetic remanence, and density measurements on rock samples collected in the field and from drill cores collected in 1967-1968 to characterize physical properties of fresh and altered geologic units. The long magnetic transects show that magnetic anomalies are damped in altered areas suggesting a significant

  7. Hydrothermal alteration of concrete: Yucca Mountain repository analogues

    SciTech Connect

    Myers, K.B.; Meike, A.

    1997-10-01

    Concrete could comprise a major share of construction materials present in the potential Yucca Mountain high-level radioactive waste repository. Concrete and shotcrete would be used as mechanical support (precast concrete liners), or road bed (invert) in repository emplacement drifts. These drifts could reach at least 150 to 200{degrees}C for extended periods of time, possibly in the presence of fluids. This study characterizes chemical and structural transformations in concrete that may occur as a result of a repository hydrothermal cycle. The specific concrete formulation to be used in the potential Yucca Mountain repository had not been determined at the time of the experiment. Invert and Fibercrete{sup TM} materials from the Exploratory Studies Facility (ESF) were chosen for these experiments as representatives of standard construction concrete used in this setting.

  8. Copper Sulfides in the R Chondrites: Evidence of Hydrothermal Alteration in Low Petrologic Types

    NASA Astrophysics Data System (ADS)

    Miller, K. E.; Lauretta, D. S.; Berger, E. L.; Thompson, M. S.; Zega, T. J.

    2016-08-01

    Bornite in the R chondrites formed via pre-accretionary processes. Hydrothermal alteration on the parent body between ~200° and 300°C resulted in replacement by chalcopyrite and isocubanite. These phases are found in a range of petrologic types.

  9. Hydrothermal alteration in the Bosumtwi impact structure: Evidence from 2M1-muscovite, alteration veins, and fracture fillings

    NASA Astrophysics Data System (ADS)

    Petersen, Michael T.; Newsom, Horton E.; Nelson, Melissa J.; Moore, Duane M.

    Drill-core samples from the Bosumtwi impact structure (1.07 Myr old and 10.5 km in diameter) in Ghana exhibit mineralogical evidence for post-impact hydrothermal alteration. Nine samples of drill core obtained through the 2004 International Continental Scientific Drilling Project (ICDP) were studied, including an uppermost fallback layer overlying impactite breccias, and partly deformed massive meta-graywacke bedrock. The petrographic study revealed alteration veins containing secondary sericitic muscovite (comparable to 2M1-muscovite) crosscutting original bedding in meta-graywacke and forming a matrix between clasts in impactite breccias. X-ray diffraction (XRD) shows that these impactite samples are rich in 2M1-muscovite, consistent with post-impact fluid deposition and alteration. Optical analysis indicates the presence of a pre-impact stratiform chlorite in meta-graywacke samples and a secondary alteration chlorite occurring in all samples. Secondary illite was detected in upper impactites of drill core LB-08A and samples containing accretionary lapilli. The lower temperature constraint for the hydrothermal event is given by 2M1-muscovite, secondary chlorite, and illite, all of which form at temperatures greater than 280 °C. An absence of recrystallization of quartz and feldspar indicates an upper temperature constraint below 900 °C. The presence of alteration materials associated with fractures and veins in the uppermost impactites of drill cores LB-07A and LB-08A indicates that a post-impact hydrothermal system was present in and adjacent to the central uplift portion of the Bosumtwi impact structure. A sample containing accretionary lapilli obtained from drill core LB-05A exhibits limited evidence that hydrothermal processes were more widespread within the impactites on the crater floor.

  10. Hydrothermal alteration minerals of Cerro Caliente (Deception Island, Antarctica). Analogies to several assemblages of Mars

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, O.; Gómez, F.; Moreno, M.; de Diego, G.; Fernández-Sampedro, M.; Martín-Redondo, M. P.; Parro, V.

    2013-09-01

    We study the assemblage of minerals formed by hydrothermal alteration at Cerro Caliente, Deception Island, Antarctica. The alteration of the basaltic andesitic rock produces phyllosilicates associated with carbonates, which precipitate impregnating the porous volcanic strata from the fluids released by the fractures. Similar signatures have been observed at several places of Mars, so we use this terrestrial analog to determine the processes acting on Mars.

  11. Experimental study on hydrothermal alteration of dacite collected from the Hatoma knoll, Okinawa Trough, Japan

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Shibuya, T.; Yoshizaki, M.; Nozaki, T.; Suzuki, K.; Takai, K.

    2012-12-01

    The Okinawa Trough is a back-arc basin located between the southern part of Japan offshore and Taiwan North. Hemipelagic sediments supplied from the continents covered at the bottom of the trough. Vigorous hydrothermal activity exists with rifting. The Hatoma Knoll (the depth 1500 m) is one of the active hydrothermal fields located in the southern part of the trough. The measured highest temperature of the vent fluid was 301 °C. The rocks were sampled by manned research submersible ship "Shinkai 2000" in 2000. During the dive program, 25 hydrothermal fluid samples were collected and their chemical compositions were analyzed (Nakano et al., 2001). As a result, it was revealed that the compositions of the hydrothermal vent fluids are strongly influenced by the dacitic rock presumably in a reaction zone. In this presentation, we will show the results of experimental study on hydrothermal alteration dacite sample collected from the Hatoma Knoll. The sample was obtained near the hydrothermal area with ROV "Hyper-Dolphin" during the NT11-20 cruise in 2011. The experiment simulating water/rock reaction was conducted at 300 °C and 325 bars for more than 2,200 hours using the dacite sample and synthetic seawater. The reaction cell is made of a gold tube with a titanium head, which is pressurized in an autoclave. The chemical components of reacted fluid and altered dacite were measured with pH meter, ion chromatograph, ICP-AES, gas chromatograph, and XRD. We also observed thin section of the samples before and after the experiment under microscope. The major element concentrations of the reacted fluid were comparable with those of the natural hydrothermal fluids in the Hatoma Knoll in an order of magnitude except for Mn. As a result of XRD analysis, there was no significant difference in mineral assemblage between the starting material and the experimental product.

  12. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    SciTech Connect

    Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro

    1996-01-24

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H2SO4 by atmospheric oxidation at the water table in a steam heated environment of H2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.

  13. Hydrothermal alteration in Oregon's Newberry Volcano No. 2: fluid chemistry and secondary-mineral distribution

    SciTech Connect

    Keith, T.E.C.; Mariner, R.H.; Bargar, K.E.; Evans, W.C.; Presser, T.S.

    1984-04-01

    Newberry 2 was drilled in the caldera floor of Newberry Volcano, Oregon, by the US Geological Survey during 1979-81. The maximum temperature measured was 265C at the bottom of the hole, 932 m below the surface. Rocks recovered fr9om the drill hole are divided into three intervals on the basis of hydrothermal alteration and mineral deposition: (1) 0-290 m consists of unaltered, largely glassy volcanic material, with present temperatures ranging from 20 to 40C; (2) 290-700 m consists of permeable tuff layers, tuff breccia units, and brecciated and fractured rhyodacitic to dacitic lava flows, with temperatures ranging from 40 to 100C; (3) 700-932 m consists of impermeable andesitic to basaltic lava flows that generally show little effect of alteration, interlayered with permeable hydrothermally altered flow breccia, with temperatures gradually increasing from 100 at 700 m to 265C at 932 m. Hydrothermal alteration throughout the system is controlled by rock permeability, temperature, composition of geothermal fluids, and composition and crystallinity of host rocks. Rock alteration consists mainly of replacement of glass by clay minerals and, locally, zeolites, partial replacement of plagioclase phenocrysts by calcite +/- epidote +/- illite, and whole-rock leaching adjacent to fluids channels. Open-space deposition of hydrothermal minerals in fractures, vesicles, and interbreccia pore space is far more abundant than replacement. A cooling shallow convection system in the upper 700 m is indicated by the occurrence of hydrothermal minerals that were deposited in a slightly higher temperature environment than presently exists. Below 700 m, the heat flow is conductive, and fluid flow is controlled by horizontal lava flows. Homogenization temperatures of secondary quartz fluid inclusions were as high as 370C.

  14. A strontium, neodymium and oxygen isotope study of hydrothermal metamorphism and crustal anatexis in the Trois Seigneurs Massif, Pyrenees, France

    NASA Astrophysics Data System (ADS)

    Bickle, M. J.; Wickham, S. M.; Chapman, H. J.; Taylor, H. P.

    1988-12-01

    Nd, Sr, and O isotope analyses have been made on metamorphic and igneous rocks and minerals from a 310 340 Ma Hercynian-age metamorphic terrane in the Pyrenees, France. Lower Paleozoic shales and phyllites have 87Sr/86Sr values of 0.707 0.717 at 310 Ma, but model values at 310 Ma of 0.709 0.736 (based on assumed depositional age of 450 Ma and an initial 87Sr/86Sr=0.707). On a regional scale, 87Sr/86Sr was homogenized to about 0.713 to 0.717 in the higher-grade pelitic schists during metamorphism. Much of this 87Sr/86Sr exchange occurred at very low grades (below the biotite isograd), but significant changes also accompanied the δ 18O lowering of the phyllites (+13 to +16) during their transformation to andalusite- and sillimanite-grade schists ( δ 18O=+11 to +12); all of these effects are attributed to pervasive interactions with hydrothermal fluids (Wickham and Taylor 1985). The data also show that a syn-metamorphic plutonic complex, dominated by a biotite granite body, was derived by mixing of a relatively mafic magmatic end-member (87Sr/86Sr˜ 0.7025 0.7050 and δ 18O˜ +7.5 to +8.0) with two metasedimentary sources, both having 87Sr/86Sr˜0.715 and δ 18O˜ +10.0 to +12.0, but with one being more homogeneous than the other. The more homogeneous component and the (mantle-derived?) magmatic end-member dominate at low structural levels within the complex. The less homogeneous end-member that dominates at high levels is clearly derived from the local Paleozoic pelitic schists. A Rb-Sr age of 330±20 Ma was obtained on hornblende from a deep level within the complex, which fixes this age for the regional metamorphism, as well. Although a post-metamorphic granodiorite magma body at Trois Seigneurs also displays heterogeneities in δ 18O and 87Sr/86Sr (and thus does not give a clear-cut Rb-Sr isochron), the data are consistent with an emplacement age between 260 and 310 Ma, similar to ages of other late granodiorites in the Pyrenees. 143Nd/ 144Nd is very uniform

  15. Mapping of hydrothermally altered rocks using airborne multispectral scanner data, Marysvale, Utah, mining district

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Jones, O.D.

    1983-01-01

    Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 ??m. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands. A color-composite image was constructed using the following spectral band ratios: 1.6??m/2.2??m, 1.6??m/0.48??m, and 0.67??m/1.0??m. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks. A color-coded density slice image of the 1.6??m/2.2??m band ratio allowed further discrimination among the altered units. Areas

  16. Discrimination of hydrothermal alteration mineral assemblages at Virginia City, Nevada, using the airborne imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Hutsinpiller, Amy

    1988-01-01

    The purpose of this study is to use airborne imaging spectrometer data to discriminate hydrothermal alteration mineral assemblages associated with silver and gold mineralization at Virginia City, NV. The data is corrected for vertical striping and sample gradients, and converted to flat-field logarithmic residuals. Log residual spectra from areas known to be altered are compared to field spectra for kaolinitic, illitic, sericitic, and propylitic alteration types. The areal distributions of these alteration types are estimated using a spectral matching technique. Both visual examination of spectra and the matching techniques are effective in distinguishing kaolinitic, illitic, and propylitic alteration types from each other. However, illitic and sericitic alteration cannot be separated using these techniques because the spectra of illite and sericite are very similar. A principal components analysis of 14 channels in the 2.14-2.38 micron wavelength region is also successful in discriminating and mapping illitic, kaolinitic, and propylitic alteration types.

  17. Impact Hydrothermal Alteration of Terrestrial Basalts: Explaining the Rock Component of the Martian Soil

    NASA Technical Reports Server (NTRS)

    Nelson, M. J.; Newsom, H. E.

    2003-01-01

    The large energy in terrestrial impacts can create hydrothermal systems and consequently produce hydrothermal alteration materials. In this study we consider the chemistry of impact and volcanic hydrothermal alteration under relatively low water/rock ratios in basaltic or a somewhat more evolved protolith. Our work on the Lonar and Mistastin craters suggests that Fe-rich clays, including Fe-rich saponite can be produced. We postulate that similar alteration materials are produced on Mars and could be a component of the martian soil or regolith, contrary to some earlier studies. The martian regolith is a globally homogenized product of various weathering processes. The soil [1] is thought to consist of a rock component, with lesser amounts of mobile elements (Ca, Na, and K) than a presumed protolith, and a salt or mobile element component enriched in sulfur and chlorine [2, 3]. In this study we consider the contributions of impacts and consequent hydrothermal processes to the rock component of the martian soil.

  18. Evaluation of LANDSAT MSS vs TM simulated data for distinguishing hydrothermal alteration

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.; Kahle, A. B.; Madura, D. P.; Soha, J. M.

    1978-01-01

    The LANDSAT Follow-On (LFO) data was simulated to demonstrate the mineral exploration capability of this system for segregating different types of hydrothermal alteration and to compare this capability with that of the existing LANDSAT system. Multispectral data were acquired for several test sites with the Bendix 24-channel MSDS scanner. Contrast enhancements, band ratioing, and principal component transformations were used to process the simulated LFO data for analysis. For Red Mountain, Arizona, the LFO data allowed identification of silicified areas, not identifiable with LANDSAT 1 and 2 data. The improved LFO resolution allowed detection of small silicic outcrops and of a narrow silicified dike. For Cuprite - Ralston, Nevada, the LFO spectral bands allowed discrimination of argillic and opalized altered areas; these could not be spectrally discriminated using LANDSAT 1 and 2 data. Addition of data from the 1.3- and 2.2- micrometer regions allowed better discriminations of hydrothermal alteration types.

  19. Hydrothermal alteration in the 3.5 b.y. old Onverwacht Group of South Africa

    NASA Technical Reports Server (NTRS)

    Hart, R.; Dewit, M. J.

    1985-01-01

    K-Ar studies of authigenic and alteration phases from the 3.5 b.y. old Onverwacht group of South Africa delineate hydrothermal metamorphism that ended 3.3 b.y. years ago. A whole rock K-Ar errochron from analysis of barite, dolomite, chert, and serpentinite (komatiite) gives an age of 3.3 b.y. with an intercept of 1,678 + or - 103. The 3.3. b.y. age for the metamorphism in the Onverwacht was confirmed by the Argon isotopes stepwise heating experiments of komatiites and basaltic komatiites from the Onverwacht Group. In addition, the errochron suggests all the phase studied equilibrated with a reservoir of hydrothermal argon with relatively uniform isotopic composition. The concept of hydrothermal activity in the Onverwacht Group is discussed and illustrated with photographs.

  20. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    SciTech Connect

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  1. Selective concentration of cesium in analcime during hydrothermal alteration, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Keith, T.E.C.; Thompson, J.M.; Mays, R.E.

    1983-01-01

    Chemical and mineralogical studies of fresh and hydrothermally altered rhyolitic material in Upper and Lower Geyser Basins, Yellowstone National Park, show that all the altered rocks are enriched in Cs and that Cs is selectively concentrated in analcime. The Cs content of unaltered rhyolite lava flows, including those from which the altered sediments are derived, ranges from 2.5 to 7.6 ppm. The Cs content of analcime-bearing altered sedimentary rocks is as high as 3000 ppm, and in clinoptilolite-bearing altered sedimentary rocks Cs content is as high as 180 ppm. Altered rhyolite lava flows which were initially vitrophyres, now contain up to 250 ppm Cs, and those which were crystallized prior to hydrothermal alteration contain up to 14 ppm. Mineral concentrates of analcime contain as much as 4700 ppm Cs. The Cs must have been incorporated into the analcime structure during crystallization, rather than by later cation substitution, because analcime does not readily exchange Cs. The Cs Cl of the fluids circulating through the hydrothermal system varies, suggesting that Cs is not always a conservative ion and that Cs is lost from upflowing thermal waters due to water-rock interaction resulting in crystallization of Cs-bearing analcime. The source of Cs for Cs enrichment of the altered rocks is from leaching of rhyolitic rocks underlying the geyser basins, and from the top of the silicic magma chamber that underlies the area. Analcime is an important natural Cs sink, and the high Cs concentrations reported here may prove to be an important indicator of the environment of analcime crystallization. ?? 1983.

  2. Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of hydrothermal sites

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, Fabio; Crone, Timothy J.; Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice

    2016-06-01

    High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.

  3. Deep Crustal Magma Conduits, Diabase Internal Structure, and Coupled Hydrothermal Processes in Mesozoic Basins of Eastern North America

    NASA Astrophysics Data System (ADS)

    Ryan, M. P.; Ingerov, A.; Daniels, D. L.; Carr, P. M.; Elliott, G.; Fox, L.; Pierce, H. A.; Sutphin, D. M.

    2004-05-01

    Integrated geophysical, geological, and hydrological studies of the Culpeper (VA) and Gettysburg (PA) basins have shown fundamental new relationships among the internal structure of their plutonic rocks and have constrained the structural controls on paleo- and contemporary subsurface fluid flow within their ancient rift zone intrusive centers. Deep sub-basin igneous structure and the cross-sectional structure of the Culpeper basin. Magnetotelluric (MT) measurements along two basin-crossing transects have been inverted to reveal the basin cross-sectional structure and the structure of the primary conduit that transported tholeiitic magma through the crust during the Lower Jurassic. In cross-section, the basin deepens abruptly east of the Bull Run and Catoctin mountains, reaching a maximum depth of 2.5 to 2.75 km. The basin then shallows gradually towards the east. Basin rocks span the range 25 to 8,000 Ohm-m and range from fluid-saturated siltstones to unsaturated diabase, respectively. The crustal conduit for the Belmont diabase sheet has been resolved to 20 km depth. At that depth, it is characterized by a vertical region of relatively low resistivity (150 to 4,000 Ohm-m) embedded in relatively resistive (~10,000+ Ohm-m) crystalline Proterozoic rocks. At 4--5 km depth, the conduit width is ~2 km, flaring outward to a mean width of 6 km at 20 km depth. The conduit is inferred to be a laminate-like resistivity ``composite,'' with a central core resistivity of ~150 Ohm-m grading outwards through zones of 103, 2×103, and finally 4×103 Ohm-m near the outer margins. Based on the phase equilibria of ultramafic rocks and the petrology of diabase, the conduit is inferred to be olivine gabbro +/- dunite, and to be compositionally-zoned from core to margin. In general, the resistivity structure of the conduit is bilaterally-symmetric. Intra-basin igneous structure of the Gettysburg basin. The structure and geometry of the diabase sheets, lopoliths, and dikes of the

  4. Hydrothermal alterations in the Echassières granitic cupola (Massif central, france)

    NASA Astrophysics Data System (ADS)

    Merceron, Thierry; Vieillard, Philippe; Fouillac, Anne-Marie; Meunier, Alain

    1992-11-01

    Detailed petrographic and mineralogic investigations of an albite-lepidolite granite at Echassières (Massif Central, France; scientific deep drill program) shows the existence of hydrothermal stages which are closely related to the magmatic and structural history. According to fluid inclusion data, K-Ar datations and 18O/16O-D/H compositions of secondary minerals, two successive hydrothermal periods have been recognized. The early one (273 268 million years) produced a series of aluminous phyllosilicates: muscovite, pyrophyllite, donbassite, tosudite, kaolinite which are observed as vein deposits (<10 mm wide) and alteration products of primary minerals in wall-rocks. The vein system was sealed by monomineralic assemblages during a cooling period (400 150°C). This early hydrothermal alteration stage was controlled by interactions of rock with low salinity (1 10 wt% NaCl equivalent) fluids expelled from the granitic body during the cooling processes. The chemical properties of these fluids were the following: low pH, very low Mg and Fe and high Li, Na and K contents. Thermodynamic calculations show that the sequence pyrophyllite, Li-bearing donbassite, tosudite is mostly temperature dependent. From the chemical composition of secondary minerals and isotopic data it can be deduced that these fluids, which have a meteoric origin, have been expelled from the granite body during its cooling period and after interaction with it at high temperature. The late hydrothermal stage corresponds to deposits of fluorite and Fe-Mg rich illite (151 million years) in subvertical fractures. Temperature conditions did not exceed 250° C and fluids came through the surrounding metamorphic rocks into the granitic body. IIlite/smectite mixed-layer minerals have been identified in subvertical fractures which were opened during Tertiary periods. In the host micaschists, successive hydrothermal alterations took place during the cooling of the Beauvoir granite. Early magmatic fluids

  5. Geochemical Evidence for Recent Hydrothermal Alteration of Marine Sediments in Mid-Okinawa Trough, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Abe, G.; Yamaguchi, K. E.

    2014-12-01

    Recent studies have shown that submarine hydrothermal system supports diverse microbial life. Bio-essential metals supporting such microbial communities were released from basalts by high-temperature water-rock interaction in deeper part of the oceanic crust and carried by submarine fluid flow. Its total quantity in global hydrothermal settings has been estimated to be on the order of ~1019 g/yr, which is surprisingly on the same order of the total river flows (Urabe et al., 2011). Therefore, it is important to explore how submarine river system works, i.e., to understand mechanism and extent of elemental transport, which should lead to understanding of the roles of hydrothermal circulation in oceanic crust in controlling elemental budget in the global ocean and geochemical conditions to support deep hot biosphere.  We performed REE analysis of marine sediments influenced by submarine hydrothermal activity in Mid-Okinawa Trough. The sediment samples used in this study are from IODP site at Iheya North region and JADE site at Izena region. The samples show alternation between volcanic and clastic sediments. Hydrothermal fluids of this area contain elevated concentrations of volatile components such as H2, CO2, CH4, NH4+, and H2S, supporting diverse chemoautotrophic microbial community (Nakagawa et al., 2005). The purpose of this study is to examine the effect of hydrothermal activity on the REE signature of the sediments. Chondrite-normalized REE patterns of the samples show relative enrichment of light over heavy REEs, weak positive Ce anomalies, and variable degrees of negative Eu anomalies. The REE patterns suggest the sediments source was mainly basalt, suggesting insignificant input of continental materials. Negative Eu anomalies found in the IODP site become more pronounced with increasing depth, suggesting progressive increase of hydrothermal alteration where Eu was reductively dissolved into fluids by decomposition of feldspars. Contrary, at the JADE site

  6. Hydrothermal Alteration Mineral Mapping Using Hyperspectral Imagery in Dixie Valley, Nevada

    SciTech Connect

    Kennedy-Bowdoin, T; Martini, B A; Silver, E A; Pickles, W L

    2004-04-02

    Hyperspectral (HyMap) data was used to map the location of outcrops of high temperature, hydrothermally alterated minerals (including alunite, pyrophyllite, and hematite) along a 15 km swath of the eastern front of the Stillwater Mountain Range in Dixie Valley, Nevada. Analysis of this data set reveals that several outcrops of these altered minerals exist in the area, and that one outcrop, roughly 1 square kilometer in area, shows abundant high temperature alteration. Structural analysis of the altered region using a Digital Elevation Model (DEM) suggests that this outcrop is bounded on all sides by a set of cross-cutting faults. This fault set lies within the Dixie Valley Fault system (Caskey et al. 1996). Both the intense alteration in this area and the presence of cross-cutting faults indicate a high probability of recent hot fluid escape.

  7. Hydrothermal alteration of kimberlite by convective flows of external water

    NASA Astrophysics Data System (ADS)

    Afanasyev, A. A.; Melnik, O.; Porritt, L.; Schumacher, J. C.; Sparks, R. S. J.

    2014-07-01

    Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water-rock ratios (estimated at <0.2). Such low water-rock ratios result in only small changes in stable isotope compositions; for example, δO18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.

  8. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1985-01-01

    Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

  9. Hydrothermal alteration of the Ediacaran Doushantuo Formation in the Yangtze Gorges area (South China)

    NASA Astrophysics Data System (ADS)

    Derkowski, Arkadiusz; Bristow, Thomas F.; Wampler, J. M.; Środoń, Jan; Marynowski, Leszek; Elliott, W. Crawford; Chamberlain, C. Page

    2013-04-01

    The geochemical and fossil record preserved in the Ediacaran age (635-551 Ma) Doushantuo Formation of South China has been extensively examined to explore the impact of changing climate and the oxidation state of the oceans on the development and distribution of early multicellular life. In the Yangtze Gorges area, this formation shows many of the geochemical trends and features thought to typify global ocean chemistry in the Ediacaran Period, but there are indications that post-sedimentary processes modified these signals. This study of clay minerals and organic matter builds a more detailed picture of the type and degree of post-sedimentary alteration at different stratigraphic levels of the formation and focuses on how this alteration influenced stable carbon and oxygen isotope records. In the cratonward Jiulongwan and Huajipo sections of the Doushantuo Formation, its lower part (Members 1 and 2) consists largely of dolomitic shale, rich in authigenic saponite that crystallized in an alkaline sedimentary basin. Saponite has been altered to chlorite via corrensite across tens of meters of strata in lower Member 2, with increased alteration downward toward the cap dolostone. The greater chloritization is accompanied by lower δ18O and higher δD values of trioctahedral clays. This pattern of alteration of trioctahedral clays is likely due to hydrothermal fluid activity in the underlying, relatively permeable Nantuo Formation and cap dolostone. A concomitant increase of solid bitumen reflectance toward the base of the formation supports this idea. In the uppermost part of the formation in the Yangtze Gorges area (Member 4), a typical open water marine dolomitic shale rich in illite and organic matter, increases in the methylphenanthrenes ratio index and solid bitumen reflectance correlate with decrease of the bulk rock K/Al ratio upward, providing evidence for hot fluid migration above the nearly impermeable shale. Clay from the upper part of the formation is

  10. Stable Isotope Constraints on the Ocean from Hydrothermally-altered Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.

    2007-12-01

    The 18O/16O ratio of the ocean provides an important constraint on the global geochemical cycles in the Precambrian Earth. The oxygen isotope ratio of the ocean is most likely buffered near its present day value as long as plate tectonics is operative. A quasi-steady state value for oxygen isotopes is reached on a 100 Myr timescale after the onset of plate tectonics. Hydrothermally-altered igneous rocks constrain the oxygen and hydrogen isotope value of the hydrosphere back through time. Whereas, the oxygen isotope composition of seawater owes its value to the competition between low temperature chemical weathering and mid-ocean ridge hydrothermal exchange, there is no such process for hydrogen isotopes. Changes in the oxygen isotope ratio of seawater should be reflected in hydrothermally altered rocks by the presence of low or high 18O exchanged igneous rocks with normal δD values. The distribution of D and 18O in hydrothermally rocks is used to infer the position of the meteoric water line back through time. Results from the Phanerozoic, the Proterozoic, and the Archean fail to confirm the hypothesis that the global oceans were ever strongly 18O-depleted. The meteoric water line is anchored to the isotopic composition of seawater, the isotope standard for both oxygen and hydrogen isotopes. The ability to use sedimentary rocks or other proxies for climate depend upon the variation in the stable isotopic composition of seawater. Thus far, the hydrothermal record does not support the existence of low 18O oceans. This suggests that low 18O values observed in carbonates and cherts result from either precipitation from oceans with higher temperature or from bodies of water isolated from the open ocean.

  11. Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements

    USGS Publications Warehouse

    Greenberger, Rebecca N; Mustard, John F; Cloutis, Edward A; Mann, Paul; Wilson, Janette H.; Flemming, Roberta L; Robertson, Kevin; Salvatore, Mark R; Edwards, Christopher

    2015-01-01

    The phases identified in the sample are albite, large iron oxides, and titanite throughout; calcite in vesicles; calcic clinopyroxene, aegirine, and Fe/Mg-bearing clay in the rind; and fine-grained hematite and pyroxenes in the interior. Using imaging spectroscopy, the chemistry and mineralogy results extend to the hand sample and larger outcrop. From all of the analyses, we suggest that the pillow basalts were altered initially after emplacement, either by heated lake water or magmatic fluids, at temperatures of at least 400-600°C, and the calcic clinopyroxenes and aegirine identified in the rind are a preserved record of that alteration. As the hydrothermal system cooled to slightly lower temperatures, clays formed in the rind, and, during this alteration, the sample oxidized to form hematite in the matrix of the interior and Fe3+ in the pyroxenes in the rind. During the waning stages of the hydrothermal system, calcite precipitated in vesicles within the rind. Later, diagenetic processes albitized the sample, with albite replacing plagioclase, lining vesicles, and accreting onto the exterior of the sample. This albitization or Na-metasomatism occurred when the lake within the Hartford Basin evaporated during a drier past climatic era, resulting in Na-rich brines. As Ca-rich plagioclase altered to albite, Ca was released into solution, eventually precipitating as calcite in previously-unfilled vesicles, dominantly in the interior of the pillow. Coordinated analyses of this sample permit identification of the alteration phases and help synthesize the aqueous history of pillow lavas of the Talcott formation. These results are also relevant to Mars, where volcanically-resurfaced open basin lakes have been found, and this Hartford Basin outcrop may be a valuable analog for any potential volcano-lacustrine interactions. The results can also help to inform the utility and optimization of potentially complementary, synergistic, and uniquely-suited techniques for

  12. IODP Expedition 345: Characterizing Hydrothermal Alteration of Fast-Spreading EPR Lower Crust using O, Sr and Nd isotopics

    NASA Astrophysics Data System (ADS)

    Marks, N.; Gillis, K. M.; Lindvall, R. E.; Schorzman, K.

    2014-12-01

    The Integrated Ocean Drilling Program (IODP) Expedition 345 sampled lower crustal primitive gabbroic rocks that formed at the fast-spreading East Pacific Rise (EPR) and are exposed at the Hess Deep Rift. The metamorphic mineral assemblages in the rocks recovered at Site U1415 record the cooling of primitive gabbroic lithologies from magmatic (>1000°C) to zeolite facies conditions (<200°C) associated with EPR spreading, Cocos-Nazca rifting and exposure onto the seafloor. The dominant alteration assemblage is characterized by lower grade greenschist (<400°C) and subgreenschist facies (<200°C) alteration of olivine to talc, serpentine, or clay minerals, and is commonly accompanied by prehnite microveins in plagioclase. The intensity of alteration varies with igneous lithology, in particular, the modal abundance of olivine, as well as proximity to zones of brittle fracturing and cataclasis. We have attempted to characterize the nature and extent of isotopic exchange associated alteration and cooling and present a record of variations in O, Sr, and Nd isotopic compositions in altered rocks from the lower plutonic crust at Hess Deep. The Rb-Sr and 18O/16O systems exhibit sensitivity to hydrothermal interactions with seawater; whereas the Sm-Nd system appears essentially undisturbed by the minimal alteration experienced by the rocks drilled at Site U1415. The 87Sr/86Sr isotopic compositions of olivine gabbros (Mg# 0.81-0.89) range from 0.702536-0.703950 (±0.000008). Higher 87Sr/86Sr ratios are strongly correlated with percentage of hydrous minerals, and are higher in samples with a greater modal abundance of olivine. These rocks have somewhat higher 87Sr/86Sr ratios than upper plutonic rocks from the Northern Escarpment at Hess Deep (Kirchner and Gillis, 2012), although their percentage of hydrous phases is apparently similar. The d18O in these rocks ranges from 0.23‰ to 4.65‰ (±0.67); troctolites have systematically lower d18O than the gabbro and gabbronorites

  13. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    NASA Astrophysics Data System (ADS)

    Larson, Peter B.; Cunningham, Charles G.; Naeser, Charles W.

    1994-03-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  14. Hydrothermal alteration and zeolitization of the Fohberg phonolite, Kaiserstuhl Volcanic Complex, Germany

    NASA Astrophysics Data System (ADS)

    Weisenberger, Tobias Björn; Spürgin, Simon; Lahaye, Yann

    2014-11-01

    The subvolcanic Fohberg phonolite (Kaiserstuhl Volcanic Complex, Germany) is an economic zeolite deposit, formed by hydrothermal alteration of primary magmatic minerals. It is mined due to the high (>40 wt%) zeolite content, which accounts for the remarkable zeolitic physicochemical properties of the ground rock. New mineralogical and geochemical studies are carried out (a) to evaluate the manifestation of hydrothermal alteration, and (b) to constrain the physical and chemical properties of the fluids, which promoted hydrothermal replacement. The alkaline intrusion is characterized by the primary mineralogy: feldspathoid minerals, K-feldspar, aegirine-augite, wollastonite, and andradite. The rare-earth elements-phase götzenite is formed during the late-stage magmatic crystallization. Fluid-induced re-equilibration of feldspathoid minerals and wollastonite caused breakdown to a set of secondary phases. Feldspathoid minerals are totally replaced by various zeolite species, calcite, and barite. Wollastonite breakdown results in the formation of various zeolites, calcite, pectolite, sepiolite, and quartz. Zeolites are formed during subsolidus hydrothermal alteration (<150 °C) under alkaline conditions. A sequence of Ca-Na-dominated zeolite species (gonnardite, thomsonite, mesolite) is followed by natrolite. The sequence reflects an increase in and decrease in of the precipitating fluid. Low radiogenic 87Sr/86Sr values indicate a local origin of the elements necessary for secondary mineral formation from primary igneous phases. In addition, fractures cut the intrusive body, which contain zeolites, followed by calcite and a variety of other silicates, carbonates, and sulfates as younger generations. Stable isotope analysis of late-fracture calcite indicates very late circulation of meteoric fluids and mobilization of organic matter from surrounding sedimentary units.

  15. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Hawkes, Jeffrey A.; Hansen, Christian T.; Goldhammer, Tobias; Bach, Wolfgang; Dittmar, Thorsten

    2016-02-01

    Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural high-temperature hydrothermal systems, DOM is almost completely removed, but the mechanism and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100 and 380 °C over the course of two weeks in artificial seawater, and was then characterised on a molecular level via ultrahigh-resolution Fourier-transform ion cyclotron mass spectrometry (FT-ICR-MS). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied. Higher molecular weight and more oxygen rich compounds were preferentially removed, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly altered samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H/C ratio (>1.5). Our results suggest that abiotic hydrothermal alteration of SPE-DOM may already occur at temperatures above 68 °C. Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.

  16. Effects of hydrothermal alteration on Pb in the active PACMANUS hydrothermal field, ODP Leg 193, Manus Basin, Papua New Guinea: A LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    Beaudoin, Yannick; Scott, Steven D.; Gorton, Michael P.; Zajacz, Zoltan; Halter, Werner

    2007-09-01

    The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes. Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350 °C) silica-rich "bleaching" alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material. Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are

  17. Hydrothermal alteration in basalts from Vargeão impact structure, south Brazil, and implications for recognition of impact-induced hydrothermalism on Mars

    NASA Astrophysics Data System (ADS)

    Yokoyama, Elder; Nédélec, Anne; Baratoux, David; Trindade, Ricardo I. F.; Fabre, Sébastien; Berger, Gilles

    2015-05-01

    The 12-km-wide Vargeão impact structure was formed 123 Myr ago in the Paraná basaltic province (southern Brazil). At this time the province region had a dry climate, although a large brackish aquifer had been formed in the underlying sandstones. It is therefore one of the best terrestrial analogs for studying impact-related products on a dry martian surface environment with preserved ice-rich ground. The basalts within the impact structure display cm-sized breccia veins filled with lithic clasts, glassy remnants, newly formed Fe-oxyhydroxides and secondary phases, such as calcite, phyllosilicates and, subordinately quartz and zeolite. The textural and mineralogical study of these phases demonstrate their hydrothermal origin. Although the very center of the structure has experienced the highest pressures and temperatures, the most developed hydrothermal changes are recognized in an inner collar surrounding the central depression. This inner collar is also the location of major modifications of the rock magnetic properties. These magnetic signatures are related to the distribution of impact-related faults and to the formation of new iron oxides. Geochemical modeling indicate that hydrothermal phases formation required low water/rock ratios. Our observations therefore suggest that hydrothermal alteration took place following the perturbation of the aquifer by the impact, but evidence for hydrothermal circulation is limited in comparison with other impact-related hydrothermal systems. This situation may be explained by the presence of the aquifer below the heat source, such a setting being exceptional for the Earth, but common on Mars. However, the spectroscopic signatures in visible/near infrared images suggest that this kind of impact-related hydrothermal alteration may be still indentified in large impact craters on Mars by orbital instruments. These results does not exclude the possibility that more developed alteration took place in breccias that are today

  18. Soil-plant-microbial relations in hydrothermally altered soils of Northern California

    USGS Publications Warehouse

    Blecker, S.W.; Stillings, L.L.; DeCrappeo, N.M.; Ippolito, J.A.

    2014-01-01

    Soils developed on relict hydrothermally altered soils throughout the Western USA present unique opportunities to study the role of geology on above and belowground biotic activity and composition. Soil and vegetation samples were taken at three unaltered andesite and three hydrothermally altered (acid-sulfate) sites located in and around Lassen VolcanicNational Park in northeastern California. In addition, three different types of disturbed areas (clearcut, thinned, and pipeline) were sampled in acid-sulfate altered sites. Soils were sampled (0–15 cm) in mid-summer 2010 from both under-canopy and between-canopy areas within each of the sites. Soils were analyzed for numerous physical and chemical properties along with soil enzyme assays, C and N mineralization potential, microbial biomass-C and C-substrate utilization. Field vegetation measurements consisted of canopy cover by life form (tree, shrub, forb, and grass), tree and shrub density, and above-ground net primary productivity of the understory. Overall, parameters at the clearcut sites were more similar to the unaltered sites, while parameters at the thinned and pipeline sites were more similar to the altered sites. We employed principal components analysis (PCA) to develop two soil quality indices (SQI) to help quantify the differences among the sites: one based on the correlation between soil parameters and canopy cover, and the second based on six sub-indices. Soil quality indices developed in these systems could provide a means for monitoring and identifying key relations between the vegetation, soils, and microorganisms.

  19. Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington

    USGS Publications Warehouse

    Reid, M.E.; Sisson, T.W.; Brien, D.L.

    2001-01-01

    Catastrophic collapses of steep volcano flanks threaten many populated regions, and understanding factors that promote collapse could save lives and property. Large collapses of hydrothermally altered parts of Mount Rainier have generated far-traveled debris flows; future flows would threaten densely populated parts of the Puget Sound region. We evaluate edifice collapse hazards at Mount Rainier using a new three-dimensional slope stability method incorporating detailed geologic mapping and subsurface geophysical imaging to determine distributions of strong (fresh) and weak (altered) rock. Quantitative three-dimensional slope stability calculations reveal that sizeable flank collapse (>0.1 km3) is promoted by voluminous, weak, hydrothermally altered rock situated high on steep slopes. These conditions exist only on Mount Rainier's upper west slope, consistent with the Holocene debris-flow history. Widespread alteration on lower flanks or concealed in regions of gentle slope high on the edifice does not greatly facilitate collapse. Our quantitative stability assessment method can also provide useful hazard predictions using reconnaissance geologic information and is a potentially rapid and inexpensive new tool for aiding volcano hazard assessments.

  20. Regional patterns of hydrothermal alteration of sediments as interpreted from seafloor reflection coefficients, Middle Valley, Juan De Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Rohr, Kristin M. M.; Schmidt, Ulrike; Groschel-Becker, Henrike

    1993-09-01

    Reflection coefficients of the seafloor have been calculated from three multi-channel seismic reflection profiles across Middle Valley of the Juan de Fuca ridge. Seafloor reflection coefficients in this sedimented rift valley are high over an active hydrothermal vent and adjacent to major offset faults. Comparison of our measurements to drilling results from Leg 139 shows that high reflection coefficients over an active vent mound are produced by cemented sediments. Large reflection coefficients adjacent to major faults may have a similar origin and indicate that ongoing faulting creates pathways for hydrothermal fluids which alter the sediments and result in higher densities and velocities. Since 30 Hz seismic energy responds to the top 50 m of sediments, we are looking at the integrated response of hydrothermal alteration over tens of thousands of years. This is the first time seafloor reflection coefficients have been used to identify highly altered sediments in a region of deep-water hydrothermal activity.

  1. Oxygen isotope evidence for submarine hydrothermal alteration of the Del Puerto ophiolite, California

    USGS Publications Warehouse

    Schiffman, P.; Williams, A.E.; Evarts, R.C.

    1984-01-01

    The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock ??18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4??? (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member. Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock ??18O can be best explained by isotopic exchange with discharging 18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500??C. 18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center. ?? 1984.

  2. Effects of chemical alteration on fracture mechanical properties in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Callahan, O. A.; Eichhubl, P.; Olson, J. E.

    2015-12-01

    Fault and fracture networks often control the distribution of fluids and heat in hydrothermal and epithermal systems, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture

  3. Hydrothermal Alteration Minerals of the Geysers Steam Field, California and their Potential Use in Exploration

    SciTech Connect

    Moore, Diane

    1980-12-16

    Little information has been published on the hydrothermal alteration minerals occurring at depth in the Geysers steam field, California. Steiner (1958) reported the occurrence of wairakite from a well; McNitt (1964) identified pyrite, sericite, calcite, quartz, siderite, apatite and chlorite in cores of Franciscan graywacke and greenstone. Recently, Union Oil Geothermal Division furnished a set of well cores from the cap rock overlying the steam reservoir for geophysical studies (Lockner -e t -a l . , 1980). Cores of metagraywacke and greenstone from 4 wells were compared to unaltered Franciscan metagraywacke from surface exposures. Several previously unreported alteration minerals were found in the cored rocks, including epidote, tremolite-actinolite, prehnite and tourmaline. This note describes the observed alteration minerals and some of the factors that controlled their growth.

  4. Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on mars from phyllosilicate mineral assemblages

    USGS Publications Warehouse

    Ehlmann, B.L.; Mustard, J.F.; Clark, R.N.; Swayze, G.A.; Murchie, S.L.

    2011-01-01

    The enhanced spatial and spectral resolution provided by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO) has led to the discovery of numerous hydrated silicate minerals on Mars, particularly in the ancient, cratered crust comprising the southern highlands. Phases recently identified using visible/near-infrared spectra include: smectite, chlorite, prehnite, high-charge phyllosilicates (illite or muscovite), the zeolite analcime, opaline silica, and serpentine. Some mineral assemblages represent the products of aqueous alteration at elevated temperatures. Geologic occurrences of these mineral assemblages are described using examples from west of the Isidis basin near the Nili Fossae and with reference to differences in implied temperature, fluid composition, and starting materials during alteration. The alteration minerals are not distributed homogeneously. Rather, certain craters host distinctive alteration assemblages: (1) prehnite-chlorite-silica, (2) analcime-silica-Fe,Mg-smectite-chlorite, (3) chlorite-illite (muscovite), and (4) serpentine, which furthermore has been found in bedrock units. These assemblages contrast with the prevalence of solely Fe,Mg-smectites in most phyllosilicate-bearing terrains on Mars, and they represent materials altered at depth then exposed by cratering. Of the minerals found to date, prehnite provides the clearest evidence for subsurface, hydrothermal/metamorphic alteration, as it forms only under highly restricted conditions (T = 200 400??C). Multiple mechanisms exist for forming the other individual minerals; however, the most likely formation mechanisms for the characteristic mineralogic assemblages observed are, for (1) and (2), low- grade metamorphism or hydrothermal (400??C has not been found.

  5. Hydrothermal alteration in well Baca 22, Baca geothermal area, Valles Caldera, New Mexico

    SciTech Connect

    Fox, D.J.

    1984-01-01

    A number of exploration wells were drilled to supply steam for a proposed electric generating plant. Drill cuttings from one of these wells, Baca 22, were studied with a petrographic microscope and by x-ray diffraction to determine the nature of the original rocks and of the hydrothermal alteration. The hydrothermal alteration is used to determine the temperatures of alteration which can then be compared with borehole temperatures to determine if the mineral assemblages are compatible with present day temperatures. It is shown that there is evidence indicating that the upper 2000 feet of borehole is cooler now than it has been in the past. Sample sizes were limited in this study (usually less than 5 grams). In most cases, one quarter of the sample was used to make the thin section while the remainder was reserved for x-ray analysis. Samples were mounted in epoxy and cut to a thickness of 30 microns for petrographic study. X-ray diffraction patterns were obtained using a Debye-Scherrer camera and Fek..cap alpha.. radiation.

  6. Mineral formation and redox-sensitive trace elements in a near-surface hydrothermal alteration system

    SciTech Connect

    Gehring, A.U. |; Schosseler, P.M.; Weidler, P.G.

    1999-07-01

    A recent hydrothermal mudpool at the southwestern slope of the Rincon de la Vieja volcano in Northwest Costa Rica exhibits an argillic alteration system formed by intense interaction of sulfuric acidic fluids with wall rock materials. Detailed mineralogical analysis revealed an assemblage with kaolinite, alunite, and opal-C as the major mineral phases. Electron paramagnetic resonance spectroscopy (EPR) showed 3 different redox-sensitive cations associated with the mineral phases, Cu{sup +} is structure-bound in opal-C, whereas VO{sup 2+} and Fe{sup 3+} are located in the kaolinite structure. The location of the redox-sensitive cations in different minerals of the assemblage is indicative of different chemical conditions. The formation of the alteration products can be described schematically as a 2-step process. In a first step alunite and opal-C were precipitated in a fluid with slightly reducing conditions and a low chloride availability. The second step is characterized by a decrease in K{sup +} activity and subsequent formation of kaolinite under weakly oxidizing to oxidizing redox conditions as indicated by structure-bound VO{sup 2+} and Fe{sup 3+}. The detection of paramagnetic trace elements structure-bound in mineral phases by EPR provide direct information about the prevailing redox conditions during alteration and can, therefore, be used as additional insight into the genesis of the hydrothermal, near-surface system.

  7. Hydrothermal alteration experiments: tracking the path from interstellar to chondrites organics

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Jaber, M.; Remusat, L.

    2015-10-01

    Organic molecules are detected in primitive carbonaceous chondrites. The origin of these organics, whether formed prior the accretion phase, or in-situ on the parent body, is still a matter of debate. We have investigated experimentally the chemical evolution of interstellar organic molecules submitted to hydrothermal conditions, mimicking asteroidal alteration (T<200°C). In particular, we want to assess the potential catalytic role of clays minerals in the polymerization/degradation of organics. Hexamethylenetetramine (HMT, compound of C-N bonds) is used as a plausible interstellar precursors from icy grains. Experimental products reveal a large diversity of molecules, including nitrogen organic molecules similar to those found in chondrites.

  8. Hydrothermal alteration mapping of Siberian gold-ore fields based on satellite spectroscopy data

    NASA Astrophysics Data System (ADS)

    Ananyev, Yu S.; Maskov, A. A.; Abramova, R. N.

    2015-11-01

    The mapping of the hydrothermal alterations in Urjahskoe and Fedorov-Kedrov gold-ore fields was conducted by applying channel relationship method (band ratio) based on ASTER spectral-zonal satellite image data. It was determined that the calculated mineral indices in ore-bearing structures are zonal. Outer ore-bearing structures revealed increased ferric mineral index values, while inner - high epidote- chlorite- calcite and muscovite- siderite mineral index values. Detected regularities could be used in identifying potential gold-ore bearing areas within identical fields based on remote sensing survey data.

  9. EVALUATION OF LOW-SUN ILLUMINATED LANDSAT-4 THEMATIC MAPPER DATA FOR MAPPING HYDROTHERMALLY ALTERED ROCKS IN SOUTHERN NEVADA.

    USGS Publications Warehouse

    Podwysocki, Melvin H.; Power, Marty S.; Salisbury, Jack; Jones, O.D.

    1984-01-01

    Landsat-4 Thematic Mapper (TM) data of southern Nevada collected under conditions of low-angle solar illumination were digitally processed to identify hydroxyl-bearing minerals commonly associated with hydrothermal alteration in volcanic terrains. Digital masking procedures were used to exclude shadow areas and vegetation and thus to produce a CRC image suitable for testing the new TM bands as a means to map hydrothermally altered rocks. Field examination of a masked CRC image revealed that several different types of altered rocks displayed hues associated with spectral characteristics common to hydroxyl-bearing minerals. Several types of unaltered rocks also displayed similar hues.

  10. Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements

    NASA Astrophysics Data System (ADS)

    Greenberger, Rebecca N.; Mustard, John F.; Cloutis, Edward A.; Mann, Paul; Wilson, Janette H.; Flemming, Roberta L.; Robertson, Kevin M.; Salvatore, Mark R.; Edwards, Christopher S.

    2015-12-01

    We investigate an outcrop of ∼187 Ma lacustrine pillow basalts of the Talcott Formation exposed in Meriden, Connecticut, USA, focusing on coordinated analyses of one pillow lava to characterize the aqueous history of these basalts in the Hartford Basin. This work uses a suite of multidisciplinary measurements, including hyperspectral imaging, other spectroscopic techniques, and chemical and mineralogical analyses, from the microscopic scale up to the scale of an outcrop. The phases identified in the sample are albite, large iron oxides, and titanite throughout; calcite in vesicles; calcic clinopyroxene, aegirine, and Fe/Mg-bearing clay in the rind; and fine-grained hematite and pyroxenes in the interior. Using imaging spectroscopy, the chemistry and mineralogy results extend to the hand sample and larger outcrop. From all of the analyses, we suggest that the pillow basalts were altered initially after emplacement, either by heated lake water or magmatic fluids, at temperatures of at least 400-600 °C, and the calcic clinopyroxenes and aegirine identified in the rind are a preserved record of that alteration. As the hydrothermal system cooled to slightly lower temperatures, clays formed in the rind, and, during this alteration, the sample oxidized to form hematite in the matrix of the interior and Fe3+ in the pyroxenes in the rind. During the waning stages of the hydrothermal system, calcite precipitated in vesicles within the rind. Later, diagenetic processes albitized the sample, with albite replacing plagioclase, lining vesicles, and accreting onto the exterior of the sample. This albitization or Na-metasomatism occurred when the lake within the Hartford Basin evaporated during a drier past climatic era, resulting in Na-rich brines. As Ca-rich plagioclase altered to albite, Ca was released into solution, eventually precipitating as calcite in previously-unfilled vesicles, dominantly in the interior of the pillow. Coordinated analyses of this sample permit

  11. Precursors predicted by artificial neural networks for mass balance calculations: Quantifying hydrothermal alteration in volcanic rocks

    NASA Astrophysics Data System (ADS)

    Trépanier, Sylvain; Mathieu, Lucie; Daigneault, Réal; Faure, Stéphane

    2016-04-01

    This study proposes an artificial neural networks-based method for predicting the unaltered (precursor) chemical compositions of hydrothermally altered volcanic rock. The method aims at predicting precursor's major components contents (SiO2, FeOT, MgO, CaO, Na2O, and K2O). The prediction is based on ratios of elements generally immobile during alteration processes; i.e. Zr, TiO2, Al2O3, Y, Nb, Th, and Cr, which are provided as inputs to the neural networks. Multi-layer perceptron neural networks were trained on a large dataset of least-altered volcanic rock samples that document a wide range of volcanic rock types, tectonic settings and ages. The precursors thus predicted are then used to perform mass balance calculations. Various statistics were calculated to validate the predictions of precursors' major components, which indicate that, overall, the predictions are precise and accurate. For example, rank-based correlation coefficients were calculated to compare predicted and analysed values from a least-altered test dataset that had not been used to train the networks. Coefficients over 0.87 were obtained for all components, except for Na2O (0.77), indicating that predictions for alkali might be less performant. Also, predictions are performant for most volcanic rock compositions, except for ultra-K rocks. The proposed method provides an easy and rapid solution to the often difficult task of determining appropriate volcanic precursor compositions to rocks modified by hydrothermal alteration. It is intended for large volcanic rock databases and is most useful, for example, to mineral exploration performed in complex or poorly known volcanic settings. The method is implemented as a simple C++ console program.

  12. Seismic Structure of the Endeavour Segment, Juan de Fuca Ridge: Correlations of Crustal Magma Chamber Properties With Seismicity, Faulting, and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    van Ark, E. M.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J. B.; Harding, A.; Kent, G.; Nedimovic, M. R.; Wilcock, W. S.

    2003-12-01

    Multichannel seismic reflection data collected in July 2002 at the RIDGE2000 Integrated Studies Site at the Endeavour segment, Juan de Fuca Ridge show a high-amplitude, mid-crustal reflector underlying all of the known hydrothermal vent fields at this segment. This reflector, which has been identified with a crustal magma body [Detrick et al., 2002], is found at a two-way travel time of 0.85-1.5 s (1.9-4.0 km) below the seafloor and extends approximately 25 km along axis although it is only 1-2 km wide on the cross-axis lines. The reflector is shallowest (2.5 km depth on the along-axis line) beneath the central, elevated part of the Endeavour segment and deepens toward the segment ends, with a maximum depth of 4 km. The cross axis lines show the mid-crustal reflector dipping from 9 to 50? to the east with the shallowest depths under the ridge axis and greater depths under the eastern flank of the ridge. The amplitude-offset behavior of this mid-crustal axial reflector is consistent with a negative impedance contrast, indicating the presence of melt or a crystallizing mush. We have constructed partial offset stacks at 2-3 km offset to examine the variation of melt-mush content of the axial magma chamber along axis. We see a decrease in P-wave amplitudes with increasing offset for the mid-crustal reflector beneath the Mothra and Main Endeavour vent fields and between the Salty Dawg and Sasquatch vent fields, indicating the presence of a melt-rich body. Beneath the High Rise, Salty Dawg, and Sasquatch vent fields P-wave amplitudes vary little with offset suggesting the presence of a more mush-rich magma chamber. Hypocenters of well-located microseismicity in this region [Wilcock et al., 2002] have been projected onto the along-axis and cross-axis seismic lines, revealing that most axial earthquakes are concentrated in a depth range of 1.5 - 2.7 km, just above the axial magma chamber. In general, seismicity is distributed diffusely within this zone indicating thermal

  13. Zonation of Hydrothermal Alteration in the Central Uplift of the Puchezh-Katunki Astrobleme

    NASA Astrophysics Data System (ADS)

    Naumov, M. V.

    1993-07-01

    The giant (D = 80 km) Puchezh-Katunki astrobleme [1,2] is the site of widespread hydrothermal alteration. It occurs mainly in the central uplift composed of brecciated archean rocks and overlain by allogenic breccia, suevites, and coptomict gravelites (the latter is the lowest bed of crater-lake deposits). Distribution and vertical zonation of secondary minerals is controlled by the thermal gradient during cooling of authigenic breccia massif, while the degree of alteration depends on the intensity of brecciation and fracturing of basement rocks. Three types of hydrothermal mineralization are distinguished on the basis of different crystallization conditions: (1) mixed hydrothermal-diagenetic, in coptomict gravelites; (2) metasomatic, including formation of Fe-Mg hydrous phyllosilicates in shocked and thermally altered gneisses and amphibolites; and (3) veins, represented by mineral associations filling fractures and voids in basement rocks, allogenic breccia, and suevites. The second and third types occur together and each displays characteristic zonations, thus several zones may be distinguished in vertical section (zones 2-4 below). The uppermost zone corresponds to mixed hydrothermal-diagenetic conditions described in (1) above. In general, four zones are distinguished, from top downward, as follows. 1. Zone of hydrothermal-diagenetic alteration in coptomict gravelites. In this zone, replacement of impact glass fragments by assemblage of montmorillonite, calcite, and pyrite, and formation of alkali zeolites and calcite as a cement are observed establishing a temperature of alteration of less than 100 degrees C. 2. Zone of low-temperature (100 degrees-200 degrees C) mineralization comosed of suevites, allogenic breccia, and the upper part of authigenic breccia down to 2.5 km. Fe-saponite develops in shocked and recrystallized basement rocks, and various zeolites, apophylite, calcite, anhydrite, and pyrite fill vugs and fractures; in addition, calcite

  14. Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon

    USGS Publications Warehouse

    Zierenberg, R.A.; Shanks, Wayne C.; Seyfried, W.E.; Koski, R.A.; Strickler, M.D.

    1988-01-01

    The Turner-Albright sulfide deposit, part of the Josephine ophiolite, formed on and below the seafloor during Late Jurassic volcanism at a back arc spreading center. Ore fluids were probably localized by faults which were active on the seafloor at the time of sulfide deposition. The uppermost massive sulfide formed on the seafloor at hydrothermal vents. The bulk of the sulfide mineralization formed below the seafloor within olivine basalt hyaloclastite erupted near the time of mineralization. Infiltration of hydrothermal fluid into the hyaloclastite altered the rock. The fluid responsible for the hydrothermal alteration was evolved seawater with low pH and Mg and high Fe. The average value of sulfide and the difference between sulfide and contemporaneous seawater sulfate values are similar to ophiolite-hosted sulfide deposits in Cyprus. Mudstone and clinopyroxene basalt above the sulfide horizons were not altered by the ore-transporting hydrothermal fluid, but these rocks were hydrothermally metamorphosed by altered seawater heated by deep circulation into hot oceanic crust. This subseafloor metamorphism produced a mineral assemblage typical of prehnite-pumpellyite facies metamorphism. Exchange with altered seawater increased the whole-rock ??18O of the basalts to values of 9.4-11.2%. -from Authors

  15. Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming

    SciTech Connect

    Bargar, K.E.; Beeson, M.H.

    1981-05-01

    Y-2, a US Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, was drilled to a depth of 157.4 meters. The hole penetrated interbedded siliceous sinter and travertine to 10.2 m, glacial sediments of the Pinedale Glaciation interlayered with pumiceous tuff from 10.2 to 31.7 m, and rhyolitic lavas of the Elephant Back flow of the Central Plateau Member and the Mallard Lake Member of the Pleistocene Plateau Rhyolite from 31.7 to 157.4 m. Hydrothermal alteration is pervasive in most of the nearly continuous drill core. Rhyolitic glass has been extensively altered to clay and zeolite minerals (intermediate heulandite, clinoptilolite, mordenite, montmorillonite, mixed-layer illite-montmorillonite, and illite) in addition to quartz and adularia. Numerous veins, vugs, and fractures in the core contain these and other minerals: silica minerals (opal, ..beta..-cristobalite, ..cap alpha..-cristobalite, and chalcedony), zeolites (analcime, wairakite, dachiardite, laumontite, and yugawaralite), carbonates (calcite and siderite), clay (kaolinite and chlorite), oxides (hematite, goethite, manganite, cryptomelane, pyrolusite, and groutite), and sulfides (pyrhotite and pyrite) along with minor aegirine, fluorite, truscottite, and portlandite. Interbedded travertine and siliceous sinter in the upper part of the drill core indicate that two distinct types of thermal water are responsible for precipitation of the surficial deposits, and further that the water regime has alternated between the two thermal waters more than once since the end of the Pinedale Glaciation (approx. 10,000 years B.P.). Alternation of zones of calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the water chemistry in this drill hole varies with depth.

  16. Hydrothermal Alteration Mineralogy Characterized Through Multiple Analytical Methods: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Black, S.; Hynek, B. M.; Kierein-Young, K. S.; Avard, G.; Alvarado-Induni, G.

    2015-12-01

    Proper characterization of mineralogy is an essential part of geologic interpretation. This process becomes even more critical when attempting to interpret the history of a region remotely, via satellites and/or landed spacecraft. Orbiters and landed missions to Mars carry with them a wide range of analytical tools to aid in the interpretation of Mars' geologic history. However, many instruments make a single type of measurement (e.g., APXS: elemental chemistry; XRD: mineralogy), and multiple data sets must be utilized to develop a comprehensive understanding of a sample. Hydrothermal alteration products often exist in intimate mixtures, and vary widely across a site due to changing pH, temperature, and fluid/gas chemistries. These characteristics require that we develop a detailed understanding regarding the possible mineral mixtures that may exist, and their detectability in different instrument data sets. This comparative analysis study utilized several analytical methods on existing or planned Mars rovers (XRD Raman, LIBS, Mössbauer, and APXS) combined with additional characterization (thin section, VNIR, XRF, SEM-EMP) to develop a comprehensive suite of data for hydrothermal alteration products collected from Poás and Turrialba volcanoes in Costa Rica. Analyzing the same samples across a wide range of instruments allows for direct comparisons of results, and identification of instrumentation "blind spots." This provides insight into the ability of in-situ analyses to comprehensively characterize sites on Mars exhibiting putative hydrothermal characteristics, such as the silica and sulfate deposits at Gusev crater [eg: Squyres et al., 2008], as well as valuable information for future mission planning and data interpretation. References: Squyres et al. (2008), Detection of Silica-Rich Deposits on Mars, Science, 320, 1063-1067, doi:10.1126/science.1155429.

  17. Hydrothermal alteration experiments of olivine with varying Fe contents: An attempt to simulate aqueous alteration of the carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Takatori, Koichi; Tomeoka, Kazushige; Tsukimura, Katsuhiro; Takeda, Hiroshi

    1993-01-01

    Hydrothermal alteration experiments of olivine powder with several Fe/Mg ratios were carried out under acidic and neutral conditions, and transition electron microscopy (TEM) observations were made on the run products. Well-developed tubular crystals of serpentine (chrysotile) were synthesized from Fo100 under both acidic and neutral conditions, and from Fo92 and Fo80 under acidic condition. Abundance and size of chrysotile apparenlty dependent on the Fe contents of olivine, i.e. with increasing Fe contents, less and smaller chrysotile was formed. Acidity of the solution plays an important role for the formation of chrysotile. Platy and fibrous crystals of phyllosilicate, probably serpentine, were obtained from Fo50 and Fo20 treated under acidic condition, which are most similar to the phyllosilicates in the CI and CM chondrites. Framboidal aggregates of Fe-rich grains (presumably Fe-hydroxide) were formed from Fa100 and Fo20, but no phyllosilicate was formed from Fa100.

  18. High-temperature hydrothermal alteration of tje Boehls Butte anorthosite: Origin of a bimodal plagioclase assemblage

    SciTech Connect

    Mora, Claudia I; Riciputi, Lee R; Cole, David; Walker, Karen

    2008-01-01

    The Boehls Butte anorthosite consists predominantly of an unusual bimodal assemblage of andesine and bytownite anorthite. Oxygen isotope compositions of the anorthosite were profoundly altered by high temperature, retrograde interaction with meteorichydrothermal fluids that varied in composition from isotopically evolved to nearly pristine meteoric water. Oxygen isotope ratios of bulk plagioclase separates are in the range ?7.0 to -6.2% V-SMOW, however, secondary ion mass spectrometry indicates spot-sized isotope values as low as -16%. Typical inter- and intra-plagioclase grain variability is 3 6%, and extreme heterogeneity of up to 20%is noted in a few samples. High-temperature hydrothermal alteration of intermediate plagioclase is proposed to explain the origin of bytownite anorthite in the anorthosite and creation of its unusual bimodal plagioclase assemblage. The anorthite-forming reaction created retrograde reaction-enhanced permeability which, together with rapid decompression, extension, and unroofing of the anorthosite complex, helped to accommodated influx of significant volumes of meteoric-hydrothermal fluids into the anorthosite.

  19. Effects Of Hydrothermal Alteration On Magnetic Properties And Magnetic Signatures - Implications For Predictive Magnetic Exploration Models

    NASA Astrophysics Data System (ADS)

    Clark, D.

    2012-12-01

    Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programs for many types of mineral deposit, including porphyry Cu, intrusive-related gold, volcanic-hosted epithermal Au, IOCG, VMS, and Ni sulfide deposits. However, the magnetic signatures of ore deposits and their associated mineralized systems are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits and systems is rarely successful. Predictive magnetic exploration models are based upon well-established geological models, combined with magnetic property measurements and geological information from well-studied deposits, and guided by magnetic petrological understanding of the processes that create, destroy and modify magnetic minerals in rocks. These models are designed to guide exploration by predicting magnetic signatures that are appropriate to specific geological settings, taking into account factors such as tectonic province; protolith composition; post-formation tilting/faulting/ burial/ exhumation and partial erosion; and metamorphism. Patterns of zoned hydrothermal alteration are important indicators of potentially mineralized systems and, if properly interpreted, can provided vectors to ore. Magnetic signatures associated with these patterns at a range of scales can provide valuable information on prospectivity and can guide drilling, provided they are correctly interpreted in geological terms. This presentation reviews effects of the important types of hydrothermal alteration on magnetic properties within mineralized systems, with particular reference to porphyry copper and IOCG deposits. For example, an unmodified gold-rich porphyry copper system, emplaced into mafic-intermediate volcanic host rocks (such as Bajo de la Alumbrera, Argentina) exhibits an inner potassic zone that is strongly mineralized and magnetite-rich, which is surrounded by an outer

  20. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    USGS Publications Warehouse

    Larson, P.B.; Cunningham, C.G.; Naeser, C.W.

    1994-01-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  1. Isotope geochemistry of hydrothermal alteration in East of Esfahan, Central Iran

    NASA Astrophysics Data System (ADS)

    Taghipour, Sedigheh; Taghipour, Batoul

    2010-05-01

    In the Cenozoic magmatic belt of Central Iran, the Eocene volcanics and pyroclastics from the East of Esfahan underwent extensive hydrothermal alteration. The Eocene volcanics composed mostly of andesite lava and tuffs have been altered. The survey area is laterally zoned from an inner quartz-sericite alteration zone to an outer propylitic zone. Quartz-sericite alteration is predominant (>95%), but smaller zones of alunite-jarosite and silicified zones are present and superimposed onto a quartz-sericite alteration. In the quartz-sericite zone all altered rocks are light grayish to whitish in color and porphyritic with aphanitic groundmass. Concentrations of alunite and jarosite veinlets and stockworks are dispersed irregularly in this zone. Alunite and jarosite occur also as coatings on fractured rocks. All types of alunite occurrences are brick-red, cream, white and buff in colors, while jarosite is brown to rusty in colors. To verify, chemical composition of alunite and jarosite were identified by X-ray diffraction in mineral assemblages. Major alteration zones show inclusions of propylite, quartz sericite, advanced argillic and silicified zones. These alunites are mainly porcelaneous and their compositions show a solid solution between alunite and jarosite. In alteration zones, the mineral assemblage is characterized by alunite-jarosite + quartz + sericite + alkali feldspars + chlorite ± turquoise ± barite ± iron oxides. There are numerous alunite and jarosite occurrences, mainly as veinlets, in parts of the advanced argillic zone. Alunite δ18O and δ D values range from -1.76 to 8.81‰ and from -52.86 to -129.26‰ respectively. Field observations, mineralogical evidence and results from light element stable isotope data (δ18O, δ D and δ34S); indicate that in this area alunitization is supergene in origin.

  2. Geology and hydrothermal alteration at the Madh adh Dhahab epithermal precious-metal deposit, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Doebrich, J.L.; LeAnderson, J.P.

    1984-01-01

    Vein-related alteration consisting of quartz-sericite-pyrite, chloritic, argillic, and silicic halos was superimposed on broad zones of pervasive silicic, potassic, and argillic alteration that surrounds the rhyolite intrusive body. Quartz-sericite-pyrite alteration associated with the earliest stage of mineralization was followed by broad, pervasive, stratigraphically controlled potassic alteration. Subsequent mineralization was accompanied by quartz-sericitepyrite alteration and was followed by the main stage of mineralization that formed strong chloritic alteration halos. Development of broad zones and halos of argillic alteration also may have been related to the main stage of mineralization. Development of silicic halos was characteristic of the late stages of mineralization. Broad, pervasive propylitic alteration was then superimposed on all alteration types and represents cooling and inward encroachment of the hydrothermal system. All alteration, except the early silicic alteration is interpreted to have been related to circulating meteoric fluids heated by the rhyolite.

  3. The use of high resolution ground and airborne magnetic surveys to evaluate the geometry of hydrothermal alteration zones over volcanic provinces (Invited)

    NASA Astrophysics Data System (ADS)

    Bouligand, C.; Glen, J. M.

    2013-12-01

    Geophysical methods can provide critical constraints on the distribution and volume of hydrothermal alteration, important parameters in understanding the evolution of geothermal systems. Because hydrothermal alteration modifies the magnetic properties of the volcanic substratum, magnetic surveys can be used to provide constraints on the distribution of hydrothermal alteration at depth. Using Yellowstone caldera as an example, we show that both ground and airborne magnetic surveys can be used to map and assess the volume of hydrothermal alteration. Ground magnetic surveys over unaltered volcanic terranes display high-amplitude, short-wavelength anomalies, in contrast to smooth, subdued magnetic anomalies over volcanic substrata demagnetized by hydrothermal alteration. We use this contrast to map areas of hydrothermal alteration in detail. Inverse methods applied to high-resolution airborne and ground magnetic data can be used to create three-dimensional models of the distribution of magnetization and thus illuminate the geometry of hydrothermal alteration. Because of the non-uniqueness of potential fields, the construction of inverse models requires simplifying assumptions on the distribution of magnetization, knowledge of induced and remanent magnetization of fresh and altered geological units, and detailed geological and geophysical data. Within the three hydrothermal sites that we investigated in Yellowstone National Park, subdued short-wavelength signal indicates pervasive demagnetization (alteration) of the shallow substratum that extends over larger areas than initially mapped by geology. These data also reveal that the largest degree of demagnetization (alteration) and maximum thicknesses of demagnetized (altered) substratum, reaching a few hundred meters, are associated with hydrothermal vents and with superficial hydrothermal alteration. Our three dimensional models of magnetization provide estimates of the volume of buried hydrothermal alteration ranging

  4. Shallow hydrothermal alteration and permeability changes in pyroclastic deposits: a case study at La Fossa cone (Vulcano island, Italy):

    NASA Astrophysics Data System (ADS)

    Cangemi, Marianna; Madonia, Paolo; Speziale, Sergio; Oliveri, Ygor

    2016-04-01

    La Fossa cone at Vulcano, the southernmost island of the Aeolian volcanic archipelago (Italy), has been characterized by an intense fumarolic activity since its last eruption dated 1888-90. Mineralogical alteration induced by shallow hydrothermal circulation has significantly reduced the permeability of the volcanic products, causing important feedbacks on the circulation of fluids in the shallowest portion of the volcanic edifice. The summit area of the cone is sealed by a quite continuous coating surface, fostering the condensation of hydrothermal fluids inside the volcanic edifice. The combination of fractures and volcano-stratigraphic discontinuities, conveying hydrothermal fluids, makes significant rock volumes prone to slide seaward, as occurred in 1988 during the main unrest experienced by Vulcano island since its last eruption. Similar instability conditions are found over the Forgia Vecchia crater rim area, formed by phreatic activity on the NE flank of the cone, where tensile fracturing and hydrothermal circulation interacts with mutual negative feedbacks. In the behalf of the DPC-INGV V3 Project 2012-15 we investigated the mineralogical composition and the hydraulic conductivity (under saturated conditions) of volcanic deposits potentially prone to hydrothermal fluid circulation, for evaluating their ability in retaining water, creating favourable conditions for gravitational instability. We also measured rainfall rate and volumetric soil moisture content in two automated stations located in different areas, with and without active hydrothermal circulation. We found that hydrothermal alteration transforms volcanic products into clay minerals, significantly reducing permeability of volcanic deposits. Argillified volcanic materials show background water contents, modulated by impulsive increments following rainfalls, higher than unaltered pyroclastic deposits, due to the combination of lower permeability and direct condensation of hydrothermal vapour. The

  5. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada

    NASA Astrophysics Data System (ADS)

    Lamb, A. K.; Calvin, W. M.

    2010-12-01

    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy

  6. An assessment of AVIRIS data for hydrothermal alteration mapping in the Goldfield Mining District, Nevada

    NASA Technical Reports Server (NTRS)

    Carrere, Veronique; Abrams, Michael J.

    1988-01-01

    Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data were acquired over the Goldfield Mining District, Nevada, in September 1987. Goldfield is one of the group of large epithermal precious metal deposits in Tertiary volcanic rocks, associated with silicic volcanism and caldera formation. Hydrothermal alteration consists of silicification along fractures, advanced agrillic and argillic zones further away from veins and more widespread propylitic zones. An evaluation of AVIRIS data quality was performed. Faults in the data, related to engineering problems and a different behavior of the instrument while on-board the U2, were encountered. Consequently, a decision was made to use raw data and correct them only for dark current variations and detector read-out-delays. New software was written to that effect. Atmospheric correction was performed using the flat field correction technique. Analysis of the data was then performed to extract spectral information, mainly concentrating on the 2 to 2.45 micron window, as the alteration minerals of interest have their distinctive spectral reflectance features in this region. Principally kaolinite and alunite spectra were clearly obtained. Mapping of the different minerals and alteration zones was attempted using ratios and clustering techniques. Poor signal-to-noise performance of the instrument and the lack of appropriate software prevented the production of an alteration map of the area. Spectra extracted locally from the AVIRIS data were checked in the field by collecting representative samples of the outcrops.

  7. Reactive transport modeling of hydrothermal circulation in oceanic crust: effect of anhydrite precipitation on the dynamics of submarine hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Yang, J.

    2009-12-01

    Hydrothermal fluid circulation represents an extremely efficient mechanism for the exchange of heat and matter between seawater and oceanic crust. Precipitation and dissolution of minerals associated with hydrothermal flow at ridge axes can alter the crustal porosity and permeability and hence influence the dynamics of hydrothermal systems. In this study, a fully coupled fluid flow, heat transfer and reactive mass transport model was developed using TOUGHREACT to evaluate the role of mineral precipitation and dissolution on the evolution of hydrothermal flow systems, with a particular attention focused on anhydrite precipitation upon heating of seawater in recharge zones and the resultant change in the crustal porosity and permeability. A series of numerical case studies were carried out to assess the effect of temperature and aqueous phase inflow concentrations on the reactive geochemical system. The impact of chemically induced porosity and permeability changes on the dynamics of hydrothermal systems was also addressed.

  8. Mineral-chemical studies of metamorphosed hydrothermal alteration in the Kristineberg volcanogenic massive sulfide district, Sweden

    NASA Astrophysics Data System (ADS)

    Hannington, Mark D.; Kjarsgaard, Ingrid M.; Galley, Alan G.; Taylor, Bruce

    2003-06-01

    The massive sulfide deposits of the Kristineberg area, Sweden, occur within a 2- to 3-km-thick succession of felsic volcaniclastic rocks belonging to the Skellefte Group. The volcanic pile is intruded by a synvolcanic Jorn-type granitoid (Viterliden intrusive complex) and is overlain by a thick sequence of metasedimentary rocks (Vargfors Group). Mineralization occurs at two main stratigraphic levels, at the base of the felsic volcanic succession and at the contact with the metasedimentary rocks of the Vargfors Group. The Kristineberg Cu-Zn mine is the largest deposit (approximately 21 Mt) and occurs at the base of the volcanic pile, close to the contact with the Viterliden intrusive complex. Four smaller deposits (Ravliden, Ravlidmyran, Horntrask and Nyliden) occur along the upper ore horizon. These deposits are thought to be related to a late intrusive phase of the Viterliden complex which cuts the altered volcanic rocks at the Kristineberg deposit. Within an area of about 50 km2 surrounding the Kristineberg deposit, felsic volcanic rocks between the two ore horizons are affected by extensive albite-destructive alteration (sodium depletion) and development of chlorite and muscovite (strong co-enrichment in magnesium and potassium). The Kristineberg deposit is enveloped by a large and partly transposed quartz-chlorite alteration zone, approximately 2 km in diameter, and a distal but coherent pyrite-quartz-muscovite alteration zone extending as far as 4 km from the deposit. Chlorite(±talc) in the mine area is notably magnesium-rich and contains anomalous F, Ba, Zn and Mn. High fluorine is also present in coexisting muscovite and phlogopite. The magnesium-rich chlorite alteration contrasts sharply with the iron enrichment observed in many other felsic, volcanic-hosted Precambrian massive sulfide deposits. This may indicate fixation of iron by large amounts of pyrite in the section or entrainment of large amounts of seawater in the hydrothermal upflow zones. Kyanite

  9. Hydrothermal alteration in the EPF replacement wells, Olkaria Geothermal field, Kenya

    SciTech Connect

    Mungania, J.

    1996-12-31

    Olkaria Geothermal area is located in the central sector of the Kenya, Rift Valley. A 45MW Geothermal power station has been operational at Olkaria since 1985 supplied by 22 of the 26 wells drilled in the Eastern production field (EPF). Between 1988 and 1993, eight more wells referred to as {open_quote}replacement wells{close_quote} were drilled in the same field to boost steam supply to the station. Petrographic analyses of the drill cuttings is usually done to determine detail stratigraphy of the field, extends of hydrothermal activity, subsurface structures and other parameters which may influence production potential of a well. Analyses of the drill cuttings from the EPF wells show that: Variations in the whole rock alteration intensities correlate with differences in rocktypes. Permeable horizons, especially the productive feeder zones are well marked by enhanced hydrothermal minerals depositions, mainly quartz, calcite, pyrite and epidote. Other aspects of state of reservoir like boiling are signified by presence of bladed calcite.

  10. Structure, hydrothermal alteration and composition of the Rubiales Pb-Zn orebody (Lugo, Spain): Genetic model

    NASA Astrophysics Data System (ADS)

    Arias, D.; Suárez, O.; Corretgé, L. G.; Fernández-Jardón, L.; Pérez-Cerdán, F.

    1991-07-01

    The Rubiales Pb-Zn ore deposit, northwestern Spain, is situated in the Westasturian-Leonese zone, according to the division of the Hercynian Chain in the Iberian Peninsula (Julivert et al. 1972). The orebody is placed in a subvertical shear zone developed at the eastern limb of the Baralla syncline, within the middle and upper members of the lower Cambrian Transition Series. The deposit is a vertical lenticular mass with a N30°W direction. Its length is about 1200 m in a N-S direction by 600 m wide and has an average thickness of 30 m. Its mineralogy is simple: 99% of the sulphides consist of sphalerite and galena with a ratio of 7 to 1. The remaining 1% is mainly formed by pyrite and chalcopyrite with pyrrhotite traces. The deposit shows a large aureole of hydrothermal alteration which is the result of three consecutive processes: (1) sericitization of slates and ankeritization of limestones; (2) silicification of ankeritic rocks; and (3) chloritization of the lower part of the deposit. Since the deposit was discovered in 1967 there has been controversy concerning its origin. Two hypotheses have been considered so far: (1) a sedex model formation (Gilissen 1977; Vazquez 1987); and (2) a hydrothermal origin in a shear zone during the Hercynian Orogeny (Merayo et al. 1984; Arias 1988). The data herein presented support the second hypothesis.

  11. Hydrothermal alteration maps of the central and southern Basin and Range province of the United States compiled from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    USGS Publications Warehouse

    Mars, John L.

    2013-01-01

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operator algorithms were used to map hydrothermally altered rocks in the central and southern parts of the Basin and Range province of the United States. The hydrothermally altered rocks mapped in this study include (1) hydrothermal silica-rich rocks (hydrous quartz, chalcedony, opal, and amorphous silica), (2) propylitic rocks (calcite-dolomite and epidote-chlorite mapped as separate mineral groups), (3) argillic rocks (alunite-pyrophyllite-kaolinite), and (4) phyllic rocks (sericite-muscovite). A series of hydrothermal alteration maps, which identify the potential locations of hydrothermal silica-rich, propylitic, argillic, and phyllic rocks on Landsat Thematic Mapper (TM) band 7 orthorectified images, and geographic information systems shape files of hydrothermal alteration units are provided in this study.

  12. Hydrothermal Alteration in Submarine Basaltic Rocks from the Reykjanes Geothermal Field, Iceland. (Invited)

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Schiffman, P.; Fowler, A. P.; Marks, N.; Fridleifsson, G.; Elders, W. A.

    2013-12-01

    The Iceland Deep Drilling Project (IDDP) is preparing to drill to 4-5 km in the Reykjanes Geothermal Field to sample geothermal fluids at supercritical temperature and pressure for power generation. The Reykjanes geothermal field is the on-land extension of the Reykjanes Ridge spreading center. The upper 1-2 kilometers drilled at Reykjanes are submarine basalts and basaltic sediments, hyalloclastites, and breccias, with an increasing proportion of basaltic intrusive rocks below 2 km depth. Geothermal fluids are evolved seawater with a composition similar to mid-ocean ridge hydrothermal systems. Zn- and Cu-rich sulfide scale, locally enriched in Au and Ag, are deposited in production pipes. The sulfide deposits are compositionally and isotopically similar to seafloor massive sulfides. In anticipation of deeper drilling, we have investigated the mineralogy and geochemistry of drill cuttings from a 3 km deep well (RN-17). The depth zoning of alteration minerals is similar to that described from other Icelandic geothermal fields, and is comparable to observed seafloor metamorphic gradients in ODP drill holes and ophiolites. Chlorite-epidote alteration occurs at depths >400 m and passes downhole through epidote-actinolite alteration and into amphibole facies (hornblende-calcic plagioclase) alteration below 2.5 km. Local zones of high temperature (>800°C), granoblastic-textured, pyroxene hornfels, are interpreted to form by contact metamorphism during dike/sill emplacement. Similar granoblasically altered basalts were recovered from the base of the sheeted dikes in IODP Hole 1256D. Downhole compositional variations of drill cuttings, collected every 50 m, suggest that rocks below ~ 2 km are little altered. Whole-rock oxygen isotope profiles are consistent with low water/rock ratios, but suggest that early stages of hydrothermal alteration included meteoric water-derived fluids. Strontium isotope profiles indicate more extensive exchange with seawater-derived fluids

  13. Water making hot rocks soft: How hydrothermal alteration affects volcano stability

    NASA Astrophysics Data System (ADS)

    Ball, J. L.

    2015-12-01

    My research involves using numerical models of groundwater flow and slope stability to determine how long-term hydrothermal alteration in stratovolcanoes can cause increases in pore fluid pressure that lead to edifice collapse. Or in simpler terms: We can use computers to figure out how and why water that moves through hot rocks changes them into softer rocks that want to fall down. It's important to pay attention to the soft rocks even if they look safe because this can happen a long time after the stuff that makes them hot goes away or becomes cool. Wet soft rocks can go very far from high places and run over people in their way. I want show where the soft wet rocks are and how they might fall down so people will be safer.

  14. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    PubMed

    Chakraborty, Parthasarathi; Sander, Sylvia G; Jayachandran, Saranya; Nath, B Nagender; Nagaraju, G; Chennuri, Kartheek; Vudamala, Krushna; Lathika, N; Mascarenhas-Pereira, Maria Brenda L

    2014-11-01

    The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining.

  15. Transient Hydrothermal Alteration in Fault Zones Cutting the Lower Oceanic Crust, Hess Deep Rift

    NASA Astrophysics Data System (ADS)

    McCaig, Andrew; Titarenko, Sofya; Cliff, Robert; Ivan, Savov; Adrian, Boyce

    2015-04-01

    IODP Expedition 345 drilled the first holes in the lower plutonic crust at a fast-spreading ridge, recovering primitive layered gabbros [1]. Alteration occurred as: 1) a largely static pseudomorphic alteration, predominantly in the greenschist and sub-greenschist facies with mainly talc and serpentine replacing olivine, and prehnite replacing plagioclase. Talc sometimes overprints serpentine mesh texture. 2) an overprinting metasomatic alteration, spatially related to cataclastic fault zones and macroscopic veins, dominated by prehnite and chlorite. Secondary clinopyroxene and epidote locally overprint the prehnite-chlorite assemblage, but the last events are veins of prehnite and zeolite. Metamorphosed dykes show chilled margins within the cataclasites, and are themselves affected by cataclastic deformation. Faults, dykes and overprinting alteration are all inferred to be related to the westward propagation of Cocos-Nazca spreading forming Hess Deep. 87Sr/86Sr ratios of small whole rock samples of cataclasites and dyke rocks are in the range 0.7037 - 0.7048, indicating alteration by seawater at moderate integrated fluxes. The highest values were in cataclasites overprinted by prehnite. Sampling of individual minerals has been undertaken using a microscope mounted drill, and shows that alteration is mainly affecting secondary minerals, with late prehnite veins ranging up to Sr isotope ratios of 0.7054. δ18O values range from +1 to + 6 per mil. Combined with metamorphic data this indicates alteration at temperatures between 200 and 400 °C. Secondary clinopyroxene and talc replacing serpentine are interpreted to indicate transient prograde hydrothermal events. Preliminary modelling using Comsol Multiphysics suggests that the temperatures of the overprinting alteration, as well as transient prograde events, could be achieved in a permeable fault slot cutting through crust 0.5 to 1 m.y. old. The prehnite-chlorite assemblage is predicted to be important in off

  16. Transient Hydrothermal Alteration In Fault Zones Cutting The Lower Oceanic Crust, Hess Deep Rift

    NASA Astrophysics Data System (ADS)

    McCaig, A. M.; Titarenko, S.; Cliff, R. A.; Savov, I. P.; Boyce, A.; Dutt, R.

    2014-12-01

    IODP Expedition 345 drilled the first holes in the lower plutonic crust at a fast-spreading ridge, recovering primitive layered gabbros [1]. Alteration occurred as: 1) a largely static pseudomorphic alteration, predominantly in the greenschist and sub-greenschist facies with mainly talc and serpentine replacing olivine, and prehnite replacing plagioclase. Talc sometimes overprints serpentine mesh texture. 2) an overprinting metasomatic alteration, spatially related to cataclastic fault zones and macroscopic veins, dominated by prehnite and chlorite. Secondary clinopyroxene and epidote locally overprint the prehnite-chlorite assemblage, but the last events are veins of prehnite and zeolite. Metamorphosed dykes show chilled margins within the cataclasites, and are themselves affected by cataclastic deformation. Faults, dykes and overprinting alteration are inferred to be related to the westward propagation of Cocos-Nazca spreading forming Hess Deep. 87Sr/86Sr ratios of small whole rock samples of cataclasites and dyke rocks are in the range 0.7037 - 0.7048, indicating alteration by seawater at moderate integrated fluxes. The highest values were in cataclasites overprinted by prehnite. Sampling of individual minerals has been undertaken using a microscope mounted drill, and shows that alteration is mainly affecting secondary minerals, with late prehnite veins ranging up to 0.7054. δ18O values range from +1 to + 6 per mil. Combined with metamorphic data this indicates alteration at temperatures between 200 and 400 °C. Secondary clinopyroxene and talc replacing serpentine are interpreted to indicate transient prograde hydrothermal events. Preliminary modelling using Comsol Multiphysics suggests that the temperatures of the overprinting alteration, as well as transient prograde events, could be achieved in a permeable fault slot cutting through crust 0.5 to 1 m.y. old. The prehnite-chlorite assemblage is predicted to be important in off-axis alteration, common in any

  17. The mechanism of the hydrothermal alteration of cerium- and plutonium-doped zirconolite

    NASA Astrophysics Data System (ADS)

    Pöml, P.; Geisler, T.; Cobos-Sabaté, J.; Wiss, T.; Raison, P. E.; Schmid-Beurmann, P.; Deschanels, X.; Jégou, C.; Heimink, J.; Putnis, A.

    2011-03-01

    A comprehensive study on the aqueous stability of Ce- and Pu-doped zirconolite has been performed. Four series of hydrothermal experiments were carried out with Ce-doped zirconolite powders: (1) a solution series (1 M HCl, 2 M NaCl, 1 M NaOH, 1 M NH 3, pure H 2O), (2) a temperature series ( T = 100-300 °C), (3) a surface area-to-fluid volume ratio series, and (4) a series using different reactor materials (Teflon ©, Ni, and Ag). In addition, experiments on 238Pu- and 239Pu-doped zirconolite ceramics in a 1 M HCl solution have been performed. The 238Pu-doped zirconolite had already accumulated significant radiation damage and was X-ray amorphous, while the 239Pu-doped zirconolite was still well-crystalline. The results of the different experimental series can be summarized as follows: (1) After 14 days the degree of alteration is insignificant for all solutions other than 1 M HCl, which was therefore used for all other experimental series; (2) TiO 2 and m-ZrO 2 replaced the zirconolite grains to varying degrees in the 1 M HCl solution, i.e., zirconolite dissolution is incongruent; (3) the degree of alteration increases only slightly with increasing temperature; (4) the alteration rate is independent on the surface to volume ratio; (5) Ag dissolved from the silver reactors dramatically increases the reaction rate, while Ni from the Ni reactors reduces the solubility of Ti and Zr in the HCl solution, indicating that background electrolytes have a strong effect on the alteration rate. From the experiment with the Pu-doped samples at 200 °C in a 1 M HCl solution it was found that the amorphous 238Pu-doped zirconolite was altered to a significantly greater extent than the crystalline counterparts. The results suggest a coupled dissolution-reprecipitation mechanism, which is discussed in detail.

  18. Hydrothermal, deuteric and acidic basalt alteration at the Skouriotissa Mine, Cyprus: relevance for Mars.

    NASA Astrophysics Data System (ADS)

    Bost, N.; Westall, F.; Ramboz, C.; Fontaine, C.; Meunier, A.; Foucher, F.

    2012-04-01

    Basalts are the prevalent rock type on Mars and the products of aqueously altered basalts and hydrated minerals associated with basalts are of particular interest as possible tracers of a past, slightly more clement climate on the planet and/or magmatic processes [1,2]. Study of alteration processes of basalts on Earth that show some similarities to surface and subsurface processes occurring on Mars will help understand and interpret martian features. The Skouriotissa mine in Cyprus is an open pit copper mine (consisting of a very massive sulphide deposit, VMS) exposing the upper pillow basalt formation in the Troodos ophiolitic zone. The basalt has been altered by (1) hydrothermal and deuteritic processes and (2) acidic water (pH <5) associated with the mining working. We have analysed the mineralogical evolution of the basalt through different alteration facies (phyllosilicates, including Mg-smectite, vermiculite, nontronite, and zeolites), depending on the type of alteration. Similar mineralogical associations have been described on Noachian/early Hesperian Mars (e.g. [1,2.3]) and may have been formed by the same kinds of processes. These suites of rocks form part of the collection of Mars analogue rocks that is being prepared at the CNRS/Observatoire des Sciences de l'Univers en région Centre (OSUC) in Orléans to help calibrate present and future flight instruments (e.g. MSL, the international Mars- 2018 in situ mission). This collection is named International Space Analogue Rockstore (ISAR) and the relevant information is contained in the website: http://www.isar.cnars-orleans.fr [4,5]. [1] Bibring et al., 2006, Science 312; [2] Ehlmann et al., 2011, Nature 479; [3] Meunier et al., in prep. ; [4] Bost N. et al., in review (Icarus).[5] Bost N. et al., This Conference, abstract 1403.

  19. Laboratory simulated hydrothermal alteration of sedimentary organic matter from Guaymas Basin, Gulf of California. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leif, Roald N.

    1993-01-01

    High temperature alteration of sedimentary organic matter associated with marine hydrothermal systems involves complex physical and chemical processes that are not easily measured in most natural systems. Many of these processes can be evaluated indirectly by examining the geochemistry of the hydrothermal system in the laboratory. In this investigation, an experimental organic geochemical approach to studying pyrolysis of sedimentary organic matter is applied to the hydrothermal system in the Guaymas Basin, Gulf of California. A general survey of hydrothermal oils and extractable organic matter (bitumen) in hydrothermally altered sediments identified several homologous series of alkanones associated with a high temperature hydrothermal origin. The alkanones range in carbon number from C11 to C30 with no carbon number preference. Alkan-2-ones are in highest concentrations, with lower amounts of 3-, 4-, 5- (and higher) homologs. The alkanones appear to be pyrolysis products synthesized under extreme hydrothermal conditions. Hydrous pyrolysis and confinement pyrolysis experiments were performed to simulate thermally enhanced diagenetic and catagenetic changes in the immature sedimentary organic matter. The extent of alteration was measured by monitoring the n-alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic aromatic hydrocarbons and alkanones. The results were compared to bitumen extracts from sediments which have been naturally altered by a sill intrusion and accompanied hydrothermal fluid flow. These pyrolysis experiments duplicated many of the organic matter transformations observed in the natural system. Full hopane and sterane maturation occurred after 48 hr in experiments at 330 deg C with low water/rock mass ratios (0.29). A variety of radical and ionic reactions are responsible for the organic compound conversions which occur under extreme hydrothermal conditions. Short duration pyrolysis experiments revealed that a portion of the

  20. First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Melchert, B.; Devey, C. W.; German, C. R.; Lackschewitz, K. S.; Seifert, R.; Walter, M.; Mertens, C.; Yoerger, D. R.; Baker, E. T.; Paulick, H.; Nakamura, K.

    2008-10-01

    During segment-scale studies of the southern Mid-Atlantic Ridge (MAR), 7-12° S, we found evidence in the water column for high-temperature hydrothermal activity, off-axis, east of Ascension Island. Extensive water column and seafloor work using both standard CTD and deep submergence AUV and ROV deployments led to the discovery and sampling of the "Drachenschlund" ("Dragon Throat") black smoker vent at 8°17.87' S/13°30.45' W in 2915 m water depth. The vent is flanked by several inactive chimney structures in a field we have named "Nibelungen". The site is located 6 km south of a non-transform offset between two adjacent 2nd-order ridge-segments and 9 km east of the presently-active, northward-propagating A2 ridge-segment, on a prominent outward-facing fault scarp. Both vent-fluid compositions and host-rock analyses show this site to be an ultramafic-hosted system, the first of its kind to be found on the southern MAR. The thermal output of this single vent, based on plume rise-height information, is estimated to be 60 ± 15 MW. This value is high for a single "black smoker" vent but small for an entire field. The tectonic setting and low He content of the vent fluids imply that high-temperature off-axis venting at "Drachenschlund" is driven not by magmatic processes, as at the majority of on-axis hydrothermal systems, but by residual heat "mined" from the deeper lithosphere. Whether this heat is being extracted from high-temperature mantle peridotites or deep crustal cumulates formed at the "duelling" non-transfrom offset is unclear, in either case the Drachenschlund vent provides the first direct observations of how cooling of deeper parts of the lithosphere, at least at slow-spreading ridges, may be occurring.

  1. Hydrothermal alteration and magnetic properties of rocks in the Carolina de Michilla stratabound copper district, northern Chile

    NASA Astrophysics Data System (ADS)

    Townley, Brian; Roperch, Pierrick; Oliveros, Verónica; Tassara, Andres; Arriagada, César

    2007-10-01

    In the Carolina de Michilla district, northern Chile, stratabound copper mineralization is hosted by Jurassic volcanic rocks along the trace of the Atacama fault system. In this study, we present the overall effects of hydrothermal alteration on the magnetic properties of rocks in this district. Two types of metasomatic alteration associations occur, one of regional extent and the other of local hydrothermal alteration associated with copper mineralization (e.g., Lince Estefanía Susana). Regional alteration is interpreted as a low-grade “propylitic association” characterized by an epidote chlorite smectite titanite albite quartz calcite association. The local hydrothermal alteration is characterized broadly by a quartz albite epidote chlorite calcite mineral assemblage. The most pervasive alteration mineral is albite, followed by epidote and, locally, actinolite. These minerals contrast sharply against host rock minerals such as chlorite, calcite, zeolite, prehnite, and pumpellyite, but alteration is constrained to mineralized bodies as narrow and low contrast alteration halos that go outwards from actinolite albite to epidote albite, to epidote chlorite, and finally to chlorite. Hydrothermal alteration minerals, compared to regional alteration minerals, show iron-rich epidotes, a lower chlorite content of the chlorite smectite series, and a nearly total albite replacement of plagioclase in the mineralized zones. Opaque minerals associated with regional alteration are magnetite and maghemite, and those associated to hydrothermal alteration are magnetite, hematite, and copper sulphides. We present paleomagnetic results from nine sites in the Michilla district and from drill cores from two mines. Local effects of hydrothermal alteration on the original magnetic mineralogy indicate similar characteristics and mineralogy, except for an increase of hematite that is spatially associated with the Cu sulphide breccias with low magnetic susceptibilities. Results

  2. An unusual spectral unit in West Candor Chasma: Evidence for hydrothermal or aqueous alteration?

    NASA Astrophysics Data System (ADS)

    Geissler, P. E.; Singer, R. B.

    1993-09-01

    A spectrally distinctive unit on the floor of W. Candor Chasma (6 S, 76 W) in the central Valles Marineris may be a likely candidate for hydrothermal or aqueous alteration. This unusual material is noticeably redder than nearby plains and canyon floor-covering deposits of similar brightness in several Viking Orbiter color composite images calibrated using PICS Level I procedures. The surrounding plains and canyon floor units have colors that are typical for much of the weathered soil on Mars. Relative to adjacent materials, the West Candor unit has lower green-filter reflectance and higher red-filter reflectance. While subtle, these spectral characteristics were observed for this unit in a number of multi-spectral images acquired at different seasons and phase angles. When the color image data are transformed to hue, saturation, and value coordinates, the West Candor material stands out prominently among the rocks and soils of Coprates Quadrangle as a spatially coherent unit with a unique hue. Physically, this means that the unit is compositionally distinct (unlike most of the bright materials in the region), since its spectral reflectance cannot be obtained through simple multiplicative scaling of the reflectance of the surrounding bright materials or by altering the spectral reflectance of the surrounding materials with an additive constant that is independent of wavelength. Recent studies of the directional reflectance properties of the surface in this region indicate that the photometric phase function of the unit is similar to that of surrounding bright materials (isotropic to slightly back scattering).

  3. A Hydrothermally Altered, Mn-incrusted Marine Sediment as an Analogue for Martian Deposits?

    NASA Astrophysics Data System (ADS)

    Gross, C.; Bishop, J. L.; Maturilli, A.; D'Amore, M.; Helbert, J.

    2015-12-01

    The investigated sample was dredged in the Kahouanne basin during the research cruise SO-154 (RV Sonne) in the Lesser Antilles Island Arc between the islands of Guadeloupe and Montserrat (Halbach et al., 2002). The Kahouanne basin represents the southern extension of the large Kallinago intra-arc basin and has a length of approximately 40 km and a width of 15 km. The western margin of the basin is dominated by the Shoe-Rock-Spur fault zone. Previous research cruises found indications for low-temperature hydrothermal fluid-flow along the fault zone (Polyak et al., 1992). The sample 18CD is a sediment with grain- sizes of 0.25-0.63 mm, cemented by a Nontronite-Manganese matrix, partly displaying layer-like texture. The groundmass is composed of feldspar, pyroxenes, glass- and rhyodacitic fragments, as well as pelagic carbonates in clasts of different size. Often, ignimbritic textures are visible, pointing to volcanic ejection products. A detailed analysis was carried out on the sample 18CD, starting with the preparation of thin-sections, followed by XRD, XRF, ICP-OES, AAS, SEM (EDX-ZAF). In addition, we analyzed the sample with bi-directional reflectance and emission measurements conducted in the Planetary Emissivity Laboratory (PEL) at the German Aerospace Center (DLR), as well as visible/near-infrared reflectance using an ASD spectrometer at the SETI Institute. The results of the spectroscopic measurements show striking similarities to Martian nontronites, detected by orbiting instruments. Furthermore, the in-depth analyses of the hydrothermally altered sediment reveals reasonable processes and products for past and present Mars. References: Halbach et al., 2002. InterRidgeNews 11(1), 18-22; Polyak et al., 1992. J. Volcanol. Geotherm. Res., 54, 81-105.

  4. Geochemical results of a hydrothermally altered area at Baker Creek, Blaine County, Idaho

    USGS Publications Warehouse

    Erdman, James A.; Moye, Falma J.; Theobald, Paul K.; McCafferty, Anne E.; Larsen, Richard K.

    2001-01-01

    fault-controlled silicified breccia that is most likely the source of anomalous silver and molybdenum levels identified in the soils; silver, molybdenum, and manganese in stream sediments; thallium in Douglas-fir; bismuth and silver in concentrates; and gold, silver, arsenic, antimony, and molybdenum and lead in aquatic mosses. An interpretation of regional aeromagnetic data delineated the subsurface extent of shallow, steeply dipping magnetic sources inferred to be shallower parts of an Eocene batholith thought to underlie much of the Baker Creek area. The Eocene intrusive event(s) may have served as the heat source(s) that caused the hydrothermal alteration. Examination of core from a 1,530-ft-deep (466 m) hole drilled in 1982 confirmed a bedrock source for the anomalous silver and base-metal suite at the quartz stockwork location, and indicated subeconomic levels of molybdenum.

  5. Mapping hydrothermally altered rocks on Mount Rainier, Washington, with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data

    USGS Publications Warehouse

    Crowley, J.K.; Zimbelman, D.R.

    1997-01-01

    Mount Rainier has produced numerous Holocene debris flows, the largest of which contain clays and other minerals derived from hydrothermally altered rocks on the volcano's edifice. Imagery from an advanced airborne sensor was used to map altered rocks at Mount Rainier and demonstrates their distinctly nonuniform distribution. The mapping of altered rocks helps to identify edifice failure surfaces and to recognize the source areas for the largest debris flow events. Remote sensing methods like those used at Mount Rainier can enhance ground-based mapping efforts and should prove useful for rapidly identifying hazardous sectors at other volcanoes.

  6. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    SciTech Connect

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  7. Geothermometry, geochronology, and mass transfer associated with hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy

    USGS Publications Warehouse

    Altaner, S.P.; Ylagan, R.F.; Savin, S.M.; Aronson, J.L.; Belkin, H.E.; Pozzuoli, A.

    2003-01-01

    A rhyolitic hyaloclastite from Ponza Island, Italy, was hydrothermally altered, producing four distinct alteration zones based on X-ray diffraction mineralogy and field textures: (1) nonpervasive argillic zone; (2) propylitic zone; (3) silicic zone; and (4) sericitic zone. The unaltered hyaloclastite is volcanic breccia with clasts of vesiculated obsidian in a matrix of predominantly pumice lapilli. Incomplete alteration of the hyaloclastite resulted in the nonpervasive argillic zone, characterized by smectite and disordered opal-CT. The other three zones exhibit more complete alteration of the hyaloclastite. The propylitic zone is characterized by mixed-layer illite-smectite (I-S) with 10 to 85% I, mordenite, opal-C, and authigenic K-feldspar (akspar). The silicic zone is characterized by I-S with ???90% I, pure illite, quartz, akspar, and occasional albite. The sericitic zone consists primarily of I-S with ???66% I, pure illite, quartz, and minor akspar and pyrite. K/Ar dates of I-S indicate hydrothermal alteration occurred at 3.38 ?? 0.08 Ma. Oxygen isotope compositions of I-S systematically decrease from zones 1 to 4. In the argillic zone, smectite has ??18 O values of 21.7 to 22.0??? and I-S from the propylitic, silicic, and sericitic zones ranges from 14.5 to 16.3???, 12.5 to 14.0???, and 8.6 to 11.9???, respectively. ??18 O values for quartz from the silicic and sericitic zones range from 12.6 to 15.9???. By use of isotope fractionation equations and data from authigenic quartz-hosted primary fluid inclusions, alteration temperatures ranged from 50 to 65 ??C for the argillic zone, 85 to 125 ??C for the propylitic zone, 110 to 210 ??C for the silicic zone, and 145 to 225 ??C for the sericitic zone. Fluid inclusion data and calculated ??18 O water values indicate that hydrothermal fluids were seawater dominated. Mass-transfer calculations indicate that hydrothermal alteration proceeded in a relatively open chemical system and alteration in the sericitic zone

  8. The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles

    NASA Astrophysics Data System (ADS)

    Chavrit, Déborah; Burgess, Ray; Sumino, Hirochika; Teagle, Damon A. H.; Droop, Giles; Shimizu, Aya; Ballentine, Chris J.

    2016-06-01

    Recent studies suggest that seawater-derived noble gases and halogens are recycled into the deep mantle by the subduction of oceanic crust. To understand the processes controlling the availability of halogens and noble gases for subduction, we determined the noble gas elemental and isotopic ratios and halogen (Cl, Br, I) concentrations in 28 igneous samples from the altered oceanic crust (AOC) from 5 ODP sites in the Eastern and Western Pacific Ocean. Crushing followed by heating experiments enabled determination of noble gases and halogens in fluid inclusions and mineral phases respectively. Except for He and Ar, Ne, Kr and Xe isotopic ratios were all air-like suggesting that primary MORB signatures have been completely overprinted by air and/or seawater interaction. In contrast, 3He/4He ratios obtained by crushing indicate that a mantle helium component is still preserved, and 40Ar/36Ar values are affected by radiogenic decay in the mineral phases. The 130Xe/36Ar and 84Kr/36Ar ratios are respectively up to 15 times and 5 times higher than those of seawater and the highest ratios are found in samples affected by low temperature alteration (shallower than 800-900 m sub-basement). We consider three possible processes: (i) adsorption onto the clays present in the samples; (ii) fluid inclusions with a marine pore fluid composition; and (iii) fractionation of seawater through phase separation caused by boiling. Ninety percent of the Cl, Br and I were released during the heating experiments, showing that halogens are dominantly held in mineral phases prior to subduction. I/Cl ratios vary by 4 orders of magnitude, from 3 × 10-6 to 2 × 10-2. The mean Br/Cl ratio is 30% lower than in MORB and seawater. I/Cl ratios lower than MORB values are attributed to Cl-rich amphibole formation caused by hydrothermal alteration at depths greater than 800-900 m sub-basement together with different extents of I loss during low and high temperature alteration. At shallower depths, I

  9. Hydrogen and oxygen isotope constraints on hydrothermal alteration of the Trinity peridotite, Klamath Mountains, California

    USGS Publications Warehouse

    Liakhovitch, V.; Quick, J.E.; Gregory, R.T.

    2005-01-01

    The Trinity peridotite represents a rare opportunity to examine a relatively fertile plagioclase peridotite that was exhumed and later subjected to intrusive events in a seafloor environment, followed by its emplacement and incorporation into a continent. Over 250 stable isotopic determinations on whole rocks and minerals elucidate the hydrothermal evolution of the Trinity complex. All three serpentine polymorphs are present in the Trinity peridotite; these separate on the basis of their ??D values: antigorite, -46 < ??D < -82??? and lizardite and chrysotile, -90 < ??D < -106 and -110 < ??D < -136???, respectively. Antigorite coexists with chlorite, talc, and tremolite in contact aureole assemblages associated with Silurian/Devonian gabbroic plutons. Lizardite and chrysotile alteration carries a meteoric signature, which suggests association with post-emplacement serpentinization, or overprinting of earlier low-temperature seafloor serpentinization. Regionally, contours of ??D values exhibit bull's-eye patterns associated with the gabbroic plutons, with ??D maxima coinciding with the blackwall alteration at the margins on the plutons. In contrast to the hydrogen isotope behavior, oxygen isotope values of the three polymorphs are indistinguishable, spanning the range 5.3 < ??18O< 7.5, and suggesting low integrated fluid fluxes and strongly 18O-shifted fluids. Inferred primary ?? 18O values for peridotite, gabbro, and late Mesozoic granodiorite indicate a progressive 18O enrichment with time for the source regions of the rocks. These isotopic signatures are consistent with the geology, petrochemistry, and geochronology of the Trinity massif, which indicate the following history: (1) lithospheric emplacement and cooling of the peridotite in an oceanic environment ??? 472 Ma; (2) intrusion of gabbroic plutons into cold peridotite in an arc environment between 435 and 404 Ma; and finally (3) intrusion of felsic plutons between 171 and 127 Ma, long after the peridotite

  10. Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa trough: Mineralogy, geochemistry and isotope characteristics

    NASA Astrophysics Data System (ADS)

    Marumo, Katsumi; Hattori, Kéiko H.

    1999-09-01

    Seafloor hydrothermal activity at Jade has resulted in extensive alteration of the host epiclastic sediments and pumiceous tuffs, forming mica, kaolins (kaolinite and halloysite), Mg-rich chlorite, talc, montmorillonite, and a mixed-layer mineral of dioctahedral chlorite and montmorillonite (Chl/Mont). Clay mineral assemblages show a vertical variation, which reflects variable amounts of cold seawater incorporated into hot hydrothermal fluids in subsurface sediments and tuff. However, mixing alone cannot explain the occurrence of abundant kaolin minerals at Jade. The formation of kaolin minerals requires much more acidic fluid than expected from simple mixing of hydrothermal fluids and cold seawater. Low pH values are likely attained by oxidation of H 2S either dissolved in the hydrothermal fluid or released from the fluid during decompression. The fluid reaching the seafloor is discharged into cold seawater, which caused precipitation of sulfides close to vents and native sulfur and barite at the margins of the vent areas. Halloysite, barite and anhydrite show Sr isotope compositions similar to marine Sr, indicating the derivation of marine Sr directly from seawater or by the dissolution of calcareous nannoplanktons. The isotopic compositions of kaolinite (δ 18O = +7.4‰, δD = -23‰), Chl/Mont (δ 18O = +7.0‰, δD = -32‰), and mica (δ 18O = +5.4 to +9.9‰, δD = -30 to -26‰) suggest fluids of a heated seawater origin. The O isotopic data yielded formation temperatures of 170°C for kaolinite, 61 to 110°C for halloysite, and 145 to 238°C for mica. Barite δ 34S values (+21.0 to +22.5‰) are very similar to the marine sulfate value, confirming that the barite formation took place due to mixing of Ba-bearing hydrothermal fluids and sulfate-rich seawater. Native sulfur shows a large variation in δ 34S in one hand specimen probably because of rapid disequilibrium precipitation of S during fluid exhalation on the seafloor. Sulfur in hydrothermal fluids

  11. Behavior of nuclear waste elements during hydrothermal alteration of glassy rhyolite in an active geothermal system: Yellowstone National Park, Wyoming

    SciTech Connect

    Sturchio, N.C.; Seitz, M.G.

    1984-12-31

    The behavior of a group of nuclear waste elements (U, Th, Sr, Zr, Sb, Cs, Ba, and Sm) during hydrothermal alteration of glassy rhyolite is investigated through detailed geochemical analyses of whole rocks, glass and mineral separates, and thermal waters. Significant mobility of U, Sr, Sb, Cs, and Ba is found, and the role of sorption processes in their observed behavior is identified. Th, Zr, and Sm are relatively immobile, except on a microscopic scale. 9 references, 2 figures, 2 tables.

  12. Hydrothermal alteration of surficial rocks at Solfatara (Campi Flegrei): Petrophysical properties and implications for phreatic eruption processes

    NASA Astrophysics Data System (ADS)

    Mayer, Klaus; Scheu, Bettina; Montanaro, Cristian; Yilmaz, Tim I.; Isaia, Roberto; Aßbichler, Donjá; Dingwell, Donald B.

    2016-06-01

    Solfatara crater is located within the Campi Flegrei caldera to the west of Naples (Italy). It is one of the largest fumarolic manifestations known, and the rocks hosting the hydrothermal system are affected by intense hydrothermal alteration. Alteration can result in changes of degassing behavior, and in the formation of a cap rock thereby increasing the probability of phreatic eruptions. Here, we investigate the effects of alunitic (solfataric) alteration on the mineralogy, the physical properties (porosity, density, permeability) and the mechanical properties (strength) of the rocks involved, as well as its influence on fragmentation and ejection behavior. Our results show that the pristine mineralogy of deposits from the vicinity of the Solfatara cryptodome and from Pisciarelli is almost completely replaced by amorphous silica and alunite. The differences in the degree of alteration among the samples series are reflected in the investigated properties and behavior as well as in the analysis of the experimentally generated particles. Alunitic alteration increases porosity and permeability, whereas it reduces density, elastic wave velocity and strength leading to higher fragmentation and ejection speeds for the sample series examined in this study. Our results also show that alteration results in the generation of a high fraction of fines (particle sizes < 10 μm) during fragmentation, mainly composed of alunite crystals. Due to their potential for inducing chronic disease, dispersion of such material should represent a serious health hazard on a local scale and the evaluation of precautions should be considered.

  13. Geochemistry of Phosphorus and Nitrogen in Volcanic Rocks Altered by Submarine Hydrothermal Activities at the Suiyo Seamount in Japan

    NASA Astrophysics Data System (ADS)

    Noda, M.; Kakegawa, T.; Naraoka, H.; Marumo, K.; Urabe, T.

    2002-12-01

    Phosphorus and nitrogen are essential major elements for all microorganisms. In order to understand the ecological conditions of subvent microorganisms and thermophilic microorganisms on ocean floor, it is necessary to understand the behavior of bio-essential elements not only in hydrothermal fluids but also in the subvent environment. Nine sites of hydrothermal discharging area were drilled in the Suiyo volcanic caldera, Izu-Ogasawara (Bonin) island-arc, western Pacific. Approximately 2 to 10 m deep drill core samples were recovered in the last two years. Chemical compositions and hydrothermal mineral assemblages in the drilled core samples were determined by XRF, ICP-MS, and XRD. Morphology of phosphorous-bearing minerals and their chemistry were examined by electron microprobe. Nitrogen isotopes were measured by the EA-IRMS system. Primary igneous-rock texture (such as euhedral plagioclase phenocryst) is found in the less altered rocks. They often associated with montmorillonite. Highly altered rocks are divided into two groups. First group is characterized by extensive (up to 90%) replacement of primary igneous mineral assemblage by chlorite, mica and sulfide. Second group is cemented with large amounts of sulfates with sulfide (mainly pyrite). It is found in a few drill core sections that hydrothermal hydrous silicate minerals change with depth from montmorillonite to chlorite and mica through mixed layer of chlorite/montmorillonite. This may suggest the more extensive and higher temperature alteration in deeper zones in a certain area. Electron microprobe analyses and bulk chemical composition indicate that the depletion of phosphorous in altered rocks (below 0.1 wt%) but enrichment of phosphorous in sulfide zones. This suggests that phosphorous was easily dissolved from igneous rocks by hydrothermal process, but readily precipitated with sulfides. The reason for co-precipitation of phosphates with sulfides is not certain, but such co-precipitation mechanism

  14. Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa Trough: Mineralogy, geochemistry and isotope characteristics

    SciTech Connect

    Marumo, Katsumi; Hattori, K.H.

    1999-09-01

    Seafloor hydrothermal activity at Jade has resulted in extensive alteration of the host epiclastic sediments and pumiceous tuffs, forming mica, kaolins (kaolinite and halloysite), Mg-rich chlorite, talc, montmorillonite, and a mixed-layer mineral of dioctahedral chlorite and montmorillonite (Chl/Mont). Clay mineral assemblages show a vertical variation, which reflects variable amounts of cold seawater incorporated into hot hydrothermal fluids in subsurface sediments and tuff. However, mixing alone cannot explain the occurrence of abundant kaolin minerals at Jade. The formation of kaolin minerals requires much more acidic fluid than expected from simple mixing of hydrothermal fluids and cold seawater. Low pH values are likely attained by oxidation of H{sub 2}S either dissolved in the hydrothermal fluid or released from the fluid during decompression. The fluid reaching the seafloor is discharged into cold seawater, which caused precipitation of sulfides close to vents and native sulfur and barite at the margins of the vent areas. Halloysite, barite and anhydrite show Sr isotope compositions similar to marine Sr, indicating the derivation of marine Sr directly from seawater or by the dissolution of calcareous nannoplanktons. At Jade, there is only one black smoker actively discharging high temperature ({approximately}320 C) fluid, but there are many fossil sulfide chimneys and mounds in the area. The mineralogy and high Au and Cu in these precipitates suggest highly metalliferous hydrothermal activity in the past. These activities likely resulted in discharge of hydrothermal plumes and fall-outs of sulfides and sulfates on the seafloor. These fall-outs were incorporated in sediments far from the vent areas. They are now recorded as high metal contents in sediments with no petrographic and mineralogical evidence of in-situ hydrothermal activity. Some are high as 8,100 ppm for Cu, 12,500 ppm for Zn, 1,000 ppm for As, 100 ppm for Ag and 21,000 ppm for Pb. Detrital

  15. An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards

    USGS Publications Warehouse

    Ball, Jessica L.; Calder, Eliza S.; Hubbard, Bernard E.; Bernstein, Marc L.

    2013-01-01

    A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water–rock interaction, but the Na–Mg–K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration

  16. An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards

    NASA Astrophysics Data System (ADS)

    Ball, Jessica L.; Calder, Eliza S.; Hubbard, Bernard E.; Bernstein, Marc L.

    2013-01-01

    A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water-rock interaction, but the Na-Mg-K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration within the

  17. Holocene and Paleogene arkoses of the Massif Central, France: Mineralogy, chemistry, provenance, and hydrothermal alteration of the type arkose

    SciTech Connect

    Kamp, P.C. van de ); Helmold, K.P. ); Leake, B.E. . Dept. of Geology and Applied Geology)

    1994-01-01

    Paleogene arkoses of the Auvergne region of France represent the type arkose originally described by Brongniart (1826). They are alluvial-fan and fluvial deposits including traction-current sandstones (arenites) and matrix-rich debris-flow deposits (wackes). Locally, they have been extensively altered by geothermal waters related to nearby Tertiary-Holocene volcanic activity. The alteration is typified by leaching of detrital grains and precipitation of ubiquitous chert cement. The average Gazzi-Dickinson composition of unaltered arenites is Q[sub 40]F[sub 60]L[sub 0], with K/F (potash feldspar/total feldspar) = 0.63. Altered arenites have an average composition of Q[sub 55]F[sub 43]L[sub 2], with K/F = 0.73, reflecting loss of plagioclase due to intense alteration. Chemical analyses of 130 sand and rock samples demonstrate original sediment compositions and changes due to hydrothermal alteration. Holocene sands and unaltered Paleogene clastics are compositionally similar and show variation trends similar to feldspathic clastics derived from granitic basement in other basins. Silica enrichment in the altered sandstones causes dilution of all other elements as an effect of constant summation. Consequently, most element abundances decline proportionately with silica dilution. Na and Rb, however, are reduced below the levels predicted by dilution due to plagioclase and biotite destruction. As a result, K/Rb ratios are higher in the altered sandstones. Ba, S, SO[sub 4], As, and Sb are enriched in the altered rocks by precipitation from hydrothermal solutions. Barium is in barite as fracture-filling veins and scattered patches in sandstone matrix.

  18. Weathering and hydrothermal alteration of basalts in Iceland: mineralogy from VNIR, TIR, XRD, and implications for Mars

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Mustard, J. F.; Bish, D. L.

    2009-12-01

    Recent orbital investigations have revealed that aqueous alteration on early Mars took place in diverse alteration environments indicated by distinctive assemblages of minerals (Murchie et al., 2009, JGR). There is growing evidence for past diagenetic or low-temperature/pressure hydrothermal activity on Mars at neutral to alkaline pH, indicated by the presence of Fe/Mg smectites, chlorite, prehnite, serpentine, opaline silica, and zeolites such as analcime in Noachian terrains (Ehlmann et al., 2009, JGR). In recent investigations of terrestrial Mars analog sites, neutral to alkaline pH alteration of basalt, both pedogenic and hydrothermal, has been understudied in favor of sulfur-rich, acidic systems including those at the Hawaiian volcanoes and Rio Tinto, Spain. We began study of the alteration of basalt lava flows in Iceland as a geochemical analog for Noachian Mars. Because the basaltic bedrock is recently formed (<16Ma) with few localities of more highly evolved composition and has poorly formed soils and spare vegetation, the ground and surface waters are broadly similar to those which might have existed on Noachian Mars. Iceland has a variety of geothermal spring systems--low T, low S; low T, high S; and high T, high S--each of which creates distinctive mineralogic assemblages. Here we examine rocks of the Hvalfjordur peninsula, collected from basalt flows that were in some places altered at the surface by pedogenesis and in other locations were hydrothermally altered by non-sulfurous groundwater circulation (low T, low S) following the emplacement of a later hot basalt flow. Rock samples were surveyed in the field using a portable VNIR spectrometer. Altered and unaltered rocks that were typical for the locality were collected as were altered rocks whose spectra were most similar to those measured by CRISM from Mars orbit. Ten rocks were ultimately selected for detailed laboratory analyses: zeolitized basaltic rocks bearing minerals including analcime and

  19. Fluids in early stage hydrothermal alteration of high-sulfidation epithermal systems: A view from the Vulcano active hydrothermal system (Aeolian Island, Italy)

    NASA Astrophysics Data System (ADS)

    Boyce, Adrian J.; Fulignati, Paolo; Sbrana, Alessandro; Fallick, Anthony E.

    2007-10-01

    High-sulfidation (HS) epithermal systems have elements in common with passively degassing volcanoes associated with high T, acid fumarole fields or acid crater lakes. They are considered to form in two stages, the first of which involves advanced argillic alteration resulting from intense, strongly acidic fluid-rock interaction. The La Fossa hydrothermal system (Vulcano Island) represents a classic example of such an active HS system and can be considered as a modern analogue of this early stage of alteration, resulting in a core of intense silicic (90-95% pure SiO 2) alteration surrounded by alunitic alteration zones. This paper focuses on a geochemical and stable isotope study of the surficial alteration facies of Vulcano - particularly the horizon characterized by strong silicic alteration - and on deep seated xenoliths ejected during the last eruption of La Fossa volcano (1888-90) that can be considered as representative of fragments of the deep conduit system of La Fossa volcano. Using directly measured temperatures at the sites of sampling, we have calculated fluid composition in isotopic equilibrium with the alteration products. The large range of measured silica δ18O (12.3 to 29‰) reflects the wide range of formation temperatures (80-240 °C). The fluid compositions calculated for intense silicic alteration vary from - 0.9 to + 6.5‰. These are significantly heavier than local meteoric water (- 6‰), and are consistent with derivation from the condensation of high-temperature fumarolic gases, dominated by magmatic fluids and rich in acid gases (SO 2, H 2S, HCl, HF), into shallow groundwaters of meteoric origin, with dynamically variable ratios of fumarolic steam/meteoric water. The calculated δ18O and δD of water in equilibrium with alunite also suggest the mixing of magmatic and meteoric waters for the fluids involved in the genesis of advanced argillic alteration facies. The calculated δ18O of water in equilibrium with hedenbergitic clinopyroxene

  20. Minerals produced during cooling and hydrothermal alteration of ash flow tuff from Yellowstone drill hole Y-5

    USGS Publications Warehouse

    Keith, T.E.C.; Muffler, L.J.P.

    1978-01-01

    A rhyolitic ash-flow tuff in a hydrothermally active area within the Yellowstone caldera was drilled in 1967, and cores were studied to determine the nature and distribution of primary and secondary mineral phases. The rocks have undergone a complex history of crystallization and hydrothermal alteration since their emplacement 600,000 years ago. During cooling from magmatic temperatures, the glassy groundmass underwent either devitrification to alkali feldspar + ??-cristobalite ?? tridymite or granophyric crystallization to alkali feldspar + quartz. Associated with the zones of granophyric crystallization are prismatic quartz crystals in cavities similar to those termed miarolitic in plutonic rocks. Vapor-phase alkali feldspar, tridymite, magnetite, and sporadic ??-cristobalite were deposited in cavities and in void spaces of pumice fragments. Subsequently, some of the vapor-phase alkali feldspar crystals were replaced by microcrystalline quartz, and the vapor-phase minerals were frosted by a coating of saccharoidal quartz. Hydrothermal minerals occur primarily as linings and fillings of cavities and fractures and as altered mafic phenocrysts. Chalcedony is the dominant mineral related to the present hydrothermal regime and occurs as microcrystalline material mixed with various amounts of hematite and goethite. The chalcedony displays intricate layering and was apparently deposited as opal from silica-rich water. Hematite and goethite also replace both mafic phenocrysts and vapor-phase magnetite. Other conspicuous hydrothermal minerals include montmorillonite, pyrite, mordenite, calcite, and fluorite. Clinoptilolite, erionite, illite, kaolinite, and manganese oxides are sporadic. The hydrothermal minerals show little correlation with temperature, but bladed calcite is restricted to a zone of boiling in the tuff and clearly was deposited when CO2 was lost during boiling. Fractures and breccias filled with chalcedony are common throughout Y-5 and may have been

  1. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data

    USGS Publications Warehouse

    Rowan, L.C.; Schmidt, R.G.; Mars, J.C.

    2006-01-01

    The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.

  2. CO2- and Ca-rich Fluids Drive Dolomite Formation During Hydrothermal Alteration of Peridotite

    NASA Astrophysics Data System (ADS)

    Grozeva, N. G.; Klein, F.; Seewald, J.; Sylva, S.

    2014-12-01

    We present an experimental study investigating reaction pathways during the interaction of CO2-rich aqueous fluids with mantle peridotite, which have major implications for geochemical budgets and microbial life in oceanic lithosphere. Powdered harzburgite was reacted with a Ca-enriched fluid in a flexible-cell hydrothermal apparatus at 300°C and 35 MPa for 1.7 years. A CO2-rich fluid was subsequently injected and allowed to react for 8 months to examine the formation of carbonates under reducing conditions. Fluids were sampled throughout the experiment to monitor changes in fluid chemistry, and the secondary mineralogy was analyzed at the end of the experiment. Fluid speciation and mineral analyses suggest that initial serpentinization of harzburgite led to the precipitation of serpentine, brucite, magnetite, chlorite, calcite and Ni-sulfides. Fluids during this stage were characterized by low concentrations of dissolved Si, Mg and CO2, alkaline pH(25°C), and high concentrations of dissolved Ca, consistent with buffering by serpentine-brucite-diopside-calcite equilibria. H2(aq) concentrations increased during the first 10 months of reaction (due to magnetite formation), but subsequently plateaued, suggesting that serpentinization approached completion prior to CO2 injection. The introduction of CO2 resulted in acidic pH(25°C), substantial decreases in H2(aq) concentrations, and increases in dissolved SiO2 and Mg2+ concentrations. Dolomite and high-Mg calcite appear to have formed at the expense of olivine, calcite and likely brucite. However, petrographic observations suggest that Mg-calcite was only a transient phase and was ultimately destabilized in favor of dolomite. Replacement textures with carbonate in mesh centers are strikingly similar to those found in dolomite-altered abyssal serpentinites from the Atlantis Massif. While magnesite precipitation seems possible in ridge environments, high CO2(aq) and Ca2+ activities in serpentinization systems appear

  3. Geochemical behavior of rare earth elements of the hydrothermal alterations within the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Doner, Zeynep; Abdelnasser, Amr; Kiran Yildirim, Demet; Kumral, Mustafa

    2016-04-01

    This work reports the geochemical characteristics and behavior of the rare earth elements (REE) of the hydrothermal alteration of the Tepeoba porphyry Cu-Mo-Au deposit located in the Anatolian tectonic belt at Biga peninsula (Locally Balikesir province), NW Turkey. The Cu-Mo-Au mineralization at this deposit hosted in the hornfels rocks and related to the silicic to intermediate intrusion of Eybek pluton. It locally formed with brecciated zones and quartz vein stockworks, as well as the brittle fracture zones associated with intense hydrothermal alteration. Three main alteration zones with gradual boundaries formed in the mine area in the hornfels rock that represents the host rock, along that contact the Eybek pluton; potassic, propylitic and phyllic alteration zones. The potassic alteration zone that formed at the center having high amount of Cu-sulfide minerals contains biotite, muscovite, and sericite with less amount of K-feldspar and associated with tourmalinization alteration. The propylitic alteration surrounds the potassic alteration having high amount of Mo and Au and contains chlorite, albite, epidote, calcite and pyrite. The phyllic alteration zone also surrounds the potassic alteration containing quartz, sericite and pyrite minerals. Based on the REE characteristics and content and when we correlate the Alteration index (AI) with the light REEs and heavy REEs of each alteration zone, it concluded that the light REEs decrease and heavy REEs increase during the alteration processes. The relationships between K2O index with Eu/Eu* and Sr/Sr* reveals a positive correlation in the potassic and phyllic alteration zones and a negative correlation in the propylitic alteration zone. This refers to the hydrothermal solution which is responsible for the studied porphyry deposits and associated potassic and phyllic alterations has a positive Eu and Sr anomaly as well as these elements were added to the altered rock from the hydrothermal solution. Keywords: Rare

  4. Seismic properties and effects of hydrothermal alteration on Volcanogenic Massive Sulfide (VMS) deposits at the Lalor Lake in Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Miah, Khalid H.; Bellefleur, Gilles; Schetselaar, Ernst; Potter, David K.

    2015-12-01

    Borehole sonic and density logs are essential for mineral exploration at depth, but its limited availability to link rock properties of different ore forming geologic structure is a hindrance to seismic data interpretations. In situ density and velocity logs provide first order control on the reflectivity of various lithologic units. We analyzed borehole logs from 12 drill holes over and around the Lalor VMS deposits geographically located in the northern Manitoba, Canada, in an attempt to characterize lithologic units based on its seismic properties. The Lalor Lake deposit is part of the Paleoproterozoic Flin Flon Belt, and associated with an extensive hydrothermal alteration system. Volcanogenic Massive Sulfide (VMS) zones are distributed in several ore lenses with relatively shallower facies comprise solid to solid sulfides, tend to be disseminated or Stringer sulfides, while deeper lenses are gold and silver enriched and occurred in the highly altered footwall region. Our analysis suggests that massive sulfide and diorite have higher acoustic impedance than other rock units, and can produce useful reflection signatures in seismic data. Bivariate distributions of P-wave velocity, density, acoustic impedance and Poisson's ratio in end-member mineral cones were used for qualitative assessment of the extent of alteration of various lithologic units. It can be inferred that hydrothermal alteration has considerably increased P-wave velocity and density of altered argillite and felsic volcanic rocks in comparison to their corresponding unaltered facies. Amphibole, garnet, kyanite, pyrite, sphalerite and staurolite are the dominant end-member alteration minerals affecting seismic rock properties at the VMS site.

  5. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  6. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field, Baja, California, Mexico

    SciTech Connect

    Valette-Silver, J.N.; Esquer-Patino, I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    Surface emissions from the Cerro Prieto geothermal reservoir are restricted to a 100 km/sup 2/ area on the western side of the field, near the volcano Cerro Prieto and the lake Laguna Vulcano. Some 57 surface emissions, explored in 1979, were classified into hot springs, mud pots, pools, fumaroles and geysers (Valette and Esquer-Patino, 1979). A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180/sup 0/C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristics of the discharge from high intensity geothermal fields.

  7. Mapping hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada and California with the airborne imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.

    1987-01-01

    Seven flightlines of Airborne Imaging Spectrometer (AIS) data were analyzed for an area of hydrothermally altered rocks. The data were reduced to reflectance relative to an average spectrum, and an automated procedure was used to produce a color coded image displaying absorption band information. Individual spectra were extracted from the AIS images to determine the detailed mineralogy. Two alteration types were mapped based upon mineralogy identified using the AIS data. The primary alteration type is quartz sericite pyrite alteration which occurs in northwest-trending zones in quartz monzonite porphyry. The AIS data allow identification of sericite (muscovite) based upon a strong absorption feature near 2.21 micron and weaker absorption features near 2.35 and 2.45 micron. The second alteration type occurs as a zone of argillic alteration associated with a granitic intrusion. Montmorillonite was identified based on a weak to moderate absorption feature near 2.2 micron and the absence of the two absorption features at longer wavelengths characteristic of sericite. Montmorillonite could be identified only where concentrations of sericite did not mask the montmorillonite spectrum.

  8. Application of graphite as a geothermometer in hydrothermally altered metamorphic rocks of the Merelani-Lelatema area, Mozambique Belt, northeastern Tanzania

    NASA Astrophysics Data System (ADS)

    Malisa, Elias Pausen

    1998-02-01

    Upper Precambrian pelitic and psammitic gneisses in the Mozambique Belt are usually graphite rich. The determination of crystallisation temperatures around and in the hydrothermally altered rocks of the Merelani-Lelatema mining areas, northeastern Tanzania, were made by studying the lattice parameter C of graphite. In this way, the migration of the chromophore elements giving colour to the gemstones, e.g. tanzanite, green garnet and green tourmaline in the area, can be studied. Within the hydrothermally altered zone graphite gives temperatures that range from 523°C to 880°C. These temperatures are much higher than the 390-440°C obtained through fluid inclusion studies of tanzanite, which indicates that the graphite was not hydrothermally introduced. Furthermore the hydrothermal solutions are post-metamorphic.

  9. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    USGS Publications Warehouse

    John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.

    2008-01-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100??y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous

  10. Chlorine isotope geochemistry of hydrothermally altered oceanic crust: Mineralogical controls and experimental constraints

    NASA Astrophysics Data System (ADS)

    Cisneros, M.; Barnes, J.; Jenkins, D. M.; Gardner, J. E.

    2012-12-01

    Chlorine stable isotopes (37Cl and 35Cl) can provide an important fingerprint for geochemical recycling of subducted oceanic lithosphere and fluid-rock interaction due to chlorine's high solubility in aqueous phases. To implement Cl isotopes as a tracer of volatile element recycling, we must constrain the δ37Cl value of potential Cl reservoirs and determine fractionation factors between Cl-bearing phases. δ37Cl and Cl concentrations of hydrothermally altered oceanic crust (AOC) samples from seven IODP/ODP/DSDP drill sites have been measured on bulk rock samples (n = 50). For ease of comparing results, samples are categorized into three lithologies: 1) extrusive lavas, 2) sheeted dikes, and 3) gabbros. Extrusive lava Cl concentrations vary from <0.01 wt% to 0.03 wt% (avg = 95 ppm Cl; n= 20) and δ37Cl values range from -1.4 to +1.0‰ (avg = 0.0 ± 0.6‰). Chlorine concentrations of the sheeted dikes range from < 0.01 wt% to 0.05 wt% (avg = 163 ppm Cl; n = 11) and δ37Cl values of dikes range from - 0.4 to + 1.4‰ (avg = 0.1 ± 0.3‰). Bulk chlorine concentrations of the gabbros range from < 0.01 wt% to 0.09 wt% (avg = 244 ppm Cl; n = 19). δ37Cl values of gabbros range from - 0.6 to + 1.8‰ (avg = 0.6 ± 0.6‰). Three general conclusions can be derived from these AOC bulk rock results: 1) δ37Cl values and Cl concentrations increase with increasing total amphibole content. 2) Based on re-calculations of mass balance equations using updated AOC Cl concentrations (~3 times higher than previous estimates, this study), the total amount of Cl recycled into the mantle is higher than previously estimated. 3) [Cl] and δ37Cl values can provide a crude estimate of metamorphic grade in AOC samples. Amphibole-water Cl isotope fractionation experiments are necessary for quantifying the magnitude of Cl fractionation and to aid in interpreting the range of natural Cl isotope variation. Determination of equilibrium fractionation factors between hydrous minerals and co

  11. Hydrothermal alteration and the chemistry of ore-forming fluids in an unconformity-type uranium deposit

    SciTech Connect

    Komninou, A.; Sverjensky, D.A.

    1995-07-01

    Compositions of hydrothermal chlorite and fine-grained white mica from the inner and outer alteration halos in the Koongarra U deposit were analyzed by electron microprobe and analytical electron microscopy. Analyses show that although chlorite and white mica compositions vary considerably outside the main ore zone, they are uniform inside the ore zone. Ore-zone chlorite has a ratio of Fe/(Fe + Mg) of 0.25 and low octahedral occupancy (average 5.5 per formula unit), which may represent a mixture of di- and trioctahedral chlorite. White mica has a typical K + Na atomic content of 0.85 per formula unit. These compositions were used to calculate the activity ratios a{sub Fe{sup +2}}/a{sub H{sup +}}{sup 2}, a{sub Mg{sup +2}}/a{sub H{sup +}}{sup 2}, a{sub K{sup +}}/a{sub H{sup +}}, and a{sub Na{sup +}}/a{sub H{sup +}} for the hydrothermal fluids associated with deposition of uraninite. Hydrothermal apatite analyses in conjunction with salinities suggested from fluid inclusion studies were used to calculate the pH of the fluids during the pre-ore alteration. The calculated pH values range from 4.8 to 6.0. Finally, the coexistence of chlorite with quartz and hematite was used to calculate oxygen fugacities. The calculated values are about 2 log units higher than for the hematite-magnetite buffer at 200{degrees}C. Consequently, the oxidation state of the fluid lay in the hematite field and U was probably transported as uranyl complexes.

  12. Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration - Implications for the global Mg-cycle

    NASA Astrophysics Data System (ADS)

    Beinlich, Andreas; Mavromatis, Vasileios; Austrheim, Håkon; Oelkers, Eric H.

    2014-04-01

    Both riverine and ocean waters are enriched in 24Mg compared to the homogeneous chondritic Mg isotopic composition of the Earth's mantle requiring a fractionation step that is generally attributed to low temperature continental crust weathering. Here we present new observations that indicate that this 24Mg enrichment of surface waters may originate from Mg isotope fractionation during the hydrothermal alteration of primary silicate minerals. Mineral separates of hydrothermally altered ultramafic rocks were collected from three different localities in Norway. Coexisting olivine and serpentine exhibit invariant Mg isotope ratios suggesting that serpentinization does not fractionate Mg isotopes. In contrast, carbonation results in significant inter-mineral Mg isotope fractionation between the antigorite, magnesite, and talc. The carbonation of the natural samples is constrained by O isotope thermometry at ∼275 °C and hence closes the temperature gap between previous investigations of the natural distribution of Mg isotopes during surface weathering and magmatic processes. The precursor antigorite has an isotopic composition of δ26Mg (DSM-3)=-0.11±0.05‰, whereas the talc is enriched in 26Mg with mean δMg26=0.17±0.08‰ and the magnesite is depleted in 26Mg with mean δMg26=-0.95±0.15‰. As carbonate minerals dissolve faster than silicate minerals, the chemical weathering of carbonated ultramafic and by analogy mafic rocks on the continents will yield isotopically lighter Mg to natural surface waters consistent with field observations. Moreover, the Mg fractionation observed in this study suggests that sub-seafloor hydrothermal carbonation may be a significant contribution to the Mg isotopic composition of ocean water.

  13. Mapping hydrothermal alteration using aircraft VNIR scanners at the Rosemont porphyry copper deposit. [Visible-Near Infrared

    NASA Technical Reports Server (NTRS)

    Sadowski, R. M.; Abrams, M. J.

    1983-01-01

    Two Visible-Near Infrared (VNIR) scanners, the NS-001 and the M2S, were flown over the Rosemont porphyry copper deposit as part of the NASA/JPL/GEOSAT test site program. This program was established to determine the feasibility and limitations of mapping hydrothermal alteration with multispectral scanners. Data from the NS-001 at 0.83 and 2.2 microns were used to identify Fe(3+) and OH enriched outcrops. These areas were then correlated with three alteration assemblages. The first correlation, hematite-epidote, was the most obvious and appeared as a strong ferric iron signature associated with hematite stained Cretaceous arkoses and andesites. The second correlation, qtz-sericite, showed a combined ferric-hydroxyl signature for a phyllicly altered quartz monzonite. The third correlation, skarn, was identified only after a review of calc-silicate mineral VNIR spectra. Altered limestones that outcrop west of the deposit have a similar ferric iron-hydroxyl signature as the quartz-sericite altered quartz monzonite. This skarn signature has been interpreted to indicate the presence of andradite, hydro-grossularite and idocrase. Data from the second scanner, M2S, was used to search for variation in ferric iron mineral type. Resulting imagery data indicated that hematite was the dominant ferric iron mineral present in the Rosemont area.

  14. 3D modelling of hydrothermal alteration associated with VHMS deposits in the Kristineberg area, Skellefte district, northern Sweden

    NASA Astrophysics Data System (ADS)

    Chmielowski, Riia M.; Jansson, Nils; Persson, Mac Fjellerad; Fagerström, Pia

    2016-01-01

    This contribution presents a 3D assessment of metamorphosed and deformed, hydrothermally altered volcanic rocks, hosting the massive sulphide deposits of the Kristineberg area in the 1.9 Ga Skellefte mining district in northern Sweden, using six calculated alteration parameters: the Ishikawa alteration index, the chlorite-carbonate-pyrite index and calculated net mass changes in MgO, SiO2, Na2O and Ba. The results, which are also available as film clips in the Supplementary data, confirm inferences from geological mapping; namely that the sericite- and chlorite-rich alteration zones have complex and cross-cutting geometries and that most of these zones are semi-regional in extent and range continuously from surface to over a kilometre deep. The major known massive sulphide deposits occur proximal to zones characterised by coincidence of high values for the alteration index and chlorite-carbonate-pyrite index and large MgO gains, which corresponds to zones rich in magnesian silicates. These zones are interpreted as the original chlorite-rich, proximal parts the alteration systems, and form anomalies extending up to 400 m away from the sulphide lenses. In addition, the stratigraphically highest VHMS are hosted by rocks rich in tremolite, talc, chlorite and dolomite with lesser clinozoisite, which have high chlorite-carbonate-pyrite index and low-medium alteration index values, reflecting a greater importance of some chlorite-carbonate alteration at this stratigraphic level. Vectoring towards massive sulphide deposits in this area can be improved by combining the AI and CCPI indexes with calculated mass changes for key mobile elements. Of the ones modelled in this study, MgO and SiO2 appear to be the most useful.

  15. Quantification of diagenetic overprint processes deduced from fossil carbonate shells and laboratory-based hydrothermal alteration experiments

    NASA Astrophysics Data System (ADS)

    Griesshaber, Erika; Casella, Laura; Mavromatis, Vasileios; Dietzel, Martin; Immenhauser, Adrian; Schmahl, Wolfgang

    2016-04-01

    Benthic and nektonic marine biogenic carbonate archives represent the foundation of numerous studies aiming at reconstructions of past climate dynamics and environmental change. However, living organisms are not in thermodynamic equilibrium and create local chemical environments where physiologic processes such as biomineralization takes place. After the death of the organism the former physiologic disequilibrium conditions are not sustained any more and all biological tissues are altered by equilibration according to the surrounding environment: diagenesis. With increasing diagenetic alteration, the biogenic structure and fingerprint fades away and is replaced by inorganic features. Thus, recrystallization of organism-specific microstructure is a clear indicator for diagenetic overprint. Microstructural data, which mirror recrystallization, are of great value for interpreting geochemical proxies for paleo-environment reconstruction. Despite more than a century of research dealing with carbonate diagenesis, many of the controlling processes and factors are only understood in a qualitative manner. One of the main issues is that diagenetically altered carbonates are usually present as the product of a complex preceding diagenetic pathway with an unknown number of intermediate steps. In this contribution we present and discuss laboratory based alteration experiments with the aim to investigate time-series data sets in a controlled manner. We conducted hydrothermal alteration experiments with modern Arctica islandica (bivalvia) and Notosaria nigricans (brachiopoda) in order to mimic diagenetic overprint. We explore first the potential of electron backscattered diffraction (EBSD) measurements together with statistical data evaluation as a tool to quantify diagenetic alteration of carbonate skeletons. Subsequently, we compare microstructural patterns obtained from experimentally altered shell material with those of fossil specimens that have undergone variable degrees of

  16. Alteration mapping at Goldfield, Nevada, by cluster and discriminant analysis of Landsat digital data. [mapping of hydrothermally altered volcanic rocks

    NASA Technical Reports Server (NTRS)

    Ballew, G.

    1977-01-01

    The ability of Landsat multispectral digital data to differentiate among 62 combinations of rock and alteration types at the Goldfield mining district of Western Nevada was investigated by using statistical techniques of cluster and discriminant analysis. Multivariate discriminant analysis was not effective in classifying each of the 62 groups, with classification results essentially the same whether data of four channels alone or combined with six ratios of channels were used. Bivariate plots of group means revealed a cluster of three groups including mill tailings, basalt and all other rock and alteration types. Automatic hierarchical clustering based on the fourth dimensional Mahalanobis distance between group means of 30 groups having five or more samples was performed using Johnson's HICLUS program. The results of the cluster analysis revealed hierarchies of mill tailings vs. natural materials, basalt vs. non-basalt, highly reflectant rocks vs. other rocks and exclusively unaltered rocks vs. predominantly altered rocks. The hierarchies were used to determine the order in which sets of multiple discriminant analyses were to be performed and the resulting discriminant functions were used to produce a map of geology and alteration which has an overall accuracy of 70 percent for discriminating exclusively altered rocks from predominantly altered rocks.

  17. Towards the kinetics of diagenetic overprint processes deduced from laboratory-based hydrothermal alteration of modern Arctica islandica shell material

    NASA Astrophysics Data System (ADS)

    Casella, Laura A.; Griesshaber, Erika; Mavromatis, Vasileios; Dietzel, Martin; Immenhauser, Adrian; Schmahl, Wolfgang W.

    2016-04-01

    Benthic and nektonic marine biogenic carbonate archives represent the foundation of numerous studies aiming at paleo-environment reconstructions. However, living organisms are not in thermodynamic equilibrium as they form local chemical environments for physiologic processes such as biological mineralization of their hard tissues. This disequilibrium is not sustained after death and all biological tissues are altered by equilibration with the surrounding environment: diagenesis. To understand transformation during diagenesis we performed laboratory-based hydrothermal alteration experiments on Arctica islandica shells at four different temperatures between 100 °C and 175 °C treated in simulated meteoric and burial waters, respectively. We investigated, relative to unaltered shells, the kinetics of Arctica islandica bioaragonite to calcite transition as well as microstructural- and nanostructural characteristics of the altered shells with X-ray diffraction, micro-Raman, high-resolution SEM and EBSD. At hydrothermal treatment at 100 °C bioaragonite - although metastable at 1 bar - does not transform to calcite, even in meteoric fluids and over a time period of 28 days. We noted a drastic recrystallization from the initial fine-grained fractal microstructure and pronounced axial texture to a new and still fine-grained microstructure with an almost randomized orientation distribution. At 175 °C the transformation to coarse-grained calcite is complete after 8 days. Calcite formation starts after a passive incubation period of 4 days; after 6 days the aragonite is almost completely transformed. In solutions simulating meteoric water the grain size of the newly formed calcite reaches 100-150 μm, while in burial fluids the calcite reaches sizes in the 1mm range during 28 days of alteration. Phase transformation proceeds where the hydrothermal fluid is in contact with the aragonite: at shell surfaces, around pores and in growth lines. Our observations lead us to the

  18. Mineral associations produced by sodic-calcic hydrothermal alteration in the Buffalo Mountain pluton, north-central Nevada

    SciTech Connect

    McBride, D. . Dept. of Geology and Geography)

    1993-03-01

    Sodic-calcic (Na-Ca) hydrothermal alteration is prevalent throughout Mesozoic-age arc igneous rocks in the western US. The middle Jurassic Buffalo Mountain pluton, located in north-central Nevada, contains particularly well developed Na-Ca metasomatism. The Buffalo Mountain pluton is composed of porphyritic syenite, quartz monzonite, small bordering stocks (which account for less than 1% of the pluton), and an extensive felsic dike swarm. Quartz monzonite intruded syenite and constitutes the majority of the surface area. Unaltered porphyritic syenite is composed of perthite, plagioclase, quartz, augite, hornblende, biotite, olivine, magnetite, and other minerals accounting for less than 1% of the rock. Unaltered quartz monzonite is an aggregate of K-feldspar, plagioclase, quartz, biotite, hornblende, and accessory minerals accounting for less than 1% of the rock. The dikes cut both phases of the total intrusive rock body and are closely related in space to zones of Na-Ca alteration. Alteration variably affects all igneous rock types and exists as both fracture-controlled and pervasive Na-Ca alteration. Sodic-calcic alteration resulted in the following mineral reactions: K-feldspar is replaced by chalky-colored plagioclase, and primary mafic minerals react to form pale green diopside or, less commonly, actinolite. Garnet, scapolite, and epidote are often spatially associated with Na-Ca altered rocks. The fact that Na-Ca alteration occurs most commonly in and around dikes suggests that they might have been the source of channel for fluid entry into the surrounding igneous rocks. Further study will seek to constrain the origins and pathways of Na-Ca fluids.

  19. Remote detection of past habitability at Mars-analogue hydrothermal alteration terrains using an ExoMars Panoramic Camera emulator

    NASA Astrophysics Data System (ADS)

    Harris, J. K.; Cousins, C. R.; Gunn, M.; Grindrod, P. M.; Barnes, D.; Crawford, I. A.; Cross, R. E.; Coates, A. J.

    2015-05-01

    A major scientific goal of the European Space Agency's ExoMars 2018 rover is to identify evidence of life within the martian rock record. Key to this objective is the remote detection of geological substrates that are indicative of past habitable environments, which will rely on visual (stereo wide-angle, and high resolution images) and multispectral (440-1000 nm) data produced by the Panoramic Camera (PanCam) instrument. We deployed a PanCam emulator at four hydrothermal sites in the Námafjall volcanic region of Iceland, a Mars-analogue hydrothermal alteration terrain. At these sites, sustained acidic-neutral aqueous interaction with basaltic substrates (crystalline and sedimentary) has produced phyllosilicate, ferric oxide, and sulfate-rich alteration soils, and secondary mineral deposits including gypsum veins and zeolite amygdales. PanCam emulator datasets from these sites were complemented with (i) NERC Airborne Research and Survey Facility aerial hyperspectral images of the study area; (ii) in situ reflectance spectroscopy (400-1000 nm) of PanCam spectral targets; (iii) laboratory X-ray Diffraction, and (iv) laboratory VNIR (350-2500 nm) spectroscopy of target samples to identify their bulk mineralogy and spectral properties. The mineral assemblages and palaeoenvironments characterised here are analogous to neutral-acidic alteration terrains on Mars, such as at Mawrth Vallis and Gusev Crater. Combined multispectral and High Resolution Camera datasets were found to be effective at capturing features of astrobiological importance, such as secondary gypsum and zeolite mineral veins, and phyllosilicate-rich substrates. Our field observations with the PanCam emulator also uncovered stray light problems which are most significant in the NIR wavelengths and investigations are being undertaken to ensure that the flight model PanCam cameras are not similarly affected.

  20. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration

    USGS Publications Warehouse

    Bern, Carleton R.; Yesavage, Tiffany; Foley, Nora K.

    2017-01-01

    Ion-adsorbed rare earth element (REE) deposits supply the majority of world heavy REE production and substantial light REE production, but relatively little is known of their occurrence outside Southeast Asia. We examined the distribution and forms of REEs on a North American pluton located in the highly weathered and slowly eroding South Carolina Piedmont. The Hercynian Liberty Hill pluton experiences a modern climate that includes ~ 1500 mm annual rainfall and a mean annual temperature of 17 °C. The pluton is medium- to coarse-grained biotite-amphibole granite with minor biotite granite facies. REE-bearing phases are diverse and include monazite, zircon, titanite, allanite, apatite and bastnäsite. Weathered profiles were sampled up to 7 m-deep across the ~ 400 km2pluton. In one profile, ion-adsorbed REEs plus yttrium (REE + Y) ranged up to 581 mg/kg and accounted for up to 77% of total REE + Y in saprolite. In other profiles, ion-adsorbed REE + Y ranged 12–194 mg/kg and only accounted for 3–37% of totals. The profile most enriched in ion-adsorbed REEs was located along the mapped boundary of two granite facies and contained trioctahedral smectite in the saprolite, evidence suggestive of hydrothermal alteration of biotite at that location. Post-emplacement deuteric alteration can generate easily weathered REE phases, particularly fluorocarbonates. In the case of Liberty Hill, hydrothermal alteration may have converted less soluble to more soluble REE minerals. Additionally, regolith P content was inversely correlated with the fraction ion-adsorbed REEs, and weathering related secondary REE-phosphates were found in some regolith profiles. Both patterns illustrate how low P content aids in the accumulation of ion-adsorbed REEs. The localized occurrence at Liberty Hill sheds light on conditions and processes that generate ion-adsorbed REEs.

  1. Discrimination of hydrothermally altered rocks along the Battle Mountain-Eureka, Nevada mineral belt using LANDSAT images

    NASA Technical Reports Server (NTRS)

    Krohn, M. D.; Abrams, M. J.; Rowan, L. C. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Limonitic alteration halos associated with two copper prophyry deposits were successfully mapped at Battle Mountain. Alteration halos from both a hypogene system at Copper Canyon and a supergene system at Copper Basin are recognizable in the composite. Both copper porphyry deposits are located in sedimentary rock units that commonly have ferruginous coatings; yet, in most cases, the hydrothermally derived limonite was distinguishable in the CRC from sedimentary limonite. Large format playback images with pixel sizes from 200 to 400 micron m provided details of spatial resolution and color separation unachievable on enlargements from 70 mm film chips. Details of the alteration halos could be resolved only in the large format images. Two aspects of the alteration halos of the porphyry copper deposits were not mapped on the CRC. The optimum CRC image for the area studied consists of MSS 4/5 as blue, MSS 4/6 as yellow, and MSS 6/7 as magenta using diazo films. The disseminated gold deposits at Gold Acres are not depicted in the CRC image.

  2. Geology, alteration, and magmatic-hydrothermal history of The Geysers felsite -- potential applications for exploration and development

    SciTech Connect

    Hulen, J.B.; Nielson, D.L. )

    1993-01-01

    The [open quotes]felsite[close quotes] is a shallow, young, granitic intrusive body centrally located within and beneath. The Geysers steam field. The field and the felsite are coaxial, and hydrothermal alteration effected by hot-water dominated geothermal systems antedating the modern steam reservoir shows systematic vertical zonation with respect to the pluton. The research summarized in this communication was undertaken both to clarify the role of the pluton in reservoir evolution, and to characterize critical felsite-specific controls on the fields's deep porosity and permeability. The felsite comprises at least three major intrusive phases. Two are high-silica granites probably older than 1.3 Ma. The third is granodiorite (1 Ma), temporally and chemically equivalent to overlying extrusive dacites of the Clear Lake volcanic field. All three intrusive phases are too old to be heat sources for the modern steam field, but probably were the heat engines for the prior liquid-dominant systems. Younger, deeper magmatic heat sources are strongly implied for the current vapor-dominated regime. Porosity in the felsite is provided by: (1) Extensively mineralized fractures and breccias, probably of both tectonic and high-temperature hydrothermal origin; and (2) miarolitic cavities in the upper levels of the pluton. The latter could be analogous to calcite-dissolution cavities in overlying metagraywacke -- they could serve as storage sites for the fields's liquid water reserves. Porosity in these fractures, breccias, and vugs in partially occluded by hydrothermal vein minerals deposited in prior hotwater-dominated systems --tourmaline, ferroaxinite, quartz, potassium feldspar, epidote, actinolite, prehnite, and many others. Such secondary mineralization conceptually could serve as an excellent exploration guide to potentially productive portions of the felsite beyond the field's present boundaries.

  3. Formation of Complex Amino Acid Precursors in Simulated Primitive Atmosphere and Their Alteration under Simulated Submarine Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kurihara, Hironari; Hirako, Tomoaki; Obayashi, Yumiko; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka

    Since late 1970's a great number of submarine hydrothermal systems (SHSs) has been dis-covered, and they are considered possible sites of chemical evolution and generation of life on the Earth since their discovery in late 1970s. A number of experiments simulating the con-ditions of SHSs were conducted, and abiotic production and polymerization of amino acids were reported. Free amino acids were frequently used as starting materials to examine possible organic reactions in the simulation experiments. In our early studies, not free amino acids but complex amino acids precursors with large molecular weights were formed abiotically from simulated primitive Earth atmosphere (a mixture of CO, N2 and H2 O) (Takano et al., 2004). Such complex organics (hereafter referred as to CNWs) should have been delivered to SHSs in Primitive Ocean, where they were subjected to further alteration. We examined possible alteration of the complex organics in high-temperature high-pressure environments by the su-percritical water flow reactor (SCWFR) (Islam et al.. 2003) and an autoclave. CNWs were quite hydrophilic compounds whose molecular weights were ca. 3000. After heating 573 K for 2 min in the SCWFR, aggregates of organics were formed, which were separated from aque-ous solution with a Nucleopore filter (pore size: 200 nm). We propose the following scenario of chemical evolution: (1) Complex organics including amino acid precursors were formed in primitive atmosphere and/or extraterrestrial environments, (ii) they were delivered to primor-dial SHSs, (iii) hydrothermal alteration occurred in SHSs to give organic aggregates, (iv) quite primitive molecular systems with subtle biological functions were generated in the competition among such aggregates. References: Islam, Md. N., Kaneko, T., and Kobayashi, K (2003). Reactions of Amino Acids with a Newly ConstructedSupercritical Water Flow Reactor Simulating Submarine Hydrothermal Systems. Bull. Chem. Soc. Jpn., 76, 1171. Takano, Y

  4. Geochemical element mobility during the hydrothermal alteration in the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Abdelnasser, Amr; Kiran Yildirim, Demet; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au deposit represents one of the important copper source and mineral deposits in the Anatolian tectonic belt at Balikesir province, NW Turkey. It considered as a vein-type deposit locally associated with intense hydrothermal alteration within the brecciation, quartz stockwork veining, and brittle fracture zones in the main host rock that represented by hornfels, as well as generally related to the shallow intermediate to silicic intrusive Eybek pluton. Based on the field and geologic relationships and types of ore mineral assemblages and the accompanied alteration types, there are two mineralization zones; hypogene (primary) and oxidation/supergene zones are observed associated with three alteration zones; potassic, phyllic, and propylitic zones related to this porphyry deposit. The phyllic and propylitic alterations locally surrounded the potassic alteration. The ore minerals related to the hypogene zone represented by mostly chalcopyrite, Molybdenite, and pyrite with subordinate amount of marcasite, enargite, and gold. On the other hand they include mainly cuprite with chalcopyrite, pyrite and gold as well as hematite and goethite at the oxidation/supergene zone. This study deals with the quantitative calculations of the mass/volume changes (gains and losses) of the major and trace elements during the different episodes of alteration in this porphyry deposit. These mass balance data reveal that the potassic alteration zone that the main Cu- and Mo-enriched zone, has enrichment of K, Si, Fe, and Mg, and depletion of Na referring to replacement of plagioclase and amphibole by K-feldspar, sericite and biotite. While the propylitic alteration that is the main Mo- and Au-enriched zone is accompanied with K and Na depletion with enrichment of Si, Fe, Mg, and Ca forming chlorite, epidote, carbonate and pyrite. On the other hand the phyllic alteration that occurred in the outer part around the potassic alteration, characterized by less amount

  5. Airborne Magnetic and Electromagnetic Data map Rock Alteration and Water Content at Mount Adams, Mount Baker and Mount Rainier, Washington: Implications for Lahar Hazards and Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Finn, C. A.; Deszcz-Pan, M.; Horton, R.; Breit, G.; John, D.

    2007-12-01

    High resolution helicopter-borne magnetic and electromagnetic (EM) data flown over the rugged, ice-covered, highly magnetic and mostly resistive volcanoes of Mount Rainier, Mount Adams and Mount Baker, along with rock property measurements, reveal the distribution of alteration, water and hydrothermal fluids that are essential to evaluating volcanic landslide hazards and understanding hydrothermal systems. Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Intense hydrothermal alteration significantly reduces the magnetization and resistivity of volcanic rock resulting in clear recognition of altered rock by helicopter magnetic and EM measurements. Magnetic and EM data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region, in the central core of Mount Adams north of the summit, and in much of the central cone of Mount Baker. We identify the Sunset Amphitheater region and steep cliffs at the western edge of the central altered zone at Mount Adams as likely sources for future debris flows. In addition, the EM data identified water-saturated rocks in the upper 100-200 m of the three volcanoes. The water-saturated zone could extend deeper, but is beyond the detection limits of the EM data. Water in hydrothermal fluids reacts with the volcanic rock to produce clay minerals. The formation of clay minerals and presence of free water reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore, knowing the distribution of water is also important for hazard assessments. Finally, modeling requires extremely low

  6. Use of multispectral scanner images for assessment of hydrothermal alteration in the Marysvale, Utah, mining area.

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Abrams, M.J.

    1983-01-01

    Airborne multispectral scanner. A color composite image was constructed using the following spectral band ratios: 1.6/2.2 mu m, 1.6/0.48 mu m, and 0.67/1.0 mu m. The color ratio composite successfully distinguished most types of altered rocks from unaltered rocks; further division of altered rocks into ferric oxide-rich and -poor types.

  7. Impact Lithologies and Post-Impact Hydrothermal Alteration Exposed by the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Zurcher, Lukas; Horz, Friedrich

    2003-01-01

    The Chicxulub Scientific Drilling Project recovered a continuous core from the Yaxcopoil-1 (YAX-1) borehole, which is approx.60-65 km from the center of the Chicxulub structure, approx.15 km beyond the limit of the estimated approx.50 km radius transient crater (excavation cavity), but within the rim of the estimated approx.90 km radius final crater. Approximately approx.100 m of melt-bearing impactites were recoverd from a depth of 794 to 895 m, above approx.600 m of underlying megablocks of Cretaceous target sediments, before bottoming at 1511 m. Compared to lithologies at impact craters like the Ries, the YAX-1 impactite sequence is incredibly rich in impact melts of unusual textural variety and complexity. The impactite sequence has also been altered by hydrothermal activity that may have largely been produced by the impact event.

  8. Identification of hydrothermal alterations associated with Copper (Cu) mineralization in Sidi flah-Bouskour inlier, Moroccon Anti Atlas

    NASA Astrophysics Data System (ADS)

    Adiri, Zakaria; El Harti, Abderrazak; Jellouli, Amine; Bachaoui, El Mostafa; El Ghmari, Abderrahmène

    2016-04-01

    The massive of Saghro at the Moroccan Anti Atlas is known by the abundance of economically important deposits. Among others, the Copper (Cu) deposit in Sidi flah-Bouskour inlier. With its high potential in terms of production, this deposit is considered among the most important and most promising at national scale. The objective of this work is to evaluate the potential of multispectral Terra ASTER and Landsat 8 OLI data in mapping hydrothermal alterations associated with this copper mineralization. The methodology was based on Mixture Tuned Matched Filtering (MTMF) and the Spectral Angle Mapper (SAM) classifications. The application of these techniques on the Visible-Near (VNIR), Shortwave Infrared (SWIR) and Thermal Infrared (TIR) spectral regions gave satisfactory results in comparison to the pre-existing geological studies and the ground truth. Therefore, the methodology used can be generalized to the Moroccan Anti Atlas for mineral exploration.

  9. Hydrothermal alteration and its effects on the magnetic properties of Los Pelambres, a large multistage porphyry copper deposit

    NASA Astrophysics Data System (ADS)

    Tapia, Joseline; Townley, Brian; Córdova, Loreto; Poblete, Fernando; Arriagada, César

    2016-09-01

    The Los Pelambres porphyry copper deposit is located 190 km north of Santiago, Chile. A paleomagnetic and mineralogical study was conducted at this deposit to determine the effects of hydrothermal alteration on the magnetic properties and minerals of rocks within the deposit when compared to the surrounding country rock. In the Los Pelambres deposit, magnetic properties of rocks are carried by titano-hematite and titano-magnetite solid solution minerals, where the former commonly indicates the exsolution of rutile. Magnetic minerals of intrusive rocks from the greater Los Pelambres region show that magmatic titano-magnetites and magnetites are the main magnetization carriers. The hydrothermal fluid associated with rutile exsolution textures could have played an important role in the mineralization of Cu in this deposit. The paleomagnetic properties in the Los Pelambres deposit can be divided in three main groups: (i) HMRG (high magnetic remanence group), (ii) HMSG (high magnetic susceptibility group), and (iii) LMSG (low magnetic susceptibility/remanence group). In-situ magnetic properties of the HMSG and LMSG are similar to the formations and units present regionally, however HRMG samples clearly differ from the country rocks. The high variability of in-situ magnetic properties presented in the Los Pelambres deposit has also been characteristic of other porphyry copper deposits in Chile (e.g., Chuquicamata and El Teniente). Regarding the field of exploration geophysics and porphyry copper deposits, this study suggests that phyllic, chloritic, and potassic alterations are related to low, intermediate, and high in-situ NRM, respectively, suggesting that geophysical methods must target a noisy magnetic signal depending on the scale of the study. The knowledge and results obtained are especially meaningful because magnetic surveys conducted for exploration do not commonly allow for the detection of ore mineralization.

  10. Tectonic record, magmatic history and hydrothermal alteration in the Hercynian Guérande leucogranite, Armorican Massif, France

    NASA Astrophysics Data System (ADS)

    Ballouard, C.; Boulvais, P.; Poujol, M.; Gapais, D.; Yamato, P.; Tartèse, R.; Cuney, M.

    2015-04-01

    The Guérande peraluminous leucogranite was emplaced at the end of the Carboniferous in the southern part of the Armorican Massif. At the scale of the intrusion, this granite displays structural heterogeneities with a weak deformation in the southwestern part, whereas the northwestern part is marked by the occurrence of S/C and mylonitic extensional fabrics. Quartz veins and pegmatite dykes orientations as well as lineations directions in the granite and its country rocks demonstrate both E-W and N-S stretching. Therefore, during its emplacement in an extensional tectonic regime, the syntectonic Guérande granite has probably experienced some partitioning of the deformation. The southwestern part is characterized by a muscovite-biotite assemblage, the presence of restites and migmatitic enclaves, and a low abundance of quartz veins compared to pegmatite dykes. In contrast, the northwestern part is characterized by a muscovite-tourmaline assemblage, evidence of albitization and gresenization and a larger amount of quartz veins. The southwestern part is thus interpreted as the feeding zone of the intrusion whereas the northwestern part corresponds to its apical zone. The granite samples display continuous compositional evolutions in the range of 69.8-75.3 wt.% SiO2. High initial 87Sr/86Sr ratios and low εNd(T) values suggest that the peraluminous Guérande granite (A/CNK > 1.1) was formed by partial melting of metasedimentary formations. Magmatic evolution was controlled primarily by fractional crystallization of K-feldspar, biotite and plagioclase (An20). The samples from the apical zone show evidence of secondary muscovitization. They are also characterized by a high content in incompatible elements such as Cs and Sn, as well as low Nb/Ta and K/Rb ratios. The apical zone of the Guérande granite underwent a pervasive hydrothermal alteration during or soon after its emplacement. U-Th-Pb dating on zircon and monazite revealed that the Guérande granite was emplaced

  11. Geochemistry, Metamorphism, and Partial Melting of Hydrothermally Altered Rocks in the Sherridon Complex, Trans Hudson Orogen, Manitoba

    NASA Astrophysics Data System (ADS)

    Tinkham, D. K.

    2009-05-01

    Lithogeochemistry and field investigations of regionally metamorphosed rocks in the central portion of the Sherridon Complex of the Trans-Hudson orogen indicates high-grade gneisses are dominantly derived from protoliths with rhyodacite and basaltic compositions that subsequently experienced pre-metamorphic seafloor- related hydrothermal alteration. Immobile trace element geochemistry results indicate the voluminous rhyodacite composition rocks formed in a volcanic arc environment, and associated VMS deposits and less voluminous basaltic composition rocks suggest a bimodal-felsic VMS environment. Felsic lithologies are interpreted to have experienced local pre-metamorphic sericite, chlorite, carbonate, and possible silica alteration, with an extensive zone of carbonate alteration associated with more basaltic-composition protoliths. Upper amphibolite facies metamorphism of hydrothermally altered felsic lithologies resulted in a variety of quartz-rich rocks containing combinations of gahnite, garnet, cordierite, sillimanite, orthoamphibole, biotite, and feldspar bearing assemblages. An extensive garnet-cordierite-sillimanite-biotite ± orthoamphibole quartz-rich gneiss unit (GCSB) grades into a stromatic migmatite with a modal decrease in garnet and sillimanite in the host gneiss. Cordierite commonly overgrows and locally completely replaces sillimanite. Increased amounts of melting results in very local diatexite and locally mobilized melt crystallizing to a massive biotite clotted granitoid. The biotite-rich clots in the granitoid are interpreted to have resulted from replacement of garnet ± cordierite within the melt based on their shape, small remnants of garnet, and local sillimanite. Phase equilibria modelling of a suite of GCSB rocks (average Mg# = 0.55) in the MnNCKFMASHT chemical system utilizing program Domino predicts pressures in excess of 5.5 kilobars for sillimanite stability, and is most compatible with pressures between 6.5-7.0 kilobars based on

  12. Hydrothermal Chemotrophic Biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Westall, F.; Campbell, K. A.; Gautret, P.; Bréhéret, J.; Foucher, F.; Vago, J.; Kminek, G.; Hubert, A.; Hickman-Lewis, K.; Cockell, C. S.

    2016-05-01

    Hydrothermal chemotrophic biosignatures (morphological and geo-organochemical) were common in shallow water on the anaerobic early Earth, preserved by silicification. They are representative also of shallow crustal biosignatures.

  13. Pervasive, high temperature hydrothermal alteration in the RN-17B drill core, Reykjanes Geothermal System-Iceland Deep Drilling Project

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Schiffman, P.; Marks, N. E.; Reed, M. H.; Elders, W. A.; Fridleifsson, G. O.

    2010-12-01

    In November 2008, 9.5 m of core were recovered from Reykjanes production well RN-17B at a depth of 2800m. The core consists mainly of hyaloclastite breccias, hetrolithic breccias with clasts of crystalline basalt, and volcaniclastic sandstones/siltstones. Much of the material appears to have been transported and redeposited, but homolithic breccias and hyaloclastites, some with upright flow lobes of basalt with quenched rims, are interpreted to have erupted in situ. Fine-scale features (glass rims, quench crystals, vesicles, phenocrysts) are well preserved, but all lithologies are pervasively hydrothermally altered such that primary clinopyroxene is ubiquitously uralitized and primary plagioclase (An42-80) is replaced by albite and/or more calcic plagioclase. In contrast, cuttings of similar lithologies, recovered by rotary drilling in intervals immediately above and below the core, exhibit much lesser degrees of hydrothermal alteration and commonly contain igneous plagioclase and clinopyroxene. Vitric clasts in the core are recrystallized into aggregates of chlorite and actinolite. In some breccias, cm-scale metadomains are composed of patchy albite or actinolite/magnesiohornblende giving the core a green and white spotted appearance. Minor amounts (<1%) of disseminated pyrite occur throughout the core, but two intervals with more abundant sulfide contain chalcopyrite and sphalerite in addition to pyrite. Amygdales and vugs in the breccias, initially filled with chlorite, actinolite, epidote, and/or albite, have been partly overprinted with hornblende and anorthite. The core is cut in places by < 1 cm- wide veins composed of early epidote + actinolite + titanite and later anorthite + magnesiohornblende/pargasite. Quartz is not present in any alteration domains observed in the core, although it is reported from virtually all of the cutting intervals above and below the cored section. Seawater-basalt reaction calculations suggest that albite formed during early

  14. Modeling Heat Transfer, Fluid Circulation and Permeability Alteration in Hydrothermal Systems with Loose Coupling to Magmatic Intrusion Modeling in the Lower Crust

    NASA Astrophysics Data System (ADS)

    Taron, J.; Karakas, O.; Mangan, M.; Dufek, J.; Ingebritsen, S.; Hickman, S. H.; Williams, C. F.

    2014-12-01

    The evolution of large scale hydrothermal systems entails spatially and temporally evolving permeability fields. During hydrothermal circulation, thermo-elastic stress and fluid pressure changes act upon partially open or hydrothermally altered fracture sets to modify permeability within the system, thereby shifting the patterns of circulation. To explore these interactions we are developing a thermo-hydromechanical (THM) simulator capable of coupling the dominant physics of the hydrothermal system and allowing flexibility in the use of monolithic or staggered numerical schemes. Permeability is allowed to evolve under several constitutive models tailored to both porous media and fractures, considering the influence of thermo-hydromechanical stress, creep, and elasto-plastic shear and dilation in a ubiquitously fractured medium. To expand our understanding of the long-term evolution of these systems, simulations incorporate information gleaned from the modeling of magmatic processes in the lower crust, where characteristics of the heat source are crucial in defining hydrothermal evolution. Results of a stochastic dike intrusion model are fed into the hydrothermal simulator to explore sensitivity relative to characteristics of the magmatic source. This is a first step to examining feedback mechanisms between heat transfer within geothermal fields and heat supply from the lower crust in a rigorous manner. We compare several simulations that elucidate the relative importance of magma intrusion rate and spatial distribution on overall heat transfer characteristics.

  15. Progressive Dehydration and Re-equilibration of Slab Lithologies During Subduction: Mechanism For Recycling of Heavy, Hydrothermally-Altered Crust and Mantle Derived Stable Isotopic Signatures into the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Dixon, J. E.; Simons, K.; Kingsley, R. H.; le Roux, P. J.; Ryan, J. G.

    2012-12-01

    Stable isotopic compositions of most enriched oceanic basalts, as determined by this and previous studies, are heavier than normal depleted MORB (N-MORB) and are similar to the values found in hydrothermally-altered crust and sediments, as well as basalts in arc and back-arc environments. Analyses of δD, δ7Li and δ11B in glasses from well-characterized sample suites show positive correlations between stable isotope compositions and tracers of mantle enrichment, such as La/Sm and Sr-Pb radiogenic isotopes, indicating that the dominant control on light stable isotopic compositions is mixing between isotopically-lighter depleted and isotopically-heavier enriched components In addition, we find that enriched mantle source components may be divided broadly into drier, isotopically-lighter δD, EM-type mantle, and wetter, isotopically-heavier δD, HIMU/FOZO-type mantle. For example, hydrogen isotopic compositions of enriched HIMU-type oceanic basalts (δD of -30 to -60 ‰) from the Easter Salas-y-Gomez Seamount chain indicate that the end-member compositions have δD of ~ -30 ‰, similar to arc magmas and hydrated mantle wedge peridotites. In contrast, EM-type basalts from the North and South Atlantic have lower water concentrations and hydrogen isotopic compositions (δD of -55 to -70 ‰) lighter than non-EM-type basalts, but still heavier than N-MORB. Assuming enriched mantle components can be explained by "pollution" of depleted mantle with varying amounts and types of subduction-modified crustal materials, then these data suggest that the stable isotopic composition of the slab is buffered by rehydration and isotopic re-equilibration of crustal rocks as different lithologies progressively dehydrate during subduction. Dehydration of the slab cannot be modeled by simple Rayleigh distillation of a single reservoir. Thus, late-dehydrating phases such as serpentine, which resides deeper in the slab, will reset the stable isotopic compositions of overlying

  16. Discrimination of hydrothermally altered rocks along the Battle Mountain-Eureka, Nevada, mineral belt using Landsat images

    USGS Publications Warehouse

    Krohn, M. Dennis; Abrams, Michael J.; Rowan, Lawrence C.

    1978-01-01

    Landsat Multispectral Scanner (MSS) images of the northwestern part of the Battle Mountain-Eureki, Nevada mineral belt were evaluated for distinguishing hydrothermally altered rocks associated with porphyry copper and disseminated gold deposits. Detection of altered rocks from Landsat is based on the distinctive spectral reflectance of limonite present at coatings on weathered surfaces Some altered rocks are visible as bleached areas in individual MSS bands; however, they cannot be consistently distinguished from unaltered rocks with high albedo nor from bright areas resulting .from topographic slope. Black-and-white ratio images were generated to subdue .topographic effects, and three ratio images were composited in color to portray spectral radiance differences, forming an image known as a color-ratio composite (CRC). The optimum CRC image for this area has MSS 4/5 as blue, MSS 4/6 as yellow, and MSS 6/7 as magenta, and differs in two respects from most CRC images of arid areas. First, as a result of the increased vegetation cover in the study area, MSS 5/6 was replaced by MSS 4/6 as the yellow layer. Second, 70 mm positive transparencies were replaced by large format images (64 cm), thereby improving the internal registration of the CRC image and the effective spatial resolution. The pattern of limonitic rocks depicted in the CRC closely agrees with the mapped pattern of the alteration zones at the Copper Canyon and Copper Basin porphyry copper deposits. Certain west-facing topographic slopes in the altered areas are depicted as unaltered in the CRC, apparently due to atmospheric scattering, and illustrate the need for atmospheric correction. The disseminated gold deposits at Gold Acres and Tenabo are poorly represented in the CRC because of the general absence of limonite on these deposits. The presence of unaltered limonitic sedimentary and volcanic rocks is the largest obstacle to discriminating altered areas within the mineral belt. Reflectance spectra, made

  17. Chapter C: Hydrothermal Enrichment of Gallium in Zones of Advanced Argillic Alteration-Examples from the Paradise Peak and McDermitt Ore Deposits, Nevada

    USGS Publications Warehouse

    Rytuba, James J.; John, David A.; Foster, Andrea; Ludington, Steven D.; Kotlyar, Boris

    2003-01-01

    Gallium is produced as a byproduct from bauxite and zinc sulfide ores and rarely from primary Ga ores. High Ga contents (>60 ppm) can occur in zones of advanced argillic alteration consisting of alunite+kaolinite+quartz associated with quartz-alunite (high sulfidation Au-Ag) deposits. In a magmatic-hydrothermal environment, the zones of advanced argillic alteration associated with quartz-alunite (high sulfidation) Au-Ag deposits have the highest Ga contents (max 120 ppm). In these Au deposits, Ga is enriched in the zone of alunite+kaolinite alteration and depleted in the zone of quartz-rich alteration within acid-leached rocks. Peripheral zones of argillic alteration have Ga contents and Al/Ga ratios similar to those in unaltered volcanic rocks. The zones of advanced argillic alteration that formed in a steam-heated environment in association with hot-spring-type Hg-Au deposits are not Ga enriched, and residual silicified zones have very low Ga contents. The McDermitt Hg and Paradise Peak Au-Hg deposits, Nev., have zones of advanced argillic alteration that are Ga enriched. At the Paradise Peak Au-Hg deposits, Ga is enriched in the zone of alunite+jarosite alteration that formed in a magmatic-hydrothermal environment. Ga is depleted in the zone of opal+alunite alteration formed in a steam-heated environment, in residual silicified zones formed in a magmatic-hydrothermal environment, and in zones of supergene jarosite alteration. At the McDermitt Hg deposit, Ga is enriched in the zone of alunite+kaolinite alteration below the zone of adularia-quartz alteration that coincides with the Hg ore body. The spatial relation of Ga enrichment to alunite-kaolinite alteration suggests that formation in a magmatic-hydrothermal environment. X-ray-absorption spectra of Ga-enriched samples from the McDermitt Hg deposit are similar to that of gallium sulfate and support the association of Ga enrichment with alunite alteration.

  18. Seismic properties of rocks affected by hydrothermal alteration: a case study from the Lalor Lake VMS mining camp

    NASA Astrophysics Data System (ADS)

    Miah, K.; Bellefleur, G.; Schetselaar, E.

    2013-12-01

    Global demand of base metals, uranium, diamonds, and precious metals has been pushing technological barrier to find and extract minerals at higher depth, which was not feasible in just a few decades ago. Seismic properties of rocks containing and surrounding ore bodies have been useful in characterizing and modeling geologic structures, and mapping high-resolution images of ore bodies. Although seismic surveys and drill hole sonic and density logs are essential for mineral exploration at depth, limited availability of seismic logs to link rock properties of different ore forming geologic structure is a hindrance to seismic interpretations. Volcanogenic Massive Sulphides (VMS) are rich in minerals and of primary interests among geologists and mining industries alike. VMS deposits occur due to focused discharge of metal-enriched fluids associated in the hydrothermal alteration process, and are rich in Zn, Cu, Pb, Ag, Au, etc. Alteration halos surrounding ore deposits can be widespread, and their locations are easier to determine than the deposits within them. Physical rock properties affected by alteration can provide clues on type and potentially size of ore deposits in the surrounding area. In this context, variations in seismic properties of rocks due to hydrothermal alteration near the deposits can help in improving modeling accuracy, and better interpretation of seismic data for economic mineral exploration. While reflection seismic techniques can resolve ore bodies at higher depths than other conventional geophysical techniques, they are relatively expensive both in terms of field data acquisition and post-processing, especially for high-resolution 3D surveys. Acoustic impedance contrasts of ore lenses with their hosting rock environment; geometry, size and spatial location relative to the surface affect their detection with seismic data. Therefore, apriori knowledge of seismic rock properties from drill hole logs and core samples in the potential survey area

  19. Hydrothermal alteration of graywacke and basalt by 4 molal NaCl.

    USGS Publications Warehouse

    Rosenbauer, R.J.; Bischoff, J.L.; Radtke, A.S.

    1983-01-01

    Rock-water interaction experiments were carried out at 350oC and 500 bar at a 1/10 rock/fluid ratio using 4 molal NaCl brine. Reaction of brine and greywacke lead to the conversion of illite, dolomite and quartz to albite and smectite. In the process, the rock gained Na and released Ca, K, heavy metals and CO2 to solution. Metal mobilization was found to primarily depend on acidity which was produced by Na metasomatism and by dedolomitization. Reaction of brine and basalt produced only minor alteration in which some smectite and little albite formed. No significant acidity was produced nor did metals become mobilized. Production of acidity during albitization depends entirely on the phase being altered. Albitization of greywacke produces H+ whereas the albitization of basalt apparently consumes this ion. -J.E.S.

  20. Fluid inclusions and preliminary studies of hydrothermal alteration in core hole PLTG-1, Platanares geothermal area, Honduras

    USGS Publications Warehouse

    Bargar, K.E.

    1991-01-01

    The Platanares geothermal area in western Honduras consists of more than 100 hot springs that issue from numerous hot-spring groups along the banks or within the streambed of the Quebrada de Agua Caliente (brook of hot water). Evaluation of this geothermal area included drilling a 650-m deep PLTG-1 drill hole which penetrated a surface mantling of stream terrace deposits, about 550 m of Tertiary andesitic lava flows, and Cretaceous to lower Tertiary sedimentary rocks in the lower 90 m of the drill core. Fractures and cavities in the drill core are partly to completely filled by hydrothermal minerals that include quartz, kaolinite, mixed-layer illite-smectite, barite, fluorite, chlorite, calcite, laumontite, biotite, hematite, marcasite, pyrite, arsenopyrite, stibnite, and sphalerite; the most common open-space fillings are calcite and quartz. Biotite from 138.9-m depth, dated at 37.41 Ma by replicate 40Ar/39 Ar analyses using a continuous laser system, is the earliest hydrothermal mineral deposited in the PLTG-1 drill core. This mid-Tertiary age indicates that at least some of the hydrothermal alteration encountered in the PLTG-1 drill core occured in the distant past and is unrelated to the present geothermal system. Furthermore, homogenization temperatures (Th) and melting-point temperatures (Tm) for fluid inclusions in two of the later-formed hydrothermal minerals, calcite and barite, suggest that the temperatures and concentration of dissolved solids of the fluids present at the time these fluid inclusions formed were very different from the present temperatures and fluid chemistry measured in the drill hole. Liquid-rich secondary fluid inclusions in barite and caicite from drill hole PLTG-1 have Th values that range from about 20??C less than the present measured temperature curve at 590.1-m depth to as much as 90??C higher than the temperature curve at 46.75-m depth. Many of the barite Th measurements (ranging between 114?? and 265??C) plot above the

  1. Hydrothermal alteration products and stable isotope ratios of the Sulfur Creek Tuff; a window into the subsurface environment of the Yellowstone caldera in Yellowstone National Park, WY

    NASA Astrophysics Data System (ADS)

    Lonero, A.; Larson, P. B.

    2013-12-01

    The Yellowstone Caldera in northwest Wyoming is the site of active hydrothermal alteration. Hydrothermal activity relating to the Yellowstone hotspot has resulted in the alteration of rhyolites within the caldera. Specifically, the Seven Mile Hole area of the Grand Canyon of Yellowstone River provides an ideal location and opportunity to investigate the nature of the ongoing hydrothermal alteration. Here, erosion by the river has exposed a sequence of rocks which are host to hydrothermal fluids and are themselves significantly altered. Analyses of clay minerals and other alteration products, such as opal, has been undertaken in order to characterize and distinguish different zones of alteration. Hydrogen isotope ratios have been measured for the altered rock units within the Seven-Mile Hole area, and they range from -84.6 ‰ to -185.1 ‰ (VSMOW). Samples from this area commonly contain minerals such as kaolinite, illite, alunite, or buddingtonite, and the deuterium / hydrogen (D/H) ratios of these mineral phases are shown to vary considerably with respect to their location and elevation in the canyon. Additionally, oxygen isotope ratios have been measured on some samples in order to compare the samples' isotope values to the local meteoric water line. Plotting these samples in δD - δ18O space has shown that some values lie in a region trending away from the meteoric water line and along a "kaolinite line." This area is parallel to the array of Yellowstone hot spring fluids and a broad range of values are possible here depending on temperature of alteration. Furthermore, these data support a model where hydrothermal fluids flow upward through faults related to caldera collapse that are present in the sulfur creek tuff. This research may also show that the unique coloration patterns visible on the slopes of the Grand Canyon of Yellowstone can be, in part, explained as the result of both surface oxidation and hydrothermal alteration processes. Major element XRF

  2. Hydrothermal alteration features in the Vargeão basaltic impact structure (South Brazil): Implications about the presence of liquid water in Mars

    NASA Astrophysics Data System (ADS)

    Yokoyama, E.; Nédélec, A.; Baratoux, D.; Berger, G.; Trindade, R. I.

    2013-05-01

    This study presents new petrological data about the hydrothermal fluid percolation in impact craters. Impact cratering process is of primary importance in the evolution of solid bodies of the Solar System. However, impact craters on basaltic rocks, which are the best analog for the surface of other planets and satellites, are rare on Earth. Recently, one medium-size complex crater was identified on volcanic rocks of the Paraná basin (south Brazil), providing an additional analog for the craters of most rocky planets and satellites. The 12 km wide Vargeão is a complex impact structure formed on volcanics rocks of the Serra Geral Formation (about 133-131 Ma), which are locally intertrapped by aeolian-sandstones of Botucatu Formation. Vargeão is morphologically characterized by a well-preserved rim and a smoothed central uplift. The rim region is characterized by concentric gravitational faults that affect tholeiitic basalt flows hundreds of meters thick and rhyodacites few tens of meters thick. Associated with these faults occur the formation of local networks of small red breccia veins. The central uplift has fractured basaltic rocks that contain a lot of red oxidized breccias veins cutted by some white veins. This study is focused on the petrogenesis of these centimeter breccia veins that are found in all lithologies. We conducted a detailed petrological study (petrography, microprobe, SEM, Raman spectroscopy, Magnetic data, Spectroscopy of reflectance and XRD) on these veins and their host-rocks. Our results show that the veins were strongly affected by the post-impact hydrothermal fluids. The hydrothermal alteration varies geographically in the structure. On the rim area this alteration consists of total or partial substitution of the melt matrix by quartz, calcite, iron oxides, zeolites and clay minerals. At the central area, the alteration mineral assembly is composed of quartz, iron oxides, zeolites, clay minerals and rarely calcite. Usually, the alteration

  3. Oxygen and Hydrogen Isotope Values for Unaltered and Hydrothermally Altered Samples from the Cretaceous Linga Plutonic Complex of the Peruvian Coastal Batholith near Ica.

    NASA Astrophysics Data System (ADS)

    Gonzalez, L. U.; Holk, G. J.; Clausen, B. L.; Poma Porras, O. A.

    2015-12-01

    A portion of the Peruvian Coastal Batholith near Ica, Peru is being studied using stable isotopes to determine the source of hydrothermal fluids that caused propylitic, phyllic, and potassic alteration in the mineralized Linga plutonic complex. Sources of hydrothermal fluids and water/rock ratios are estimated to understand the role of such fluids in alteration during cooling. A set of 64 mineral analysis from 18 igneous samples, 7 unaltered and 11 altered, were analyzed for D/H and 18O/16O isotopes. The δ18O values for whole rocks with no apparent alteration vary from +6.8‰ to +7.9‰, with sets of δ18O mineral values indicating isotopic equilibrium at closure temperatures from 571°C to 651°C, and no interaction with meteoric water. This conclusion is bolstered by hornblende (-87‰ to -64‰) and biotite (-81‰ to -74‰) δD values Most δ18O values for samples with hydrothermal alteration suggest that alteration results from magmatic fluids; however, several analyses indicate interaction with other fluids. The high δ18O values for plagioclase (+9.3‰) and hornblende (+6.3‰) from a metamorphic aureole in volcanic host rock near a plutonic intrusion may be due to interaction with metamorphic or low temperature magmatic fluids. Plagioclase (+2.6‰) and biotite (+0.1‰) δ18O values in a sample from the Jurassic volcanic envelope indicate a significant effect from meteoric-hydrothermal fluids. An altered monzonite yielded δ18O values for quartz (+5.5‰), K-spar (+5.6‰), and magnetite (+0.4‰), also suggesting interaction with meteoric fluids. A diorite from an area with strong epidotization produced an epidote δD value of -25.8‰ and a monzonite from a highly veined area has an epidote δD value of -36.1‰ suggesting interaction with sea water. This new data indicate that the Linga complex was primarily influenced by magmatic hydrothermal fluids, but metamorphic, meteoric, and sea water may have had some influence in producing alteration

  4. Geochronology and Nd isotope geochemistry of the Gameleira Cu-Au deposit, Serra dos Carajás, Brazil: 1.8-1.7 Ga hydrothermal alteration and mineralization

    NASA Astrophysics Data System (ADS)

    Pimentel, Márcio M.; Lindenmayer, Zara G.; Laux, Jorge H.; Armstrong, Richard; de Araújo, Janice Caldas

    2003-01-01

    The Gameleira deposit is one of several important Cu-Au deposits associated with the late Archean (ca. 2.7 Ga) volcanic rocks of the Itacaiúnas supergroup in the Carajás mineral province, southeastern Pará. It comprises mainly biotite- and sulphide-rich veins and quartz-grunerite-biotite-gold hydrothermal veins that cut andesitic rocks. It is interpreted as representative of the Fe oxide Cu-Au class of deposit. Sm-Nd isotopic data indicate an age of 2719±80 Ma (MSWD=3.0) and ɛNd( T) of -1.4 for the host meta-andesites. Metavolcanic rocks and cogenetic gabbros give an age of 2757±81 Ma (1 σ) with ɛNd( T) of -0.8. This is considered the best estimate for the crystallization age of the Gameleira volcanic and subvolcanic rocks. Negative ɛNd( T) and Archean TDM model ages (mostly between 2.8 and 3.1 Ga) suggest some contamination with older crustal material. The andesitic/gabbroic rocks are cut by two generations of granite dykes. The older has striking petrographic and geochemical similarities to the ca. 1.87 Ga alkali-rich Pojuca granite, which is exposed a few kilometers to the northwest of the deposit. The younger is a leucogranite with a U-Pb SHRIMP age of 1583+9/-7 Ma. Neodymium isotopic analyses of the two generations of granites indicate a strong crustal affinity and possible derivation from reworking of the Archean crust. The quartz-grunerite-gold hydrothermal vein yields a Sm-Nd isochron (MSWD=.83) age of 1839±15 Ma (1 σ) with ɛNd( T) of -9.2. Pervasive potassic alteration, represented by the widespread formation of biotite in the country rocks, is dated by Ar-Ar at 1734±8 Ma, and a similar age of 1700±31 Ma (1 σ) is indicated by the Sm-Nd isochron for the biotite-sulphide veins. Similar to that for the quartz-grunerite vein, the ɛNd( T) value for the sulphide-rich veins is strongly negative (-8.2), thereby suggesting that the original fluids percolated through, leached, or were derived from igneous rocks with an Archaean Nd isotopic signature

  5. Chemical Variations in the Rocks of La Primavera Geothermal Field (Mexico) Related with Hydrothermal Alteration

    SciTech Connect

    Prol-Ledesma, R.M.; Hernandez-Lombardini, S.I.; Lozano-Santa Cruz, R.

    1995-01-01

    The origin and fate of the components dissolved in the geothermal fluids are of great importance in the study of epithermal deposits, and in the environmental considerations for exploitation of geothermal fields. The chemical study of La Primavera geothermal field in Mexico has environmental importance due to the high arsenic concentration observed in the thermal water and the possible contamination of aquifers in the area. The variations in the chemistry of all altered samples with respect to unaltered samples indicates depletion of manganese, and the alkalis; and enrichment in iron and magnesium. Most samples show an enrichment in aluminum and titanium, and depletion in silica and calcium. Trace elements follow different trends at various depths: shallow depths are more favorable for deposition of the analyzed trace elements than the surface or the deep part of the reservoir.

  6. Mass change calculations of hydrothermal alterations within the volcanogenic metasediments hosted Cu-Pb (-Zn) mineralization at Halilar area, NW Turkey

    NASA Astrophysics Data System (ADS)

    Kiran Yildirim, Demet; Abdelnasser, Amr; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Halilar Cu-Pb (-Zn) mineralization that is formed in the volcanogenic metasediments of Bagcagiz Formation at Balikesir province, NW Turkey, represents locally vein-type deposit as well as restricted to fault gouge zone directed NE-SW along with the lower boundary of Bagcagiz Formation and Duztarla granitic intrusion in the study area. Furthermore, This granite is traversed by numerous mineralized sheeted vein systems, which locally transgress into the surrounding metasediments. Therefore, this mineralization closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The ore mineral assemblage includes chalcopyrite, galena, and some sphalerite with covellite and goethite formed during three phases of mineralization (pre-ore, main ore, and supergene) within an abundant gangue of quartz and calcite. The geologic and field relationships, petrographic and mineralogical studies reveal two alteration zones occurred with the Cu-Pb (-Zn) mineralization along the contact between the Bagcagiz Formation and Duztarla granite; pervasive phyllic alteration (quartz, sericite, and pyrite), and selective propylitic alteration (albite, calcite, epidote, sericite and/or chlorite). This work, by using the mass balance calculations, reports the mass/volume changes (gain and loss) of the chemical components of the hydrothermal alteration zones associated with Halilar Cu-Pb (-Zn) mineralization at Balikesir area (Turkey). It revealed that the phyllic alteration has enrichments of Si, Fe, K, Ba, and LOI with depletion of Mg, Ca, and Na reflect sericitization of alkali feldspar and destruction of ferromagnesian minerals. This zone has high Cu and Pb with Zn contents represents the main mineralized zone. On the other hand, the propylitic zone is characterized by addition of Ca, Na, K, Ti, P, and Ba with LOI and Cu (lower content) referring to the replacement of plagioclase and ferromagnesian minerals by albite, calcite, epidote, and sericite

  7. Distribution of Potential Hydrothermally Altered Rocks in Central Colorado Derived From Landsat Thematic Mapper Data: A Geographic Information System Data Set

    USGS Publications Warehouse

    Knepper, Daniel H.

    2010-01-01

    As part of the Central Colorado Mineral Resource Assessment Project, the digital image data for four Landsat Thematic Mapper scenes covering central Colorado between Wyoming and New Mexico were acquired and band ratios were calculated after masking pixels dominated by vegetation, snow, and terrain shadows. Ratio values were visually enhanced by contrast stretching, revealing only those areas with strong responses (high ratio values). A color-ratio composite mosaic was prepared for the four scenes so that the distribution of potentially hydrothermally altered rocks could be visually evaluated. To provide a more useful input to a Geographic Information System-based mineral resource assessment, the information contained in the color-ratio composite raster image mosaic was converted to vector-based polygons after thresholding to isolate the strongest ratio responses and spatial filtering to reduce vector complexity and isolate the largest occurrences of potentially hydrothermally altered rocks.

  8. A Conspicuous Clay Ovoid in Nakhla: Evidence for Subsurface Hydrothermal Alteration on Mars with Implications for Astrobiology

    PubMed Central

    Haigh, Sarah; Lyon, Ian

    2014-01-01

    Abstract A conspicuous biomorphic ovoid structure has been discovered in the Nakhla martian meteorite, made of nanocrystalline iron-rich saponitic clay and amorphous material. The ovoid is indigenous to Nakhla and occurs within a late-formed amorphous mesostasis region of rhyolitic composition that is interstitial to two clinopyroxene grains with Al-rich rims, and contains acicular apatite crystals, olivine, sulfides, Ti-rich magnetite, and a new mineral of the rhoenite group. To infer the origin of the ovoid, a large set of analytical tools was employed, including scanning electron microscopy and backscattered electron imaging, wavelength-dispersive X-ray analysis, X-ray mapping, Raman spectroscopy, time-of-flight secondary ion mass spectrometry analysis, high-resolution transmission electron microscope imaging, and atomic force microscope topographic mapping. The concentric wall of the ovoid surrounds an originally hollow volume and exhibits internal layering of contrasting nanotextures but uniform chemical composition, and likely inherited its overall shape from a preexisting vesicle in the mesostasis glass. A final fibrous layer of Fe-rich phases blankets the interior surfaces of the ovoid wall structure. There is evidence that the parent rock of Nakhla has undergone a shock event from a nearby bolide impact that melted the rims of pyroxene and the interstitial matter and initiated an igneous hydrothermal system of rapidly cooling fluids, which were progressively mixed with fluids from the melted permafrost. Sharp temperature gradients were responsible for the crystallization of Al-rich clinopyroxene rims, rhoenite, acicular apatites, and the quenching of the mesostasis glass and the vesicle. During the formation of the ovoid structure, episodic fluid infiltration events resulted in the precipitation of saponite rinds around the vesicle walls, altered pyrrhotite to marcasite, and then isolated the ovoid wall structure from the rest of the system by depositing a

  9. Formation of Hematite fine crystals by hydrothermal alteration of synthetic Martian basalt, static and fluid flow experiments

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Isobe, H.

    2011-12-01

    Exploration made by Martian rovers and probes provided enormous information on the composition of the Martian surface materials. Origin and formation processes of the Martian surface materials should be various depending on topography and history of the Martian crust. Especially, iron minerals in the Martian soil should have essential role to characterize surface environment of the "red planet". In the present study, experimental reproduction of the Martian soil was carried out by hydrothermal alteration of the synthetic iron-rich basaltic rock. Experimental conditions for temperature and fluid composition followed Isobe and Yoshizawa (2010). Static alteration experiments are carried out at 100 °C and 150 °C, and mass ratio of the starting material to the pH1.0 sulfuric acid solution is 1:50. Run durations are 1, 2, 4 or 8 weeks. Appropriate mass of dry ice was sealed in the experimental vessels to expel atmospheric oxygen with CO2. For the static experiments, powdered starting materials were charged in PFA vial to keep textures of the run products. For the fluid flow experiments, we constructed closed loop with Teflon tube inclined approximately 45°. One of the vertical tube is charged with crushed synthetic basalt and heated approximately 150°C by aluminum block with ribbon heater. Surlfuric acid solution flows through the tube from bottom to top and cooled at the end of the aluminum block. Cooled solution returns to the bottom of the heated tube through another vertical tube without heating block. In the static condition run products, characteristic iron mineral particles are formed for 100°C and 150°C concordant with Isobe and Yoshizawa (2010). These iron minerals distributed not only inside the starting material powder but also on the surface of the reaction vessel and the PFA vial in the reactive solution. The surface of the reaction vessel shows orange and reddish color on 100°C and 150°C run products, respectively. By SEM observation, dissolution of

  10. Evaluation of 0.46- to 2.36-micrometre multispectral scanner images of the East Tintic mining district, Utah, for mapping hydrothermally altered rocks.

    USGS Publications Warehouse

    Rowan, L.C.; Kahle, A.B.

    1982-01-01

    Airborne multispectral scanner images recorded in the 0.46 to 2.36 micrometre region for the E Tintic mining district, Utah, were evaluated to determine their usefulness for distinguishing six types of hydrothermally altered rocks from a wide range of sedimentary and igneous rock types. The laboratory and field evaluation of a color ratio composite image, supported by in situ spectral reflectance measurements and an alteration map compiled from a published map, shows that silicified, argillized, and pyritized rocks can be mapped in detail utilizing an intense OH absorption band centered near 2.2 micrometre. This absorption band is absent or weak in most of the unaltered rocks. -from Authors

  11. Near-bottom magnetic surveys around hydrothermal sites in the southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Nogi, Y.; Mochizuki, N.; Okino, K.; Asada, M.

    2011-12-01

    Near-bottom magnetic survey is an effective method to reveal detailed magnetic anomaly features of seafloor. The measurements of three-components of the geomagnetic field by using AUV "URASHIMA" were conducted during the YK-09-08 cruise in the southern Mariana Trough in order to detect signals of hydrothermally altered rocks. During the cruise, vector geomagnetic field are successfully obtained along the all dive tracks with the information of the vehicle's attitude. Total intensities of geomagnetic field by the overhauser magnetometer were also conducted, but the data are only collected along almost E-W oriented observation lines due to the sensitivity of the sensor. The distribution of crustal magnetization are estimated using downward component of magnetic anomalies by the inversion method. The distribution of low crustal magnetization are almost coincide with the area around hydrothermal vent sites from on ridge to off ridge area, and most likely indicate signs of hydrothermally altered rocks. The distribution of low crustal magnetization on ridge are almost parallel to the the strike of ridge axis implying tectonic control of hydrothermal vent sites.

  12. Hydrothermal alteration and melting of the crust during the Columbia River Basalt-Snake River Plain transition and the origin of low-δ18O rhyolites of the central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Colón, Dylan P.; Bindeman, Ilya N.; Ellis, Ben S.; Schmitt, Axel K.; Fisher, Christopher M.

    2015-05-01

    We present compelling isotopic evidence from ~15 Ma rhyolites that erupted coeval with the Columbia River Basalts in southwest Idaho's J-P Desert and the Jarbidge Mountains of northern Nevada at that suggests that the Yellowstone mantle plume caused hydrothermal alteration and remelting of diverse compositions of shallow crust in the area where they erupted. These rhyolites also constitute the earliest known Miocene volcanism in the vicinity of the Bruneau-Jarbidge and Twin Falls (BJTF) volcanic complexes, a major center of voluminous (103-104 km3) low-δ18O rhyolitic volcanism that was previously defined as being active from 13 to 6 Ma. The Jarbidge Rhyolite has above-mantle δ18O (δ18O of +7.9‰ SMOW) and extremely unradiogenic εHf (- 34.7) and εNd (- 24.0). By contrast, the J-P Desert units are lower in δ18O (+4.5 to 5.8‰), and have more moderately unradiogenic whole-rock εHf (- 20.3 to - 8.9) and εNd (- 13.4 to - 7.7). The J-P Desert rhyolites are geochemically and petrologically similar to the younger rhyolites of the BJTF center (the one exception being their high δ18O values), suggesting a common origin for J-P Desert and BJTF rhyolites. The presence of low-δ18O values and unradiogenic Nd and Hf isotopic compositions, both of which differ greatly from the composition of a mantle differentiate, indicate that some of these melts may be 50% or more melted crust by volume. Individual J-P Desert units have isotopically diverse zircons, with one lava containing zircons ranging from - 0.6‰ to + 6.5‰ in δ18O and from - 29.5 to - 2.8 in εHf. Despite this diversity, zircons all have Miocene U/Pb ages. The range of zircon compositions fingerprints the diversity of their source melts, which in turn allow us to determine the compositions of two crustal end-members which melted to form these rhyolites. These end-members are: 1) Archean basement with normal to high-δ18O and unradiogenic εHf and 2) hydrothermally altered, shallow, young crust with low

  13. Application of MAC-Europe AVIRIS data to the analysis of various alteration stages in the Landdmannalauger Hydrothermal Area (South Iceland)

    NASA Technical Reports Server (NTRS)

    Sommer, S.; Loercher, G.; Endres, S.

    1993-01-01

    In June 1991 extensive airborne remote sensing data-sets have been acquired over Iceland in the framework of the joint NASA/ESA Multisensor Airborne Campaign Europe (MAC-Europe). The study area is located within the Torfajokull central volcanic complex in South Iceland. This complex is composed by anomalously abundant rhyolitic acid volcanics, which underwent intensive hydrothermal alteration. Detailed studies of surface alteration of rhyolitic rocks in the area showed that all the major elements are leached as the rock is affected by complex mineralogical changes. Montmorillonite appears during the earliest stages of alteration. In the ultimate alteration product montmorillonite is absent and the rock consists mostly of amorphous silica, anatase, up to a volume of 50% kaolinite and variable amounts of native sulphur and pyrite. The case study presented shall endeavor to assess the potential of MAC-Europe AVIRIS and TMS data in determining a possible zonation of hydrothermal alteration in relationship to the active geo-thermal fields and structural features. To this end, the airborne data is analysed in comparison with laboratory spectral measurements of characteristics rock, soil, and vegetation samples collected in the study areaduring the summer of 1992. Various spectral mapping algorithms as well as unmixing approaches are tested and evaluated. Detailed geological and structural mapping as well as geochemical analysis of the main rock and soil types were performed to underpin the analysis of the airborne data.

  14. Episodic intrusion, internal differentiation, and hydrothermal alteration of the miocene tatoosh intrusive suite south of Mount Rainier, Washington

    USGS Publications Warehouse

    du Bray, E.A.; Bacon, C.R.; John, D.A.; Wooden, J.L.; Mazdab, F.K.

    2011-01-01

    The Miocene Tatoosh intrusive suite south of Mount Rainier is composed of three broadly granodioritic plutons that are manifestations of ancestral Cascades arc magmatism. Tatoosh intrusive suite plutons have individually diagnostic characteristics, including texture, mineralogy, and geochemistry, and apparently lack internal contacts. New ion-microprobe U-Pb zircon ages indicate crystallization of the Stevens pluton ca. 19.2 Ma, Reflection-Pyramid pluton ca. 18.5 Ma, and Nisqually pluton ca. 17.5 Ma. The Stevens pluton includes rare, statistically distinct ca. 20.1 Ma zircon antecrysts. Wide-ranging zircon rare earth element (REE), Hf, U, and Th concentrations suggest late crystallization from variably evolved residual liquids. Zircon Eu/Eu*-Hf covariation is distinct for each of the Reflection-Pyramid, Nisqually, and Stevens plutons. Although most Tatoosh intrusive suite rocks have been affected by weak hydrothermal alteration, and sparse mineralized veins cut some of these rocks, significant base or precious metal mineralization is absent. At the time of shallow emplacement, each of these magma bodies was largely homogeneous in bulk composition and petrographic features, but, prior to final solidification, each of the Tatoosh intrusive suite plutons developed internal compositional variation. Geochemical and petrographic trends within each pluton are most consistent with differential loss of residual melt, possibly represented by late aplite dikes or erupted as rhyolite, from crystal-rich magma. Crystal-rich magma that formed each pluton evidently accumulated in reservoirs below the present level of exposure and then intruded to a shallow depth. Assembled by episodic intrusion, the Tatoosh intrusive suite may be representative of midsized composite plutonic complexes beneath arc volcanoes. ?? 2011 Geological Society of America.

  15. Listvenite from the Oman Ophiolite: complete carbonation of peridotite during hydrothermal alteration by CO2-rich fluids

    NASA Astrophysics Data System (ADS)

    Streit, E.; Kelemen, P. B.; Eiler, J. M.; Goldstein, S. L.

    2012-12-01

    Hydrothermal alteration of peridotite in the Oman Ophiolite has resulted in the formation of listvenite, characterized by complete carbonatization, in which all of the Mg and Ca and much of the Fe has been incorporated into carbonate minerals. Here we examine chemical and isotopic evidence for the temperatures, timing, and fluid composition involved in the formation of this listvenite. Listvenites occur within 500m of the basal thrust of the ophiolite, frequently along the contact with underlying metasediments, but also as tabular bodies or bands, ~5-100m thick, within partially serpentinized peridotite. The listvenites are composed primarily of magnesite (and/or dolomite) + quartz + relict Cr-spinel. Clumped isotope data from magnesite and dolomite suggest that carbonate phases within the listvenite formed at peak temperatures ~150-170C. At these temperatures, thermodynamic stability of the magnesite + quartz assemblage (relative to talc + magnesite) requires that these minerals formed at relatively high PCO2. These CO2-rich fluids were likely derived from metamorphic dehydration of the underlying sediment during emplacement of the ophiolite. Carbon and oxygen stable isotopes are fairly uniform between listvenite samples and are consistent with values in some of the underlying metasediments. Initial 87Sr/86Sr values in the listvenite vary from 0.7085 to 0.7135, mostly significantly higher than seawater values, and are consistent with values within the underlying metasediments, suggesting mass-transfer. Trace and major element patterns are also suggestive of mass-transfer from underlying clastic sediments and limestones. Although the major mineral assemblages do not vary much between samples, bulk composition indicates that some listwanites have undergone significant silicification in addition to carbonation, while others have undergone very little mass transfer beyond the addition of CO2.

  16. The changing microstructural arrangement of graphite during deformation and hydrothermal alteration of amphibolite-facies mylonite, Alpine Fault, New Zealand.

    NASA Astrophysics Data System (ADS)

    Kirilova, M.; Toy, V.; Timms, N.; Craw, D.; Little, T. A.; Halfpenny, A.; Beyssac, O.

    2015-12-01

    Graphitisation in a convergent plate boundary setting, such as the Alpine Fault, New Zealand, is associated both with fault weakening and orogenic gold mineralisation. Previously, these processes have been investigated in rocks that experienced mineralisation at maximum of greenschist-facies conditions. However, metals are most mobile at upper greenschist- to amphibolite-facies. We examine the microstructural record of mobilisation of graphite at these conditions due to dislocation and diffusion creep in the Alpine Fault zone and as a function of varying shear strain magnitude. We have mapped graphite distribution across a strain gradient in samples, recovered from Deep Fault Drilling Project (DFDP) boreholes, by using reflected light and scanning electron microscopy. Raman spectrometry was used to determine the degree of maturity of the carbonaceous material. In the schists and protomylonites, graphite occurs as very fine (1-5μm), dusty grains, dispersed as inclusions in the main mineral phases (quartz, anorthite, muscovite, biotite). Further into the mylonite zone, the modal proportion of graphite increases and it forms clusters and trains, aligned with the foliation. In the brittlely-deformed rocks (cataclasites and gouges on or near the fault principal slip zone) graphite is most abundant (<50%), occurring as clusters and shear plane parallel trains. We infer shear deformation under both ductile and brittle conditions concentrates the graphite. Independent evidence demonstrates fluid transport and consequent alteration was most important in the brittlely deformed rocks (Sutherland et al., 2012, Geology 40, 1143; Schleicher et al., in press. N.Z.J.Geol&Geophys). We thus infer hydrothermal enrichment caused graphite remobilization, re-deposition, and enrichment in structurally controlled microstructural sites. We will discuss implications of these microstructural and mineralogical changes for strain localisation and deformation-induced permeability.

  17. Correlation of wireline log characteristics with hydrothermal alteration and other reservoir properties of the Salton Sea and Westmorland geothermal fields, Imperial Valley, California, USA

    SciTech Connect

    Muramoto, F.S.; Elders, W.A.

    1984-05-01

    A detailed study of wireline logs from 11 wells in the Salton Sea and Westmorland geothermal systems was undertaken in order to determine the effects of hydrothermal alteration on the response of electrical and gamma-gamma density well logs. For the Salton Sea geothermal field, definite correspondence between log responses and hydrothermal mineralogy is evident, which in turn is related to the physical properties of the rocks. Three hydrothermal and one unaltered zone can be identified from log data on shales. These are: (1) the unaltered montmorillonite zone (<100/sup 0/ to 190/sup 0/C); (2) the illite zone (100/sup 0/ to 190/sup 0/C to 230/sup 0/ to 250/sup 0/C); (3) the chlorite zone (230/sup 0/ to 250/sup 0/C to 290/sup 0/ to 300/sup 0/C); and (4) the feldspar zone (>290/sup 0/ to 300/sup 0/C). The characteristic responses on well logs by which these zones are identified result primarily from changes in clay mineralogy of the shales and increases in density with progressive hydrothermal metamorphism. In the Westmorland geothermal field, differentiating mineral zones from log responses was only partially successful. However, analyses of both well log and petrologic data for wells Landers 1 and Kalin Farms 1 suggest that the former is heating up and the latter is cooling.

  18. Identification and characterization of hydrothermally altered zones in granite by combining synthetic clay content logs with magnetic mineralogical investigations of drilled rock cuttings

    NASA Astrophysics Data System (ADS)

    Meller, Carola; Kontny, Agnes; Kohl, Thomas

    2014-10-01

    Clay minerals as products of hydrothermal alteration significantly influence the hydraulic and mechanical properties of crystalline rock. Therefore, the localization and characterization of alteration zones by downhole measurements is a great challenge for the development of geothermal reservoirs. The magnetite bearing granite of the geothermal site in Soultz-sous-Forêts (France) experienced hydrothermal alteration during several tectonic events and clay mineral formation is especially observed in alteration halos around fracture zones. During the formation of clay minerals, magnetite was oxidized into hematite, which significantly reduces the magnetic susceptibility of the granite from ferrimagnetic to mostly paramagnetic values. The aim of this study was to find out if there exists a correlation between synthetic clay content logs (SCCLs) and measurements of magnetic susceptibility on cuttings in the granite in order to characterize their alteration mineralogy. Such a correlation has been proven for core samples of the EPS1 reference well. SCCLs were created from gamma ray and fracture density logs using a neural network. These logs can localize altered fracture zones in the GPK1-4 wells, where no core material is available. Mass susceptibility from 261 cutting samples of the wells GPK1-GPK4 was compared with the neural network derived synthetic logs. We applied a combination of temperature dependent magnetic susceptibility measurements with optical and electron microscopy, and energy dispersive X-ray spectroscopy to discriminate different stages of alteration. We found, that also in the granite cuttings an increasing alteration grade is characterized by an advancing oxidation of magnetite into hematite and a reduction of magnetic susceptibility. A challenge to face for the interpretation of magnetic susceptibility data from cuttings material is that extreme alteration grades can also display increased susceptibilities due to the formation of secondary magnetite

  19. Near-axis crustal structure and thickness of the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Soule, Dax; Wilcock, William S. D.; Toomey, Douglas R.; Hooft, Emilie E. E.; Weekly, Robert T.

    2016-06-01

    A model of crustal thickness and lower crustal velocities is obtained for crustal ages of 0.1-1.2 Ma on the Endeavour Segment of the Juan de Fuca Ridge by inverting travel times of crustal paths and non-ridge-crossing wide-angle Moho reflections obtained from a three-dimensional tomographic experiment. The crust is thicker by 0.5-1 km beneath a 200 m high plateau that extends across the segment center. This feature is consistent with the influence of the proposed Heckle melt anomaly on the spreading center. The history of ridge propagation on the Cobb overlapping spreading center may also have influenced the formation of the plateau. The sharp boundaries of the plateau and crustal thickness anomaly suggest that melt transport is predominantly upward in the crust. Lower crustal velocities are lower at the ends of the segment, likely due to increased hydrothermal alteration in regions influenced by overlapping spreading centers, and possibly increased magmatic differentiation.

  20. Rhyolite genesis at the Picabo Volcanic Center of the Snake River Plain: Progressive recycling of hydrothermally altered rhyolites revealed by high resolution analysis of individual zircons

    NASA Astrophysics Data System (ADS)

    Drew, D.; Bindeman, I. N.; Watts, K. E.; Schmitt, A. K.; McCurry, M. O.

    2012-12-01

    The Picabo eruptive center of the Snake River Plain (SRP) produced a series of normal and low δ18O rhyolites from 10.44 Ma to 6.62 Ma, providing the first evidence of progressive recycling of hydrothermally altered rhyolites during the formation of a caldera complex. In this study we present a characterization of ignimbrites and associated lavas based on U-Pb ages and δ18O compositions of individual zircon cores measured by ion microprobe, phenocryst δ18O values measured by laser fluorination, whole rock 87Sr/86Sr and 143Nd/144Nd compositions, and whole rock geochemistry. Our data define rhyolite genesis at the Picabo volcanic center through time and have implications for the transition between volcanic centers. Caldera complex evolution at Picabo began with eruption of the 10.44 ± 0.27 Ma Tuff of Arbon Valley (TAV), a chemically zoned unit with a normal δ18Omelt value (8.15‰), very high 87Sr/86Sr (up to 0.734430) and very low ɛNd (-18). Eruptions continued with the ~9.1 Ma Two-and-a-Half-Mile Rhyolite (Kellogg et al., 1988), a unit significant in that it has an even lower ɛNd than the TAV and a normal δ18Omelt value (8.10‰). This low ɛNd of -23, of the Two-and-a-Half-Mile Rhyolite, reveals that greater than 40% of Archean crust was assimilated. These normal δ18O eruptions were followed by a series of lower δ18O eruptions distinguishable by Sr and Nd isotopes and whole rock chemistry. The 8.25 ± 0.26 Ma Rhyolite of West Pocatello has the lowest δ18Omelt value (3.34‰) of these eruptions, and based on nearly identical age, 87Sr/86Sr, 143Nd/144Nd, and whole rock chemistry, we correlate it to a 1,000 m thick intracaldera tuff (present in the INEL drillcore). Along with a distinct decrease in δ18O, from the TAV to the Rhyolite of West Pocatello, there is a corresponding increase in δ18Ozircon heterogeneity from the TAV (1‰ variation) to the low δ18O units with the greatest δ18Ozircon diversity (up to 5‰). Although morphological evidence for

  1. High-resolution near-bottom vector magnetic anomalies over Raven Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Tivey, Maurice A.; Johnson, H. Paul; Salmi, Marie S.; Hutnak, Michael

    2014-10-01

    High-resolution, near-bottom vector magnetic data were collected by remotely operated vehicle Jason over the Raven hydrothermal vent field (47°57.3'N 129°5.75'W) located north of Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. The survey was part of a comprehensive heat flow study of the Raven site using innovative thermal blanket technology to map the heat flux and crustal fluid pathways around a solitary hydrothermal vent field. Raven hydrothermal activity is presently located along the western axial valley wall, while additional inactive hydrothermal deposits are found to the NW on the upper rift valley wall. Magnetic inversion results show discrete areas of reduced magnetization associated with both active and inactive hydrothermal vent deposits that also show high conductive heat flow. Higher spatial variability in the heat flow patterns compared to the magnetization is consistent with the heat flow reflecting the currently active but ephemeral thermal environment of fluid flow, while crustal magnetization is representative of the static time-averaged effect of hydrothermal alteration. A general NW to SE trend in reduced magnetization across the Raven area correlates closely with the distribution of hydrothermal deposits and heat flux patterns and suggests that the fluid circulation system at depth is likely controlled by local crustal structure and magma chamber geometry. Magnetic gradient tensor components computed from vector magnetic data improve the resolution of the magnetic anomaly source and indicate that the hydrothermally altered zone directly beneath the Raven site is approximately 15 × 106 m3 in volume.

  2. Complex hydrothermal alteration and illite K-Ar ages in Upper Visean molasse sediments and magmatic rocks of the Variscan Badenweiler-Lenzkirch suture zone, Black Forest, Germany

    NASA Astrophysics Data System (ADS)

    Brockamp, Olaf; Schlegel, Andreas; Wemmer, Klaus

    2015-04-01

    Post-collisional Upper Visean molasse sediments and magmatic rocks of the Badenweiler-Lenzkirch Zone reveal by microscopy of thin sections different degrees of hydrothermal illitization of feldspar and mica particles, and XRD, IR and XRF data of the <2 µm fractions show illitic material as the dominant clay mineral consisting of a mixture of 1M and 2M1 polytypes. Moreover, small amounts of illite/smectite mixed-layer minerals of R1-ordering are proved in the granites. In the separates, two illite mixing lines with different Fe + Mg contents are verified between authigenic illite from feldspar alteration and detrital illite in the molasse sediments, as well as between authigenic illite from feldspar alteration and altered mica flakes in the granites. Fe-rich detrital chlorite is present within the molasse sediments, while mixtures of high aluminous Fe-poor dioctahedral/di-trioctahedral chlorite with randomly interstratified chlorite/smectite mixed-layer minerals are formed from feldspar alteration in the granites. Illite K-Ar dating of the <2 and <0.63 µm fractions yields hydrothermal illitization of feldspar and partial resetting of the K-Ar system of detrital illite and mica flakes in the molasse sediments at ≥200 °C during Upper Permian to Middle Triassic times, while the granites in the eastern part of the study area were not altered contemporaneously. In contrast, hydrothermal activity at ≤200 °C during Upper Jurassic to Lower Cretaceous times occurred in the granites, whereas these temperatures were too low for resetting the older `Permo-Triassic' illite K-Ar ages in the molasse rocks. Within both K-Ar age clusters, the data are seen to decrease with grain size and portion of illite 2M1 polytype. The alteration phenomena indicate multiple hydrothermal episodes in the study area, and they match those from the Central and Western European crust as fluid supply was controlled geodynamically by episodic break up of Pangea.

  3. Hydrothermal alteration of a chevkinite-group mineral to a bastnäsite-(Ce)-ilmenite- columbite-(Fe) assemblage: interaction with a F-, CO2-rich fluid

    NASA Astrophysics Data System (ADS)

    Macdonald, Ray; Bagiński, Bogusław; Kartashov, Pavel M.; Zozulya, Dmitry; Dzierżanowski, Piotr; Jokubauskas, Petras

    2015-12-01

    The results are presented of a textural and mineral chemical study of a previously undescribed type of hydrothermal alteration of chevkinite-(Ce) which occurs in a syenitic pegmatite from the Vishnevye Mountains, Urals Region, Russia. The progressive alteration of the chevkinite to a bastnäsite-(Ce)-ilmenite-columbite-(Fe) assemblage through a series of texturally complex intermediate stages is described and electron microprobe analyses are given of all the major phases. Unusual Nb ± Th-rich phases formed late in the alteration sequence provide evidence of local Nb mobility. The main compositional fluxes are traced, especially of the REE, HFSE, Th and U. It appears that almost all elements, with the exception of La, released from the chevkinite-(Ce) were reincorporated into later phases, such that they did not leave the alteration crust in significant amounts. The hydrothermal fluids are inferred to have been F- and CO2-rich, with variable levels of Ca activity, and with fO2 mainly between the nickel-nickel oxide and magnetite-hematite buffers. This occurrence represents a new paragenesis for a columbite-group mineral.

  4. Gamma ray spectrometry for recognition of hydrothermal alteration zones related to a low sulfidation epithermal gold mineralization (eastern Pontides, NE Türkiye)

    NASA Astrophysics Data System (ADS)

    Maden, Nafiz; Akaryalı, Enver

    2015-11-01

    This study presents an interpretation of radiospectrometric and magnetic data of Arzular mineralization site, which is one of the best examples for epithermal gold deposits located in the southern zone of the Eastern Pontides (NE Türkiye). Potassium is generally the most useful pathfinder element for gold mineralization zones because of its high level in altered rock surrounding the deposits. Where gold is hosted within quartz veins, typically the vein is low in the radioelements, but the hydrothermally altered host rocks will usually have a distinct radioelement signature useful for exploration. In this study, magnetic, susceptibility and radiospectrometric survey data radiometric signatures associated with the host rocks favorable for the mineralization, enhancing techniques such as the ratio maps as well as potassium (%K), equivalent thorium (eTh ppm) and equivalent uranium (eU ppm) maps were utilized. Our analysis showed that the gold mineralization associated with the alteration is significantly related to increase in potassium, due to adularia, a low T K-feldspar, and decreases in uranium and thorium due to the hydrothermal alteration and magmatic intrusion processes during the regional tectonic activities.

  5. Geology, mineralization, and hydrothermal alteration and relationships to acidic and metal-bearing surface waters in the Palmetto Gulch area, southwestern Colorado

    USGS Publications Warehouse

    Bove, Dana J.; Kurtz, Jeffrey P.; Wright, Winfield G.

    2002-01-01

    The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate these anthropogenic and potential natural sources of acidity and metals, we mapped the geology, veins, and hydrothermally altered areas; conducted mine dump leachate studies; and collected reconnaissance water quality data. Several small abandoned mines are present in the Palmetto Gulch area that produced small amounts of relatively high-grade silver ore from fault-controlled polymetallic vein deposits. These veins are hosted in lavas, breccias, and related volcaniclastic sediments that ponded within the 28 Ma San Juan-Uncompahgre caldera complex. These rock units generally have conformable contacts and have shallow dips to the northwest. Lava flows of pyroxene andesite, which host the Roy-Pray mine, are massive near their base and typically grade upward into tightly jointed rock with 2-15 cm joint spacing. In general, most hydrothermally altered rock within the Palmetto Gulch area is restricted to envelopes surrounding the mineralized veins and faults. Composite zones of vein-related alteration vary from about 50 to 80 m wide along the high ridgelines and narrow to less than 10 to 15 m beneath an elevation of about 5,462 m. Where unaffected by surficial oxidation, these altered zones contain as much as 7 to 10 volume percent finely-disseminated pyrite. The majority of rocks in the area were affected by regional and vein-related propylitic alteration. These greenish-colored rocks have alteration products consisting of chlorite, illite, and calcite; and feldspars are typically weakly altered. Most of these rocks have detectable amounts of calcite, while as much as 11 percent by weight was detected in samples collected during this study. The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate

  6. A paleomagnetic and stable isotope study of the pluton at Rio Hondo near Questa, New Mexico: implications for CRM related to hydrothermal alteration

    USGS Publications Warehouse

    Hagstrum, J.T.; Johnson, C.M.

    1986-01-01

    Paleomagnetic and rock magnetic data combined with stable isotope data from the middle Tertiary pluton along the Rio Hondo in northern New Mexico suggest that its magnetic remanence has both thermal (TRM) and high-temperature chemical (CRM) components. Oxygen isotope temperatures indicate that magnetite associated with the more rapidly cooled higher levels of the pluton, and with mafic inclusions and cogenetic rhyolitic dikes sampled at lower levels of exposure, ceased subsolidus recrystallization and isotopic exchange above its Curie temperature (580??C) in the presence of a magmatic fluid. Continued cooling imparted a TRM to these portions of the pluton. The more slowly cooled granodiorite at lower levels has quartz-magnetite isotopic temperatures that are below the Curie temperature of magnetite implying that its magnetization is high-temperature CRM. Sub-Curie isotopic temperatures for other granitic plutons in the western U.S.A. suggest that CRM may be commonly derived from subsolidus interactions between magnetite and magmatic fluids in plutonic rocks. A meteoric-hydrothermal system generated by the cooling Rio Hondo pluton, and not by younger adjacent intrusions, resulted in limited alteration along zones of high permeability near the southern margin of the Rio Hondo pluton, and in more prevasive alteration of the pluton to the north. The meteoric-hydrothermal alteration occurred at relatively high temperatures (> 350??C) and, with the exception of local chloritization, caused little visible alteration of the rocks. The isotopic ratios indicate that little of the magnetite could have grown from or exchanged with a meteoric-hydrothermal fluid. ?? 1986.

  7. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Structural controls on hydrothermal alteration and ore mineralization

    USGS Publications Warehouse

    Berger, B.R.; Henley, R.W.

    2011-01-01

    High-sulfidation copper-gold lode deposits such as Chinkuashih, Taiwan, Lepanto, Philippines, and Goldfield, Nevada, formed within 1500. m of the paleosurface in volcanic terranes. All underwent an early stage of extensive advanced argillic silica-alunite alteration followed by an abrupt change to spatially much more restricted stages of fracture-controlled sulfide-sulfosalt mineral assemblages and gold-silver mineralization. The alteration as well as ore mineralization stages of these deposits were controlled by the dynamics and history of syn-hydrothermal faulting. At the Sulfate Stage, aggressive advanced argillic alteration and silicification were consequent on the in situ formation of acidic condensate from magmatic vapor as it expanded through secondary fracture networks alongside active faults. The reduction of permeability at this stage due to alteration decreased fluid flow to the surface, and progressively developed a barrier between magmatic-vapor expansion constrained by the active faults and peripheral hydrothermal activity dominated by hot-water flow. In conjunction with the increased rock strength resulting from alteration, subsequent fault-slip inversion in response to an increase in compressional stress generated new, highly permeable fractures localized by the embrittled, altered rock. The new fractures focused magmatic-vapor expansion with much lower heat loss so that condensation occurred. Sulfide Stage sulfosalt, sulfide, and gold-silver deposition then resulted from destabilization of vapor phase metal species due to vapor decompression through the new fracture array. The switch from sulfate to sulfide assemblages is, therefore, a logical consequence of changes in structural permeability due to the coupling of alteration and fracture dynamics rather than to changes in the chemistry of the fluid phase at its magmatic source. ?? 2010.

  8. Hydrothermal hydration of Martian crust: illustration via geochemical model calculations.

    PubMed

    Griffith, L L; Shock, E L

    1997-04-25

    If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential. PMID:11541456

  9. Hydrothermal hydration of Martian crust: illustration via geochemical model calculations

    NASA Technical Reports Server (NTRS)

    Griffith, L. L.; Shock, E. L.

    1997-01-01

    If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential.

  10. Hydrothermal hydration of Martian crust: illustration via geochemical model calculations.

    PubMed

    Griffith, L L; Shock, E L

    1997-04-25

    If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential.

  11. Thermo-physical rock properties and the impact of advancing hydrothermal alteration - A case study from the Tauhara geothermal field, New Zealand

    NASA Astrophysics Data System (ADS)

    Mielke, Philipp; Nehler, Mathias; Bignall, Greg; Sass, Ingo

    2015-08-01

    The thermo-physical rock properties density, porosity, matrix permeability, thermal conductivity and specific heat capacity of 418 orientated rock plugs cut from 233 cores recovered from geothermal investigation wells THM12, THM13, THM14, THM17, THM18, THM19, and TH18 at the Tauhara geothermal field, New Zealand were measured and a statistical database was set up. The lithotype of each sample was classified, and the hydrothermal alteration rank and intensity was determined by optical microscopy. The hydrothermal clays (typically smectite, smectite-illite, illite) were analysed by the methylene blue dye adsorption test and short wave infrared spectroscopy. Investigated stratigraphic units are the Huka Falls Formation with its sub members upper, middle and lower Huka Falls Formation, the Wairora Formation, Spa Andesite and its associated breccias, and Racetrack rhyolite and its associated breccias. Lithotypes are clay-altered tuff and intercalated mudstone/siltstone (cap rock for the Tauhara geothermal system); tuffaceous sandstones, sedimentary and pyroclastic breccias and pumiceous ash tuff (reservoir-hosting units); and rhyolitic and andesitic lavas, and their associated breccias. The obtained rock property data indicate a common porosity range of 30% to 45% for sediments, volcaniclastics and lava breccias, an average of 10% for andesite lava, and 39% for rhyolite lava. Matrix permeability of mudstone, siltstone, breccias and lavas is commonly < 1 mD, while sandstone, tuff and brecciated lavas have two to three orders of magnitude higher permeabilities. Both porosity and permeability decrease with depth. Thermal conductivity decreases with increasing porosity, and is similar for most lithotypes (0.7 W m- 1 K- 1 to 1 W m- 1 K- 1), while lavas have higher values (0.9 W m- 1 K- 1 to 1.4 W m- 1 K- 1). Specific heat capacity is similar for all lithotypes (0.6 kJ kg- 1 K- 1 to 0.8 kJ kg- 1 K- 1). Advancing hydrothermal alteration decreases the porosity of sandstone and

  12. Mineralogical, IR-spectral and geochemical monitoring of hydrothermal alteration in a deformed and metamorphosed Jurassic VMS deposit at Arroyo Rojo, Tierra del Fuego, Argentina

    NASA Astrophysics Data System (ADS)

    Biel, C.; Subías, I.; Acevedo, R. D.; Yusta, I.; Velasco, F.

    2012-04-01

    The Arroyo Rojo Zn-Pb-Cu volcanogenic massive sulfide deposit is the main deposit of the Fin del Mundo District in the Fuegian Andes, Argentina. This deposit is hosted by a Middle Jurassic volcanic and volcanoclastic sequence forming the Lemaire Formation. The latter consists, from the base up, of the following: rhyolitic and dacitic porphyritic rocks, ignimbrite, tuff, and flow. It is underlain by a pre-Jurassic basement and overlain by the hyaloclastic andesites of the Yahgán Formation. The Arroyo Rojo consists of stacked lenticular lenses that are associated with disseminated mineralization in both the footwall and the hanging wall. The internal structure of the ore lenses is marked by the occurrence of massive, semi-massive and banded facies, along with stringer and brecciated zones and minor ore disseminations. The mineral assemblage comprises mainly pyrite and sphalerite, with minor amounts of galena and chalcopyrite and rare pyrrhotite, arsenopyrite, tetrahedrite and bournonite. The ores and the volcanic host rocks have metamorphosed to greenschist facies and were overprinted by a penetrative tectonic foliation, which led to the development of mylonitic, and cataclastic textures, recrystallization and remobilization. Primary depositional characteristics and regional and hydrothermal alteration patterns were preserved despite deformation and metamorphism. Therefore, primary banding was preserved between facies boundaries. In addition, some remnants of magmatic origin are recognizable in preserved phenocrysts and volcaniclastic phenoclasts. Most of the volcanic and volcaniclastic rocks of the host sequence show a rhyolitic to rhyo-dacitic composition. Regional seafloor alteration, characterized by the presence of clinozoisite, Fe-chlorite and titanite, along with quartz and albite, is partially obliterated by hydrothermal alteration. The hydrothermal alteration is stratabound with the following assemblages, which developed from the base to top: (1) Quartz

  13. A conspicuous clay ovoid in Nakhla: evidence for subsurface hydrothermal alteration on Mars with implications for astrobiology.

    PubMed

    Chatzitheodoridis, Elias; Haigh, Sarah; Lyon, Ian

    2014-08-01

    Abstract A conspicuous biomorphic ovoid structure has been discovered in the Nakhla martian meteorite, made of nanocrystalline iron-rich saponitic clay and amorphous material. The ovoid is indigenous to Nakhla and occurs within a late-formed amorphous mesostasis region of rhyolitic composition that is interstitial to two clinopyroxene grains with Al-rich rims, and contains acicular apatite crystals, olivine, sulfides, Ti-rich magnetite, and a new mineral of the rhoenite group. To infer the origin of the ovoid, a large set of analytical tools was employed, including scanning electron microscopy and backscattered electron imaging, wavelength-dispersive X-ray analysis, X-ray mapping, Raman spectroscopy, time-of-flight secondary ion mass spectrometry analysis, high-resolution transmission electron microscope imaging, and atomic force microscope topographic mapping. The concentric wall of the ovoid surrounds an originally hollow volume and exhibits internal layering of contrasting nanotextures but uniform chemical composition, and likely inherited its overall shape from a preexisting vesicle in the mesostasis glass. A final fibrous layer of Fe-rich phases blankets the interior surfaces of the ovoid wall structure. There is evidence that the parent rock of Nakhla has undergone a shock event from a nearby bolide impact that melted the rims of pyroxene and the interstitial matter and initiated an igneous hydrothermal system of rapidly cooling fluids, which were progressively mixed with fluids from the melted permafrost. Sharp temperature gradients were responsible for the crystallization of Al-rich clinopyroxene rims, rhoenite, acicular apatites, and the quenching of the mesostasis glass and the vesicle. During the formation of the ovoid structure, episodic fluid infiltration events resulted in the precipitation of saponite rinds around the vesicle walls, altered pyrrhotite to marcasite, and then isolated the ovoid wall structure from the rest of the system by depositing a

  14. A conspicuous clay ovoid in Nakhla: evidence for subsurface hydrothermal alteration on Mars with implications for astrobiology.

    PubMed

    Chatzitheodoridis, Elias; Haigh, Sarah; Lyon, Ian

    2014-08-01

    Abstract A conspicuous biomorphic ovoid structure has been discovered in the Nakhla martian meteorite, made of nanocrystalline iron-rich saponitic clay and amorphous material. The ovoid is indigenous to Nakhla and occurs within a late-formed amorphous mesostasis region of rhyolitic composition that is interstitial to two clinopyroxene grains with Al-rich rims, and contains acicular apatite crystals, olivine, sulfides, Ti-rich magnetite, and a new mineral of the rhoenite group. To infer the origin of the ovoid, a large set of analytical tools was employed, including scanning electron microscopy and backscattered electron imaging, wavelength-dispersive X-ray analysis, X-ray mapping, Raman spectroscopy, time-of-flight secondary ion mass spectrometry analysis, high-resolution transmission electron microscope imaging, and atomic force microscope topographic mapping. The concentric wall of the ovoid surrounds an originally hollow volume and exhibits internal layering of contrasting nanotextures but uniform chemical composition, and likely inherited its overall shape from a preexisting vesicle in the mesostasis glass. A final fibrous layer of Fe-rich phases blankets the interior surfaces of the ovoid wall structure. There is evidence that the parent rock of Nakhla has undergone a shock event from a nearby bolide impact that melted the rims of pyroxene and the interstitial matter and initiated an igneous hydrothermal system of rapidly cooling fluids, which were progressively mixed with fluids from the melted permafrost. Sharp temperature gradients were responsible for the crystallization of Al-rich clinopyroxene rims, rhoenite, acicular apatites, and the quenching of the mesostasis glass and the vesicle. During the formation of the ovoid structure, episodic fluid infiltration events resulted in the precipitation of saponite rinds around the vesicle walls, altered pyrrhotite to marcasite, and then isolated the ovoid wall structure from the rest of the system by depositing a

  15. Hydrothermal alteration and tectonic setting of intrusive rocks from East Brawley, Imperial Valley: an application of petrology to geothermal reservoir analysis

    SciTech Connect

    Keskinen, M.; Sternfeld, J.

    1982-01-01

    A geothermal well near East Brawley intersected a series of thin (3 to 35m) diabasic to dioritic intrusives. The petrology and chemistry of these meta-igneous rocks can provide insight into the thermal and fluid chemical characteristics of the reservoir and into the processes of magma generation at depth. A description of the rock types and their hydrothermal alteration is presented in order to increase the petrologic data base relating to this important facet of the geothermal potential of the Salton Trough and to provide a case study illustrating how detailed petrologic examination of well cuttings can provide important input in the construction of a geothermal reservoir model.

  16. Detection and mapping of hydrothermally altered rocks in the vicinity of the Comstock Lode, Virginia Range, Nevada, using enhanced Landsat images

    USGS Publications Warehouse

    Ashley, Roger P.; Goetz, A.F.H.; Rowan, L.C.; Abrams, M.J.

    1979-01-01

    The Virginia Range, immediately southeast of Reno, Nev., consists mainly of flows, breccias, and turfs of Miocene age. Most of these volcanic rocks are of intermediate composition; rhyodacite is the most common rock type. Basalt, rhyolite and rhyolite tuff, and tuffaceous sedimentary rocks of Miocene and Pliocene age also cover substantial areas in the range. Pre-Tertiary metasedimentary, metavolcanic, and granitic rocks are exposed in scattered inliers, mostly along the southern and eastern margins of the range. Several large areas and many small areas within the volcanic pile were subjected to hydrothermal alteration during and after the period of intermediate volcanic activity. Economic precious metal mineralization is spatially and temporally associated with the hydrothermal alteration in several areas. The most important deposit is the Comstock Lode, which produced 192 million troy ounces of silver and 8.3 million troy ounces of gold from epithermal veins (Bonham, 1969). The hydrothermally altered rocks include silicified, advanced argillic, montmorillonite-bearing argillic, and propylitic types. The first three types typically contain pyrite, and some propylitic rocks contain pyrite as well. Supergene oxidation of these pyritic rocks produces limonitic bleached rocks. The term 'limonite,' as used here, refers to any combination of the minerals hematite, goethite, and Jarosite. Where vegetation cover is sparse to moderate, these limonitic rocks are readily identified on Landsat images enhanced by the color-ratio composite technique developed by Rowan and others (1974), so the altered areas can be mapped. About 30 percent tree cover (here mainly pinyon pine) is sufficient to change the spectral signature of individual picture elements (pixels) enough so that limonitic materials can no longer be uniquely identified. As in all other areas where this technique has been applied, limonitic unaltered rocks with intermediate to high albedos have the same appearance on

  17. Regional-scale stratigraphy of surface units in Tyrrhena and Iapygia Terrae, Mars: Insights into highland crustal evolution and alteration history

    USGS Publications Warehouse

    Rogers, A.D.; Fergason, R.L.

    2011-01-01

    The compositional, thermophysical and geologic characteristics of surface units in Iapygia and Tyrrhena Terra (60??E-100??E, 0??-30??S) provide new insights into the compositional stratigraphy of the region. Intercrater plains are dominated by two surface units. The older unit (unit 1) is deficient in olivine and more degraded and likely consists of a mixture of impact, volcanic and sedimentary materials. The younger unit (unit 2) is enriched in olivine, exhibits a resistant morphology and higher thermal inertia, and likely represents volcanic infilling of plains. Units 1 and 2 bear a strong resemblance to those previously mapped in Mare Serpentis, a section of highlands crust located northwest of Hellas Basin. Thus, the two major intercrater plains units are even more widespread than previously thought and therefore likely constitute important components of Mars' highland stratigraphy. Many craters in the region contain high thermal inertia deposits (unit 3) that are compositionally identical to unit 2. These may have formed via volcanic infilling or may represent sedimentary materials that have been eroded from crater walls and lithified. Less common units include olivine and/or pyroxene-rich massifs and crater central peaks. These are primarily found within Hellas Basin rim units and may represent mantle materials brought toward the surface during the Hellas impact. Putative chloride deposits are primarily associated with olivine-deficient surfaces (unit 1) that may be heavily degraded occurrences of unit 2. The observations raise a variety of questions related to Martian crustal evolution and alteration that may have more widespread implications outside the study region. Copyright ?? 2011 by the American Geophysical Union.

  18. Regional-scale stratigraphy of surface units in Tyrrhena and Iapygia Terrae, Mars: insights into highland crustal evolution and alteration history

    USGS Publications Warehouse

    Rogers, A. Deanne; Fergason, Robin L.

    2011-01-01

    The compositional, thermophysical and geologic characteristics of surface units in Iapygia and Tyrrhena Terra (60°E-100°E, 0°-30°S) provide new insights into the compositional stratigraphy of the region. Intercrater plains are dominated by two surface units. The older unit (unit 1) is deficient in olivine and more degraded and likely consists of a mixture of impact, volcanic and sedimentary materials. The younger unit (unit 2) is enriched in olivine, exhibits a resistant morphology and higher thermal inertia, and likely represents volcanic infilling of plains. Units 1 and 2 bear a strong resemblance to those previously mapped in Mare Serpentis, a section of highlands crust located northwest of Hellas Basin. Thus, the two major intercrater plains units are even more widespread than previously thought and therefore likely constitute important components of Mars' highland stratigraphy. Many craters in the region contain high thermal inertia deposits (unit 3) that are compositionally identical to unit 2. These may have formed via volcanic infilling or may represent sedimentary materials that have been eroded from crater walls and lithified. Less common units include olivine and/or pyroxene-rich massifs and crater central peaks. These are primarily found within Hellas Basin rim units and may represent mantle materials brought toward the surface during the Hellas impact. Putative chloride deposits are primarily associated with olivine-deficient surfaces (unit 1) that may be heavily degraded occurrences of unit 2. The observations raise a variety of questions related to Martian crustal evolution and alteration that may have more widespread implications outside the study region.

  19. METEORIC-HYDROTHERMAL SYSTEMS.

    USGS Publications Warehouse

    Criss, Robert E.; Taylor, Hugh P.

    1986-01-01

    This paper summarizes the salient characteristics of meteoric-hydrothermal systems, emphasing the isotopic systematics. Discussions of permeable-medium fluid dynamics and the geology and geochemistry of modern geothermal systems are also provided, because they are essential to any understanding of hydrothermal circulation. The main focus of the paper is on regions of ancient meteoric-hydrothermal activity, which give us information about the presently inaccessible, deep-level parts of modern geothermal systems. It is shown oxygen and hydrogen isotopes provide a powerful method to discover and map fossil hydrothermal systems and to investigate diverse associated aspects of rock alteration and ore deposition.

  20. An experimental study on felsic rock artificial seawater interaction: implications for hydrothermal alteration and sulfate formation in the Kuroko mining area of Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yasumasa; Shikazono, Naotatsu; Ishiyama, Daizo; Sato, Hinako; Mizuta, Toshio

    2005-03-01

    Experimental studies on the interactions between artificial seawater (ASW) and fresh rhyolite, perlite and weakly altered dacitic tuff containing a small amount of smectite suggest changing cation transfer during smectite-forming processes. Initially, dissolution of K from the rocks accompanies incorporation of Mg and Ca from ASW during both earlier (devitrification stage) and later smectite formation, whereas Ca incorporated with early smectite formation redissolves with progressive reaction. Barium mobility increases toward the later smectite-forming reactions. Therefore, the large amounts of barite, anhydrite and gypsum in Kuroko ore deposits are considered to have precipitated from hydrothermal solutions derived from the interaction with previously altered felsic rocks during late smectite formation, rather than by the reaction with fresh felsic rocks.

  1. Hydrothermal contributions to global biogeochemical cycles: Insights from the Macquarie Island ophiolite

    NASA Astrophysics Data System (ADS)

    Coggon, Rosalind M.; Teagle, Damon A. H.; Harris, Michelle; Davidson, Garry J.; Alt, Jeffrey C.; Brewer, Timothy S.

    2016-11-01

    Hydrothermal circulation is a fundamental process in the formation and aging of the ocean crust, with the resultant chemical exchange between the crust and oceans comprising a key component of global biogeochemical cycles. Sections of hydrothermally altered ocean crust provide time-integrated records of this chemical exchange. Unfortunately, our knowledge of the nature and extent of hydrothermal exchange is limited by the absence of complete oceanic crustal sections from either submarine exposures or drill core. Sub-Antarctic Macquarie Island comprises ~ 10 Ma ocean crust formed at a slow spreading ridge, and is the only sub-aerial exposure of a complete section of ocean crust in the ocean basin in which it formed. Hydrothermally altered rocks from Macquarie Island therefore provide a unique opportunity to evaluate the chemical changes due to fluid-rock exchange through a complete section of ocean crust. Here we exploit the immobile behavior of some elements during hydrothermal alteration to determine the precursor compositions to altered Macquarie whole rock samples, and evaluate the changes in bulk rock chemistry due to fluid-rock interaction throughout the Macquarie crust. The extent to which elements are enriched or depleted in each sample depends upon the secondary mineral assemblage developed, and hence the modal abundances of the primary minerals in the rocks and the alteration conditions, such as temperature, fluid composition, and water:rock ratios. Consequently the chemical changes vary with depth, most notably within the lava-dike transition zone where enrichments in K, S, Rb, Ba, and Zn are observed. Our results indicate that hydrothermal alteration of the Macquarie crust resulted in a net flux of Si, Ti, Al, and Ca to the oceans, whereas the crust was a net sink for H2O, Mg, Na, K, and S. Our results also demonstrate the importance of including the contribution of elemental uptake by veins for some elements (e.g., Si, Fe, Mg, S). Extrapolation of our

  2. Quantitative impact of hydrothermal alteration on electrical resistivity in geothermal systems from a joint analysis of laboratory measurements and borehole data in Krafla area, N-E Iceland

    NASA Astrophysics Data System (ADS)

    Lévy, Léa; Páll Hersir, Gylfi; Flóvenz, Ólafur; Gibert, Benoit; Pézard, Philippe; Sigmundsson, Freysteinn; Briole, Pierre

    2016-04-01

    Rock permeability and fluid temperature are the two most decisive factors for a successful geothermal drilling. While those parameters are only measured from drilling, they might be estimated on the basis of their impact on electrical resistivity that might be imaged from surface soundings, for example through TEM (Transient Electro Magnetic) down to one km depth. The electrical conductivity of reservoir rocks is the sum of a volume term depending on fluid parameters and a surface term related to rock alteration. Understanding the link between electrical resistivity and geothermal key parameters requires the knowledge of hydrothermal alteration and its petrophysical signature with the Cation Exchange Capacity (CEC). Fluid-rock interactions related to hydrothermal circulation trigger the precipitation of alteration minerals, which are both witnesses of the temperature at the time of reaction and new paths for the electrical current. Alteration minerals include zeolites, smectites, chlorites, epidotes and amphiboles among which low temperatures parageneses are often the most conductive. The CEC of these mineral phases contributes to account for surface conductivity occuring at the water-rock interface. In cooling geothermal systems, these minerals constitute in petrophysical terms and from surface electrical conduction a memory of the equilibrium phase revealed from electrical probing at all scales. The qualitative impact of alteration minerals on resistivity structure has been studied over the years in the Icelandic geothermal context. In this work, the CEC impact on pore surfaces electrical conductivity is studied quantitatively at the borehole scale, where several types of volcanic rocks are mixed together, with various degrees of alteration and porosity. Five boreholes located within a few km at the Krafla volcano, Northeast Iceland, constitute the basis for this study. The deepest and reference hole, KJ-18, provides cuttings of rock and logging data down to 2215

  3. Insights into magmatic processes and hydrothermal alteration of in situ superfast spreading ocean crust at ODP/IODP site 1256 from a cluster analysis of rock magnetic properties

    NASA Astrophysics Data System (ADS)

    Dekkers, Mark J.; Heslop, David; Herrero-Bervera, Emilio; Acton, Gary; Krasa, David

    2014-08-01

    analyze magnetic properties from Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6°44.1' N, 91°56.1' W) on the Cocos Plate in ˜15.2 Ma oceanic crust generated by superfast seafloor spreading, the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Fuzzy c-means cluster analysis and nonlinear mapping are utilized to study down-hole trends in the ratio of the saturation remanent magnetization and the saturation magnetization, the coercive force, the ratio of the remanent coercive force and coercive force, the low-field magnetic susceptibility, and the Curie temperature, to evaluate the effects of magmatic and hydrothermal processes on magnetic properties. A statistically robust five cluster solution separates the data predominantly into three clusters that express increasing hydrothermal alteration of the lavas, which differ from two distinct clusters mainly representing the dikes and gabbros. Extensive alteration can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. Thus, the analysis complements interpretation based on electrofacies analysis. All clusters display rock magnetic characteristics compatible with an ability to retain a stable natural remanent magnetization suggesting that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Paleointensity determination is difficult because of the propensity of oxyexsolution during laboratory heating and/or the presence of intergrowths. The upper part of the extrusive sequence, the granoblastic dikes, and moderately altered gabbros may contain a comparatively uncontaminated thermoremanent magnetization.

  4. Description and validation of an automated methodology for mapping mineralogy, vegetation, and hydrothermal alteration type from ASTER satellite imagery with examples from the San Juan Mountains, Colorado

    USGS Publications Warehouse

    Rockwell, Barnaby W.

    2012-01-01

    The efficacy of airborne spectroscopic, or "hyperspectral," remote sensing for geoenvironmental watershed evaluations and deposit-scale mapping of exposed mineral deposits has been demonstrated. However, the acquisition, processing, and analysis of such airborne data at regional and national scales can be time and cost prohibitive. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor carried by the NASA Earth Observing System Terra satellite was designed for mineral mapping and the acquired data can be efficiently used to generate uniform mineral maps over very large areas. Multispectral remote sensing data acquired by the ASTER sensor were analyzed to identify and map minerals, mineral groups, hydrothermal alteration types, and vegetation groups in the western San Juan Mountains, Colorado, including the Silverton and Lake City calderas. This mapping was performed in support of multidisciplinary studies involving the predictive modeling of surface water geochemistry at watershed and regional scales. Detailed maps of minerals, vegetation groups, and water were produced from an ASTER scene using spectroscopic, expert system-based analysis techniques which have been previously described. New methodologies are presented for the modeling of hydrothermal alteration type based on the Boolean combination of the detailed mineral maps, and for the entirely automated mapping of alteration types, mineral groups, and green vegetation. Results of these methodologies are compared with the more detailed maps and with previously published mineral mapping results derived from analysis of high-resolution spectroscopic data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. Such comparisons are also presented for other mineralized and (or) altered areas including the Goldfield and Cuprite mining districts, Nevada and the central Marysvale volcanic field, Wah Wah Mountains, and San Francisco Mountains, Utah. The automated

  5. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA

    USGS Publications Warehouse

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.

    2008-01-01

    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  6. Can Low Water/Rock Hydrothermal Alteration of Impact Materials Explain the Rock Component of the Martian Soil?

    NASA Technical Reports Server (NTRS)

    Nelson, M. J.; Newsom, H. E.

    2003-01-01

    The martian regolith is a globally homogenized product of chemical and aeolian weathering processes. The soil is thought to consist of a rock component, with lesser amounts of mobile elements (Ca, Na, and K) than a presumed protolith, and a salt or mobile element component enriched in sulfur and chlorine. In this study we consider the contributions of hydrothermal processes to the origin of the rock component of the martian soil.

  7. Crustal deformation

    NASA Astrophysics Data System (ADS)

    Larson, Kristine M.

    1995-07-01

    Geodetic measurements of crustal deformation provide direct tests of geophysical models which are used to describe the dynamics of the Earth. Although geodetic observations have been made throughout history, only in the last several hundred years have they been sufficiently precise for geophysical studies. In the 19th century, these techniques included leveling and triangulation. Approximately 25 years ago, trilateration measurements were initiated by the USGS (United States Geological Survey) to monitor active faults in the United States. Several years later, NASA (National Aeronautics and Space Administration) begin an effort to measure plate tectonic motions on a global scale, using space geodetic techniques, VLBI (Very Long Baseline Interferometry) and SLR (Satellite Laser Ranging). The period covered by this report to the IUGG, 1991-1994, was a transition period in the field of crustal deformation. Trilateration measurements (previously the backbone of measurements across plate boundaries in the western United States and Alaska) have been abandoned. This system was labor-intensive, involved highly trained crews to carry out the observations, and only measured the length between sites. In addition, NASA drastically cut the budgets for VLBI and SLR during this period. Fixed site VLBI systems are still operational, but mobile VLBI measurements in North America have ceased. SLR measurements continue on a global scale, but the remaining crustal deformation measurements are now being made with the Global Positioning System (GPS). Nonetheless, because of the time scales involved, older geodetic data (including leveling, triangulation, and trilateration) continue to be important for many geophysical studies.

  8. Petrochemistry and hydrothermal alteration within the Tyrone Igneous Complex, Northern Ireland: implications for VMS mineralization in the British and Irish Caledonides

    NASA Astrophysics Data System (ADS)

    Hollis, Steven P.; Roberts, Stephen; Earls, Garth; Herrington, Richard; Cooper, Mark R.; Piercey, Stephen J.; Archibald, Sandy M.; Moloney, Martin

    2014-06-01

    Although volcanogenic massive sulfide (VMS) deposits can form within a wide variety of rift-related tectonic environments, most are preserved within suprasubduction affinity crust related to ocean closure. In stark contrast to the VMS-rich Appalachian sector of the Grampian-Taconic orogeny, VMS mineralization is rare in the peri-Laurentian British and Irish Caledonides. Economic peri-Gondwanan affinity deposits are limited to Avoca and Parys Mountain. The Tyrone Igneous Complex of Northern Ireland represents a ca. 484-464 Ma peri-Laurentian affinity arc-ophiolite complex and a possible broad correlative of the Buchans-Robert's Arm belt of Newfoundland, host to some of the most metal-rich VMS deposits globally. Stratigraphic horizons prospective for VMS mineralization in the Tyrone Igneous Complex are associated with rift-related magmatism, hydrothermal alteration, synvolcanic faults, and high-level subvolcanic intrusions (gabbro, diorite, and/or tonalite). Locally intense hydrothermal alteration is characterized by Na-depletion, elevated SiO2, MgO, Ba/Sr, Bi, Sb, chlorite-carbonate-pyrite alteration index (CCPI) and Hashimoto alteration index (AI) values. Rift-related mafic lavas typically occur in the hanging wall sequences to base and precious metal mineralization, closely associated with ironstones and/or argillaceous sedimentary rocks representing low temperature hydrothermal venting and volcanic quiescence. In the ca. 475 Ma pre-collisional, calc-alkaline lower Tyrone Volcanic Group rift-related magmatism is characterized by abundant non-arc type Fe-Ti-rich eMORB, island-arc tholeiite, and low-Zr tholeiitic rhyolite breccias. These petrochemical characteristics are typical of units associated with VMS mineralization in bimodal mafic, primitive post-Archean arc terranes. Following arc-accretion at ca. 470 Ma, late rifting in the ensialic upper Tyrone Volcanic Group is dominated by OIB-like, subalkaline to alkali basalt and A-type, high-Zr rhyolites. These units

  9. Hydrothermal processes at seafloor spreading centers,

    SciTech Connect

    Sleep, N.H.

    1983-01-01

    This chapter discusses the initial entry of hydrothermal seawater into deep levels of the oceanic crust, the effectiveness of hydrothermal circulation in cooling the crust, the geometry of hydrothermal circulation, the relationship between the hydrothermal circulation and the magma chamber, the reaction of the oceanic crust with the seawater, and the identification of the hydrothermal fluid which alters a rock sample. Topics considered include the crack front, observation relevant to the crack front, the limitations of the crack front hypothesis, the observed pattern of hydrothermal alteration, the nature of the hydrothermal fluid, the physics of large scale convection, and convection through crack zones. Knowledge of hydrothermal circulation at the ridge axis is based on sampling of the hydrothermal fluid, indirect geophysical measurements of the oceanic crust, and studies of rocks which are believed to have undergone hydrothermal alteration at the ridge axis. Includes 2 drawings.

  10. Cyprus Crustal Study Project

    NASA Astrophysics Data System (ADS)

    Hall, James M.

    The Cyprus Crustal Study Project is a joint venture of the International Crustal Research Drilling Group (ICRDG) and the Government of Cyprus through its Geological Survey Department. The aim of the project is to carry out a detailed reexamination of the Troodos, Cyprus, ophiolite, using high speed diamond drilling combined with extensive surface geological and geophysical studies. The ICRDG group, comprising about 100 geoscientists from eight countries, includes many participants familiar with ophiolites and with in situ ocean crust through work from Glomar Challenger, thus allowing the ophiolite to be viewed from a new perspective.Studies are being concentrated on a section through the north flank of the ophiolite between the villages of Agrokipia and Palekhori. Research drilling and associated mapping in this segment are aimed at providing a continuous sample through the upper 4 km of the ophiolite and at sampling the stockworks beneath the sulfide deposits located within the extrusive section. The Troodos massive sulfide deposits are considered to be close analogs of the deposited being formed by active hydrothermal circulation on the crest of the East Pacific Rise.

  11. A Geochemical and Mineralogical Model for Formation of Layered Sulfate Deposits at Meridiani Planum by Hydrothermal Acid-sulfate Alteration of Pyroclastic Basalt

    NASA Astrophysics Data System (ADS)

    McCollom, T. M.; Hynek, B. M.

    2012-12-01

    The Mars Exploration Rover (MER) Opportunity has extensively characterized sulfate-rich, hematite-bearing bedrock exposed at Meridiani Planum, Mars. Based on various measurements, the mineral composition of the bedrocks has been interpreted to include: amorphous silica/glass/phyllosilicates, Mg-, Ca-, and Fe-bearing sulfates including jarosite, minor amounts of igneous phases including plagioclase, pyroxene, olivine, and magnetite, and hematite [1,2]. Chemically, the bedrocks closely resemble the composition of pristine martian basalt with addition of S and O, and minor variations of Mg and Cl with depth [3,4]. Based on these and other observations, the MER team has proposed that the bedrocks represent chemically altered siliciclastic sediments combined with sulfate salts formed by evaporation of sulfate-bearing fluids, modified by transport and multiple stages of infiltrating groundwater [3,5]. Several alternative scenarios have been proposed for the origin of the rocks including large impacts [6], evaporating glacial deposits [7], acid-fog alteration [8], and hydrothermal acid-sulfate alteration of basalt [4]. In order to further evaluate the potential contribution of hydrothermal proceeses to the deposits, we performed numerical geochemical models of acid-sulfate alteration of martian basalt based on constraints provided by recent laboratory experiments. Experimental studies of alteration of basalt conducted in our lab [9] indicate that the initial stages of acid-sulfate alteration of pyroclastic basalt are characterized by rapid decomposition of igneous crystalline phases including plagioclase, pyroxene, and olivine, while the glass (and igneous phases protected within the glass) remain unreactive. Elements released by dissolving minerals are precipitated primarily as amorphous silica and Ca-, Al-, Fe- and Mg-bearing sulfates, while precipitation of phyllosilicates and Fe-oxides/oxyhydroxides (FeOx) is kinetically inhibited. Based on these constraints, models

  12. Subglacial hydrothermal alteration minerals in Jökulhlaup deposits of Southern Iceland, with implications for detecting past or present habitable environments on Mars.

    PubMed

    Warner, Nicholas H; Farmer, Jack D

    2010-06-01

    Jökulhlaups are terrestrial catastrophic outfloods, often triggered by subglacial volcanic eruptions. Similar volcano-ice interactions were likely important on Mars where magma/lava may have interacted with the planet's cryosphere to produce catastrophic floods. As a potential analogue to sediments deposited during martian floods, the Holocene sandurs of Iceland are dominated by basaltic clasts derived from the subglacial environment and deposited during jökulhlaups. Palagonite tuffs and breccias, present within the deposits, represent the primary alteration lithology. The surface abundance of palagonite on the sandurs is 1-20%. X-ray diffraction (XRD) analysis of palagonite breccias confirms a mineral assemblage of zeolites, smectites, low-quartz, and kaolinite. Oriented powder X-ray diffractograms (< 2 microm fraction) for palagonite breccia clasts and coatings reveal randomly ordered smectite, mixed layer smectite/illite, zeolites, and quartz. Visible light-near infrared (VNIR) and shortwave infrared (SWIR) lab spectroscopic data of the same palagonite samples show H2O/OH(-) absorptions associated with clays and zeolites. SWIR spectra derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images of the sandurs reveal Al-OH(-) and Si-OH(-) absorption features. The identified alteration mineral assemblage is consistent with low temperature (100-140 degrees C) hydrothermal alteration of basaltic material within the subglacial environment. These results suggest that potential martian analog sites that contain a similar suite of hydrated minerals may be indicative of past hydrothermal activity and locations where past habitable environments for microbial life may be found.

  13. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    (after C. A. Stein and S. Stein, 1994). The first geochemical evidence for the existence of hydrothermal vents on the ocean floor came in the mid-1960s when investigations in the Red Sea revealed deep basins filled with hot, salty water (40-60 °C) and underlain by thick layers of metal-rich sediment (Degens and Ross, 1969). Because the Red Sea represents a young, rifting, ocean basin it was speculated that the phenomena observed there might also prevail along other young MOR spreading centers. An analysis of core-top sediments from throughout the world's oceans ( Figure 2) revealed that such metalliferous sediments did, indeed, appear to be concentrated along the newly recognized global ridge crest (Boström et al., 1969). Another early indication of hydrothermal activity came from the detection of plumes of excess 3He in the Pacific Ocean Basin (Clarke et al., 1969) - notably the >2,000 km wide section in the South Pacific ( Lupton and Craig, 1981) - because 3He present in the deep ocean could only be sourced through some form of active degassing of the Earth's interior, at the seafloor. (62K)Figure 2. Global map of the (Al+Fe+Mn):Al ratio for surficial marine sediments. Highest ratios mimic the trend of the global MOR axis (after Boström et al., 1969). One area where early heat-flow studies suggested hydrothermal activity was likely to occur was along the Galapagos Spreading Center in the eastern equatorial Pacific Ocean (Anderson and Hobart, 1976). In 1977, scientists diving at this location found hydrothermal fluids discharging chemically altered seawater from young volcanic seafloor at elevated temperatures up to 17 °C ( Edmond et al., 1979). Two years later, the first high-temperature (380±30 °C) vent fluids were found at 21° N on the East Pacific Rise (EPR) (Spiess et al., 1980) - with fluid compositions remarkably close to those predicted from the lower-temperature Galapagos findings ( Edmond et al., 1979). Since that time, hydrothermal activity has been

  14. Vent fluid chemistry of the Rainbow hydrothermal system (36°N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes

    NASA Astrophysics Data System (ADS)

    Seyfried, W. E., Jr.; Pester, Nicholas J.; Ding, Kang; Rough, Mikaella

    2011-03-01

    -fluid equilibria. Indeed, the predicted correlation between dissolved silica and H 2 defines a trend that is in good agreement with vent fluid data from Rainbow and other high-temperature ultramafic-hosted hydrothermal systems. We speculate that the moderate concentrations of dissolved silica in vent fluids from these systems result from hydrothermal alteration of plagioclase and olivine in the form of subsurface gabbroic intrusions, which, in turn are variably replaced by chlorite + magnetite + talc ± tremolite, with important implications for pH lowering, dissolved sulfide concentrations, and metal mobility.

  15. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (Aster), a new satellite-imaging system

    USGS Publications Warehouse

    Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C.

    2003-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 14-band multispectral instrument on board the Earth Observing System (EOS), TERRA. The three bands between 0.52 and 0.86 ??m and the six bands from 1.60 and 2.43 ??m, which have 15- and 30-m spatial resolution, respectively, were selected primarily for making remote mineralogical determinations. The Cuprite, Nevada, mining district comprises two hydrothermal alteration centers where Tertiary volcanic rocks have been hydrothermally altered mainly to bleached silicified rocks and opalized rocks, with a marginal zone of limonitic argilized rocks. Country rocks are mainly Cambrian phyllitic siltstone and limestone. Evaluation of an ASTER image of the Cuprite district shows that spectral reflectance differences in the nine bands in the 0.52 to 2.43 ??m region provide a basis for identifying and mapping mineralogical components which characterize the main hydrothermal alteration zones: opal is the spectrally dominant mineral in the silicified zone; whereas, alunite and kaolinite are dominant in the opalized zone. In addition, the distribution of unaltered country rocks was mapped because of the presence of spectrally dominant muscovite in the siltstone and calcite in limestone, and the tuffaceous rocks and playa deposits were distinguishable due to their relatively flat spectra and weak absorption features at 2.33 and 2.20 ??m, respectively. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image of the study area was processed using a similar methodology used with the ASTER data. Comparison of the ASTER and AVIRIS results shows that the results are generally similar, but the higher spectral resolution of AVIRIS (224 bands) permits identification of more individual minerals, including certain polymorphs. However, ASTER has recorded images of more than 90 percent of the Earth's land surface with less than 20 percent cloud cover, and these data are available at nominal or no cost

  16. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California

    USGS Publications Warehouse

    Kruse, F.A.

    1988-01-01

    Three flightlines of Airborne Imaging Spectrometer (AIS) data, acquired over the northern Grapevine Mountains, Nevada, and California, were used to map minerals associated with hydrothermally altered rocks. The data were processed to remove vertical striping, normalized using an equal area normalization, and reduced to reflectance relative to an average spectrum derived from the data. An algorithm was developed to automatically calculate the absorption band parameters band position, band depth, and band width for the strongest absorption feature in each pixel. These parameters were mapped into an intensity, hue, saturation (IHS) color system to produce a single color image that summarized the absorption band information, This image was used to map areas of potential alteration based upon the predicted relationships between the color image and mineral absorption band. Individual AIS spectra for these areas were then examined to identify specific minerals. Two types of alteration were mapped with the AIS data. Areas of quartz-sericite-pyrite alteration were identified based upon a strong absorption feature near 2.21 ??m, a weak shoulder near 2.25 ??m, and a weak absorption band near 2.35 ??m caused by sericite (fine-grained muscovite). Areas of argillic alteration were defined based on the presence of montmorillonite, identified by a weak to moderate absorption feature near 2.21 ??m and the absence of the 2.35 ??m band. Montmorillonite could not be identified in mineral mixtures. Calcite and dolomite were identified based on sharp absorption features near 2.34 and 2.32 ??m, respectively. Areas of alteration identified using the AIS data corresponded well with areas mapped using field mapping, field reflectance spectra, and laboratory spectral measurements. ?? 1988.

  17. Amino acid abundances and stereochemistry in hydrothermally altered sediments from the Juan de Fuca Ridge, northeastern Pacific Ocean.

    PubMed

    Andersson, E; Simoneit, B R; Holm, N G

    2000-09-01

    The Juan de Fuca Ridge is a hydrothermally active, sediment covered, spreading ridge situated a few hundred kilometres off the west coast of North America in the northeastern Pacific Ocean. Sediments from seven sites drilled during the Ocean Drilling Program (ODP) Legs 139 and 168 were analyzed for total hydrolyzable amino acids (THAA), individual amino acid distributions, total organic C (TOC) and total N (TN) contents. The aim was to evaluate the effects of hydrothermal stress on the decomposition and transformation of sedimentary amino acids. Hydrolyzable amino acids account for up to 3.3% of the total organic C content and up to 12% of the total N content of the upper sediments. The total amounts of amino acids decrease significantly with depth in all drilled holes. This trend is particularly pronounced in holes with a thermal gradient of around 0.6 degrees C/m or higher. The most abundant amino acids in shallow sediments are glycine, alanine, lysine, glutamic acid, valine and histidine. The changes in amino acid distributions in low temperature holes are characterized by increased relative abundances of non-protein beta-alanine and gamma-aminobutyric acid. In high temperature holes the amino acid compositions are characterized by high abundances of glycine, alanine, serine, ornithine and histidine at depth. D/L ratios of samples with amino acid distributions similar to those found in acid hydrolysates of kerogen, indicate that racemization rates of amino acids bound by condensation reactions may be diminished.

  18. Use of wireline logs at Cerro Prieto in identification of the distribution of hydrothermally altered zones and dike locations, and their correlation with reservoir temperatures

    SciTech Connect

    Seamount, D.T. Jr.; Elders, W.A.

    1981-01-01

    Downhole electrical and gamma-gamma density logs from nine wells weere studed and these wireline log parameters with petrologic, temperature, and petrophysical data were correlated. Here, wells M-43, T-366, and M-107 are discussed in detail as typical cases. Log data for shales show good correlation with four zones of hydrothermal alteration previously recognized on the basis of characteristic mineral assemblages and temperatures. These zones are the unaltered montmorillonite zone (< 150/sup 0/C), the illite zone (150/sup 0/C to 230/sup 0/C to 245/sup 0/C), the chlorite zone (235/sup 0/C to 300/sup 0/C, equivalent to the calc-silicate I zone in sands), and the feldspar zone (> 300/sup 0/C, equivalent to the calc-silicate II zone in sands),

  19. Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights into the interplay between hydrothermal alteration and brittle deformation

    NASA Astrophysics Data System (ADS)

    Sanchez-Alfaro, Pablo; Reich, Martin; Arancibia, Gloria; Pérez-Flores, Pamela; Cembrano, José; Driesner, Thomas; Lizama, Martin; Rowland, Julie; Morata, Diego; Heinrich, Christoph A.; Tardani, Daniele; Campos, Eduardo

    2016-09-01

    In this study, we unravel the physical, chemical and mineralogical evolution of the active Tolhuaca geothermal system in the Andes of southern Chile. We used temperature measurements in the deep wells and geochemical analyses of borehole fluid samples to constrain present-day fluid conditions. In addition, we reconstructed the paleo-fluid temperatures and chemistry from microthermometry and LA-ICP-MS analysis of fluid inclusions taken from well-constrained parageneses in vein samples retrieved from a ~ 1000 m borehole core. Based on core logging, mineralogical observations and fluid inclusions data we identify four stages (S1-S4) of progressive hydrothermal alteration. An early heating event (S1) was followed by the formation of a clay-rich cap in the upper zone (< 670 m) and the development of a propylitic alteration assemblage at greater depth (S2). Boiling, flashing and brecciation occurred later (S3), followed by a final phase of fluid mixing and boiling (S4). The evolution of hydrothermal alteration at Tolhuaca has produced a mineralogical, hydrological and structural vertical segmentation of the system through the development of a low-permeability, low-cohesion clay-rich cap at shallow depth. The quantitative chemical analyses of fluid inclusions and borehole fluids reveal a significant change in chemical conditions during the evolution of Tolhuaca. Whereas borehole (present-day) fluids are rich in Au, B and As, but Cu-poor (B/Na ~ 100.5, As/Na ~ 10- 1.1, Cu/Na ~ 10- 4.2), the paleofluids trapped in fluid inclusions are Cu-rich but poor in B and As (B/Na ~ 10- 1, As/Na ~ 10- 2.5, Cu/Na ~ 10- 2.5 in average). We interpret the fluctuations in fluid chemistry at Tolhuaca as the result of transient supply of metal-rich, magmatically derived fluids where As, Au and Cu are geochemically decoupled. Since these fluctuating physical and chemical conditions at the reservoir produced a mineralogical vertical segmentation of the system that affects the mechanical and

  20. Mineralogy of iron sulfides in CM1 and CI1 lithologies of the Kaidun breccia: Records of extreme to intense hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Harries, Dennis; Zolensky, Michael E.

    2016-06-01

    The polymict Kaidun microbreccia contains lithologies of C-type chondrites with euhedral iron sulfide crystals of hydrothermal origin. Our FIB-TEM study reveals that acicular sulfides in a CM1 lithology are composed of Fe-rich pyrrhotite with nonintegral vacancy superstructures (NC-pyrrhotite), troilite, and pentlandite, all showing distinct exsolution textures. Based on phase relations in the Fe-Ni-S system, we constrain the temperature of formation of the originally homogeneous monosulfide solid solution to the range of 100-300 °C. In some crystals the exsolution of pentlandite and the microtextural equilibration was incomplete, probably due to rapid cooling. We use thermodynamic modeling to constrain the physicochemical conditions of the extreme hydrothermal alteration in this lithology. Unless the CM1 lithology was sourced from a large depth in the parent body (internal pressure >85 bar) or the temperatures were in the lower range of the interval determined, the water was likely present as vapor. Previously described light δ34S compositions of sulfides in Kaidun's CM1 lithology are likely due to the loss of 34S-enriched H2S during boiling. Platy sulfide crystals in an adjacent, intensely altered CI1 lithology are composed of Fe-poor, monoclinic 4C-pyrrhotite and NC-pyrrhotite and probably formed at lower temperatures and higher fS2 relative to the CM1 lithology. However, a better understanding of the stability of Fe-poor pyrrhotites at temperatures below 300 °C is required to better constrain these conditions.

  1. Hydrothermal systematics, alteration, and mineralization in the Grant Canyon, Bacon Flat, and Blackburn Oil Fields, Nevada - Intriguing Parallels with Carlin-Type gold deposits

    SciTech Connect

    Hulen, J.B.; Nielson, D.L. )

    1993-08-01

    Nevada's three known thermally active oil reservoirs-Blackburn, Bacon Flat, and Grand Canyon-share a surprisingly long list of essential attributes with the Carlin-type, low-grade, sediment-hosted gold deposits, particularly those of the Alligator Ridge mining district. Like these rich precious-metal ore bodies, the three fields (1) are hosted by Paleozoic carbonate and calcareous silici-clastic strata; (2) occur in structural or structural/stratigraphic traps sealed beneath shales or hydrothermally argillized and silicified tuffs and epiclastic debris, (3) have undergone intense fracturing and brecciation, as well as massive hydrothermal decalcification as major porosity-creating processes; (4) occupy rocks partly altered to or veined by the secondary-mineral assemblage quartz-kaolin-barite-pyrite-marcasite; (5) have a direct geothermal connection; (6) are enriched in the elements arsenic, antimony, mercury, thallium, and even contain significant traces of gold-up 50 ppb in altered Mississippian Chainmain Shale in the Blackburn field. Moreover, measured temperatures, as well as late-stage, fluid-inclusion homogenization temperatures (T[sub h]) at the fields-all in the range 100-135[degrees]C-fall within the fluid-inclusion T[sub h] span of 90-165[degrees]C recorded for multiple Alligator Ridge deposits. Fracture-controlled live oil and oil-bearing fluid inclusions in some of the Alligator Ridge ores provide further evidence of genetic similarities with the oil reservoirs. The authors suggest that the three oil fields could represent either weakly mineralized analogs of the gold deposits or an incipient phase in their evolution ultimately leading to ore mineralization.

  2. Mobility of Au and related elements during the hydrothermal alteration of the oceanic crust: implications for the sources of metals in VMS deposits

    NASA Astrophysics Data System (ADS)

    Patten, Clifford G. C.; Pitcairn, Iain K.; Teagle, Damon A. H.; Harris, Michelle

    2016-02-01

    Volcanogenic massive sulphide (VMS) deposits are commonly enriched in Cu, Zn and Pb and can also be variably enriched in Au, As, Sb, Se and Te. The behaviour of these elements during hydrothermal alteration of the oceanic crust is not well known. Ocean Drilling Program (ODP) Hole 1256D penetrates a complete in situ section of the upper oceanic crust, providing a unique sample suite to investigate the behaviour of metals during hydrothermal alteration. A representative suite of samples was analysed for Au, As, Sb, Se and Te using low detection limit methods, and a mass balance of metal mobility has been carried out through comparison with a fresh Mid-Oceanic Ridge Basalt (MORB) glass database. The mass balance shows that Au, As, Se, Sb, S, Cu, Zn and Pb are depleted in the sheeted dyke and plutonic complexes by -46 ± 12, -27 ± 5, -2.5 ± 0.5, -27 ± 6, -8.4 ± 0.7, -9.6 ± 1.6, -7.9 ± 0.5 and -44 ± 6 %, respectively. Arsenic and Sb are enriched in the volcanic section due to seawater-derived fluid circulation. Calculations suggest that large quantities of metal are mobilised from the oceanic crust but only a small proportion is eventually trapped as VMS mineralisation. The quantity of Au mobilised and the ratio of Au to base metals are similar to those of mafic VMS, and ten times enrichment of Au would be needed to form a Au-rich VMS. The Cu-rich affinity of mafic VMS deposits could be explained by base metal fractionation both in the upper sheeted dykes and during VMS deposit formation.

  3. A Model for Generation of Martian Surface Dust, Soil and Rock Coatings: Physical vs. Chemical Interactions, and Palagonitic Plus Hydrothermal Alteration

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Murchie, S.; Pieters, C.; Zent, A.

    1999-01-01

    This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results. Physical processes distribute dust particles on rocks, forming physical rock coatings, and on the surface between rocks forming soil units; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces or duricrust surface units, both of which are relatively permanent materials. According to this model the mineral components of the dust/soil particles are derived from a combination of "typical" palagonitic weathering of volcanic ash and hydrothermally altered components, primarily from steam vents or fumeroles. Both of these altered materials are composed of tiny particles, about 1 micron or smaller, that are aggregates of silicates and iron oxide/oxyhydroxide/sulfate phases. Additional information is contained in the original extended abstract.

  4. Paleoproterozoic volcanic centers of the São Félix do Xingu region, Amazonian craton, Brazil: Hydrothermal alteration and metallogenetic potential

    NASA Astrophysics Data System (ADS)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; Lagler, Bruno; Misas, Carlos Mario Echeverri

    2016-06-01

    Geological, petrographic, scanning electron microscopy, and X-ray diffraction studies revealed hydrothermalized lithotypes evidenced by overprinted zones of potassic, propylitic, sericitic, and intermediate argillic alterations types, with pervasive and fracture-controlled styles, in Paleoproterozoic volcano-plutonic units of the São Félix do Xingu region, Amazonian craton, northern Brazil. The Sobreiro Formation presents propylitic (epidote + chlorite + carbonate + clinozoisite + sericite + quartz ± albite ± hematite ± pyrite), sericitic (sericite + quartz + carbonate), and potassic (potassic feldspar + hematite) alterations. The prehnite-pumpellyite pair that is common in geothermal fields also occurs in this unit. The Santa Rosa Formation shows mainly potassic (biotite + microcline ± magnetite), sericitic (sericite + quartz + carbonate ± chlorite ± gold), and intermediate argillic (montmorillonite + kaolinite/halloysite + illite) alterations. These findings strongly suggest the involvement of magma-sourced and meteoric fluids and draw attention to the metallogenetic potential of these volcanic units for Paleoproterozoic epithermal and rare and base metal porphyry-type mineralizations, similar to those already identified in other portions of the Amazonian craton.

  5. Systematics of hydrothermal alteration at the volcanic-hosted Falun Zn-Pb-Cu-(Au-Ag) deposit - implications for ore genesis, structure and exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden

    NASA Astrophysics Data System (ADS)

    Kampmann, Tobias C.; Jansson, Nils J.; Stephens, Michael B.; Majka, Jarosław

    2016-04-01

    The Palaeoproterozoic, volcanic-hosted Falun Zn-Pb-Cu-(Au-Ag) sulphide deposit was mined for base and precious metals during several centuries, until its closure in 1992. The deposit is located in a 1.9 Ga ore district in the Bergslagen lithotectonic unit, Fennoscandian Shield, south-central Sweden. Both the ores and their host rock underwent polyphase ductile deformation, and metamorphism under amphibolite facies and later retrograde conditions at 1.9-1.8 Ga (Svecokarelian orogenic system). This study has the following aims: (i) Classify styles and intensities of alteration in the hydrothermally altered zone at Falun; (ii) identify precursor rocks to hydrothermally altered rocks and their spatial distribution at the deposit; (iii) evaluate the chemical changes resulting from hydrothermal alteration using mass change calculations; and (iv) assess the pre-metamorphic alteration assemblages accounting for the observed metamorphic mineral associations in the altered rocks at Falun. Results will have implications for both the ore-genetic and structural understanding of the deposit, as well as for local and regional exploration. Metamorphic mineral associations in the altered rocks include biotite-quartz-cordierite-(anthophyllite) and, more proximally, quartz-anthophyllite-(biotite-cordierite/almandine), biotite-cordierite-(anthophyllite) and biotite-almandine-(anthophyllite). The proximal hydrothermally altered zone corresponds to intense chlorite-style alteration. Subordinate dolomite or calcite marble, as well as calc-silicate (tremolite, diopside) rocks are also present at the deposit. Metavolcanic rocks around the deposit are unaltered, weakly sericitized or sodic-altered. Immobile-element (e.g. Zr, TiO2, Al2O3, REE) systematics of the silicate-rich samples at and around the deposit suggest that the precursors to the hydrothermally altered rocks at Falun were predominantly rhyolitic in composition, dacitic rocks being subordinate and mafic-intermediate rocks

  6. Hydrothermal Ni Prospectivity Analysis of Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alvalez, I.; Porwal, A.; McCuaig, T. C.

    2009-04-01

    Tasmania contains the largest hydrothermal Ni deposit in Australia: Avebury (118,000 Ni metal tonnes). This Devonian deposit was discovered in 1998 in the Dundas geological region, and represents an outstanding example of hydrothermal Nickel sulphide mineralization type. Avebury Ni deposit is a system of hydrothermal Ni ore bodies. It is hosted by an intensely altered and serpentinized Cambrian ultramafic suite in close proximity to major structural features. The mineralization is considered to be the result of hydrothermal scavenging and remobilization of the original nickel content of the mafic/ultramafic rocks in the area, and subsequent re-deposition in favourable structural traps. The mineralization is spatially and temporally related to a large granitic intrusion, the Heemskirk Granite, which is considered to be the source of the hydrothermal fluids as well as the necessary thermal gradients for the circulation of the fluids. Tasmania is largely covered by the Jurassic Ferrar Continental Flood basalt Province in the East and presents early Cambrian ultramafic-mafic complexes in the West. The Ferrar large igneous province (LIP) extends over to Antarctica and is related to the Karoo Province in southern Africa that comprises tholeiitic lava flows, sills, and dyke swarms. The Ferrar and Karoo provinces were associated with the same thermal anomaly that was involved in the break up of Gondwana. The presence of mafic/ultramafic rocks in favourable lithological packages and/or structural traps along the margins of the province, as well as several prospective reduced or reactive sedimentary packages within and around the Ferrar indicate that this LIP could represent a novel promising ground for Ni hydrothermal exploration. Based on this prospective geological background, a prospectivity analysis for hydrothermal Ni deposits was carried out on regional scale for the entire state of Tasmania. A conceptual model of hydrothermal nickel mineral system was used to

  7. Predictions of hydrothermal alteration within near-ridge oceanic crust from coordinated geochemical and fluid flow models

    USGS Publications Warehouse

    Wetzel, L.R.; Raffensperger, J.P.; Shock, E.L.

    2001-01-01

    Coordinated geochemical and hydrological calculations guide our understanding of the composition, fluid flow patterns, and thermal structure of near-ridge oceanic crust. The case study presented here illustrates geochemical and thermal changes taking place as oceanic crust ages from 0.2 to 1.0 Myr. Using a finite element code, we model fluid flow and heat transport through the upper few hundred meters of an abyssal hill created at an intermediate spreading rate. We use a reaction path model with a customized database to calculate equilibrium fluid compositions and mineral assemblages of basalt and seawater at 500 bars and temperatures ranging from 150 to 400??C. In one scenario, reaction path calculations suggest that volume increases on the order of 10% may occur within portions of the basaltic basement. If this change in volume occurred, it would be sufficient to fill all primary porosity in some locations, effectively sealing off portions of the oceanic crust. Thermal profiles resulting from fluid flow simulations indicate that volume changes along this possible reaction path occur primarily within the first 0.4 Myr of crustal aging. ?? 2001 Elsevier Science B.V. All rights reserved.

  8. Carbon and Nutrient Dynamics in Cool Ridge-Flank Hydrothermal Springs: The Dorado Outcrop of the Eastern Pacific.

    NASA Astrophysics Data System (ADS)

    McManus, J.; Wheat, C. G.; Orcutt, B.; Fisher, A. T.; Hulme, S.; Burdige, D.

    2015-12-01

    The Dorado outcrop is a basaltic edifice that protrudes through the marine sediments that cover the seafloor along the eastern flank of the East Pacific Rise. This outcrop is an exit conduit for cool, chemically altered crustal fluids. We sampled exiting fluids using a variety of techniques including autonomous, time-series samplers (OsmoSamplers) and discrete sampling using the DSV Alvin. We also collected and analyzed pore fluids from a series of short sediment cores in the vicinity of hydrothermal springs. Samples for the major nutrients show that silicic acid is significantly enriched within the venting fluids relative to the concentration in bottom seawater, whereas dissolved phosphate is depleted within these fluids. Concentrations of dissolved inorganic carbon appear to be slightly elevated in hydrothermal fluids relative to bottom seawater. Pore fluids are highly variable in their concentrations for the major nutrients, perhaps because of variable exchange between these fluids and the underlying crustal fluids. Our results indicate that the fluids within this crustal aquifer system undergo alteration during their rapid transit within the volcanic crust. The chemical composition of these fluids appears to be influenced by exchange with the overlying sediment pore fluids as well as reactions internal to the volcanic crustal reservoir.

  9. Natural alteration in the cooling Topopah Spring tuff, Yucca Mountain, Nevada, as an analog to a waste-repository hydrothermal regime

    SciTech Connect

    Levy, S.; Valentine, G.

    1993-11-01

    Studies of natural hydrothermal alteration in the cooling Topopah Spring tuff suggest a useful ``self-analog`` predictor of fluid-rock interactions within the thermal regime imposed by a potential nuclear waste repository at Yucca Mountain. This tuff has the advantages of representative rock types and appropriate spatial distribution of lithologic features. The cooling history of the tuff spanned the temperature range for any proposed repository thermal load, and the unsaturated-zone hydrologic conditions of the natural alteration would have been similar to existing conditions. A site at northeastern Yucca Mountain, with a prominent vertical fracture zone, has been selected for natural analog studies. The cooling of the tuff and the movement of water in the fracture zone and adjacent matrix will be modeled with the finite element code FEHNM, capable of simulating flow through porous and fractured media using a dual porosity-dual permeability continuum model, with heat transfer and two-phase (vapor and liquid) processes fully accounted for.

  10. Britholite, monazite, REE carbonates, and calcite: Products of hydrothermal alteration of allanite and apatite in A-type granite from Stupné, Western Carpathians, Slovakia

    NASA Astrophysics Data System (ADS)

    Uher, Pavel; Ondrejka, Martin; Bačík, Peter; Broska, Igor; Konečný, Patrik

    2015-11-01

    An uncommon assemblage of primary and secondary accessory REE minerals was identified in a Permian A-type granite clast in polymict conglomerates intercalated in the Cretaceous flysch sequence of the Pieniny Klippen Belt, Western Carpathians, northwest Slovakia. A detailed electron-microprobe study of the granite reveals extensive subsolidus alteration of primary magmatic allanite-(Ce) to ferriallanite-(Ce) and fluorapatite. The Y, Ce-rich fluorapatite was replaced by the dissolution-reprecipitation process to the britholite group mineral members: fluorbritholite-(Y), britholite-(Y), fluorcalciobritholite, and its hydroxyl-dominant analogue ("calciobritholite"). Britholite-(Y) contains up to 5.2 wt.% ThO2 (0.15 apfu Th); the highest Th content yet reported in naturally occurring Y-dominant britholites. Moreover, the alteration of (ferri)allanite-(Ce) resulted to complex pseudomorphs and overgrowths, including mainly REE carbonate phases: [synchysite-(Ce) to its hydroxyl-dominant analogue "hydroxylsynchysite-(Ce)", bastnäsite-(Ce)] and calcite, rarely monazite-(Ce), epidote, clinochlore, titanite, TiO2 phase, and pseudorutile. In some cases, secondary carbonate minerals (mainly synchysite and calcite) replaced a substantial part of former allanite crystals. Moreover, primary magmatic biotite (annite) was partly transformed to acicular stilpnomelane. Textural and compositional data indicate extensive replacement and breakdown of the primary magmatic allanite and apatite by aqueous fluids rich in fluorine and carbon, liberated during a younger post-magmatic, low-temperature hydrothermal-metamorphic overprint of the granite.

  11. Deep alteration between Hellas and Isidis Basins

    NASA Astrophysics Data System (ADS)

    Bultel, B.; Quantin-Nataf, C.; Andréani, M.; Clénet, H.; Lozac'h, L.

    2015-11-01

    Recent investigations of alteration of martian crustal outcrops suggest putative crustal hydrothermal systems, which are favorable environments for the emergence of life. In this study, we perform an analysis of the CRISM targeted observations covering crustal outcrops in the region between the Hellas and Isidis basins with the goal of investigating the alteration phases. Over the wide studied region, we detect the presence of possible serpentines, chlorites, smectites and carbonates. These detections occur within ejecta blankets, crater walls and central uplifts of impact craters. We investigate the relation between the observed associations of minerals and the ages of the impact craters assessed by crater count. No clear relation is observed. We also investigate the relationship between the group of detected mineral and the pre-impact depth of the studied outcrops assessed from the size of the impact craters. This method allows us to reconstruct the pre-impact cross-section. We suggest that alteration of the first 7 km of the crust between the Hellas and Isidis basins may have undergone alteration processes.

  12. The Hydrothermal System at Home Plate in Gusev Crater, Mars: Formation of High Silica Material by Acid-Sulfate Alteration of Basalt

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Gellert, R.; Yen, A.; Clark, B. C.; Gnaff, T. G.; Arvidson, R. E.; Squyres, S. W.

    2008-01-01

    The Alpha Particle X-ray Spectrometer (APXS) instrument on the Mars Exploration Rover (MER) Spirit measured three targets on or adjacent to Home Plate in Gusev Crater that have unusually high SiO2 concentrations (68% to 91%), unusually low FeO concentrations (1% to 7%, with total Fe as FeO), and unusually high TiO2/FeO ratios (0.2 to 1.2 by weight) [1]. Two targets (Kenosha Comets and Lefty Ganote) are located on high albedo soil (Gertrude Weise) that was exposed by the rover wheels, and one target is a float rock called Fuzzy Smith. Kenosha Comets has the highest SiO2 concentration, lowest FeO concentration, and highest TiO2/FeO ratio. Mineralogical evidence from the MER Miniature Thermal Emission Spectrometer (Mini-TES) suggests that the SiO2 is present as amorphous (noncrystalline) SiO2 at Gertrude Weise and nearby targets [2,3]. Mini-TES data were not acquired for Fuzzy Smith. Home Plate is considered to have an explosive volcanic origin, resulting when basaltic magma came into contact with ground water or ice [4]. Within 50 m to 1 km of Home Plate are sulfate rich soil deposits (Paso Robles class soils with 22-35% SO3) which are considered to be probable fumarolic and/or hydrothermal deposits associated with the volcanism [5]. We develop the model here, suggested by [5], that the high-silica materials are another manifestation of acid-sulfate processes associated with fumarolic and hydrothermal activity at Home Plate. This is done by analogy with basaltic materials altered by acid sulfate processes on the Island of Hawaii.

  13. Fluid-rock interactions in the Rhine Graben: A thermodynamic model of the hydrothermal alteration observed in deep drilling

    NASA Astrophysics Data System (ADS)

    Komninou, A.; Yardley, B. W. D.

    1997-02-01

    Deep drilling at Soultz-sous-Forêts, France, on the western flanks of the Rhine Graben, has penetrated Hercynian granite underlying Mesozoic sediments. Veins are present throughout the drilled granite, and there are flows of warm water localized in fractures within the granite. Detailed mineralogical study of core material from the research drillhole EPS 1 has been carried out in order to assess the alteration history of the Soultz granite, part of the crystalline basement of the Rhine Graben. The results of the study have been used, in conjunction with analyses of present-day fluids from deep drilling in the Rhine Graben reported in the literature, to model thermodynamically the alteration process, and in particular to evaluate if it is likely to be continuing today. Reaction-path calculations show that if deep basinal brines, such as are known from sediments of the central Rhine Graben, react with Hercynian granite, they will form different alteration assemblages depending on both the path that the fluid follows (e.g., descending through sediments or through granite) and the extent of preexisting alteration of the granite. The calculations suggest that fluid now sampled from granite in EPS-1 achieved its peak temperature, c. 200°C, while within Permo-Triassic sandstone. The modeling also indicates that present-day fluids from the Rhine Graben system are capable of producing the vein quartz and possibly also the baryte veins, seen in the EPS 1 core. Much of the alteration present in the granite in the vicinity of veins and fractures may have been produced by a flow regime similar to that prevailing today.

  14. The Ajo Mining District, Pima County, Arizona--Evidence for Middle Cenozoic Detachment Faulting, Plutonism, Volcanism, and Hydrothermal Alteration

    USGS Publications Warehouse

    Cox, Dennis P.; Force, Eric R.; Wilkinson, William H.; More, Syver W.; Rivera, John S.; Wooden, Joseph L.

    2006-01-01

    Introduction: The Ajo porphyry copper deposit and surrounding Upper Cretaceous rocks have been separated from their plutonic source and rotated by detachment faulting. Overlying middle Cenozoic sedimentary and volcanic rocks have been tilted and show evidence for two periods of rotation. Following these rotations, a granitic stock (23.7?0.2 Ma) intruded basement rocks west of the Ajo deposit. This stock was uplifted 2.5 km to expose deep-seated Na-Ca alteration.

  15. Opaque assemblages in CR2 Graves Nunataks (GRA) 06100 as indicators of shock-driven hydrothermal alteration in the CR chondrite parent body

    NASA Astrophysics Data System (ADS)

    Abreu, Neyda M.; Bullock, Emma S.

    2013-12-01

    We have studied the petrologic characteristics of sulfide-metal lodes, polymineralic Fe-Ni nodules, and opaque assemblages in the CR2 chondrite Graves Nunataks (GRA) 06100, one of the most altered CR chondrites. Unlike low petrologic type CR chondrites, alteration of metal appears to have played a central role in the formation of secondary minerals in GRA 06100. Differences in the mineralogy and chemical compositions of materials in GRA 06100 suggest that it experienced higher temperatures than other CR2 chondrites. Mineralogic features indicative of high temperature include: (1) exsolution of Ni-poor and Ni-rich metal from nebular kamacite; (2) formation of sulfides, oxides, and phosphates; (3) changes in the Co/Ni ratios; and (4) carbidization of Fe-Ni metal. The conspicuous absence of pentlandite may indicate that peak temperatures exceeded 600 °C. Opaques appear to have been affected by the action of aqueous fluids that resulted in the formation of abundant oxides, Fe-rich carbonates, including endmember ankerite, and the sulfide-silicate-phosphate scorzalite. We suggest that these materials formed via impact-driven metamorphism. Mineralogic features indicative of impact metamorphism include (1) the presence of sulfide-metal lodes; (2) the abundance of polymineralic opaque assemblages with mosaic-like textures; and (3) the presence of suessite. Initial shock metamorphism probably resulted in replacement of nebular Fe-Ni metal in chondrules and in matrix by Ni-rich, Co-rich Fe metal, Al-Ti-Cr-rich alloys, and Fe sulfides, while subsequent hydrothermal alteration produced accessory oxides, phosphates, and Fe carbonates. An extensive network of sulfide-metal veins permitted effective exchange of siderophile elements from pre-existing metal nodules with adjacent chondrules and matrix, resulting in unusually high Fe contents in these objects.

  16. Hydrothermal Processing

    SciTech Connect

    Elliott, Douglas C.

    2011-03-11

    This chapter is a contribution to a book on Thermochemical Conversion of Biomass being edited by Prof. Robert Brown of Iowa State University. It describes both hydrothermal liquefaction and hydrothermal gasification of biomass to fuels.

  17. Thermochemical Constraints For the Formation Conditions of the Hydrothermal Alteration Mineralogy of Home Plate and Columbia Hills

    NASA Astrophysics Data System (ADS)

    Filiberto, J.; Schwenzer, S. P.

    2012-12-01

    Home Plate is a plateau in the Columbia Hills of Gusev Crater. It is dominated by igneous minerals (olivine, pyroxene, and magnetite) with small amounts of alteration minerals (hematite and nanophase oxides). Surrounding Home Plate are deposits containing diverse secondary mineral assemblages: Fe3+-sulfates deposits at Paso Robles, Dead Sea, Shredded, Arad, Tyrone, and Troy; Hematite-rich outcrops between Home Plate and Tyrone; SiO2-rich deposits possibly containing pyrite and/or marcasite at Fuzzy Smith; SiO2-rich, possibly opaline silica, deposits at Northern Valley, Eastern Valley, and Tyrone; and Mg-Fe-carbonate outcrops at Comanche in the Columbia Hills [1-4]. Here, we focus on using thermochemical modeling to understand the secondary alteration mineralogy at the Home Plate outcrop and surrounding Columbia Hills region in Gusev Crater. We use CHILLER [5] to evaluate mineral assemblages that are likely to form from the Martian Home Plate, Barn-Hill class rock Fastball in contact with a dilute fluid at various pressures, temperatures, and water-rock ratios. For details see [6]. In our models, hematite dominates the alteration assemblage at high W/R at 150°C, but is generally produced at W/R above 10. Goethite only forms at low temperature and W/R above 40 with a maximum around 100 and again around 100,000. Pyrite is produced at all temperatures but only at relatively high W/R. These results imply intermediate to high W/R and low to intermediate temperatures during alteration of the Home Plate region. Additional acidic brine, while not strictly excluded, is not required to form many of the observed phases. In contrast, the phyllosilicates recently invoked from orbital observations [4] indicate neutral to alkaline conditions - either accompanying the silica precipitation or as a separate event. For future exploration, our results emphasize that the observation of assemblages is critically important to understand mineral formation conditions and that minor phases

  18. Effective use of principal component analysis with high resolution remote sensing data to delineate hydrothermal alteration and carbonate rocks

    NASA Technical Reports Server (NTRS)

    Feldman, Sandra C.

    1987-01-01

    Methods of applying principal component (PC) analysis to high resolution remote sensing imagery were examined. Using Airborne Imaging Spectrometer (AIS) data, PC analysis was found to be useful for removing the effects of albedo and noise and for isolating the significant information on argillic alteration, zeolite, and carbonate minerals. An effective technique for using PC analysis using an input the first 16 AIS bands, 7 intermediate bands, and the last 16 AIS bands from the 32 flat field corrected bands between 2048 and 2337 nm. Most of the significant mineralogical information resided in the second PC. PC color composites and density sliced images provided a good mineralogical separation when applied to a AIS data set. Although computer intensive, the advantage of PC analysis is that it employs algorithms which already exist on most image processing systems.

  19. Evaluation of AIS-2 (1986) data over hydrothermally altered granitoid rocks of the Singatse Range (Yerington) Nevada and comparison with 1985 AIS-1 data

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.

    1987-01-01

    The Airborne Imaging Spectrometer-2 (AIS-2) flights along 2 subparallel lines (bearing 013) were designed to traverse 3 major rock assemblages - the Triassic sedimentary sequence; the granitoid rocks of the Yerington batholith and the Tertiary ignimbritic ash flow and ash fall tuffs. The first 2 sites are hydrothermally altered to a quartz-sericite-tourmaline mineralogy. The first AIS-2 data set showed numerous line dropouts and a considerable number of randomly distributed dark pixels. A second decommutation reduced the dropout essentially to near zero and the dark pixels by about 75 percent. Vertical striping was removed by histogram matching, column by column. A log residual spectrum was calculated which showed the departure of a 2 x 2 pixel area from the spatially and spectrally averaged scene. A 1:1 correlation was found with the log residual AIS-2 data and a large open pit area of gypsum. An area with known sericite agreed with the overflight data, and an area known to be free of any significant amount of O-H bearing materials showed no evidence of any in the AIS-2 log residuals.

  20. Hydrothermal alteration and Cu–Ni–PGE mobilization in the charnockitic rocks of the footwall of the South Kawishiwi intrusion, Duluth Complex, USA

    PubMed Central

    Benkó, Zsolt; Mogessie, Aberra; Molnár, Ferenc; Krenn, Kurt; Poulson, Simon R.; Hauck, Steven; Severson, Mark; Arehart, Greg B.

    2015-01-01

    In the Neoarchean (~ 2.7 Ga) contact metamorphosed charnockitic footwall of the Mesoproterosoic (1.1 Ga) South Kawishiwi intrusion of the Duluth Complex, the primary metamorphic mineral assemblage and Cu–Ni–PGE sulfide mineralization is overprinted by an actinolite + chlorite + cummingtonite + prehnite + pumpellyite + quartz + calcite hydrothermal mineral assemblage along 2–3 cm thick veins. In calcite, hosted by the hydrothermal alteration zones and in a single recrystallized quartz porphyroblast, four different fluid inclusion assemblages are documented; the composition of these fluid inclusions provide p–T conditions of the fluid flow, and helps to define the origin of the fluids and evaluate their role in the remobilization and reprecipitation of the primary metamorphic sulfide assemblage. Pure CO2 fluid inclusions were found as early inclusions in recrystallized quartz porphyroblast. These inclusions may have been trapped during the recrystallization of the quartz during the contact metamorphism of the footwall charnockite in the footwall of the SKI. The estimated trapping pressure (1.6–2.0 kbar) and temperature (810–920 °C) conditions correspond to estimates based on felsic veins in the basal zones of the South Kawishiwi intrusion. Fluid inclusion assemblages with CO2–H2O–NaCl and CH4–N2–H2O–NaCl compositions found in this study along healed microfractures in the recrystallized quartz porphyroblast establish the heterogeneous state of the fluids during entrapment. The estimated trapping pressure and temperature conditions (240–650 bar and 120–150 °C for CO2–H2O–NaCl inclusions and 315–360 bar and 145–165 °C for CH4–N2–H2O–NaCl inclusions) are significantly lower than the p–T conditions (> 700 °C and 1.6–2 kbar) during the contact metamorphism, indicating that this fluid flow might not be related to the cooling of the Duluth Complex and its contact aureole. The presence of chalcopyrite

  1. Surface water data and geographic relation to Tertiary age intrusions and hydrothermal alteration in the Grand Mesa, Uncompahgre, and Gunnison National Forests (GMUG) and intervening Bureau of Land Management (BLM) lands

    USGS Publications Warehouse

    Bove, Dana J.; Knepper, Daniel H.

    2000-01-01

    This data set covering the western part of Colorado includes water quality data from eight different sources (points), nine U.S. Geological Survey Digital Raster Graph (DRG) files for topographic bases, a compilation of Tertiary age intrusions (polygons and lines), and two geotiff files showing areas of hydrothermally altered rock. These data were compiled for use with an ongoing mineral resource assessment of theGrand Mesa, Uncompahgre, and Gunnison National Forests (GMUG) and intervening Bureau of Land Management(BLM) lands. This compilation was assembled to give federal land managers a preliminary view of water within sub-basinal areas, and to show possible relationships to Tertiary age intrusion and areas of hydrothermal alteration.

  2. Crustal Signatures in Mantle Peridotites From Yakutian Kimberlites

    NASA Astrophysics Data System (ADS)

    Taylor, L. A.; Spetsius, Z.; Wiesli, R.; Anand, M.; Valley, J.

    2002-12-01

    -temperature hydrothermal alterations that occurred in the crust. Armed with these crustal signatures, we propose that some of the mantle peridotites that are hosts for diamonds have their ultimate origin in the crust, prior to subduction to depth, possibly along with eclogite crustal protoliths as well.

  3. Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, Masakazu; Okino, Kyoko; Sato, Taichi; Sato, Hiroshi; Nakamura, Kentaro

    2016-05-01

    High-resolution vector magnetic measurements were performed on an inactive ultramafic-hosted hydrothermal vent field, called Yokoniwa Hydrothermal Field (YHF), using a deep-sea manned submersible Shinkai6500 and an autonomous underwater vehicle r2D4. The YHF has developed at a non-transform offset massif of the Central Indian Ridge. Dead chimneys were widely observed around the YHF along with a very weak venting of low-temperature fluids so that hydrothermal activity of the YHF was almost finished. The distribution of crustal magnetization from the magnetic anomaly revealed that the YHF is associated with enhanced magnetization, as seen at the ultramafic-hosted Rainbow and Ashadze-1 hydrothermal sites of the Mid-Atlantic Ridge. The results of rock magnetic analysis on seafloor rock samples (including basalt, dolerite, gabbro, serpentinized peridotite, and hydrothermal sulfide) showed that only highly serpentinized peridotite carries high magnetic susceptibility and that the natural remanent magnetization intensity can explain the high magnetization of Yokoniwa. These observations reflect abundant and strongly magnetized magnetite grains within the highly serpentinized peridotite. Comparisons with the Rainbow and Ashadze-1 suggest that in ultramafic-hosted hydrothermal systems, strongly magnetized magnetite and pyrrhotite form during the progression of hydrothermal alteration of peridotite. After the completion of serpentinization and production of hydrogen, pyrrhotites convert into pyrite or nonmagnetic iron sulfides, which considerably reduces their levels of magnetization. Our results revealed origins of the magnetic high and the development of subsurface chemical processes in ultramafic-hosted hydrothermal systems. Furthermore, the results highlight the use of near-seafloor magnetic field measurements as a powerful tool for detecting and characterizing seafloor hydrothermal systems.

  4. Sulfur and oxygen isotope study of the Vermont copper belt: evidence of seawater hydrothermal alteration and sulfate reduction in a high-grade metamorphic terrane

    SciTech Connect

    Shanks, W.C. III; Woodruff, L.G.; Slack, J.F.

    1985-01-01

    Massive sulfide deposits of the Orange County copper district, in east-central Vermont, consist of stratiform lenses of pyrrhotite, chalcopyrite, and minor sphalerite within amphibolite-facies rocks of Early Devonian (.) age. The deposits occur at several different stratigraphic levels. The two largest, Elizabeth and Ely, are in quartz-mica schists of the Gile Mountain Formation; the Pike Hill deposit occurs in calcareous quartz-mica schist of the underlying Waits River Formation. Two small deposits (Orange and Gove) are within the Standing Pond Volcanics, a thin tholeiitic amphibolite near the Gile Mountain-Waits River contact. The Elizabeth deposit in particularly distinctive, and contains a suite of unusual wall rocks rich in quartz, carbonate, muscovite, amphibole, phlogopite, tourmaline, spessartine, and sodic plagioclase. Sulfur isotope values at Elizabeth and Ely of 5.1 to 9.1 per thousands contrast with values for Gove (1.9 to 4.2) and Pike Hill (1.5 to 4.6). Disseminated sulfides in amphibolites of the Standing Pond Volcanics have sulfur isotope values in the range -0.1 to 1.7 per thousands, typical of MORB. These data require sulfur contributions to massive sulfide deposits both from basalt and from contemporaneous seawater sulfate sources. Whole-rock (carbonate free) oxygen isotope analyses of host lithologies range from 7.9 per thousands (Standing Pond Volcanics) to 19.9 per thousands (Waits River Formation). Detailed sampling of Elizabeth wall rocks (including those high in B, Na, Mg, Al, Si, Mn) yields a narrow range of oxygen isotope values (11.1 to 14.1); heavier values correlate with higher silica contents. Isotopically light wallrock lithologies are probably due to premetamorphic seawater hydrothermal alteration.

  5. Microbial life in ridge flank crustal fluids.

    PubMed

    Huber, Julie A; Johnson, H Paul; Butterfield, David A; Baross, John A

    2006-01-01

    To determine the microbial community diversity within old oceanic crust, a novel sampling strategy was used to collect crustal fluids at Baby Bare Seamount, a 3.5 Ma old outcrop located in the north-east Pacific Ocean on the eastern flank of the Juan de Fuca Ridge. Stainless steel probes were driven directly into the igneous ocean crust to obtain samples of ridge flank crustal fluids. Genetic signatures and enrichment cultures of microorganisms demonstrate that these crustal fluids host a microbial community composed of species indigenous to the subseafloor, including anaerobic thermophiles, and species from other deep-sea habitats, such as seawater and sediments. Evidence using molecular techniques indicates the presence of a relatively small but active microbial population, dominated by bacteria. The microbial community diversity found in the crustal fluids may indicate habitat variability in old oceanic crust, with inputs of nutrients from seawater, sediment pore-water fluids and possibly hydrothermal sources. This report further supports the presence of an indigenous microbial community in ridge flank crustal fluids and advances our understanding of the potential physiological and phylogenetic diversity of this community.

  6. The Yatela gold deposit in Mali, West Africa: The final product of a long-lived history of hydrothermal alteration and weathering

    NASA Astrophysics Data System (ADS)

    Masurel, Quentin; Miller, John; Hein, Kim A. A.; Hanssen, Eric; Thébaud, Nicolas; Ulrich, Stanislav; Kaisin, Jean; Tessougue, Samuel

    2016-01-01

    The Yatela gold deposit is located in the Kédougou-Kénieba inlier (KKI), a window of ca. 2200-2050 Ma rocks that are exposed in eastern Senegal and western Mali. The geology of the KKI differs from other Paleoproterozoic granite-greenstone belts and sedimentary basins by the abundance of carbonate rocks. The Yatela deposit occurs within 8 km of the regional-scale Senegal-Mali Shear Zone. Country rocks in the Yatela region have been subjected to polycyclic deformation and regional greenschist-facies metamorphism. A syn-kinematic diorite stock has intruded the metasedimentary sequences in the open pit and is associated with a hornblende-hornfels contact aureole. Field relationships and micro-textural data indicate that the primary gold mineralisation is shear-hosted. The similar relative timing and structural setting between the Yatela primary gold mineralisation and other world-class deposits in the region (e.g., Loulo, Lawrence et al., 2013a; Massawa, Treloar et al., 2014; Sadiola Hill, Masurel et al., in press) suggest that regional orogenic gold mineralisation occurred during a period of transcurrent tectonics, after the cessation of regional compressional deformation. The primary gold mineralisation at Yatela, however, is low-grade and sub-economic. It is hosted by marbles and, to a lesser extent, diorite. The primary ore is pyrite-rich, with abundant chalcopyrite, minor arsenopyrite and accessory Zn-Pb-Sb-Fe-Ag-Co-Ni-bearing mineral species. Post-Birimian surficial dissolution of hydrothermally altered and mineralised host marbles resulted in the creation of troughs, which were draped and infilled with a ferruginous dissolution residue enriched in gold. This auriferous residuum formed the economic resource mined at Yatela until decommissioning in 2013. The Yatela gold deposit is unique with respect to mineralisation types encountered in West Africa because an auriferous residuum of economic interest (>1 Moz) derives from an underlying sub-economic Birimian

  7. Fluid evolution in submarine magna-hydrothermal systems at the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Kelley, Deborah S.; Gillis, Kathryn M.; Thompson, Geoff

    1993-11-01

    up to 400 C, with subsequent collapse of the active hydrothermal system at minimum temperatures of 200-250 C. In fault-related upflow zones, multiple hydrotheral pulses involving 180-340 C and 3.5-10 wt % NaCl fluids, pervasively altered bounding wall rocks, forming chlorite-rich, pyrite- and chalcopyrite-bearing breccias. At shallow crustal depths, fluids reached temperatures of 150-300 C and contained salinities of 3.8-6.9 wt % NaCl. Following collapse of the axial-related hydrothermal system, the plutonic and shallow crustal rocks were uplifted and emplaced as allocthonous blocks attending formation of the ridge-transform intersection massif.

  8. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  9. Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: An experimental and theoretical study of hydrothermal activity at guaymas basin, gulf of california

    USGS Publications Warehouse

    Seewald, Jeffrey S.; Seyfried, W.E.; Shanks, Wayne C.

    1994-01-01

    Organic-rich diatomaceous ooze was reacted with seawater and a Na-Ca-K-Cl fluid of seawater chlorinity at 325-400??C, 400-500 bars, and fluid/sediment mass ratios of 1.56-2.35 to constrain factors regulating the abundance and stable isotope composition of C and S species during hydrothermal alteration of sediment from Guaymas Basin, Gulf of California. Alteration of inorganic and organic sedimentary components resulted in extensive exchange reactions, the release of abundant H2S, CO2, CH4, and Corganic, to solution, and recrystallization of the sediment to an assemblage containing albitic plagioclase, quartz, pyrrhotite, and calcite. The ??34Scdt values of dissolved H2S varied from -10.9 to +4.3??? during seawater-sediment interaction at 325 and 400??C and from -16.5 to -9.0??? during Na-Ca-K-Cl fluid-sediment interaction at 325 and 375??C. In the absence of seawater SO4, H2S is derived from both the transformation of pyrite to pyrrhotite and S released during the degradation of organic matter. In the presence of seawater SO4, reduction of SO4 contributes directly to H2S production. Sedimentary organic matter acts as the reducing agent during pyrite and SO4 reduction. Requisite acidity for the reduction of SO4 is provided by Mg fixation during early-stage sediment alteration and by albite and calcite formation in Mg-free solutions. Organically derived CH4 was characterized by ??13Cpdb values ranging between -20.8 and -23.1???, whereas ??13Cpdb values for dissolved Corganic ranged between -14.8 and -17.7%. Mass balance calculations indicate that ??13C values for organically derived CO2 were ??? - 14.8%. Residual solid sedimentary organic C showed small (??? 0.7???) depletions in 13C relative to the starting sediment. The experimental results are consistent with the isotopic and chemical composition of natural hydrothermal fluids and minerals at Guaymas Basin and permit us to better constrain sources and sinks for C and S species in subseafloor hydrothermal systems

  10. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  11. Crustal Magnetization and Magnetic Petrology in Basalts - What Can We Learn from Scientific Drillings?

    NASA Astrophysics Data System (ADS)

    Kontny, A. M.

    2014-12-01

    Rock magnetic and magneto-mineralogical data from scientific drillings contribute to our understanding of the growth history and tectonic evolution of volcanic structures and allows for an improved interpretation of magnetic anomaly data. Such data are not only important for the magnetic structure of volcanic buildings and spreading ridges on Earth but may also provide basic data for the interpretation of extraterrestrial magnetic anomalies like on Mars. Crustal magnetization of basalts is well studied since decades and in general, the amplitude of magnetic anomalies is mainly related to the induced and remanent magnetization. Direct measurements of the magnetic field and measurements of magnetic properties of oceanic and continental crust have indicated that the crustal magnetization is very complex and depends on different factors like e.g. magma composition, cooling rate, age and hydrothermal alteration. Generally a high oxygen fugacity (above the NNO buffer) and a low Ti/(Ti+Fe) ratio of the basaltic melt are suggested as a precondition for high concentration of magnetic minerals and therefore high primary TRM. High temperature subsolidus reactions and hydrothermal alteration as e.g. observed in the strongly magnetic basalts from the Stardalur drill core, Iceland, seems to increase NRM intensity and magnetic susceptibility due to creation of small, secondary magnetite (Vahle et al. 2007). Probably the increase occurred after the extinction of the hydrothermal system because active high-temperature (>150 °C) geothermal areas like the Krafla caldera, NE-Iceland, often show distinct magnetic lows in aeromagnetic anomaly maps suggesting a destruction of magnetic minerals by hydrothermal activity (Oliva-Urcia et al. 2011). The destruction explains the significant magnetization loss, which is seen in many local magnetic anomaly lows within the oceanic crust and volcanic islands like Iceland or Hawaii. Borehole and core magnetic susceptibility measurements in

  12. Mechanical and transport properties of rocks at high temperatures and pressures. Task II: fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration

    SciTech Connect

    Not Available

    1981-01-01

    The primary objective is to measure and understand the variation of the fracture permeability of quartzite subjected to hydrothermal conditions. Pore fluids will consist of distilled water and aqueous Na/sub 2/CO/sub 3/ solutions at temperatures to 250/sup 0/C, fluid pressures to 20 MPa and effective normal stresses to 70 MPa. Fluid flow rates will be controllable to rates at least as small as 0.2 ml/day (approx. 4 fracture volumes). Experiments are designed to assess what role, if any, pressure solution may play at time scales of those of the experiments (less than or equal to 2 weeks). Secondary objectives are: (1) continue simulated fracture studies, incorporating inelastic deformation into model and characterize the nature of inelastic deformation occurring on loaded tensile fractures in quartzite; (2) continue dissolution experiment, with emphasis on dissolution modification of tensile fracture surfaces on quartzite; and (3) study natural fractures in a quartzite exhibiting hydrothermal dissolution features.

  13. The origin and history of alteration and carbonatization of the Yucca Mountain ignimbrites. Volume I

    SciTech Connect

    Szymanski, J.S.

    1992-04-01

    This document contains Volume I of the report entitled The Origin and History of Alteration and Carbonatization of the Yucca Mountain Ignimbrites by Jerry S. Szymanski and a related correspondence with comments by Donald E. Livingston. In the Great Basin, the flow of terrestrial heat through the crust is affected in part by the flow of fluids. At Yucca Mountain, the role of fluids in crustal heat transport is manifested at the surface by youthful calcretes, sinters, bedrock veins, hydrothermal eruption breccias and hydrothermal alteration. This report discusses evidence for recent metasomatism high in the stratigraphic section at Yucca Mountain. Over the last several hundred years, episodes of calcite emplacement contemporaneous with local mafic volcanism have occurred at intervals that are not long in comparison with the isolation time required for a High-Level Radioactive Waste repository.

  14. Samples from Martian craters: Origin of the Martian soil by hydrothermal alteration of impact melt deposits and atmospheric interactions with ejecta during crater formation

    NASA Technical Reports Server (NTRS)

    Newsom, Horton E.

    1988-01-01

    The origin of the Martian soil is an important question for understanding weathering processes on the Martian surface, and also for understanding the global geochemistry of Mars. Chemical analyses of the soil will provide an opportunity to examine what may be a crustal average, as studies of loess on the Earth have demonstrated. In this regard the origin of the Martian soil is also important for understanding the chemical fractionations that have affected the composition of the soil. Several processes that are likely to contribute to the Martian soil are examined.

  15. Continental crustal composition and lower crustal models

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1983-01-01

    The composition of the upper crust is well established as being close to that of granodiorite. The upper crustal composition is reflected in the uniform REE abundances in shales which represent an homogenization of the various REE patterns. This composition can only persist to depths of 10-15 km, for heat flow and geochemical balance reasons. The composition of the total crust is model dependent. One constraint is that it should be capable of generating the upper granodioritic (S.L.) crust by partial melting within the crust. This composition is based on the andesite model, which assumes that the total crust has grown by accretion of island arc material. A representation of the growth rate of the continental crust is shown. The composition of the lower crust, which comprises 60-80% of the continental crust, remains a major unknown factor for models of terrestrial crustal evolution. Two approaches are used to model the lower crust.

  16. Earth's continental crustal gold endowment

    NASA Astrophysics Data System (ADS)

    Frimmel, H. E.

    2008-03-01

    The analysis of the temporal distribution of gold deposits, combined with gold production data as well as reserve and resource estimates for different genetic types of gold deposit, revealed that the bulk of the gold known to be concentrated in ore bodies was added to the continental crust during a giant Mesoarchaean gold event at a time (3 Ga) when the mantle temperature reached a maximum and the dominant style of tectonic movement changed from vertical, plume-related to subhorizontal plate tectonic. A magmatic derivation of the first generation of crustal gold from a relatively hot mantle that was characterized by a high degree of partial melting is inferred from the gold chemistry, specifically high Os contents. While a large proportion of that gold is still present in only marginally modified palaeoplacer deposits of the Mesoarchaean Witwatersrand Basin in South Africa, accounting for about 40% of all known gold, the remainder has been recycled repeatedly on a lithospheric scale, predominantly by plate-tectonically induced magmatic and hydrothermal fluid circulation, to produce the current variety of gold deposit types. Post-Archaean juvenile gold addition to the continental crust has been limited, but a mantle contribution to some of the largest orogenic or intrusion-related gold deposits is indicated, notably for the Late Palaeozoic Tien Shan gold province. Magmatic fluids in active plate margins seem to be the most effective transport medium for gold mobilization, giving rise to a large proportion of volcanic-arc related gold deposits. Due to their generally shallow crustal level of formation, they have a low preservation potential. In contrast, those gold deposits that form at greater depth are more widespread also in older rocks. This explains the high proportion of orogenic (including intrusion-related) gold (32%) amongst all known gold deposits. The overall proportion of gold concentrated in known ore bodies is only 7 × 10- 7 of the estimated total

  17. Hybrid on-axis plus ridge-perpendicular circulation reconciles hydrothermal flow observations at fast spreading ridges

    NASA Astrophysics Data System (ADS)

    Hasenclever, J.; Theissen-Krah, S.; Rupke, L.; Morgan, J.; Iyer, K. H.; Petersen, S.; Devey, C. W.

    2013-12-01

    We present crustal-scale 3D numerical calculations of hydrothermal fluid flow at fast spreading ridges. The model domain covers 5 km along-axis, 20 km across-axis and extends down to Moho depth. We observe that a complex hydrothermal system develops that extends over the entire crustal thickness and forms a series of on-axis vent fields with an average along-ridge spacing of 500-1000m. This hydrothermal system comprises two distinct flow components: (1) An on-axis circulation above the melt lens with recharging flow surrounding the hot up-flow zones. (2) A ridge-perpendicular circulation with recharge areas located kilometers away from the ridge. Here fluids penetrate the crust down to Moho depth and travel at temperatures of 400-600°C towards the ridge where they merge with the on-axis circulation in a reaction zone above the axial melt lens. Fluids released at the seafloor are a mixture of both components, with an average ratio between proximately- and distally-sourced fluids of about 2:1. This hybrid hydrothermal system reconciles previously incompatible observations that support either on-axis or ridge-perpendicular circulation patterns. The potential co-existence of two interacting hydrothermal circulations at fast spreading ridges is of importance for the interpretation of chemical signatures at hydrothermal vents and the quantification of the mass and energy exchange between ocean and solid earth: (1) A vertically and laterally extended ridge-perpendicular circulation will expose a much larger volume of oceanic crust to high-temperature hydrothermal alteration. Especially the lower crust would also be exposed to significant hydrothermal fluid flow and thus geochemical mining. (2) Fluids that migrate ridge-perpendicular and undergo phase separation at depth are likely to separate gravitationally from the denser and highly saline brine phase. Only the vapor-like phase may migrate up-slope towards the top of the melt lens, where these fluids would provide a

  18. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  19. Arctic Ocean: hydrothermal activity on Gakkel Ridge.

    PubMed

    Jean-Baptiste, Philippe; Fourré, Elise

    2004-03-01

    In the hydrothermal circulation at mid-ocean ridges, sea water penetrates the fractured crust, becomes heated by its proximity to the hot magma, and returns to the sea floor as hot fluids enriched in various chemical elements. In contradiction to earlier results that predict diminishing hydrothermal activity with decreasing spreading rate, a survey of the ultra-slowly spreading Gakkel Ridge (Arctic Ocean) by Edmonds et al. and Michael et al. suggests that, instead of being rare, the hydrothermal activity is abundant--exceeding by at least a factor of two to three what would be expected by extrapolation from observation on faster spreading ridges. Here we use helium-3 (3He), a hydrothermal tracer, to show that this abundance of venting sites does not translate, as would be expected, into an anomalous hydrothermal 3He output from the ridge. Because of the wide implications of the submarine hydrothermal processes for mantle heat and mass fluxes to the ocean, these conflicting results call for clarification of the link between hydrothermal activity and crustal production at mid-ocean ridges.

  20. Investigating Chemotactic Potential Within Crustal Fluid Communities

    NASA Astrophysics Data System (ADS)

    Carr, S. A.; Jungbluth, S.; Lin, H. T.; Rappe, M. S.; Orcutt, B.

    2014-12-01

    The oceanic crust constitutes, possibly, the largest but most inaccessible habitat on Earth. Exchange of fluid between the permeable crustal environment and overlying sediments and bottom seawater transports electron donors and acceptors, which create redox gradients exploitable by microbial life. While the presence of microbial communities within the oceanic crust is strongly suggested, the structure of these communities, and survival mechanisms used within the hydrothermally-active basement aquifer remain unclear. Recently, crustal fluids from two subsurface borehole observatories (IODP CORKs U1362A and U1362B), located on the eastern flank of Juan de Fuca Ridge, were collected for both single cell genomic and metagenomic analyses. Both techniques revealed an abundance of motility and chemotactic genes. Single-cell amplified genomes (SAGs) classified as Marine Benthic Group E had relatively more motility and taxis genes than any other publically available archaeal SAG. Furthermore, metagenomes from these sites had 3.5 times as many motility and taxis genes than those from sedimentary environments. Many of the detected chemotactic genes (such as tsr and aer) are known to monitor electron flow through the electron transport system, thereby serving as "energy receptors," which direct organisms to the most fitting redox zone. Considering fluid advection occurring within the oceanic crust, the observation of chemotaxis suggests an adaptive lifestyle for crustal microbes.

  1. Rb-Sr and oxygen isotopic study of alkalic rocks from the Trans-Pecos magmatic province, Texas: Implications for the petrogenesis and hydrothermal alteration of continental alkalic rocks

    SciTech Connect

    Lambert, D.D.; Malek, D.J.; Dahl, D.A. )

    1988-10-01

    Rb-Sr and O isotopic data for mid-Tertiary alkalic rocks from the Trans-Pecos magmatic province of west Texas demonstrate that hydrothermal alteration and fluid/rock (cation exchange) interactions have affected the isotope geochemistry of these rocks. Strontium and O isotopic data for late-stage minerals in an alkali basalt (hawaiite) still record two episodes of fluid/rock interactions. These data suggest that later meteoric fluids introduced Sr with a Cretaceous marine {sup 87}Sr/{sup 86}Sr ratio into minerals with significant cation exchange capacity. Dilute HCl leaching experiments demonstrate the removal of this labile or exchangeable Sr from the alkali basalt. Rb-Sr isotopic data for the leached alkali basalt and handpicked calcite record a crystallization age of 42 Ma, consistent with K-Ar data for an unaltered alkali basalt (hawaiite) dike from the same area (42.6 {plus minus} 1.3 Ma). Leaching experiments on one phonolite suggest the Sr isotopic variability in unleached phonolite and nepheline trachyte samples may be attributed to Sr in secondary calcite and zeolites, which have an upper Cretaceous marine {sup 87}Sr/{sup 86}Sr ratio. Rb-Sr isotopic data for leached phonolite and sanidine separate yield an age of 36.5 {plus minus} 0.8 Ma, within analytical uncertainty of a K-Ar biotite age (36.0 {plus minus} 1.1 Ma) of another phonolite. These leaching experiments demonstrate that the Rb-Sr isotopic systematics of hydrothermally-altered continental alkalic rocks may be significantly improved, providing more reliable geochronologic and isotopic tracer information necessary in constructing precise models of mantle sources.

  2. Catastrophic volcanic collapse: relation to hydrothermal processes.

    PubMed

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  3. Hydrothermal alteration related to a deep mantle source controlled by a Cambrian intracontinental strike-slip fault: Evidence for the Meruoca felsic intrusion associated with the Transbraziliano Lineament, Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Santos, Roberto Ventura; Oliveira, Claudinei Gouveia de; Parente, Clóvis Vaz; Garcia, Maria da Glória Motta; Dantas, Elton Luis

    2013-04-01

    One of the most prominent geological structures in Borborema Province, northeast Brazil, is the Transbraziliano Lineament that crosscuts most of the South American Platform and was active at least until the Devonian. This continental structure is responsible for the formation of rift and pull-apart basins in Northeastern Brazil, most of which filled with volcanic and continental sedimentary rocks (Parente et al., 2004). In the region of Sobral, Ceará State, this same continental structure controlled the intrusion of the Meruoca pluton and the formation of the Jaibaras Basin, which is bounded by strike-slip shear zones. Hydrothermal alterations seem to have been pervasive in Meruoca, as indicated by disturbances in both the Rb-Sr and U-Pb systems (Sial et al., 1981; Fetter, 1999) and by the large dispersion of anisotropic magnetic susceptibility (AMS) (Archanjo et al., 2009). In this paper, we address the origin of the hydrothermal fluids that affected the borders of the Meruoca batholith and their relationship with the activity of the Transbraziliano Lineament. These fluids were responsible for carbonate veins and Fe-Cu mineral concentrations that are commonly found associated with hydrothermally altered breccias. The carbon and oxygen isotope composition of these carbonate veins suggest that they may be related to CO2-bearing mantle-derived fluids that were channelized by the Transbraziliano Lineament. Based on oxygen isotopes, we argue that Fe-Cu concentrations may have formed in isotope equilibrium with the rhyolitic rocks at temperatures between 500 and 560 °C. This scenario points to magmatism as the main process in the formation of these rocks. We also report a K-Ar age of 530 ± 12 Ma for muscovite associated with the last ductile event that affected the Sobral-Pedro II Shear Zone and a U-Pb age of 540.8 ± 5.1 Ma for the Meruoca pluton. We further suggest that this granite is a late-kinematic intrusion that is most likely associated with the Parapu

  4. Crustal Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Ravat, D.; Frawley, James J.

    1999-01-01

    Cosmos 49, Polar Orbit Geophysical Observatory (POGO) (Orbiting Geophysical Observatory (OGO-2, 4 and 6)) and Magsat have been the only low-earth orbiting satellites to measure the crustal magnetic field on a global scale. These missions revealed the presence of long- wavelength (> 500 km) crustal anomalies predominantly located over continents. Ground based methods were, for the most part, unable to record these very large-scale features; no doubt due to the problems of assembling continental scale maps from numerous smaller surveys acquired over many years. Questions arose as to the source and nature of these long-wave length anomalies. As a result there was a great stimulant given to the study of the magnetic properties of the lower crust and upper mantle. Some indication as to the nature of these deep sources has been provided by the recent results from the deep crustal drilling programs. In addition, the mechanism of magnetization, induced or remanent, was largely unknown. For computational ease these anomalies were considered to result solely from induced magnetization. However, recent results from Mars Orbiter Laser Altimeter (MOLA), a magnetometer-bearing mission to Mars, have revealed crustal anomalies with dimensions similar to the largest anomalies on Earth. These Martian features could only have been produced by remanent magnetization, since Mars lacks an inducing field. The origin of long-wavelength crustal anomalies, however, has not been completely determined. Several large crustal magnetic anomalies (e.g., Bangui, Kursk, Kiruna and Central Europe) will be discussed and the role of future satellite magnetometer missions (Orsted, SUNSAT and Champ) in their interpretation evaluated.

  5. Recrystallization and hydrothermal growth of high U-Th zircon in the Weondong deposit, Korea: Record of post-magmatic alteration

    NASA Astrophysics Data System (ADS)

    Park, Changyun; Song, Yungoo; Chung, Donghoon; Kang, Il-Mo; Khulganakhuu, Chuluunbaatar; Yi, Keewook

    2016-09-01

    In this study, we investigate zircons with high U and Th contents of 12,000-24,000 and 11,000-40,000 ppm, respectively, from leucocratic granite in the Weondong region of South Korea. Hydrothermally epitaxial growth textures are observed in addition to four distinct textures with different backscattered electron (BSE) intensities within single zircon crystals. We describe the internal textures of the zircon crystals and define the chemical characteristics of each textural domain. The zircon crystals show internally recrystallized and externally crystallized textures, supporting the concept of post-magmatic fluid control. After crystallization of the primary zircon by late magmatism, four types of secondary textures were developed. The type-I domain shows patchy forms within the primary domain due to the structural and chemical recrystallization of self-irradiated zircon by a fluid-dominated diffusion reaction process. The type-II domain is characterized by a pure zircon composition, mineral inclusions (mainly thorite), and micropores due to chemical recrystallization by a coupled dissolution-reprecipitation process during interaction with aqueous fluids. The type-III domain is the purest zircon, is interconnected with type-II, and formed by a second coupled dissolution-reprecipitation process. The type-IV domain is the hydrothermal recrystallization/overgrowth texture formed by the direct crystallization process from fluorine-enriched, zircon-saturated aqueous fluid. These results indicate that the zircon crystals were formed sequentially or intermittently through multi-genetic processes by post-magmatic fluids. Furthermore, we conclude that F-enriched post-magmatic fluid migrated large amounts of zirconium, resulting in the typical overgrowth texture of zircon.

  6. Controls on Martian Hydrothermal Systems: Application to Valley Network and Magnetic Anomaly Formation

    NASA Technical Reports Server (NTRS)

    Harrison, Keith P.; Grimm, Robert E.

    2002-01-01

    Models of hydrothermal groundwater circulation can quantify limits to the role of hydrothermal activity in Martian crustal processes. We present here the results of numerical simulations of convection in a porous medium due to the presence of a hot intruded magma chamber. The parameter space includes magma chamber depth, volume, aspect ratio, and host rock permeability and porosity. A primary goal of the models is the computation of surface discharge. Discharge increases approximately linearly with chamber volume, decreases weakly with depth (at low geothermal gradients), and is maximized for equant-shaped chambers. Discharge increases linearly with permeability until limited by the energy available from the intrusion. Changes in the average porosity are balanced by changes in flow velocity and therefore have little effect. Water/rock ratios of approximately 0.1, obtained by other workers from models based on the mineralogy of the Shergotty meteorite, imply minimum permeabilities of 10(exp -16) sq m2 during hydrothermal alteration. If substantial vapor volumes are required for soil alteration, the permeability must exceed 10(exp -15) sq m. The principal application of our model is to test the viability of hydrothermal circulation as the primary process responsible for the broad spatial correlation of Martian valley networks with magnetic anomalies. For host rock permeabilities as low as 10(exp -17) sq m and intrusion volumes as low as 50 cu km, the total discharge due to intrusions building that part of the southern highlands crust associated with magnetic anomalies spans a comparable range as the inferred discharge from the overlying valley networks.

  7. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil: paragenesis and stable isotope constraints

    NASA Astrophysics Data System (ADS)

    Monteiro, Lena V. S.; Xavier, Roberto P.; de Carvalho, Emerson R.; Hitzman, Murray W.; Johnson, Craig A.; de Souza Filho, Carlos Roberto; Torresi, Ignácio

    2008-02-01

    . Pyrrhotite and pyrite are minor constituents of ore in the Sequerinho orebodies while pyrite is relatively abundant in the Sossego-Curral bodies. Oxygen isotope partitioning between mineral pairs constrains temperatures in the deposit spatially and through time. In the Sequeirinho orebody, the early sodic-calcic alteration stage was characterized by temperatures exceeding 500°C and δ ^{{{text{18}}}} {text{O}}_{{{text{H}}_{{text{2}}} {text{O}}}} values for the alteration fluid of 6.9 ± 0.9‰. Temperature declines outward and upward from the zone of most intense alteration. Paragenetically later copper-gold mineralization displays markedly lower temperatures (<300°C) and was characterized by the introduction of 18O-depleted hydrothermal fluids -1.8 ± 3.4‰. The calculated δDH2O and δ ^{{{text{18}}}} {text{O}}_{{{text{H}}_{{text{2}}} {text{O}}}} values suggest that the fluids that formed the early calcic-sodic alteration assemblage were of formational/metamorphic or magmatic origin. The decrease of δ ^{{{text{18}}}} {text{O}}_{{{text{H}}_{{text{2}}} {text{O}}}} values through time may reflect influx of surficially derived waters during later alteration and mineralization events. Influx of such fluids could be related to episodic fluid overpressure, resulting in dilution and cooling of the metalliferous fluid, causing deposition of metals transported as metal chloride complexes.

  8. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil: Paragenesis and stable isotope constraints

    USGS Publications Warehouse

    Monteiro, Lena V.S.; Xavier, R.P.; Carvalho, E.R.; Hitzman, M.W.; Johnson, C.A.; Souza, Filho C.R.; Torresi, I.

    2008-01-01

    subsidiary siegenite, and millerite. Pyrrhotite and pyrite are minor constituents of ore in the Sequerinho orebodies while pyrite is relatively abundant in the Sossego–Curral bodies. Oxygen isotope partitioning between mineral pairs constrains temperatures in the deposit spatially and through time. In the Sequeirinho orebody, the early sodic–calcic alteration stage was characterized by temperatures exceeding 500°C and δ18OH2O values for the alteration fluid of 6.9 ± 0.9‰. Temperature declines outward and upward from the zone of most intense alteration. Paragenetically later copper–gold mineralization displays markedly lower temperatures (<300°C) and was characterized by the introduction of 18O-depleted hydrothermal fluids −1.8 ± 3.4‰. The calculated δDH2O and δ18OH2O values suggest that the fluids that formed the early calcic–sodic alteration assemblage were of formational/metamorphic or magmatic origin. The decrease of δ18OH2O values through time may reflect influx of surficially derived waters during later alteration and mineralization events. Influx of such fluids could be related to episodic fluid overpressure, resulting in dilution and cooling of the metalliferous fluid, causing deposition of metals transported as metal chloride complexes.

  9. Hydrothermal circulation in fault slots with topography

    NASA Astrophysics Data System (ADS)

    Titarenko, Sofya; McCaig, Andrew

    2014-05-01

    There are numerous cases where the circulation of hydrothermal fluid is likely to be confined within a permeable fault slot. Examples are (1) the Lost City Hydrothermal Field (LCHF) at 30 N in the Atlantic, which is likely to be controlled by large E-W faults related to the Atlantis transform fault and mass wasting on the southern wall of the Atlantis Massif, and (2) large normal faults bounding the Hess Deep rift in the East Pacific, which contain intense hydrothermal metamorphic assemblages in lower crustal gabbros formed at 200-350 ° C. This type of circulation could occur anywhere where steep faults cut the oceanic crust, including large near-axis normal faults, transform faults and faults at subduction bend zones, and could be the major way in which the upper mantle and lower crust are hydrated. It is therefore important to constrain the controls on temperature conditions of alteration and hence mineral assemblages. Previous 2-D modelling of the LCHF shows that seafloor topography and permeability structure combine together to localise the field near the highest point of the Atlantis Massif. Our new models are 3-D, based on a 10km cube with seafloor topography of ~ 2km affecting both the fault slot and impermeable wall rocks. We have used Comsol multiphysics in this modelling, with a constant basal heatflow corresponding to the near conductive thermal gradient measured in IODP Hole 1309D, 5km north of the LCHF, and a constant temperature seafloor boundary condition. The wall rocks of the slot have a permeability of 10-17 m2 while permeability in the slot is varied between 10-14 and 10-15 m2. Initial conditions are a conductive thermal structure corresponding to the basal heatflow at steady state. Generic models not based on any particular known topography quickly stabilise a hydrothermal system in the fault slot with a single upflow zone close to the model edge with highest topography. In models with a depth of circulation in the fault slot of about 6 km

  10. Untangling Magmatic Processes and Hydrothermal Alteration of in situ Superfast Spreading Ocean Crust at ODP/IODP Site 1256 with Fuzzy c-means Cluster Analysis of Rock Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; Heslop, D.; Herrero-Bervera, E.; Acton, G.; Krasa, D.

    2014-12-01

    Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6.44.1' N, 91.56.1' W) on the Cocos Plate occurs in 15.2 Ma oceanic crust generated by superfast seafloor spreading. Presently, it is the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Here we interpret down-hole trends in several rock-magnetic parameters with fuzzy c-means cluster analysis, a multivariate statistical technique. The parameters include the magnetization ratio, the coercivity ratio, the coercive force, the low-field susceptibility, and the Curie temperature. By their combined, multivariate, analysis the effects of magmatic and hydrothermal processes can be evaluated. The optimal number of clusters - a key point in the analysis because there is no a priori information on this - was determined through a combination of approaches: by calculation of several cluster validity indices, by testing for coherent cluster distributions on non-linear-map plots, and importantly by testing for stability of the cluster solution from all possible starting points. Here, we consider a solution robust if the cluster allocation is independent of the starting configuration. The five-cluster solution appeared to be robust. Three clusters are distinguished in the extrusive segment of the Hole that express increasing hydrothermal alteration of the lavas. The sheeted dike and gabbro portions are characterized by two clusters, both with higher coercivities than in lava samples. Extensive alteration, however, can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. All clusters display rock magnetic characteristics in line with a stable NRM. This implies that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Determination of the absolute paleointensity with thermal techniques is

  11. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    USGS Publications Warehouse

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    The systematics of stable-isotope exchange between minerals and fluids are examined in the context of modal mineralogical variations and mass-balance considerations, both in closed and in open systems. On mineral-pair ??18O plots, samples from terranes that have exchanged with large amounts of fluid typically map out steep positively-sloped non-equilibrium arrays. Analytical models are derived to explain these effects; these models allow for different exchange rates between the various minerals and the external fluids, as well as different fluid fluxes. The steep arrays are adequately modelled by calculated isochron lines that involve the whole family of possible exchange trajectories. These isochrons have initially-steep near-vertical positive slopes that rotate toward a 45?? equilibrium slope as the exchange process proceeds to completion. The actual data-point array is thus analogous to the hand of an "isotopic clock" that measures the duration of the hydrothermal episode. The dimensionless ratio of the volumetric fluid flux to the kinetic rate parameter ( u k) determines the shape of each individual exchange trajectory. In a fluid-buffered system ( u k ??? 1), the solutions to the equations: (1) are independent of the mole fractions of the solid phases; (2) correspond to Taylor's open-system water/rock equation; and (3) yield straight-line isochrons that have slopes that approach 1 f, where f is the fraction reacted of the more sluggishly exchanging mineral. The isochrons for this simple exchange model are closely congruent with the isochrons calculated for all of the more complex models, thereby simplifying the application of theory to actual hydrothermal systems in nature. In all of the models an order of magnitude of time (in units of kt) separates steep non-equilibrium arrays (e.g., slope ??? 10) from arrays approaching an equilibrium slope of unity on a ??-?? diagram. Because we know the approximate lifetimes of many hydrothermal systems from geologic and

  12. Crustal Evolution Introduced.

    ERIC Educational Resources Information Center

    Stoever, Edward C., Jr.; Korporaal, Arie R.

    1979-01-01

    Detailed are the origins, development, and implementation of the Crustal Evolution Education Project (CEEP). This group has produced, for use in earth science and other classes in grades 8-10, a series of instructional modules based on current scientific research in the composition, history, and processes of the earth's crust. (BT)

  13. Magnetic Structure of Backarc Spreading Axis with Hydrothermal Vents; the Southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Mochizuki, N.; Honsho, C.; Szitkar, F.; Dyment, J.; Nakamura, K.

    2012-12-01

    Seafloor hydrothermal systems are important in relation to global heat and chemical fluxes as well as habitat of microbial communities. The substantial variation of hydrothermal systems in various tectonic settings has important implications for the magnetic structure of oceanic crust. It has been very difficult to detect the geophysical signature of hydrothermal systems from sea-surface data because the small scale of hydrothermal systems is below the limit of resolution. The advance of near-bottom survey methods using a submersible, deep-tow, ROV and AUV has made possible high-resolution geophysical mapping around hydrothermal areas. Near-bottom magnetic surveys can provide direct information on the magnetization of the shallower oceanic crust, implying hydrothermal alteration both in active and fossil vent sites. Near-bottom three component magnetic measurements on submersible Shinkai 6500 were carried out at hydrothermal fields in the Southern Mariana Trough, a slow spreading backarc basin. Fourteen dive surveys were conducted during cruises YK11-10 and YK10-11. We investigated the magnetic structure of four hydrothermal systems located at on- and off-axis to clarify how the geophysical and geological setting controls the fluid circulation at small scale. Recent researches at slow spreading ridges showed a relationship between crustal magnetic structure and host rock around hydrothermal vents (e.g. Tivey and Dyment, 2010), but no observation at backarc spreading axis has been reported so far. We carefully corrected the effects of induced and permanent magnetizations of the submersible by applying the method of Isezaki [1986] with dumped least-square method (Honsho et al., 2009). After subtracting the IGRF from the corrected observed data, we obtained geomagnetic vector anomalies in geographical coordinate. For three transects of the axis, we applied three methods; 2D inversion technique (Parker and Huestis, 1972), 2D forward modeling technique (Honsho et al

  14. Tracking hydrothermal alteration and mineralization in rock-forming and accessory minerals from the Lyon Mountain Granite and related iron oxide apatite (IOA) ores from the Adirondack Mountains, New York State

    NASA Astrophysics Data System (ADS)

    Buchanan, A.; Hanchar, J. M.; Steele-MacInnis, M. J.; Crowley, J. L.; Valley, P. M.; Fisher, C. M.; Fedo, C.; Piccoli, P. M.; Fournelle, J.

    2012-12-01

    The Lyon Mountain granite (LMG) is located in the northeastern Adirondack Mountains in New York State and hosts several low-titanium iron oxide apatite (IOA) ore deposits. The ores are predominately hosted by perthite bearing granite, which has been extensively altered to albite and microcline granite by Na and K metasomatism. This alteration results in several distinct groups of rocks that are dominated by either K or Na addition and a group composed of mixed Na and K addition. The different groups of altered perthite also lie on a trend suggestive of addition of Fe to each, consistent with a secondary mineralization origin. Previous work showed that the host rocks of the IOA ores have zircon with ~1150 Ma cores and 1060-1050 Ma rims and whole grains. This study aims to further constrain the timing of LMG emplacement, subsequent hydrothermal alteration, and Fe mineralization through geochemical analysis of the major, minor, and accessory phases and geochronology of accessory phases. SIMS analyses of zircon from several of the IOA ores reveal at least two periods of growth after LMG magmatism, at 1039 +/- 4.4 Ma and 1016 +/- 7 Ma to 1000 +/- 9 Ma. In situ EMPA and LA-ICPMS trace element analyses of the zircon rims and cores reveal that in two samples the zircon rims are enriched in rare earth elements (REE) compared to their cores, potentially pointing to a hydrothermal origin. Apatite has unusually high REE and Y concentrations (some total REE2O3 > 20 wt. % oxide and up to 8 wt. % oxide Y2O3), as does titanite, which allowed for the in situ analysis of Sm-Nd in apatite and titanite by LA-MC-ICP-MS. Initial Nd isotopic composition of both ore and host rock apatite and host rock titanite are consistent with published Adirondack initial Nd whole rock data, suggesting a local source for REE in these ores. EMPA and LA-ICPMS trace-element analyses of the major rock-forming minerals indicate that the feldspar have undergone Na-metasomatism and are depleted in REEs

  15. Crustal deformation and earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1984-01-01

    The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.

  16. Lunar Crustal Stratigraphy

    NASA Astrophysics Data System (ADS)

    McCallum, I. S.; O'Brien, H. E.

    1996-03-01

    Intense bombardment during the first 600 Ma of lunar history has rendered the task of reconstructing the stratigraphy of the lunar crust especially difficult. On a planetary scale, the distribution of lithologies around multi-ringed basins coupled with orbital geochemical data reveal that the lunar crust is heterogeneous both laterally and vertically. Ejecta from the large multi-ringed basins is exclusively of crustal origin since twenty five years of lunar sample study have failed to identify any unequivocal mantle samples. Given the most recent determination of crustal thickness, this implies an upper limit to the depth of excavation of around 60 km. In the younger multi-ringed basins (Orientale and Imbrium), the occurrence of anorthosites in inner rings is consistent with an anorthositic upper crust (Al2O3 = 26-28 wt.%). On the other hand, basin impact melts, most notably the low-K Fra Mauro (LKFM) composition associated with the Imbrium and Serenitatis basins, are distinctly more mafic with a composition corresponding to norite (Al2O3 ~ 20 wt.%). Cratering models suggest that such melts are generated at the lower to middle crustal depths (30 to 60 km). The paucity of unequivocal deep-seated crystalline plutonic rocks is also consistent with cratering models which suggest that unmelted rock fragments in ejecta blankets are most likely derived from the upper part of the crust. Consequently, the possibility exists that no crystalline lunar samples from deeper that ~30 km are present in the returned sample collection.

  17. Lithospheric and crustal thinning

    NASA Technical Reports Server (NTRS)

    Moretti, I.

    1985-01-01

    In rift zones, both the crust and the lithosphere get thinner. The amplitude and the mechanism of these two thinning situations are different. The lithospheric thinning is a thermal phenomenon produced by an asthenospherical uprising under the rift zone. In some regions its amplitude can exceed 200%. This is observed under the Baikal rift where the crust is directly underlaid by the mantellic asthenosphere. The presence of hot material under rift zones induces a large negative gravity anomaly. A low seismic velocity zone linked to this thermal anomaly is also observed. During the rifting, the magmatic chambers get progressively closer from the ground surface. Simultaneously, the Moho reflector is found at shallow depth under rift zones. This crustal thinning does not exceed 50%. Tectonic stresses and vertical movements result from the two competing effects of the lithospheric and crustal thinning. On the one hand, the deep thermal anomaly induces a large doming and is associated with extensive deviatoric stresses. On the other hand, the crustal thinning involves the formation of a central valley. This subsidence is increased by the sediment loading. The purpose here is to quantify these two phenomena in order to explain the morphological and thermal evolution of rift zones.

  18. High- & Low-δ18O magma: Comparative study of crustal and mantle plagiogranites from the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Alberts, R. C.; Grimes, C. B.; Koepke, J.; Erdmann, M.; Kitajima, K.; Spicuzza, M. J.; Valley, J. W.

    2015-12-01

    Plagiogranite (PLGT) from the crust and mantle sections of the Oman ophiolite preserve widely varied δ18O values that monitor different processes occurring during ophiolite construction. Mantle-like δ18O values are expected if MORB fractionation played a dominant role in PLGT genesis. Magmatic values (monitored here by zircon) shifted away from the mantle-like range indicate open system processes which include partial melting of hydrothermally-altered crust or influx of subduction-related, sediment-derived melt. Zircon (zrn) and quartz (qtz) from twenty-four new samples of PLGT from the crustal and mantle sections of the Oman ophiolite were analyzed for δ18O. Rock-averaged δ18O from the sheeted dikes (zrn: 4.3-4.5‰, qtz: 6.7-6.9‰) and dike-gabbro transition (zrn: 3.9-4.8‰, qtz: 4.7-7.7‰) are mostly below values in magmatic equilibrium with MORB (zrn = 5.2±0.5‰, qtz = 7.0-7.5‰). δ18O for PLGT in the gabbro section (zrn: 4.8-5.1‰, qtz: 7.7-8.3‰) are mostly mantle-like. Quartz is generally found to be more variable than coexisting zrn and likely experienced some sub-solidus exchange. When organized into a relative structural position, δ18Ozrn values typically increase with depth. The lowest δ18Ozrn are observed near the dike-gabbro transition and are consistent with petrogenesis involving hydrous partial melting of mafic crust previously hydrothermally-altered at high-T. The return to nominally mantle-equilibrated δ18Ozrn deeper in the gabbro section may reflect decreasing seawater-signatures of fluids penetrating to depth, lower water/rock ratios, or extreme fractional crystallization. Crustal PLGT thus predate the development of high δ18O signatures in the upper oceanic crust as it cools and experiences low temperature hydrothermal alteration. Mantle PLGT intrusions (1-3 m thick) from the Haylayn block extend to considerably higher rock-averaged δ18O values (zrn: 5.1-15.4‰, qtz: 7.0-18.5‰). Individual rocks (5 samples) were uniform in

  19. Hydrothermal Alteration of Glass from Underground Nuclear Tests: Formation and Transport of Pu-clay Colloids at the Nevada National Security Site

    SciTech Connect

    Zavarin, M.; Zhao, P.; Joseph, C.; Begg, J.; Boggs, M.; Dai, Z.; Kersting, A. B.

    2015-05-27

    across a range of temperatures (25-200 °C) that represent hydrothermal conditions representative of the underground nuclear test cavities (when groundwater has re-saturated the nuclear melt glass and glass dissolution occurs). Colloid loads and Pu concentrations were monitored along with the mineralogy of both the colloids and the secondary mineral phases. The intent was to establish an upper limit for Pu concentrations at the NNSS, provide context regarding the Pu concentrations observed at the NNSS to date and the Pu concentrations that may be observed in the future. The results provide a conceptual model for the risks posed by Pu migration at the NNSS.

  20. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    NASA Technical Reports Server (NTRS)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  1. Chemical and physical studies of type 3 chondrites. IX. Thermoluminescence and hydrothermal annealing experiments and their relationship to metamorphism and aqueous alteration in type < 3. 3 ordinary chondrites

    SciTech Connect

    Guimon, R.K.; Lofgren, G.E.; Sears, D.W.G.

    1988-01-01

    Samples of four type 3 chondrites have been annealed at 400-850/sup 0/C and 0.77-1 kbar for 10-500 h in the presence of various amounts of water (0-10 wt.%) and sodium disilicate (0-2 molal) and their thermoluminescence properties measured. After annealing for > 20 h at temperatures > 600/sup 0/C, the TL sensitivity of the samples increased by factors of up to 40. After annealing at < 600/sup 0/C for 10-500 h, or relatively short periods at high temperatures (e.g., less than or equal to 20 h at 850/sup 0/C), the TL sensitivity of the samples decreased by up to 2 orders of magnitude (depending on the original value). The TL peak temperatures observed in the present experiments are consistent with a low form of feldspar (the TL phosphor) being produced at < 800/sup 0/C and a high form being produced at > 800/sup 0/C. When both high and low forms were present originally, the low-form was destroyed preferentially. The authors suggest that these data are consistent with the TL-metamorphism trends observed in type > 3.2 chondrites, being due to the formation of feldspar by the devitrification of chondrule glass during metamorphism. For types < 3.2, the TL data are equally consistent with these types experiencing lower levels of metamorphism than the higher types, or with type 3.0 being produced from higher types by aqueous alteration. The presence of water with non-terrestrial D/H ratios, and petrographic evidence for aqueous alteration in Semarkona, lead to favoring the aqueous alteration hypothesis.

  2. Detection and mapping of hydrothermally altered rocks in the vicinity of the comstock lode, Virginia Range, Nevada, using enhanced LANDSAT images

    NASA Technical Reports Server (NTRS)

    Ashley, R. P. (Principal Investigator); Goetz, A. F. H.; Rowan, L. C.; Abrams, M. J.

    1979-01-01

    The author has identified the following significant results. LANDSAT images enhanced by the band-ratioing method can be used for reconnaissance alteration mapping in moderately heavily vegetated semiarid terrain as well as in sparsely vegetated to semiarid terrain where the technique was originally developed. Significant vegetation cover in a scene, however, requires the use of MSS ratios 4/5, 4/6, and 6/7 rather than 4/5, 5/6, and 6/7, and requires careful interpretation of the results. Supplemental information suitable to vegetation identification and cover estimates, such as standard LANDSAT false-color composites and low altitude aerial photographs of selected areas is desirable.

  3. Near-infrared reflectance of zunyite: implications for field mapping and remote-sensing detection of hydrothermally altered high alumina rocks.

    USGS Publications Warehouse

    Crowley, J.K.

    1984-01-01

    Several hydroxyl-bearing minerals have diagnostic absorption bands in the 2.0-2.4 mu m wave length range, and can be identified with an orbital radiometer and with high-resolution airborne and field portable spectrometers. Among such minerals, zunyite, 143Al13Si5O20(OH,F)18Cl, has distinctive spectral absorption characteristics and is notably restricted to, and thus an indicator mineral of, advanced argillic alteration. Although seldom noted because it visually resembles quartz, zunyite is probably not as rare as generally believed. Laboratory measurements and general considerations underlie suggestions favouring the feasibility of detecting zunyite, alone and in mixtures with other Al-OH minerals, using field portable spectrometers.-G.J.N.

  4. Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide-copper-gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Torresi, Ignacio; Xavier, Roberto Perez; Bortholoto, Diego F. A.; Monteiro, Lena V. S.

    2012-03-01

    The Alvo 118 iron oxide-copper-gold (IOCG) deposit (170 Mt at 1.0 wt.% Cu, 0.3 g/t Au) lies in the southern sector of the Itacaúnas Shear Belt, Carajás Mineral Province, along a WNW-ESE-striking, 60-km-long shear zone, close to the contact of the ~2.76-Ga metavolcano-sedimentary Itacaiúnas Supergroup and the basement (~3.0 Ga Xingu Complex). The Alvo 118 deposit is hosted by mafic and felsic metavolcanic rocks and crosscutting granitoid and gabbro intrusions that have been subjected to the following hydrothermal alteration sequence towards the ore zones: (1) poorly developed sodic alteration (albite and scapolite); (2) potassic alteration (biotite or K-feldspar) accompanied by magnetite formation and silicification; (3) widespread, pervasive chlorite alteration spatially associated with quartz-carbonate-sulphide infill ore breccia and vein stockworks; and (4) local post-ore quartz-sericite alteration. The ore assemblage is dominated by chalcopyrite (~60%), bornite (~10%), hematite (~20%), magnetite (10%) and subordinate chalcocite, native gold, Au-Ag tellurides, galena, cassiterite, F-rich apatite, xenotime, monazite, britholite-(Y) and a gadolinite-group mineral. Fluid inclusion studies in quartz point to a fluid regime composed of two distinct fluid types that may have probably coexisted within the timeframe of the Cu-Au mineralizing episode: a hot (>200°C) saline (32.8‰ to 40.6 wt.% NaCl eq.) solution, represented by salt-bearing aqueous inclusions, and a lower temperature (<200°C), low to intermediate salinity (<15 wt.% NaCl eq.) aqueous fluid defined by two-phase (LH2O + VH2O) fluid inclusions. This trend is very similar to those defined for other IOCG systems of the Carajás Mineral Province. δ 18OH2O values in equilibrium with calcite (-1.0‰ to 7.5‰ at 277°C to 344°C) overlap the lower range for primary magmatic waters, but the more 18O-depleted values also point to the involvement of externally derived fluids, possibly of meteoric origin

  5. Multipolarity remanences in lower oceanic crustal gabbros recovered by drilling at Hess Deep (Integrated Ocean Drilling Program Expedition 345)

    NASA Astrophysics Data System (ADS)

    Morris, Antony; Horst, Andrew; Friedman, Sarah; Nozaka, Toshio

    2015-04-01

    A long-term goal of the scientific ocean drilling community is to understand the processes by which the ocean crust is constructed through magmatism, deformation, metamorphism and hydrothermal cooling. Insights into the magnetic properties of the lower crust have come from drilling at oceanic core complexes and in tectonic windows. At the Hess Deep Rift, propagation of the Cocos-Nazca Ridge into young, fast-spreading East Pacific Rise crust exposes a dismembered, but nearly complete lower crustal section. Here, IODP Expedition 345 (Site U1415) recovered primitive plutonic lithologies including gabbro, troctolitic gabbro and olivine gabbronorite. These rocks exhibit cumulate textures similar to those found in layered basic intrusions and some ophiolite complexes. Metamorphism is dominated by background greenschist facies alteration associated with cataclastic deformation that likely results from Cocos-Nazca rifting. Some intervals display complex, multiple remanence components within individual samples. A high temperature component unblocks above 500°-520°C and an intermediate temperature component of nearly antipodal direction unblocks between 425°-450°C and 500°-520°C. In addition, a few samples display a third component that unblocks between 100-350°C that is nearly parallel to the highest temperature component. These multiple, nearly antipodal components suggest that remanence was acquired in different geomagnetic chrons, and represent the first multipolarity remanences seen in Pacific lower oceanic crust. Similar remanence structures, however, have been reported in lower crustal gabbros recovered from slow-spreading rate crust along the Mid-Atlantic Ridge, and have been interpreted to reflect protracted accretion or protracted cooling. In contrast, at Hess Deep unblocking temperatures appear consistent with temperatures inferred for successive phases of alteration, suggesting an alteration history spanning at least two polarity chrons.

  6. Multipolarity Remanences in Lower Oceanic Crustal Gabbros Recovered By Drilling at Hess Deep (Integrated Ocean Drilling Program Expedition 345)

    NASA Astrophysics Data System (ADS)

    Morris, A.; Horst, A. J.; Friedman, S. A.

    2014-12-01

    A long-term goal of the scientific ocean drilling community is to understand the processes by which the ocean crust is constructed through magmatism, deformation, metamorphism and hydrothermal cooling. Insights into the magnetic properties of the lower crust have come from drilling at oceanic core complexes and in tectonic windows. At the Hess Deep Rift, propagation of the Cocos-Nazca Ridge into young, fast-spreading East Pacific Rise crust exposes a dismembered, but nearly complete lower crustal section. Here, IODP Expedition 345 (Site U1415) recovered primitive plutonic lithologies including gabbro, troctolitic gabbro and olivine gabbronorite. These rocks exhibit cumulate textures similar to those found in layered basic intrusions and some ophiolite complexes. Metamorphism is dominated by background greenschist facies alteration associated with cataclastic deformation that likely results from Cocos-Nazca rifting. Some intervals display complex, multiple remanence components within individual samples. A high temperature component unblocks above 500°-520°C and an intermediate temperature component of nearly antipodal direction unblocks between 425°-450°C and 500°-520°C. In addition, a few samples display a third component that unblocks between 100-350°C that is nearly parallel to the highest temperature component. These multiple, nearly antipodal components suggest that remanence was acquired in different geomagnetic chrons, and represent the first multipolarity remanences seen in Pacific lower oceanic crust. Similar remanence structures, however, have been reported in lower crustal gabbros recovered from slow-spreading rate crust along the Mid-Atlantic Ridge, and have been interpreted to reflect protracted accretion or protracted cooling. In contrast, at Hess Deep unblocking temperatures appear consistent with temperatures inferred for successive phases of alteration, suggesting an alteration history spanning at least two polarity chrons.

  7. The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault

    NASA Astrophysics Data System (ADS)

    Humphris, Susan E.; Tivey, Margaret K.; Tivey, Maurice A.

    2015-11-01

    Over the last ten years, geophysical studies have revealed that the Trans-Atlantic Geotraverse (TAG) hydrothermal field (26°08‧N on the Mid-Atlantic Ridge) is located on the hanging wall of an active detachment fault. This is particularly important in light of the recognition that detachment faulting accounts for crustal accretion/extension along a significant portion of the Mid-Atlantic Ridge, and that the majority of confirmed vent sites on this slow-spreading ridge are hosted on detachment faults. The TAG hydrothermal field is one of the largest sites of high-temperature hydrothermal activity and mineralization found to date on the seafloor, and is comprised of active and relict deposits in different stages of evolution. The episodic nature of hydrothermal activity over the last 140 ka provides strong evidence that the complex shape and geological structure of the active detachment fault system exerts first order, but poorly understood, influences on the hydrothermal circulation patterns, fluid chemistry, and mineral deposition. While hydrothermal circulation extracts heat from a deep source region, the location of the source region at TAG is unknown. Hydrothermal upflow is likely focused along the relatively permeable detachment fault interface at depth, and then the high temperature fluids leave the low-angle portion of the detachment fault and rise vertically through the highly fissured hanging wall to the seafloor. The presence of abundant anhydrite in the cone on the summit of the TAG active mound and in veins in the crust beneath provides evidence for a fluid circulation system that entrains significant amounts of seawater into the shallow parts of the mound and stockwork. Given the importance of detachment faulting for crustal extension at slow spreading ridges, the fundamental question that still needs to be addressed is: How do detachment fault systems, and the structure at depth associated with these systems (e.g., presence of plutons and/or high

  8. Seawater bicarbonate removal during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  9. Origin of Magnetic High at Basalt-Ultramafic Hosted Hydrothermal Vent Field in the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Sato, T.; Sato, H.; Nakamura, K.

    2014-12-01

    Hydrothermal alteration processes can change crustal magnetization by destruction and creation of magnetic minerals. In the Yokoniwa hydrothermal vent field (YHVF), located at the NTO-massif in the Central Indian Ridge, a high magnetization zone (with ~12 A/m in ~200 m-scale) was discovered by previous deepsea AUV survey. Basalts and ultramafic rocks were found around the YHVF, however the origin of magnetic high and its relationship with hydrothermal activity are remains to be investigated. Therefore, we conducted additional magnetic field measurement, rock sampling, and geological observation using submersible Shinkai 6500 during the YK09-13 and YK13-03 cruises. Vector geomagnetic field were obtained along the dive tracks at an altitude of ~ 10 m. The crustal absolute magnetization is estimated using the 2D and 3D forward modeling technique. The values of magnetization show ~10 A/m just around the YHVF. This value is consistent with that of equivalent magnetization deduced from AUV data. Rock magnetic characters were measured for 8 basalts, 4 dolerites, 5 sulfides, and 30 serpentinized peridotites (SPs). The measurements of NRM, magnetic susceptibility, magnetic hysteresis, low (6-300K) and high (50-700°C) temperature magnetization curves were performed. The estimated magnetization values are 0.1-6 A/m in basalts, 0.2-0.6 A/m in dolerites, and <0.1 A/m in sulfides. The SPs show strong magnetization of 0.4-11 A/m. The magnetic grain sizes ranges over single domain to pseudo-single domain. The temperature-magnetization curves clearly show the Verway transition and Currie temperature of 580 °C, therefore magnetic carrier of SPs is supposed as pure magnetite, which is created during serpentinization process. Serpentinization degree (Sd) was also estimated by grain density measurement based on empirical formula from Oufi et al., 2002. Amount of magnetite was also estimated from saturation magnetization. The results show that the values of Sd vary in a range from 17

  10. Archaean fluid-assisted crustal cannibalism recorded by low δ18O and negative ɛHf(T) isotopic signatures of West Greenland granite zircon

    NASA Astrophysics Data System (ADS)

    Hiess, Joe; Bennett, Vickie C.; Nutman, Allen P.; Williams, Ian S.

    2011-06-01

    a mildly supra-mantle composition of 5.8 ± 0.6‰. Inherited Eoarchaean TTG-derived zircon shows mantle-like values. Igneous zircon from all other samples, spanning more than a billion years of Archaean time, record low δ18O sub-mantle compositions. These are the first low δ18O signatures reported from Archaean zircon and represent low δ18O magmas formed by the remelting and metamorphism of older crustal rocks following high-temperature hydrothermal alteration by meteoric water. Meteoric fluid ingress coupled with crustal extension, associated high heat flow and intra-crustal melting are a viable mechanism for the production of the low δ18O granites, granodiorites and trondhjemites reported here. Both high and low δ18O magmas may have been generated in extensional environments and are distinct in composition from Phanerozoic I-type granitic plutonic systems, which are typified by increasing δ18O during intra-crustal reworking. This suggests that Archaean magmatic processes studied here were subtly different from those operating on the modern Earth and involved extensional tectonic regimes and the predominance of remelting of hydrothermally altered crystalline basement.

  11. The potential for crustal resources on Mars

    NASA Technical Reports Server (NTRS)

    Cordell, Bruce M.; Gillett, Stephen L.

    1991-01-01

    Martian resources pose not only an interesting scientific challenge but also have immense astronautical significance because of their ability to enhance mission efficiency, lower launch and program costs, and stimulate the development of large Mars surface facilities. Although much terrestrial mineralization is associated with plate tectonics and Mars apparently possesses a thick, stationary lithosphere, the presence of crustal swells, rifting, volcanism, and abundant volatiles indicates that a number of sedimentary, hydrothermal, dry-magma mineral concentration processes may have operated on Mars. For example, in Colorado Plateau-style (roll-front) deposits, uranium precipitation is localized by redox variations in groundwater. Also, evaporites (either in salt pans or even interstitially in pore spaces) might concentrate Cl, Li, and K. Many Martian impact craters have been modified by volcanism and probably have been affected by rising magma bodies interacting with ground ice or water. Such conditions might produce hydrothermal circulations and element concentrations. If the high sulfur content found by the Viking landers typifies Martian abundances, sulfide ore bodies may have been formed locally. Mineral-rich Africa seems to share many volcanic and tectonic characteristics with portions of Mars and may suggest Mars' potential mineral wealth. For example, the rifts of Valles Marineris are similar to the rifts in east Africa, and may both result from a large mantle plume rising from the interior and disrupting the surface. The gigantic Bushveld complex of South Africa, an ancient layered igneous intrusion that contains ores of chromium and Pt-group metals, illustrates the sort of dry-magma processes that also could have formed local element concentrations on Mars, especially early in the planet's history when heat flow was higher.

  12. Hydrothermal Activity on ultraslow Spreading Ridge: new hydrothermal fields found on the Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Deng, X.; Lei, J.; Wang, Y.; Zhang, K.; Zhou, J.; Liu, W.

    2014-12-01

    Ultraslow spreading ridge makes up about 25% of global mid-ocean ridge length. Previous studies believed that hydrothermal activity is not widespread on the ultraslow spreading ridge owing to lower magma supply. Southwest Indian ridge (SWIR) with the spreading rate between 1.2cm/a to 1.4cm/a, represents the ultraslow spreading ridge. In 2007, Chinese Cruise (CC) 19th discovered the Dragon Flag deposit (DFD) on the SWIR, which is the first active hydrothermal field found on the ultraslow spreading ridge. In recent years, over 10 hydrothermal fields have been found on the SWIR between Indomed and Gallieni transform faults by the Chinese team. Tao et al. (2012) implied that the segment sections with excess heat from enhanced magmatism and suitable crustal permeability along slow and ultraslow ridges might be the most promising areas for searching for hydrothermal activities. In 2014, CC 30thdiscovered five hydrothermal fields and several hydrothermal anomalies on the SWIR. Dragon Horn Area (DHA). The DHA is located on the southern of segment 27 SWIR, with an area of about 400 km2. The geophysical studies indicated that the DHA belongs to the oceanic core complex (OCC), which is widespread on the slow spreading ridges (Zhao et al., 2013). The rocks, such as gabbro, serpentinized peridotite, and consolidated carbonate were collected in the DHA, which provide the direct evidence with the existence of the OCC. However, all rock samples gathered by three TV-grab stations are basalts on the top of the OCC. A hydrothermal anomaly area, centered at 49.66°E,37.80° S with a range of several kms, is detected in the DHA. It is probably comprised of several hydrothermal fields and controlled by a NW fault. New discovery of hydrothermal fields. From January to April 2014, five hydrothermal fields were discovered on the SWIR between 48°E to 50°E during the leg 2&3 of the CC 30th, which are the Su Causeway field (48.6°E, 38.1°S), Bai Causeway field (48.8°E, 37.9 °S), Dragon

  13. Compositional and isotopic diversity in MORB crystal cargoes: the differing influence of crustal and mantle processes on separate phase populations

    NASA Astrophysics Data System (ADS)

    Winpenny, B.; Maclennan, J.

    2010-12-01

    The crystal cargo of a mid-ocean ridge basalt (MORB) may display significant heterogeneity in its isotopic and chemical compositions, both within populations of its individual crystal phases, and with respect to its carrier liquid. On one hand, such variability may reflect changes in melt composition during or after crystallisation of a particular phase, due to processes such as mixing of heterogeneous primary mantle melts or assimilation of altered crustal material. On the other hand, addition of crustal xenocrysts or hydrothermally altered crystals, or more complex processes, may affect the crystal populations. Crystal compositions from Borgarhraun, a primitive basaltic flow from the Theistareykir volcanic system, north Iceland, highlight the complex and contrasting histories recorded by different phenocryst populations from the same flow. Both olivine- and clinopyroxene-hosted melt inclusions and clinopyroxene crystal compositions adhere to a model in which these phases were entirely crystallised from heterogeneous primary mantle melts undergoing mixing in the lower Icelandic crust (albeit with the minor influence of resorption of plagioclase). Clinopyroxene and olivine phenocrysts from the most recent (September 1984) eruption of the adjacent Krafla volcanic system also appear to be related to their host flow by concurrent crystallisation and mixing of mantle melts. In contrast, the relationship between plagioclase phenocrysts and their flows appears to be complex in Borgarhraun and Krafla. These plagioclase crystals vary significantly in terms of textures, style of zoning and anorthite contents (80.8-89.4 mol% in Borgarhraun, 68.3-88.9 mol% in Krafla), indicating that the plagioclase phenocrysts are not simply recording evolution and mixing of parental melts more primitive than their carrier. In order to investigate the origins of plagioclase in Borgarhraun and Krafla, we undertook a detailed textural and micro-analytical study, including analyses of major and

  14. High-resolution magnetic signature of active hydrothermal systems in the back-arc spreading region of the southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Fujii, Masakazu; Okino, Kyoko; Honsho, Chie; Dyment, Jerome; Szitkar, Florent; Mochizuki, Nobutatsu; Asada, Miho

    2015-05-01

    High-resolution vector magnetic measurements were performed on five hydrothermal vent fields of the back-arc spreading region of the southern Mariana Trough using Shinkai 6500, a deep-sea manned submersible. A new 3-D forward scheme was applied that exploits the surrounding bathymetry and varying altitudes of the submersible to estimate absolute crustal magnetization. The results revealed that magnetic-anomaly-derived absolute magnetizations show a reasonable correlation with natural remanent magnetizations of rock samples collected from the seafloor of the same region. The distribution of magnetic-anomaly-derived absolute magnetization suggests that all five andesite-hosted hydrothermal fields are associated with a lack of magnetization, as is generally observed at basalt-hosted hydrothermal sites. Furthermore, both the Pika and Urashima sites were found to have their own distinct low-magnetization zones, which could not be distinguished in magnetic anomaly data collected at higher altitudes by autonomous underwater vehicle due to their limited extension. The spatial extent of the resulting low magnetization is approximately 10 times wider at off-axis sites than at on-axis sites, possibly reflecting larger accumulations of nonmagnetic sulfides, stockwork zones, and/or alteration zones at the off-axis sites.

  15. Significance of serpentinization of lower crust in deep-sea hydrothermal biosphere -case study of gabbroic rocks from accreted oceanic plateau (Mikabu high P/T rocks, Japan)-

    NASA Astrophysics Data System (ADS)

    Ando, Y.; Ishimori, C.; Fukumura, S.; Okamoto, K.

    2013-12-01

    Hydrothermal activity in the Archean-Ridge system has been considered to play a major role to maintain the oldest biosphere in early Earth. In the present ridge-system, hydrogen production in the serpentinized peridotite layer, is considered as major energy source. However, low temperature hydrothermal zone in the lower crust layer in the ridge has been recognized as hydrogen producing zone. Thickness of oceanic crust is less then 10 km in the present Earth. However, the thickness of Archean oceanic crust has been estimated as 50 km. That is, hydration process of oceanic crust in the Archean-ridge is significantly important. Hydration rate of the peridotite layer in the Archean ridge is less extensive than Phanerozoic because thicker oceanic crust prevents hydration in the peridotite layer. Lower crustal rocks of accreted oceanic plateau is one of the best sample to describe hydration process due to deep-sea-hydrothermal alteration because it is easy to observe huge outcrops and collect samples systematically in whole section. We have collected gabbroic rocks from Mikabu high P/T rocks in Toba area and from Ootoyo area, Japan because there are large scale trench cliffs in the mine. Serpentinization of olivine gabbro and troctolite and hydrogen production rate will be shown in the present poster.

  16. Testing Models of Magmatic and Hydrothermal Segmentation: A Three-Dimensional Seismic Tomography Experiment at the Endeavour Ridge (Invited)

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S.; Toomey, D. R.; Hooft, E. E.; Weekly, R. T.; Wells, A. E.

    2010-12-01

    Competing models for what controls the segmentation and intensity of ridge crest processes are at odds on the scale of mantle and crustal magmatic segmentation, the distribution of hydrothermal venting with respect to a volcanic segment and the properties of the thermal boundary layer that transports energy between the magmatic and hydrothermal systems. The presence of an axial magma chamber (AMC) reflector beneath the central portion of the Endeavour segment of the Juan de Fuca ridge, as well as systematic along axis changes in seafloor depth, ridge crest morphology and hydrothermal venting provide an ideal target for testing conflicting hypotheses. In late summer 2009, we conducted an active source seismic experiment on the Endeavour segment of the Juan de Fuca Ridge. A total of 5,567 airgun shots from the 36-gun, 6,600 in3 airgun array of the R/V Marcus G. Langseth were recorded by 68 short-period ocean bottom seismometers (OBSs) deployed at 64 sites. The experimental geometry utilized 3 nested scales and was designed to image (1) crustal thickness variations within 25 km of the axial high (0 to 900 kyr); (2) the map view heterogeneity and anisotropy of the topmost mantle beneath the spreading axis; (3) the three-dimensional structure of the crustal magmatic system and (4) the detailed three-dimensional, shallow crustal thermal structure beneath the Endeavour vent fields. At the segment scale, six 100-km-long ridge-parallel shot lines were obtained at distances of 16, 23 and 30 km to both sides of the ridge axis with OBSs on all but the outer lines. At the along-axis scale of the AMC reflector, shot lines are spaced 1 km apart and OBSs 8 km apart within a 60 x 20 km2 region. At the vent field scale, shots were obtained on a 500 x 500 m2 grid and OBSs spaced 5 km apart within a 20 x 10 km2 region. All the shooting lines were collected with a 9 m source depth to obtain impulsive arrivals at shorter ranges but the outer lines were also shot with a 15 m source depth

  17. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Ways in which heat is useful in organic synthesis experiments are described, and experiments on the hydrothermal destruction and synthesis of organic compounds are discussed. It is pointed out that, if heat can overcome kinetic barriers to the formation of metastable states from reduced or oxidized starting materials, abiotic synthesis under hydrothermal conditions is a distinct possibility. However, carefully controlled experiments which replicate the descriptive variables of natural hydrothermal systems have not yet been conducted with the aim of testing the hypothesis of hydrothermal organic systems.

  18. Crustal structure and evolution of the southern Juan de Fuca plate from wide-angle seismic data: Insights into the hydration state of the incoming plate off Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Horning, G.; Canales, J. P.; Carbotte, S. M.; Nedimovic, M. R.; Carton, H. D.

    2014-12-01

    A multi-channel seismic reflection and wide-angle refraction seismic experiment was conducted on the Juan de Fuca (JdF) plate to investigate the evolution of the plate from accretion to its subduction at the Cascadia margin. Hydration of the upper crust (UC) of the JdF Plate is well documented, but the state of hydration of the lower crust (LC) and upper mantle (UM] remains to be investigated. A 2D P-wave velocity model of the plate is derived from a joint reflection-refraction travel-time inversion of wide-angle seismic data. Stacked MCS reflection images together with modeled sedimentary velocities define an increasing thickness of sedimentary cover of up to 2.7km. Evidence for bending-related faulting is identified in coincident MCS images both indirectly as faulting in the sedimentary layer [Gibson, et al., this meeting] and directly as dipping crustal reflectors [Han et al., this meeting]. Three first order features are evident in the patterns of crustal velocity variations along the profile. 1: Crustal velocities at 150-250 km landward of the spreading ridge (~5 Ma age) show reduced velocities up to -0.20 km/s in comparison to velocities in younger crust (~3 Ma) 100-150 km from the ridge. This decrease in velocities is coincident with a propagator wake. 2: Upper crustal velocities begin to increase at 170km from the deformation front (DF), which coincides with the first evidence of faulting from sedimentary offsets. Crustal velocities start a decreasing trend at 80km from the DF where fault throws are seen to begin increasing trend landward. 3: UC velocities in the region of directly imaged crustal faulting (40km from trench) increase ~0.5km/s at the DF, while LC velocities decrease ~0.3km/s. The contrasting behavior in the upper and lower crust may indicate that bending promotes hydrothermal circulation in the outer rise. Circulation may be vigorous enough within the sediments/UC so that any residual shallow porosity is clogged with alteration products

  19. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    determinations rely on studies of pieces of deep oceanic crust uplifted by tectonic forces such as along the Southwest Indian Ridge, or more complete sections of oceanic crust called ophiolite sequences which are presently exposed on continents owing to tectonic emplacement. Much of what is thought to happen in submarine hydrothermal systems is inferred from studies of ophiolite sequences, and especially from the better-exposed ophiolites in Oman, Cyprus and North America. The focus of much that follows is on a few general features: pressure, temperature, oxidation states, fluid composition and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  20. Experimental rock-water interactions at temperatures to 300/sup 0/C: implications for fluid flow, solute transport, and silicate mineral zoning in crustal geothermal systems

    SciTech Connect

    Potter, J.M.

    1982-01-01

    Geothermal reservoirs commonly occur in permeable volcanic rock (rhyolite, andesite, basalt) or sedimentary (sandstone) strata at temperatures below 300/sup 0/C. Knowledge of how these reservoirs develop chemically and physically has been based almost entirely on field studies. Four types of experiments were conducted to supplement available data on the chemistry, mineralogy, and fluid flow aspects of hydrothermal processes occurring in crustal geothermal systems: (1) agitated rock-water experiments; (2) high temperature flow through experiments; (3) low temperature permeability experiments; and (4) corrosion monitoring experiments. Initial experiments reacted rhyolite glass and holocrystalline basalt with water-NaCl solutions at 300/sup 0/C in agitated hydrothermal equipment. Concentrations of components in solution depend on initial salinity, rock type, and particle size. The secondary phases consist of zeolites, clay, and feldspar minerals and the alteration assemblage is dependent on both initial salinity, rock type, and duration of the experiment. A second set of experiments were conducted at 300/sup 0/C using the rhyolite glass in a flow through type of apparatus. Compositions of outlet fluids show a dependence of fluid flow rate and core length.

  1. A numerical model for dynamic crustal-scale fluid flow

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  2. Do Two Deep Drill Holes Into the Upper Ocean Crust Quantify the Hydrothermal Contribution to Global Geochemical Cycles?

    NASA Astrophysics Data System (ADS)

    Teagle, D. A. H.; Alt, J.; Coggon, R. M.; Harris, M.; Smith-Duque, C. E.; Rehkamper, M.

    2014-12-01

    Vigorous circulation of seawater at the ocean ridges is required to cool and crystallize magma to form new ocean crust. Axial and ridge flank hydrothermal fluid circulation is accompanied by seawater-basalt exchanges over a spectrum of temperatures that buffer the chemistry of seawater, provide unique microbial niches, alter the chemistry and mineralogy of the ocean crust, and through subduction return surface-derived geochemical tracers to the interior of our planet. In many models of axial and ridge flank hydrothermal circulation, most fluid-rock interaction occurs in the upper oceanic crust. Hence inventories of seawater exchange should be captured by relatively shallow (<2 km) boreholes. However, after 45+ years of ocean drilling we have just two deep drill holes that sample the lava and dike layers of intact upper oceanic crust. DSDP Hole 504B on 6.9 Ma ocean crust produced at the intermediate spreading rate Costa Rica Rift penetrates 1836 m into basement through a complete sequence of lavas to near the base of the sheeted dike complex. In isolation, Hole 504B became the 'reference section' for upper oceanic crust from which hydrothermal contributions to global geochemical cycles were determined. The recent drilling of Hole 1256D in 15 Ma superfast spreading rate Pacific crust penetrated through the complete volcanic and sheeted dike layers into the underlying gabbroic rocks in intact ocean crust for the first time. These boreholes are complemented by observations from seafloor tectonic windows, fracture zones, and ophiolites, but these are imperfect analogs. Although Holes 504B and 1256D formed at different spreading rates, crust from both sites is expected to conform to textbook Penrose-type layering, albeit with different thicknesses of lavas and dikes. However, what was not anticipated was the contrasting distribution and nature of elemental and isotopic hydrothermal exchanges. Differences reflect the influence of local crustal structure, such as lava

  3. Composite synvolcanic intrusions associated with Precambrian VMS-related hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Galley, Alan G.

    2003-06-01

    Large subvolcanic intrusions are recognized within most Precambrian VMS camps. Of these, 80% are quartz diorite-tonalite-trondhjemite composite intrusions. The VMS camps spatially associated with composite intrusions account for >90% of the aggregate sulfide tonnage of all the Precambrian, intrusion-related VMS camps. These low-alumina, low-K, and high-Na composite intrusions contain early phases of quartz diorite and tonalite, followed by more voluminous trondhjemite. They have a high proportion of high silica (>74% SiO2) trondhjemite which is compositionally similar to the VMS-hosting rhyolites within the volcanic host-rock successions. The quartz-diorite and possibly tonalite phases follow tholeiitic fractionation trends whereas the trondhjemites fall within the composition field for primitive crustal melts. These transitional M-I-type primitive intrusive suites are associated with extensional regimes within oceanic-arc environments. Subvolcanic composite intrusions related to the Archean Sturgeon Lake and Noranda, and Paleoproterozoic Snow Lake VMS camps range in volume from 300 to 1,000 km3. Three have a sill morphology with strike lengths between 15 and 22 km and an average thickness between 1,500 and 2,000 m. The fourth has a gross stock-like shape. The VMS deposits are principally restricted to the volcanic strata above the strike length of the intrusions, as are areally extensive, thin exhalite units. The composite intrusions contain numerous internal phases which are commonly clustered within certain parts of the composite intrusion. These clusters underlie eruptive centers surrounded by areas of hydrothermal alteration and which contain most of the VMS deposits. Early quartz-diorite and tonalite phases appear to have intruded in rapid succession. Evidence includes gradational contacts, magma mixing and disequilibrium textures. They appear to have been emplaced as sill-dike swarms. These early phases are present as pendants and xenoliths within later

  4. Modeling Crustal Thickness Variations Beneath the East Pacific Rise: Mantle Diapirs or Plate Kinematics?

    NASA Astrophysics Data System (ADS)

    George, S. A.; Toomey, D. R.

    2003-12-01

    Geophysical studies along the East Pacific Rise between the Siqueiros and Clipperton fracture zones reveal along- and cross-axis variations in crustal thickness whose origins are poorly understood. By one view, variations in crustal thickness are the result of three-dimensional upwelling of the mantle associated with a melt-rich diapir centered at 9° 50'N. Alternatively, it has been proposed that the migration of the 9° 03'N overlapping spreading center (OSC) alters the thickness of crust by increasing the amount of time that a crustal unit resides near the spreading axis. In this case, crustal thickness variations arise from plate kinematics, and not from three-dimensional variations in mantle upwelling. We report on a modeling study designed to explore how the evolution of OSCs may alter the thickness of newly-formed crust. OSC propagation is modeled using the kinematic algorithm developed by Wilson [1990], modified to track parcels of crust through time. Given an OSC's kinematic history and two-dimensional descriptions of the melt flux out of the mantle (i.e. invariant along the rise), we predict relative variations in crustal thickness. Our modeling assumes that underplating increases the thickness of the crust and/or Moho transition zone as long as a crustal unit resides over the source of mantle-derived melt. Results suggest two general kinematic mechanisms whereby variations in crustal thickness can occur: those due to an offset between the mantle-level magmatic system and the spreading axis, and those due to any relative reduction in the velocity of a crustal unit as it moves off axis. Offset-induced crustal thickness variations are manifest as long-wavelength ( ˜50 km), low-amplitude cross-axis asymmetries. Local slowing of crustal units as they move off axis -- in direct association with the OSC and its overlap basins -- results in relatively short-wavelength ( ˜10 km), high-amplitude variations in crustal thickness. Using a kinematic history

  5. Tectonic controls on hydrothermal mineralisation in hot continental crust: Thermal modelling and spatial analysis

    NASA Astrophysics Data System (ADS)

    Gessner, K.; Porwal, A.

    2009-04-01

    Hydrothermal ore deposits provide a record of excess energy flux and mass transfer in the Earth's lithosphere. The heterogeneous distribution of ore deposits in space and time provides a challenge to uniformitarian geodynamic and tectonic concepts, but unusual thermal and structural events often coincide with high mineral endowment. In the Australian Proterozoic continental backarcs and intracratonic rifts host large resources of base metals, gold, and uranium. We present thermal models and spatial analyses of mineral occurrences within the Mount Isa Inlier, an inverted Mesoproterozoic rift in northwest Queensland, Australia, to demonstrate how thermal structure, tectonic style and crustal scale fluid flow are related. In the Mount Isa Inlier, radiogenic heat production contributes significantly to present day surface heat flow, and Mesoproterozoic geotherms of 40°C km-1 in the upper crust can be inferred from lithosphere-scale conductive models. The combination of thick continental crust and high temperatures implies that localization of deformation was limited to a thin upper crustal layer. During rifting mid-crustal rocks intruded by syn-extensional granites were exhumed as metamorphic core complexes in strike-parallel linear basement belts. The resulting horizontal strength contrast between sedimentary basins and shallow basement domains became a focus for deformation during subsequent crustal shortening. Our spatial analysis of mineral occurrences demonstrates that epigenetic copper mineralization at Mount Isa correlates positively with steep fault zones bounding linear basement domains, and granites within these domains. Mineralization potential is greatly increased, because high permeability along steep fault zones enables hydrothermal fluid flow between magmatic, metamorphic and sedimentary reservoirs. We argue that the deformation behavior of hot continental lithosphere generates a favorable environment for hydrothermal mineralization by linking shallow

  6. Archaeal Viruses Contribute to the Novel Viral Assemblage Inhabiting Oceanic, Basalt-Hosted Deep Subsurface Crustal Fluids

    NASA Astrophysics Data System (ADS)

    Nigro, O. D.; Rappe, M. S.; Jungbluth, S.; Lin, H. T.; Steward, G.

    2015-12-01

    Fluids contained in the basalt-hosted deep subsurface of the world's oceans represent one of the most inaccessible and understudied biospheres on earth. Recent improvements in sampling infrastructure have allowed us to collect large volumes of crustal fluids (~104 L) from Circulation Obviation Retrofit Kits (CORKs) placed in boreholes located on the eastern flank of the Juan de Fuca Ridge (JdFR). We detected viruses within these fluids by TEM and epifluorescence microscopy in samples collected from 2010 to 2014. Viral abundance, determined by epifluorescence counts, indicated that concentrations of viruses in subsurface basement fluids (~105 ml-1) are lower than the overlying seawater, but are higher in abundance than microbial cells in the same samples. Analysis of TEM images revealed distinct viral morphologies (rod and spindle-shaped) that resemble the morphologies of viral families infecting archaea. There are very few, if any, direct observations of these viral morphologies in marine samples, although they have been observed in enrichment cultures and their signature genes detected in metagenomic studies from hydrothermal vents and marine sediments. Analysis of metagenomes from the JdFR crustal fluids revealed sequences with homology to archaeal viruses from the rudiviridae, bicaudaviridae and fuselloviridae. Prokaryotic communities in fluids percolating through the basaltic basement rock of the JdFR flank are distinct from those inhabiting the overlying sediments and seawater. Similarly, our data support the idea that the viral assemblage in these fluids is distinct from viral assemblages in other marine and terrestrial aquatic environments. Our data also suggest that viruses contribute to the mortality of deep subsurface prokaryotes through cell lysis, and viruses may alter the genetic potential of their hosts through the processes of lysogenic conversion and horizontal gene transfer.

  7. Crustal growth: Some major problems

    NASA Technical Reports Server (NTRS)

    Arculus, R. J.

    1988-01-01

    Fundamental problems with models currently used to explain the genesis and evolution of continental crust were raised. These problems focus around the difficulty of generating the upper continental crust from a lower crustal or mantle protolith without leaving a very large, and so far undetected, volume of restite. No conclusive resolution to the problems was achieved.

  8. IODP Expedition 345: Bulk Mineralogy From Lower Oceanic Crustal Rocks of the Hess Deep

    NASA Astrophysics Data System (ADS)

    Wintsch, R. P.; Bish, D. L.; Meyer, R.

    2013-12-01

    Young lower oceanic crustal rocks produced along the East Pacific Rise are exposed at the sea floor of the Hess Deep by rifting of the Cocos-Nazca ridge. Coring into these rocks (IODP Expedition 345) had the goal of understanding the petrologic processes that produce lower oceanic crust. Variable orientations of magmatic layering and foliation and magnetic remanance directions in the recovered gabbro and troctolite suggest that these samples were extracted from large blocks slumped into the rift. The overall poor recovery of core (~30%) and thick sections of broken rock disaggregated by cataclasis suggest that associated fractures produced the locally intense alteration of the magmatic mineralogy. We characterized this alteration by collecting the cuttings from the rock saw that divided the core into archive and working halves. The resultant ~1 mm wide slot should yield a calculated ~150 g/m of core, constituting the most representative sample of the entire core possible. A plastic housing surrounding the entire saw assembly captured all sedimented cuttings as well as distilled wash and lubricating water. All cuttings and a final wash water (holding suspended clay-size particles) were collected through the single drain at the base of the housing. We recovered 132 g/m of core, in close agreement with the calculations above. Our results show that the suspended material constitutes 10- 30 wt.% of the total sample, demonstrating the need for collection of the rinse water. Modal mineralogy of a few samples was measured by quantitative X-ray powder diffraction and Rietveld methods. These results revealed in descending order of abundance the magmatic plagioclase, augite, and Fe-forsterite identified optically. The higher-temperature alteration mineral actinolite was present at low concentrations. Alteration phyllosilicates included chlorite > prehnite > lizardite > talc. Chrysotile and antigorite were not identified. Rietveld refinements confirmed the presence of low

  9. The crustal thickness of Australia

    USGS Publications Warehouse

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  10. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Kawagucci, S.; Miyazaki, J.; Watsuji, T.; Ishibashi, J.; Yamamoto, H.; Nozaki, T.; Kashiwabara, T.; Shibuya, T.

    2012-12-01

    newly generated diffusing flows by many short drillings in the seafloor where no apparent hydrothermal fluid discharge was observed (e.g., C0013 and C0014). The new widespread diffusing flows altered the habitat condition, and provided post-drilling propagation and colonization of indigenous hydrothermal chemosynthetic animals. Interestingly, the first colonizers were shrimps and polychaeta, which were identified at C0013 and C0016 in 6 months after the IODP expedition, while the most drastic propagation and colonization were conducted by the most predominant chemosynthetic animal species in the Iheya North field, vent crab Shinkaia crosnieri. It appeared at C0014 site (500 m distant from their large colonies) in a year and dominated the new diffusing flow sites. It seems likely that IODP drilling operation and the post-drilling hydrothermal activities would have an impact on increasing biomass production and widespread propagation of hydrothermal vent ecosystem in the Iheya North field.

  11. Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Johnson, H. Paul; Tivey, Maurice A.; Bjorklund, Tor A.; Salmi, Marie S.

    2010-05-01

    Areas of the seafloor at mid-ocean ridges where hydrothermal vents discharge are easily recognized by the dramatic biological, physical, and chemical processes that characterize such sites. Locations where seawater flows into the seafloor to recharge hydrothermal cells within the crustal reservoir are by contrast almost invisible but can be indirectly identified by a systematic grid of conductive heat flow measurements. An array of conductive heat flow stations in the Endeavour axial valley of the Juan de Fuca Ridge has identified recharge zones that appear to represent a nested system of fluid circulation paths. At the scale of an axial rift valley, conductive heat flow data indicate a general cross-valley fluid flow, where seawater enters the shallow subsurface crustal reservoir at the eastern wall of the Endeavour axial valley and undergoes a kilometer of horizontal transit beneath the valley floor, finally exiting as warm hydrothermal fluid discharge on the western valley bounding wall. Recharge zones also have been identified as located within an annular ring of very cold seafloor around the large Main Endeavour Hydrothermal Field, with seawater inflow occurring within faults that surround the fluid discharge sites. These conductive heat flow data are consistent with previous models where high-temperature fluid circulation cells beneath large hydrothermal vent fields may be composed of narrow vertical cylinders. Subsurface fluid circulation on the Endeavour Segment occurs at various crustal depths in three distinct modes: (1) general east to west flow across the entire valley floor, (2) in narrow cylinders that penetrate deeply to high-temperature heat sources, and (3) supplying low-temperature diffuse vents where seawater is entrained into the shallow uppermost crust by the adjacent high-temperature cylindrical systems. The systematic array of conductive heat flow measurements over the axial valley floor averaged ˜150 mW/m2, suggesting that only about 3% of

  12. Crustal composition in southern Norway from active and passive source seismology

    NASA Astrophysics Data System (ADS)

    Stratford, W. R.; Frassetto, A. M.; Thybo, H.

    2010-12-01

    Crustal composition and structure beneath the Fennoscandian shield are highly variable due to the method of crustal accretion and the long history of extensional and compressional tectonics. In southern Norway, the Moho and crust are inferred to be the youngest of the shield, however, it is likely that a large discrepancy between crustal age and Moho age exists beneath the high southern Scandes where the Caledonian orogeny was in effect and beneath the Oslo Graben where 60 million years of rifting and magmatism has altered the crust. Crustal structure in southern Norway was targeted with a multi-disciplinary seismic study (Magnus-Rex - Mantle investigations of Norwegian uplift Structure). Three ~400 km long active source seismic profiles across the southern Norway and a region wide array of broadband seismometers were deployed. P and S-wave arrivals were recorded in the Magnus-Rex project, from which Poisson ratios for the crust in southern Norway are calculated from both active source profiling and receiver functions. Unusually strong S-wave arrivals allow rare insight into crustal Poisson’s ratio structure, within crustal layers, that is not normally available from active source data and are usually determined by earthquake tomography studies where only bulk crustal values are available. An average Poisson’s ratio of 0.25 is calculated for the crust in southern Norway, suggesting it is predominantly of felsic-intermediate composition and lacks any significant mafic lower crust. This differs significantly from the adjacent crust in the Svecofennian domain of the Fennoscandian shield where Moho depths reach ~50 km and an up to 20 km thick mafic lower crust is present. The vast difference in Moho depths in the Fennoscandian shield are, therefore, mostly due to the variation in thickness of the high Vp lower crust. Estimates of crustal composition and the effect of Magma intrusion within the Oslo Graben, and possible delamination of the lowermost crust beneath

  13. Measuring contemporary crustal motions; NASA’s Crustal Dynamics Project

    USGS Publications Warehouse

    Frey, H. V.; Bosworth, J. M.

    1988-01-01

    In this article we describe briefly the two space geodetic techniques and how they are used by the Crustal Dynamics Project, show some of the very exciting results that have emerged at the halfway point in the project's life, describe the availability and utilization of the data being collected, and consider what the future may hold when measurement accuracies eventually exceed even those now available and when other international groups become more heavily involved.   

  14. Chemical environments of submarine hydrothermal systems. [supporting abiogenetic theory

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    The paper synthesizes diverse information about the inorganic geochemistry of submarine hydrothermal systems, provides a description of the fundamental physical and chemical properties of these systems, and examines the implications of high-temperature, fluid-driven processes for organic synthesis. Emphasis is on a few general features, i.e., pressure, temperature, oxidation states, fluid composition, and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  15. Hydrothermal Ni Prospectivity Analysis of Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alvarez, I.; Porwal, A.; McCuaig, T. C.; Maier, W.

    2009-04-01

    Tasmania contains the largest hydrothermal Ni deposit in Australia: Avebury (118,000 Ni metal tonnes). This Devonian deposit was discovered in 1998 in the Dundas geological region, and consists of a system of hydrothermal Ni ore bodies. They are hosted by an intensely altered and serpentinized Cambrian ultramafic suite in close proximity to major structural features. The mineralization is considered to be the result of hydrothermal scavenging and remobilization of the original nickel content of mafic/ultramafic rocks in the area, and subsequent re-deposition in favourable structural traps. This is based on the low sulphur, low Cu and Platinum element content of the mineralization. The mineralization is spatially (at the edge) and temporally related to a large granitic intrusion, the Heemskirk Granite, which is considered to be the source of the hydrothermal fluids as well as the necessary thermal gradients for the circulation of the fluids. Tasmania is largely covered by the Jurassic Ferrar continental flood basalt province in the East and constrains a number of early Cambrian ultramafic-mafic complexes in the West. The Ferrar large igneous province (LIP) extends over to Antarctica and is temporally and genetically related to the Karoo igneous province in southern Africa that comprises tholeiitic lava flows, sills, and dyke swarms. The Ferrar and Karoo igneous provinces were associated with the same thermal anomaly that was responsible for the break up of eastern Gondwana at ca 180 Ma. Despite of timeframe differences between the Avebury Ni deposits and the Ferrar LIP emplacement, similar geological settings to the Avebury could be duplicated along the Ferrar LIP. The presence of mafic/ultramafic rocks in favourable lithological packages and/or structural traps along the margins of the province indicate that this LIP could represent a possible exploration target for Ni hydrothermal deposits. Based on this background, a prospectivity analysis for hydrothermal Ni

  16. An Integrated Crustal Dynamics Simulator

    NASA Astrophysics Data System (ADS)

    Xing, H. L.; Mora, P.

    2007-12-01

    Numerical modelling offers an outstanding opportunity to gain an understanding of the crustal dynamics and complex crustal system behaviour. This presentation provides our long-term and ongoing effort on finite element based computational model and software development to simulate the interacting fault system for earthquake forecasting. A R-minimum strategy based finite-element computational model and software tool, PANDAS, for modelling 3-dimensional nonlinear frictional contact behaviour between multiple deformable bodies with the arbitrarily-shaped contact element strategy has been developed by the authors, which builds up a virtual laboratory to simulate interacting fault systems including crustal boundary conditions and various nonlinearities (e.g. from frictional contact, materials, geometry and thermal coupling). It has been successfully applied to large scale computing of the complex nonlinear phenomena in the non-continuum media involving the nonlinear frictional instability, multiple material properties and complex geometries on supercomputers, such as the South Australia (SA) interacting fault system, South California fault model and Sumatra subduction model. It has been also extended and to simulate the hot fractured rock (HFR) geothermal reservoir system in collaboration of Geodynamics Ltd which is constructing the first geothermal reservoir system in Australia and to model the tsunami generation induced by earthquakes. Both are supported by Australian Research Council.

  17. Impact-generated hydrothermal systems on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Tornabene, Livio L.; Banerjee, Neil R.; Cockell, Charles S.; Flemming, Roberta; Izawa, Matthew R. M.; McCutcheon, Jenine; Parnell, John; Preston, Louisa J.; Pickersgill, Annemarie E.; Pontefract, Alexandra; Sapers, Haley M.; Southam, Gordon

    2013-06-01

    It has long been suggested that hydrothermal systems might have provided habitats for the origin and evolution of early life on Earth, and possibly other planets such as Mars. In this contribution we show that most impact events that result in the formation of complex impact craters (i.e., >2-4 and >5-10 km diameter on Earth and Mars, respectively) are potentially capable of generating a hydrothermal system. Consideration of the impact cratering record on Earth suggests that the presence of an impact crater lake is critical for determining the longevity and size of the hydrothermal system. We show that there are six main locations within and around impact craters on Earth where impact-generated hydrothermal deposits can form: (1) crater-fill impact melt rocks and melt-bearing breccias; (2) interior of central uplifts; (3) outer margin of central uplifts; (4) impact ejecta deposits; (5) crater rim region; and (6) post-impact crater lake sediments. We suggest that these six locations are applicable to Mars as well. Evidence for impact-generated hydrothermal alteration ranges from discrete vugs and veins to pervasive alteration depending on the setting and nature of the system. A variety of hydrothermal minerals have been documented in terrestrial impact structures and these can be grouped into three broad categories: (1) hydrothermally-altered target-rock assemblages; (2) primary hydrothermal minerals precipitated from solutions; and (3) secondary assemblages formed by the alteration of primary hydrothermal minerals. Target lithology and the origin of the hydrothermal fluids strongly influences the hydrothermal mineral assemblages formed in these post-impact hydrothermal systems. There is a growing body of evidence for impact-generated hydrothermal activity on Mars; although further detailed studies using high-resolution imagery and multispectral information are required. Such studies have only been done in detail for a handful of martian craters. The best example so

  18. Reconnaissance of the hydrothermal resources of Utah

    SciTech Connect

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  19. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field.

    PubMed

    Singh, Satish C; Crawford, Wayne C; Carton, Hélène; Seher, Tim; Combier, Violaine; Cannat, Mathilde; Pablo Canales, Juan; Düsünür, Doga; Escartin, Javier; Miranda, J Miguel

    2006-08-31

    Crust at slow-spreading ridges is formed by a combination of magmatic and tectonic processes, with magmatic accretion possibly involving short-lived crustal magma chambers. The reflections of seismic waves from crustal magma chambers have been observed beneath intermediate and fast-spreading centres, but it has been difficult to image such magma chambers beneath slow-spreading centres, owing to rough seafloor topography and associated seafloor scattering. In the absence of any images of magma chambers or of subsurface near-axis faults, it has been difficult to characterize the interplay of magmatic and tectonic processes in crustal accretion and hydrothermal circulation at slow-spreading ridges. Here we report the presence of a crustal magma chamber beneath the slow-spreading Lucky Strike segment of the Mid-Atlantic Ridge. The reflection from the top of the magma chamber, centred beneath the Lucky Strike volcano and hydrothermal field, is approximately 3 km beneath the sea floor, 3-4 km wide and extends up to 7 km along-axis. We suggest that this magma chamber provides the heat for the active hydrothermal vent field above it. We also observe axial valley bounding faults that seem to penetrate down to the magma chamber depth as well as a set of inward-dipping faults cutting through the volcanic edifice, suggesting continuous interactions between tectonic and magmatic processes.

  20. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field.

    PubMed

    Singh, Satish C; Crawford, Wayne C; Carton, Hélène; Seher, Tim; Combier, Violaine; Cannat, Mathilde; Pablo Canales, Juan; Düsünür, Doga; Escartin, Javier; Miranda, J Miguel

    2006-08-31

    Crust at slow-spreading ridges is formed by a combination of magmatic and tectonic processes, with magmatic accretion possibly involving short-lived crustal magma chambers. The reflections of seismic waves from crustal magma chambers have been observed beneath intermediate and fast-spreading centres, but it has been difficult to image such magma chambers beneath slow-spreading centres, owing to rough seafloor topography and associated seafloor scattering. In the absence of any images of magma chambers or of subsurface near-axis faults, it has been difficult to characterize the interplay of magmatic and tectonic processes in crustal accretion and hydrothermal circulation at slow-spreading ridges. Here we report the presence of a crustal magma chamber beneath the slow-spreading Lucky Strike segment of the Mid-Atlantic Ridge. The reflection from the top of the magma chamber, centred beneath the Lucky Strike volcano and hydrothermal field, is approximately 3 km beneath the sea floor, 3-4 km wide and extends up to 7 km along-axis. We suggest that this magma chamber provides the heat for the active hydrothermal vent field above it. We also observe axial valley bounding faults that seem to penetrate down to the magma chamber depth as well as a set of inward-dipping faults cutting through the volcanic edifice, suggesting continuous interactions between tectonic and magmatic processes. PMID:16943836

  1. Crustal deformation and volcanism at active plate boundaries

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor

    geometry and secular rates across the plate boundary segments, reveals a deep magma chamber under Hekla and gives a geodetic estimate of the current location of the North-America Eurasian plate boundary in south Iceland. Different geometries were tested for Hekla's magma chamber: spherical, horizontally elongated ellipsoidal, and pipe-like magma chambers. The data could not reliably distinguish the actual geometry; however, all three models indicate magma accumulation near the Moho (˜20-25 km) under Hekla. The February -- March 2000 eruption of Hekla gave another opportunity to image the magmatic system. In Chapter 5, I used co-eruptive GPS and InSAR displacements, borehole strain, and tilt measurements to jointly invert for co-eruptive deformation associated with the 2000 eruption and found a depth of approximately 20 km for the magma chamber, in accordance with my previous results. Telica is a highly seismically active volcano in Nicaragua. The seismicity is mostly of shallow (<2 km deep) origin, and shows a high variability in terms of the number of seismic events per time unit. The highest rates exceed one earthquake per minute averaged over 24 hours, but overall trends in seismic activity, as observed since 1993, do not have an obvious correlation with eruptive activity. This variability causes difficulties for hazard monitoring of Telica. Telica erupted in a small (VEI 2) explosive eruption in 2011. Eruptions of this style and size seem to occur on decadal time scales at Telica. In Chapter 3, I used an extensive multidisciplinary data set consisting of seismic and GPS data, multivariate ash analysis, SO2 measurements, fumarole temperatures, and visual observations, to show that the eruption was essentially an amagmatic eruption of hydrothermally altered materials from the conduit, and that short-term sealing of hydrothermal pathways led to temporary pressure build-up, resulting in the explosions. No significant crustal deformation was detected before or during the

  2. Hydrothermal Occurrences in Gusev Crater

    NASA Astrophysics Data System (ADS)

    Ruff, S. W.; Farmer, J. D.; Milliken, R.; Mills, V. W.; Shock, E.

    2011-12-01

    Exploration of the Gusev crater landing site by the Spirit rover has revealed for the first time, in situ evidence of hydrothermal activity on Mars. Most compelling are eroded outcrops of opaline silica found adjacent to "Home Plate" [1], an eroded stack of volcaniclastic deposits stratigraphically overlain by a vesicular basalt unit [2]. Recent work [3] demonstrates that the silica outcrops occur in a stratiform unit that possibly surrounds Home Plate. The outcrops are dominated by opal-A with no evidence for diagenesis to other silica phases. No other hydrous or alteration phases have been identified within the outcrops; most notable is a lack of sulfur phases. The outcrops have porous and in some cases, brecciated microtextures. Taken together, these observations support the interpretation that the opaline silica outcrops were produced in a hot spring or perhaps geyser environment. In this context, they are silica sinter deposits precipitated from silica-rich hydrothermal fluids, possibly related to the volcanism that produced the Home Plate volcanic rocks. On Earth, debris aprons in which sinter is brecciated, reworked, and cemented, are common features of hot springs and geysers and are good analogs for the Martian deposits. An alternative hypothesis is that the silica resulted from acid-sulfate leaching of precursor rocks by fumarolic steam condensates. But stratigraphic, textural, and chemical observations tend to diminish this possibility [3]. We are conducting extensive laboratory and field investigations of silica from both hot spring/geyser and fumarole environments to understand the full range of mineralogical, chemical, textural, and morphological variations that accompany its production, in order to shed more light on the Home Plate occurrence. The recent discovery of abundant Mg-Fe carbonate (16-34 wt%) in outcrops named Comanche provides possible evidence for additional hydrothermal activity in Gusev [4]. However, the carbonate is hosted by olivine

  3. Crustal growth in subduction zones

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Castro, Antonio; Gerya, Taras

    2015-04-01

    There is a broad interest in understanding the physical principles leading to arc magmatisim at active continental margins and different mechanisms have been proposed to account for the composition and evolution of the continental crust. It is widely accepted that water released from the subducting plate lowers the melting temperature of the overlying mantle allowing for "flux melting" of the hydrated mantle. However, relamination of subducted crustal material to the base of the continental crust has been recently suggested to account for the growth and composition of the continental crust. We use petrological-thermo-mechanical models of active subduction zones to demonstrate that subduction of crustal material to sublithospheric depth may result in the formation of a tectonic rock mélange composed of basalt, sediment and hydrated /serpentinized mantle. This rock mélange may evolve into a partially molten diapir at asthenospheric depth and rise through the mantle because of its intrinsic buoyancy prior to emplacement at crustal levels (relamination). This process can be episodic and long-lived, forming successive diapirs that represent multiple magma pulses. Recent laboratory experiments of Castro et al. (2013) have demonstrated that reactions between these crustal components (i.e. basalt and sediment) produce andesitic melt typical for rocks of the continental crust. However, melt derived from a composite diapir will inherit the geochemical characteristics of its source and show distinct temporal variations of radiogenic isotopes based on the proportions of basalt and sediment in the source (Vogt et al., 2013). Hence, partial melting of a composite diapir is expected to produce melt with a constant major element composition, but substantial changes in terms of radiogenic isotopes. However, crustal growth at active continental margins may also involve accretionary processes by which new material is added to the continental crust. Oceanic plateaus and other

  4. The oxygen-hafnium isotope paradox in the early post Columbia River Basalt silicic volcanism: Evidence for complex batch assembly of upper crustal, lower crustal and low-δ18O silicic magmas

    NASA Astrophysics Data System (ADS)

    Colon, D.; Bindeman, I. N.; Ellis, B. S.; Schmitt, A. K.; Fisher, C. M.; Vervoort, J. D.

    2013-12-01

    characterized by primitive mantle-like ɛHf values and very low δ18O values, between 0‰ and -1‰. We conclude that the J-P Desert magmas were assembled from multiple batches of magmas in the shallow crust that had melted and mixed with varying degrees of ancient continental crust of normal δ18O composition and another crustal component that was younger, had undergone considerable hydrothermal alteration, and had ɛNd and ɛHf near 0. The lack of pre-Miocene ages in all analyzed zircons implies thermal resorption of ancient zircons above the zircon saturation temperature, assuming the local crust contained zircon. The source of this hydrothermally altered component is likely related to the hotspot, because low-δ18O magmas occur throughout the hotspot track, despite differences in the local geology. After these diverse magma batches had cooled and formed new zircons, they extensively mixed, forming final giant magma chambers which subsequently erupted. We suggest that this shallow batch-assembly and crustal assimilation is a common feature of large silicic magma systems, made easily resolvable here due to the eruptions' location along the boundary between two extremely distinct types of shallow continental crust.

  5. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  6. Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils

    USGS Publications Warehouse

    Yen, A. S.; Morris, R.V.; Clark, B. C.; Gellert, Ralf; Knudson, A.T.; Squyres, S.; Mittlefehldt, D. W.; Ming, D. W.; Arvidson, R.; McCoy, T.; Schmidt, M.; Hurowitz, J.; Li, R.; Johnson, J. R.

    2008-01-01

    The Mars Exploration Rover Spirit analyzed multiple occurrences of sulfur-rich, light-toned soils along its traverse within Gusev Crater. These hydrated deposits are not readily apparent in images of undisturbed soil but are present at shallow depths and were exposed by the actions of the rover wheels. Referred to as 'Paso Robles' class soils, they are dominated by ferric iron sulfates, silica, and Mg-sulfates. Ca-sulfates, Ca-phosphates, and other minor phases are also indicated in certain specific samples. The chemical compositions are highly variable over both centimeter-scale distances and between the widely separated exposures, but they clearly reflect the elemental signatures of nearby rocks. The quantity of typical basaltic soil mixed into the light-toned materials prior to excavation by the rover wheels is minimal, suggesting negligible reworking of the deposits after their initial formation. The mineralogy, geochemistry, variability, association with local compositions, and geologic setting of the deposits suggest that Paso Robles class soils likely formed as hydrothermal and famarolic condensates derived from magma degassing and/ or oxidative alteration of crustal iron sulfide deposits. Their occurrence as unconsolidated, near-surface soils permits, though does not require, an age that is significantly younger than that of the surrounding rocks. Copyright 2008 by the American Geophysical Union.

  7. Mixing from below in hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Gomez-Rivas, Enrique; Markl, Gregor; Walter, Bejamin

    2014-05-01

    Unconformity-related hydrothermal ore deposits typically show indications of mixing of two end-member fluids: (a) hot, deep, rock-buffered basement brines and (b) colder fluids derived from the surface or overlying sediments. The hydromechanics of bringing these fluids together from above and below remain unclear. Classical percolative Darcy-flow models are inconsistent with (1) fluid overpressure indicated by fracturing and brecciation, (2) fast fluid flow indicated by thermal disequilibrium, and (3) strong fluid composition variations on the mm-scale, indicated by fluid inclusion analyses (Bons et al. 2012; Fusswinkel et al. 2013). We propose that fluids first descend, sucked down by desiccation reactions in exhumed basement. Oldest fluids reach greatest depths, where long residence times and elevated temperatures allow them the extensively equilibrate with their host rock, reach high salinity and scavenge metals, if present. Youngest fluids can only penetrate to shallower depths and can (partially) retain signatures from their origin, for example high Cl/Br ratios from the dissolution of evaporitic halite horizons. When fluids are released from all levels of the crustal column, these fluids mix during rapid ascent to form hydrothermal ore deposits. Mixing from below provides a viable hydromechanical mechanism to explain the common phenomenon of mixed shallow and deep fluids in hydrothermal ore deposits. Bons, P.D., Elburg, M.A., Gomez-Rivas, E. 2012. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. doi:10.1016/j.jsg.2012.07.005 Fusswinkel, T., Wagner, T., Wälle, M., Wenzel, T., Heinrich, C.A., Markl, M. 2013. Fluid mixing forms basement-hosted Pb-Zn deposits: Insight from metal and halogen geochemistry of individual fluid inclusions. Geology. doi:10.1130/G34092.1

  8. New Evidence for Impact-induced Hydrothermal Alteration at the Lunar Crater, India: Implications for the Effect of Small Craters on the Mineralogical and Chemical Composition of the Martian Regolith

    NASA Technical Reports Server (NTRS)

    Hagerty, J.; Newsom, H. E.

    2001-01-01

    The Lunar crater has several unique characteristics that make it a valid analogue for similar craters on Mars. We have characterized the secondary alteration assemblage at Lunar in order to make implications for martian alteration materials. Additional information is contained in the original extended abstract.

  9. Magnetotelluric imaging of upper crustal partial melt at Tendaho graben in Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Didana, Yohannes Lemma; Thiel, Stephan; Heinson, Graham

    2014-05-01

    We report on a recent magnetotelluric (MT) survey across the Manda Hararo magmatic segment (MHMS) within the Tendaho graben in the Afar Depression in northeastern Ethiopia. Twenty-two broadband MT sites with ˜1 km station spacing were deployed along a profile with the recorded data covering a period range from 0.003 s to 1000 s. A two-dimensional (2-D) resistivity model reveals an upper crustal fracture zone (fault) and partial melt with resistivity of 1-10Ωm at a depth of >1 km. The partial melt has a maximum horizontal width of 15 km and extends to a depth of 15 km within the Afar Stratoid Series basalts. We estimate a melt fraction of about 13% based on geochemical and borehole data, and bulk resistivity from the 2-D MT inversion model. The interpreted upper crustal partial melt may have been formed by either a magma intrusion from mantle sources or a large volume of continental crust that has been fluxed by a small amount of mantle melt and heat. Within the MHMS and Tendaho graben, a magma intrusion is a plausible explanation for the upper crustal conductor. The inferred presence of a conductive fracture zone or fault with hydrothermal fluid and shallow heat sourcing magma reservoir also makes the Tendaho graben a promising prospect for the development of conventional hydrothermal geothermal energy.

  10. Seismic Reflection Imaging of the Heat Source of an Ultramafic-Hosted Hydrothermal System (Rainbow, Mid-Atlantic Ridge 36° 10-17'N)

    NASA Astrophysics Data System (ADS)

    Canales, J. P.; Dunn, R. A.; Sohn, R. A.; Horning, G.; Arai, R.; Paulatto, M.

    2015-12-01

    Most of our understanding of hydrothermal systems and the nature of their heat sources comes from models and observations at fast and intermediate spreading ridges. In these settings, hydrothermal systems are mainly located within the axial zone of a spreading segment, hosted in basaltic rock, and primarily driven by heat extracted from crystallization of crustal melt sills. In contrast, hydrothermal systems at slow-spreading ridges like the Mid-Atlantic Ridge (MAR) show a great variety of venting styles and host-rock lithology, and are located in diverse tectonic settings like axial volcanic ridges, non-transform discontinuities (NTDs), the foot of ridge valley walls, and off-axis inside corner highs. Among MAR systems, the Rainbow hydrothermal field (RHF) stands out as an end-member of this diversity: an ultramafic-hosted system emitting H2 and CH4-rich fluids at high temperatures and high flow rates, which suggests a magmatic heat source despite the lack of evidence for recent volcanism and its location within an NTD with presumably low magma budget. We present 2D multichannel seismic reflection images across the Rainbow massif from the NSF-funded MARINER multidisciplinary geophysical study that reveal, for the first time, the magmatic system driving hydrothermal circulation in an ultramafic setting. Data were acquired in 2013 onboard the RV M. Langseth with an 8-km-long hydrophone streamer. The images have been obtained from pre-stack depth migrations using a regional 3D P-wave velocity model from a coincident controlled-source seismic tomography experiment using ocean bottom seismometers. Our images show a complex magmatic system centered beneath the RHF occupying an areal extent of ~3.7x6 km2, with partially molten sills ranging in depth between ~3.4 km and ~6.9 km below the seafloor. Our data also image high-amplitude dipping reflections within the massif coincident with strong lateral velocity gradients that may arise from detachment fault planes

  11. Hydrothermal circulation at the Cleft-Vance overlapping spreading center: Results of a magnetometric resistivity survey

    USGS Publications Warehouse

    Evans, R.L.; Webb, S.C.; Jegen, M.; Sananikone, K.

    1998-01-01

    We report on a magnetometric resistivity sounding carried out in the overlapping spreading center between the Cleft and Vance segments of the Juan de Fuca Ridge. The data collected reveal a strong three dimensionality in the crustal electrical resistivity structure on wavelengths of a few kilometers. Areas of reduced crustal electrical resistivities, with values approaching that of seawater, are seen beneath the neovolcanic zones of both active spreading centers. We interpret these reduced resistivities as evidence of active hydrothermal circulation within the uppermost 1 km of hot, young oceanic crust.

  12. Analysis the 1978-2008 crustal and sub-crustal earthquake catalog of Vrancea region

    NASA Astrophysics Data System (ADS)

    Telesca, L.; Alcaz, V.; Sandu, I.

    2012-05-01

    The crustal and sub-crustal seismicity that occurred in the Vrancea area from 1978 to 2008 is investigated. Due to quarry blast contamination, the analysis of the crustal seismicity was restricted to events that occurred between 20 km and 60 km, considering sub-crustal events as all those that occurred at depths larger than 60 km. The completeness magnitude was estimated between 2.3 and 2.5 for the crustal seismicity and between 2.9 and 3.1 for the sub-crustal one. The Gutenberg-Richter b-values show clear differences between crustal and sub-crustal seismicity, with values around 0.9 and 1.3-1.4, respectively. The analysis performed in this study represents a preliminary issue for the seismic hazard assessment of surrounding regions like Moldova, for which the earthquakes generated in Vrancea represent an important threat.

  13. Crustal structure beneath Eastern Greenland

    NASA Astrophysics Data System (ADS)

    Reiche, S.; Thybo, H.; Kaip, G.; Skjoth Bruun, A.; Reid, I.; Chemia, Z.; Greschke, B.

    2011-12-01

    The conjugate Atlantic passive margins of western Norway and eastern Greenland are characterized by the presence of coast-parallel mountain ranges with peak elevations of more than 3.5 km close to Scoresby Sund in Eastern Greenland. Knowledge about crustal thickness and composition below these mountain belts is needed for assessing the isostatic balance of the crust and to gain insight into possible links between crustal composition, rifting history and present-day topography of the North Atlantic Region. However, the acquisition of geophysical data onshore Greenland is logistically complicated by the presence of an up to 4 km thick ice sheet, permanently covering the largest part of the land mass. Hence previous seismic surveys have only been carried out offshore and near the coast of Greenland, where little information about the continental part of the crust could be gained. To get insight into crustal thickness and composition below the Greenland ice sheet, the TopoGreenland project collects the first ever seismic data onshore Greenland. Wide-angle data was acquired along an EW-trending profile, extending 350 km inland from the approximate edge of the stable ice cap near Scoresby Sund. Data is recorded by 350 Reftek Texan receivers for 10 equidistant shot points along the profile. We use forward ray tracing modelling to construct a two-dimensional velocity model from the observed travel times. These results show the first images of the subsurface velocity structure beneath the Greenland ice sheet and provide a link between the composition of the crust and the present-day topography of Greenland.

  14. Aqueous Alteration on Mars: Evidence from Landed Missions

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, Richard V.; Clark, Benton C., III; Yen, Albert S.; Gellert, Ralf

    2015-01-01

    Mineralogical and geochemical data returned by orbiters and landers over the past 15 years have substantially enhanced our understanding of the history of aqueous alteration on Mars. Here, we summarize aqueous processes that have been implied from data collected by landed missions. Mars is a basaltic planet. The geochemistry of most materials has not been “extensively” altered by open-system aqueous processes and have average Mars crustal compositions. There are few examples of open-system alteration, such as Gale crater’s Pahrump Hills mudstone. Types of aqueous alteration include (1) acid-sulfate and (2) hydrolytic (circum-neutral/alkaline pH) with varying water-to-rock ratios. Several hypotheses have been suggested for acid-sulfate alteration including (1) oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials; (3) acid fog weathering of basaltic materials; and (4) near-neutral pH subsurface solutions rich in Fe (sup 2 plus) that rapidly oxidized to Fe (sup 3 plus) producing excess acidity. Meridiani Planum’s sulfate-rich sedimentary deposit containing jarosite is the most “famous” acid-sulfate environment visited on Mars, although ferric sulfate-rich soils are common in Gusev crater’s Columbia Hills and jarosite was recently discovered in the Pahrump Hills. An example of aqueous alteration under circum-neutral pH conditions is the formation of Fe-saponite with magnetite in situ via aqueous alteration of olivine in Gale crater’s Sheepbed mudstone. Circum-neutral pH, hydrothermal conditions were likely required for the formation of Mg-Fe carbonate in the Columbia Hills. Diagenetic features (e.g., spherules, fracture filled veins) indicate multiple episodes of aqueous alteration/diagenesis in most sedimentary deposits. However, low water-to-rock ratios are prominent at most sites visited by landed missions (e.g., limited water for reaction to form crystalline phases possibly

  15. Hydrothermal fluid-mineral interactions within volcanic sediment layer revealed by shallow drilling in active seafloor hydrothermal fields in the mid-Okinawa

    NASA Astrophysics Data System (ADS)

    Ishibashi, J.; Miyoshi, Y.; Tanaka, K.; Omori, E.; Takahashi, Y.; Furuzawa, Y.; Yamanaka, T.; Kawagucci, S.; Yoshizumi, R.; Urabe, T.

    2012-12-01

    TAIGA11 Expedition of R/V Hakurei-maru No.2 was conducted in June, 2011 to study subseafloor environment below active hydrothermal fields using a shallow drilling system (called as Benthic Multi-coring System, BMS). Three active hydrothermal fields at Iheya North Knoll (27 47'N, 126 54'E), at Izena Hole Jade site (27 16'N, 127 05'E) and at Izena Hole Hakurei site (27 15'N, 127 04'E) were selected as exploration targets, to focus on a hydrothermal fluid circulation system that develops in sediment consists of volcaniclastic and hemipelagic materials. In this presentation, we will report mineralogy of hydrothermal precipitates and altered clay minerals together with geochemistry of pore fluids, to discuss hydrothermal interactions beneath an active hydrothermal field. In the Iheya North Knoll hydrothermal field, the BMS drilling successfully attained to 453 cmbsf at the station 200 meters apart from the central mound area. The obtained core consisted almost entirely of grayish white altered mud that was identified as kaolinite by XRD. Pore fluid from the corresponding depth showed enrichment in major cations (Na, K, Ca and Mg) and Cl, which may be explained as a result of involvement of water into the kaolinite. Since kaolinite is considered as stable in rather acidic environment, its abundant occurrence beneath the seafloor would be attributed to a unique hydrothermal interaction. A possible scenario is intrusion of the vapor-rich hydrothermal component that has experienced phase separation. In the Jade hydrothermal fields in the Izena Hole, the BMS drilling successfully attained to 529 cmbsf at the marginal part of a hydrothermal field. The obtained core comprised grayish white hydrothermal altered mud below 370 cmbsf. Occurrence of native sulphur is also identified. Unfortunately, pore fluid could not be extracted from the intense alteration layer. In the Hakurei hydrothermal fields in the Izena Hole, the BMS drilling successfully attained to 610 cmbsf near one of

  16. The Interplay of Magmatic and Hydrothermal Convection: Insights From Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Hasenclever, J.; Rupke, L.; Morgan, J. P.; Galerne, C.

    2015-12-01

    At fast spreading mid-ocean ridges, the heat released by an axial magma chamber (AMC) is the main driver of hydrothermal circulation at the ridge axis. Seismic studies at the East Pacific Rise show that the AMC is continuous along-axis and has relatively small depth variations. In contrast, slow spreading ridges have short-lived, discontinuous melt lenses and a much sparser abundance of axial hydrothermal fields. These observations point at a strong link between the abundance of on-axis hydrothermal fields and the spatial and temporal variations of magmatic energy input. To better understand the interplay of magmatic and hydrothermal processes we developed 2D and 3D numerical models that simultaneously solve for crustal accretion processes and hydrothermal convection. Our models cover the oceanic crust from depths below the AMC to the seafloor. The "magmatic" model part simulates the processes within the AMC such as convection of the viscous melt, crystallization and the associated release of latent heat. The "hydrothermal" model part is restricted to the permeable regions of the crust at temperatures below the brittle-ductile transition at ~700 ºC. Here we assume Darcy flow of a super-critical single-phase fluid and account for the thermodynamic properties of water. Boundary conditions allow for free venting of hydrothermal plumes at the top of the model domain. Magmatic and hydrothermal parts are coupled by the crustal temperature field, leading to two dynamic convective systems that are connected by a relatively thin, impermeable conductive boundary layer between ~700 ºC and 1000 ºC. First results indicate that the balance between the rate of energy input from magmatic processes and the rate of heat removal by hydrothermal flow controls the along-ridge depth of the AMC. Hydrothermal upflow and associated venting preferentially forms above "highs" of the AMC roof. Recharge flow surrounds these hot thermal plumes, because the thermodynamic properties of water

  17. The chemistry of hydrothermal magnetite: a review

    USGS Publications Warehouse

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  18. Regional and global crustal context of soil and rock chemistry from ChemCam and APXS at Gale crater

    NASA Astrophysics Data System (ADS)

    Newsom, H. E.; Gordon, S.; Jackson, R.; Agee, C. B.; Wiens, R. C.; Clegg, S. M.; Lanza, N.; Cousin, A.; Gasnault, O.; Meslin, P. Y.; Maurice, S.; Forni, O.; McLennan, S. M.; Mangold, N.; Sautter, V.; Clark, B. C.; Anderson, R. B.; Gellert, R.; Schmidt, M. E.; Ollila, A.; Boynton, W. V.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The chemistry of rocks and soils analyzed by Curiosity represent a diverse population including mafic and felsic compositions. The data from Gale Crater can be compared with the accumulated data for martian materials from other landing sites, the Gamma Ray Spectrometer (GRS) experiment on the Mars Odyssey Spacecraft, and the data for martian meteorites. Variations in the CaO/Al2O3 ratio in primitive igneous rocks can provide a fundamental signature of crustal formation on Mars. Abundances of other elements like Fe in the surface rocks can reflect later differentiation effects. Comparing the chemistry of Gale samples with other martian data must take into account the different geochemical components in the samples. The most important distinction is between the volatile elements including H, C, Cl, S, and the lithophile elements including Al, Si, Fe, Mn, Ca, Na, Mg, etc. The large enrichments of the volatile elements SO3, Cl, and H2O in the soils may represent contributions from volcanic aerosols or other local sources of volatiles. Alteration and transport of fluid mobile major elements by aqueous or hydrothermal processes could complicate the estimation of crustal abundances of elements such as Ca but early results suggest little or no chemical fractionation attributable to alteration. Other clues to the role of fluids can come from the ChemCam data for the highly fluid mobile elements lithium and manganese. Regional comparisons of chemistry only make sense when considering the absolute abundances and elemental ratios within the different component classes. The use of elemental ratios avoids the problem of the correction required to get volatile-free abundance data for comparison of GRS data with meteorites and landing site rocks measured by the ChemCam Laser Induced Breakdown Spectroscopy (LIBS) experiment and Alpha Particle X-ray Spectrometer (APXS). The huge size of the GRS footprint makes it especially difficult to make the required corrections. Eventually data

  19. The Lassen hydrothermal system

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length <50 m. Observational records of hydrothermal discharge are likely too short to document long-term transients, whether they are intrinsic to the system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  20. Anhydrite precipitation in seafloor hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  1. Crustal Dynamics Project: Catalogue of site information

    NASA Technical Reports Server (NTRS)

    Noll, Carey E. (Editor)

    1988-01-01

    This document represents a catalog of site information for the Crustal Dynamics Project. It contains information on and descriptions of those sites used by the Project as observing stations for making the precise geodetic measurements necessary for studies of the Earth's crustal movements and deformation.

  2. Crustal Dynamics Project: Catalogue of site information

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This document represents a catalogue of site information for the Crustal Dynamics Project. It contains information and descriptions of those sites used by the Project as observing stations for making the precise geodetic measurements useful for studies of the Earth's crustal movements and deformation.

  3. Hydrothermal and tectonic processes recorded in fault rocks from the upper oceanic crust

    NASA Astrophysics Data System (ADS)

    Browne, C. M.; Hayman, N. W.

    2011-12-01

    Faulting and fracturing along mid-ocean ridges play a crucial role in hydrothermal systems and the mechanical behavior of the oceanic crust. Fault and fracture systems resulting from explosive hydrothermal events may differ in permeability and mechanical strength from those that accommodate axial extension. To explore the potential differences, images and samples have been investigated from a range of spreading environments, including the Hess and Pito Deep rifts in East Pacific Rise-spread crust, the SMARK area (22°N) on the Mid Atlantic Ridge, the Troodos Ophiolite, and the Icelandic rift system. These exposures of lavas and dikes contain fault-zone units with contrasting lithologic and mechanical properties and geochemical compositions. To further understand the deformation mechanisms of ocean crustal faulting, image analysis of the fault-zone units from micro- to meso-scales provides a quantitative assessment of grain size, orientation, and fracture density. A key measure is the Particle Size Distribution (PSD), found in continental fault rocks to be a power-law probability function distribution reflecting incremental grain fracture. However, the PSDs of ocean crustal fault rocks are not power law, suggesting a departure from continental fault-zone deformation patterns. Controls on PSD in ocean crustal fault rocks include the initial fracture development in otherwise massive basalts, importance of fluid-rock interaction, and distinctive tectonic strain and stress conditions for seafloor spreading. Here it is further suggested that structures resulting from intense hydrothermal activity may result from different brittle deformation mechanisms (and thereby have different PSDs and SPOs) than those resulting from dominantly tectonic strain. Identifying these different mechanisms of ocean crustal fault-zone deformation establishes length scales, grain-scale deformation mechanisms, the geologic record of fluid-rock interaction, and could lead to in situ constraints

  4. Phenols in hydrothermal petroleums and sediment bitumen from Guaymas Basin, Gulf of California

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Leif, R. N.; Ishiwatari, R.

    1996-01-01

    The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolyzates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the hydrothermal alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under hydrothermal conditions, but the isoprenoidyl phenols are probably hydrothermal alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature hydrothermal processes.

  5. Phenols in hydrothermal petroleums and sediment bitumen from Guaymas Basin, Gulf of California.

    PubMed

    Simoneit, B R; Leif, R N; Ishiwatari, R

    1996-01-01

    The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolyzates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the hydrothermal alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under hydrothermal conditions, but the isoprenoidyl phenols are probably hydrothermal alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature hydrothermal processes.

  6. Phenols in hydrothermal petroleums and sediment bitumen from Guaymas Basin, Gulf of California.

    PubMed

    Simoneit, B R; Leif, R N; Ishiwatari, R

    1996-01-01

    The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolyzates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the hydrothermal alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under hydrothermal conditions, but the isoprenoidyl phenols are probably hydrothermal alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature hydrothermal processes. PMID:11541747

  7. Subduction Processing of Altered Oceanic Crust and its Consequences for Mantle Composition and Evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Kelley, K. A.

    2009-12-01

    The oceanic crust experiences hydrothermal alteration during its lifetime near the earth’s surface, which fundamentally changes the element distribution and the bulk composition of the crust through time. The subduction of altered oceanic crust (AOC) has been linked to specific geochemical signatures apparent in arc magmas and to certain isotopic heterogeneities in the earth’s mantle (i.e., HIMU). Several recent estimates of natural AOC compositions, coupled with mass balance models of the effects of subduction on AOC composition, now permit models of AOC as the source of HIMU to be quantitatively tested. Samples from deep basement drill sites into AOC provide end-member constraints on the influence of hydrothermal alteration as a function of crustal age, structure, and spreading rate (e.g., Sites 801, 1149, 417/418, 504, 1256), and also provide constraints on the geochemical fluxes from AOC entering subduction zones. Composite sample analyses and averages of discrete sample data for Sites 801 and 1149, proximal to the Mariana subduction zone, reveal similar patterns of element redistribution and enrichment that are common among all AOC drill sites. Both sites show significant bulk enrichments in U (2-5x) and the alkalis (Li [2x], K [4x], Rb [9-10x], Cs [7-12x]) over pristine glass, but indicate that Pb and Sr are redistributed locally during alteration without a significant net change to the bulk crustal concentration. If added as-is to the mantle, however, raw AOC would evolve through time to Pb and Sr isotopic compositions unobserved in the modern mantle, and additional fractionations of these elements during subduction processing of AOC are required if it is to be a viable parent material for HIMU. Mass balance constraints using Site 801 AOC and arc lava compositions from the Marianas show that subduction processing fractionates Pb, U, Rb and Sr from the subducted plate at different depths, leaving a residual slab at the end of this process that is an

  8. Hydrothermal reactivity of saponite.

    USGS Publications Warehouse

    Whitney, G.

    1983-01-01

    The nature and extent of the reactions of synthetic Fe-free saponite have been investigated under experimental hydrothermal conditions as a first step towards understanding saponite reactivity under relatively simple conditions. Saponite crystallizes from amorphous gel of ideal saponite composition within 7 days at 300o-550oC under P = 1 kbar. Reactions subsequent to this initial crystallization depend on reaction T and interlayer cations. Saponite is found to react hydrothermally, over a period of 200 days, at T down to 400oC, at least 150oC lower than previously reported, but showed no signs of reaction below 400oC. At 450oC, a mixture of talc/saponite and saponite/phlogopite clays forms from K-saponite via intracrystalline layer transformations, while above 450oC the initial K-saponite dissolves, with talc and phlogopite forming as discrete phases. After 200 days reactions at 400-450oC were not complete, so that given sufficient time to reach equilibrium, a lower hydrothermal stability limit for saponite is possible. Further study of the Fe-bearing saponite system will be required before experimental results can be applied to natural systems.-D.F.B.

  9. Regional Crustal Thickness Variations on Mars

    NASA Astrophysics Data System (ADS)

    Frey, H. V.; Bills, B. G.; Lyons, S. N.; Roark, J. H.

    1996-03-01

    We generated models of crustal thickness for Mars using both Mars50c and GMM-1 based on the assumption that gravity anomalies are due only to variations in surface and crust/mantle topography and crust and mantle densities are laterally constant, for a range of crust and mantle densities, and assumed average crustal thickness. Here we discuss regional variations in crustal thickness for one such model, with average thickness of 65 km and crust/mantle density contrast 0.5 (crust 3.0, mantle 3.5) gm/cc. Crustal thickness ranges from 140 km below Olympus Mons to less than 10 km below the Hellas and Isidis basins. Crust below Argyre is five times thicker than below Hellas, while that in Elysium is 85 km thick. Most (but not all) heavily cratered terrain is thicker than the crustal average, while most lowlying plains are only 25-45 km thick. Across the crustal dichotomy boundary zone the crustal thickness changes by 25 to 35 km over less than 500 km in some (but not all) places.

  10. Tectonic background of a unique hydrogen-rich Kairei Hydrothermal Field, Central Indian Ridge: Results from Taiga Project

    NASA Astrophysics Data System (ADS)

    Okino, K.; Nakamura, K.; Morishita, T.; SATO, H.; Sato, T.; Mochizuki, N.; Okamura, K.; Fukuba, T.; Sunamura, M.

    2012-12-01

    The Central Indian Ridge (CIR) is slow~intermediate spreading systems and its southern end forms a R-R-R triple junction with SWIR and SEIR. The southern CIR shows slow-spreading morphology, where the axial valley develops along the ridge crest and an oceanic core complex has been reported near the triple junction. Kairei Hydrothermal Field (KHF) is unique hydrothermal system, located at the southern end of CIR. The fluids venting from the KHF are characterized by its high concentration of hydrogen with low methane/hydrogen ratio, and a hydrogen-based hyperthermophilic subsurface lithoautotrophic microbial ecosystem was confirmed (Takai et al., 2004). The KHF lies on basaltic lava area on the shoulder of ridge axial wall, being different from other hydrogen-rich hydrothermal fields hosted by ultramafic rocks. We selected this area as an integrated site for the Taiga Project, and conducted series of research cruises to characterize this unique system and to understand how the tectonic setting controls the fluid and ecosystem. We discover that the KHF itself is located above basaltic lava field but gabbro and ultramafic rocks are widely exhumed around the KHF. Besides a previously known oceanic core complex, small oceanic core complexes exist just east of the KHF (Kumagai et al., 2008) and the NTO massif north of the KHF shows peridotite exposure on its top. The unique fluid geochemistry of the KHF can be attributed to serpentinization of troctolites around or beneath the KHF and subsequent hydrothermal reactions with basaltic wall rocks (Nakamura et al., 2009). We also find several small hills where we collect deep crustal and mantle rocks. These hills suggesting melt-limited environment extend mainly along 2nd order segment boundary from the axial valley to 30km off-axis, i.e. ~1.7 Ma. The regional surface geophysical mapping and deep-tow magnetic profiling show high mantle Bouguer anomaly and prominent asymmetric spreading in the southernmost CIR segment. These

  11. The origin of methanethiol in midocean ridge hydrothermal fluids.

    PubMed

    Reeves, Eoghan P; McDermott, Jill M; Seewald, Jeffrey S

    2014-04-15

    Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (nonbiological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of protometabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic, and sediment-covered midocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating that production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (∼10(-8) M) in high-temperature fluids (>200 °C) from all unsedimented systems and, in many cases, suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (<200 °C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ∼10(-6) M) along with NH4(+) and low-molecular-weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sediment-hosted system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats.

  12. The origin of methanethiol in midocean ridge hydrothermal fluids.

    PubMed

    Reeves, Eoghan P; McDermott, Jill M; Seewald, Jeffrey S

    2014-04-15

    Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (nonbiological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of protometabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic, and sediment-covered midocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating that production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (∼10(-8) M) in high-temperature fluids (>200 °C) from all unsedimented systems and, in many cases, suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (<200 °C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ∼10(-6) M) along with NH4(+) and low-molecular-weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sediment-hosted system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats. PMID:24706901

  13. The origin of methanethiol in midocean ridge hydrothermal fluids

    PubMed Central

    Reeves, Eoghan P.; McDermott, Jill M.; Seewald, Jeffrey S.

    2014-01-01

    Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (nonbiological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of protometabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic, and sediment-covered midocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating that production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (∼10−8 M) in high-temperature fluids (>200 °C) from all unsedimented systems and, in many cases, suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (<200 °C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ∼10−6 M) along with and low-molecular-weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sediment-hosted system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats. PMID:24706901

  14. Lower crustal mush generation and evolution

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Bachmann, Olivier; Dufek, Josef; Wright, Heather; Mangan, Margaret

    2016-04-01

    Recent seismic, field, and petrologic studies on several active and fossil volcanic settings provide important constraints on the time, volume, and melt fraction of their lower crustal magma bodies. However, these studies provide an incomplete picture of the time and length scales involved during their thermal and compositional evolution. What has been lacking is a thermal model that explains the temporal evolution and state of the lower crustal magma bodies during their growth. Here we use a two-dimensional thermal model and quantify the time and length scales involved in the long-term thermal and compositional evolution of the lower crustal mush regions underlying the Salton Sea Geothermal Field (USA), Mt St Helens (USA), and the Ivrea-Verbano Zone (North Italy). Although a number of seismic, tectonic, petrologic, and field studies explained the tectonic and magmatic evolution of these regions, controversy remains on their lower crustal heat sources, melt fraction, and origin of erupted magmas. Our thermal modeling results suggest that given a geologically reasonable range of basalt fluxes (~10^-3 to 10^-4 km3/yr), a long-lived (>105 yr) crystalline mush is formed in the lower crust. The state of the lower crustal mush is strongly influenced by the magma flux, crustal thickness, and water content of intruded basalt, giving an average melt fraction of <0.2 in thin crust with dry injections (Salton Sea Geothermal Field) and up to 0.4-0.5 in thicker crust with wet injections (Mt St Helens and Ivrea Zone). The melt in the lower crustal mush is mainly evolving through fractional crystallization of basalt with minor crustal assimilation in all regions, in agreement with isotopic studies. Quantification of the lower crustal mush regions is key to understanding the mass and heat balance in the crust, evolution of magma plumbing systems, and geothermal energy exploration.

  15. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    thermodynamic equilibrium at higher temperatures and more reducing conditions than those observed in the Von Damm vent fluids. These findings are consistent with a scenario in which n-alkanes form abiotically within a high-H2, carbon-rich olivine-hosted fluid inclusion, and are subsequently liberated and transported to the seafloor during hydrothermal alteration of the lower crustal rocks exposed at the Mount Dent oceanic core complex. Mixed fluids at Von Damm show depletions in CO2 and H2, relative to conservative mixing. Multiple S isotope measurements indicate that the H2 sink cannot be attributed to sulfate reduction. Thermodynamic constraints indicate that high-H2 conditions support the active formation of formate via reduction of dissolved CO2 during hydrothermal circulation - a process that has also been described at the Lost City vent field - and could account for the concurrent depletions in CO2 and H2. The transformation of inorganic carbon to organic compounds via two distinct pathways in modern seafloor hydrothermal vents validates theoretical and experimental conceptual models regarding processes occurring in the crust and during hydrothermal circulation, and is relevant to supporting life in vent ecosystems.

  16. Contrasting sulfur isotope compositions of sulfide minerals between on-ridge and off-ridge hydrothermal fields in the southern Mariana back-arc region

    NASA Astrophysics Data System (ADS)

    Kakegawa, T.

    2004-12-01

    New submarine hydrothermal fields were discovered in the southern Mariana back-arc spreading region during the Yokosuka-Shinkai 6500 cruise (October, 2003). One is located on the ridge of spreading center and the other is located on the off-rige site: A low-temperature hydrothermal activity and 10 m-high sulfide chimneys were found on the ridge site and the black-smoker activity with various sulfide chimneys was found on the top of the off-ridge seamount. Both hydrothermal fields were directly drilled by the benthic-multiple coring system during the Hakurei 2 cruise (February, 2004), in order to examine the subsurface hydrothermal processes. Elemental maps of drilled core samples and surface chimneys were constructed using X-ray scanning microscope, and an alteration pattern and types of sulfide minerals were examined. Forming steps of Fe-rich clays near the seafloor were traced and vesicle-filling process by clays and sulfides were found in the examined samples. Sulfur isotope analyses were performed using EA-IRMS on the separated sulfide and sulfate minerals. Sulfur isotope compositions of sulfate minerals are the identical to the seawater sulfate value. Sulfur isotope compositions of sulfides range from +2.9 to +8.7?n at the on-ridge site and _|3.2 to +3.6 ?n at the off-ridge site, respectively. Such regional difference in sulfur isotope compositions of sulfides is probably reflecting the difference in crustal processes: either (1) involvement of sulfate reduction near the discharge zone or (2) isotope exchange among several sulfide and sulfate phases in the deep reaction zone. Chronological change of sulfur isotope compositions was also found in each region: lighter sulfur isotope compositions were found in the younger generation of sulfides. This suggests the style of sulfur cycle in the basaltic crusts (e.g., depth and temperature change for sulfate reduction, potential biological process, etc.) are varying through the development and/or decay of each

  17. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise.

    PubMed

    Tolstoy, M; Waldhauser, F; Bohnenstiehl, D R; Weekly, R T; Kim, W-Y

    2008-01-10

    Hydrothermal circulation at the axis of mid-ocean ridges affects the chemistry of the lithosphere and overlying ocean, supports chemosynthetic biological communities and is responsible for significant heat transfer from the lithosphere to the ocean. It is commonly thought that flow in these systems is oriented across the ridge axis, with recharge occurring along off-axis faults, but the structure and scale of hydrothermal systems are usually inferred from thermal and geochemical models constrained by the geophysical setting, rather than direct observations. The presence of microearthquakes may shed light on hydrothermal pathways by revealing zones of thermal cracking where cold sea water extracts heat from hot crustal rocks, as well as regions where magmatic and tectonic stresses create fractures that increase porosity and permeability. Here we show that hypocentres beneath a well-studied hydrothermal vent field on the East Pacific Rise cluster in a vertical pipe-like zone near a small axial discontinuity, and in a band that lies directly above the axial magma chamber. The location of the shallow pipe-like cluster relative to the distribution and temperature of hydrothermal vents along this section of the ridge suggests that hydrothermal recharge may be concentrated there as a consequence of the permeability generated by tectonic fracturing. Furthermore, we interpret the band of seismicity above the magma chamber as a zone of hydrothermal cracking, which suggests that hydrothermal circulation may be strongly aligned along the ridge axis. We conclude that models that suggest that hydrothermal cells are oriented across-axis, with diffuse off-axis recharge zones, may not apply to the fast-spreading East Pacific Rise.

  18. The Precambrian crustal structure of East Africa

    NASA Astrophysics Data System (ADS)

    Tugume, Fred Alex

    In this thesis, the Precambrian crustal structure of East African is investigated along with the crustal structures of three Cenozoic rift basins located in the western branch of the East African Rift System (EARS). In the first part of the thesis, P-wave receiver functions are modeled using the H-k method to obtain new insights about the bulk composition and thickness of the crust for Precambrian terrains throughout East Africa. The average crustal thickness for all but one of the terrains is between 37 and 39 km. An exception is the Ubendian terrain, which has an average crustal thickness 42 km. In all terrains, the average Poisson's ratio is similar, ranging from 0.25 to 0.26, indicating a bulk crustal composition that is felsic to intermediate. The main finding of this study is that crustal structure is similar across all terrains, which span more than 4.0 Ga of earth history. There is no discernable difference in the crustal thicknesses and Poisson's ratios between the Archean and Proterozoic terrains, or between the Proterozoic terrains, unlike the variability in Precambrian crustal structure found in many other continents. In the second part of the thesis, a joint inversion of Rayleigh wave phase and group velocities and receiver functions was used to investigate the shear wave velocity structure of the crust and uppermost mantle beneath the Precambrian terrains of East Africa. In comparison with other areas of similar age in southern and western Africa where the same joint inversion method has been applied, I find that while there is little difference in the mean shear wave velocities for the entire crust across all of the Precambrian terrains, and also few differences in the thickness of the crust, there exists substantial variability in lower crustal structure. This variability is reflected primarily in the thickness of the lower crustal layers with shear wave velocities ≥ 4.0 km/s. This variability is found both within terrains of the same age (i

  19. Mineralogy of the Martian Surface: Crustal Composition to Surface Processes

    NASA Technical Reports Server (NTRS)

    Mustard, John F.

    1997-01-01

    The main results have been published in the refereed literature, and thus this report serves mainly to summarize the main findings and indicate where the detailed papers may be found. Reflectance spectroscopy has been an important tool for determining the mineralogic makeup of the near surface materials on Mars. Analysis of the spectral properties of the surface have demonstrated that these attributes are heterogeneous from the coarse spatial but high spectral resolution spectra obtained with telescopes to the high spatial but coarse spectral resolution Viking data (e.g. Arvidson et al., 1989; McEwen et al., 1989). Low albedo materials show strong evidence for the presence of igneous rock forming minerals while bright materials are generally interpreted as representing heavily altered crustal material. How these materials are physically and genetically related has important implications for understanding martian surface properties and processes, weathering histories and paths, and crustal composition. The goal of this research is to characterize the physical and chemical properties of low albedo materials on Mars and the relationship to intermediate and high albedo materials. Fundamental science questions to be pursued include: (1) the observed distributions of soil, rock, and dust a function of physical processes or weathering and (2) different stages of chemical and physical alteration fresh rock identified. These objectives will be addressed through detailed analyses and modelling of the ISM data from the Phobos-2 mission with corroborating evidence of surface composition and properties provided by data from the Viking mission.

  20. Sedimentary basins and crustal thickening

    NASA Astrophysics Data System (ADS)

    Cobbold, P. R.; Davy, P.; Gapais, D.; Rossello, E. A.; Sadybakasov, E.; Thomas, J. C.; Tondji Biyo, J. J.; de Urreiztieta, M.

    1993-07-01

    We consider the development of sedimentary basins in a tectonic context dominated by horizontal shortening and vertical thickening of the crust. Well-known examples are foreland basins; others are ramp basins and buckle basins. We have reproduced various styles of compressional basins in experiments, properly scaled for gravity. A multilayered model lithosphere, with brittle and ductile layers, floats on a model asthenosphere. A computer-driven piston provides shortening and thickening, synchronous with erosion and sedimentation. After a first stage of lithospheric buckling, thrust faults appear, mainly at inflection points. Slip on an isolated reverse fault is accompanied by flexure. Footwall flexure results in a foreland basin and becomes accentuated by sedimentation. Hangingwall flexure is less marked, but may become accentuated by erosion. Motion on a fault leads to hangingwall collapse at the surface. Either footwall sedimentation or hangingwall erosion tends to prolong the active life of a reverse fault. Slip on any pair of closely spaced reverse faults of opposite vergence results in a ramp basin. Simultaneous slip produces a symmetric ramp basin, whereas alternating slip results in a butterfly-shaped basin, with superposed foredeeps. Some well-developed ramp basins become pushed down, until bounding faults meet at the surface and the basin disappears from view. At this stage, the basin depth is equivalent to 15 km or more. Slip on any pair of widely spaced reverse faults of opposite vergence results in a pronounced central anticline, between two distinct foredeeps. In Central Asia and in Western Europe, Cenozoic crustal thickening is due to continental collision. For Central Asia (Western China, Kyrgyzstan, Uzbekistan, Tajikistan), we have compiled a regional structure-contour map on the base of the Tertiary, as well as 4 regional sections. Foreland basins and ramp basins are numerous and associated with Cenozoic thrusts. Large basins (Tarim, Junggar

  1. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    USGS Publications Warehouse

    Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.

    2009-01-01

    Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.

  2. Modeling hydrothermal processes at ocean spreading centers: Magma to microbe—An overview

    NASA Astrophysics Data System (ADS)

    Lowell, Robert P.; Seewald, Jeffrey S.; Metaxas, Anna; Perfit, Michael R.

    Hydrothermal processes at oceanic spreading centers encompass a number of highly interconnected processes ranging from the transport of mantle melts beneath spreading centers to the evolution of ocean chemistry and Earth's climate. This volume, which stems from a RIDGE Theoretical Institute held at Mammoth Lakes, California in June 2006, contains papers that address the complex connections among magmatic heat supply, crustal formation, seismicity, and hydrothermal circulation as well as the complex linkages among hydrothermal circulation, vent chemistry, carbon cycling, and microbial and macrofaunal ecosystems. The last paper in this volume explores the connection between hydrothermal venting and the chemical evolution of the oceans during the Phanerozoic. From reading these papers, one should recognize the wide variety of modeling approaches used and the uneven state of model development within various subdisciplines. Models of hydrothermal circulation and vent chemistry tend to be more quantitative, whereas models of carbon cycling and biological processes tend to be more conceptual. Although many of the complex linkages among the subdisciplines are understood at a conceptual level, considerable effort must be undertaken to develop integrated quantitative models of hydrothermal processes at oceanic spreading centers.

  3. Hydrothermal Liquefaction of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  4. Poisson`s ratio and crustal seismology

    SciTech Connect

    Christensen, N.I.

    1996-02-10

    This report discusses the use of Poisson`s ratio to place constraints on continental crustal composition. A summary of Poisson`s ratios for many common rock formations is also included with emphasis on igneous and metamorphic rock properties.

  5. A mechanism for crustal recycling on Venus

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.; Bindschadler, D. L.

    1993-01-01

    Entrainment of lower crust by convective mantle downflows is proposed as a crustal recycling mechanism on Venus. The mechanism is characterized by thin sheets of crust being pulled into the mantle by viscous flow stresses. Finite element models of crust/mantle interaction are used to explore tectonic conditions under which crustal entrainment may occur. The recycling scenarios suggested by the numerical models are analogous to previously studied problems for which analytic and experimental relationships assessing entrainment rates have been derived. We use these relationships to estimate crustal recycling rates on Venus. Estimated rates are largely determined by (1) strain rate at the crust/mantle interface (higher strain rate leads to greater entrainment); and (2) effective viscosity of the lower crust (viscosity closer to that of mantle lithosphere leads to greater entrainment). Reasonable geologic strain rates and available crustal flow laws suggest entrainment can recycle approximately equal 1 cu km of crust per year under favorable conditions.

  6. NASA plan for international crustal dynamics studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The international activities being planned as part of the NASA geodynamics program are described. Methods of studying the Earth's crustal movements and deformation characteristics are discussed. The significance of the eventual formalations of earthquake predictions methods is also discussed.

  7. Crustal deformation: Earth vs Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1989-01-01

    It is timely to consider the possible tectonic regimes on Venus both in terms of what is known about Venus and in terms of deformation mechanisms operative on the earth. Plate tectonic phenomena dominate tectonics on the earth. Horizontal displacements are associated with the creation of new crust at ridges and destruction of crust at trenches. The presence of plate tectonics on Venus is debated, but there is certainly no evidence for the trenches associated with subduction on the earth. An essential question is what kind of tectonics can be expected if there is no plate tectonics on Venus. Mars and the Moon are reference examples. Volcanic constructs appear to play a dominant role on Mars but their role on Venus is not clear. On single plate planets and satellites, tectonic structures are often associated with thermal stresses. Cooling of a planet leads to thermal contraction and surface compressive features. Delamination has been propsed for Venus by several authors. Delamination is associated with the subduction of the mantle lithosphere and possibly the lower crust but not the upper crust. The surface manifestations of delamination are unclear. There is some evidence that delamination is occurring beneath the Transverse Ranges in California. Delamination will certainly lead to lithospheric thinning and is likely to lead to uplift and crustal thinning.

  8. Mars Crustal Magnetic Field Remnants

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.

    This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.

    The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.

    These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.

  9. Io: Mountains and crustal extension

    NASA Technical Reports Server (NTRS)

    Heath, M. J.

    1985-01-01

    It is argued that there is good reason to conclude that mountains on Io, like those on Earth, are subject to growth and decay. The decay of mountains will be assisted by the ability of SO sub 2 to rot silicate rock and by explosive escape of sub-surface SO sub 2 from aquifers (Haemus Mons is seen to be covered by bright material, presumably fallout from a SO sub 2 rich plume which had been active on the mountain flanks). On the west side of the massif at 10 degrees S, 270 degrees W a rugged surface consists of long ridges running perpendicular to the downslope direction, suggesting tectonic denudation with crustal blocks sliding down the mountain flank. Tectonic denudation may be assisted, as in the case of the Bearpaw Mountains, Montana by overloading mountain flanks with volcanic products. The surfaces of some massifs exhibit a well developed, enigmatic corrugated terrain, consisting of complex ridge systems. Ridges may bifurcate, anastomose to form closed depressions and form concentric loops. Taken together, observations of morphology, heat flux, surface deposits and styles of volcanism may point to the existence of lithosphere domains with distinct compositions and tectonic regimes.

  10. Crustal structure during active rifting in the central Salton Trough, California, constrained by the Salton Seismic Imaging Project (SSIP)

    NASA Astrophysics Data System (ADS)

    Han, L.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Driscoll, N. W.; Kell, A. M.; Kent, G.; Harding, A. J.; Gonzalez-Fernandez, A.; Lazaro-Mancilla, O.

    2013-12-01

    Seismic refraction and reflection travel times from the Salton Seismic Imaging Project (SSIP) were used to constrain crustal structure during active continental rifting in the central Salton Trough, California. SSIP, funded by NSF and USGS, acquired seismic data in and across the Salton Trough in 2011 to investigate rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. Seven lines of refraction and low-fold reflection data were acquired onshore, two lines and a grid of airgun and OBS data were acquired in the Salton Sea, and onshore-offshore data were recorded. North American lithosphere in the central Salton Trough appears to have been rifted apart and replaced by new crust added by magmatism from below and sedimentation from above. Ongoing active rifting of this new crust is manifested by shallow (<10km depth) seismicity in the oblique Brawley Seismic Zone (connecting the Imperial and San Andreas transform faults), the small Salton Buttes volcanoes, and very high heat flow that enables geothermal energy production. Analyses of the onshore-offshore seismic line that extends along the axis of the Salton Trough, parallel to the direction of plate motion, constrains rifted crustal structure. Crystalline basement (~5 km/s) generally occurs at ~4 km depth, but is at 2-3 km depth in a localized region beneath the Salton Buttes and Salton Sea geothermal field. This crystalline rock is interpreted to be late Pliocene to Quaternary Colorado River sediment that has been metamorphosed by high heat flow to a depth of at least 10km. The shallower basement under the volcanic and geothermal field is due to more intense metamorphism and hydrothermal alteration in this region of extreme heat flow. Faster velocity (6.2-6.4 km/s) observed at 10-13 km depth might be the remains of ruptured pre-existing crust or might be produced by deeper magmatism. Seismic travel times indicate

  11. The crustal thickness of West Antarctica

    NASA Astrophysics Data System (ADS)

    Chaput, J.; Aster, R. C.; Huerta, A.; Sun, X.; Lloyd, A.; Wiens, D.; Nyblade, A.; Anandakrishnan, S.; Winberry, J. P.; Wilson, T.

    2014-01-01

    P-to-S receiver functions (PRFs) from the Polar Earth Observing Network (POLENET) GPS and seismic leg of POLENET spanning West Antarctica and the Transantarctic Mountains deployment of seismographic stations provide new estimates of crustal thickness across West Antarctica, including the West Antarctic Rift System (WARS), Marie Byrd Land (MBL) dome, and the Transantarctic Mountains (TAM) margin. We show that complications arising from ice sheet multiples can be effectively managed and further information concerning low-velocity subglacial sediment thickness may be determined, via top-down utilization of synthetic receiver function models. We combine shallow structure constraints with the response of deeper layers using a regularized Markov chain Monte Carlo methodology to constrain bulk crustal properties. Crustal thickness estimates range from 17.0±4 km at Fishtail Point in the western WARS to 45±5 km at Lonewolf Nunataks in the TAM. Symmetric regions of crustal thinning observed in a transect deployment across the West Antarctic Ice Sheet correlate with deep subice basins, consistent with pure shear crustal necking under past localized extension. Subglacial sediment deposit thicknesses generally correlate with trough/dome expectations, with the thickest inferred subice low-velocity sediment estimated as ˜0.4 km within the Bentley Subglacial Trench. Inverted PRFs from this study and other published crustal estimates are combined with ambient noise surface wave constraints to generate a crustal thickness map for West Antarctica south of 75°S. Observations are consistent with isostatic crustal compensation across the central WARS but indicate significant mantle compensation across the TAM, Ellsworth Block, MBL dome, and eastern and western sectors of thinnest WARS crust, consistent with low density and likely dynamic, low-viscosity high-temperature mantle.

  12. Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths

    NASA Astrophysics Data System (ADS)

    Pernet-Fisher, John F.; Howarth, Geoffrey H.; Liu, Yang; Barry, Peter H.; Carmody, Laura; Valley, John W.; Bodnar, Robert J.; Spetsius, Zdislav V.; Taylor, Lawrence A.

    2014-03-01

    The Komsomolskaya kimberlite is one of numerous (>1,000) kimberlite pipes that host eclogite xenoliths on the Siberian craton. Eclogite xenoliths from the adjacent Udachnaya kimberlite pipe have previously been geochemically well characterized; however, data from surrounding diamond-bearing kimberlite pipes from the center of the craton are relatively sparse. Here, we report major- and trace-element data, as well as oxygen isotope systematics, for mineral separates of diamondiferous eclogite xenoliths from the Komsomolskaya kimberlite, suggesting two distinct subgroups of a metamorphosed, subducted oceanic crustal protolith. Using almandine contents, this suite can be divided into two subgroups: group B1, with a high almandine component (>20 mol%) and group B2, with a low almandine component (<20 mol%). Reconstructed REE profiles for B1 eclogites overlap with typical oceanic basalts and lack distinct Eu anomalies. In addition, elevated oxygen isotope values, which are interpreted to reflect isotopic exchange with seawater at low temperatures (<350 °C), are consistent with an upper-oceanic crustal protolith. Reconstructed REE profiles for B2 eclogites are consistent with oceanic gabbros and display distinct Eu anomalies, suggesting a plagioclase-rich cumulate protolith. In contrast to B1, B2 eclogites do not display elevated oxygen isotope values, suggesting an origin deep within the crustal pile, where little-to-no interaction with hydrothermal fluids has occurred. Major-element systematics were reconstructed based on mineral modes; group B1 eclogites have higher MgO wt% and lower SiO2 wt%, with respect to typical oceanic basalts, reflecting a partial melting event during slab subduction. Calculated residues from batch partial melt modeling of a range of Precambrian basalts overlap with group B1 trace-element chemistry. When taken together with the respective partial melt trajectories, these melting events are clearly linked to the formation of Tonalite

  13. Vapor-Liquid Partitioning of Iron and Manganese in Hydrothermal Fluids: An Experimental Investigation with Application to the Integrated Study of Basalt-hosted Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Pester, N. J.; Seyfried, W. E.

    2010-12-01

    The chemistry of deep-sea hydrothermal vent fluids, expressed at the seafloor, reflects a complex history of physicochemical reactions. After three decades of field and experimental investigations, the processes of fluid-mineral equilibria that transform seawater into that of a typical “black smoker” are generally well described in the literature. Deep crustal fluids, when encountering a given heat source that ultimately drives hydrothermal circulation, routinely intersect the two-phase boundary. This process results in the nearly ubiquitous observations of variable salinity in vent fluids and is often a secondary driver of circulation via the evolution of a more buoyant (i.e. less saline) phase. Phase separation in chemically complex fluids results in the partitioning of dissolved species between the two evolved phases that deviates from simple charge balance calculations and these effects become more prominent with increasing temperature and/or decreasing pressure along the two-phase envelope. This process of partitioning has not been extensively studied and the interplay between the effects of phase separation and fluid-mineral equilibrium are not well understood. Most basalt-hosted hydrothermal systems appear to enter a steady state mode wherein fluids approach the heat source at depth and rise immediately once the two-phase boundary is met. Thus, venting fluids exhibit only modest deviations from seawater bulk salinity and the effects of partitioning are likely minor for all but the most volatile elements. Time series observations at integrated study sites, however, demonstrate dynamic changes in fluid chemistry following eruptions/magmatic events, including order of magnitude increases in gas concentrations and unexpectedly high Fe/Cl ratios. In this case, the time dependence of vapor-liquid partitioning relative to fluid-mineral equilibrium must be considered when attempting to interpret changes in subsurface reaction conditions. The two-phase region of

  14. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  15. Cody hydrothermal system

    SciTech Connect

    Heasler, H.P.

    1982-01-01

    The hot springs of Colter's Hell are the surface manifestations of a much larger hydothermal system. That system has been studied to define its extent, maximum temperature, and mechanism of operation. The study area covers 2700 km/sup 2/ (1040 mi/sup 2/) in northwest Wyoming. Research and field work included locating and sampling the hot springs, geologic mapping, thermal logging of available wells, measuring thermal conductivities, analyzing over 200 oil and gas well bottom-hole temperatures, and compiling and analyzing hydrologic data. These data were used to generate a model for the hydrothermal system.

  16. Upper crustal seismic structure of the Endeavour segment, Juan de Fuca Ridge from traveltime tomography: Implications for oceanic crustal accretion

    NASA Astrophysics Data System (ADS)

    Weekly, Robert T.; Wilcock, William S. D.; Toomey, Douglas R.; Hooft, Emilie E. E.; Kim, Eunyoung

    2014-04-01

    isotropic and anisotropic P wave velocity structure of the upper oceanic crust on the Endeavour segment of the Juan de Fuca Ridge is studied using refracted traveltime data collected by an active-source, three-dimensional tomography experiment. The isotropic velocity structure is characterized by low crustal velocities in the overlapping spreading centers (OSCs) at the segment ends. These low velocities are indicative of pervasive tectonic fracturing and persist off axis, recording the history of ridge propagation. Near the segment center, velocities within the upper 1 km show ridge-parallel bands with low velocities on the outer flanks of topographic highs. These features are consistent with localized thickening of the volcanic extrusive layer from eruptions extending outside of the axial valley that flow down the fault-tilted blocks that form the abyssal hill topography. On-axis velocities are generally relatively high beneath the hydrothermal vent fields likely due to the infilling of porosity by mineral precipitation. Lower velocities are observed beneath the most vigorous vent fields in a seismically active region above the axial magma chamber and may reflect increased fracturing and higher temperatures. Seismic anisotropy is high on-axis but decreases substantially off axis over 5-10 km (0.2-0.4 Ma). This decrease coincides with an increase in seismic velocities resolved at depths ≥1 km and is attributed to the infilling of cracks by mineral precipitation associated with near-axis hydrothermal circulation. The orientation of the fast-axis of anisotropy is ridge-parallel near the segment center but curves near the segment ends reflecting the tectonic fabric within the OSCs.

  17. Microbial community in black rust exposed to hot ridge flank crustal fluids.

    PubMed

    Nakagawa, Satoshi; Inagaki, Fumio; Suzuki, Yohey; Steinsbu, Bjørn Olav; Lever, Mark Alexander; Takai, Ken; Engelen, Bert; Sako, Yoshihiko; Wheat, Charles Geoffrey; Horikoshi, Koki

    2006-10-01

    During Integrated Ocean Drilling Program Expedition 301, we obtained a sample of black rust from a circulation obviation retrofit kit (CORK) observatory at a borehole on the eastern flank of Juan de Fuca Ridge. Due to overpressure, the CORK had failed to seal the borehole. Hot fluids from oceanic crust had discharged to the overlying bottom seawater and resulted in the formation of black rust analogous to a hydrothermal chimney deposit. Both culture-dependent and culture-independent analyses indicated that the black-rust-associated community differed from communities reported from other microbial habitats, including hydrothermal vents at seafloor spreading centers, while it shared phylotypes with communities previously detected in crustal fluids from the same borehole. The most frequently retrieved sequences of bacterial and archaeal 16S rRNA genes were related to the genera Ammonifex and Methanothermococcus, respectively. Most phylotypes, including phylotypes previously detected in crustal fluids, were isolated in pure culture, and their metabolic traits were determined. Quantification of the dissimilatory sulfite reductase (dsrAB) genes, together with stable sulfur isotopic and electron microscopic analyses, strongly suggested the prevalence of sulfate reduction, potentially by the Ammonifex group of bacteria. Stable carbon isotopic analyses suggested that the bulk of the microbial community was trophically reliant upon photosynthesis-derived organic matter. This report provides important insights into the phylogenetic, physiological, and trophic characteristics of subseafloor microbial ecosystems in warm ridge flank crusts.

  18. Microbial community in black rust exposed to hot ridge flank crustal fluids.

    PubMed

    Nakagawa, Satoshi; Inagaki, Fumio; Suzuki, Yohey; Steinsbu, Bjørn Olav; Lever, Mark Alexander; Takai, Ken; Engelen, Bert; Sako, Yoshihiko; Wheat, Charles Geoffrey; Horikoshi, Koki

    2006-10-01

    During Integrated Ocean Drilling Program Expedition 301, we obtained a sample of black rust from a circulation obviation retrofit kit (CORK) observatory at a borehole on the eastern flank of Juan de Fuca Ridge. Due to overpressure, the CORK had failed to seal the borehole. Hot fluids from oceanic crust had discharged to the overlying bottom seawater and resulted in the formation of black rust analogous to a hydrothermal chimney deposit. Both culture-dependent and culture-independent analyses indicated that the black-rust-associated community differed from communities reported from other microbial habitats, including hydrothermal vents at seafloor spreading centers, while it shared phylotypes with communities previously detected in crustal fluids from the same borehole. The most frequently retrieved sequences of bacterial and archaeal 16S rRNA genes were related to the genera Ammonifex and Methanothermococcus, respectively. Most phylotypes, including phylotypes previously detected in crustal fluids, were isolated in pure culture, and their metabolic traits were determined. Quantification of the dissimilatory sulfite reductase (dsrAB) genes, together with stable sulfur isotopic and electron microscopic analyses, strongly suggested the prevalence of sulfate reduction, potentially by the Ammonifex group of bacteria. Stable carbon isotopic analyses suggested that the bulk of the microbial community was trophically reliant upon photosynthesis-derived organic matter. This report provides important insights into the phylogenetic, physiological, and trophic characteristics of subseafloor microbial ecosystems in warm ridge flank crusts. PMID:17021232

  19. Hydrothermal processes at Mount Rainier, Washington

    SciTech Connect

    Frank, D.G.

    1985-01-01

    Field studies and thermal-infrared mapping at Mount Rainier indicate areas of active hydrothermal alteration where excess surface heat flux is about 9 megawatts. Three representative settings include: (1) An extensive area (greater than 12,000 m/sup 2/) of heated ground and slightly acidic boiling-point fumaroles at 76-82/sup 0/C at East and West Craters on the volcano's summit; (2) A small area (less than 500 m/sup 2/) of heated ground and sub-boiling-point fumaroles at 55-60/sup 0/C on the upper flank at Disappointment Cleaver, and other probably similar areas at Willis Wall, Sunset Amphitheater, and the South Tahoma and Kautz headwalls; (3) Sulfate and carbon dioxide enriched thermal springs at 9-24/sup 0/C on the lower flank of the volcano in valley walls beside the Winthrop and Paradise Glaciers. In addition, chloride- and carbon dioxide-enriched thermal springs issue from thin sediments that overlie Tertiary rocks at, or somewhat beyond, the base of the volcanic edifice in valley bottoms of the Nisqually and Ohanapecosh Rivers where maximum spring temperatures are 19-25/sup 0/C, respectively, and where extensive travertine deposits have developed. The heat flow, distribution of thermal activity, and nature of alteration products indicate that a narrow, central hydrothermal system exists within Mount Rainier forming steam-heated snowmelt at the summit craters and localized leakage of steam-heated fluids within 2 kilometers of the summit. The lateral extent of the hydrothermal system is limited in that only sparse, neutral sulfate-enriched thermal water issues from the lower flank of the cone. Simulations of geochemical mass transfer suggest that the thermal springs may be derived from an acid sulfate-chloride parent fluid which has been neutralized by reaction with andesite and highly diluted with shallow ground water.

  20. Geomicrobiology of Deep-Sea Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Jannasch, Holger W.; Mottl, Michael J.

    1985-08-01

    During the cycling of seawater through the earth's crust along the midocean ridge system, geothermal energy is transferred into chemical energy in the form of reduced inorganic compounds. These compounds are derived from the reaction of seawater with crustal rocks at high temperatures and are emitted from warm (<= 25 degrees C) and hot (~ 350 degrees C) submarine vents at depths of 2000 to 3000 meters. Chemolithotrophic bacteria use these reduced chemical species as sources of energy for the reduction of carbon dioxide (assimilation) to organic carbon. These bacteria form the base of the food chain, which permits copious populations of certain specifically adapted invertebrates to grow in the immediate vicinity of the vents. Such highly prolific, although narrowly localized, deep-sea communities are thus maintained primarily by terrestrial rather than by solar energy. Reduced sulfur compounds appear to represent the major electron donors for aerobic microbial metabolism, but methane-, hydrogen-, iron-, and manganese-oxidizing bacteria have also been found. Methanogenic, sulfur-respiring, and extremely thermophilic isolates carry out anaerobic chemosynthesis. Bacteria grow most abundantly in the shallow crust where upwelling hot, reducing hydrothermal fluid mixes with downwelling cold, oxygenated seawater. The predominant production of biomass, however, is the result of symbiotic associations between chemolithotrophic bacteria and certain invertebrates, which have also been found as fossils in Cretaceous sulfide ores of ophiolite deposits.

  1. Geomicrobiology of deep-sea hydrothermal vents.

    PubMed

    Jannasch, H W; Mottl, M J

    1985-08-23

    During the cycling of seawater through the earth's crust along the mid-ocean ridge system, geothermal energy is transferred into chemical energy in the form of reduced inorganic compounds. These compounds are derived from the reaction of seawater with crustal rocks at high temperatures and are emitted from warm (hydrothermal fluid mixes with downwelling cold, oxygenated seawater. The predominant production of biomass, however, is the result of symbiotic associations between chemolithotrophic bacteria and certain invertebrates, which have also been found as fossils in Cretaceous sulfide ores of ophiolite deposits.

  2. Hydrothermal and magmatic couplings at mid-ocean ridges : controls on the locations of high-temperature hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Rabinowicz, M.; Fontaine, F. J.; Cannat, M.; Escartin, J.

    2012-12-01

    The heat output and thermal regime of oceanic spreading centers are strongly controlled by boundary layer processes between the hydrothermal system and the underlying crustal magma chamber, which remain to be fully understood. In thermal models, the dynamical interactions between the hydrothermal system and the deeper part of the lithosphere affected by processes such as magma chamber convection, magma crystallization and latent heat release, or simple conduction, is usually not considered and a ad-hoc temperature or heat flux is prescribed at the base of the hydrothermal layer. In this work we develop original two-dimensional numerical models of the interactions between a shallow cellular hydrothermal (porous) system at temperatures <700°C in the upper crust, and a deeper magmatic (viscous) layer at temperatures up to 1200°C representing the lower crust. Our formalism allows for a dynamical interface between the two layers, which is fluctuating according to the dynamics of each layer. We systematically investigate the range of permeability and viscosity that characterized the dynamics of the porous and magmatic systems, respectively. An intriguing and highly debated question that we investigate is about the genesis of focused (i.e., kilometer-wide), hundreds-of-mega-watt (MW) powerfull, high-temperature (300-400°C) hydrothermal fields such as those discovered along the East Pacific Rise at 9°50'N or along the Juan de Fuca ridge/Endeavour segment for example. One hypothesis is that these fields require the formation of "elongated" hydrothermal convection cells that cool the crust on 5-10 kms, but the processes controlling the formation of such large aspect ratio (length/height) are poorly constrain. Our models show that such cells naturally arise from the dynamical coupling between a « low-viscosity », convecting lower-crust and a low-permeability upper hydrothermal layer. They also predict along-axis variations in the depth of the axial magma lens (AMC

  3. Hydrothermal and magmatic couplings at mid-ocean ridges : controls on the locations of high-temperature hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice; Rabinowicz, Michel; Cannat, Mathilde; Escartin, Javier

    2013-04-01

    The heat output and thermal regime of oceanic spreading centers are strongly controlled by boundary layer processes between the hydrothermal system and the underlying crustal magma chamber, which remain to be fully understood. In thermal models, the dynamical interactions between the hydrothermal system and the deeper part of the lithosphere affected by processes such as magma chamber convection, magma crystallization and latent heat release, or simple conduction, is usually not considered and a ad-hoc temperature or heat flux is prescribed at the base of the hydrothermal layer. In this work we develop original two-dimensional numerical models of the interactions between a shallow cellular hydrothermal (porous) system at temperatures <700°C in the upper crust, and a deeper magmatic (viscous) layer at temperatures up to 1200°C representing the lower crust. Our formalism allows for a dynamical interface between the two layers, which is fluctuating according to the dynamics of each layer. We systematically investigate the range of permeability and viscosity that characterized the dynamics of the porous and magmatic systems, respectively. An intriguing and highly debated question that we investigate is about the genesis of focused (i.e., kilometer-wide), hundreds-of-mega-watt (MW) powerfull, high-temperature (300-400°C) hydrothermal fields such as those discovered along the East Pacific Rise at 9°50'N or along the Juan de Fuca ridge/Endeavour segment for example. One hypothesis is that these fields require the formation of "elongated" hydrothermal convection cells that cool the crust on 5-10 kms, but the processes controlling the formation of such large aspect ratio (length/height) are poorly constrain. Our models show that such cells naturally arise from the dynamical coupling between a « low-viscosity », convecting lower-crust and a low-permeability upper hydrothermal layer. They also predict along-axis variations in the depth of the axial magma lens (AMC

  4. Crustal Thickness Beneath Ocean Islands

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Liu, K. H.; Cullers, R. L.

    2005-12-01

    We measured the thickness of the Earth's crust beneath about two dozen of the GDSN or GEOSCOPE stations located on ocean islands by stacking moveout-corrected high-quality P-to-S receiver functions (RFs). The RFs were filtered in the 0.05-0.5 Hz frequency bands to compress strong noises that are common for ocean island stations. Given the small (less than 2 s) time separation between the direct P and the P-to-S converted phase from the Moho, the PSmS phase, which has a negative polarity and can be clearly observed at almost all the stations, is used for the stacking. Preliminary resulting thickness at each of the stations is as follows: AFI (12.4 km), AIS (13.6), ASCN (9.6), BBSR (9.9), BORG (9.4), CRZF (6.6), GUMO (8.0), HNR (8.0), HOPE (19.0), KIP (13.0), MSEY (10.7), MSVF (15.1), NOUC (15.1), PAF (8.9), POHA (17.0), PPT (12.3), PTCN (10.4), RAR (12.8), RER (13.8), RPN (9.3), SEY (14.9), SHEL (17.5), TBT (14.1), XMAS (11.8). Crustal thickness at some of the stations has been measured previously, and our results are in general agreement with those measurements. Possible age-dependence of the resulting thickness and geological implications in the understanding of plume-lithosphere interactions and formation of ocean islands will be presented.

  5. Strontium isotopic variations of Neoproterozoic seawater: Implications for crustal evolution

    SciTech Connect

    Asmerom, Y.; Jacobsen, S.B.; Knoll, A.H.; Butterfield, N.J. ); Swett, K. )

    1991-10-01

    The authors report high precision Sr isotopic data on carbonates from the Neoproterozoic Shaler Group, Victoria Island, Northwest Territories, Canada. Samples with low {sup 87}Rb/{sup 86}Sr ratios (<0.01) were selected for Sr isotopic analysis. {delta}{sup 18}O, Mn, Ca, Mg, and Sr data were used to recognize altered samples. The altered samples are characterized by high Mn/Sr ({ge}2) and variable {delta}{sup 18}O; most are dolomites. The data indicate that between ca. 790-850 Ma the {sup 87}Sr/{sup 86}Sr ratio of seawater varied between 0.70676 and 0.70561. The samples show smooth and systematic variation, with the lowest {sup 87}Sr/{sup 86}Sr value of 0.70561 at ca. 830 Ma. The low {sup 87}Sr/{sup 86}Sr ratio of carbonates from the lower parts of the section is similar to a value reported for one sample from the Adrar of Mauritania ({approx}900 Ma), West African Craton. Isotopic ratios from the upper part of the Shaler section are identical to values from the lower part of the Neoproterozoic Akademikerbreen Group, Spitsbergen. Although a paucity of absolute age determinations hinders attempts at the precise correlation of Neoproterozoic successions, it is possible to draw a broad outline of the Sr isotopic composition of seawater for this period. Data from this study and the literature are used to construct a curve of the {sup 87}Sr/{sup 86}Sr ratio of Neoproterozoic seawater. The Sr isotope composition of seawater reflects primarily the balance between continental Sr input through river input and mantle input via hydrothermal circulation of seawater through mid-ocean ridges. Coupling of Nd and Sr isotopic systems allows the authors to model changes in seafloor spreading rates (or hydrothermal flux) and continental erosion. The Sr hydrothermal flux and the erosion rate (relative to present-day value) are modeled for the period 500-900 Ma.

  6. Linking Microearthquakes and Seismic Tomography on the Endeavour Segment of the Juan de Fuca Ridge: Implications for Hydrothermal Circulation

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S.; Weekly, R. T.; Hooft, E. E.; Toomey, D. R.; Kim, E.

    2013-12-01

    We report on a remarkable correlation between the patterns of microearthquakes and three-dimensional upper crustal velocity anomalies on the Endeavour segment of the Juan de Fuca Ridge. Microearthquakes were monitored from 2003-2006 by a small seismic network deployed on the central part of the segment. The velocity model was obtained from a tomography experiment comprising over 5500 shots from a large airgun array that were recorded by ocean bottom seismometers deployed at 64 sites along the Endeavour segment and the adjacent overlapping spreading centers (OSCs). On the segment scale, upper crustal velocities are low in the OSCs indicating that the crust is highly fractured. These low velocities persist off-axis and record the history of ridge propagation. In 2005, two swarm sequences that were interpreted in terms of magmatic intrusions on the limbs of the Endeavour-West Valley OSC were accompanied by extensive seismicity within the overlap basin. Throughout the microearthquake experiment earthquakes were concentrated in a region surrounding the southern tip of the West Valley propagator that coincides closely with the southern limit of the low velocities imaged around the OSC. Beneath the hydrothermal vent fields in the center of the Endeavour segment, the earthquakes were mostly located in a 500-m-thick band immediately above the axial magma chamber. There was a close correlation between the rates of seismicity beneath each vent field and their thermal output. The highest rates of seismicity were observed beneath the High Rise and Main Endeavour fields that each have power outputs of several hundred megawatts. Seismic velocities are generally high beneath the vent fields relative to velocities along the ridge axis immediately to the north and south. However, the High Rise and Main Endeavour fields are underlain by a low velocity region at 2 km depth that coincides with the seismically active region. This is consistent with a region of increased fracturing and

  7. Experimental Low Temperature Aqueous Alteration of Allende Under Reducing Conditions

    NASA Astrophysics Data System (ADS)

    Duke, C. L.; Brearley, A. J.

    1999-03-01

    This abstract presents the results of a series of low temperature hydrothermal alteration experiments that were carried out in an anoxic environment. The results are compared with the results of previous experiments run under oxidizing conditions.

  8. Extensive and Diverse Alteration Revealed in Noctis Labyrinthus Using CRISM Data

    NASA Astrophysics Data System (ADS)

    Thollot, P.; Mangold, N.; Le Mouélic, S.

    2014-07-01

    We analyzed 113 CRISM cubes in Noctis Labyrinthus. We found 10 classes of alteration minerals including clays and sulfates, sometimes associated in the same setting. Fe and Al sulfates argue for acidic hydrothermal alteration.

  9. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow.

    PubMed

    Wang, Qiang; Hawkesworth, Chris J; Wyman, Derek; Chung, Sun-Lin; Wu, Fu-Yuan; Li, Xian-Hua; Li, Zheng-Xiang; Gou, Guo-Ning; Zhang, Xiu-Zheng; Tang, Gong-Jian; Dan, Wei; Ma, Lin; Dong, Yan-Hui

    2016-01-01

    There is considerable controversy over the nature of geophysically recognized low-velocity-high-conductivity zones (LV-HCZs) within the Tibetan crust, and their role in models for the development of the Tibetan Plateau. Here we report petrological and geochemical data on magmas erupted 4.7-0.3 Myr ago in central and northern Tibet, demonstrating that they were generated by partial melting of crustal rocks at temperatures of 700-1,050 °C and pressures of 0.5-1.5 GPa. Thus Pliocene-Quaternary melting of crustal rocks occurred at depths of 15-