Science.gov

Sample records for hydroxamic acid inhibition

  1. Hydroxamic acid derivatives of mycophenolic acid inhibit histone deacetylase at the cellular level.

    PubMed

    Batovska, Daniela I; Kim, Dong Hoon; Mitsuhashi, Shinya; Cho, Yoon Sun; Kwon, Ho Jeong; Ubukata, Makoto

    2008-10-01

    Mycophenolic acid (MPA, 1), an inhibitor of IMP-dehydrogenase (IMPDH) and a latent PPARgamma agonist, is used as an effective immunosuppressant for clinical transplantation and recently entered clinical trials in advanced multiple myeloma patients. On the other hand, suberoylanilide hydroxamic acid (SAHA), a non-specific histone deacetylase (HDAC) inhibitor, has been approved for treating cutaneous T-cell lymphoma. MPA seemed to bear a cap, a linker, and a weak metal-binding site as a latent inhibitor of HDAC. Therefore, the hydroxamic acid derivatives of mycophenolic acid having an effective metal-binding site, mycophenolic hydroxamic acid (MPHA, 2), 7-O-acetyl mycophenolic acid (7-O-Ac MPHA, 3), and 7-O-lauroyl mycophenolic hydroxamic acid (7-O-L MPHA, 4) were designed and synthesized. All these compounds inhibited histone deacetylase with IC50 values of 1, 0.9 and 0.5 microM, and cell proliferation at concentrations of 2, 1.5 and 1 microM, respectively. PMID:18838793

  2. Hydroxamic Acids in Asymmetric Synthesis

    PubMed Central

    Li, Zhi; Yamamoto, Hisashi

    2012-01-01

    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst’s center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Due to their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless Asymmetric Epoxidation, which uses titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless Asymmetric Epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities. PMID:23157425

  3. Potent Reversible Inhibition of Myeloperoxidase by Aromatic Hydroxamates*

    PubMed Central

    Forbes, Louisa V.; Sjögren, Tove; Auchère, Françoise; Jenkins, David W.; Thong, Bob; Laughton, David; Hemsley, Paul; Pairaudeau, Garry; Turner, Rufus; Eriksson, Håkan; Unitt, John F.; Kettle, Anthony J.

    2013-01-01

    The neutrophil enzyme myeloperoxidase (MPO) promotes oxidative stress in numerous inflammatory pathologies by producing hypohalous acids. Its inadvertent activity is a prime target for pharmacological control. Previously, salicylhydroxamic acid was reported to be a weak reversible inhibitor of MPO. We aimed to identify related hydroxamates that are good inhibitors of the enzyme. We report on three hydroxamates as the first potent reversible inhibitors of MPO. The chlorination activity of purified MPO was inhibited by 50% by a 5 nm concentration of a trifluoromethyl-substituted aromatic hydroxamate, HX1. The hydroxamates were specific for MPO in neutrophils and more potent toward MPO compared with a broad range of redox enzymes and alternative targets. Surface plasmon resonance measurements showed that the strength of binding of hydroxamates to MPO correlated with the degree of enzyme inhibition. The crystal structure of MPO-HX1 revealed that the inhibitor was bound within the active site cavity above the heme and blocked the substrate channel. HX1 was a mixed-type inhibitor of the halogenation activity of MPO with respect to both hydrogen peroxide and halide. Spectral analyses demonstrated that hydroxamates can act variably as substrates for MPO and convert the enzyme to a nitrosyl ferrous intermediate. This property was unrelated to their ability to inhibit MPO. We propose that aromatic hydroxamates bind tightly to the active site of MPO and prevent it from producing hypohalous acids. This mode of reversible inhibition has potential for blocking the activity of MPO and limiting oxidative stress during inflammation. PMID:24194519

  4. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    SciTech Connect

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-09-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  5. Pyridine hydroxamic acids are specific anti-HCV agents affecting HDAC6.

    PubMed

    Kozlov, Maxim V; Kleymenova, Alla A; Romanova, Lyudmila I; Konduktorov, Konstantin A; Kamarova, Kamila A; Smirnova, Olga A; Prassolov, Vladimir S; Kochetkov, Sergey N

    2015-06-01

    Recently we reported benzohydroxamic acids (BHAs) as potent and selective inhibitors of hepatitis C virus (HCV) replicon propagation. In this work 12 pyridine hydroxamic acids (PHAs) were synthesized and tested in full-genome replicon assay. It was found that PHAs possessed very similar anti-HCV properties compared to BHAs. Both classes of hydroxamic acids caused hyperacetylation of α-tubulin pointing to inhibition of histone deacetylase 6 (HDAC6) as part of their antiviral activity. The tested compounds did not inhibit the growth of poliovirus, displaying high selectivity against HCV.

  6. Hydrolysis of aceto-hydroxamic acid under UREX+ conditions

    SciTech Connect

    Alyapyshev, M.; Paulenova, A.; Tkac, P.; Cleveland, M.A.; Bruso, J.E.

    2007-07-01

    Aceto-hydroxamic acid (AHA) is used as a stripping agent In the UREX process. While extraction yields of uranium remain high upon addition of AHA, hexavalent plutonium and neptunium are rapidly reduced to the pentavalent state while the tetravalent species and removed from the product stream. However, under acidic conditions, aceto-hydroxamic acid undergoes hydrolytic degradation. In this study, the kinetics of the hydrolysis of aceto-hydroxamic acid in nitric and perchloric acid media was investigated at several temperatures. The decrease of the concentration of AHA was determined via its ferric complex using UV-Vis spectroscopy. The data obtained were analyzed using the method of initial rates. The data follow the pseudo-first order reaction model. Gamma irradiation of AHA/HNO{sub 3} solutions with 33 kGy/s caused two-fold faster degradation of AHA. The rate equation and thermodynamic data will be presented for the hydrolysis reaction with respect to the concentrations of aceto-hydroxamic acid, nitrate and hydronium ions, and radiation dose. (authors)

  7. The reduction of actinide ions by hydroxamic acids

    NASA Astrophysics Data System (ADS)

    Taylor, R. J.; May, I.

    1999-01-01

    Simple hydroxamic acids have been shown to have useful applications in an Advanced Purex process for the reprocessing of irradiated nuclear fuel. They are especially suited to the separation of neptunium (IV) from uranium (VI) by the selective formation of a hydrophilic complex with Np(IV). U(VI) extraction in to 30% tributyl phosphate is unaffected. However, they have also been shown to be very fast reducing agents for Np(VI). The timescales of the reduction have been defined under a range of typical Purex Process conditions although the accurate determination of the reaction kinetics was not possible due to the rapidity of the reaction. U(VI) was shown not to be reduced. Therefore, Np(VI) can be efficiently reductively stripped when solvent phase (30% tributyl phosphate in odourless kerosene) solutions of Np(VI) and U(VI) are contacted with aqueous phase hydroxamic acid solutions. The slow reduction of plutonium (IV) to Pu(III) has also been observed and this is apparently enhanced by the presence of U(VI) ions. The observed reactions of these actinide ions was shown to be compatible with experimentally determined onset potentials for hydroxamic acids. The hydrolysis of hydroxamic acids to hydroxylamine in nitric acid also affects the reduction of Pu(IV), particularly by FHA.

  8. Discovery, synthesis, and pharmacological evaluation of spiropiperidine hydroxamic acid based derivatives as structurally novel histone deacetylase (HDAC) inhibitors.

    PubMed

    Varasi, Mario; Thaler, Florian; Abate, Agnese; Bigogno, Chiara; Boggio, Roberto; Carenzi, Giacomo; Cataudella, Tiziana; Dal Zuffo, Roberto; Fulco, Maria Carmela; Rozio, Marco Giulio; Mai, Antonello; Dondio, Giulio; Minucci, Saverio; Mercurio, Ciro

    2011-04-28

    New spiro[chromane-2,4'-piperidine] and spiro[benzofuran-2,4'-piperidine] hydroxamic acid derivatives as HDAC inhibitors have been identified by combining privileged structures with a hydroxamic acid moiety as zinc binding group. The compounds were evaluated for their ability to inhibit nuclear extract HDACs and for their in vitro antiproliferative activity on different tumor cell lines. This work resulted in the discovery of spirocycle 30d that shows good oral bioavailability and tumor growth inhibition in an HCT-116 murine xenograft model.

  9. Thiol containing compounds and amino acid hydroxamates as reversible synthetic inhibitors of Astacus protease.

    PubMed

    Wolz, R L; Zeggaf, C; Stöcker, W; Zwilling, R

    1990-09-01

    Reversible synthetic inhibitors are characterized for Astacus protease, a 22,614-Da zinc containing neutral endopeptidase from the digestive tract of crayfish. Effective inhibition was demonstrated for several simple thiol containing compounds and a series of amino acid hydroxamates. Both classes of inhibitors had ID50 values ranging from 10(-2) to 10(-4) M for inhibition of hydrolysis of succinyl-Ala-Ala-Ala-p-nitroanilide. Tyrosine hydroxamate was found to be the most effective inhibitor with an ID50 of 175 microM and the mode of inhibition by this compound was determined to be of the simple noncompetitive type. In contrast to the other inhibitors tested, cysteine was seen to partially inactivate the enzyme in a time-dependent manner. The kinetics of this process was studied in detail using progress curve analysis. It was determined that cysteine was acting as a weak chelator and slowly establishing an equilibrium between metallo- and apoenzyme. In the presence of the strong zinc scavenger EDTA, cysteine can, in effect, function as a catalyst in transferring the metal from the protein to the secondary chelator at a rate 10,000 times faster than the rate of unassisted zinc dissociation. The series of amino acid hydroxamates served as probes into the microenvironment of the active site. Possible binding modes of the inhibitors are discussed on the basis of the relationship between the chemical nature of the inhibitor side chains and the strength of inhibition.

  10. Structure-based rational design of peptide hydroxamic acid inhibitors to target tumor necrosis factor-α converting enzyme as potential therapeutics for hepatitis.

    PubMed

    Wu, Dan; Gu, Qiuhong; Zhao, Ning; Xia, Fei; Li, Zhiwei

    2015-12-01

    The human tumor necrosis factor-α converting enzyme (TACE) has recently been raised as a new and promising therapeutic target of hepatitis and other inflammatory diseases. Here, we reported a successful application of the solved crystal structure of TACE complex with a peptide-like ligand INN for rational design of novel peptide hydroxamic acid inhibitors with high potency and selectivity to target and inhibit TACE. First, the intermolecular interactions between TACE catalytic domain and INN were characterized through an integrated bioinformatics approach, with which the key substructures of INN that dominate ligand binding were identified. Subsequently, the INN molecular structure was simplified to a chemical sketch of peptide hydroxamic acid compound, which can be regarded as a linear tripeptide capped by a N-terminal carboxybenzyl group (chemically protective group) and a C-terminal hydroxamate moiety (coordinated to the Zn(2+) at TACE active site). Based on the sketch, a virtual combinatorial library containing 180 peptide hydroxamic acids was generated, from which seven samples were identified as promising candidates by using a knowledge-based protein-peptide affinity predictor and were then tested in vitro with a standard TACE activity assay protocol. Consequently, three designed peptide hydroxamic acids, i.e. Cbz-Pro-Ile-Gln-hydroxamic acid, Cbz-Leu-Ile-Val-hydroxamic acid and Cbz-Phe-Val-Met-hydroxamic acid, exhibited moderate or high inhibitory activity against TACE, with inhibition constants Ki of 36 ± 5, 510 ± 46 and 320 ± 26 nM, respectively. We also examined the structural basis and non-bonded profile of TACE interaction with a designed peptide hydroxamic acid inhibitor, and found that the inhibitor ligand is tightly buried in the active pocket of TACE, forming a number of hydrogen bonds, hydrophobic forces and van der Waals contacts at the interaction interface, conferring both stability and specificity for TACE-inhibitor complex

  11. Antioxidant and nitric oxide production inhibitory activities of galacturonyl hydroxamic acid.

    PubMed

    Liu, Yuh-Hwa; Lin, Shyr-Yi; Lee, Chi-Ching; Hou, Wen-Chi

    2008-07-01

    The self-prepared pectin hydroxamic acid has been reported to have antioxidant activities [Yang, S. S., Cheng, K. D., Lin, Y. S., Liu, Y. W., & Hou, W. C. (2004). Pectin hydroxamic acids exhibit antioxidant activities in vitro. Journal of Agricultural and Food Chemistry, 52, 4270-4273]. In this study, the galacturonic acid (GalA), the monomer unit of the pectin polymer, was esterified with acidic methanol (1N HCl) at 4°C with gentle stirring for 5days to get galacturonic acid methyl ester which was further reacted with alkaline hydroxylamine to get galacturonyl hydroxamic acid (GalA-NHOH). The GalA-NHOH was used to test the antioxidant and antiradical activities in the comparison with GalA. The scavenging activities of GalA-NHOH against DPPH radicals (half-inhibition concentration, IC50, was 82μM), hydroxyl radicals detected by electron spin resonance (IC50 was 0.227nM in the comparison with Trolox of 0.433μM), superoxide radicals (IC50 was 830μM) were determined. The protection activities of GalA-NHOH against hydroxyl radicals-mediated calf thymus DNA damages, linoleic acid peroxidation and peroxynitrite-mediated dihydrorhodamine 123 oxidations were also investigated. It was found that the GalA-NHOH exhibited dose-dependently antioxidant activity and few or none was found in GalA. The GalA-NHOH was used to evaluate the suppressed activity of nitric oxide (NO) productions of RAW264.7 cells in the presence of lipopolysaccharide (LPS, 100ng/ml) as inducers. It was found that GalA-NHOH (0.02-0.1mg/ml) could dose-dependently suppress the NO productions (expressed as nitrite concentrations) in RAW264.7 cells without significant cytotoxicity.

  12. Designing Hydroxamates and Reversed Hydroxamates to Inhibit Zinc-containing Proteases but not Cytochrome P450s: Insights from Quantum Mechanics and Protein-ligand Crystal Structures.

    PubMed

    Barker, Charlotte; Lukac, Iva; Leach, Andrew G

    2015-09-01

    The Hydroxamate is a useful functional group that binds to metals in a range of enzymes, notably zinc in matrix metalloproteases and histone deacetylases. The group is also able to form interactions with iron leading to inhibition of the cytochromes P450, particularly the 3A4 isoform. We have studied the available crystal structures of zinc-containing proteins bound to hydroxamates and compared the observed geometries with those found by quantum mechanical calculations. This has revealed the likely binding mode preferences for neutral and anionic protonation states and highlighted the importance of electrostatic complementarity. Calculations were also performed for the interaction of the hydroxamate with iron in a heme environment, as found in the cytochromes P450. These reveal that the preferred binding mode of hydroxamates in this environment involves the s-trans conformation. These calculations provide design guidelines for those interested in designing inhibitors of metalloenzymes that do not block metabolism of other drugs. The ability to predict the geometries and energies of binding modes that cannot be studied experimentally is an advantage offered by this kind of study.

  13. Designing Hydroxamates and Reversed Hydroxamates to Inhibit Zinc-containing Proteases but not Cytochrome P450s: Insights from Quantum Mechanics and Protein-ligand Crystal Structures.

    PubMed

    Barker, Charlotte; Lukac, Iva; Leach, Andrew G

    2015-09-01

    The Hydroxamate is a useful functional group that binds to metals in a range of enzymes, notably zinc in matrix metalloproteases and histone deacetylases. The group is also able to form interactions with iron leading to inhibition of the cytochromes P450, particularly the 3A4 isoform. We have studied the available crystal structures of zinc-containing proteins bound to hydroxamates and compared the observed geometries with those found by quantum mechanical calculations. This has revealed the likely binding mode preferences for neutral and anionic protonation states and highlighted the importance of electrostatic complementarity. Calculations were also performed for the interaction of the hydroxamate with iron in a heme environment, as found in the cytochromes P450. These reveal that the preferred binding mode of hydroxamates in this environment involves the s-trans conformation. These calculations provide design guidelines for those interested in designing inhibitors of metalloenzymes that do not block metabolism of other drugs. The ability to predict the geometries and energies of binding modes that cannot be studied experimentally is an advantage offered by this kind of study. PMID:27490712

  14. The interaction of zinc(II) and hydroxamic acids and a metal-triggered Lossen rearrangement.

    PubMed

    Duchácková, Lucie; Roithová, Jana

    2009-12-14

    The structure and reactivity of a complex of zinc(II), water, acetic acid, and acetohydroxamic acid, in which one of the acids is deprotonated, is investigated by means of mass spectrometry, labeling studies, and density functional calculations to unravel the exceptional binding properties of hydroxamic acids towards zinc-containing enzymes at the molecular level. It is shown that acetohydroxamic acid is deprotonated in the complex, whereas acetic acid is present in its neutral form. The binding energies of the ligands towards zinc increase in the following order: wateracidacid. The structure of the complex and its fragmentation provide experimental evidence for the proposed mode of operation of drugs based on hydroxamic acids. Furthermore, coordinatively unsaturated complexes of zinc and acetohydroxamic acid undergo a zinc-assisted Lossen rearrangement followed by elimination of water if acetohydroxamic acid is present as a neutral ligand, or by loss of methylisocyanate if acetohydroxamic acid is deprotonated. PMID:19937618

  15. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis, down-regulates the CXCR4 chemokine receptor and impairs migration of chronic lymphocytic leukemia cells

    PubMed Central

    Stamatopoulos, Basile; Meuleman, Nathalie; De Bruyn, Cécile; Delforge, Alain; Bron, Dominique; Lagneaux, Laurence

    2010-01-01

    Background Chronic lymphocytic leukemia is a neoplastic disorder that arises largely as a result of defective apoptosis leading to chemoresistance. Stromal cell-derived factor-1 and its receptor, CXCR4, have been shown to play an important role in chronic lymphocytic leukemia cell trafficking and survival. Design and Methods Since histone acetylation is involved in the modulation of gene expression, we evaluated the effects of suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, on chronic lymphocytic leukemia cells and in particular on cell survival, CXCR4 expression, migration, and drug sensitization. Results Here, we showed that treatment with suberoylanilide hydroxamic acid (20 μM) for 48 hours induced a decrease in chronic lymphocytic leukemia cell viability via apoptosis (n=20, P=0.0032). Using specific caspase inhibitors, we demonstrated the participation of caspases-3, -6 and -8, suggesting an activation of the extrinsic pathway. Additionally, suberoylanilide hydroxamic acid significantly decreased CXCR4 mRNA (n=10, P=0.0010) and protein expression (n=40, P<0.0001). As a result, chronic lymphocytic leukemia cell migration in response to stromal cell-derived factor-1 (n=23, P<0.0001) or through bone marrow stromal cells was dramatically impaired. Consequently, suberoylanilide hydroxamic acid reduced the protective effect of the microenvironment and thus sensitized chronic lymphocytic leukemia cells to chemotherapy such as fludarabine. Conclusions In conclusion, suberoylanilide hydroxamic acid induces apoptosis in chronic lymphocytic leukemia cells via the extrinsic pathway and down-regulates CXCR4 expression leading to decreased cell migration. Suberoylanilide hydroxamic acid in combination with other drugs represents a promising therapeutic approach to inhibiting migration, chronic lymphocytic leukemia cell survival and potentially overcoming drug resistance. PMID:20145270

  16. Salinomycin Hydroxamic Acids: Synthesis, Structure, and Biological Activity of Polyether Ionophore Hybrids.

    PubMed

    Borgström, Björn; Huang, Xiaoli; Chygorin, Eduard; Oredsson, Stina; Strand, Daniel

    2016-06-01

    The polyether ionophore salinomycin has recently gained attention due to its exceptional ability to selectively reduce the proportion of cancer stem cells within a number of cancer cell lines. Efficient single step strategies for the preparation of hydroxamic acid hybrids of this compound varying in N- and O-alkylation are presented. The parent hydroxamic acid, salinomycin-NHOH, forms both inclusion complexes and well-defined electroneutral complexes with potassium and sodium cations via 1,3-coordination by the hydroxamic acid moiety to the metal ion. A crystal structure of an cationic sodium complex with a noncoordinating anion corroborates this finding and, moreover, reveals a novel type of hydrogen bond network that stabilizes the head-to-tail conformation that encapsulates the cation analogously to the native structure. The hydroxamic acid derivatives display down to single digit micromolar activity against cancer cells but unlike salinomycin selective reduction of ALDH(+) cells, a phenotype associated with cancer stem cells was not observed. Mechanistic implications are discussed. PMID:27326340

  17. A `Clicked' Tetrameric Hydroxamic Acid Glycopeptidomimetic Antagonizes Sugar-Lectin Interactions On The Cellular Level

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Lin; Zang, Yi; Xie, Juan; Li, Jia; Chen, Guo-Rong; He, Xiao-Peng; Tian, He

    2014-07-01

    A tetrameric N-acetyl galactosaminyl (GalNAc) peptidomimetic was constructed by N-acetylation of repeating proline-based hydroxamic acid units, followed by a convergent `click chemistry' coupling. This novel glycopeptidomimetic was determined to effectively antagonize the interaction between a transmembrane hepatic lectin and GalNAc on the cellular level.

  18. Hydroxamic acid content and toxicity of rye at selected growth stages.

    PubMed

    Rice, Clifford P; Park, Yong Bong; Adam, Frédérick; Abdul-Baki, Aref A; Teasdale, John R

    2005-08-01

    Rye (Secale cereale L.) is an important cover crop that provides many benefits to cropping systems including weed and pest suppression resulting from allelopathic substances. Hydroxamic acids have been identified as allelopathic compounds in rye. This research was conducted to improve the methodology for quantifying hydroxamic acids and to determine the relationship between hydroxamic acid content and phytotoxicity of extracts of rye root and shoot tissue harvested at selected growth stages. Detection limits for an LC/MS-MS method for analysis of hydroxamic acids from crude aqueous extracts were better than have been reported previously. (2R)-2-beta-D-Glucopyranosyloxy-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-G), 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA), benzoxazolin-2(3H)-one (BOA), and the methoxy-substituted form of these compounds, (2R)-2-beta-D-glucopyranosyloxy-4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA glucose), 2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), were all detected in rye tissue. DIBOA and BOA were prevalent in shoot tissue, whereas the methoxy-substituted compounds, DIMBOA glucose and MBOA, were prevalent in root tissue. Total hydroxamic acid concentration in rye tissue generally declined with age. Aqueous crude extracts of rye shoot tissue were more toxic than extracts of root tissue to lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) root length. Extracts of rye seedlings (Feekes growth stage 2) were most phytotoxic, but there was no pattern to the phytotoxicity of extracts of rye sampled at growth stages 4 to 10.5.4, and no correlation of hydroxamic acid content and phytotoxicity (I50 values). Analysis of dose-response model slope coefficients indicated a lack of parallelism among models for rye extracts from different growth stages, suggesting that phytotoxicity may be attributed to compounds with different modes of action at

  19. Therapeutic effects of D-aspartic acid beta-hydroxamate (DAH) on Friend erythroleukemia.

    PubMed

    Tournaire, R; Malley, S; Hamedi-Sangsari, F; Thomasset, N; Grange, J; Dore, J F; Vila, J

    1994-08-01

    D-aspartic acid beta-hydroxamate (DAH), an aspartic acid analogue, exerts anti-tumoral activity against murine leukemia L5178Y both in vitro and in vivo. We show here that DAH displays activity against Friend leukemia cells (FLC) in vitro: a concentration of 2 mM results in a total inhibition of cell growth. DAH is also active in vivo against Friend virus (FV-P)-induced erythroleukemia. Treatment with DAH, given for 95 days as a single daily i.p. injection to DBA/2 mice 3 days following FV-P inoculation, induced a marked increase of 212% in the mean survival time (MST) of treated animals. Since FV-P-induced erythroleukemia is characterized by the proliferation of mature erythroid precursors, we examined the effect of DAH treatment on erythroid colony-forming cells (CFU-E) and observed that the number of CFU-E per spleen was 30 times lower in DAH-treated mice than in the controls. To gain further insight into the early effects of DAH treatment on the early phase of Friend disease, we examined the effects of short DAH treatment on spleen size, hematocrit and viremia in FV-P-infected mice. DAH treatment initiated 3 days post infection (p.i.) inhibited splenomegaly, prevented virus-induced polycythemia, and reduced serum viremia. Late DAH treatment (18 days p.i.) induced regression of FVP-induced disease as evidenced by reduction of spleen weight.

  20. Effects of suberoylanilide hydroxamic acid on rat cytochrome P450 enzyme activities.

    PubMed

    Lin, Kezhi; Zhang, Qingwei; Liu, Zezheng; Yang, Suping; Lin, Yingying; Wen, Congcong; Zheng, Yuancai

    2015-01-01

    Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. The rats were randomly divided into SAHA groups (low, medium and high dosage) and control group. The SAHA group rats were given 12.3, 24.5, and 49 mg/kg SAHA, respectively, by continuous intragastric administration for 7 days. The influence of SAHA on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C19, CYP2D6 and CYP2C9 were evaluated by cocktail method, they were responsed by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metroprolol and omeprazole. The five probe drugs were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of SAHA group compared to control group, there were statistical pharmacokinetics difference for bupropion, phenacetin, tolbutamide and metroprolol. Continuous intragastric administration for 7 days may induce the activities of CYP2C19 of rats, inhibit CYP1A2 and slightly inhibit CYP2B6 and CYP2D6 of rats. This may give advising for reasonable drug use after co-used with SAHA. The results indicated that drug co-administrated with SAHA may need dose adjustment. Furthermore, continuous intragastric administration of SAHA for 7 days, liver cell damaged, causing liver cell edema, in liver metabolism process.

  1. Development and application of versatile bis-hydroxamic acids for catalytic asymmetric oxidation

    PubMed Central

    Barlan, Allan U.; Zhang, Wei; Yamamoto, Hisashi

    2010-01-01

    In this article, we describe the development and preliminary results of our new designed C2-symmetric bis-hydroxamic acid (BHA) ligands and the application of the new ligands for vanadium-catalyzed asymmetric epoxidation of allylic alcohols as well as homoallylic alcohols. From this success we demonstrate the versatile nature of BHA in the molybdenum catalyzed asymmetric oxidation of unfunctionalized olefins and sulfides. PMID:21152351

  2. In Vivo PET-imaging of Histone Deacetylases by 18F-Suberoylanilide Hydroxamic Acid (18F-SAHA)1

    PubMed Central

    Hendricks, J. Adam; Keliher, Edmund J.; Marinelli, Brett; Reiner, Thomas; Weissleder, Ralph; Mazitschek, Ralph

    2011-01-01

    Histone deacetylases (HDACs) are a group of enzymes that modulate gene expression and cell state by deacetylation of both histone and non-histone proteins. A variety of HDAC inhibitors (HDACi) have already undergone clinical testing in cancer. Real-time in vivo imaging of HDACs and their inhibition would be invaluable; however, the development of appropriate imaging agents has remained a major challenge. Here, we describe the development and evaluation of 18F-suberoylanilide hydroxamic acid (18F-SAHA 1a), a close analog of the most clinically relevant HDACi, suberoylanilide hydroxamic acid (SAHA). We demonstrate that 1a has near identical biochemical activity profiles to SAHA, and report findings from pharmacokinetic studies. Using a murine ovarian cancer model, we likewise show that HDACi target binding efficacy can be quantitated within 24 hours of administration. 1a thus represents the first 18F-positron emission tomography (PET) HDAC imaging agent, which also exhibits low nanomolar potency and is pharmacologically analogous to a clinically relevant HDACi. PMID:21721525

  3. Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase.

    PubMed

    Peng, Fan-Wei; Wu, Ting-Ting; Ren, Zi-Wei; Xue, Jia-Yu; Shi, Lei

    2015-11-15

    A series of hybrids derived from 4-anilinoquinazoline and hydroxamic acid were designed, synthesized, and evaluated as dual inhibitors of vascular endothelia growth factor receptor-2 (VEGFR-2) tyrosine kinase and histone deacetylase (HDAC). Most of these compounds exhibited potent HDAC inhibition and moderate VEGFR-2 inhibition. Among them, compound 6l exhibited the most potent inhibitory activities against VEGFR-2 (IC50=84 nM) and HDAC (IC50=2.8 nM). It also showed the most potent antiproliferative ability against MCF-7, a human breast cancer line, with IC50 of 1.2 μM. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction of compound 6l at the active binding sites of VEGFR-2 and HDAC. PMID:26475519

  4. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    SciTech Connect

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  5. Suberoylanilide Hydroxamic Acid Restores Estrogen Reduced-cTnI Expression in Neonatal Hearts of Mice.

    PubMed

    Peng, Chang; Luo, Xiaomei; Xing, Qianlu; Sun, Huichao; Huang, Xupei

    2016-10-01

    Diastolic cardiac dysfunction can be caused by abnormality in cTnI expression during cardiogenesis. In this study, we investigated the effects of estrogen on the abnormal expression of cTnI in the hearts of neonatal mice and its potential epigenetic mechanisms. We then evaluated suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, as a new target treatment of diastolic cardiac dysfunction. Postnatal day 0.5 C57BL/6 mice were injected with estrogen for 1 week, then the hearts of 7-day-old neonatal mice were retrieved for examination. The activities of HDAC and HAT were assayed by colorimetry, and the interaction of cTnI with HDAC5 in mice hearts were examined using chromatin immunoprecipitation assays. The expression of cTnI was tested by quantitative real-time RT-PCR and Western blot. Estrogen treated groups displayed a significantly increased HDAC activity in the hearts of neonatal mice while HAT activity remained unchanged. Additionally, HDAC5 was higher at the cTnI promoter, as compared to the saline treated control groups. The acetylation of histone H3K9ac on cTnI promoter significantly decreased in the hearts of neonatal mice treated with estrogen, and the expression of cTnI at transcriptional and protein levels also decreased. SAHA was shown to increase the acetylation of histone H3K9ac and upregulate the expression of cTnI. The data demonstrated that SAHA can correct cTnI expression abnormality caused by estrogen through inhibiting the binding of HDAC5 to the promoter of cTnI. J. Cell. Biochem. 117: 2377-2384, 2016. © 2016 Wiley Periodicals, Inc. PMID:27379430

  6. A novel hydroxamic acid-containing antibiotic produced by a Saharan soil-living Streptomyces strain.

    PubMed

    Yekkour, A; Meklat, A; Bijani, C; Toumatia, O; Errakhi, R; Lebrihi, A; Mathieu, F; Zitouni, A; Sabaou, N

    2015-06-01

    During screening for potentially antimicrobial actinobacteria, a highly antagonistic strain, designated WAB9, was isolated from a Saharan soil of Algeria. A polyphasic approach characterized the strain taxonomically as a member of the genus Streptomyces. The strain WAB9 exhibited a broad spectrum of antimicrobial activity toward various multidrug-resistant micro-organisms. A PCR-based assay of genomic potential for producing bioactive metabolites revealed the presence of PKS-II gene. After 6 days of strain fermentation, one bioactive compound was extracted from the remaining aqueous phase and then purified by HPLC. The chemical structure of the compound was determined by spectroscopic (UV-visible, and (1)H and (13)C NMR) and spectrometric analysis. The compound was identified to be 2-amino-N-(2-amino-3-phenylpropanoyl)-N-hydroxy-3-phenylpropanamide, a novel hydroxamic acid-containing molecule. The pure molecule showed appreciable minimum inhibitory concentration values against a selection of drug-resistant bacteria, filamentous fungi and yeasts. Significance and impact of the study: This study presents the isolation of a Streptomyces strain, named WAB9, from a Saharan soil in Algeria. This strain was found to produce a new hydroxamic acid-containing molecule with interesting antimicrobial activities towards various multidrug-resistant micro-organisms. Although hydroxamic acid-containing molecules are known to exhibit low toxicities in general, only real evaluations of the toxicity levels could decide on the applications for which this new molecule is potentially most appropriate. Thus, this article provides a new framework of research.

  7. Sorption of arsenate and arsenite anions by iron(III)-poly(hydroxamic acid) complex.

    PubMed

    Haron, M J; Wan Yunus, W M; Yong, N L; Tokunaga, S

    1999-12-01

    Iron(III)-poly(hydroxamic acid) resin complex has been studied for its sorption abilities with respect to arsenate and arsenite anions from an aqueous solution. The complex was found effective in removing the arsenate anion in the pH range of 2.0 to 5.5. The maximum sorption capacity was found to be 1.15 mmol/g. The sorption selectivity showed that arsenate sorption was not affected by chloride, nitrate and sulphate. The resin was tested and found effective for removal of arsenic ions from industrial wastewater samples.

  8. A new approach to cyclic hydroxamic acids: Intramolecular cyclization of N-benzyloxy carbamates with carbon nucleophiles

    PubMed Central

    Liu, Yuan; Jacobs, Hollie K.

    2011-01-01

    N-Alkyl-N-benzyloxy carbamates, 2, undergo facile intramolecular cyclization with a variety of carbon nucleophiles to give functionalized 5- and 6-membered protected cyclic hydroxamic acids, 3, in good to excellent yields. This method can be extended to prepare seven-membered cyclic hydroxamic acids in moderate yields. The sulfone intermediates 3 from this study can be alkylated while the corresponding phosphonates have been shown to undergo HWE reaction. The α,β-unsaturated synthon, 8, prepared by thermal elimination of sulfoxide 3m, undergoes Michael addition with secondary amines. The usefulness of this approach to prepare polydentate chelators has been demonstrated by the synthesis of bis cyclic hydroxamic acids 12, 14, and 15. PMID:21499514

  9. A novel collector 2-ethyl-2-hexenoic hydroxamic acid: Flotation performance and adsorption mechanism to ilmenite

    NASA Astrophysics Data System (ADS)

    Xu, Haifeng; Zhong, Hong; Tang, Qing; Wang, Shuai; Zhao, Gang; Liu, Guangyi

    2015-10-01

    In this paper, a novel collector, 2-ethyl-2-hexenoic hydroxamic acid (EHHA) was prepared and characterized by elemental analysis, infrared, 1H NMR, 13C NMR and mass spectra. The flotation performance and adsorption mechanism of EHHA to ilmenite were investigated by micro-flotation tests, density functional theory (DFT) calculations, FTIR spectra, zeta potential and solution chemistry analyses. The micro-flotation results indicated that EHHA exhibited superior flotation performance compared to isooctyl hydroximic acid (IOHA) and octyl hydroxamic acid (OHA), and floated out 84.03% ilmenite at pH 8.0 with 250 mg/L dosage. The analyses of FTIR spectra and zeta potential demonstrated that EHHA might chemisorb onto ilmenite surfaces by form of five-membered chelates. The solution chemistry analyses further inferred that at pH 6.3-10.5, both Fe and Ti species on ilmenite surfaces could chelate EHHA. DFT calculation results implied EHHA owned the strongest affinity to ilmenite among the three C8 hydroximic acids. To discern the sharply improving floatability of ilmenite at pH 8-10, a schematic co-adsorption molecule-ion model of EHHA on ilmenite surfaces was suggested.

  10. Boronic Acid-Catalyzed, Highly Enantioselective Aza-Michael Additions of Hydroxamic Acid to Quinone Imine Ketals.

    PubMed

    Hashimoto, Takuya; Gálvez, Alberto Osuna; Maruoka, Keiji

    2015-12-30

    Boronic acid is one of the most versatile organic molecules in chemistry. Its uses include organic reactions, molecular recognition, assembly, and even medicine. While boronic acid catalysis, which utilizes an inherent catalytic property, has become an important research objective, it still lags far behind other boronic acid chemistries. Here, we report our discovery of a new boronic acid catalysis that enables the aza-Michael addition of hydroxamic acid to quinone imine ketals. By using 3-borono-BINOL as a chiral boronic acid catalyst, this reaction could be implemented in a highly enantioselective manner, paving the way to densely functionalized cyclohexanes.

  11. Pharmacokinetics and Pharmacodynamics of SuberoylanilideHydroxamic Acid in Cats

    PubMed Central

    McDonnel, Samantha J; Tell, Lisa A; Murphy, Brian G

    2013-01-01

    Suberoylanilidehydroxamic acid (SAHA), or vorinostat, is a histone deacetylase inhibitor approved for use as chemotherapy for lymphoma in humans. The goal of this study was to establish pharmacological parameters of SAHA in cats. Our interest in treating cats with SAHA is two-fold: as an anti-cancer chemotherapeutic and as anti-latency therapy for feline retroviral infections. Relying solely on data from studies in other animals would be inappropriate as SAHA is partially metabolized by glucuronidation, which is absent in feline metabolism. SAHA was administered to cats intravenously (2 mg/kg) or orally (250 mg/m2, ~17 mg/kg) in a cross-over study design. Clinically, SAHA was well tolerated at these dosages as no abnormalities were noted following administration. The pharmacokinetics of SAHA in cats was found to be similar to that of dogs, but the overall serum drug exposure was much less than that of humans at an equivalent dose. The pharmacodynamic effect of an increase in acetylated histone proteins in blood was detected after both routes of administration. An increased oral dose of 60 mg SAHA/kg administered to one animal resulted in a surprisingly modest increase in peak drug concentration, suggesting possible saturation of absorption kinetics. This study provides a foundation for future studies of the clinical efficacy of SAHA in treating feline disease. PMID:24236915

  12. Design, synthesis and biological evaluation of di-substituted cinnamic hydroxamic acids bearing urea/thiourea unit as potent histone deacetylase inhibitors.

    PubMed

    Ning, Chengqing; Bi, Yanjing; He, Yujun; Huang, WenYuan; Liu, Lifei; Li, Yi; Zhang, Sihan; Liu, Xiaoyu; Yu, Niefang

    2013-12-01

    A novel class of di-substituted cinnamic hydroxamic acid derivatives containing urea or thiourea unit was designed, synthesized and evaluated as HDAC inhibitors. All tested compounds demonstrated significant HDAC inhibitory activities and anti-proliferative effects against diverse human tumor cell lines. Among them, 7l exhibited most potent pan-HDAC inhibitory activity, with an IC50 value of 130 nM. It also showed strong cellular inhibition against diverse cell lines including HCT-116, MCF-7, MDB-MB-435 and NCI-460, with GI50 values of 0.35, 0.22, 0.51 and 0.48 μM, respectively.

  13. In silico modification of suberoylanilide hydroxamic acid (SAHA) as potential inhibitor for class II histone deacetylase (HDAC)

    PubMed Central

    2011-01-01

    Background The cervical cancer is the second most prevalent cancer for the woman in the world. It is caused by the oncogenic human papilloma virus (HPV). The inhibition activity of histone deacetylase (HDAC) is a potential strategy for cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is widely known as a low toxicity HDAC inhibitor. This research presents in silico SAHA modification by utilizing triazole, in order to obtain a better inhibitor. We conducted docking of the SAHA inhibitor and 12 modified versions to six class II HDAC enzymes, and then proceeded with drug scanning of each one of them. Results The docking results show that the 12 modified inhibitors have much better binding affinity and inhibition potential than SAHA. Based on drug scan analysis, six of the modified inhibitors have robust pharmacological attributes, as revealed by drug likeness, drug score, oral bioavailability, and toxicity levels. Conclusions The binding affinity, free energy and drug scan screening of the best inhibitors have shown that 1c and 2c modified inhibitors are the best ones to inhibit class II HDAC. PMID:22373132

  14. Design and synthesis of an activity-based protein profiling probe derived from cinnamic hydroxamic acid.

    PubMed

    Ai, Teng; Qiu, Li; Xie, Jiashu; Geraghty, Robert J; Chen, Liqiang

    2016-02-15

    In our continued effort to discover new anti-hepatitis C virus (HCV) agents, we validated the anti-replicon activity of compound 1, a potent and selective anti-HCV hydroxamic acid recently reported by us. Generally favorable physicochemical and in vitro absorption, distribution, metabolism, and excretion (ADME) properties exhibited by 1 made it an ideal parent compound from which activity-based protein profiling (ABPP) probe 3 was designed and synthesized. Evaluation of probe 3 revealed that it possessed necessary anti-HCV activity and selectivity. Therefore, we have successfully obtained compound 3 as a suitable ABPP probe to identify potential molecular targets of compound 1. Probe 3 and its improved analogs are expected to join a growing list of ABPP probes that have made important contributions to not only the studies of biochemical and cellular functions but also discovery of selective inhibitors of protein targets.

  15. Hydroxamic acid derivatives: a promising scaffold for rational compound optimization in Chagas disease.

    PubMed

    de Menezes, Dayanne da Rocha; Calvet, Claudia Magalhães; Rodrigues, Giseli Capaci; de Souza Pereira, Mirian Claudia; Almeida, Igor Rodrigues; de Aguiar, Alcino Palermo; Supuran, Claudiu T; Vermelho, Alane Beatriz

    2016-12-01

    This work describes the antitrypanocidal activity of two hydroxamic acid derivatives containing o-ethoxy (HAD1) and p-ethoxy (HAD2) as substituent in the aromatic ring linked to the isoxazoline ring. HAD1 and HAD2 induced a significant reduction in the number of intracellular parasites and consequently showed activity on the multiplication of the parasite. Treatment of cardiomyocytes and macrophages with the compounds revealed no significant loss in cell viability. Ultrastructural alterations after treatment of cardiomyocytes or macrophages infected by Trypanosoma cruzi with the IC50 value of HAD1 revealed alterations to amastigotes, showing initial damage seen as swelling of the kinetoplast. This gave a good indication of the ability of the drug to permeate through the host cell membrane as well as its selectivity to the parasite target. Both compounds HAD1 and 2 were able to reduce the cysteine peptidases and decrease the activity of metallopeptidases.

  16. Suberoylanilide hydroxamic acid attenuates paraquat-induced pulmonary fibrosis by preventing Smad7 from deacetylation in rats

    PubMed Central

    Rao, Shan-Shan; Zhang, Xiang-Yan; Shi, Ming-Jun; Xiao, Ying; Zhang, Ying-Ying; Wang, Yuan-Yuan; Zhang, Chang-Zhi; Shao, Song-Jun; Liu, Xin-Mei

    2016-01-01

    Background Recent evidence suggests that a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), has anti-fibrotic effect. However, the exact mechanism of its anti-fibrotic potential remains is unclear. In this study, we investigated the molecular mechanism of SAHA in attenuating pulmonary fibrosis by regulating stability of Smad7 in paraquat (PQ)-induced lung fibrosis animal model and cultured pulmonary fibroblasts. Methods Rats with paraquat-induced lung fibrosis were fed with a SAHA solution (15 mg/kg) by gastric gavage. Human pulmonary fibroblasts (HFL1) pre-treated with TGF-β1 (5 ng/mL) were treated with SAHA (5 µM). Results SAHA (histone deacetylase inhibitor, HDACi) suppressed PQ-induced lung fibrosis in rats by stabilizing Smad7 level, thus attenuating Smad3 activity, resulting in the inhibition of fibroblast differentiation and collagen expression. In vitro study showed that SAHA suppressed TGF-β1-induced fibroblast differentiation into myofibroblasts. SAHA exerted its antifibrotic effect through preventing Smad7 from deacetylation most maybe by inhibiting TGF-β1-induced HDAC1 activity. Conclusions SAHA repressed PQ-induced lung fibrosis via preventing Smad7 from deacetylation. PMID:27747000

  17. UV-Visible Spectroscopy Detection of Iron(III) Ion on Modified Gold Nanoparticles With a Hydroxamic Acid

    NASA Astrophysics Data System (ADS)

    Karami, C.; Alizadeh, A.; Taher, M. A.; Hamidi, Z.; Bahrami, B.

    2016-09-01

    The present work describes the preparation of gold nanoparticles (AuNPs) functionalized with hydroxamic acid and the use of them in UV-visible spectroscopy detection of iron(III) ions. The prepared AuNPs were thoroughly characterized by using UV-visible spectroscopy, TEM, and 1H NMR techniques. The newly synthesized hydroxamic acid-AuNPs are brown in color due to the intense surface plasmon absorption band centered at 527 nm. In the presence of Fe(III), the surface plasmon absorption band is centered at 540 nm. However, the sensitivity of hydroxamic acid-AuNPs towards other metal ions such as Mg(II), Ca(II), Ag(I), Cu(II), Mn(II), Cr(II), Ni(II), Co(II),Fe(II), Hg(II), and Pb(II) can be negligible. This highly selective sensor allows a direct quantitative assay of Fe(III) with a UVvisible spectroscopy detection limited to 45.8 nM.

  18. The levels of HDAC1 and thioredoxin1 are related to the death of mesothelioma cells by suberoylanilide hydroxamic acid.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2016-05-01

    Mesothelioma is an aggressive tumor which is mainly derived from the pleura of lung. In the present study, we evaluated the anticancer effect of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor on human mesothelioma cells in relation to the levels of HDAC1, reactive oxygen species (ROS) and thioredoxin (Trx). While 1 µM SAHA inhibited cell growth in Phi and ROB cells at 24 h, it did not affect the growth in ADA and Mill cells. Notably, the level of HDAC1 was relatively overexpressed among Phi, REN and ROB cells. SAHA induced necrosis and apoptosis, which was accompanied by the cleavages of PARP and caspase-3 in Phi cells. This agent also increased the loss of mitochondrial membrane potential (MMP, ΔΨm) in Phi cells. All the tested caspase inhibitors attenuated apoptosis in SAHA-treated Phi cells whereas HDAC1 siRNA enhanced the apoptotic cell death. SAHA increased intracellular ROS levels including O2•- in Phi cells. N-acetyl cysteine (NAC) and vitamin C (Vit.C) significantly reduced the growth inhibition and death of Phi cells caused by SAHA. This drug decreased the mRNA and protein levels of Trx1 in Phi and ROB cells. Furthermore, Trx1 siRNA increased cell death and O2•- level in SAHA-treated Phi cells. In conclusion, SAHA selectively inhibited the growth of Phi and ROB mesothelioma cells, which showed the higher basal level of HDAC1. SAHA-induced Phi cell death was related to oxidative stress and Trx1 levels. PMID:26936390

  19. In silico modification of Zn2+ binding group of suberoylanilide hydroxamic acid (SAHA) by organoselenium compounds as Homo sapiens class II HDAC inhibitor of cervical cancer

    NASA Astrophysics Data System (ADS)

    Sumo Friend Tambunan, Usman; Bakri, Ridla; Aditya Parikesit, Arli; Ariyani, Titin; Dyah Puspitasari, Ratih; Kerami, Djati

    2016-02-01

    Cervical cancer is the most common cancer in women, and ranks seventh of all cancers worldwide, with 529000 cases in 2008 and more than 85% cases occur in developing countries. One way to treat this cancer is through the inhibition of HDAC enzymes which play a strategic role in the regulation of gene expression. Suberoyl Anilide Hydroxamic Acid (SAHA) or Vorinostat is a drug which commercially available to treat the cancer, but still has some side effects. This research present in silico SAHA modification in Zinc Binding Group (ZBG) by organoselenium compound to get ligands which less side effect. From molecular docking simulation, and interaction analysis, there are five best ligands, namely CC27, HA27, HB28, IB25, and KA7. These five ligands have better binding affinity than the standards, and also have interaction with Zn2+ cofactor of inhibited HDAC enzymes. This research is expected to produce more potent HDAC inhibitor as novel drug for cervical cancer treatment.

  20. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, attenuates postoperative cognitive dysfunction in aging mice

    PubMed Central

    Jia, Min; Liu, Wen-Xue; Sun, He-Liang; Chang, Yan-Qing; Yang, Jiao-Jiao; Ji, Mu-Huo; Yang, Jian-Jun; Feng, Chen-Zhuo

    2015-01-01

    Postoperative cognitive dysfunction (POCD) is a recognized clinical entity characterized with cognitive deficits after anesthesia and surgery, especially in aged patients. Previous studies have shown that histone acetylation plays a key role in hippocampal synaptic plasticity and memory formation. However, its role in POCD remains to be determined. Here, we show that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, attenuates POCD in aging Mice. After exposed to the laparotomy, a surgical procedure involving an incision into abdominal walls to examine the abdominal organs, 16- but not 3-month old male C57BL/6 mice developed obvious cognitive impairments in the test of long-term contextual fear conditioning. Intracerebroventricular (i.c.v.) injection of SAHA at the dose of (20 μg/2 μl) 3 h before and daily after the laparotomy restored the laparotomy-induced reduction of hippocampal acetyl-H3 and acetyl-H4 levels and significantly attenuated the hippocampus-dependent long-term memory (LTM) impairments in 16-month old mice. SAHA also reduced the expression of cleaved caspase-3, inducible nitric oxide synthase (iNOS) and N-methyl-D-aspartate (NMDA) receptor-calcium/calmodulin dependent kinase II (CaMKII) pathway, and increased the expression of brain-derived neurotrophic factor (BDNF), synapsin 1, and postsynaptic density 95 (PSD95). Taken together, our data suggest that the decrease of histone acetylation contributes to POCD and may serve as a target to improve the neurological outcome of POCD. PMID:26441515

  1. Suberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2014-05-01

    Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor which has anticancer effects. We evaluated the growth inhibitory effects of SAHA on HeLa cervical cancer cells in relation to reactive oxygen species (ROS) levels. SAHA inhibited the growth of HeLa cells with an IC(50) of approximately 10 µM at 24 h, and induced apoptosis which was accompanied by the cleavage of PARP, caspase-3 activation and loss of mitochondrial membrane potential (MMP; ∆ψ(m)). All the tested caspase inhibitors prevented HeLa cell death induced by SAHA whereas TNF-α intensified apoptotic cell death in SAHA-treated HeLa cells. With respect to ROS and glutathione (GSH) levels, SAHA increased ROS levels, especially mitochondrial O(2)•- in HeLa cells and also induced GSH depletion. Caspase inhibitors reduced the levels of ROS and GSH depletion in SAHA-treated HeLa cells whereas TNF-α enhanced the levels in these cells. The well-known antioxidant N-acetyl cysteine (NAC) attenuated cell death and an increase in ROS levels was caused by SAHA. Moreover, SAHA decreased the levels of thioredoxin 1 (Trx1) in HeLa cells. While the downregulation of Trx1 enhanced cell death and ROS levels in SAHA-treated HeLa cells, the overexpression of Trx1 attenuated the levels in these cells. In conclusion, SAHA inhibited the growth of HeLa cell via caspase-dependent apoptosis, which was influenced by the mitochondrial O(2)•- and Trx1 levels.

  2. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    SciTech Connect

    Chien, Chia-Wen; Yao, Ju-Hsien; Chang, Shih-Yu; Lee, Pei-Chih; Lee, Te-Chang

    2011-11-15

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivo in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: Black-Right-Pointing-Pointer ATO and SAHA are therapeutic agents with different action modes. Black-Right-Pointing-Pointer Combination of ATO and SAHA synergistically inhibits tumor cell growth. Black-Right-Pointing-Pointer SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. Black-Right-Pointing-Pointer ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.

  3. Structure of 'linkerless' hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket.

    PubMed

    Tabackman, Alexa A; Frankson, Rochelle; Marsan, Eric S; Perry, Kay; Cole, Kathryn E

    2016-09-01

    Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and non-histone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza®), romidepsin (FK228, Istodax®), belinostat (Beleodaq®), and panobinostat (Farydak®). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98Å resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition. PMID:27374062

  4. Activity of Hydroxamic Acids from Secale cereale Against the Plant-Parasitic Nematodes Meloidogyne incognita and Xiphinema americanum.

    PubMed

    Zasada, I A; Meyer, S L F; Halbrendt, J M; Rice, C

    2005-10-01

    ABSTRACT Cyclic hydroxamic acids are secondary metabolites found in the family Poaceae and have been implicated in the allelopathy of rye (Secale cereale). The toxicity of these compounds against plant-parasitic nematodes is unknown. DIBOA (2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one), DIMBOA (2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one), and their degradation products BOA (benzoxazolin-2(3H)-one) and MBOA (6-methoxy-benzoxazolin-2(3H)-one) were screened in vitro against Meloidogyne incognita second-stage juveniles (J2) and eggs and mixed-stages of Xiphinema americanum. Xiphinema americanum was more sensitive to DIBOA and DIMBOA than M. incognita J2, with a maximum apparent mortality of 96 and 92% compared to 73 and 72% at 90 mug/ml. Eggs of M. incognita were less sensitive to the hydroxamic acids than J2; only DIBOA resulted in a 50% reduction in egg hatch, with a lethal concentration (LC(50)) of 74 mug/ml compared to 21 mug/ml for J2. When M. incognita J2 were exposed to DIBOA for 48 h and the compound was removed and replaced with water, the LC(50) value increased from 21.0 to 40.7 mug/ml. MBOA was not toxic to X. americanum or M. incognita eggs, but was toxic to M. incognita J2, with LC(50) values of 44 and 20 mug/ml before and after the compound was removed and replaced with water. BOA was the least toxic hydroxamic acid tested; it did not reduce M. incognita egg hatch after 1 week of exposure or increase X. americanum mortality after 24 h of exposure. While in vitro studies provide a valuable starting point in determining the toxicity of the chemical component of rye, the relevance of the data to soil remains to be determined.

  5. Pretreatment with anti-oxidants sensitizes oxidatively stressed human cancer cells to growth inhibitory effect of suberoylanilide hydroxamic acid (SAHA)

    PubMed Central

    Mahlum, Amy; Mehraein-Ghomi, Farideh; Kegel, Stacy J.; Guo, Song; Peters, Noel R.; Wilding, George

    2013-01-01

    Purpose Most prostate, colon and breast cancer cells are resistant to growth inhibitory effects of suberoylanilide hydroxamic acid (SAHA). We have examined whether the high oxidative stress in these cells causes a loss of SAHA activity and if so, whether pretreatment with an anti-oxidant can sensitize these cells to SAHA. Methods A DNA-Hoechst dye fluorescence measured cell growth and dichlorfluorescein-diacetate (DCF-DA) dye fluorescence measured reactive oxygen species (ROS). Growth inhibitory and ROS-generating activities of SAHA in androgen-treated or untreated LNCaP cells and PC-3 prostate cancer cells, HT-29 and HCT-115 colon cancer cells, MDA-MB231 breast cancer cells and A549 and NCI-H460 lung cancer cells with or without pretreatment with an anti-oxidant Vitamin E was determined. SAHA activity against LNCaP cells treated with another anti-oxidant N-acetyl cysteine (NAC) was also determined. Liquid chromatography–mass spectrometry (LC–MS) was used to determine intracellular SAHA level. Results SAHA treatment markedly inhibits LNCaP cell growth, when the cells are at a low ROS level. SAHA is, however, inactive against the same cell line, when the cells are at a high ROS level. A significant decrease in SAHA level was observed in LNCaP cells with high ROS after 24-and 72-h treatment when compared to cells with low ROS. Vitamin E pretreatment that reduces cellular ROS, synergistically sensitizes oxidatively stressed LNCaP, PC-3, HT-29, HCT-115 and MDA-MB231 cells, but not the A-549 and NCI-H460 cells with low ROS to SAHA. NAC treatment also sensitized androgen-treated LNCaP cells to the growth inhibitory effects of SAHA. Conclusion Response to SAHA could be improved by combining anti-oxidants such as Vitamin E with SAHA for the treatment of oxidatively stressed human malignancies that are otherwise resistant to SAHA. PMID:20512578

  6. An enthalpic basis of additivity in biphenyl hydroxamic acid ligands for stromelysin-1

    PubMed Central

    Wilfong, Erin M.; Du, Yu; Toone, Eric J.

    2013-01-01

    Fragment based drug discovery remains a successful tool for pharmaceutical lead discovery. Although based upon the principle of thermodynamic additivity, the underlying thermodynamic basis is poorly understood. A thermodynamic additivity analysis was performed using stromelysin-1 and a series of biphenyl hydroxamate ligands identified through fragment additivity. Our studies suggest that, in this instance, additivity arises from enthalpic effects, while interaction entropies are unfavorable; this thermodynamic behavior is masked by proton transfer. Evaluation of the changes in constant pressure heat capacities during binding suggest that solvent exclusion from the binding site does not account for the dramatic affinity enhancements observed. PMID:22985855

  7. Suberoylanilide hydroxamic acid radiosensitizes tumor hypoxic cells in vitro through the oxidation of nitroxyl to nitric oxide.

    PubMed

    Samuni, Yuval; Wink, David A; Krishna, Murali C; Mitchell, James B; Goldstein, Sara

    2014-08-01

    The pharmacological effects of hydroxamic acids are partially attributed to their ability to serve as HNO and/or NO donors under oxidative stress. Previously, it was concluded that oxidation of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) by the metmyoglobin/H2O2 reaction system releases NO, which was based on spin trapping of NO and accumulation of nitrite. Reinvestigation of this system demonstrates the accumulation of N2O, which is a marker of HNO formation, at similar rates under normoxia and anoxia. In addition, the yields of nitrite that accumulated in the absence and the presence of O2 did not differ, implying that the source of nitrite is other than autoxidation of NO. In this system metmyoglobin is instantaneously and continuously converted into compound II, leading to one-electron oxidation of SAHA to its respective transient nitroxide radical. Studies using pulse radiolysis show that one-electron oxidation of SAHA (pKa=9.56 ± 0.04) yields the respective nitroxide radical (pKa=9.1 ± 0.2), which under all experimental conditions decomposes bimolecularly to yield HNO. The proposed mechanism suggests that compound I oxidizes SAHA to the respective nitroxide radical, which decomposes bimolecularly in competition with its oxidation by compound II to form HNO. Compound II also oxidizes HNO to NO and NO to nitrite. Given that NO, but not HNO, is an efficient hypoxic cell radiosensitizer, we hypothesized that under an oxidizing environment SAHA might act as a NO donor and radiosensitize hypoxic cells. Preincubation of A549 and HT29 cells with 2.5 μM SAHA for 24h resulted in a sensitizer enhancement ratio at 0.01 survival levels (SER0.01) of 1.33 and 1.59, respectively. Preincubation of A549 cells with oxidized SAHA had hardly any effect and, with 2mM valproic acid, which lacks the hydroxamate group, resulted in SER0.01=1.17. Preincubation of HT29 cells with SAHA and Tempol, which readily oxidizes HNO to NO, enhanced the

  8. Antiproliferative effect of D-aspartic acid beta-hydroxamate (DAH) on Friend virus-infected erythropoietic progenitor cells.

    PubMed

    Tournaire, R; Arnaud, S; Hamedi-Sangsari, F; Malley, S; Grange, J; Blanchet, J P; Doré, J F; Vila, J

    1994-10-01

    D-aspartic beta-hydroxamate (DAH), an aspartic acid analog, exerts antitumoral activity on murine leukemia L5178Y, both in vitro and in vivo. In this study, we show that DAH is also active in vivo against Friend virus (FV-P)-induced erythroleukemia, and we report the effects of DAH in vivo an in vitro on FV-P target cells, i.e. the mature erythroid colony-forming cells (CFU-E). DAH treatment (2 g/kg/day) given for 95 days as a single daily i.p. injection to DBA/2 mice either 3 or 12 days following inoculation with a high dose (10(3) plaque-forming units) of FV-P resulted in a marked increase in the mean survival time of treated animals (212 and 191%, respectively). Since FV-P elicits spleen enlargement and polycythemia, we examined the effects of DAH on spleen size, spleen-nucleated cell number, and hematocrit, in normal and FV-P infected mice, at different times in the course of continuous DAH treatments. DAH treatment initiated 3 days after viral infection inhibits the virus-induced splenomegaly, with at day 26 p.i. 1.15 x 10(8) and 12.6 x 10(8) nucleated cells per spleen observed in DAH-treated mice and untreated mice respectively, whereas only 1.03 x 10(8) nucleated cells were observed in uninfected mice. Furthermore, DAH prevents virus-induced polycythemia: on day 26, an hematocrit of 39% was measured in DAH-treated mice as compared to 60% in untreated mice. DAH treatment initiated 12 days after viral infection reduces splenomegaly, the number of nucleated spleen cells and the hematocrit of infected mice. DAH treatment initiated 3 days after viral infection prevents the tremendous increase of CFU-E in the spleen of infected mice: on day 11, the spleen of infected mice contained 4.6 x 10(6) CFU-E, while the spleen of treated mice only contained 26 x 10(3) CFU-E, and on day 26 the spleen CFU-E numbers were 45.4 x 10(6) and 1.5 x 10(6) in untreated and treated infected mice, respectively. In control uninfected mice, DAH treatment induced a transient decrease in

  9. Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens

    PubMed Central

    Bakri, Ridla; Parikesit, Arli Aditya; Satriyanto, Cipta Prio; Kerami, Djati; Tambunan, Usman Sumo Friend

    2014-01-01

    Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔGbinding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations. PMID:25214833

  10. Azaindole N-methyl hydroxamic acids as HIV-1 integrase inhibitors-II. The impact of physicochemical properties on ADME and PK.

    PubMed

    Tanis, Steven P; Plewe, Michael B; Johnson, Ted W; Butler, Scott L; Dalvie, Deepak; DeLisle, Dorothy; Dress, Klaus R; Hu, Qiyue; Huang, Buwen; Kuehler, Jon E; Kuki, Atsuo; Liu, Wen; Peng, Qinghai; Smith, Graham L; Solowiej, Jim; Tran, Khanh T; Wang, Hai; Yang, Anle; Yin, Chunfeng; Yu, Xiaoming; Zhang, Junhu; Zhu, Huichun

    2010-12-15

    HIV-1 integrase is one of three enzymes encoded by the HIV genome and is essential for viral replication, and HIV-1 IN inhibitors have emerged as a new promising class of therapeutics. Recently, we reported the discovery of azaindole hydroxamic acids that were potent inhibitors of the HIV-1 IN enzyme. N-Methyl hydroxamic acids were stable against oxidative metabolism, however were cleared rapidly through phase 2 glucuronidation pathways. We were able to introduce polar groups at the β-position of the azaindole core thereby altering physical properties by lowering calculated log D values (c Log D) which resulted in attenuated clearance rates in human hepatocytes. Pharmacokinetic data in dog for representative compounds demonstrated moderate oral bioavailability and reasonable half-lives. These ends were accomplished without a large negative impact on enzymatic and antiviral activity, thus suggesting opportunities to alter clearance parameters in future series.

  11. Novel β-Carboline/Hydroxamic Acid Hybrids Targeting Both Histone Deacetylase and DNA Display High Anticancer Activity via Regulation of the p53 Signaling Pathway.

    PubMed

    Ling, Yong; Xu, Chenjun; Luo, Lin; Cao, Jingyi; Feng, Jiao; Xue, Yu; Zhu, Qing; Ju, Caoyun; Li, Fengzhi; Zhang, Yihua; Zhang, Yanan; Ling, Xiang

    2015-12-10

    A novel series of hybrids from β-carboline and hydroxamic acid were designed and synthesized. Several compounds (5m, 11b-d, and 11h) not only exerted significant antiproliferation activity against four human colorectal cancer (CRC) cell lines but also showed histone deacetylase inhibitory effects in vitro. The most potent compound, 11c, exhibited anticancer potency sevenfold higher than that of SAHA. 11c triggered more significant cancer cell apoptosis than did SAHA by cleavage of both PARP and caspase 3 in a dose-dependent manner. Furthermore, 11c simultaneously increased the acetylation of histone H3 and α-tubulin, enhanced expression of DNA damage markers histone H2AX phosphorylation and p-p53 (Ser15), and activated p53 signaling pathway in HCT116 cells. Finally, 11c showed low acute toxicity in mice and inhibited the growth of implanted human CRC in mice more potently than did SAHA. Together, 11c possessed potent antitumor activity and may be a promising candidate for the potential treatment of human CRC.

  12. Hydroxamic acid interactions with solvated cerium hydroxides in the flotation of monazite and bastnäsite-Experiments and DFT study

    NASA Astrophysics Data System (ADS)

    Sarvaramini, A.; Azizi, D.; Larachi, F.

    2016-11-01

    Density functional theory (DFT) simulations and experiments were performed to clarify the interaction mechanisms between hydroxamic acid collectors and cerium hydroxides during the flotation of bastnäsite and monazite minerals. These minerals showed considerable floatability at moderately alkaline pH which was related to the adsorption of hydroxamic acids on their surfaces as confirmed by vibrational spectroscopic and zeta potential measurements. DFT simulations showed that at moderately alkaline pH, the interactions between solvated Ce(OH)2+ and Ce(OH)2+ and heptyl-hydroxamic acid (HHA) anions resulted in the formation of, respectively, [Ce(OH)(HHA)x(H2O)y]2-x (x[y = ] = 1[6],2[3],3[1]) and [Ce(OH)2(HHA)x(H2O)y]1-x (x[y = ] = 1[5],2[1],3[0]) complexes. The collector anions were found to interact directly through formation of two covalent bonds between their two polar-head oxygen atoms and cerium in the hydroxide complexes. However, formation of such new bonds resulted in breakage of a few covalent/electrostatic bonds between cerium and water molecules initially present in the first hydration shell of the rare-earth metal cation. Building up in the electric double layer of the semi-soluble minerals, these complexes, and by extension, those from other rare-earth elements belonging to monazite and bastnäsite, are speculated to play a role in the interactions between rare-earth minerals and hydroxamic acid collectors.

  13. Coordination diversity in mono- and oligonuclear copper(II) complexes of pyridine-2-hydroxamic and pyridine-2,6-dihydroxamic acids.

    PubMed

    Gumienna-Kontecka, Elzbieta; Golenya, Irina A; Szebesczyk, Agnieszka; Haukka, Matti; Krämer, Roland; Fritsky, Igor O

    2013-07-01

    Solution and solid state studies on Cu(II) complexes of pyridine-2-hydroxamic acid (HPicHA) and pyridine-2,6-dihydroxamic acid (H2PyDHA) were carried out. The use of methanol/water solvent allowed us to investigate the Cu(II)-HPicHA equilibria under homogeneous conditions between pH 1 and 11. In agreement with ESI-MS indication, the potentiometric data fitted very well with the model usually reported for copper(II) complexes of α-aminohydroxamate complexes ([CuL](+), [Cu5(LH-1)4](2+), [CuL2], [CuL2H-1](-)), however with much higher stability of the 12-MC-4 species. A series of copper(II) complexes has been isolated in the solid state and characterized by a variety of spectroscopic methods, X-ray structure analysis, and magnetic susceptibility measurements. The ligands show the tendency to form bi- and trinuclear species with copper(II) ions due to the {(N,N'); (O,O')} bis-(bidentate) chelating-and-bridging mode involving (O,O')-hydroxamate chelate formation combined with (N,N') chelating with participation of the pyridine and hydroxamic nitrogen atoms, so that the hydroxamate groups play a μ2-(N,O)-bridging role. Molecular and crystal structures of three synthesized complexes [Cu3(PicHA-H)2(dipy)2](ClO4)2·4/3DMSO·2/3H2O (1), [Cu2(PyDHA)(dipy)2(ClO4)2]·DMF·H2O (4), and [Cu3(PyDHA-2H)(tmeda)3](ClO4)2 (5) (dipy, 2,2'-dipyridyl; tmeda, N,N,N',N'-tetramethyl-1,2-diaminoethane) have been determined by single crystal X-ray analysis. In 1, two trans-situated doubly deprotonated hydroxamic ligands play a {(O,O')(N,N')}-(bis)bidentate-bridging function forming bridges between the medial, Cu(2) (CuN4), and the terminal, Cu(1) and Cu(3) (CuN2O2), copper(II) ions; the chelating dipy ligands are coordinated to the latter. In 4, the ligand is coordinated in a classical (O,O')-hydroxamate chelating mode with the help of two separate hydroxamic groups while the central tridentate donor compartment remains vacant. In 5, the hydroxamate ligand is coordinated by the {(O

  14. Inhibition and stimulation of root respiration in pisum and plantago by hydroxamate : its consequences for the assessment of alternative path activity.

    PubMed

    de Visser, R; Blacquière, T

    1984-07-01

    The contribution of the alternative pathway in root respiration of Pisum sativum L. cv Rondo, Plantago lanceolata L., and Plantago major L. ssp major was determined by titration with salicylhydroxamate (SHAM) in the absence and presence of cyanide. SHAM completely inhibited the cyanide-resistant component of root respiration at 5 to 10 millimolar with an apparent K(i) of 600 micromolar. In contrast, SHAM enhanced pea root respiration by 30% at most, at concentrations below 15 millimolar. An unknown oxidase appeared to be responsible for this stimulation. Its maximum activity in the presence of low SHAM concentrations (1-5 millimolar) was 40% of control respiration rate in pea roots, since 25 millimolar SHAM resulted in 10% inhibition. In plantain roots, the maximum activity was found to be 15%. This hydroxamate-activated oxidase was distinct from the cytochrome path by its resistance to antimycin. The results of titrations with cyanide and antimycin indicated that high SHAM concentrations (up to 25 millimolar) block the hydroxamate-activated oxidase, but do not affect the cytochrome path and, therefore, are a reliable tool for estimating the activity of the alternative path in vivo. A considerable fraction of root respiration was mediated by the alternative path in plantain (45%) and pea (15%), in the latter because of the saturation of the cytochrome path.

  15. Simultaneous determination of decitabine and vorinostat (Suberoylanalide hydroxamic acid, SAHA) by liquid chromatography tandem mass spectrometry for clinical studies.

    PubMed

    Patel, Katan; Guichard, Sylvie M; Jodrell, Duncan I

    2008-02-15

    A reverse-phase high-performance liquid chromatography method with electrospray ionization and detection by tandem mass spectrometry is described for the simultaneous quantitative determination of decitabine (5-aza-2'-deoxycytidine) and vorinostat (Suberoylanalide hydroxamic acid, SAHA) in human plasma. The method involves a simple acetonitrile precipitation step and centrifugation followed by injection of the supernatant onto a C18 150mmx2.1mm I.D., 3microm HPLC column at 36 degrees C. Separation of decitabine, SAHA and their respective internal standards was achieved with a gradient elution and detection was via the mass spectrometer operated in selected reaction monitoring mode. The method was within the defined validation parameters for linearity, repeatability, reproducibility and stability. The limit of detection was determined as 1.0 and 0.125ngml(-1) and lower limits of quantitation were 10 and 1ngml(-1) for decitabine and SAHA, respectively. Effects of sample preparation on stability were also evaluated in human plasma. For clinical sample handling tetrahydrouridine, an inhibitor of cytidine deaminase was found to help prevent decitabine degradation. The method is currently being used in clinical pharmacokinetic studies for the evaluation of decitabine and SAHA combination therapies.

  16. Altering histone acetylation status in donor cells with suberoylanilide hydroxamic acid does not affect dog cloning efficiency.

    PubMed

    Kim, Min Jung; Oh, Hyun Ju; Kim, Geon A; Suh, Han Na; Jo, Young Kwang; Choi, Yoo Bin; Kim, Dong Hoon; Han, Ho Jae; Lee, Byeong Chun

    2015-10-15

    Although dog cloning technology has been applied to conservation of endangered canids, propagation of elite dogs, and production of transgenic dogs, the efficiency of cloning is still very low. To help overcome this problem, we evaluated the effect of treating donor cells with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on dog cloning efficiency. Relative messenger RNA expressions of the bax1/bcl2 ratio and Dnmt1 in fibroblasts treated with different concentrations (0, 1, 10, 50 μM) of SAHA and durations (0, 20, 44 hours) were compared. Treatment with 1 μM for 20 hours showed significantly lower bax1/bcl2 and Dnmt1 transcript abundance. Acetylation of H3K9 was significantly increased after SAHA treatment, but H4K5, H4K8 and H4K16 were not changed. After SCNT using control or donor cells treated with SAHA, a total of 76 and 64 cloned embryos were transferred to seven and five recipients, respectively. Three fetuses were diagnosed in both control and SAHA-treated groups by ultrasonography 29 days after the embryo transfer, but there was no significant difference in the pregnancy rate (4.2% vs. 4.3%). In conclusion, although SAHA treatment as used in this study significantly decreased bax1/bcl2 and Dnmt1 transcripts of donor nuclei, as well as increased H3 acetylation, it was not enough to increase in vivo developmental competence of cloned dog embryos.

  17. Activation of lytic cycle of Epstein-Barr virus by suberoylanilide hydroxamic acid leads to apoptosis and tumor growth suppression of nasopharyngeal carcinoma.

    PubMed

    Hui, K F; Ho, Dona N; Tsang, C M; Middeldorp, Jaap M; Tsao, George S W; Chiang, Alan K S

    2012-10-15

    Nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV). We reported that suberoylanilide hydroxamic acid (SAHA) induced EBV lytic cycle in EBV-positive gastric carcinoma cells and mediated enhanced cell death. However, expression of EBV lytic proteins was thought to exert antiapoptotic effect in EBV-infected cells. Here, we examined the in vitro and in vivo effects of SAHA on EBV lytic cycle induction in NPC cells and investigated the cellular consequences. Micromolar concentrations of SAHA significantly induced EBV lytic cycle in EBV-positive NPC cells. Increased apoptosis and proteolytic cleavage of poly(ADP-ribose) polymerase and caspase-3, -7 and -9 in EBV-positive versus EBV-negative NPC cells were observed. More than 85% of NPC cells expressing immediate-early (Zta), early (BMRF1) or late (gp350/220) lytic proteins coexpressed cleaved caspase-3. Tracking of expression of EBV lytic proteins and cleaved caspase-3 over time demonstrated that NPC cells proceeded to apoptosis following EBV lytic cycle induction. Inhibition of EBV DNA replication and late lytic protein expression by phosphonoformic acid did not impact on SAHA's induced cell death in NPC, indicating that early rather than late phase of EBV lytic cycle contributed to the apoptotic effect. In vivo effects of SAHA on EBV lytic cycle induction and tumor growth suppression were also observed in NPC xenografts in nude mice. Taken together, our data indicated that activation of lytic cycle from latent cycle of EBV by SAHA leads to apoptosis and tumor growth suppression of NPC thereby providing experimental evidence for virus-targeted therapy against EBV-positive cancer.

  18. Metal complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of [Cu(phen)2(Cl)]Cl x H2Sha, a model for a peroxidase-inhibitor complex.

    PubMed

    O'Brien, E C; Farkas, E; Gil, M J; Fitzgerald, D; Castineras, A; Nolan, K B

    2000-04-01

    Stability constants of iron(III), copper(II), nickel(II) and zinc(II) complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid (HAha) and benzohydroxamic acid (HBha) have been determined at 25.0 degrees C, I=0.2 mol dm(-3) KCl in aqueous solution. The complex stability order, iron(III) > copper(II) > nickel(II) approximately = zinc(II) was observed whilst complexes of H2Sha were found to be more stable than those of the other two ligands. In the preparation of ternary metal ion complexes of these ligands and 1,10-phenanthroline (phen) the crystalline complex [Cu(phen)2(Cl)]Cl x H2Sha was obtained and its crystal structure determined. This complex is a model for hydroxamate-peroxidase inhibitor interactions.

  19. A base-mediated self-propagative Lossen rearrangement of hydroxamic acids for the efficient and facile synthesis of aromatic and aliphatic primary amines.

    PubMed

    Ohtsuka, Naoya; Okuno, Moriaki; Hoshino, Yujiro; Honda, Kiyoshi

    2016-10-14

    A variety of aromatic and aliphatic hydroxamic acids were converted to the corresponding primary amines via base-mediated rearrangement. This rearrangement could proceed with less than 1 equiv. of K2CO3 in polar solvents under thermal conditions with no external reagents. This rearrangement has several features including no external activating agents needed for promoting the rearrangement, less than one equivalent of a base is sufficient for the reaction, and a clean reaction in which only carbon dioxide is produced as a by-product. A self-propagating mechanism via an isocyanate intermediate is proposed and elementary reaction steps, namely, chain propagation reactions are supported by experiments. PMID:27605448

  20. Copper(II)-catalyzed room temperature aerobic oxidation of hydroxamic acids and hydrazides to acyl-nitroso and azo intermediates, and their Diels-Alder trapping.

    PubMed

    Chaiyaveij, Duangduan; Cleary, Leah; Batsanov, Andrei S; Marder, Todd B; Shea, Kenneth J; Whiting, Andrew

    2011-07-01

    CuCl(2), in the presence of a 2-ethyl-2-oxazoline ligand, is an effective catalyst for the room temperature, aerobic oxidation of hydroxamic acids and hydrazides, to acyl-nitroso and azo dienophiles respectively, which are efficiently trapped in situ via both inter- and intramolecular hetero-Diels-Alder reactions with dienes. Both inter- and intramolecular variants of the Diels-Alder reaction are suitable under the reaction conditions using a variety of solvents. Under the same conditions, an acyl hydrazide was also oxidized to give an acyl-azo dienophile which was trapped intramolecularly by a diene. PMID:21644530

  1. A base-mediated self-propagative Lossen rearrangement of hydroxamic acids for the efficient and facile synthesis of aromatic and aliphatic primary amines.

    PubMed

    Ohtsuka, Naoya; Okuno, Moriaki; Hoshino, Yujiro; Honda, Kiyoshi

    2016-10-14

    A variety of aromatic and aliphatic hydroxamic acids were converted to the corresponding primary amines via base-mediated rearrangement. This rearrangement could proceed with less than 1 equiv. of K2CO3 in polar solvents under thermal conditions with no external reagents. This rearrangement has several features including no external activating agents needed for promoting the rearrangement, less than one equivalent of a base is sufficient for the reaction, and a clean reaction in which only carbon dioxide is produced as a by-product. A self-propagating mechanism via an isocyanate intermediate is proposed and elementary reaction steps, namely, chain propagation reactions are supported by experiments.

  2. Acido-base behavior of hydroxamic acids: experimental and ab initio studies on hydroxyureas.

    PubMed

    Vrcek, Ivana Vinković; Kos, Ivan; Weitner, Tin; Birus, Mladen

    2008-11-20

    The values of Ka, DeltaSa, and DeltaHa for deprotonation of hydroxyurea (HU) and N-methylhydroxyurea (NMHU), as targeted compounds, and for betainohydroxamic acid, were potentiometrically determined. Although NMHU has two and HU even three deprotonation sites, the measurements confirm that they behave as weak acids with a single pK a approximately 10. Comparison with analogous thermodynamic parameters previously determined for series of monohydroxamic acids reveals deviations from a DeltaSa, vs DeltaHa plot for HU and NMHU, raising the question of the dissociation site of hydroxureas in water. In addition to the deprotonation of the hydroxyl oxygen, ab initio calculations performed at the MP2/6-311++G(d,p) level of theory for these two compounds indicate a notable participation of the nitrogen deprotonation site in HU. The calculations for the isolated, monohydrate, trihydrate, and decahydrate molecular and anionic forms of hydroxyureas support the importance of hydrogen bonding in the gas and aqueous phases. The hydroxylamino nitrogen in HU is the most acidic site in water, contributing approximately 94% to the overall deprotonation process at 25 degrees C. On the contrary, the hydroxylamino oxygen is by far the most favored deprotonation site in NMHU, contributing almost 100% in aqueous medium. The predicted participations of two deprotonation sites in HU, calculated at the MP2/6-311++G(d,p) level of theory, combined with the calculated relative reaction enthalpy and entropy for the deprotonation, satisfactorily explain the observed deviation from linearity of DeltaHa vs DeltaSa, plot. There is no such a simple explanation for acid-base behavior of NMHU.

  3. Lactam based 7-amino suberoylamide hydroxamic acids as potent HDAC inhibitors.

    PubMed

    Taddei, Maurizio; Cini, Elena; Giannotti, Luca; Giannini, Giuseppe; Battistuzzi, Gianfranco; Vignola, Davide; Vesci, Loredana; Cabri, Walter

    2014-01-01

    A series of SAHA-like molecules were prepared introducing different lactam-carboxyamides in position 7 of the suberoylanilide skeleton. The activity against different HDAC isoforms was tested and the data compared with the corresponding linear products, without substituent in position 7. In general, this modification provided an effective reinforcement of in vitro activity. While the lactam size or the CO/NH group orientation did not strongly influence the inhibition, the contemporary modification of the suberoylamide fragment gave vary active variants in the lactam series, with compound 28 (ST8078AA1) that showed IC50 values between 2 and 10nM against all Class I HDAC isoforms, demonstrating it to be a large spectrum pan-inhibitor. This strong affinity with HDAC was also confirmed by the value of IC50=0.5μM against H460 cells, ranking 28 as one of the most potent HDAC inhibitors described so far. PMID:24345446

  4. Determination of metal ions by high-performance liquid chromatographic separation of their hydroxamic acid chelates

    SciTech Connect

    Palmieri, M.D.; Fritz, J.S.

    1987-09-15

    Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV), Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.

  5. 4-Biphenylalanine- and 3-Phenyltyrosine-Derived Hydroxamic Acids as Inhibitors of the JumonjiC-Domain-Containing Histone Demethylase KDM4A.

    PubMed

    Morera, Ludovica; Roatsch, Martin; Fürst, Michael C D; Hoffmann, Inga; Senger, Johanna; Hau, Mirjam; Franz, Henriette; Schüle, Roland; Heinrich, Markus R; Jung, Manfred

    2016-09-20

    Overexpression of the histone lysine demethylase KDM4A, which regulates H3K9 and H3K36 methylation states, has been related to the pathology of several human cancers. We found that a previously reported hydroxamate-based histone deacetylase (HDAC) inhibitor (SW55) was also able to weakly inhibit this demethylase with an IC50 value of 25.4 μm. Herein we report the synthesis and biochemical evaluations, with two orthogonal in vitro assays, of a series of derivatives of this lead structure. With extensive chemical modifications on the lead structure, also by exploiting the versatility of the radical arylation with aryldiazonium salts, we were able to increase the potency of the derivatives against KDM4A to the low-micromolar range and, more importantly, to obtain demethylase selectivity with respect to HDACs. Cell-permeable derivatives clearly showed a demethylase-inhibition-dependent antiproliferative effect against HL-60 human promyelocytic leukemia cells.

  6. Characterization of iron uptake from hydroxamate siderophores by Chlorella vulgaris

    SciTech Connect

    Allnutt, F.C.T.

    1985-01-01

    Iron uptake by Chlorella vulgaris from ferric-hydroxamate siderophores and the possible production of siderophores by these algae was investigated. No production of siderophores or organic acids was observed. Iron from the two hydroxamate siderophores tested, ferrioximine B (Fe/sup 3 +/-DFOB) and ferric-rhodotorulate (Fe/sup 3 +/-RA), was taken up at the same rate as iron chelated by citrate or caffeate. Two synthetic chelates, Fe/sup 3 +/-EDTA and Fe/sup 3 +/-EDDHA, provided iron at a slower rate. Iron uptake was inhibited by 50 ..mu..M CCCP or 1 mM vanadate. Cyanide (100 ..mu..M KCN) or 25 ..mu..M antimycin A failed to demonstrate a link between uptake and respiration. Labeled iron (/sup 55/Fe) was taken up while labeled ligands ((/sup 14/C) citrate or RA) were not accumulated. Cation competition from Ni/sup 2 +/ and Co/sup 2 +/ observed using Fe/sup 3 +/-DFOB and Fe/sup 3 +/-RA while iron uptake from Fe/sup 3 +/-citrate was stimulated. Iron-stress induced iron uptake from the hydroxamate siderophores. Ferric reduction from the ferric-siderophores was investigated with electron paramagnetic resonance (EPR) and bathophenathroline disulfonate (BPDS). Ferric reduction was induced by iron-stress and inhibited by CCCP. A close correlation between iron uptake and ferric reduction was measured by the EPR method. Ferric reduction measured by the BPDS method was greater than that measure by EPR. BPDS reduction was interpreted to indicate a potential for reduction while EPR measures the physiological rate of reduction. BPDS inhibition of iron uptake and ferricyanide interference with reduction indicate that reduction and uptake occur exposed to the external medium. Presumptive evidence using a binding dose response curve for Fe/sup 3 +/-DFOB indicated that a receptor may be involved in this mechanism.

  7. Concerted Amidation of Activated Esters: Reaction Path and Origins of Selectivity in the Kinetic Resolution of Cyclic Amines via N-Heterocyclic Carbenes and Hydroxamic Acid Cocatalyzed Acyl Transfer

    PubMed Central

    2015-01-01

    The N-heterocyclic carbene and hydroxamic acid cocatalyzed kinetic resolution of cyclic amines generates enantioenriched amines and amides with selectivity factors up to 127. In this report, a quantum mechanical study of the reaction mechanism indicates that the selectivity-determining aminolysis step occurs via a novel concerted pathway in which the hydroxamic acid plays a key role in directing proton transfer from the incoming amine. This modality was found to be general in amide bond formation from a number of activated esters including those generated from HOBt and HOAt, reagents that are broadly used in peptide coupling. For the kinetic resolution, the proposed model accurately predicts the faster reacting enantiomer. A breakdown of the steric and electronic control elements shows that a gearing effect in the transition state is responsible for the observed selectivity. PMID:25050843

  8. 45Ti extraction using hydroxamate resin

    NASA Astrophysics Data System (ADS)

    Gagnon, K.; Severin, G. W.; Barnhart, T. E.; Engle, J. W.; Valdovinos, H. F.; Nickles, R. J.

    2012-12-01

    As an attractive radionuclide for positron emission tomography, this study explores the extraction and reactivity of 45Ti produced via the 45Sc(p,n)45Ti reaction on a GE PETtrace. Using a small hydroxamate column, we have demonstrated an overall recovery of >50% of 45Ti in ˜1 mL of 1M oxalic acid. Conditions for reacting with desferal were also explored, with effective specific activities up to 38 GBq/μmol obtained.

  9. Suberoylanilide Hydroxamic Acid Treatment Reveals Crosstalks among Proteome, Ubiquitylome and Acetylome in Non-Small Cell Lung Cancer A549 Cell Line

    PubMed Central

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  10. A comparison of the levels of hydroxamic acids in Aegilops speltoides and a hexaploid wheat and effects on Rhopalosiphum padi behaviour and fecundity.

    PubMed

    Elek, Henriett; Smart, Lesley; Ahmad, S; Anda, Angéla; Werner, C P; Pickett, J A

    2014-03-01

    Hydroxamic acids (HAs) are plant secondary metabolites produced by certain cereals, which have been found to be toxic to pest aphids in artificial diet assays. Previous studies have shown that tetraploid and hexaploid wheat varieties, the leaf tissues of which contained higher levels of these compounds than used in artificial diets, did not reduce aphid settling or fecundity. This current study reports findings on a high HA producing B genome accession of the diploid ancestor of wheat, Aegilops speltoides. We found that this accession does have a negative impact on aphid host selection and substantially reduces nymph production. Whole leaf tissue assays showed very high levels of HAs, well in excess of the toxic level determined in the artificial diet assays. Extraction of the apoplast fluid (AF) from this accession showed that the HA level is much lower than that of the whole tissue, but is still close to the artificial diet toxic level. Furthermore the HA level in the AF increases in response to aphid feeding. These observations could explain why hexaploid wheat remains susceptible to aphids, despite having whole leaf tissue HA levels in excess of the toxic levels determined in artificial diets.

  11. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

    PubMed

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  12. Synthesis and biological characterization of amidopropenyl hydroxamates as HDAC inhibitors.

    PubMed

    Thaler, Florian; Varasi, Mario; Colombo, Andrea; Boggio, Roberto; Munari, Davide; Regalia, Nickolas; Rozio, Marco G; Reali, Veronica; Resconi, Anna E; Mai, Antonello; Gagliardi, Stefania; Dondio, Giulio; Minucci, Saverio; Mercurio, Ciro

    2010-08-01

    A series of amidopropenyl hydroxamic acid derivatives were prepared as novel inhibitors of human histone deacetylases (HDACs). Several compounds showed potency at <100 nM in the HDAC inhibition assays, sub-micromolar IC(50) values in tests against three tumor cell lines, and remarkable stability in human and mouse microsomes was observed. Three representative compounds were selected for further characterization and submitted to a selectivity profile against a series of class I and class II HDACs as well as to preliminary in vivo pharmacokinetic (PK) experiments. Despite their high microsomal stability, the compounds showed medium-to-high clearance rates in in vivo PK studies as well as in rat and human hepatocytes, indicating that a major metabolic pathway is catalyzed by non-microsomal enzymes.

  13. In vivo efficacy of the histone deacetylase inhibitor suberoylanilide hydroxamic acid in combination with radiotherapy in a malignant rhabdoid tumor mouse model

    PubMed Central

    2012-01-01

    Purpose Histone deacetylase inhibitors are promising new substances in cancer therapy and have also been shown to sensitize different tumor cells to irradiation (XRT). We explored the effect as well as the radiosensitizing properties of suberoylanilide hydroxamic acid (SAHA) in vivo in a malignant rhabdoid tumor (MRT) mouse model. Methods and material Potential radiosensitization by SAHA was assessed in MRT xenografts by analysis of tumor growth delay, necrosis (HE), apoptosis (TUNEL), proliferation (ki-67) and γH2AX expression as well as dynamic 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG -PET) after treatment with either SAHA alone, single-dose (10 Gy) or fractionated XRT (3 × 3Gy) solely as well as in combination with SAHA compared to controls. Results SAHA only had no significant effect on tumor growth. Combination of SAHA for 8 days with single-dose XRT resulted in a higher number of complete remissions, but failed to prove a significant growth delay compared to XRT only. In contrast fractionated XRT plus SAHA for 3 weeks did induce significant tumor growth delay in MRT-xenografts. The histological examination showed a significant effect of XRT in tumor necrosis, expression of Ki-67, γH2AX and apoptosis. SAHA only had no significant effect in the histological examination. Comparison of xenografts treated with XRT and XRT plus SAHA revealed a significantly increased γH2AX expression and apoptosis induction in the mice tumors after combination treatment with single-dose as well as fractionated XRT. The combination of SAHA with XRT showed a tendency to increased necrosis and decrease of proliferation compared to XRT only, which, however, was not significant. The 18F-FDG-PET results showed no significant differences in the standard uptake value or glucose transport kinetics after either treatment. Conclusion SAHA did not have a significant effect alone, but proved to enhance the effect of XRT in our MRT in vivo model. PMID:22458853

  14. Synergistic effects of combined treatment with histone deacetylase inhibitor suberoylanilide hydroxamic acid and TRAIL on human breast cancer cells

    PubMed Central

    Zhou, Weiqiang; Feng, Xiuyan; Han Han; Guo, Shanchun; Wang, Guangdi

    2016-01-01

    Previous studies showed that either histone deacetylase (HDAC) inhibitors or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in tumor cells including breast cancer. However, the underling mechanisms of combining HDAC inhibitors with TRAIL in the treatment of breast cancer are poorly understood. In this study, we determined the ability of SAHA and TRAIL as single agents or in combination to inhibit the growth and survival of MCF-7 and MDA-MB-231 breast cancer cells. Our results demonstrate that the distinct effects of SAHA or TRAIL individually and in combination on the proliferation, cell viability, apoptosis, cell cycle distribution, and morphological changes of MDA-MB-231 and MCF-7 cells. We further determined the different effects of SAHA or TRAIL alone and combining SAHA with TRAIL on the expression of a number of apoptosis-related molecules, cell cycle, growth factors and their receptors in cancer cells. Our results demonstrated that the combinatorial treatment of SAHA and TRAIL may target multiple pathways and serve as an effective therapeutic strategy against breast cancer. An improved understanding of the molecular mechanisms may facilitate either SAHA or TRAIL targeted use and the selection of suitable combinations. PMID:27292433

  15. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency.

    PubMed

    White, Cory H; Johnston, Harvey E; Moesker, Bastiaan; Manousopoulou, Antigoni; Margolis, David M; Richman, Douglas D; Spina, Celsa A; Garbis, Spiros D; Woelk, Christopher H; Beliakova-Bethell, Nadejda

    2015-11-01

    Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1μM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and

  16. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency.

    PubMed

    White, Cory H; Johnston, Harvey E; Moesker, Bastiaan; Manousopoulou, Antigoni; Margolis, David M; Richman, Douglas D; Spina, Celsa A; Garbis, Spiros D; Woelk, Christopher H; Beliakova-Bethell, Nadejda

    2015-11-01

    Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1μM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and

  17. Forward and reverse (retro) iron(III) or gallium(III) desferrioxamine E and ring-expanded analogues prepared using metal-templated synthesis from endo-hydroxamic acid monomers.

    PubMed

    Lifa, Tulip; Tieu, William; Hocking, Rosalie K; Codd, Rachel

    2015-04-01

    A metal-templated synthesis (MTS) approach was used to preorganize the forward endo-hydroxamic acid monomer 4-[(5-aminopentyl)(hydroxy)amino]-4-oxobutanoic acid (for-PBH) about iron(III) in a 1:3 metal/ligand ratio to furnish the iron(III) siderophore for-[Fe(DFOE)] (ferrioxamine E) following peptide coupling. Substitution of for-PBH with the reverse (retro) hydroxamic acid analogue 3-(6-amino-N-hydroxyhexanamido)propanoic acid (ret-PBH) furnished ret-[Fe(DFOE)] (ret-ferrioxamine E). As isomers, for-[Fe(DFOE)] and ret-[Fe(DFOE)] gave identical mass spectrometry signals ([M + H(+)](+), m/zcalc 654.3, m/zobs 654.3), yet for-[Fe(DFOE)] eluted in a more polar window (tR = 23.44 min) than ret-[Fe(DFOE)] (tR = 28.13 min) on a C18 reverse-phase high-performance liquid chromatography (RP-HPLC) column. for-[Ga(DFOE)] (tR = 22.99 min) and ret-[Ga(DFOE)] (tR = 28.11 min) were prepared using gallium(III) as the metal-ion template and showed the same trend for the retention time. Ring-expanded analogues of for-[Fe(DFOE)] and ret-[Fe(DFOE)] were prepared from endo-hydroxamic acid monomers with one additional methylene unit in the amine-containing region, 4-[(6-aminohexyl)(hydroxy)amino]-4-oxobutanoic acid (for-HBH) or 3-(7-amino-N-hydroxyheptanamido)propanoic acid (ret-HBH), to give the corresponding tris(homoferrioxamine E) macrocycles, for-[Fe(HHDFOE)] or ret-[Fe(HHDFOE)] ([M + H(+)](+), m/zcalc 696.3, m/zobs 696.4). The MTS reaction using a constitutional isomer of for-HBH that transposed the methylene unit to the carboxylic acid containing region, 5-[(5-aminopentyl)(hydroxy)amino]-5-oxopentanoic acid (for-PPH), gave the macrocycle for-[Fe(HPDFOE)] in a yield significantly less than that for for-[Fe(HHDFOE)], with the gallium(III) analogue for-[Ga(HPDFOE)] unable to be detected. The work demonstrates the utility and limits of MTS for the assembly of macrocyclic siderophores from endo-hydroxamic acid monomers. Indirect measures (RP-HPLC order of elution, c log P values

  18. Biosynthesis, characterization and biological evalutation of Fe(III) and Cu(II) complexes of neoaspergillic acid, a hydroxamate siderophore produced by co-cultures of two marine-derived mangrove epiphytic fungi.

    PubMed

    Zhu, Feng; Wu, Jingshu; Chen, Guangying; Lu, Weihong; Pan, Jiahui

    2011-08-01

    A hydroxamate siderophore, neoaspergillic acid (1), and a red pigment, ferrineoaspergillin (2) which is an Fe(III) complex of 1, were produced by co-cultures of two epiphytic fungi from a rotten fruit of the mangrove Avicennia marina from the South China Sea, and a new Cu(II) complex of 1, designated as cuprineoaspergillin (3), was also prepared by treatment of 1 with cupric acetate. All the compounds (1-3) were characterized by physical and chemical techniques, including 1H NMR, ESIMS, and photoelectron energy spectra. In the bioassays, compounds 1-3 showed significant inhibitory activities against selected Gram-positive and Gram-negative bacteria, and compound 1 also exhibited moderate inhibitory activities against human cancer cell lines SPC-A-1, BEL-7402, SGC-7901 and K562.

  19. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  20. Water-Stable, Hydroxamate Anchors for Functionalization of TiO2 Surfaces with Ultrafast Interfacial Electron Transfer

    SciTech Connect

    McNamara, W.R.; Milot, R.L.; Song, H.; Snoeberger III, R.C.; Batista, Victor S.; Schmuttenmaer, C.A.; Brudvig, Gary W; Crabtree, Robert H

    2010-01-01

    A novel class of derivatized hydroxamic acid linkages for robust sensitization of TiO{sub 2} nanoparticles (NPs) under various aqueous conditions is described. The stability of linkages bound to metal oxides under various conditions is important in developing photocatalytic cells which incorporate transition metal complexes for solar energy conversion. In order to compare the standard carboxylate anchor to hydroxamates, two organic dyes differing only in anchoring groups were synthesized and attached to TiO{sub 2} NPs. At acidic, basic, and close to neutral pH, hydroxamic acid linkages resist detachment compared to the labile carboxylic acids. THz spectroscopy was used to compare ultrafast interfacial electron transfer (IET) into the conduction band of TiO{sub 2} for both linkages and found similar IET characteristics. Observable electron injection and stronger binding suggest that hydroxamates are a suitable class of anchors for designing water stable molecules for functionalizing TiO{sub 2}.

  1. Ferric hydroxamate transport without subsequent iron utilization in Bacillus megaterium.

    PubMed Central

    Arceneaux, J E; Byers, B R

    1976-01-01

    Iron transport and utilization were examined in Bacillus megaterium Ard1, a mutant that is resistant to the hydroxymate antibiotic A22765 and whose growth is inhibited by the structurally similar hydroxamate Desferal. Rapid, low-level uptake of Desferal-50Fe was observed; such uptake was temperature and energy independent. Gel filtration chromatography of the cytoplasmic fraction of protoplasts labeled with Desferal-55Fe for 30 to 120 s demonstrated only unchanged esferal-55Fe in the cytoplasm. Although B. megaterium Ard1 showed transport of Desferal-59Fe by a process that resembles facilitated diffusion, this organism was unable to transfer iron from this chelate to cellular macromolecules for metabolic use. High-level transport of the ferric hydroxamate schizokinen-59Fe by B. megaterium Ard1 was both temperature and energy dependent. Within 30 s, protoplasts labeled with schizokinen-55Fe contained iron associated with certain macromolecules and in an apparent "pool" of schizokinen-55Fe in the cytoplasmic fraction. Prior transport of Dseferal-55Fe by protoplasts of strain Ard1 did not interfere with subsequent transport and utilization of schizokinen-59Fe. These studies suggest that transport of ferric hydroxamates may occur by a facilitated diffusion-type process; transfer of iron to cellular macromolecules may drive high-level transport of the chelate and may be the step at which energy is required in the iron transport-assimilation process. PMID:821926

  2. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators.

    PubMed

    Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-04-01

    Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life.

  3. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  4. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  5. Understanding biocatalyst inhibition by carboxylic acids

    PubMed Central

    Jarboe, Laura R.; Royce, Liam A.; Liu, Ping

    2013-01-01

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance. PMID:24027566

  6. Alleviation of aluminum toxicity to Rhizobium leguminosarum bv. viciae by the hydroxamate siderophore vicibactin.

    PubMed

    Rogers, N J; Carson, K C; Glenn, A R; Dilworth, M J; Hughes, M N; Poole, R K

    2001-03-01

    Acid rain solubilises aluminum which can exert toxic effects on soil bacteria. The root nodule bacterium Rhizobium leguminosarum biovar viciae synthesises the hydroxamate siderophore vicibactin in response to iron limitation. We report the effect of vicibactin on the toxicity of aluminum(III) to R. leguminosarum and kinetic studies on the reaction of vicibactin with Al(III) and Fe(III). Aluminum (added as the nitrate) completely inhibited bacterial growth at 25 microM final concentration, whereas the preformed Al-vicibactin complex had no effect. When aluminum and vicibactin solutions were added separately to growing cultures, growth was partly inhibited at 25 microM final concentration of each, but fully inhibited at 50 microM final concentration of each. Growth was not inhibited at 50 microM Al and 100 microM vicibactin, probably reflecting the slow reaction between Al and vicibactin; this results in some aluminum remaining uncomplexed long enough to exert toxic effects on growth, partly at 25 microM Al and vicibactin and fully at 50 microM Al and vicibactin. At 100 microM vicibactin and 50 microM Al, Al was complexed more effectively and there was no toxic effect. It was anticipated that vicibactin might enhance the toxicity of Al by transporting it into the cell, but the Al-vicibactin complex was not toxic. Several explanations are possible: the Al-vicibactin complex is not taken up by the cell; the complex is taken up but Al is not released from vicibactin; Al is released in the cell but is precipitated immediately. However, vicibactin reduces the toxicity of Al by complexing it outside the cell.

  7. [Pyridazino(3,4-c)quinolines and pyridazino(4,5-c)quinolines--synthesis and investigation of lipoxygenase inhibition].

    PubMed

    Görlitzer, K; Fabian, J; Jones, P G; Frohberg, P; Drutkowski, G

    2002-06-01

    The cyclic hemiketone acetal 6 reacts with hydrazine in tert-butanol to yield the 1-amino-2,3-dihydro-2-hydroxy-pyrrole 7, while in acetic acid a mixture of the 1-amino-pyrrole 8 and the 1,4-dihydropyridazine 9 is obtained. The X-ray crystal structure of 9 shows a boat conformation flattened about N-1 with respect to nifedipine. Removing the boc-group of 9 gives the tautomeric 2,5-dihydropyridazine 13. The lactams 15 and 17 and the cyclic hydroxamic acids 16 and 18, respectively, are synthesized from 13 or from its oxidation product 14 using reductive conditions. The cyclic hemiacetal 21 reacts with hydrazine in a different manner from 6. In acetic acid the 1-aminopyrrole 22 is formed, while ethanol yields the 1,4-dihydropyridazine 23. The pyridazine 24, obtained by dehydrogenation of 23, gives the lactam 25 and the hydroxamic acid 26, respectively, when the nitro-group is reduced. The dihydropyridazines 9, 11 and 23 are transformed photochemically to give the nitrosophenyl-pyridazines 19, 20 and 27. The chloro-substituted hydroxamic acid 28 is isolated after treatment of 27 with hydrochloric acid. The stability of the partially saturated pyridazine compounds is discussed on the basis of half wave potentials measured by anodic oxidation by means of differential pulse voltammetry. The tricyclic hydroxamic acids 18 and 28 show only a weak inhibition of 5-lipoxygenase (5-LOX). PMID:12116871

  8. Hydroxamate-based colorimetric method for direct screening of transglutaminase-producing bacteria.

    PubMed

    Bourneow, Chaiwut; Benjakul, Soottawat; H-Kittikun, Aran

    2012-05-01

    Microbial transglutaminase (MTGase) is a commercial enzyme that has been applied to many protein containing foods to improve their textural property. The screening of MTGase-producing microorganisms from various sources might lead to the discovery of a new MTGase with different characteristics. This report demonstrates the use of a direct detection method for MTGase-producing bacteria grown on an agar plate by filter paper disc (FPD) assay. The principle of the assay is the formation of a red burgundy color by the hydroxamate-ferric complex. The color developed intensity was linearly correlated by the concentration of hydroxamic acid in the range of 0.1-0.8 μM and was visually scored at 4 levels: 0, 1, 2 and 3. Streptoverticillium mobaraense DSM 40847, a positive MTGase-producer, was chosen for the verification and improving of the proposed method. The colonies grown on the nutrient agar plate at 37°C for 24 h were covered with FPDs and 30 μl of substrates (CBZ-Gln-Gly and hydroxylamine). After incubation, 10 μl of the ferric-TCA-HCl solution was placed on the FPD. The optimal time taken to catalyze the formation of CBZ-Gln-Gly-hydroxamic acid by the MTGase and the time taken for the hydroxamate-ferric complex to form color were 180 and 60 min, respectively. Using this assay, 30 of 189 colonies isolated from wastewater and floating-floc samples showed MTGase-positive colonies which were well correlated to the quantitative screening of MTGase activity (R(2) = 0.9758). The results revealed that the FPD assay could be used for the qualitative screening of MTGase-producing bacteria.

  9. Growth of Actinobacillus pleuropneumoniae is promoted by exogenous hydroxamate and catechol siderophores.

    PubMed Central

    Diarra, M S; Dolence, J A; Dolence, E K; Darwish, I; Miller, M J; Malouin, F; Jacques, M

    1996-01-01

    Siderophores bind ferric ions and are involved in receptor-specific iron transport into bacteria. Six types of siderophores were tested against strains representing the 12 different serotypes of Actinobacillus pleuropneumoniae. Ferrichrome and bis-catechol-based siderophores showed strong growth-promoting activities for A. pleuropneumoniae in a disk diffusion assay. Most strains of A. pleuropneumoniae tested were able to use ferrichrome (21 of 22 or 95%), ferrichrome A (20 of 22 or 90%), and lysine-based bis-catechol (20 of 22 or 90%), while growth of 36% (8 of 22) was promoted by a synthetic hydroxamate, N5-acetyl-N5-hydroxy-L-ornithine tripeptide. A. pleuropneumoniae serotype 1 (strain FMV 87-682) and serotype 5 (strain 2245) exhibited a distinct yellow halo around colonies on Chrome Azurol S agar plates, suggesting that both strains can produce an iron chelator (siderophore) in response to iron stress. The siderophore was found to be neither a phenolate nor a hydroxamate by the chemical tests of Arnow and Csaky, respectively. This is the first report demonstrating the production of an iron chelator and the use of exogenous siderophores by A. pleuropneumoniae. A spermidine-based bis-catechol siderophore conjugated to a carbacephalosporin was shown to inhibit growth of A. pleuropneumoniae. A siderophore-antibiotic-resistant strain was isolated and shown to have lost the ability to use ferrichrome, synthetic hydroxamate, or catechol-based siderophores when grown under conditions of iron restriction. This observation indicated that a common iron uptake pathway, or a common intermediate, for hydroxamate- and catechol-based siderophores may exist in A. pleuropneumoniae. PMID:8975614

  10. From α-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxamate ion towards esterolytic reactions in micelles.

    PubMed

    Singh, Namrata; Karpichev, Yevgen; Sharma, Rahul; Gupta, Bhanushree; Sahu, Arvind K; Satnami, Manmohan L; Ghosh, Kallol K

    2015-03-14

    Owing to the rising threats of neurotoxic organophosphosphorus compounds, facile and efficient decontamination systems are required. Since the last few decades, the search for promising α-nucleophiles for straightforward and eco-friendly decontamination reactions using α-nucleophiles has been considerably boosted up. Among these, hydroxamic acids have been widely studied due to their potential α-nucleophilicity towards carbon and phosphorus based esters. This account summarizes our research on α-nucleophilicity of hydroxamate ions in water and micelles towards esterolytic reactions. Efforts of our group in the last few years have been collectively judged and compared with the crucial findings of researchers in the relevant field. The present article sheds light on the rich chemistry of the hydroxamate ion as a perfect candidate to degrade organophosphorus esters (i.e. nerve agents, pesticides and their simulants) in water, in micelles of conventional surfactants, and in functionalized micelles. The current report also provides an insight into the possible nature and mechanisms of these reactions. A brief account of the biological activities of hydroxamic acids that have recently spurred research in medicine against some fatal diseases has been included.

  11. Biochemical characterization and selective inhibition of β-carotene cis-trans isomerase D27 and carotenoid cleavage dioxygenase CCD8 on the strigolactone biosynthetic pathway.

    PubMed

    Harrison, Peter J; Newgas, Sophie A; Descombes, Flora; Shepherd, Sarah A; Thompson, Andrew J; Bugg, Timothy D H

    2015-10-01

    The first three enzymatic steps of the strigolactone biosynthetic pathway catalysed by β-carotene cis-trans isomerase Dwarf27 (D27) from Oryza sativa and carotenoid cleavage dioxygenases CCD7 and CCD8 from Arabidopsis thaliana have been reconstituted in vitro, and kinetic assays have been developed for each enzyme, in order to develop selective enzyme inhibitors. Recombinant OsD27 shows a UV-visible λmax at 422 nm and is inactivated by silver(I) acetate, consistent with the presence of an iron-sulfur cluster that is used in catalysis. OsD27 and AtCCD7 are not inhibited by hydroxamic acids that cause shoot branching in planta, but OsD27 is partially inhibited by terpene-like hydroxamic acids. The reaction catalysed by AtCCD8 is shown to be a two-step kinetic mechanism using pre-steady-state kinetic analysis. Kinetic evidence is presented for acid-base catalysis in the CCD8 catalytic cycle and the existence of an essential cysteine residue in the CCD8 active site. AtCCD8 is inhibited in a time-dependent fashion by hydroxamic acids D2, D4, D5 and D6 (> 95% inhibition at 100 μm) that cause a shoot branching phenotype in A. thaliana, and selective inhibition of CCD8 is observed using hydroxamic acids D13H and D15 (82%, 71% inhibition at 10 μm). The enzyme inhibition data imply that the biochemical basis of the shoot branching phenotype is due to inhibition of CCD8.

  12. Biochemical characterization and selective inhibition of β-carotene cis-trans isomerase D27 and carotenoid cleavage dioxygenase CCD8 on the strigolactone biosynthetic pathway.

    PubMed

    Harrison, Peter J; Newgas, Sophie A; Descombes, Flora; Shepherd, Sarah A; Thompson, Andrew J; Bugg, Timothy D H

    2015-10-01

    The first three enzymatic steps of the strigolactone biosynthetic pathway catalysed by β-carotene cis-trans isomerase Dwarf27 (D27) from Oryza sativa and carotenoid cleavage dioxygenases CCD7 and CCD8 from Arabidopsis thaliana have been reconstituted in vitro, and kinetic assays have been developed for each enzyme, in order to develop selective enzyme inhibitors. Recombinant OsD27 shows a UV-visible λmax at 422 nm and is inactivated by silver(I) acetate, consistent with the presence of an iron-sulfur cluster that is used in catalysis. OsD27 and AtCCD7 are not inhibited by hydroxamic acids that cause shoot branching in planta, but OsD27 is partially inhibited by terpene-like hydroxamic acids. The reaction catalysed by AtCCD8 is shown to be a two-step kinetic mechanism using pre-steady-state kinetic analysis. Kinetic evidence is presented for acid-base catalysis in the CCD8 catalytic cycle and the existence of an essential cysteine residue in the CCD8 active site. AtCCD8 is inhibited in a time-dependent fashion by hydroxamic acids D2, D4, D5 and D6 (> 95% inhibition at 100 μm) that cause a shoot branching phenotype in A. thaliana, and selective inhibition of CCD8 is observed using hydroxamic acids D13H and D15 (82%, 71% inhibition at 10 μm). The enzyme inhibition data imply that the biochemical basis of the shoot branching phenotype is due to inhibition of CCD8. PMID:26257333

  13. Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice.

    PubMed

    Ono, Tetsuo; Li, Chong; Mizutani, Eiji; Terashita, Yukari; Yamagata, Kazuo; Wakayama, Teruhiko

    2010-12-01

    Since the first mouse clone was produced by somatic cell nuclear transfer, the success rate of cloning in mice has been extremely low. Some histone deacetylase inhibitors, such as trichostatin A and scriptaid, have improved the full-term development of mouse clones significantly, but the mechanisms allowing for this are unclear. Here, we found that two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities. However, another inhibitor, valproic acid, could not improve cloning efficiency. Suberoylanilide hydroxamic acid, oxamflatin, trichostatin A, and scriptaid are inhibitors for classes I and IIa/b histone deacetylase, whereas valproic acid is an inhibitor for classes I and IIa, suggesting that inhibiting class IIb histone deacetylase is an important step for reprogramming mouse cloning efficiency.

  14. Tandem mass spectrometry of coprogen and deferoxamine hydroxamic siderophores.

    PubMed

    Simionato, Ana V C; de Souza, Gezimar D; Rodrigues-Filho, Edson; Glick, James; Vouros, Paul; Carrilho, Emanuel

    2006-01-01

    Mechanisms of fragmentation of hydroxamic siderophores are proposed comparing deuterated and nondeuterated samples. Standard siderophores (e.g. deferoxamine and coprogen) were directly injected into both ion trap and linear quadrupole mass spectrometers with electrospray ionization (ESI). Four and two fragmentation steps were carried out for deferoxamine and coprogen (analyzed by positive and negative ESI, respectively). Deferoxamine cleavages occurred in both peptide and hydroxamic bonds while the coprogen fragmentation pattern is more elaborate, since it contains Fe(III) in its structure.

  15. Identification of the hydroxamate siderophore ferricrocin in Cladosporium cladosporioides.

    PubMed

    Pourhassan, Nina; Gagnon, René; Wichard, Thomas; Bellenger, Jean-Philippe

    2014-04-01

    The hydroxamate siderophore ferricrocin was identified in Cladosporium cladosporioides growth medium by solid phase extraction and ultra high pressure liquid chromatography coupled to a time of flight mass spectrometer (UHPLC/QTOF-MS). Both desferricrocin and ferricrocin were detected in the extracellular medium assisted by high resolution mass spectrometry. This is the first identification of a hydroxamate siderophore in Cladosporium cladosporioides. This finding emphasizes the common meaning of ferricrocin in fungi. PMID:24868878

  16. Identification of the hydroxamate siderophore ferricrocin in Cladosporium cladosporioides.

    PubMed

    Pourhassan, Nina; Gagnon, René; Wichard, Thomas; Bellenger, Jean-Philippe

    2014-04-01

    The hydroxamate siderophore ferricrocin was identified in Cladosporium cladosporioides growth medium by solid phase extraction and ultra high pressure liquid chromatography coupled to a time of flight mass spectrometer (UHPLC/QTOF-MS). Both desferricrocin and ferricrocin were detected in the extracellular medium assisted by high resolution mass spectrometry. This is the first identification of a hydroxamate siderophore in Cladosporium cladosporioides. This finding emphasizes the common meaning of ferricrocin in fungi.

  17. Histone Deacetylase Inhibitor Upregulates Peroxisomal Fatty Acid Oxidation and Inhibits Apoptotic Cell Death in Abcd1-Deficient Glial Cells

    PubMed Central

    Singh, Jaspreet; Khan, Mushfiquddin; Pujol, Aurora; Baarine, Mauhamad; Singh, Inderjit

    2013-01-01

    In X-ALD, mutation/deletion of ALD gene (ABCD1) and the resultant very long chain fatty acid (VLCFA) derangement has dramatically opposing effects in astrocytes and oligodendrocytes. While loss of Abcd1 in astrocytes produces a robust inflammatory response, the oligodendrocytes undergo cell death leading to demyelination in X-linked adrenoleukodystrophy (X-ALD). The mechanisms of these distinct pathways in the two cell types are not well understood. Here, we investigated the effects of Abcd1-knockdown and the subsequent alteration in VLCFA metabolism in human U87 astrocytes and rat B12 oligodendrocytes. Loss of Abcd1 inhibited peroxisomal β-oxidation activity and increased expression of VLCFA synthesizing enzymes, elongase of very long chain fatty acids (ELOVLs) (1 and 3) in both cell types. However, higher induction of ELOVL's in Abcd1-deficient B12 oligodendrocytes than astrocytes suggests that ELOVL pathway may play a prominent role in oligodendrocytes in X-ALD. While astrocytes are able to maintain the cellular homeostasis of anti-apoptotic proteins, Abcd1-deletion in B12 oligodendrocytes downregulated the anti-apototic (Bcl-2 and Bcl-xL) and cell survival (phospho-Erk1/2) proteins, and upregulated the pro-apoptotic proteins (Bad, Bim, Bax and Bid) leading to cell loss. These observations provide insights into different cellular signaling mechanisms in response to Abcd1-deletion in two different cell types of CNS. The apoptotic responses were accompanied by activation of caspase-3 and caspase-9 suggesting the involvement of mitochondrial-caspase-9-dependent mechanism in Abcd1-deficient oligodendrocytes. Treatment with histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) corrected the VLCFA derangement both in vitro and in vivo, and inhibited the oligodendrocytes loss. These observations provide a proof-of principle that HDAC inhibitor SAHA may have a therapeutic potential for X-ALD. PMID:23923017

  18. Novel Bioactivity of Ellagic Acid in Inhibiting Human Platelet Activation

    PubMed Central

    Chang, Yi; Chen, Wei-Fan; Lin, Kuan-Hung; Hsieh, Cheng-Ying; Chou, Duen-Suey; Lin, Li-Jyun; Sheu, Joen-Rong; Chang, Chao-Chien

    2013-01-01

    Pomegranates are widely consumed either as fresh fruit or in beverage form as juice and wine. Ellagic acid possesses potent antioxidative properties; it is known to be an effective phytotherapeutic agent with antimutagenic and anticarcinogenic qualities. Ellagic acid (20 to 80 μM) exhibited a potent activity in inhibiting platelet aggregation stimulated by collagen; however, it did not inhibit platelet aggregation stimulated by thrombin, arachidonic acid, or U46619. Treatment with ellagic acid (50 and 80 μM) significantly inhibited platelet activation stimulated by collagen; this alteration was accompanied by the inhibition of relative [Ca2+]i mobilization, and the phosphorylation of phospholipase C (PLC)γ2, protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and Akt, as well as hydroxyl radical (OH●) formation. In addition, ellagic acid also inhibited p38 MAPK and Akt phosphorylation stimulated by hydrogen peroxide. By contrast, ellagic acid did not significantly affect PKC activation and platelet aggregation stimulated by PDBu. This study is the first to show that, in addition to being considered a possible agent for preventing tumor growth, ellagic acid possesses potent antiplatelet properties. It appears to initially inhibit the PLCγ2-PKC cascade and/or hydroxyl radical formation, followed by decreased phosphorylation of MAPKs and Akt, ultimately inhibiting platelet aggregation. PMID:23533502

  19. Inhibition of Influenza Virus Ribonucleic Acid Polymerase by Ribavirin Triphosphate

    PubMed Central

    Eriksson, Bertil; Helgstrand, Erik; Johansson, Nils Gunnar; Larsson, Alf; Misiorny, Alfons; Noren, Jan Olof; Philipson, Lennart; Stenberg, Kjell; Stening, Goran; Stridh, Stig; Öberg, Bo

    1977-01-01

    Ribavirin 5′-triphosphate (RTP), derived from the broad-spectrum antiviral compound ribavirin (Virazole), can selectively inhibit influenza virus ribonucleic acid polymerase in a cell-free assay. Ribavirin and its 5′-monophosphate have no effect on the polymerase. The inhibition is competitive with respect to adenosine 5′-triphosphate and guanosine 5′-triphosphate. RTP also inhibits ApG- and GpC-stimulated influenza virus ribonucleic acid polymerase. Since ribavirin is phosphorylated in the cell, the inhibition of influenza multiplication in the cell may also be caused by RTP. PMID:879760

  20. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase.

    PubMed

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2004-10-01

    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects. PMID:15512796

  1. Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells

    PubMed Central

    Rangarajan, Parthasarathy; Subramaniam, Dharmalingam; Paul, Santanu; Kwatra, Deep; Palaniyandi, Kanagaraj; Islam, Shamima; Harihar, Sitaram; Ramalingam, Satish; Gutheil, William; Putty, Sandeep; Pradhan, Rohan; Padhye, Subhash; Welch, Danny R.; Anant, Shrikant; Dhar, Animesh

    2015-01-01

    Pancreatic cancer is the fourth leading cause of cancer deaths in the US and no significant treatment is currently available. Here, we describe the effect of crocetinic acid, which we purified from commercial saffron compound crocetin using high performance liquid chromatography. Crocetinic acid inhibits proliferation of pancreatic cancer cell lines in a dose- and time-dependent manner. In addition, it induced apoptosis. Moreover, the compound significantly inhibited epidermal growth factor receptor and Akt phosphorylation. Furthermore, crocetinic acid decreased the number and size of the pancospheres in a dose-dependent manner, and suppressed the expression of the marker protein DCLK-1 (Doublecortin Calcium/Calmodulin-Dependent Kinase-1) suggesting that crocetinic acid targets cancer stem cells (CSC). To understand the mechanism of CSC inhibition, the signaling pathways affected by purified crocetinic acid were dissected. Sonic hedgehog (Shh) upon binding to its cognate receptor patched, allows smoothened to accumulate and activate Gli transcription factor. Crocetinic acid inhibited the expression of both Shh and smoothened. Finally, these data were confirmed in vivo where the compound at a dose of 0.5 mg/Kg bw suppressed growth of tumor xenografts. Collectively, these data suggest that purified crocetinic acid inhibits pancreatic CSC, thereby inhibiting pancreatic tumorigenesis. PMID:26317547

  2. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  3. Inhibition of plant fatty acid synthesis by nitroimidazoles.

    PubMed Central

    Jones, A V; Harwood, J L; Stratford, M R; Stumpf, P K

    1981-01-01

    1. The effect of the addition of a number of nitroimidazoles was tested on fatty acid synthesis by germinating pea seeds, isolated lettuce chloroplasts and a soluble fraction from pea seeds. 2. All the compounds tested had a marked inhibition on stearate desaturation by lettuce chloroplasts and on the synthesis of very-long-chain fatty acids by pea seeds. 3. In contrast, the effect of the drugs on total fatty acid synthesis from [14C]acetate in chloroplasts was related to the compound's electron reduction potentials. 4. Of the compounds used, only metronidazole had a marked inhibition on palmitate elongation in the systems tested. 5. The mechanism of inhibition of plant fatty acid synthesis by nitroimidazoles is discussed and the possible relevance of these findings to their neurotoxicity is suggested. PMID:7325993

  4. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  5. Phosphatidic acid inhibits blue light-induced stomatal opening via inhibition of protein phosphatase 1 [corrected].

    PubMed

    Takemiya, Atsushi; Shimazaki, Ken-ichiro

    2010-08-01

    Stomata open in response to blue light under a background of red light. The plant hormone abscisic acid (ABA) inhibits blue light-dependent stomatal opening, an effect essential for promoting stomatal closure in the daytime to prevent water loss. However, the mechanisms and molecular targets of this inhibition in the blue light signaling pathway remain unknown. Here, we report that phosphatidic acid (PA), a phospholipid second messenger produced by ABA in guard cells, inhibits protein phosphatase 1 (PP1), a positive regulator of blue light signaling, and PA plays a role in stimulating stomatal closure in Vicia faba. Biochemical analysis revealed that PA directly inhibited the phosphatase activity of the catalytic subunit of V. faba PP1 (PP1c) in vitro. PA inhibited blue light-dependent stomatal opening but did not affect red light- or fusicoccin-induced stomatal opening. PA also inhibited blue light-dependent H(+) pumping and phosphorylation of the plasma membrane H(+)-ATPase. However, PA did not inhibit the autophosphorylation of phototropins, blue light receptors for stomatal opening. Furthermore, 1-butanol, a selective inhibitor of phospholipase D, which produces PA via hydrolysis of phospholipids, diminished the ABA-induced inhibition of blue light-dependent stomatal opening and H(+) pumping. We also show that hydrogen peroxide and nitric oxide, which are intermediates in ABA signaling, inhibited the blue light responses of stomata and that 1-butanol diminished these inhibitions. From these results, we conclude that PA inhibits blue light signaling in guard cells by PP1c inhibition, accelerating stomatal closure, and that PP1 is a cross talk point between blue light and ABA signaling pathways in guard cells.

  6. Alkyl hydroxybenzoic acid derivatives that inhibit HIV-1 protease dimerization.

    PubMed

    Flausino, O A; Dufau, L; Regasini, L O; Petrônio, M S; Silva, D H S; Rose, T; Bolzani, V S; Reboud-Ravaux, M

    2012-01-01

    The therapeutic potential of gallic acid and its derivatives as anti-cancer, antimicrobial and antiviral agents is well known. We have examined the mechanism by which natural gallic acid and newly synthesized gallic acid alkyl esters and related protocatechuic acid alkyl esters inhibit HIV-1 protease to compare the influence of the aromatic ring substitutions on inhibition. We used Zhang-Poorman's kinetic analysis and fluorescent probe binding to demonstrate that several gallic and protecatechuic acid alkyl esters inhibited HIV-1 protease by preventing the dimerization of this obligate homodimeric aspartic protease rather than targeting the active site. The tri-hydroxy substituted benzoic moiety in gallates was more favorable than the di-substituted one in protocatechuates. In both series, the type of inhibition, its mechanism and the inhibitory efficiency dramatically depended on the length of the alkyl chain: no inhibition with alkyl chains less than 8 carbon atoms long. Molecular dynamics simulations corroborated the kinetic data and propose that gallic esters are intercalated between the two N- and C-monomer ends. They complete the β-sheet and disrupt the dimeric enzyme. The best gallic ester (14 carbon atoms, K(id) of 320 nM) also inhibited the multi-mutated protease MDR-HM. These results will aid the rational design of future generations of non-peptide inhibitors of HIV-1 protease dimerization that inhibit multi-mutated proteases. Finally, our work suggests the wide use of gallic and protocatechuic alkyl esters to dissociate intermolecular β-sheets involved in protein-protein interactions.

  7. Eskimo plasma constituents, dihomo-gamma-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid inhibit the release of atherogenic mitogens.

    PubMed

    Smith, D L; Willis, A L; Nguyen, N; Conner, D; Zahedi, S; Fulks, J

    1989-01-01

    Studies in man and laboratory animals suggest that omega 3 polyunsaturated fatty acid constituents of fish oils have antiatherosclerotic properties. We have studied the effects of several such polyunsaturated fatty acids for ability to modify the in vitro release of mitogens from human platelets. Such mitogens may produce the fibro-proliferative component of atherosclerotic plaques. Both 5,8,11,14,17-eicosapentaenoic acid (20:5 omega 3) and 4,7,10,13,16,19-docosahexaenoic acid (22:6 omega 3), major constituents of fish oils, inhibited adenosine diphosphate-induced aggregation of platelets and the accompanying release of mitogens. These effects are dose dependent. Linolenic acid (18:3 omega 3), the biosynthetic precursor of eicosapentaenoic acid, also inhibited platelet aggregation and mitogen release. Eicosapentaenoic acid also inhibited mitogen release from human monocyte-derived macrophages, which, in vivo, are an additional source of mitogens during atherogenesis. Potent inhibition of human platelet aggregation and mitogen release was also seen with dihomo-gamma-linolenic acid (8,11,14-eicosatrienoic acid 20:3 omega 6), whose levels are reportedly elevated in Eskimos subsisting on marine diets. We conclude that diets that elevate plasma and/or tissue levels of eicosapentaenoic acid, docosahexaenoic acid and dihomo-gamma-linolenic acid precursor gamma-linolenic acid (18:3 omega 6) may exert antiatherosclerotic effects by inhibiting the release of mitogens from platelets and other cells.

  8. Inhibition of fucosyltransferase VII by gallic acid and its derivatives.

    PubMed

    Niu, Xiaoda; Fan, Xuedong; Sun, Jing; Ting, Pauline; Narula, Satwant; Lundell, Daniel

    2004-05-01

    Gallic acid (GA) and several gallate derivatives were identified as inhibitors of fucosyltransferase VII (FucT VII). The inhibition by GA and (-)-epigallocatechin gallate (EGCG) is time-dependent and irreversible. GA and EGCG showed inhibition with IC(50) of 60 and 700 nM, respectively, after pre-incubation with FucT VII in the presence of MnCl(2). Absence of MnCl(2) results in significantly weaker inhibition. Complexation of Mn(2+) with GA, EGCG, and gallate esters was observed. Such complexation, however, is not rate-limiting for the inhibition of FucT VII. Therefore, time-dependent inhibition of fucosyltransferases by GA and EGCG is likely due to the slow inactivation by the inhibitors or Mn-inhibitor complex. Although Mg(2+) or Ca(2+) can replace Mn(2+) for FucT VII activation, none forms a complex with GA or EGCG and hence results in weaker inhibition of FucT VII. GA and EGCG also inhibit FucT IV and alpha2,3-(N)-sialyltransferase in the low micromolar range. The structure-function divergence could be observed, as EGCG, but not GA or gallate esters, inhibits Zn(2+) containing metalloproteases such as TNFalpha convertase, matrix metalloproteases 2 and 7.

  9. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  10. Chemistry, Biology, and QSAR Studies of Substituted Biaryl Hydroxamates and Mercaptoacetamides as HDAC inhibitors - Nanomolar Potency Inhibitors of Pancreatic Cancer Cell Growth

    PubMed Central

    Kozikowski, Alan P.; Chen, Yufeng; Gaysin, Arsen M.; Savoy, Doris N.; Billadeau, Daniel D.; Kim, Ki Hwan

    2009-01-01

    The histone deacetylases (HDACs) are able to regulate gene expression and inhibitors of the HDACs (HDACIs) hold promise in the treatment of cancer as well as a variety of neurodegenerative diseases. To investigate the possibility to achieve some measure of isoform selectivity in the inhibition of the HDACs, we prepared a small series of 2,4′-diaminobiphenyl ligands functionalized at the para-amino group with an appendage containing either a hydroxamate or a mercaptoacetamide group and coupled to an amino acid residue at the ortho-amino group. A smaller series of substituted phenylthiazoles was also explored. Some of these newly synthesized ligands show low nM potency in the HDAC inhibition assays and display micromolar to low nanomolar IC50 values when tested against five pancreatic cancer cell lines. The isoform selectivity of these ligands for the Class I HDACs (HDAC1-3 and 8) and Class IIb HDACs (HDAC6 and HDAC10) together with QSAR studies of their correlation with the lipophilicity are presented. Of particular interest is the HDAC6 selectivity of the mercaptoacetamides. PMID:18181121

  11. Inhibition of citrus fungal pathogens by using lactic acid bacteria.

    PubMed

    Gerez, C L; Carbajo, M S; Rollán, G; Torres Leal, G; Font de Valdez, G

    2010-08-01

    The effect of lactic acid bacteria (LAB) on pathogenic fungi was evaluated and the metabolites involved in the antifungal effect were characterized. Penicillium digitatum (INTA 1 to INTA 7) and Geotrichum citri-aurantii (INTA 8) isolated from decayed lemon from commercial packinghouses were treated with imazalil and guazatine to obtain strains resistant to these fungicides. The most resistant strains (4 fungal strains) were selected for evaluating the antifungal activity of 33 LAB strains, among which only 8 strains gave positive results. The antifungal activity of these LAB strains was related to the production of lactic acid, acetic acid, and phenyllactic acid (PLA). A central composite design and the response surface methodology were used to evaluate the inhibitory effect of the organic acids produced by the LAB cultures. The antifungal activity of lactic acid was directly related to its concentration; however, acetic acid and PLA showed a peak of activity at 52.5 and 0.8 mM, respectively, with inhibition rates similar to those obtained with Serenade((R)) (3.0 ppm) imazalil (50 ppm) and guazatine (50 ppm). Beyond the peak of activity, a reduction in effectiveness of both acetic acid and PLA was observed. Comparing the inhibition rate of the organic acids, PLA was about 66- and 600-fold more effective than acetic acid and lactic acid, respectively. This study presents evidences on the antifungal effect of selected LAB strains and their end products. Studies are currently being undertaken to evaluate the effectiveness in preventing postharvest diseases on citrus fruits. PMID:20722936

  12. Mercaptoimidazolylpropionic acid hydrobromide. Inhibition of tadpole collagenase and related properties.

    PubMed

    Yankeelov, J A; Parish, H A; Spatola, A F

    1978-07-01

    A mercapto analogue of histidine (1), (RS)-2-mercapto-3-(5-imidazolyl)propionic acid (2), was prepared by treatment of (RS)-2-bromo-3-(5-imidazolyl)propionic acid with trithiocarbonate. Decomposition of the resulting intermediate with hydrochloric acid followed by Sephadex G-15 chromatography permitted isolation of 2 as a hydrobromide complex having unusual stability and properties as evidenced by IR and 1H NMR data. The potency of this complex in inhibiting tissue (Rana catesbiana) collagenase was estimated by radial diffusion assay. The amount of 2 required to produce 50% inhibition was 3.8 +/- 1.5 mM compared to 8.7 +/- 2.5 mM for cysteine. Preliminary tests of oxygen susceptibility, mutagenicity, and toxicity suggest that this substance may warrant study as a therapeutic agent for control of collagenase-linked corneal ulcerations. PMID:209189

  13. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    PubMed Central

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633

  14. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  15. Inhibition of bacterial activity in acid mine drainage

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Bhatnagar, Miss Mridula

    1988-12-01

    Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented

  16. Seizure control by decanoic acid through direct AMPA receptor inhibition.

    PubMed

    Chang, Pishan; Augustin, Katrin; Boddum, Kim; Williams, Sophie; Sun, Min; Terschak, John A; Hardege, Jörg D; Chen, Philip E; Walker, Matthew C; Williams, Robin S B

    2016-02-01

    The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet. PMID:26608744

  17. Acid inhibition and infections outside the gastrointestinal tract.

    PubMed

    Vakil, Nimish

    2009-03-01

    Acid-inhibitory agents can alter the flora of the stomach, and epidemiologic studies suggest an association between the use of these agents and the development of pneumonia. Microbiologic studies suggest that a causal association may be biologically plausible because gastric colonization with organisms can occur in patients taking acid suppressive agents. In mechanically ventilated patients, colonization of the oropharynx and stomach may predispose to Gram-negative pneumonias. Despite the associations between acid inhibitor use and pneumonia shown in some studies, the data on community-acquired pneumonias are not conclusive. In clinical practice, prudence would dictate that the need for acid inhibition with histamine-2 receptor antagonists or proton pump inhibitors should be carefully considered in patients who are at risk for pneumonias (elderly patients with chronic lung disease who are on immunosuppressive drugs or corticosteroids and patients with recurrent lung infections requiring frequent antibiotic therapy).

  18. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  19. Mechanism of Ni2+ and NiOH+ interaction with hydroxamic acids in SDS: evaluation of the contributions to the equilibrium and rate parameters in the aqueous and micellar phase.

    PubMed

    Beccia, Maria R; Biver, Tarita; García, Begoña; Leal, José M; Secco, Fernando; Ruiz, Rebeca; Venturini, Marcella

    2012-06-28

    The equilibria and kinetics (stopped-flow) of the binding of Ni(II) to salicylhydroxamic acid (SHA) and phenylbenzohydroxamic acid (PBHA) have been investigated in aqueous solutions containing SDS micelles. The two ligands are fairly distributed between the two pseudophases present, so the binding reaction occurs in both phases. The contributions to the total reaction from each phase has been evaluated, following a procedure where use is made of the experimentally determined partition coefficients of the reactants involved. The mechanism of the reaction occurring on the micelle surface has been derived and comparison with the mechanism in water shows that the step Ni(2+) + HL ⇄ NiHL(2+) is operative in both pseudophases, whereas the step Ni(2+) + L(-)⇄ NiL(+), which is operative in water, is replaced in SDS by the step NiOH(+) + HL ⇄ NiL(+). The analysis of the equilibrium and of the kinetic data enabled the evaluation of the equilibrium and the rate constants of the individual steps taking part in the binding process over the micelle surface. Interestingly, the first hydrolysis constant of the Ni(H(2)O)(6)(2+) ion in SDS is more than two orders of magnitude higher than in water. The agreement between the equilibrium constants derived from kinetics and those obtained by static measurements confirms the validity of the proposed mechanism.

  20. Covalency-Driven Dimerization of Plutonium(IV) in a Hydroxamate Complex.

    PubMed

    Silver, Mark A; Cary, Samantha K; Stritzinger, Jared T; Parker, T Gannon; Maron, Laurent; Albrecht-Schmitt, Thomas E

    2016-06-01

    The reaction of formohydroxamic acid [NH(OH)CHO, FHA] with Pu(III) should result in stabilization of the trivalent oxidation state. However, slow oxidation to Pu(IV) occurs, which leads to formation of the dimeric plutonium(IV) formohydroxamate complex Pu2(FHA)8. In addition to being reductants, hydroxamates are also strong π-donor ligands. Here we show that formation of the Pu2(FHA)8 dimer occurs via covalency between the 5f orbitals on plutonium and the π* orbitals of FHA(-) anions, which gives rise to a broad and intense ligand-to-metal charge-transfer feature. Time-dependent density functional theory calculations corroborate this assignment. PMID:27228095

  1. Inhibition of cardiac mitochondrial respiration by salicylic acid and acetylsalicylate.

    PubMed

    Nulton-Persson, Amy C; Szweda, Luke I; Sadek, Hesham A

    2004-11-01

    Acetylsalicylate, the active ingredient in aspirin, has been shown to be beneficial in the treatment and prevention of cardiovascular disease. Because of the increasing frequency with which salicylates are used, it is important to more fully characterize extra- and intracellular processes that are altered by these compounds. Evidence is provided that treatment of isolated cardiac mitochondria with salicylic acid and to a lesser extent acetylsalicylate resulted in an increase in the rate of uncoupled respiration. In contrast, both compounds inhibited ADP-dependent NADH-linked (state 3) respiration to similar degrees. Under the conditions of our experiments, loss in state 3 respiration resulted from inhibition of the Krebs cycle enzyme alpha-ketoglutarate dehydrogenase (KGDH). Kinetic analysis indicates that salicylic acid acts as a competitive inhibitor at the alpha-ketoglutarate binding site. In contrast, acetylsalicylate inhibited the enzyme in a noncompetitive fashion consistent with interaction with the alpha-ketoglutarate binding site followed by enzyme-catalyzed acetylation. The effects of salicylic acid and acetylsalicylate on cardiac mitochondrial function may contribute to the known cardioprotective effects of therapeutic doses of aspirin, as well as to the toxicity associated with salicylate overdose.

  2. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  3. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  4. Contribution of cinnamic acid analogues in rosmarinic acid to inhibition of snake venom induced hemorrhage.

    PubMed

    Aung, Hnin Thanda; Furukawa, Tadashi; Nikai, Toshiaki; Niwa, Masatake; Takaya, Yoshiaki

    2011-04-01

    In our previous paper, we reported that rosmarinic acid (1) of Argusia argentea could neutralize snake venom induced hemorrhagic action. Rosmarinic acid (1) consists of two phenylpropanoids: caffeic acid (2) and 3-(3,4-dihydroxyphenyl)lactic acid (3). In this study, we investigated the structural requirements necessary for inhibition of snake venom activity through the use of compounds, which are structurally related to rosmarinic acid (1). By examining anti-hemorrhagic activity of cinnamic acid analogs against Protobothrops flavoviridis (Habu) venom, it was revealed that the presence of the E-enoic acid moiety (-CH=CH-COOH) was critical. Furthermore, among the compound tested, it was concluded that rosmarinic acid (1) (IC(50) 0.15 μM) was the most potent inhibitor against the venom.

  5. Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections

    SciTech Connect

    Montgomery, Justin I.; Brown, Matthew F.; Reilly, Usa; Price, Loren M.; Abramite, Joseph A.; Arcari, Joel; Barham, Rose; Che, Ye; Chen, Jinshan Michael; Chung, Seung Won; Collantes, Elizabeth M.; Desbonnet, Charlene; Doroski, Matthew; Doty, Jonathan; Engtrakul, Juntyma J.; Harris, Thomas M.; Huband, Michael; Knafels, John D.; Leach, Karen L.; Liu, Shenping; Marfat, Anthony; McAllister, Laura; McElroy, Eric; Menard, Carol A.; Mitton-Fry, Mark; Mullins, Lisa; Noe, Mark C.; O’Donnell, John; Oliver, Robert; Penzien, Joseph; Plummer, Mark; Shanmugasundaram, Veerabahu; Thoma, Christy; Tomaras, Andrew P.; Uccello, Daniel P.; Vaz, Alfin; Wishka, Donn G.

    2012-11-09

    The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.

  6. Cadmium inhibits acid secretion in stimulated frog gastric mucosa

    SciTech Connect

    Gerbino, Andrea; Debellis, Lucantonio; Caroppo, Rosa; Curci, Silvana; Colella, Matilde

    2010-06-01

    Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (I{sub sc}), transepithelial potential (V{sub t}) and resistance (R{sub t}) were recorded in the continuous presence of cadmium. Addition of cadmium (20 {mu}M to 1 mM) on the serosal but not luminal side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in I{sub sc} cannot be explained by an action on: 1) H{sub 2} histamine receptor, 2) Ca{sup 2+} signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H{sup +}/K{sup +}-ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H{sup +}/K{sup +}-ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.

  7. Discovery of novel hydroxamates as highly potent tumor necrosis factor-[alpha] converting enzyme inhibitors. Part II: Optimization of the S3′ pocket

    SciTech Connect

    Mazzola Jr., Robert D.; Zhu, Zhaoning; Sinning, Lisa; McKittrick, Brian; Lavey, Brian; Spitler, James; Kozlowski, Joseph; Neng-Yang, Shih; Zhou, Guowei; Guo, Zhuyan; Orth, Peter; Madison, Vincent; Sun, Jing; Lundell, Daniel; Niu, Xiaoda

    2010-10-01

    A series of cyclopropyl hydroxamic acids were prepared. Many of the compounds displayed picomolar affinity for the TACE enzyme while maintaining good to excellent selectivity profiles versus MMP-1, -2, -3, -7, -14, and ADAM-10. X-ray analysis of an inhibitor in the TACE active site indicated that the molecules bound to the enzyme in the S1{prime}-S3{prime} pocket.

  8. Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid

    SciTech Connect

    Dabbs, Daniel M.; Ramachandran, Usha; Lu, Sang; Liu, Jun; Wang, Li Q.; Aksay, Ilhan A.

    2005-12-06

    Citric acid has been shown to act as an agent for increasing the solubility of aluminum oxyhydroxides in aqueous solutions of high (>2.47 mol/mol) hydroxide-to-aluminum ratios. Conversely, citric acid also colloidally stabilizes particles in aqueous suspensions of aluminum-containing particles. Solutions of aluminum chloride, with and without citric acid added, were titrated with NaO(aq). The presence and size of particles were determined using quasi-elastic light scattering. In solutions that contained no citric acid, particles formed instantaneously when NaOH(aq) was added but these were observed to rapidly diminish in size, disappearing at OH/Al ratios below 2.5 mol/mol. When the OH/Al ratio was raised beyond 2.5 by addingmoreNaOH(aq), suspensions of colloidally stable particles formed. Large polycations containing 13 aluminum atoms were detected by 27Al solution NMR in citric-acid-free solutions with OH/Al ratios slightly lower than 2.5. In comparison, adding citric acid to solutions of aluminum chloride inhibited the formation of large aluminum-containing polycations. The absence of the polycations prevents or retards the subsequent formation of particles, indicating that the polycations, when present, act as seeds to the formation of new particles. Particles did not form in solutions with a citric acid/aluminum ratio of 0.8 until sufficient NaOH(aq) was added to raise the OH/Al ratio to 3.29. By comparison, lower amounts of citric acid did not prevent particles from forming but did retard the rate of growth.

  9. Inhibition of Escherichia coli growth and diaminopimelic acid epimerase by 3-chlorodiaminopimelic acid.

    PubMed Central

    Baumann, R J; Bohme, E H; Wiseman, J S; Vaal, M; Nichols, J S

    1988-01-01

    The diaminopimelic acid (DAP) analog, 3-chloro-DAP, was synthesized and tested as the racemic acid for antibacterial activity and for inhibition of DAP epimerase. 3-Chloro-DAP was a potent inhibitor of DAP epimerase purified from Escherichia coli (Ki = 200 nM), and it is argued that 3-chloro-DAP is converted to a tight-binding transition state analog at the active site of this enzyme. Furthermore, 3-chloro-DAP inhibited growth of two E. coli mutants. In one of the mutants known for supersusceptibility to beta-lactams, inhibition was not seen until the mid-log phase of growth, while in the other mutant, a DAP auxotroph, inhibition occurred much earlier. Growth inhibition was reversed by DAP in both strains. In the auxotroph, the reversal was specific for meso-DAP, indicating that DAP epimerase was the target for 3-chloro-DAP. Thus we suggest a novel mechanism of bacterial growth inhibition which depends on DAP epimerase inhibition by a DAP analog. PMID:3056252

  10. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  11. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid.

    PubMed Central

    Doares, S. H.; Narvaez-Vasquez, J.; Conconi, A.; Ryan, C. A.

    1995-01-01

    Salicylic acid (SA) and acetylsalicylic acid (ASA), previously shown to inhibit proteinase inhibitor synthesis induced by wounding, oligouronides (H.M. Doherty, R.R. Selvendran, D.J. Bowles [1988] Physiol Mol Plant Pathol 33: 377-384), and linolenic acid (H. Pena-Cortes, T. Albrecht, S. Prat, E.W. Weiler, L. Willmitzer [1993] Planta 191: 123-128), are shown here to be potent inhibitors of systemin-induced and jasmonic acid (JA)-induced synthesis of proteinase inhibitor mRNAs and proteins. The inhibition by SA and ASA of proteinase inhibitor synthesis induced by systemin and JA, as well as by wounding and oligosaccharide elicitors, provides further evidence that both oligosaccharide and polypeptide inducer molecules utilize the octadecanoid pathway to signal the activation of proteinase inhibitor genes. Tomato (Lycopersicon esculentum) leaves were pulse labeled with [35S]methionine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the inhibitory effects of SA are shown to be specific for the synthesis of a small number of JA-inducible proteins that includes the proteinase inhibitors. Previous results have shown that SA inhibits the conversion of 13S-hydroperoxy linolenic acid to 12-oxo-phytodienoic acid, thereby inhibiting the signaling pathway by blocking synthesis of JA. Here we report that the inhibition of synthesis of proteinase inhibitor proteins and mRNAs by SA in both light and darkness also occurs at a step in the signal transduction pathway, after JA synthesis but preceding transcription of the inhibitor genes. PMID:12228577

  12. Hyperbaric hyperoxia reversibly inhibits erythrocyte phospholipid fatty acid turnover

    NASA Technical Reports Server (NTRS)

    Dise, Craig A.; Clark, James M.; Lambersten, Christian J.; Goodman, David B. P.

    1987-01-01

    The effect of hyperbaric hyperoxia on the acylation of membrane phospholipid was studied by measuring the rates of activation of exogenous tritiated oleic acid to acyl thioester and of transesterification of the thioester into membrane phospholipids in intact human erythrocytes obtained 1 h after an exposure of the subjects to a hyperbaric oxygen atmosphere (3.5 h, 100 pct O2, 3 ATA). Exposure to pure oxygen was found to inhibit both the acylation and transesterification reactions by more than 30 percent, with partial recovery detected 24 h later. On the other hand, no rate changes were observed when isolated membranes from the same batches of cells were used in similar experiments. It is suggested that the decrease in the incorporation of tritiated oleic acid after hyperbaric hyperoxia may reflect an early event in the pathogenesis of oxygen-induced cellular injury and that it may be a useful index for the assessment of the tolerance of tissues to hyperoxia.

  13. Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia.

    PubMed

    Sinha, Siddharth; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Somvanshi, Pallavi; Grover, Abhinav

    2016-10-01

    Expansion of polyglutamine (CAG) triplets within the coding gene ataxin 2 results in transcriptional repression, forming the molecular basis of the neurodegenerative disorder named spinocerebellar ataxia type-2 (SCA2). HDAC inhibitors (HDACi) have been elements of great interest in polyglutamine disorders such as Huntington's and Ataxia's. In this study, we have selected hydroxamic acid derivatives as HDACi and performed fragment-based G-QSAR, molecular docking studies and molecular dynamics simulations for elucidating the dynamic mode of action of HDACi with His-Asp catalytic dyad of HDAC4. The model was statistically validated to establish its predictive robustness. The model was statistically significant with r(2) value of .6297, cross-validated co-relation coefficient q(2) value of .5905 and pred_r(2) (predicted square co-relation coefficient) value of .85. An F-test value of 56.11 confirms absolute robustness of the model. Two combinatorial libraries comprising of 3180 compounds were created with hydroxamate moiety as the template and their pIC50 activities were predicted based on the G-QSAR model. The combinatorial library created was screened on the basis of predicted activity (pIC50), with two resultant top scoring compounds, HIC and DHC. The interaction of the compounds with His-Asp dyad in terms of H-bond interactions with His802, Asp840, Pro942, and Gly975 residues of HDAC4 was evaluated by docking and 20 ns long molecular dynamics simulations. This study provides valuable leads for structural substitutions required for hydroxamate moiety to exhibit enhanced inhibitory activity against HDAC4. The reported compounds demonstrated good binding and thus can be considered as potent therapeutic leads against ataxia. PMID:26510381

  14. Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia.

    PubMed

    Sinha, Siddharth; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Somvanshi, Pallavi; Grover, Abhinav

    2016-10-01

    Expansion of polyglutamine (CAG) triplets within the coding gene ataxin 2 results in transcriptional repression, forming the molecular basis of the neurodegenerative disorder named spinocerebellar ataxia type-2 (SCA2). HDAC inhibitors (HDACi) have been elements of great interest in polyglutamine disorders such as Huntington's and Ataxia's. In this study, we have selected hydroxamic acid derivatives as HDACi and performed fragment-based G-QSAR, molecular docking studies and molecular dynamics simulations for elucidating the dynamic mode of action of HDACi with His-Asp catalytic dyad of HDAC4. The model was statistically validated to establish its predictive robustness. The model was statistically significant with r(2) value of .6297, cross-validated co-relation coefficient q(2) value of .5905 and pred_r(2) (predicted square co-relation coefficient) value of .85. An F-test value of 56.11 confirms absolute robustness of the model. Two combinatorial libraries comprising of 3180 compounds were created with hydroxamate moiety as the template and their pIC50 activities were predicted based on the G-QSAR model. The combinatorial library created was screened on the basis of predicted activity (pIC50), with two resultant top scoring compounds, HIC and DHC. The interaction of the compounds with His-Asp dyad in terms of H-bond interactions with His802, Asp840, Pro942, and Gly975 residues of HDAC4 was evaluated by docking and 20 ns long molecular dynamics simulations. This study provides valuable leads for structural substitutions required for hydroxamate moiety to exhibit enhanced inhibitory activity against HDAC4. The reported compounds demonstrated good binding and thus can be considered as potent therapeutic leads against ataxia.

  15. Zinc cross-linked hydroxamated alginates for pulsed drug release

    PubMed Central

    Raut, Neha S; Deshmukh, Prasad R; Umekar, Milind J; Kotagale, Nandkishor R

    2013-01-01

    Introduction: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. Materials And Methods: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were subsequently complexed with zinc to form beads. Hydroxamation of sodium alginate was confirmed by Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: The synthesized polymeric material exhibited reduced aqueous, HCl and NaOH solubility. The hydroxamated derivatives demonstrated pulsed release where change in pH of the dissolution medium stimulated the atenolol release. Conclusion: Atenolol loaded Zn cross-linked polymeric beads demonstrated the sustained the plasma drug levels with increased half-life. Although the synthesized derivatives greatly altered the aqueous solubility of sodium alginate, no significant differences in in vitro and in vivo atenolol release behavior amongst the N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were observed. PMID:24350039

  16. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  17. Asiatic acid inhibits pulmonary inflammation induced by cigarette smoke.

    PubMed

    Lee, Jae-Won; Park, Hyun Ah; Kwon, Ok-Kyoung; Jang, Yin-Gi; Kim, Ju Yeong; Choi, Bo Kyung; Lee, Hee Jae; Lee, Sangwoo; Paik, Jin-Hyub; Oh, Sei-Ryang; Ahn, Kyung-Seop; Lee, Hyun-Jun

    2016-10-01

    Asiatic acid (AA) is one of the major components of Titrated extract of Centella asiatica (TECA), which has been reported to possess antioxidant and anti-inflammatory activities. The purpose of this study was to investigate the protective effect of AA on pulmonary inflammation induced by cigarette smoke (CS). AA significantly attenuated the infiltration of inflammatory cells in bronchoalveolar lavage fluid (BALF) of CS exposure mice. AA also decreased ROS production and NE activity, and inhibited the release of proinflammatory cytokines in BALF. AA reduced the recruitment of inflammatory cells and MCP-1 expression in lung tissue of CS exposure mice. AA also attenuated mucus overproduction, and decreased the activation of MAPKs and NF-kB in lung tissue. Furthermore, AA increased HO-1 expression and inhibited the reduced expression of SOD3 in lung tissue. These findings indicate that AA effectively inhibits pulmonary inflammatory response, which is an important process in the development of chronic obstructive pulmonary disease (COPD) via suppression of inflammatory mediators and induction of HO-1. Therefore, we suggest that AA has the potential to treat inflammatory disease such as COPD.

  18. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons

    PubMed Central

    Beckmann, Nadine; Sharma, Deepa; Gulbins, Erich; Becker, Katrin Anne; Edelmann, Bärbel

    2014-01-01

    Amitriptyline, a tricyclic antidepressant, has been used in the clinic to treat a number of disorders, in particular major depression and neuropathic pain. In the 1970s the ability of tricyclic antidepressants to inhibit acid sphingomyelinase (ASM) was discovered. The enzyme ASM catalyzes the hydrolysis of sphingomyelin to ceramide. ASM and ceramide were shown to play a crucial role in a wide range of diseases, including cancer, cystic fibrosis, diabetes, Alzheimer's disease, and major depression, as well as viral (e.g., measles virus) and bacterial (e.g., Staphylococcus aureus, Pseudomonas aeruginosa) infections. Ceramide molecules may act in these diseases by the alteration of membrane biophysics, the self-association of ceramide molecules within the cell membrane and the ultimate formation of larger ceramide-enriched membrane domains/platforms. These domains were shown to serve the clustering of certain receptors such as CD95 and may also act in the above named diseases. The potential to block the generation of ceramide by inhibiting the ASM has opened up new therapeutic approaches for the treatment of these conditions. Since amitriptyline is one of the longest used clinical drugs and side effects are well studied, it could potentially become a cheap and easily accessible medication for patients suffering from these diseases. In this review, we aim to provide an overview of current in vitro and in vivo studies and clinical trials utilizing amitriptyline to inhibit ASM and contemplate possible future applications of the drug. PMID:25228885

  19. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis.

    PubMed

    Luo, Xingju; Chen, Zhizhong; Gao, Junping; Gong, Zhizhong

    2014-07-01

    When first discovered in 1963, abscisic acid (ABA) was called abscisin II because it promotes abscission. Later, researchers found that ABA accelerates abscission via ethylene. In Arabidopsis, previous studies have shown that high concentrations of ABA inhibit root growth through ethylene signaling but not ethylene production. In the present study in Arabidopsis, we found that ABA inhibits root growth by promoting ethylene biosynthesis. The ethylene biosynthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine reduces ABA inhibition of root growth, and multiple mutants of ACS (1-aminocyclopropane-1-carboxylate synthase) are more resistant to ABA in terms of root growth than the wild-type is. Two ABA-activated calcium-dependent protein kinases, CPK4 and CPK11, phosphorylate the C-terminus of ACS6 and increase the stability of ACS6 in ethylene biosynthesis. Plants expressing an ACS6 mutant that mimics the phosphorylated form of ACS6 produce more ethylene than the wild-type. Our results reveal an important mechanism by which ABA promotes ethylene production. This mechanism may be highly conserved among higher plants.

  20. Kinetic-spectrophotometric determination of ascorbic acid by inhibition of the hydrochloric acid-bromate reaction

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Rezaei, B.; Movahedinia, H.

    2002-10-01

    A new analytical method was developed for the determination of ascorbic acid in fruit juice and pharmaceuticals. The method is based on its inhibition effect on the reaction between hydrochloric acid and bromate. The decolourisation of Methyl Orange by the reaction products was used to monitor the reaction spectrophotometrically at 510 nm. The linearity range of the calibration graph depends on bromate concentration. The variable affecting the rate of the reaction was investigated. The method is simple, rapid, relatively sensitive and precise. The limit of detection is 7.6×10 -6 M and calibration rang is 8×10 -6-1.2×10 -3 M ascorbic acid. The relative standard deviation of seven replication determinations of 8×10 -6 and 2×10 -5 M ascorbic acid was 2.8 and 1.7%, respectively. The influence of potential interfering substance was studied. The method was successfully applied for the determination of ascorbic acid in pharmaceuticals.

  1. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    SciTech Connect

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L.; Giavini, Erminio; Menegola, Elena . E-mail: elena.menegola@unimi.it

    2007-04-15

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor {alpha} = 0.51 and maximum velocity by a factor {beta} = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations.

  2. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    SciTech Connect

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  3. Perfluoroalkyl Acids Inhibit Reductive Dechlorination of Trichloroethene by Repressing Dehalococcoides.

    PubMed

    Weathers, Tess S; Harding-Marjanovic, Katie; Higgins, Christopher P; Alvarez-Cohen, Lisa; Sharp, Jonathan O

    2016-01-01

    The subsurface recalcitrance of perfluoroalkyl acids (PFAAs) derived from aqueous film-forming foams could have adverse impacts on the microbiological processes used for the bioremediation of co-mingled chlorinated solvents such as trichloroethene (TCE). Here, we show that reductive dechlorination by a methanogenic, mixed culture was significantly inhibited when exposed to concentrations representative of PFAA source zones (>66 mg/L total of 11 PFAA analytes, 6 mg/L each). TCE dechlorination, cis-dichloroethene and vinyl chloride production and dechlorination, and ethene generation were all inhibited at these PFAA concentrations. Phylogenetic analysis revealed that the abundances of 65% of the operational taxonomic units (OTUs) changed significantly when grown in the presence of PFAAs, although repression or enhancement resulting from PFAA exposure did not correlate with putative function or phylogeny. Notably, there was significant repression of Dehalococcoides (8-fold decrease in abundance) coupled with a corresponding enhancement of methane-generating Archaea (a 9-fold increase). Growth and dechlorination by axenic cultures of Dehalococcoides mccartyi strain 195 were similarly repressed under these conditions, confirming an inhibitory response of this pivotal genus to PFAA presence. These results suggest that chlorinated solvent bioattenuation rates could be impeded in subsurface environments near PFAA source zones. PMID:26636352

  4. Inhibition of the Hematopoietic Protein Tyrosine Phosphatase by Phenoxyacetic Acids.

    PubMed

    Bobkova, Ekaterina V; Liu, Wallace H; Colayco, Sharon; Rascon, Justin; Vasile, Stefan; Gasior, Carlton; Critton, David A; Chan, Xochella; Dahl, Russell; Su, Ying; Sergienko, Eduard; Chung, Thomas D Y; Mustelin, Tomas; Page, Rebecca; Tautz, Lutz

    2011-02-01

    Protein tyrosine phosphatases (PTPs) have only recently become the focus of attention in the search for novel drug targets despite the fact that they play vital roles in numerous cellular processes and are implicated in many human diseases. The hematopoietic protein tyrosine phosphatase (HePTP) is often found dysregulated in preleukemic myelodysplastic syndrome (MDS), as well as in acute myelogenous leukemia (AML). Physiological substrates of HePTP include the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Specific modulators of HePTP catalytic activity will be useful for elucidating mechanisms of MAPK regulation in hematopietic cells, and may also provide treatments for hematopoietic malignancies such as AML. Here we report the discovery of phenoxyacetic acids as inhibitors of HePTP. Structure-activity relationship (SAR) analysis and in silico docking studies reveal the molecular basis of HePTP inhibition by these compounds. We also show that these compounds are able to penetrate cell membranes and inhibit HePTP in human T lymphocytes.

  5. Ursolic acid and oleanolic acid from Eriobotrya fragrans inhibited the viability of A549 cells.

    PubMed

    Yuan, Yuan; Gao, Yongshun; Song, Gang; Lin, Shunquan

    2015-02-01

    Loquat {Eriobotrya japonica (Lindl.)}, a kind of Chinese herb, has many efficacies such as anti-inflammatory, antimicrobial and curing chronic bronchitis. However, reports on the pharmacological action of wild loquat extract are limited. In this work, the A549 cell line was selected to study the inhibitory effect of ursolic acid and oleanolic acid (UA, OA) from the leaves of E. fragrans. Results showed that UA/OA inhibited A549 cell viability and induced apoptosis in a dose and time dependent manner. The cell fraction in the G0/G1 phase dramatically increased under treatment with UA/OA. Data showed that UA activated the expression of PARP. UA and OA down-regulated MMP-2 and Bcl-2; on the contrary, they up-regulated Bid. This work demonstrated that UA/OA extracted from wild loquat leaves can significantly inhibit the viability of A549 cells.

  6. Selective flotation of phosphate minerals with hydroxamate collectors

    DOEpatents

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  7. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  8. Amino acids inhibit kynurenic acid formation via suppression of kynurenine uptake or kynurenic acid synthesis in rat brain in vitro.

    PubMed

    Sekine, Airi; Okamoto, Misaki; Kanatani, Yuka; Sano, Mitsue; Shibata, Katsumi; Fukuwatari, Tsutomu

    2015-01-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor at endogenous brain concentrations. Recent studies have suggested that increase of brain KYNA levels is involved in psychiatric disorders such as schizophrenia and depression. KYNA-producing enzymes have broad substrate specificity for amino acids, and brain uptake of kynurenine (KYN), the immediate precursor of KYNA, is via large neutral amino acid transporters (LAT). In the present study, to find out amino acids with the potential to suppress KYNA production, we comprehensively investigated the effects of proteinogenic amino acids on KYNA formation and KYN uptake in rat brain in vitro. Cortical slices of rat brain were incubated for 2 h in Krebs-Ringer buffer containing a physiological concentration of KYN with individual amino acids. Ten out of 19 amino acids (specifically, leucine, isoleucine, phenylalanine, methionine, tyrosine, alanine, cysteine, glutamine, glutamate, and aspartate) significantly reduced KYNA formation at 1 mmol/L. These amino acids showed inhibitory effects in a dose-dependent manner, and partially inhibited KYNA production at physiological concentrations. Leucine, isoleucine, methionine, phenylalanine, and tyrosine, all LAT substrates, also reduced tissue KYN concentrations in a dose-dependent manner, with their inhibitory rates for KYN uptake significantly correlated with KYNA formation. These results suggest that five LAT substrates inhibit KYNA formation via blockade of KYN transport, while the other amino acids act via blockade of the KYNA synthesis reaction in brain. Amino acids can be a good tool to modulate brain function by manipulation of KYNA formation in the brain. This approach may be useful in the treatment and prevention of neurological and psychiatric diseases associated with increased KYNA levels.

  9. Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity.

    PubMed

    Kong, Lingbao; Li, Shanshan; Liao, Qingjiao; Zhang, Yanni; Sun, Ruina; Zhu, Xiangdong; Zhang, Qinghua; Wang, Jun; Wu, Xiaoyu; Fang, Xiaonan; Zhu, Ying

    2013-04-01

    Hepatitis C virus (HCV) infects up to 170 million people worldwide and causes significant morbidity and mortality. Unfortunately, current therapy is only curative in approximately 50% of HCV patients and has adverse side effects, which warrants the need to develop novel and effective antivirals against HCV. We have previously reported that the Chinese herb Fructus Ligustri Lucidi (FLL) directly inhibited HCV NS5B RNA-dependent RNA polymerase (RdRp) activity (Kong et al., 2007). In this study, we found that the FLL aqueous extract strongly suppressed HCV replication. Further high-performance liquid chromatography (HPLC) analysis combined with inhibitory assays indicates that oleanolic acid and ursolic acid are two antiviral components within FLL aqueous extract that significantly suppressed the replication of HCV genotype 1b replicon and HCV genotype 2a JFH1 virus. Moreover, oleanolic acid and ursolic acid exhibited anti-HCV activity at least partly through suppressing HCV NS5B RdRp activity as noncompetitive inhibitors. Therefore, our results for the first time demonstrated that natural products oleanolic acid and ursolic acid could be used as potential HCV antivirals that can be applied to clinic trials either as monotherapy or in combination with other HCV antivirals. PMID:23422646

  10. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  11. Liver acid sphingomyelinase inhibits growth of metastatic colon cancer.

    PubMed

    Osawa, Yosuke; Suetsugu, Atsushi; Matsushima-Nishiwaki, Rie; Yasuda, Ichiro; Saibara, Toshiji; Moriwaki, Hisataka; Seishima, Mitsuru; Kozawa, Osamu

    2013-02-01

    Acid sphingomyelinase (ASM) regulates the homeostasis of sphingolipids, including ceramides and sphingosine-1-phosphate (S1P). These sphingolipids regulate carcinogenesis and proliferation, survival, and apoptosis of cancer cells. However, the role of ASM in host defense against liver metastasis remains unclear. In this study, the involvement of ASM in liver metastasis of colon cancer was examined using Asm-/- and Asm+/+ mice that were inoculated with SL4 colon cancer cells to produce metastatic liver tumors. Asm-/- mice demonstrated enhanced tumor growth and reduced macrophage accumulation in the tumor, accompanied by decreased numbers of hepatic myofibroblasts (hMFs), which express tissue inhibitor of metalloproteinase 1 (TIMP1), around the tumor margin. Tumor growth was increased by macrophage depletion or by Timp1 deficiency, but was decreased by hepatocyte-specific ASM overexpression, which was associated with increased S1P production. S1P stimulated macrophage migration and TIMP1 expression in hMFs in vitro. These findings indicate that ASM in the liver inhibits tumor growth through cytotoxic macrophage accumulation and TIMP1 production by hMFs in response to S1P. Targeting ASM may represent a new therapeutic strategy for treating liver metastasis of colon cancer.

  12. Cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    End-product inhibition by cellobiose and glucose is a rate-limiting factor in cellulose hydrolysis by cellulases. While cellobiose and glucose inhibition have been extensively investigated, cellobionate inhibition has been minimally studied despite the discovery that accessory proteins such as cello...

  13. Fish oil constituent docosahexa-enoic acid selectively inhibits growth of human papillomavirus immortalized keratinocytes.

    PubMed

    Chen, D; Auborn, K

    1999-02-01

    The omega-3-fatty acids inhibit proliferation of breast cancer cells whereas omega-6-fatty acids stimulate growth. In this study, we examined effects of these fatty acids on human pre-cancerous cells. Cervical keratinocytes, immortalized with the oncogenic human papillomavirus (HPV) type 16, were treated with linoleic acid, an omega-6-fatty acid, and the omega-3-fatty acids, eicosapentaenoic and docosahexaenoic acids. Using both cell counts and bromodeoxyuridine incorporation, docosahexaenoic acid inhibited growth of these cells to a greater extent than eicosapenta-enoic acid. Linoleic acid had no effect. The effect of docosahexaenoic acid was dose dependent and caused growth arrest. Docosahexaenoic acid inhibited growth of HPV16 immortalized foreskin keratinocytes and laryngeal keratinocytes grown from explants of benign tumors caused by papillomavirus, but had no effect on normal foreskin and laryngeal keratinocytes. Docosahexaenoic acid inhibited growth in the presence of estradiol, a growth stimulator for these cells. Indomethacin, a cyclooxygenase inhibitor like docosahexaenoic acid, had only minimal effect on growth. Alpha-tocopherol, a peroxidation inhibitor, abrogated effects of docosahexaenoic acid implying that inhibitory effects were via lipid peroxidation. PMID:10069461

  14. Wall teichoic acid protects Staphylococcus aureus from inhibition by Congo red and other dyes

    PubMed Central

    Suzuki, Takashi; Campbell, Jennifer; Kim, Younghoon; Swoboda, Jonathan G.; Mylonakis, Eleftherios; Walker, Suzanne; Gilmore, Michael S.

    2012-01-01

    Objectives Polyanionic polymers, including lipoteichoic acid and wall teichoic acid, are important determinants of the charged character of the staphylococcal cell wall. This study was designed to investigate the extent to which teichoic acid contributes to protection from anionic azo dyes and to identify barriers to drug penetration for development of new antibiotics for multidrug-resistant Staphylococcus aureus infection. Methods We studied antimicrobial activity of azo dyes against S. aureus strains with or without inhibition of teichoic acid in vitro and in vivo. Results We observed that inhibition of wall teichoic acid expression resulted in an ∼1000-fold increase in susceptibility to azo dyes such as Congo red, reducing its MIC from >1024 to <4 mg/L. Sensitization occurred when the first step in the wall teichoic acid pathway, catalysed by TarO, was inhibited either by mutation or by chemical inhibition. In contrast, genetic blockade of lipoteichoic acid biosynthesis did not confer Congo red susceptibility. Based on this finding, combination therapy was tested using the highly synergistic combination of Congo red plus tunicamycin at sub-MIC concentrations (to inhibit wall teichoic acid biosynthesis). The combination rescued Caenorhabditis elegans from a lethal challenge of S. aureus. Conclusions Our studies show that wall teichoic acid confers protection to S. aureus from anionic azo dyes and related compounds, and its inhibition raises the prospect of development of new combination therapies based on this inhibition. PMID:22615298

  15. Caffeic acid phenethyl ester inhibits liver fibrosis in rats

    PubMed Central

    Li, Mei; Wang, Xiu-Fang; Shi, Juan-Juan; Li, Ya-Ping; Yang, Ning; Zhai, Song; Dang, Shuang-Suo

    2015-01-01

    AIM: To investigate the hepatoprotective effects and antioxidant activity of caffeic acid phenethyl ester (CAPE) in rats with liver fibrosis. METHODS: A total of 75 male Sprague-Dawley rats were randomly assigned to seven experimental groups: a normal group (n = 10), a vehicle group (n = 10), a model group (n = 15), a vitamin E group (n = 10), and three CAPE groups (CAPE 3, 6 and 12 mg/kg, n = 10, respectively). Liver fibrosis was induced in rats by injecting CCl4 subcutaneously, feeding with high fat forage, and administering 30% alcohol orally for 10 wk. Concurrently, CAPE (3, 6 and 12 mg/kg) was intraperitoneally administered daily for 10 wk. After that, serum total bilirubin (TBil), aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured to assess hepatotoxicity. To investigate antioxidant activity of CAPE, malondialdehyde (MDA), glutathione (GSH) levels, catalase (CAT) and superoxide dismutase (SOD) activities in liver tissue were determined. Moreover, the effect of CAPE on α-smooth muscle actin (α-SMA), a characteristic hallmark of activated hepatic stellate cells (HSCs), and NF-E2-related factor 2 (Nrf2), a key transcription factor for antioxidant systems, was investigated by immunohistochemistry. RESULTS: Compared to the model group, intraperitoneal administration of CAPE decreased TBil, ALT, and AST levels in liver fibrosis rats (P < 0.05), while serum TBil was decreased by CAPE in a dose-dependent manner. In addition, the liver hydroxyproline contents in both the 6 and 12 mg/kg CAPE groups were markedly lower than that in the model group (P < 0.05 and P < 0.001, respectively). CAPE markedly decreased MDA levels and, in turn, increased GSH levels, as well as CAT and SOD activities in liver fibrosis rats compared to the model group (P < 0.05). Moreover, CAPE effectively inhibited α-SMA expression while increasing Nrf2 expression compared to the model group (P < 0.01). CONCLUSION: The protective effects of CAPE against liver

  16. 3,5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes.

    PubMed

    Liu, Changlu; Kuei, Chester; Zhu, Jessica; Yu, Jingxue; Zhang, Li; Shih, Amy; Mirzadegan, Taraneh; Shelton, Jonathan; Sutton, Steven; Connelly, Margery A; Lee, Grace; Carruthers, Nicholas; Wu, Jiejun; Lovenberg, Timothy W

    2012-06-01

    Niacin raises high-density lipoprotein and lowers low-density lipoprotein through the activation of the β-hydroxybutyrate receptor hydroxycarboxylic acid 2 (HCA2) (aka GPR109a) but with an unwanted side effect of cutaneous flushing caused by vascular dilation because of the stimulation of HCA2 receptors in Langerhans cells in skin. HCA1 (aka GPR81), predominantly expressed in adipocytes, was recently identified as a receptor for lactate. Activation of HCA1 in adipocytes by lactate results in the inhibition of lipolysis, suggesting that agonists for HCA1 may be useful for the treatment of dyslipidemia. Lactate is a metabolite of glucose, suggesting that HCA1 may also be involved in the regulation of glucose metabolism. The low potency of lactate to activate HCA1, coupled with its fast turnover rate in vivo, render it an inadequate tool for studying the biological role of lactate/HCA1 in vivo. In this article, we demonstrate the identification of 3-hydroxybenzoic acid (3-HBA) as an agonist for both HCA2 and HCA1, whereas 3,5-dihydroxybenzoic acid (3,5-DHBA) is a specific agonist for only HCA1 (EC(50) ∼150 μM). 3,5-DHBA inhibits lipolysis in wild-type mouse adipocytes but not in HCA1-deficient adipocytes. Therefore, 3,5-DHBA is a useful tool for the in vivo study of HCA1 function and offers a base for further HCA1 agonist design. Because 3-HBA and 3,5-DHBA are polyphenolic acids found in many natural products, such as fruits, berries, and coffee, it is intriguing to speculate that other heretofore undiscovered natural substances may have therapeutic benefits.

  17. Hydroxamate based inhibitors of adenylyl cyclase. Part 2: the effect of cyclic linkers on P-site binding.

    PubMed

    Levy, Daniel; Bao, Ming; Tomlinson, James; Scarborough, Robert

    2002-11-01

    The adenylyl cyclases (ACs) are a family of enzymes that are key elements of signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the purine binding site (P-site) followed by metal mediated cyclization with loss of pyrophosphate. Previous work in our group identified novel inhibitors which possess an adenine ring joined to a metal-coordinating hydroxamic acid through flexible linkers. Considering the spatial positioning of the metals with respect to the adenine binding site coupled with potentially favorable entropic factors, conformational restriction of the tether through a stereochemistry based SAR employing a rigid cyclic scaffold was explored. PMID:12372508

  18. Simultaneous inhibition of carbon and nitrogen mineralization in a forest soil by simulated acid precipitation

    SciTech Connect

    Klein, T.M.; Novick, N.J.; Kreitinger, J.P.; Alexander, M.

    1984-06-01

    One method to simulate the long-term exposure of soil to acid rain involves the addition of single doses of concentrated acid. The inhibition of carbon mineralization accompanied by a stimulation of nitrogen mineralization may result from this severe, unnatural treatment. The present study was designed to determine whether the inhibition of carbon mineralization and the accompanying enhanced nitrogen mineralization would occur when soils are treated with more dilute acid for long periods of time, as takes place in nature.

  19. Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedling

    SciTech Connect

    Vierstra, R.D.; Poff, K.L.

    1981-05-01

    Using geotropism as a control for phototropism, compounds similar to phenylacetic acid that phototreact with flavins and/or have auxin-like activity were examined for their ability to specifically inhibit phototropism in corn seedlings using geotropism as a control. Results using indole-3-acetic acid, napthalene-1-acetic acid, naphthalene-2-acetic acid, phenylacetic acid, and ..beta..-phenylpyruvic acid suggest that such compounds will specifically inhibit phototropism primarily because of their photoreactivity with flavins and not their auxin activity. In addition, the in vivo concentration of phenylacetic acid required to induce specificity was well below that required to stimulate coleoptile growth. Estimates of the percentage of photoreceptor pigment inactivated by phenylacetic acid (>10%) suggest that phenylacetic acid could be used to photoaffinity label the flavoprotein involved in corn seedling phototropism.

  20. Kinetic study of oxalic acid inhibition on enzymatic browning.

    PubMed

    Son, S M; Moon, K D; Lee, C Y

    2000-06-01

    Oxalic acid has a strong antibrowning activity. The inhibitory pattern on catechol-PPO model system appeared to be competitive, with a K(i) value of 2.0 mM. When the PPO was incubated with oxalic acid, the activity was not recovered via dialysis, but the inactivated enzyme partially recovered its activity when cupric ion was added. Comparing the relative antibrowning effectiveness of oxalic acid with other common antibrowning agents, oxalic acid with I(50) value of 1.1 mM is as effective as kojic acid and more potent than cysteine and glutathione.

  1. Piperazic acid derivatives inhibit Gli1 in Hedgehog signaling pathway.

    PubMed

    Khatra, Harleen; Kundu, Jayanta; Khan, Pragya Paramita; Duttagupta, Indranil; Pattanayak, Sankha; Sinha, Surajit

    2016-09-15

    Piperazic acid, a non-proteinogenic amino acid, found in complex secondary metabolites and peptide natural substances, has shown down regulation of Gli1 expression in Hedgehog signaling pathway in cell based assays. Further structure activity relationship study indicated that amide derivatives of piperazic acid are more potent than piperazic acid itself, with little to no toxicity. However, other cellular components involved in the pathway were not affected. To the best of our knowledge, this is the first report on the inhibitory property of piperazic acid in this pathway. Hence, this molecule could serve as a useful tool for studying Hedgehog signaling. PMID:27528433

  2. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition.

    PubMed

    Mithil Kumar, N; Gupta, Sanjay Kumar; Jagadeesh, Dani; Kanny, K; Bux, F

    2015-01-01

    Polyaspartic acid (PSI) is suitable for the inhibition of inorganic scale deposition. To enhance its scale inhibition efficiency, PSI was modified by reacting aspartic acid with malic acid (MA) using thermal polycondensation polymerization. This reaction resulted in poly(aspartic acid-co-malic acid) (PSI-co-MA) dual polymer. The structural, chemical and thermal properties of the dual polymers were analysed by using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and gel permeation chromatography. The effectiveness of six different molar ratios of PSI-co-MA dual polymer for calcium carbonate and calcium sulphate scale inhibition at laboratory scale batch experiments was evaluated with synthetic brine solution at selected doses of polymer at 65-70°C by the static scale test method. The performance of PSI-co-MA dual polymer for the inhibition of calcium carbonate and calcium sulphate precipitation was compared with that of a PSI single polymer. The PSI-co-MA exhibited excellent ability to control inorganic minerals, with approximately 85.36% calcium carbonate inhibition and 100% calcium sulphate inhibition at a level of 10 mg/L PSI-co-MA, respectively. Therefore, it may be reasonably concluded that PSI-co-MA is a highly effective scale inhibitor for cooling water treatment applications.

  3. Bile acid inhibition of taurocholate uptake by rat hepatocytes: role of OH groups

    SciTech Connect

    Bellentani, S.; Hardison, W.G.M.; Marchegiano, P.; Zanasi, G.; Manenti, F.

    1987-03-01

    To define further the structural specificity of the taurocholate uptake site, the authors studied the ability of a variety of taurine-conjugated bile acids with differing hydroxyl substituents on the sterol moiety to inhibit (/sup 14/C) taurocholate uptake. Rat hepatocytes isolated by collagenase perfusion were incubated in a tris (hydroxymethyl) aminomethane-phosphate buffer containing (/sup 14/C)taurocholate in the presence or absence of inhibitor bile acid. Stronger inhibitors were studied at a fixed concentration of 5 ..mu..M, weaker ones at 25 ..mu..M. Initial uptake velocity was measured. Uptake velocity could then be related to taurocholate concentration and a V/sub max/ and K/sub m/ could be determined by applying a nonlinear least squares fit to the data obtained with or without inhibitor. The kinetic parameters allowed the determination of the type of inhibition and of inhibition constants (K/sub i/) of the various test bile acids. The data indicate that bile acids containing a 6- or 7-OH group exhibit competitive inhibition, whereas bile acids with no 6- or 7-OH group exhibit noncompetitive inhibition. Of the compounds exhibiting competitive inhibition, K/sub i/ varied with the number of hydroxyl groups on the sterol moiety. They conclude that the presence of absence of a 6- or 7-OH group dictates the mechanism of inhibition; the number of hydroxyl substituents determines the potency of competitive inhibition.

  4. [Inhibition of glutamine synthetase activity by biologically active derivatives of glutamic acid].

    PubMed

    Firsova, N A; Selivanova, K M; Alekseeva, L V; Evstigneeva, Z G

    1986-05-01

    The inhibition of activity of glutamine synthetase from Chlorella and porcine brain by 4-hydroxy-D-4-fluoro-D,L- and 4-amino-D,L-glutamic acids diastereoisomers was studied. Each compound was shown to exert the same inhibiting effect on glutamine synthetase from both sources. In case of threo-4-hydroxy-D-glutamic acid the inhibition of the Chlorella enzyme was of a competitive and of a completely mixed type. The enzyme inhibition by 4-fluoro-D, L-glutamic acids seemed to be of a completely non-competitive type. The Ki values for all inhibition reactions were determined. A comparison of biochemical parameters and biological activity revealed that the most effective inhibitors of the enzyme exert a most potent antitumour and antiviral action.

  5. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols.

    PubMed

    Lee, Won Jun; Zhu, Bao Ting

    2006-02-01

    We studied the modulating effects of caffeic acid and chlorogenic acid (two common coffee polyphenols) on the in vitro methylation of synthetic DNA substrates and also on the methylation status of the promoter region of a representative gene in two human cancer cells lines. Under conditions that were suitable for the in vitro enzymatic methylation of DNA and dietary catechols, we found that the presence of caffeic acid or chlorogenic acid inhibited in a concentration-dependent manner the DNA methylation catalyzed by prokaryotic M.SssI DNA methyltransferase (DNMT) and human DNMT1. The IC50 values of caffeic acid and chlorogenic acid were 3.0 and 0.75 microM, respectively, for the inhibition of M.SssI DNMT-mediated DNA methylation, and were 2.3 and 0.9 microM, respectively, for the inhibition of human DNMT1-mediated DNA methylation. The maximal in vitro inhibition of DNA methylation was approximately 80% when the highest concentration (20 microM) of caffeic acid or chlorogenic acid was tested. Kinetic analyses showed that DNA methylation catalyzed by M.SssI DNMT or human DNMT1 followed the Michaelis-Menten curve patterns. The presence of caffeic acid or chlorogenic acid inhibited DNA methylation predominantly through a non-competitive mechanism, and this inhibition was largely due to the increased formation of S-adenosyl-L-homocysteine (SAH, a potent inhibitor of DNA methylation), resulting from the catechol-O-methyltransferase (COMT)-mediated O-methylation of these dietary catechols. Using cultured MCF-7 and MAD-MB-231 human breast cancer cells, we also demonstrated that treatment of these cells with caffeic acid or chlorogenic acid partially inhibited the methylation of the promoter region of the RARbeta gene. The findings of our present study provide a general mechanistic basis for the notion that a variety of dietary catechols can function as inhibitors of DNA methylation through increased formation of SAH during the COMT-mediated O-methylation of these dietary

  6. Boric acid application guidelines for intergranular corrosion inhibition

    SciTech Connect

    Piskor, S.R. . Nuclear Services Div.)

    1990-12-01

    A significant fraction of the operating Pressurized Water Reactor steam generators have used or are using boric acid as an inhibitor to control stress corrosion cracking, intergranular attack, or denting. Boric acid is applied on line, or by means of crevice flushing, low power soaks, or a combination of these methods. When boric acid is used, it is important to have knowledge about its chemical and physical properties, its effect on corrosion, and its correct application. The data on these subjects may be found in a diversity of sources, which are often not readily available or convenient to use. In addition, new information has recently become available. This report has been prepared and revised to be comprehensive treatise on boric acid relevant to its application in nuclear steam generators. Relevant boric acid information from 1987--89 has been added to provide the latest available data from laboratory testing and power plant application. 5 figs.

  7. 2-Benzazolyl-4-Piperazin-1-Ylsulfonylbenzenecarbohydroxamic Acids as Novel Selective Histone Deacetylase-6 Inhibitors with Antiproliferative Activity

    PubMed Central

    Wang, Lei; Kofler, Marina; Brosch, Gerald; Melesina, Jelena; Sippl, Wolfgang; Martinez, Elisabeth D.; Easmon, Johnny

    2015-01-01

    We have screened our compound collection in an established cell based assay that measures the derepression of an epigenetically silenced transgene, the locus derepression assay. The screen led to the identification of 4-[4-(1-methylbenzimidazol-2-yl)piperazin-1-yl]sulfonylbenzenecarbohydroxamic acid (9b) as an active which was found to inhibit HDAC1. In initial structure activity relationships study, the 1-methylbenzimidazole ring was replaced by the isosteric heterocycles benzimidazole, benzoxazole, and benzothiazole and the position of the hydroxamic acid substituent on the phenyl ring was varied. Whereas compounds bearing a para substituted hydroxamic acid (9a-d) were active HDAC inhibitors, the meta substituted analogues (8a-d) were appreciably inactive. Compounds 9a-d selectively inhibited HDAC6 (IC50 = 0.1–1.0μM) over HDAC1 (IC50 = 0.9–6μM) and moreover, also selectively inhibited the growth of lung cancer cells vs. patient matched normal cells. The compounds induce a cell cycle arrest in the S-phase while induction of apoptosis is neglible as compared to controls. Molecular modeling studies uncovered that the MM-GBSA energy for interaction of 9a-d with HDAC6 was higher than for HDAC1 providing structural rationale for the HDAC6 selectivity. PMID:26698121

  8. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    SciTech Connect

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  9. Inhibition of ultraviolet-B skin carcinogenesis by all-trans-retinoic acid regimens that inhibit ornithine decarboxylase induction

    SciTech Connect

    Connor, M.J.; Lowe, N.J.; Breeding, J.H.; Chalet, M.

    1983-01-01

    There is a correlation between the ability to induce the polyamine-biosynthetic enzyme ornithine decarboxylase (ODC) and the tumor-promoting ability of various carcinogens in mouse epidermis. Some agents which inhibit skin carcinogenesis also inhibit ODC induction. In this study, all-trans-retinoic acid (RA) regimens that inhibited the induction of epidermal ODC by ultraviolet-B (UVB) were tested for their ability to inhibit UVB skin carcinogenesis. Hairless mice were irradiated once daily with UVB for 20 days, receiving a total dose of UVB (17.1 kJ/sq m). Topical RA was applied immediately (RA, one dose) or applied 0, 1, 2, 3, and 4 hr (RA, five doses) after each irradiance. The mice were maintained for 52 weeks and then sacrificed. Groups treated with RA tended to have fewer mice with tumors, fewer tumors per mouse, smaller tumor diameters, and slower growing tumors than did appropriate irradiated control groups. RA given five times was more effective than was RA given one time at inhibiting UVB skin carcinogenesis. These results show that RA treatments that inhibit epidermal ODC induction may be effective in reducing the carcinogenicity of UVB.

  10. Galacturonic Acid Inhibits the Growth of Saccharomyces cerevisiae on Galactose, Xylose, and Arabinose

    PubMed Central

    Huisjes, Eline H.; de Hulster, Erik; van Dam, Jan C.; Pronk, Jack T.

    2012-01-01

    The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pKa value of galacturonic acid (3.51), the addition of 10 g · liter−1 galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter−1 galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks. PMID:22582063

  11. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose.

    PubMed

    Huisjes, Eline H; de Hulster, Erik; van Dam, Jan C; Pronk, Jack T; van Maris, Antonius J A

    2012-08-01

    The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pK(a) value of galacturonic acid (3.51), the addition of 10 g · liter(-1) galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter(-1) galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks. PMID:22582063

  12. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose.

    PubMed

    Huisjes, Eline H; de Hulster, Erik; van Dam, Jan C; Pronk, Jack T; van Maris, Antonius J A

    2012-08-01

    The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pK(a) value of galacturonic acid (3.51), the addition of 10 g · liter(-1) galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter(-1) galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks.

  13. Development of Poly Unsaturated Fatty Acid Derivatives of Aspirin for Inhibition of Platelet Function.

    PubMed

    Roy, Jahnabi; Adili, Reheman; Kulmacz, Richard; Holinstat, Michael; Das, Aditi

    2016-10-01

    The inhibition of platelet aggregation is key to preventing conditions such as myocardial infarction and ischemic stroke. Aspirin is the most widely used drug to inhibit platelet aggregation. Aspirin absorption can be improved further to increase its permeability across biologic membranes via esterification or converting the carboxylic acid to an anhydride. There are several reports indicating that ω-3 and ω-6 fatty acids such as linoleic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) separately inhibit platelet aggregation. Herein, we synthesize anhydride conjugates of aspirin with linoleic acid, EPA, and DHA to form aspirin anhydrides that are expected to have higher permeability across cellular membranes. These aspirin-fatty acid anhydrides inhibited platelet aggregation in washed human platelets and platelet-rich plasma in a dose-dependent manner. In particular, the aspirin-DHA anhydride displayed similar effectiveness to aspirin. Platelet aggregation studies conducted in the presence of various platelet agonists indicated that the aspirin-lipid conjugates act through inhibition of the cyclooxygenase (COX)-thromboxane synthase (TXAS) pathway. Hence, we performed detailed biochemical studies using purified COX-1 as well as TXAS stabilized in nanoscale lipid bilayers of nanodiscs to confirm results from the platelet aggregation studies. We show that although all of the aspirin conjugates act through the COX-TXAS pathway by inhibiting COX-1, the parent fatty acids do not act via this pathway. Finally, we studied the hydrolysis of these compounds in buffer and human plasma, and we demonstrate that all of the aspirin-fatty acid conjugates hydrolyze to the parent molecules aspirin and fatty acid in a controlled manner. PMID:27488919

  14. Fast online determination of surfactant inhibition in acidic phase bioreactors.

    PubMed

    Feitkenhauer, H

    2004-01-01

    Surfactants have been shown to inhibit the anaerobic digestion process severely, with the methanogenic microorganisms being the most affected. The diverse nature of surfactants used even in one (e.g. textile finishing) plant makes an online determination of surfactants sometimes very difficult and expensive. Therefore a fast online determination of inhibitory effects on the acidogenic microorganisms (first step of the degradation cascade) can help to give an early warning signal or to calculate a "pseudo"-surfactant concentration. In a two-phase system this information can be used to protect the methanogenic reactor against surfactant overloading and its long term negative effects. In this paper it is shown that the inhibition is a consequence of microbial inhibition and is not caused by an inactivation of extracellular hydrolytic enzymes (released by the cells for biopolymer cleavage). A titration technique was successfully employed to measure the surfactant inhibition in a laboratory-scale acidification reactor. Additional experiments demonstrate (using sodium dodecyl sulfate as the model substance) how inhibitory effects (and strategies to overcome inhibitory effects) can be investigated efficiently.

  15. Growth inhibition of Cronobacter spp. strains in reconstituted powdered infant formula acidified with organic acids supported by natural stomach acidity.

    PubMed

    Zhu, S; Schnell, S; Fischer, M

    2013-09-01

    Cronobacter is associated with outbreaks of rare, but life-threatening cases of meningitis, necrotizing enterocolitis, and sepsis in newborns. This study was conducted to determine the effect of organic acids on growth of Cronobacter in laboratory medium and reconstituted powdered infant formula (PIF) as well as the bacteriostatic effect of slightly acidified infant formula when combined with neonatal gastric acidity. Inhibitory effect of seven organic acids on four acid sensitive Cronobacter strains was determined in laboratory medium with broth dilution method at pH 5.0, 5.5 and 6.0. Acetic, butyric and propionic acids were most inhibitive against Cronobacter in the laboratory medium. The killing effect of these three acids was partially buffered in reconstituted PIF. Under neonatal gastric acid condition of pH 5.0, the slightly acidified formula which did not exert inhibition effect solely reduced significantly the Cronobacter populations. A synergistic effect of formula moderately acidified with organic acid combined with the physiological infant gastric acid was visible in preventing the rapid growth of Cronobacter in neonatal stomach. The study contributed to a better understanding of the inhibitory effect of organic acids on Cronobacter growth in different matrixes and provided new ideas in terms of controlling bacteria colonization and translocation by acidified formula.

  16. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.

    PubMed

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

    2015-03-15

    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P<0.01), and the POD activity was not significantly affected (P>0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO. PMID:25308637

  17. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.

    PubMed

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

    2015-03-15

    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P<0.01), and the POD activity was not significantly affected (P>0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO.

  18. FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors.

    PubMed Central

    Ankenbauer, R G; Quan, H N

    1994-01-01

    The Pseudomonas aeruginosa siderophore pyochelin is structurally unique among siderophores and possesses neither hydroxamate- nor catecholate-chelating groups. The structural gene encoding the 75-kDa outer membrane Fe(III)-pyochelin receptor FptA has been isolated by plasmid rescue techniques and sequenced. The N-terminal amino acid sequence of the isolated FptA protein corresponded to that deduced from the nucleotide sequence of the fptA structural gene. The mature FptA protein has 682 amino acids and a molecular mass of 75,993 Da and has considerable overall homology with the hydroxamate siderophore receptors FpvA of P. aeruginosa, PupA and PupB of Pseudomonas putida, and FhuE of Escherichia coli. This observation indicates that homologies between siderophore receptors are an unreliable predictor of siderophore ligand class recognition by a given receptor. The fptA gene was strongly regulated by iron; fptA transcription was totally repressed by 30 microM FeCl3, as determined by Northern (RNA) blotting. The promoter of the fptA gene contained the sequence 5'-ATAATGATAAGCATTATC-3', which matches the consensus E. coli Fur-binding site at 17 of 18 positions. The -10 promoter region and transcriptional start site of the fptA gene reside within this Fur-binding site. Images PMID:8288523

  19. Protease inhibition by oleic acid transfer from chronic wound dressings to albumin.

    PubMed

    Edwards, J Vincent; Howley, Phyllis; Davis, Rachel; Mashchak, Andrew; Goheen, Steven C

    2007-08-01

    High elastase and cathepsin G activities have been observed in chronic wounds to inhibit healing through degradation of growth factors, cytokines, and extracellular matrix proteins. Oleic acid is a non-toxic elastase inhibitor. Cotton wound dressing material was characterized as a transfer carrier for affinity uptake of oleic acid by albumin under conditions mimicking chronic wounds. The mechanism of oleic acid uptake from cotton and binding by albumin was examined with both intact dressings and cotton fiber-designed chromatography. Raman spectra of the albumin-oleic acid complexes under liquid equilibrium conditions revealed fully saturated albumin-oleic acid complexes with a 1:1 weight ratio of albumin:oleic acid. Liquid-solid equilibrium conditions revealed oleic acid transfer from cotton to albumin at 27 mole equivalents of oleic acid per mole albumin. Comparing oleic acid formulated wound dressings for dose dependent ability to lower elastase activity, we found cotton gauze>hydrogel>hydrocolloid. In contrast, the cationic serine protease cathepsin G was inhibited by oleic acid within a narrow range of oleic acid-cotton formulations. 2% albumin was sufficient to transfer quantities of oleic acid necessary to achieve a significant elastase-lowering effect. Oleic acid bound to cotton wound dressings may have promise in the selective lowering of cationic serine protease activity useful in topical application for chronic inflammatory pathogenesis.

  20. DICHLOROACETIC ACID (DCA) INHIBITS PROLIFERATION AND APOPTOSIS IN NORMAL HEPATOCYTES OF MALE F344 RATS

    EPA Science Inventory

    Dichloroacetic acid (DCA} inhibits proliferation and apoptosis in nonnal hepatocytes of
    male F344 rats.

    Large segments of the population are chronically exposed to dichloroacetic acid (DCA}: DCA is a by product of the chlorine disinfection of drinking water, a metab...

  1. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  2. SOLUBLE HEPATIC δ-AMINOLEVULINIC ACID SYNTHETASE: END-PRODUCT INHIBITION OF THE PARTIALLY PURIFIED ENZYME*

    PubMed Central

    Scholnick, Perry L.; Hammaker, Lydia E.; Marver, Harvey S.

    1969-01-01

    The present study confirms the existence of hepatic δ-aminolevulinic acid synthetase in the cytosol of the liver, suggests that this enzyme may be in transit to the mitochondria, and defines some of the characteristics of the partially purified enzyme. The substrate and cofactor requirements are similar to those of mitochondrial δ-aminolevulinic acid synthetase. Heme strongly inhibits the partially purified enzyme. A number of proteins that bind heme block this inhibition, which explains previous failures to demonstrate heme inhibition in crude systems. End-product inhibition of δ-aminolevulinic acid synthetase in the mitochondria may play an important role in the regulation of heme biosynthesis in eukaryotic cells. PMID:5257968

  3. Mechanism of iron inhibition by stearic acid Langmuir-Blodgett monolayers

    SciTech Connect

    Xing, W.; Shan, Y.; Guo, D.; Lu, T.; Xi, S.

    1995-01-01

    Many organic compounds can be adsorbed onto the interface of a metal and solution to form a thin film that inhibits the corrosion process according to a blocking and/or negative catalytic effect. Using the Langmuir-Blodgett (LB) technique, stearic acid (SA) monolayers were deposited onto the surface of an iron (Fe) electrode to study the inhibition effect and the mechanism of SA in a neutral medium. Molecular orientation and the number of deposited monolayers of SA were shown to have marked effects on inhibition of Fe corrosion. The inhibition mechanism depended mainly on blocking.

  4. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    PubMed

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.

  5. Citric acid inhibits development of cataracts, proteinuria and ketosis in streptozotocin (type 1) diabetic rats.

    PubMed

    Nagai, Ryoji; Nagai, Mime; Shimasaki, Satoko; Baynes, John W; Fujiwara, Yukio

    2010-02-26

    Although many fruits such as lemon and orange contain citric acid, little is known about beneficial effects of citric acid on health. Here we measured the effect of citric acid on the pathogenesis of diabetic complications in streptozotocin-induced diabetic rats. Although oral administration of citric acid to diabetic rats did not affect blood glucose concentration, it delayed the development of cataracts, inhibited accumulation of advanced glycation end-products (AGEs) such as N(epsilon)-(carboxyethyl)lysine (CEL) and N(epsilon)-(carboxymethyl)lysine (CML) in lens proteins, and protected against albuminuria and ketosis. We also show that incubation of protein with acetol, a metabolite formed from acetone by acetone monooxygenase, generate CEL, suggesting that inhibition of ketosis by citric acid may lead to the decrease in CEL in lens proteins. These results demonstrate that the oral administration of citric acid ameliorates ketosis and protects against the development of diabetic complications in an animal model of type 1 diabetes.

  6. Role of hydroxyl group in the inhibitive action of benzoic acid toward corrosion of aluminum in nitric acid

    SciTech Connect

    Yadav, P.N.S.; Singh, A.K.; Wadhwani, R.

    1999-10-01

    Corrosion inhibition action of benzoic acid, p-hydroxy benzoic acid, 2-4-dihydroxy benzoic acid, and 3-4-5-trihydroxy benzoic acid toward aluminum alloy 3003 (UNS A93003) in 20% (wt%) nitric acid (HNO{sub 3}) using different concentrations of these compounds at 30 C, 40 C, and 50 C has been studied thoroughly. 3-4-5-trihydroxy benzoic acid (inhibition efficiency (IE): 30% and 72%) was the most effective inhibitor followed by 2-4-dihydroxy benzoic acid (IE: 22% to 62%) p-hydroxy benzoic acid (IE: 11% to 52%), and benzoic acid (IE: 2.5% to 15%). IE increased with concentration and its maximum value was observed at 0.5% concentration of all inhibitors used. The percentage of IE of the inhibitors decreased with an increase in temperature from 30 C to 50 C. Values of heat adsorption and activation energy were calculated from weight loss data, which came out in the range for the reaction occurring at the surface. The behavior of inhibitors studied deviated from the Langmuir isotherm. The IE of higher hydroxy species was improved when more hydroxy centers were added. Anodic and cathodic polarization curves were shifted toward lower current density regions in the presence of inhibitors. This revealed that they were mixed inhibitors.

  7. Salicylhydroxamic acid (SHAM) inhibition of the dissolved inorganic carbon concentrating process in unicellular green algae

    SciTech Connect

    Goyal, A.; Tolbert, N.E. )

    1990-03-01

    Rates of photosynthetic O{sub 2} evolution, for measuring K{sub 0.5}(CO{sub 2} + HCO{sub 3}{sup {minus}}) at pH 7, upon addition of 50 micromolar HCO{sub 3}{sup {minus}} to air-adapted Chlamydomonas, Dunaliella, or Scenedesmus cells, were inhibited up to 90% by the addition of 1.5 to 4.0 millimolar salicylhydroxamic acid (SHAM) to the aqueous medium. The apparent K{sub i}(SHAM) for Chlamydomonas cells was about 2.5 millimolar, but due to low solubility in water effective concentrations would be lower. Salicylhydroxamic acid did not inhibit oxygen evolution or accumulation of bicarbonate by Scenedesmus cells between pH 8 to 11 or by isolated intact chloroplasts from Dunaliella. Thus, salicylhydroxamic acid appears to inhibit CO{sub 2} uptake, whereas previous results indicate that vanadate inhibits bicarbonate uptake. These conclusions were confirmed by three test procedures with three air-adapted algae at pH 7. Salicylhydroxamic acid inhibited the cellular accumulation of dissolved inorganic carbon, the rate of photosynthetic O{sub 2} evolution dependent on low levels of dissolved inorganic carbon (50 micromolar NaHCO{sub 3}), and the rate of {sup 14}CO{sub 2} fixation with 100 micromolar ({sup 14}C)HCO{sub 3}{sup {minus}}. Salicylhydroxamic acid inhibition of O{sub 2} evolution and {sup 14}CO{sub 2}-fixation was reversed by higher levels of NaHCO{sub 3}. Thus, salicylhydroxamic acid inhibition was apparently not affecting steps of photosynthesis other than CO{sub 2} accumulation. Although salicylhydroxamic acid is an inhibitor of alternative respiration in algae, it is not known whether the two processes are related.

  8. Salicylhydroxamic Acid (SHAM) Inhibition of the Dissolved Inorganic Carbon Concentrating Process in Unicellular Green Algae.

    PubMed

    Goyal, A; Tolbert, N E

    1990-03-01

    Rates of photosynthetic O(2) evolution, for measuring K(0.5)(CO(2) + HCO(3) (-)) at pH 7, upon addition of 50 micromolar HCO(3) (-) to air-adapted Chlamydomonas, Dunaliella, or Scenedesmus cells, were inhibited up to 90% by the addition of 1.5 to 4.0 millimolar salicylhydroxamic acid (SHAM) to the aqueous medium. The apparent K(1)(SHAM) for Chlamydomonas cells was about 2.5 millimolar, but due to low solubility in water effective concentrations would be lower. Salicylhydroxamic acid did not inhibit oxygen evolution or accumulation of bicarbonate by Scenedesmus cells between pH 8 to 11 or by isolated intact chloroplasts from Dunaliella. Thus, salicylhydroxamic acid appears to inhibit CO(2) uptake, whereas previous results indicate that vanadate inhibits bicarbonate uptake. These conclusions were confirmed by three test procedures with three air-adapted algae at pH 7. Salicylhydroxamic acid inhibited the cellular accumulation of dissolved inorganic carbon, the rate of photosynthetic O(2) evolution dependent on low levels of dissolved inorganic carbon (50 micromolar Na-HCO(3)), and the rate of (14)CO(2) fixation with 100 micromolar [(14)C] HCO(3) (-). Salicylhydroxamic acid inhibition of O(2) evolution and (14)CO(2)-fixation was reversed by higher levels of NaHCO(3). Thus, salicylhydroxamic acid inhibition was apparently not affecting steps of photosynthesis other than CO(2) accumulation. Although salicylhydroxamic acid is an inhibitor of alternative respiration in algae, it is not known whether the two processes are related.

  9. Desferrioxamine Inhibits Protein Tyrosine Nitration: Mechanisms and Implications

    PubMed Central

    Adgent, Margaret A.; Squadrito, Giuseppe L.; Ballinger, Carol A.; Krzywanski, David M.; Lancaster, Jack R.; Postlethwait, Edward M.

    2012-01-01

    Tissues are exposed to exogenous and endogenous nitrogen dioxide (•NO2), which is the terminal agent in protein tyrosine nitration. Besides iron chelation, the hydroxamic acid (HA) desferrioxamine (DFO) shows multiple functionalities including nitration inhibition. To investigate mechanisms whereby DFO affects 3-nitrotyrosine (3-NT) formation, we utilized gas phase •NO2 exposures, to limit introduction of other reactive species, and a lung surface model wherein red cell membranes (RCM) were immobilized under a defined aqueous film. When RCM were exposed to •NO2 covered by +/− DFO: (i) DFO inhibited 3-NT formation more effectively than other HA and non-HA chelators; (ii) 3-NT inhibition occurred at very low [DFO] for prolonged times; and (iii) 3-NT formation was iron independent but inhibition required DFO present. DFO poorly reacted with •NO2 compared to ascorbate, assessed via •NO2 reactive absorption and aqueous phase oxidation rates, yet limited 3-NT formation at far lower concentrations. DFO also inhibited nitration under aqueous bulk phase conditions, and inhibited 3-NT generated by active myeloperoxidase “bound” to RCM. Per the above and kinetic analyses suggesting preferential DFO versus •NO2 reaction within membranes, we conclude that DFO inhibits 3-NT formation predominantly by facile repair of the tyrosyl radical intermediate, which prevents •NO2 addition, and thus nitration, and potentially influences biochemical functionalities. PMID:22705369

  10. Clavulanic acid inhibits MPP⁺-induced ROS generation and subsequent loss of dopaminergic cells.

    PubMed

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2012-08-21

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) which mimics Parkinson's disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival.

  11. Clavulanic acid inhibits MPP+-induced ROS generation and subsequent loss of dopaminergic cells☆

    PubMed Central

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B.

    2013-01-01

    Clavulanic acid is a psychoactive compound that has been shown to modulate central nervous system activity. Importantly, in neurotoxin-induced animal models, clavulanic acid has been shown to improve motor function (Huh et al., 2010) suggesting that it can be neuroprotective; however, the mechanism as how clavulanic acid can induce neuroprotection is not known. We demonstrate here that clavulanic acid abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) which mimics Parkinson’s disease (PD) by inducing neurodegeneration. To further establish the mechanism we identified that clavulanic acid inhibits neurotoxin-induced loss of mitochondrial membrane potential and ROS production. Consistent with these results, neurotoxin-induced increase in Bax levels was also decreased in clavulanic acid treated cells. Importantly, neurotoxin-induced release of cytochrome c levels as well as caspase activation was also inhibited in clavulanic acid treated cells. In addition, Bcl-xl levels were also restored and the Bcl-xl/Bax ratio that is critical for inducing apoptosis was increased in clavulanic acid treated cells. Overall, these results suggest that clavulanic acid is intimately involved in inhibiting neurotoxin-induced loss of mitochondrial function and induction of apoptosis that contributes towards neuronal survival. PMID:22750587

  12. Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acids.

    PubMed

    Ostling, C E; Lindgren, S E

    1993-07-01

    Minimum inhibitory concentrations (MIC) of undissociated lactic, acetic and formic acids were evaluated for 23 strains of enterobacteria and two of Listeria monocytogenes. The evaluation was performed aerobically and anaerobically in a liquid test system at pH intervals of between 4.2 and 5.4. Growth of the enterobacteria was inhibited at 2-11 mmol l-1, 0.5-14 mmol l-1 and 0.1-1.5 mmol l-1 of undissociated lactic, acetic and formic acids, respectively. The MIC value was slightly lower with anaerobic conditions compared with aerobic conditions. The influence of protons on the inhibition was observed for acetic acid at the low pH values. Undissociated lactic acid was 2 to 5 times more efficient in inhibiting L. monocytogenes than enterobacteria. Acetic acid had a similar inhibitory action on L. monocytogenes compared with enterobacteria. Inorganic acid (HCl) inhibited most enterobacteria at pH 4.0; some strains, however, were able to initiate growth to pH 3.8. The results indicate that the values of undissociated acid which occur in a silage of pH 4.1-4.5 are about 10-100 times higher than required in order to protect the forage from the growth of enterobacteria and L. monocytogenes.

  13. Inhibition of lymphoid tyrosine phosphatase by benzofuran salicylic acids.

    PubMed

    Vang, Torkel; Xie, Yuli; Liu, Wallace H; Vidović, Dusica; Liu, Yidong; Wu, Shuangding; Smith, Deborah H; Rinderspacher, Alison; Chung, Caty; Gong, Gangli; Mustelin, Tomas; Landry, Donald W; Rickert, Robert C; Schürer, Stephan C; Deng, Shi-Xian; Tautz, Lutz

    2011-01-27

    The lymphoid tyrosine phosphatase (Lyp, PTPN22) is a critical negative regulator of T cell antigen receptor (TCR) signaling. A single-nucleotide polymorphism (SNP) in the ptpn22 gene correlates with the incidence of various autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Since the disease-associated allele is a more potent inhibitor of TCR signaling, specific Lyp inhibitors may become valuable in treating autoimmunity. Using a structure-based approach, we synthesized a library of 34 compounds that inhibited Lyp with IC(50) values between 0.27 and 6.2 μM. A reporter assay was employed to screen for compounds that enhanced TCR signaling in cells, and several inhibitors displayed a dose-dependent, activating effect. Subsequent probing for Lyp's direct physiological targets by immunoblot analysis confirmed the ability of the compounds to inhibit Lyp in T cells. Selectivity profiling against closely related tyrosine phosphatases and in silico docking studies with the crystal structure of Lyp yielded valuable information for the design of Lyp-specific compounds. PMID:21190368

  14. Suppression of Spermatogenesis by Bisdichloroacetyldiamines Is Mediated by Inhibition of Testicular Retinoic Acid Biosynthesis

    PubMed Central

    Amory, John K.; Muller, Charles H.; Shimshoni, Jakob A.; Isoherranen, Nina; Paik, Jisun; Moreb, Jan S.; Amory, David W.; Evanoff, Ryan; Goldstein, Alex S.; Griswold, Michael D.

    2012-01-01

    The bisdichloroacetyldiamine WIN 18,446 reversibly inhibits spermatogenesis in many species, including humans; however, the mechanism by which WIN 18,446 functions is unknown. As retinoic acid is essential for spermatogenesis, we hypothesized that WIN 18,446 might inhibit retinoic acid biosynthesis from retinol (vitamin A) within the testes by inhibiting the enzyme aldehyde dehydrogenase 1a2 (ALDH1a2). We studied the effect of WIN 18,446 on ALDH1a2 enzyme activity in vitro, and on spermatogenesis and fertility in vivo, in mature male rabbits for 16 weeks. WIN 18,446 markedly inhibited ALDH1a2 enzyme activity in vitro with an IC50 of 0.3 μM. In vivo, the oral administration of 200 mg/kg WIN 18,446 to male rabbits for 16 weeks significantly reduced intratesticular concentrations of retinoic acid, severely impaired spermatogenesis, and caused infertility. Reduced concentrations of intratesticular retinoic acid were apparent after only 4 weeks of treatment and preceded the decrease in sperm counts and the loss of mature germ cells in tissue samples. Sperm counts and fertility recovered after treatment was discontinued. These findings demonstrate that bisdichloroacetyldiamines such as WIN 18,446 reversibly suppress spermatogenesis via inhibition of testicular retinoic acid biosynthesis by ALDH1a2. These findings suggest that ALDH1a2 is a promising target for the development of a reversible, nonhormonal male contraceptive. PMID:20705791

  15. Epoxygenase metabolites of arachidonic acid inhibit vasopressin response in toad bladder

    SciTech Connect

    Schlondorff, D.; Petty, E.; Oates, J.A.; Jacoby, M.; Levine, S.D. Vanderbilt Univ., Nashville, TN )

    1987-09-01

    In addition to cyclooxygenase and lipoxygenase pathways, the kidney can also metabolize arachidonic acid by a NADPH-dependent cytochrome P-450 enzyme to epoxyeicosatrienoic acids (EETs); furthermore, 5,6-EET has been shown to alter electrolyte transport across isolated renal tubules. The authors examined the effects of three ({sup 14}C-labeled)-EETs (5,6-, 11,12-, and 14,15-EET) on osmotic water flow across toad urinary bladder. All three EETs reversibly inhibited vasopressin-stimulated osmotic water flow with 5,6- and 11,12-EET being the most potent. The effects appeared to be independent of prostaglandins EETs inhibited the water flow response to forskolin but not the response to adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) or 8-BrcAMP, consistent with an effect on cAMP generation. To determine whether these effects were due to the EETs or to products of their metabolism, they examined the effects of their vicinal diol hydrolysis products, the dihydroxyeicosatrienoic acids. Nonenzymatic conversion of labeled 5,6-EET to its vicinal diol occurred rapidly in the buffer, whereas 11,12-EET was hydrolyzed in a saturable manner only when incubated in the presence of bladder tissue. The dihydroxyeicosatrienoic acids formed inhibited water flow in a manner paralleling that of the EETs. The data support the hypothesis that EETs and their physiologically active dihydroxyeicosatrienoic acid metabolites inhibit vasopressin-stimulated water flow predominantly via inhibition of adenylate cyclase.

  16. Mechanism of cinnamic acid-induced trypsin inhibition: a multi-technique approach.

    PubMed

    Zhang, Hongmei; Zhou, Qiuhua; Cao, Jian; Wang, Yanqing

    2013-12-01

    In order to investigate the association of the protease trypsin with cinnamic acid, the interaction was characterized by using fluorescence, UV-vis absorption spectroscopy, molecular modeling and an enzymatic inhibition assay. The binding process may be outlined as follows: cinnamic acid can interact with trypsin with one binding site to form cinnamic acid-trypsin complex, resulting in inhibition of trypsin activity; the spectroscopic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes being -8.95 kJ mol(-1) and 50.70 J mol(-1) K(-1), respectively. Noncovalent interactions make the main contribution to stabilize the trypsin-cinnamic acid complex; cinnamic acid can enter into the primary substrate-binding pocket and alter the environment around Trp and Tyr residues.

  17. Punicic Acid a Conjugated Linolenic Acid Inhibits TNFα-Induced Neutrophil Hyperactivation and Protects from Experimental Colon Inflammation in Rats

    PubMed Central

    Boussetta, Tarek; Raad, Houssam; Lettéron, Philippe; Gougerot-Pocidalo, Marie-Anne; Marie, Jean-Claude

    2009-01-01

    Background Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO). The proinflammatory cytokine TNFα primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFα-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo. Methodology and Principal Findings We analyzed the effect of punicic acid on TNFα-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFα-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP)-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFα+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation. Conclusions/Significance These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFα-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. PMID:19649246

  18. Inhibition of the gravitropic bending response of flowering shoots by salicylic acid.

    PubMed

    Friedman, Haya; Meir, Shimon; Halevy, Abraham H; Philosoph-Hadas, Sonia

    2003-10-01

    The upward gravitropic bending of cut snapdragon, lupinus and anemone flowering shoots was inhibited by salicylic acid (SA) applied at 0.5 mM and above. This effect was probably not due to acidification of the cytoplasm, since other weak acids did not inhibit bending of snapdragon shoots. In order to study its mode of inhibitory action, we have examined in cut snapdragon shoots the effect of SA on three processes of the gravity-signaling pathway, including: amyloplast sedimentation, formation of ethylene gradient across the stem, and differential growth response. The results show that 1 mM SA inhibited differential ethylene production rates across the horizontal stem and the gravity-induced growth, without significantly inhibiting vertical growth or amyloplast sedimentation following horizontal placement. However, 5 mM SA inhibited all three gravity-induced processes, as well as the growth of vertical shoots, while increasing flower wilting. It may, therefore, be concluded that SA inhibits bending of various cut flowering shoots in a concentration-dependent manner. Thus, at a low concentration SA exerts its effect in snapdragon shoots by inhibiting processes operating downstream to stimulus sensing exerted by amyloplast sedimentation. At a higher concentration SA inhibits bending probably by exerting general negative effects on various cellular processes.

  19. Irreversible inhibition of human immunodeficiency virus type 1 integrase by dicaffeoylquinic acids.

    PubMed

    Zhu, K; Cordeiro, M L; Atienza, J; Robinson, W E; Chow, S A

    1999-04-01

    Human immunodeficiency virus type 1 (HIV-1) and other retroviruses require integration of a double-stranded DNA copy of the RNA genome into the host cell chromosome for productive infection. The viral enzyme, integrase, catalyzes the integration of retroviral DNA and represents an attractive target for developing antiretroviral agents. We identified several derivatives of dicaffeoylquinic acids (DCQAs) that inhibit HIV-1 replication in tissue culture and catalytic activities of HIV-1 integrase in vitro. The specific step at which DCQAs inhibit the integration in vitro and the mechanism of inhibition were examined in the present study. Titration experiments with different concentrations of HIV-1 integrase or DNA substrate found that the effect of DCQAs was exerted on the enzyme and not the DNA. In addition to HIV-1, DCQAs also inhibited the in vitro activities of MLV integrase and truncated variants of feline immunodeficiency virus integrase, suggesting that these compounds interacted with the central core domain of integrase. The inhibition on retroviral integrases was relatively specific, and DCQAs had no effect on several other DNA-modifying enzymes and phosphoryltransferases. Kinetic analysis and dialysis experiments showed that the inhibition of integrase by DCQAs was irreversible. The inhibition did not require the presence of a divalent cation and was unaffected by preassembling integrase onto viral DNA. The results suggest that the irreversible inhibition by DCQAs on integrase is directed toward conserved amino acid residues in the central core domain during catalysis.

  20. The Bradyrhizobium japonicum fegA gene encodes an iron-regulated outer membrane protein with similarity to hydroxamate-type siderophore receptors.

    PubMed Central

    LeVier, K; Guerinot, M L

    1996-01-01

    Iron is important in the symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, yet little is known about rhizobial iron acquisition strategies. Analysis of outer membrane proteins (OMPs) from B. japonicum 61A152 identified three iron-regulated OMPs in the size range of several known receptors for Fe(III)-scavenging siderophores. One of the iron-regulated proteins, FegA, was purified and microsequenced, and a reverse genetics approach was used to clone a fegA-containing DNA fragment. Sequencing of this fragment revealed a single open reading frame of 750 amino acids. A putative N-terminal signal sequence of 14 amino acids which would result in a mature protein of 736 amino acids with a molecular mass of 80,851 Da was predicted. FegA shares significant amino acid similarity with several Fe(III)-siderophore receptors from gram-negative bacteria and has greater than 50% amino acid similarity and 33% amino acid identity with two [corrected] bacterial receptors for hydroxamate-type Fe(III)-siderophores. A dendrogram describing total inferred sequence similarity among 36 TonB-dependent OMPs was constructed; FegA grouped with Fe(III)-hydroxamate receptors. The transcriptional start site of fegA was mapped by primer extension analysis, and a putative Fur-binding site was found in the promoter. Primer extension and RNA slot blot analysis demonstrated that fegA was expressed only in cells grown under iron-limiting conditions. This is the first report of the cloning of a gene encoding a putative Fe(III)-siderophore receptor from nitrogen-fixing rhizobia. PMID:8955412

  1. Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic Acid

    PubMed Central

    Khatri, Dharmendra Kumar; Juvekar, Archana Ramesh

    2016-01-01

    Background: Curcumin and ellagic are the natural polyphenols having a wide range of pharmacological actions. They have been reported to have their use in various neurological disorders. Objective: This study was aimed to evaluate the effect of curcumin and ellagic acid on the activity of monoamine oxidase (MAO), the enzyme responsible for metabolism of monoamine neurotransmitters which are pivotal for neuronal development and function. Materials and Methods: The in vitro effects of these selected polyphenols on MAO activities in mitochondria isolated from rat brains were examined. Brain mitochondria were assayed for MAO type-B (MAO-B) using benzylamine as substrates. Rat brain mitochondrial MAO preparation was used to study the kinetics of enzyme inhibition using double reciprocal Lineweaver–Burk plot. Results: MAO activity was inhibited by curcumin and ellagic acid; however, higher half maximal inhibitory concentrations of curcumin (500.46 nM) and ellagic acid (412.24 nM) were required compared to the known MAO-B inhibitor selegiline. It is observed that the curcumin and ellagic acid inhibit the MAO activity with both the competitive and noncompetitive type of inhibitions. Conclusions: Curcumin and ellagic acid can be considered a possible source of MAO inhibitor used in the treatment of Parkinson's and other neurological disorders. SUMMARY Monoamine oxidase (MAO) is involved in a variety of neurological disorders including Parkinson's disease (PD)Curcumin and ellagic acid inhibit the monoamine oxidase activityEllagic acid revealed more potent MAO type-B (MAO-B) inhibitory activity than curcuminKinetic studies of MAO inhibition using different concentrations of curcumin and ellagic acid were plotted as double reciprocal Lineweaver–Burk plotThe mode of inhibition of both compounds toward MAO-B is mixed (competitive and uncompetitive) type of inhibition with both the competitive and noncompetitive type of inhibitions. Abbreviations used: MAO: Monoamine oxidase

  2. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  3. High Molecular Weight Hyaluronic Acid Inhibits Fibrosis of Endometrium

    PubMed Central

    Zhu, Yi; Hu, Jianguo; Yu, Tinghe; Ren, Yan; Hu, Lina

    2016-01-01

    Background Elevated fibrosis has been found in patients with intrauterine adhesion, which indicates that fibrotic factors may play a critical role in formation of intrauterine adhesion. The aim of this study was to identify the effect of hyaluronic acid (HA) at high and low molecular weight on fibrosis of the endometrium in a mouse model of Asherman’s syndrome. Material/Methods Endometrial fibrosis in a mouse model of Asherman’s syndrome was confirmed. Then HA at high and low molecular weight was injected into the uterine cavity. Endometrial fibrosis was compared among the control group, LMW-HA, and HMW-HA group. The extent of endometrial fibrosis was calculated using Masson stain. The fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in endometrial tissue were detected using immunohistochemistry and Western blotting. Results The ratio of the area with endometrial fibrosis to total endometrial area in the HMW-HA group was significantly decreased compared to the control group (P<0.05). The expression of fibrosis markers (TGFβ1, CTGF, collagen I, and collagen III) in the endometrium was attenuated in the HMW-HA group compared to the control group, but the LMW-HA group had no similar effect. Conclusions Hyaluronic acid at high molecular weight may attenuate the degree of endometrial fibrosis after endometrial damage, which may contribute to preventing formation of intrauterine adhesions. PMID:27670361

  4. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  5. alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis.

    PubMed

    Ha, Hyunil; Lee, Jong-Ho; Kim, Ha-Neui; Kim, Hyun-Man; Kwak, Han Bok; Lee, Seungbok; Kim, Hong-Hee; Lee, Zang Hee

    2006-01-01

    alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several pathological conditions, including diabetic polyneuropathy. In the present study, we examined the effects of LA on osteoclastic bone loss associated with inflammation. LA significantly inhibited IL-1-induced osteoclast formation in cocultures of mouse osteoblasts and bone marrow cells, but LA had only a marginal effect on osteoclastogenesis from bone marrow macrophages induced by receptor activator of NF-kappaB ligand (RANKL). LA inhibited both the sustained up-regulation of RANKL expression and the production of PGE2 induced by IL-1 in osteoblasts. In addition, treatment with either prostaglandin E2 (PGE2) or RANKL rescued IL-1-induced osteoclast formation inhibited by LA or NS398, a specific cyclooxygenase-2 (COX-2) inhibitor, in cocultures. LA blocked IL-1-induced PGE2 production even in the presence of arachidonic acid, without affecting the expression of COX-2 and membrane-bound PGE2 synthase. Dihydrolipoic acid (the reduced form of LA), but not LA, attenuated recombinant COX-2 activity in vitro. LA also inhibited osteoclast formation and bone loss induced by IL-1 and LPS in mice. Our results suggest that the reduced form of LA inhibits COX-2 activity, PGE2 production, and sustained RANKL expression, thereby inhibiting osteoclast formation and bone loss in inflammatory conditions.

  6. Inhibition of nitrogen fixation in alfalfa by arsenate, heavy metals, fluoride, and simulated Acid rain.

    PubMed

    Porter, J R; Sheridan, R P

    1981-07-01

    The acute effects of aqueous solutions of As, Cd, Cu, Pb, F, and Zn ions at concentrations from 0.01 to 100 micrograms per milliliter and solutions adjusted to pH 2 to 6 with nitric or sulfuric acid were studied with respect to acetylene reduction, net photosynthesis, respiration rate, and chlorophyll content in Vernal alfalfa (Medicago sativa L. cv. Vernal). The effects of the various treatments on acetylene reduction varied from no demonstrable effect by any concentration of F(-) and 42% inhibition by 100 micrograms Pb(2+) per milliliter, to 100% inhibition by 10 micrograms Cd(2+) per milliliter and 100 micrograms per milliliter As, Cu(2+), and Zn(2+) ions. Zn(2+) showed statistically significant inhibition of activity at 0.1 micrograms per milliliter. Acid treatments were not inhibitory above pH 2, at which pH nitric acid inhibited acetylene reduction activity more than did sulfuric acid. The inhibition of acetylene reduction by these ions was Zn(2+) > Cd(2+) > Cu(2+) > AsO(3) (-) > Pb(2+) > F(-). The sensitivity of acetylene reduction to the ions was roughly equal to the sensitivity of photosynthesis, respiration, and chlorophyll content when Pb(2+) was applied, but was 1,000 times more sensitive to Zn(2+). The relationship of the data to field conditions and industrial pollution is discussed.

  7. Inhibition of Nitrogen Fixation in Alfalfa by Arsenate, Heavy Metals, Fluoride, and Simulated Acid Rain

    PubMed Central

    Porter, John R.; Sheridan, Richard P.

    1981-01-01

    The acute effects of aqueous solutions of As, Cd, Cu, Pb, F, and Zn ions at concentrations from 0.01 to 100 micrograms per milliliter and solutions adjusted to pH 2 to 6 with nitric or sulfuric acid were studied with respect to acetylene reduction, net photosynthesis, respiration rate, and chlorophyll content in Vernal alfalfa (Medicago sativa L. cv. Vernal). The effects of the various treatments on acetylene reduction varied from no demonstrable effect by any concentration of F− and 42% inhibition by 100 micrograms Pb2+ per milliliter, to 100% inhibition by 10 micrograms Cd2+ per milliliter and 100 micrograms per milliliter As, Cu2+, and Zn2+ ions. Zn2+ showed statistically significant inhibition of activity at 0.1 micrograms per milliliter. Acid treatments were not inhibitory above pH 2, at which pH nitric acid inhibited acetylene reduction activity more than did sulfuric acid. The inhibition of acetylene reduction by these ions was Zn2+ > Cd2+ > Cu2+ > AsO3− > Pb2+ > F−. The sensitivity of acetylene reduction to the ions was roughly equal to the sensitivity of photosynthesis, respiration, and chlorophyll content when Pb2+ was applied, but was 1,000 times more sensitive to Zn2+. The relationship of the data to field conditions and industrial pollution is discussed. PMID:16661858

  8. Nucleic acid-based inhibition of flavivirus infections.

    PubMed

    Stein, David A; Shi, Pei-Yong

    2008-01-01

    The genus Flavivirus in the family Flaviviridae consists of many arthropod-transmitted human pathogens, including dengue, yellow fever, Japanese encephalitis, West Nile, St. Louis encephalitis, Murray Valley encephalitis, and tick-borne encephalitis viruses. Treatment options against flaviviral disease are extremely limited, with no effective drugs yet commercially available. Recent advances in virology, synthetic organic chemistry, and the discovery of RNA interference (RNAi), have provided the basis for advances in the development of antisense-based approaches to address flaviviral infections. Oligomers of various antisense structural types, targeted to different locations in the flaviviral RNA genome, have now been used to successfully suppress viral gene expression and thereby inhibit flavivirus replication. Double-stranded RNA, containing viral sequence and designed to induce the endogenous cellular machinery of RNAi, has also been shown capable of potently interfering with flavivirus production and transmission. These studies provide insights into flaviviral molecular biology and the basis for the development of novel therapeutic approaches. The goal of this review is to summarize the findings of many of the significant reports that have appeared on the topic of antisense-mediated strategies for the development of antiviral therapy for flaviviruses.

  9. Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid

    PubMed Central

    Vázquez-Calvo, Ángela; Martín-Acebes, Miguel A.; Sáiz, Juan-Carlos; Ngo, Nhi; Sobrino, F.; de la Torre, Juan Carlos

    2013-01-01

    Valproic acid (VPA), a short chain fatty acid commonly used for treatment of neurological disorders, has been shown to inhibit production of infectious progeny of different enveloped viruses including the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). In this study we have investigated the mechanisms by which VPA inhibits LCMV multiplication in cultured cells. VPA reduced production of infectious LCMV progeny and virus propagation without exerting a major blockage on either viral RNA or protein synthesis, but rather affecting the cell release and specific infectivity of LCMV progeny from infected cells. Our results would support the repurposing of VPA as a candidate antiviral drug to combat arenavirus infections. PMID:23735299

  10. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by orlistat

    SciTech Connect

    Pemble,C.; Johnson, L.; Kridel, S.; Lowther, W.

    2007-01-01

    Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-{angstrom}-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.

  11. Inhibition of arachidonic acid metabolism decreases tumor cell invasion and matrix metalloproteinase expression.

    PubMed

    Koontongkaew, Sittichai; Monthanapisut, Paopanga; Saensuk, Theeranuch

    2010-11-01

    Head and neck cancers are known to synthesize arachidonic acid metabolites. Interfering with arachidonic acid metabolism may inhibit growth and invasiveness of cancer cells. In this study we investigate effects of sulindac (the non-selective COX inhibitor), aspirin (the irreversible, preferential COX-1 inhibitor), NS-398 (the selective COX-2 inhibitor), NDGA (nordihydroguaiaretic acid, the selective LOX inhibitor) and ETYA (5,8,11,14-eicosatetraynoic acid, the COX and LOX inhibitor) on cell viability, MMP-2 and MMP-9 activities, and in vitro invasion of cancer cells derived from primary and metastatic head and neck, and colon cancers. The inhibitors of COX and/or LOX could inhibit cell proliferation, MMP activity and invasion in head and neck and colon cancer cells. However, the inhibitory effect was obviously observed in colon cancer cells. Inhibition of arachidonic acid metabolism caused a decrease in cancer cell motility, which partially explained by the inhibition of MMPs. Therefore, COX and LOX pathways play important roles in head and neck cancer cell growth. PMID:20654727

  12. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies.

    PubMed

    Youn, Kumju; Yun, Eun-Young; Lee, Jinhyuk; Kim, Ji-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2014-02-01

    In our ongoing research to find therapeutic compounds for Alzheimer's disease (AD) from natural resources, the inhibitory activity of the BACE1 enzyme by Tenebrio molitor larvae and its major compounds were evaluated. The T. molitor larvae extract and its fractions exhibited strong BACE1 suppression. The major components of hexane fraction possessing both high yield and strong BACE1 inhibition were determined by thin layer chromatography, gas chromatography, and nuclear magnetic resonance analysis. A remarkable composition of unsaturated long chain fatty acids, including oleic acid and linoleic acid, were identified. Oleic acid, in particular, noncompetitively attenuated BACE1 activity with a half-maximal inhibitory concentration (IC₅₀) value of 61.31 μM and Ki value of 34.3 μM. Furthermore, the fatty acids were stably interacted with BACE1 at different allosteric sites of the enzyme bound with the OH of CYS319 and the NH₃ of TYR320 for oleic acid and with the C=O group of GLN304 for linoleic acid. Here, we first revealed novel pharmacophore features of oleic acids and linoleic acid to BACE1 by in silico docking studies. The present findings would clearly suggest potential guidelines for designing novel BACE1 selective inhibitors.

  13. Inhibition of Aeromonas caviae and A. sobria by sodium choloride, citric acid, ascorbic acid, potassium sorbate and extracts of Thymus vulgaris.

    PubMed

    Abu-Ghazaleh, B M

    2000-06-01

    The respective and combined effects of sodium chloride, ascorbic acid, citric acid, potassium sorbate, and Thymus vulgaris extract on the growth of Aeromonas caviae and Aeromonas sobria were investigated. Sodium chloride (3%) significantly reduced the growth and 4% NaCl inhibited growth of the tested strains. Ascorbic acid (0. 1%), potassium sorbate (0.05%), and citric acid (0.03%) slightly inhibited growth. T. vulgaris extract (0.3%) greatly reduced the growth. Various combinations of these compounds prevented growth of the tested strains. A combination of NaCl (3%) and ascorbic acid (0. 1%), citric acid (0.03%) and potassium sorbate (0.05%), or citric acid (0.03%) and ascorbic acid (0.1%) inhibited growth of A. caviae and A. sobria. In fish homogenates, the addition of ascorbic acid (0. 1%) and citric acid (0.03%) was the most effective combination tested.

  14. Benzbromarone, Quercetin, and Folic Acid Inhibit Amylin Aggregation.

    PubMed

    López, Laura C; Varea, Olga; Navarro, Susanna; Carrodeguas, José A; Sanchez de Groot, Natalia; Ventura, Salvador; Sancho, Javier

    2016-01-01

    Human Amylin, or islet amyloid polypeptide (hIAPP), is a small hormone secreted by pancreatic β-cells that forms aggregates under insulin deficiency metabolic conditions, and it constitutes a pathological hallmark of type II diabetes mellitus. In type II diabetes patients, amylin is abnormally increased, self-assembled into amyloid aggregates, and ultimately contributes to the apoptotic death of β-cells by mechanisms that are not completely understood. We have screened a library of approved drugs in order to identify inhibitors of amylin aggregation that could be used as tools to investigate the role of amylin aggregation in type II diabetes or as therapeutics in order to reduce β-cell damage. Interestingly, three of the compounds analyzed-benzbromarone, quercetin, and folic acid-are able to slow down amylin fiber formation according to Thioflavin T binding, turbidimetry, and Transmission Electron Microscopy assays. In addition to the in vitro assays, we have tested the effect of these compounds in an amyloid toxicity cell culture model and we have found that one of them, quercetin, has the ability to partly protect cultured pancreatic insulinoma cells from the cytotoxic effect of amylin. Our data suggests that quercetin can contribute to reduce oxidative damage in pancreatic insulinoma β cells by modulating the aggregation propensity of amylin. PMID:27322259

  15. Retinoic acid attenuates O2-induced inhibition of lung septation.

    PubMed

    Veness-Meehan, Kathleen A; Pierce, Richard A; Moats-Staats, Billie M; Stiles, Alan D

    2002-11-01

    Exposure of the newborn lung to hyperoxia is associated with impaired alveolar development. In newborn rats exposed to hyperoxia and studied at day 14 of life, retinoic acid (RA) treatment improved survival and increased lung collagen but did not improve alveolar development. To determine whether RA treatment during exposure to hyperoxia results in late improvement in alveolarization, we treated newborn rats with RA and hyperoxia from day 3 to day 14 and then weaned O2 to room air by day 20, and studied the animals on day 42. O2-exposed animals had larger mean lung volumes, larger alveoli, and decreased gas-exchange tissue relative to air-exposed animals, whereas RA-treated O2-exposed animals were not statistically different from air-exposed controls. Relative to control animals, elastin staining at day 14 was decreased in hyperoxia-exposed lung independent of RA treatment, and, at day 42, elastin staining was similar in all treatment groups. At day 14, elastin gene expression was similar in all treatment groups, whereas at day 42 lung previously exposed to hyperoxia showed increased elastin signal independent of RA treatment. These results indicate that RA treatment during hyperoxia exposure promotes septal formation without evidence of effects on elastin gene expression after 4 wk of recovery. PMID:12376350

  16. Identification of self-growth-inhibiting compounds lauric acid and 7-(Z)-tetradecenoic acid from Helicobacter pylori.

    PubMed

    Yamashita, Shinpei; Igarashi, Masayuki; Hayashi, Chigusa; Shitara, Tetsuo; Nomoto, Akio; Mizote, Tomoko; Shibasaki, Masakatsu

    2015-06-01

    Helicobacter pylori growth medium is usually supplemented with horse serum (HS) or FCS. However, cyclodextrin derivatives or activated charcoal can replace serum. In this study, we purified self-growth-inhibiting (SGI) compounds from H. pylori growth medium. The compounds were recovered from porous resin, Diaion HP-20, which was added to the H. pylori growth medium instead of known supplements. These SGI compounds were also identified from 2,6-di-O-methyl-β-cyclodextrin, which was supplemented in a pleuropneumonia-like organisms broth. The growth-inhibiting compounds were identified as lauric acid (LA) and 7-(Z)-tetradecenoic acid [7-(Z)-TDA]. Although several fatty acids had been identified in H. pylori, these specific compounds were not previously found in this species. However, we confirmed that these fatty acids were universally present in the cultivation medium of the H. pylori strains examined in this study. A live/dead assay carried out without HS indicated that these compounds were bacteriostatic; however, no significant growth-inhibiting effect was observed against other tested bacterial species that constituted the indigenous bacterial flora. These findings suggested that LA and 7-(Z)-TDA might play important roles in the survival of H. pylori in human stomach epithelial cells. PMID:25767109

  17. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  18. Kaurenoic Acid from Aralia continentalis Inhibits Biofilm Formation of Streptococcus mutans

    PubMed Central

    Jeong, Seung-Il; Kim, Beom-Su; Keum, Ki-Suk; Lee, Kwang-Hee; Kang, Sun-Young; Park, Bok-Im; Lee, Young-Rae; You, Yong-Ouk

    2013-01-01

    We isolated a single chemical compound from A. continentalis and identified it to be kaurenoic acid (KA) and investigated the influence of anticariogenic properties. Inhibitory effects of KA on cariogenic properties such as growth, acid production, biofilm formation, and the adherence of S. mutans were evaluated. Furthermore, real-time PCR analysis was performed to evaluate the influence of KA on the genetic expression of virulence factors. KA significantly inhibited the growth and acid production of S. mutans at 2–4 μg/mL and 4 μg/mL of KA, respectively. Furthermore, the adherence onto S-HAs was inhibited at 3-4 μg/mL of KA and biofilm formation was significantly inhibited when treated with 3 μg/mL KA and completely inhibited at 4 μg/mL. Also, the inhibitory effect of KA on biofilm formation was confirmed by SEM. In confocal laser scanning microscopy, bacterial viability gradually decreased by KA in a dose dependent manner. Real-time PCR analysis showed that the expressions of gtfB, gtfC, gbpB, spaP, brpA, relA, and vicR were significantly decreased in S. mutans when it was treated with KA. These results suggest that KA from A. continentalis may be a useful agent for inhibiting the cariogenic properties of S. mutans. PMID:23662113

  19. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition

    PubMed Central

    Palermo, Giulia; Favia, Angelo D.; Convertino, Marino

    2015-01-01

    Abstract The design of multitarget‐directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget‐directed ligand named ARN2508 (2‐[3‐fluoro‐4‐[3‐(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2‐arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti‐inflammatory agents that simultaneously act on FAAH and COX. PMID:26593700

  20. Photodegradation and inhibition of drug-resistant influenza virus neuraminidase using anthraquinone-sialic acid hybrids.

    PubMed

    Aoki, Yusuke; Tanimoto, Shuho; Takahashi, Daisuke; Toshima, Kazunobu

    2013-02-11

    The anthraquinone-sialic acid hybrids designed effectively degraded not only non-drug-resistant neuraminidase but also drug-resistant neuraminidase, which is an important target of anti-influenza therapy. Degradation was achieved using long-wavelength UV radiation in the absence of any additives and under neutral conditions. Moreover, the hybrids efficiently inhibited neuraminidase activities upon photo-irradiation. PMID:23282898

  1. Selective inhibition of fatty acid oxidation in colonocytes by ibuprofen: a cause of colitis?

    PubMed Central

    Roediger, W E; Millard, S

    1995-01-01

    Ibuprofen is associated with initiation or exacerbation of ulcerative colitis. As ibuprofen selectively inhibited fatty acid oxidation in the liver or caused mitochondrial damage in intestinal cells, its effect on substrate oxidation by isolated colonocytes of man and rat was examined. Ibuprofen dose dependently (2.0-7.5 mmol/l) and selectively inhibited 14CO2 production from labelled n-butyrate in colonocytes from the proximal and distal human colon (n = 12, p = < 0.001). Glucose oxidation was either unaltered or increased. Because short chain fatty acid oxidation is the main source of acetyl-CoA for long chain fatty acid synthesis, the inhibition of prostaglandin synthesis by ibuprofen in the colonic mucosa could also occur at this level. Because the concentrations of ibuprofen that can be attained in the human colon are not known, conclusions drawn from current dosages are tentative. The inhibition of fatty acid oxidation by ibuprofen may be biochemically implicated in the initiation and exacerbation of ulcerative colitis, manifestation of which would depend on the ibuprofen concentrations reached in the colon. PMID:7890237

  2. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly.

    PubMed

    Bates, Philip D; Johnson, Sean R; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G; Ohlrogge, John B; Browse, John

    2014-01-21

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [(14)C]acetate and [(3)H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [(14)C]acetate and [(14)C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl-CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl-CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid.

  3. d-Amino Acids Do Not Inhibit Biofilm Formation in Staphylococcus aureus

    PubMed Central

    Sarkar, Sourav; Pires, Marcos M.

    2015-01-01

    Bacteria can either exist in the planktonic (free floating) state or in the biofilm (encased within an organic framework) state. Bacteria biofilms cause industrial concerns and medical complications and there has been a great deal of interest in the discovery of small molecule agents that can inhibit the formation of biofilms or disperse existing structures. Herein we show that, contrary to previously published reports, d-amino acids do not inhibit biofilm formation of Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), and Staphylococcus epidermis (S. epidermis) at millimolar concentrations. We evaluated a diverse set of natural and unnatural d-amino acids and observed no activity from these compounds in inhibiting biofilm formation. PMID:25658642

  4. d-Amino acids do not inhibit biofilm formation in Staphylococcus aureus.

    PubMed

    Sarkar, Sourav; Pires, Marcos M

    2015-01-01

    Bacteria can either exist in the planktonic (free floating) state or in the biofilm (encased within an organic framework) state. Bacteria biofilms cause industrial concerns and medical complications and there has been a great deal of interest in the discovery of small molecule agents that can inhibit the formation of biofilms or disperse existing structures. Herein we show that, contrary to previously published reports, d-amino acids do not inhibit biofilm formation of Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), and Staphylococcus epidermis (S. epidermis) at millimolar concentrations. We evaluated a diverse set of natural and unnatural d-amino acids and observed no activity from these compounds in inhibiting biofilm formation. PMID:25658642

  5. Retinoic acid receptor alpha mediates growth inhibition by retinoids in human colon carcinoma HT29 cells.

    PubMed

    Nicke, B; Kaiser, A; Wiedenmann, B; Riecken, E O; Rosewicz, S

    1999-08-11

    Although retinoids have been suggested to inhibit chemically induced colon carcinogenesis, the molecular mechanisms underlying retinoid-mediated growth regulation in colon carcinoma cells are unknown. Therefore, we investigated the biological effects of retinoids on growth in HT29 colon carcinoma cells. All-trans retinoic acid (ATRA) treatment of HT29 cells resulted in a profound inhibition of anchorage-independent growth without biochemical or morphological evidence for induction of differentiation. Treatment with the selective RARalpha agonist Ro 40-6055 completely mimicked the effects of ATRA on growth and transactivation of a betaRAREx2-luciferase reporter construct, while RARbeta- and gamma-specific analogues were ineffective. Furthermore, ATRA-regulated growth and transactivation could be completely blocked by a RARalpha-selective receptor antagonist. Thus, ATRA potently inhibits anchorage-independent growth in HT29 cells and this effect is mainly if not exclusively mediated by the retinoic acid receptor alpha.

  6. Zoledronic acid inhibits pulmonary metastasis dissemination in a preclinical model of Ewing’s sarcoma via inhibition of cell migration

    PubMed Central

    2014-01-01

    Background Ewing’s sarcoma (ES) is the second most frequent primitive malignant bone tumor in adolescents with a very poor prognosis for high risk patients, mainly when lung metastases are detected (overall survival <15% at 5 years). Zoledronic acid (ZA) is a potent inhibitor of bone resorption which induces osteoclast apoptosis. Our previous studies showed a strong therapeutic potential of ZA as it inhibits ES cell growth in vitro and ES primary tumor growth in vivo in a mouse model developed in bone site. However, no data are available on lung metastasis. Therefore, the aim of this study was to determine the effect of ZA on ES cell invasion and metastatic properties. Methods Invasion assays were performed in vitro in Boyden’s chambers covered with Matrigel. Matrix Metalloproteinase (MMP) activity was analyzed by zymography in ES cell culture supernatant. In vivo, a relevant model of spontaneous lung metastases which disseminate from primary ES tumor was induced by the orthotopic injection of 106 human ES cells in the tibia medullar cavity of nude mice. The effect of ZA (50 μg/kg, 3x/week) was studied over a 4-week period. Lung metastases were observed macroscopically at autopsy and analysed by histology. Results ZA induced a strong inhibition of ES cell invasion, probably due to down regulation of MMP-2 and −9 activities as analyzed by zymography. In vivo, ZA inhibits the dissemination of spontaneous lung metastases from a primary ES tumor but had no effect on the growth of established lung metastases. Conclusion These results suggest that ZA could be used early in the treatment of ES to inhibit bone tumor growth but also to prevent the early metastatic events to the lungs. PMID:24612486

  7. Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG

    PubMed Central

    Al-Bashir, Najat; Mellado, Wilfredo; Filbin, Marie T.

    2016-01-01

    Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG’s inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage. PMID:27065798

  8. Inhibition of lysophospholipase D activity by unsaturated lysophosphatidic acids or seed extracts containing 1-linoleoyl and 1-oleoyl lysophosphatidic acid.

    PubMed

    Liu, Xi-Wen; Sok, Dai-Eun; Yook, Hong-Sun; Sohn, Cheon-Bae; Chung, Young-Jin; Kim, Mee Ree

    2007-10-17

    Lysophospholipase D (lysoPLD), generating lipid mediator lysophosphatidic acid (LPA) from lysophosphatidyclcholine (LPC), is known to be inhibited by lysophosphatidic acids. Meanwhile, some plant lipids are known to contain lysophospholipids as minor components. Therefore, it is interesting to test whether edible seed samples, rich in phospholipids, may contain lysophospholipids, which express a strong inhibition of lysoPLD activity. First, the structural importance of fatty acyl group in LPAs was examined by determining the inhibitory effect of various LPAs on bovine lysoPLD activity. The most potent in the inhibition of lysoPLD activity was linoleoyl-LPA ( K i, 0.21 microM), followed by arachidonoyl-LPA ( K i, 0.55 microM), oleoyl-LPA ( K i, 1.2 microM), and palmitoyl-LPA ( K i, 1.4 microM), based on the fluoresecent assay. The same order of inhibitory potency among LPA analogs with different acyl chains was also found in the spectrophotometric assay. Subsequently, the extracts of 12 edible seeds were screened for the inhibition of lysoPLD activity using both spectrophotometric and fluorescent assays. Among seed extracts tested, the extract from soybean seed, sesame seed, or sunflower seed (30 mg seed weight/mL) was found to exhibit a potent inhibition (>80%) of lysoPLD activity. In further study employing ESI-MS/MS analysis, major LPA components in seed extracts were identified to be 1-linoleoyl LPA, 1-oleoyl LPA, and 1-palmitoyl LPA with 1-linoleoyl LPA being more predominant. Thus, the potent inhibition of lysoPLD activity by seed extracts might be ascribed to the presence of LPA with linoleoyl group rather than other acyl chains. PMID:17887800

  9. Electrophilic Fatty Acid Species Inhibit 5-Lipoxygenase and Attenuate Sepsis-Induced Pulmonary Inflammation

    PubMed Central

    Awwad, Khader; Steinbrink, Svenja D.; Frömel, Timo; Lill, Nicole; Isaak, Johann; Häfner, Ann-Kathrin; Roos, Jessica; Hofmann, Bettina; Heide, Heinrich; Geisslinger, Gerd; Steinhilber, Dieter; Freeman, Bruce A.; Maier, Thorsten J.; Fleming, Ingrid

    2014-01-01

    Abstract Aims: The reaction of nitric oxide and nitrite-derived species with polyunsaturated fatty acids yields electrophilic fatty acid nitroalkene derivatives (NO2-FA), which display anti-inflammatory properties. Given that the 5-lipoxygenase (5-LO, ALOX5) possesses critical nucleophilic amino acids, which are potentially sensitive to electrophilic modifications, we determined the consequences of NO2-FA on 5-LO activity in vitro and on 5-LO-mediated inflammation in vivo. Results: Stimulation of human polymorphonuclear leukocytes (PMNL) with nitro-oleic (NO2-OA) or nitro-linoleic acid (NO2-LA) (but not the parent lipids) resulted in the concentration-dependent and irreversible inhibition of 5-LO activity. Similar effects were observed in cell lysates and using the recombinant human protein, indicating a direct reaction with 5-LO. NO2-FAs did not affect the activity of the platelet-type 12-LO (ALOX12) or 15-LO-1 (ALOX15) in intact cells or the recombinant protein. The NO2-FA-induced inhibition of 5-LO was attributed to the alkylation of Cys418, and the exchange of Cys418 to serine rendered 5-LO insensitive to NO2-FA. In vivo, the systemic administration of NO2-OA to mice decreased neutrophil and monocyte mobilization in response to lipopolysaccharide (LPS), attenuated the formation of the 5-LO product 5-hydroxyeicosatetraenoic acid (5-HETE), and inhibited lung injury. The administration of NO2-OA to 5-LO knockout mice had no effect on LPS-induced neutrophil or monocyte mobilization as well as on lung injury. Innovation: Prophylactic administration of NO2-OA to septic mice inhibits inflammation and promotes its resolution by interfering in 5-LO-mediated inflammatory processes. Conclusion: NO2-FAs directly and irreversibly inhibit 5-LO and attenuate downstream acute inflammatory responses. Antioxid. Redox Signal. 20, 2667–2680. PMID:24206143

  10. Corrosion Inhibition of Carbon Steel by New Thiophene Azo Dye Derivatives in Acidic Solution

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mahmoud N.; Fouda, A. S.; Mostafa, H. A.

    2013-08-01

    Inhibition of carbon steel corrosion in 2 M hydrochloric acid (HCl) solution by thiophene azo dye derivatives were studied using weight loss, electrochemical frequency modulation (EFM), and atomic absorption techniques. The experimental data suggest that the inhibition efficiency increases with increasing inhibitors concentration in presence of 103 μM potassium iodide (KI). This is due to synergistic effect. Thus, the experimental results suggested that the presence of these anions in the solution stabilized the adsorption of inhibitors molecules on the metal surface and improved the inhibition efficiency. The results of EFM experiments are a spectrum of current response as a function of frequency. The corrosion rate and Tafel parameters can be obtained with measurement by analyzing the harmonic frequencies. The adsorption of the inhibitors on metal surface obeys the Langmuir adsorption isotherm. The surface of metal examined using Fourier transform infrared and ultraviolet spectroscopy. Quantum chemical calculations were carried out and relations between computed parameters and experimental inhibition efficiency were discussed.

  11. Inhibition of acid sensing ion channel by ligustrazine on angina model in rat.

    PubMed

    Zhang, Zhi-Gang; Zhang, Xiao-Lan; Wang, Xian-Yue; Luo, Zhu-Rong; Song, Jing-Chun

    2015-01-01

    Ligustrazine, a compound extracted from roots of Ligusticum chuanxiong, is widely used in Chinese traditional medicine to treat cardiac and cerebrovascular diseases and pain, including angina. The mechanism(s) of ligustrazine's effect to reduce angina is not clear. Angina is mediated by cardiac afferent sensory neurons. These neurons display a large acid-evoked depolarizing sodium current that can initiate action potentials in response to acidification that accompanies myocardial ischemia. Acid-sensing ion channels (ASICs) mediate this current. Here we tested the hypothesis that ligustrazine reduces ischemia-induced cardiac dysfunction and acid-evoked pain by an action to inhibit ASIC-mediated current. The effects of ligustrazine to attenuate ischemia-induced ST-segment depression, T wave changes, and myocardial infarct size in hearts of anesthetized rats were determined. Effects of ligustrazine on currents mediated by ASICs expressed in cultured Chinese hamster ovary cells, and effects of the drug on acid-induced nociceptive behavior and acid-induced currents in isolated dorsal root ganglions cells were measured. Ligustrazine significantly attenuated acid-induced ASIC currents, reduced cardiac ischemia-induced electrical dysfunction and infarct size, and decreased the nociceptive response to injection of acid into the paw of the rat hindlimb. The ASIC channel inhibitor A-317567 similarly reduced electrical dysfunction, infarct size, and nociceptive behavior in the rat. Inhibition of ASICs by ligustrazine may explain at least in part the beneficial effects of the drug that are observed in patients with ischemic heart disease and angina. PMID:26692925

  12. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    PubMed

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations. PMID:27010419

  13. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  14. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    SciTech Connect

    Robinson, K.; Pilot, T.F.; Meany, J.E. )

    1990-01-01

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing in solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated.

  15. Tannic Acid Inhibits Hepatitis C Virus Entry into Huh7.5 Cells

    PubMed Central

    Hagedorn, Curt H.

    2015-01-01

    Chronic infection with the hepatitis C virus (HCV) is a cause of cirrhosis and hepatocellular carcinoma worldwide. Although antiviral therapy has dramatically improved recently, a number of patients remain untreated and some do not clear infection with treatment. Viral entry is an essential step in initiating and maintaining chronic HCV infections. One dramatic example of this is the nearly 100% infection of newly transplanted livers in patients with chronic hepatitis C. HCV entry inhibitors could play a critical role in preventing HCV infection of newly transplanted livers. Tannic acid, a polymer of gallic acid and glucose molecules, is a plant-derived polyphenol that defends some plants from insects and microbial infections. It has been shown to have a variety of biological effects, including antiviral activity, and is used as a flavoring agent in foods and beverages. In this study, we demonstrate that tannic acid is a potent inhibitor of HCV entry into Huh7.5 cells at low concentrations (IC50 5.8 μM). It also blocks cell-to-cell spread in infectious HCV cell cultures, but does not inhibit HCV replication following infection. Moreover, experimental results indicate that tannic acid inhibits an early step of viral entry, such as the docking of HCV at the cell surface. Gallic acid, tannic acid’s structural component, did not show any anti-HCV activity including inhibition of HCV entry or replication at concentrations up to 25 μM. It is possible the tannin structure is related on the effect on HCV inhibition. Tannic acid, which is widely distributed in plants and foods, has HCV antiviral activity in cell culture at low micromolar concentrations, may provide a relative inexpensive adjuvant to direct-acting HCV antivirals and warrants future investigation. PMID:26186636

  16. Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids.

    PubMed

    King, C Andy; Purcell, Larry C

    2005-04-01

    Decreased N2 fixation in soybean (Glycine max) L. Merr. during water deficits has been associated with increases in ureides and free amino acids in plant tissues, indicating a potential feedback inhibition by these compounds in response to drought. We evaluated concentrations of ureides and amino acids in leaf and nodule tissue and the concurrent change in N2 fixation in response to exogenous ureides and soil-water treatments for the cultivars Jackson and KS4895. Exogenous ureides applied to the soil and water-deficit treatments inhibited N2 fixation by 85% to 90%. Mn fertilization increased the apparent catabolism of ureides in leaves and hastened the recovery of N2 fixation following exogenous ureide application for both cultivars. Ureides and total free amino acids in leaves and nodules increased during water deficits and coincided with a decline in N2 fixation for both cultivars. N2 fixation recovered to 74% to 90% of control levels 2 d after rewatering drought-stressed plants, but leaf ureides and total nodule amino acids remained elevated in KS4895. Asparagine accounted for 82% of the increase in nodule amino acids relative to well-watered plants at 2 d after rewatering. These results indicate that leaf ureides and nodule asparagine do not feedback inhibit N2 fixation. Compounds whose increase and decrease in concentration mirrored the decline and recovery of N2 fixation included nodule ureides, nodule aspartate, and several amino acids in leaves, indicating that these are potential candidate molecules for feedback inhibition of N2 fixation.

  17. Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

  18. Hydroxamate based inhibitors of adenylyl cyclase. Part 1: the effect of acyclic linkers on P-site binding.

    PubMed

    Levy, Daniel; Marlowe, Charles; Kane-Maguire, Kim; Bao, Ming; Cherbavaz, Diana; Tomlinson, James; Sedlock, David; Scarborough, Robert

    2002-11-01

    The adenylyl cyclases (ACs) are a family of enzymes that are key elements of signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the purine binding site (P-site) followed by metal mediated cyclization with loss of pyrophosphate. Crystallographic analysis of ACs with known inhibitors reveals the presence of two metals in the active site. Presently, nine isoforms of adenylyl cyclase are known and unique isoform combinations are expressed in a tissue specific manner. The development of isoform specific inhibitors of adenylyl cyclase may prove to be a useful strategy toward the design of novel therapeutic agents. In order to develop novel AC inhibitors, we have chosen a design approach utilizing molecules with the adenine ring system joined to a metal-coordinating hydroxamic acid via flexible acyclic linkers. The designed inhibitors were assayed against type V AC with the size and heteroatom content of the linkers varied to probe the interaction of the nucleotide and metal binding sites within the enzyme. PMID:12372507

  19. In vitro inhibition of salicylic acid derivatives on human cytosolic carbonic anhydrase isozymes I and II.

    PubMed

    Bayram, Esra; Senturk, Murat; Kufrevioglu, O Irfan; Supuran, Claudiu T

    2008-10-15

    The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and II, with a series of salicylic acid derivatives was investigated by using the esterase method with 4-nitrophenyl acetate as substrate. IC(50) values for sulfasalazine, diflunisal, 5-chlorosalicylic acid, dinitrosalicylic acid, 4-aminosalicylic acid, 4-sulfosalicylic acid, 5-sulfosalicylic acid, salicylic acid, acetylsalicylic acid (aspirin) and 3-metylsalicylic acid were of 3.04 microM, 3.38 microM, 4.07 microM, 7.64 microM, 0.13 mM, 0.29 mM, 0.42 mM, 0.56 mM, 2.71 mM and 3.07 mM for hCA I and of 4.49 microM, 2.70 microM, 0.72 microM, 2.80 microM, 0.75 mM, 0.72 mM, 0.29 mM, 0.68 mM, 1.16 mM and 4.70 mM for hCA II, respectively. Lineweaver-Burk plots were also used for the determination of the inhibition mechanism of these substituted phenols, most of which were noncompetitive inhibitors with this substrate. Some salicylic acid derivatives investigated here showed effective hCA I and II inhibitory activity, and might be used as leads for generating enzyme inhibitors eventually targeting other isoforms which have not been assayed yet for their interactions with such agents.

  20. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria.

    PubMed

    Yao, Jiangwei; Bruhn, David F; Frank, Matthew W; Lee, Richard E; Rock, Charles O

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria.

  1. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition.

    PubMed

    Song, Yeong Hun; Kim, Dae Wook; Curtis-Long, Marcus J; Park, Chanin; Son, Minky; Kim, Jeong Yoon; Yuk, Heung Joo; Lee, Keun Woo; Park, Ki Hun

    2016-05-23

    The α-glucosidase inhibitory potential of Tribulus terrestris extracts has been reported but as yet the active ingredients are unknown. This study attempted to isolate the responsible metabolites and elucidate their inhibition mechanism of α-glucosidase. By fractionating T. terristris extracts, three cinnamic acid amide derivatives (1-3) were ascertained to be active components against α-glucosidase. The lead structure, N-trans-coumaroyltyramine 1, showed significant inhibition of α-glucosidase (IC50 = 0.42 μM). Moreover, all active compounds displayed uncompetitive inhibition mechanisms that have rarely been reported for α-glucosidase inhibitors. This kinetic behavior was fully demonstrated by showing a decrease of both Km and Vmax, and Kik/Kiv ratio ranging between 1.029 and 1.053. We progressed to study how chemical modifications to the lead structure 1 may impact inhibition. An α, β-unsaturation carbonyl group and hydroxyl group in A-ring of cinnamic acid amide emerged to be critical functionalities for α-glucosidase inhibition. The molecular modeling study revealed that the inhibitory activities are tightly related to π-π interaction as well as hydrogen bond interaction between enzyme and inhibitors.

  2. Diuresis by intravenous administration of xanthurenic acid in rats, and inhibition by probenecid.

    PubMed

    Uwai, Yuichi; Nakashima, Yuta; Honjo, Emi; Kawasaki, Tatsuya; Nabekura, Tomohiro

    2014-01-01

    The conjugates with sulfate and glucoside of xanthurenic acid, a tryptophan metabolite, were reported to show natriuresis. Sulfotransferase for xanthurenic acid works in the renal proximal tubule to produce the sulfate of xanthurenic acid as well as the liver, and we recently found that xanthurenic acid is a substrate of renal organic anion transporter OAT1. The purpose of this study was to examine relationship between the transport by OAT1 and diuresis related with xanthurenic acid. Drug transport experiment using Xenopus laevis oocytes represented that probenecid inhibited xanthurenic acid uptake by rat OAT1 (rOAT1). Although no diuresis was recognized by the intravenous injection of xanthurenic acid as a bolus in rats, the addition of its infusion exhibited natriuresis. Simultaneous administration of probenecid significantly decreased the urine volume and excreted amounts of sodium into urine. These findings showed the diuresis by the xanthurenic acid administration, and it was probenecid-sensitive. The rOAT1-mediated transport of xanthurenic acid might, at least in part, contribute to its diuretic effect.

  3. Inhibition of Long Chain Acyl Coenzyme A Synthetases during Fatty Acid Loading Induces Lipotoxicity in Macrophages

    PubMed Central

    Saraswathi, Viswanathan; Hasty, Alyssa H.

    2009-01-01

    OBJECTIVES Obesity is often associated with hypertriglyceridemia and elevated free fatty acids (FFAs) which are independent risk factors for cardiovascular disease and diabetes. While impairment of cholesterol homeostasis is known to induce toxicity in macrophages, the consequence of altered fatty acid homeostasis is not clear. METHODS AND RESULTS Long chain acyl CoA synthetases (ACSLs) play a critical role in fatty acid homeostasis by channeling fatty acids to diverse metabolic pools. We treated mouse peritoneal macrophages (MPMs) with VLDL or FFAs in the presence of triacsin C, an inhibitor of the three ACSL isoforms present in macrophages. Treatment of macrophages with VLDL and triacsin C resulted in reduced TG accumulation but increased intracellular FFA levels which induced lipotoxicity characterized by induction of apoptosis. Treatment of MPMs with the saturated fatty acid stearic acid in the presence of triacsin C increased intracellular stearic acid and induced apoptosis. Stromal vascular cells collected from high fat diet-fed mice displayed foam cell morphology and exhibited increased mRNA levels of macrophage markers and ACSL1. Importantly, all of these changes were associated with increased FFA level in AT. CONCLUSIONS Inhibition of ACSLs during fatty acid loading results in apoptosis via accumulation of FFAs. Our data have implications in understanding the consequences of dysregulated fatty acid metabolism in macrophages. PMID:19679826

  4. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    PubMed

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight. PMID:24077735

  5. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic.

    PubMed

    Fuhrman, B; Volkova, N; Rosenblat, M; Aviram, M

    2000-01-01

    Several lines of evidence suggest that oxidatively modified low-density lipoprotein (LDL) is atherogenic, and that atherosclerosis can be attenuated by natural antioxidants, which inhibit LDL oxidation. This study was conducted to determine the effect of tomato lycopene alone, or in combination with other natural antioxidants, on LDL oxidation. LDL (100 microg of protein/ml) was incubated with increasing concentrations of lycopene or of tomato oleoresin (lipid extract of tomatoes containing 6% lycopene, 0.1% beta-carotene, 1% vitamin E, and polyphenols), after which it was oxidized by the addition of 5 micromol/liter of CuSO4. Tomato oleoresin exhibited superior capacity to inhibit LDL oxidation in comparison to pure lycopene, by up to five-fold [97% vs. 22% inhibition of thiobarbituric acid reactive substances (TBARS) formation, and 93% vs. 27% inhibition of lipid peroxides formation, respectively]. Because tomato oleoresin also contains, in addition to lycopene, vitamin E, flavonoids, and phenolics, a possible cooperative interaction between lycopene and such natural antioxidants was studied. A combination of lycopene (5 micromol/liter) with vitamin E (alpha-tocopherol) in the concentration range of 1-10 micromol/liter resulted in an inhibition of copper ion-induced LDL oxidation that was significantly greater than the expected additive individual inhibitions. The synergistic antioxidative effect of lycopene with vitamin E was not shared by gamma-to-cotrienol. The polyphenols glabridin (derived from licorice), rosmarinic acid or carnosic acid (derived from rosemary), as well as garlic (which contains a mixture of natural antioxidants) inhibited LDL oxidation in a dose-dependent manner. When lycopene (5 micromol/liter) was added to LDL in combination with glabridin, rosmarinic acid, carnosic acid, or garlic, synergistic antioxidative effects were obtained against LDL oxidation induced either by copper ions or by the radical generator AAPH. Similar interactive

  6. Peptide nucleic acids inhibit growth of Brucella suis in pure culture and in infected murine macrophages

    PubMed Central

    Rajasekaran, Parthiban; Alexander, Jeffry C.; Seleem, Mohamed N.; Jain, Neeta; Sriranganathan, Nammalwar; Wattam, Alice R.; Setubal, João C.; Boyle, Stephen M.

    2012-01-01

    Peptide nucleic acids (PNAs) are single-stranded, synthetic nucleic acid analogues containing a pseudopeptide backbone in place of the phosphodiester sugar–phosphate. When PNAs are covalently linked to cell-penetrating peptides (CPPs) they readily penetrate the bacterial cell envelope, inhibit expression of targeted genes and cause growth inhibition both of Gram-positive and Gram-negative bacteria. However, the effectiveness of PNAs against Brucella, a facultative intracellular bacterial pathogen, was unknown. The susceptibility of a virulent Brucella suis strain to a variety of PNAs was assessed in pure culture as well as in murine macrophages. The studies showed that some of the PNAs targeted to Brucella genes involved in DNA (polA, dnaG, gyrA), RNA (rpoB), cell envelope (asd), fatty acid (kdtA, acpP) and protein (tsf) synthesis inhibit the growth of B. suis in culture and in macrophages after 24 h of treatment. PNA treatment inhibited Brucella growth by interfering with gene expression in a sequence-specific and dose-dependent manner at micromolar concentrations. The most effective PNA in broth culture was that targeting polA at ca. 12 μM. In contrast, in B. suis-infected macrophages, the most effective PNAs were those targeting asd and dnaG at 30 μM; both of these PNAs had little inhibitory effect on Brucella in broth culture. The polA PNA that inhibits wild-type B. suis also inhibits the growth of wild-type Brucella melitensis 16M and Brucella abortus 2308 in culture. This study reveals the potential usefulness of antisense PNA constructs as novel therapeutic agents against intracellular Brucella. PMID:23305655

  7. Cannabinoids Inhibit Acid-Sensing Ion Channel Currents in Rat Dorsal Root Ganglion Neurons

    PubMed Central

    Qiu, Chun-Yu; Cai, Qi; Zou, Pengcheng; Wu, Heming; Hu, Wang-Ping

    2012-01-01

    Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration–response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids. PMID:23029075

  8. Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication

    PubMed Central

    2015-01-01

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure–activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines. PMID:25126694

  9. Inhibition of Listeria innocua in hummus by a combination of nisin and citric acid.

    PubMed

    Al-Holy, M; Al-Qadiri, H; Lin, M; Rasco, B

    2006-06-01

    The effect of nisin or citric acid or combinations of these two inhibitors on the inactivation of a cocktail of three Listeria innocua strains was investigated in a model brain heart infusion (BHI) broth and hummus (chickpea dip). In BHI broth, citric acid had a limited ability to inhibit L. innocua growth. Nisin initially reduced L. innocua concentrations by about 3 log cycles; however, L. innocua reached concentrations similar to those of the control after 5 days at 22 degrees C. In combination, the effects of 500 IU/ml nisin and 0.2% citric acid were synergistic and resulted in complete elimination of L. innocua in the BHI broth. The inhibition of L. innocua by nisin (500 or 1,000 IU/g), citric acid (0.1, 0.2, or 0.3%), or their combinations also was evaluated in hummus. Citric acid alone did not affect L. innocua growth or the aerobic bacterial plate count. A combination of 1,000 IU/g nisin and 0.3% citric acid was somewhat effective (approximately 1.5-log reduction) in controlling the concentration of L. innocua and the aerobic plate count for up to 6 days. This combination also may be useful, in addition to proper hygienic practices, for minimizing the growth of the pathogen Listeria monocytogenes in hummus. PMID:16786852

  10. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  11. Correlation between arachidonic acid oxygenation and luminol-induced chemiluminescence in neutrophils: inhibition by diethyldithiocarbamate.

    PubMed

    Chabannes, B; Perraut, C; El Habib, R; Moliere, P; Pacheco, Y; Lagarde, M

    1997-04-01

    Neutrophils from allergic subjects were hypersensitive to stimulation by low calcium ionophore concentration (0.15 microM), resulting in an increased formation of leukotriene B4 (LTB4), 5S-hydroxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid (5-HETE), and other arachidonic acid metabolites through the 5-lipoxygenase pathway. In parallel, luminol-dependent chemiluminescence was also higher in neutrophils from allergic patients at the basal state and after stimulation by calcium ionophore, revealing an enhancement of radical oxygen species and peroxide production. The activity of glutathione peroxidase, the main enzyme responsible for hydroperoxide reduction, was lowered in these cells. Diethyl-dithiocarbamate (DTC) induced a concentration-dependent decrease in chemiluminescence and arachidonic acid metabolism after neutrophil stimulation. These data show that the elevation of arachidonic acid metabolism in neutrophils from allergic patients is strongly correlated with oxidative status. This elevation may be the consequence of an increased cellular hydroperoxide known to activate 5-lipoxygenase (5-LOX) activity and/or an increased arachidonic acid availability, due either to phospholipase A2 (PLA2) activation or inhibition of arachidonate reesterification into phospholipids. Lowering this oxidative status was associated with a concomitant decrease of this metabolism. Our results suggest that the effect of DTC may be the consequence of an inhibition of peroxyl radical and cellular lipid hydroperoxide production. Thus, DTC may modulate arachidonic acid metabolism in neutrophils by modulating the cellular hydroperoxide level.

  12. [(-)-Epigallocatechin gallate, the main constituent of Japanese green tea, inhibits tumor promotion of okadaic acid].

    PubMed

    Yoshizawa, S

    1996-10-01

    (-)-Epigallocatechin gallate (EGCG), the main constituent of green tea, inhibited a tumor promoting activity of okadaic acid in a two-stage carcinogenesis experiment on mouse skin. The group treated with a single application of 100 micrograms 7, 12-dimethylbenz (a) anthracene followed by repeated applications of 1 microgram okadaic acid resulted in 80% of tumor-bearing mice and 4.7 of average numbers of tumors per mouse in week 20. Repeated applications of 5 mg EGCG, prior to okadaic acid, completely inhibited the tumor formation in mice up to week 20. The inhibitory effects of EGCG with two different doses of each application, 1 mg and 5 mg, were dose-dependent. A topical application of 5 mg EGCG immediately reduced the specific binding of [3H]okadaic acid to a particulate fraction of mouse skin to as low as 30% of control. According to the Scatchard analysis, the reduction of specific [3H]okadaic acid binding was mainly due to the reduction of the binding sites, not due to the change of the affinity. The reduction of the specific binding was closely related to the inhibitory effct of EGCG on tumor promotion of okadaic acid. Since EGCG is a non-toxic compound, ingested in green tea in daily life in Japan, EGCG is one of the candidates for practical cancer chemopreventive agents.

  13. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1.

    PubMed

    Bauer, Julia; Kuehnl, Susanne; Rollinger, Judith M; Scherer, Olga; Northoff, Hinnak; Stuppner, Hermann; Werz, Oliver; Koeberle, Andreas

    2012-07-01

    Prostaglandin E(2) (PGE(2)), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE(2) synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE(2) in a cell-free assay by direct interference with microsomal PGE(2) synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC(50) values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC(50) values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE(2) generation upon stimulation with lipopolysaccharide (IC(50) = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF(1α), 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B(2)] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE(2) formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE(2) formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis.

  14. Carnosol and Carnosic Acids from Salvia officinalis Inhibit Microsomal Prostaglandin E2 Synthase-1

    PubMed Central

    Bauer, Julia; Kuehnl, Susanne; Rollinger, Judith M.; Scherer, Olga; Northoff, Hinnak; Stuppner, Hermann; Werz, Oliver; Koeberle, Andreas

    2012-01-01

    Prostaglandin E2 (PGE2), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE2 synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE2 in a cell-free assay by direct interference with microsomal PGE2 synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC50 values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC50 values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE2 generation upon stimulation with lipopolysaccharide (IC50 = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF1α, 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B2] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE2 formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE2 formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis. PMID:22511203

  15. The Weak Acid Preservative Sorbic Acid Inhibits Conidial Germination and Mycelial Growth of Aspergillus niger through Intracellular Acidification

    PubMed Central

    Plumridge, Andrew; Hesse, Stephan J. A.; Watson, Adrian J.; Lowe, Kenneth C.; Stratford, Malcolm; Archer, David B.

    2004-01-01

    The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 105/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of mycelia at 24 h developed from the same spore inoculum was threefold lower. The MIC for conidia and, to a lesser extent, mycelia was shown to be dependent on the inoculum size. A. niger is capable of degrading sorbic acid, and this ability has consequences for food preservation strategies. The mechanism of action of sorbic acid was investigated using 31P nuclear magnetic resonance (NMR) spectroscopy. We show that a rapid decline in cytosolic pH (pHcyt) by more than 1 pH unit and a depression of vacuolar pH (pHvac) in A. niger occurs in the presence of sorbic acid. The pH gradient over the vacuole completely collapsed as a result of the decline in pHcyt. NMR spectra also revealed that sorbic acid (3.0 mM at pH 4.0) caused intracellular ATP pools and levels of sugar-phosphomonoesters and -phosphodiesters of A. niger mycelia to decrease dramatically, and they did not recover. The disruption of pH homeostasis by sorbic acid at concentrations below the MIC could account for the delay in spore germination and retardation of the onset of subsequent mycelial growth. PMID:15184150

  16. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease.

    PubMed

    Celorrio, Marta; Fernández-Suárez, Diana; Rojo-Bustamante, Estefanía; Echeverry-Alzate, Víctor; Ramírez, María J; Hillard, Cecilia J; López-Moreno, José A; Maldonado, Rafael; Oyarzábal, Julen; Franco, Rafael; Aymerich, María S

    2016-10-01

    Elements of the endocannabinoid system are strongly expressed in the basal ganglia where they suffer profound rearrangements after dopamine depletion. Modulation of the levels of the endocannabinoid 2-arachidonoyl-glycerol by inhibiting monoacylglycerol lipase alters glial phenotypes and provides neuroprotection in a mouse model of Parkinson's disease. In this study, we assessed whether inhibiting fatty acid amide hydrolase could also provide beneficial effects on the time course of this disease. The fatty acid amide hydrolase inhibitor, URB597, was administered chronically to mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp) over 5weeks. URB597 (1mg/kg) prevented MPTPp induced motor impairment but it did not preserve the dopamine levels in the nigrostriatal pathway or regulate glial cell activation. The symptomatic relief of URB597 was confirmed in haloperidol-induced catalepsy assays, where its anti-cataleptic effects were both blocked by antagonists of the two cannabinoid receptors (CB1 and CB2), and abolished in animals deficient in these receptors. Other fatty acid amide hydrolase inhibitors, JNJ1661010 and TCF2, also had anti-cataleptic properties. Together, these results demonstrate an effect of fatty acid amide hydrolase inhibition on the motor symptoms of Parkinson's disease in two distinct experimental models that is mediated by cannabinoid receptors. PMID:27318096

  17. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease.

    PubMed

    Celorrio, Marta; Fernández-Suárez, Diana; Rojo-Bustamante, Estefanía; Echeverry-Alzate, Víctor; Ramírez, María J; Hillard, Cecilia J; López-Moreno, José A; Maldonado, Rafael; Oyarzábal, Julen; Franco, Rafael; Aymerich, María S

    2016-10-01

    Elements of the endocannabinoid system are strongly expressed in the basal ganglia where they suffer profound rearrangements after dopamine depletion. Modulation of the levels of the endocannabinoid 2-arachidonoyl-glycerol by inhibiting monoacylglycerol lipase alters glial phenotypes and provides neuroprotection in a mouse model of Parkinson's disease. In this study, we assessed whether inhibiting fatty acid amide hydrolase could also provide beneficial effects on the time course of this disease. The fatty acid amide hydrolase inhibitor, URB597, was administered chronically to mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp) over 5weeks. URB597 (1mg/kg) prevented MPTPp induced motor impairment but it did not preserve the dopamine levels in the nigrostriatal pathway or regulate glial cell activation. The symptomatic relief of URB597 was confirmed in haloperidol-induced catalepsy assays, where its anti-cataleptic effects were both blocked by antagonists of the two cannabinoid receptors (CB1 and CB2), and abolished in animals deficient in these receptors. Other fatty acid amide hydrolase inhibitors, JNJ1661010 and TCF2, also had anti-cataleptic properties. Together, these results demonstrate an effect of fatty acid amide hydrolase inhibition on the motor symptoms of Parkinson's disease in two distinct experimental models that is mediated by cannabinoid receptors.

  18. Arachidonic acid-mediated inhibition of a potassium current in the giant neurons of Aplysia

    SciTech Connect

    Carlson, R.O.

    1990-01-01

    Biochemical and electrophysiological approaches were used to investigate the role of arachidonic acid (AA) in the modulation of an inwardly rectifying potassium current (I{sub R}) in the giant neurons of the marine snail, Aplysia californica. Using ({sup 3}H)AA as tracer, the intracellular free AA pool in Aplysia ganglia was found to be in a state of constant and rapid turnover through deacylation and reacylation of phospholipid, primarily phosphatidyl-inositol. This constant turnover was accompanied by a constant release of free AA and eicosanoids into the extracellular medium. The effects of three pharmacological agents were characterized with regard to AA metabolism in Aplysia ganglia. 4-O-tetra-decanoylphorbol 13-acetate (TPA), an activator of protein kinase C, stimulated liberation of AA from phospholipid, and 4-bromophenacylbromide (BPB), an inhibitor of phospholipate A{sub 2}, inhibited this liberation. Indomethacin at 250 {mu}M was found to inhibit uptake of AA, likely through inhibition of acyl-CoA synthetase. These agents were also found to modulate I{sub R} in ways which were consistent with their biological effects: TPA inhibited I{sub R}, and both BPB and indomethacin stimulated I{sub R} . Modulation of I{sub R} by these substances was found not to involve cAMP metabolism. Acute application of exogenous AA did not affect I{sub R}; however, I{sub R} in giant neurons was found to be inhibited after dialysis with AA or other unsaturated fatty acids. Also, after perfusion with BSA overnight, a treatment which strips the giant neurons of AA in lipid storage, I{sub R} was found to have increased over 2-fold. This perfusion-induced increase was inhibited by the presence of AA or by pretreatment of the giant neurons with BPB. These results suggest AA, provided through constant turnover from phospholipid, mediates constitutive inhibition of I{sub R}.

  19. Inhibition of metallo-beta-lactamases by a series of mercaptoacetic acid thiol ester derivatives.

    PubMed Central

    Payne, D J; Bateson, J H; Gasson, B C; Proctor, D; Khushi, T; Farmer, T H; Tolson, D A; Bell, D; Skett, P W; Marshall, A C; Reid, R; Ghosez, L; Combret, Y; Marchand-Brynaert, J

    1997-01-01

    A series of mercaptoacetic acid thiol esters have been identified as metallo-beta-lactamase inhibitors. Electrospray mass spectrometry (ESMS) has shown that irreversible inhibition of the Bacillus cereus II metallo-beta-lactamase by SB214751, SB214752, and SB213079 was concomitant with a 90-Da increase in mass of the enzyme. Tryptic digestion of the B. cereus II inhibited with SB214751 illustrated that the peptide fragment, containing the only cysteine of the enzyme, had undergone a mass increment of 90 Da. It was further demonstrated that B. cereus II hydrolyzed this type of compound across the thiol ester bond to yield mercaptoacetic acid. Mercaptoacetic acid is the only molecular fragment common to SB214751, SB214752, and SB213079, and free mercaptoacetic acid does not bind covalently to B. cereus II. Therefore, it is concluded that these compounds inhibit B. cereus II by the mechanism-based delivery of mercaptoacetic acid, forming a disulfide linkage with the active sites cysteine (predicted mass shift = +90 Da) under the aerobic conditions of the assay. The different thiol esters examined had a broad range of potencies against the metallo-beta-lactamases tested. For example SB214751, SB214752, and SB213079 all had 50% inhibitory concentrations of < 10 and > 1,000 microM for the Stenotrophomonas maltophilia L-1 and Bacteroides fragilis CfiA enzymes, respectively. SB216968 was particularly active against the Aeromonas hydrophila CphA metallo-beta-lactamase and was found to be an uncompetitive inhibitor of this enzyme (Ki = 3.9 microM), whereas it exhibited irreversible inhibition of the L-1 enzyme. These observations with this series of compounds have revealed subtle differences between the active sites of different metallo-beta-lactamases. Finally, a novel application for isothermal titration calorimetry for assessing the zinc chelating activity of candidate inhibitors is also presented. PMID:8980769

  20. Inhibition of fungal spore adhesion by zosteric Acid as the basis for a novel, nontoxic crop protection technology.

    PubMed

    Stanley, Michele S; Callow, Maureen E; Perry, Ruth; Alberte, Randall S; Smith, Robert; Callow, James A

    2002-04-01

    ABSTRACT To explore the potential for nontoxic crop protection technologies based on the inhibition of fungal spore adhesion, we have tested the effect of synthetic zosteric acid (p-(sulfo-oxy) cinnamic acid), a naturally occurring phenolic acid in eelgrass (Zostera marina L.) plants, on spore adhesion and infection in two pathosystems: rice blast caused by Magnaporthe grisea and bean anthracnose caused by Colletotrichum lindemuthianum. We have shown that zosteric acid inhibits spore adhesion to model and host leaf surfaces and that any attached spores fail to develop appressoria, and consequently do not infect leaf cells. Low concentrations of zosteric acid that are effective in inhibiting adhesion are not toxic to either fungus or to the host. The inhibition of spore adhesion in the rice blast pathogen is fully reversible. On plants, zosteric acid reduced (rice) or delayed (bean) lesion development. These results suggest that there is potential for novel and environmentally benign crop protection technologies based on manipulating adhesion.

  1. Specific amino acids inhibit food intake via the area postrema or vagal afferents.

    PubMed

    Jordi, Josua; Herzog, Brigitte; Camargo, Simone M R; Boyle, Christina N; Lutz, Thomas A; Verrey, François

    2013-11-15

    To maintain nutrient homeostasis the central nervous system integrates signals that promote or inhibit eating. The supply of vital amino acids is tuned by adjusting food intake according to its dietary protein content. We hypothesized that this effect is based on the sensing of individual amino acids as a signal to control food intake. Here, we show that food intake was most potently reduced by oral L-arginine (Arg), L-lysine (Lys) and L-glutamic acid (Glu) compared to all other 17 proteogenic amino acids in rats. These three amino acids induced neuronal activity in the area postrema and the nucleus of the solitary tract. Surgical lesion of the area postrema abolished the anorectic response to Arg and Glu, whereas vagal afferent lesion prevented the response to Lys. These three amino acids also provoked gastric distension by differentially altering gastric secretion and/or emptying. Importantly, these peripheral mechanical vagal stimuli were dissociated from the amino acids' effect on food intake. Thus, Arg, Lys and Glu had a selective impact on food processing and intake suggesting them as direct sensory input to assess dietary protein content and quality in vivo. Overall, this study reveals novel amino acid-specific mechanisms for the control of food intake and of gastrointestinal function.

  2. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.

    PubMed

    Adisakwattana, Sirichai; Sompong, Weerachat; Meeprom, Aramsri; Ngamukote, Sathaporn; Yibchok-Anun, Sirintorn

    2012-01-01

    Cinnamic acid and its derivatives have shown a variety of pharmacologic properties. However, little is known about the antiglycation properties of cinnamic acid and its derivatives. The present study sought to characterize the protein glycation inhibitory activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose system. The results demonstrated that cinnamic acid and its derivatives significantly inhibited the formation of advanced glycation end products (AGEs) by approximately 11.96-63.36% at a concentration of 1 mM. The strongest inhibitory activity against the formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its derivatives reduced the level of fructosamine, the formation of N(ɛ)-(carboxymethyl) lysine (CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also prevented oxidative protein damages, including effects on protein carbonyl formation and thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and its derivatives for preventing AGE-mediated diabetic complications.

  3. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    PubMed

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.

  4. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum

    PubMed Central

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2012-01-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion

  5. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    PubMed

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion. PMID:22821947

  6. Inhibition of ornithine decarboxylase induction by retinobenzoic acids in relation to their binding affinities to cellular retinoid-binding proteins.

    PubMed

    Takagi, K; Suganuma, M; Kagechika, H; Shudo, K; Ninomiya, M; Muto, Y; Fujiki, H

    1988-01-01

    Retinobenzoic acids induce differentiation of human promyelocytic leukemia cells (HL-60). Like retinoic acid, 14 retinobenzoic acids inhibited the induction of ornithine decarboxylase (ODC) by teleocidin in mouse skin. The mechanism(s) of inhibition of ODC induction by 7 retinobenzoic acids, Am 80, Am 81, Am 580, Am 590, Am 68, Sa 80, and Ch 55 was compared with those by all-trans-retinoic acid and the arotinoid compound 19. Application of 114 nmol of Am 80, Am 81, Am 580, Am 590, Am 68, Sa 80, or Ch 55, 10 min before 11.4 nmol of teleocidin, resulted in 76.7%, 82.0%, 76.2%, 28.3%, 48.4%, 58.6%, and 85.1% inhibition of ODC induction, respectively. Since all-trans-retinoic acid and compound 19 were also inhibitory, we determined whether retinobenzoic acids bind to cellular retinoic acid-binding protein (CRABP) isolated from bovine adrenal glands. Am 80 and Am 580 inhibited the specific binding of 3H-retinoic acid to CRABP, but also showed less affinity than authentic unlabeled retinoic acid and compound 19. Am 81, Am 590, Am 68, Sa 80, and Ch 55 at up to 10 microM were not effective competitors of the binding of either 3H-retinoic acid or 3H-retinol. These results suggest that the inhibition of ODC induction can be mediated by pathways that do not involve CRABP or the cellular retinol-binding protein.

  7. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine

    PubMed Central

    Pellegrini, Paola; Strambi, Angela; Zipoli, Chiara; Hägg-Olofsson, Maria; Buoncervello, Maria; Linder, Stig; De Milito, Angelo

    2014-01-01

    Acidic pH is an important feature of tumor microenvironment and a major determinant of tumor progression. We reported that cancer cells upregulate autophagy as a survival mechanism to acidic stress. Inhibition of autophagy by administration of chloroquine (CQ) in combination anticancer therapies is currently evaluated in clinical trials. We observed in 3 different human cancer cell lines cultured at acidic pH that autophagic flux is not blocked by CQ. This was consistent with a complete resistance to CQ toxicity in cells cultured in acidic conditions. Conversely, the autophagy-inhibiting activity of Lys-01, a novel CQ derivative, was still detectable at low pH. The lack of CQ activity was likely dependent on a dramatically reduced cellular uptake at acidic pH. Using cell lines stably adapted to chronic acidosis we could confirm that CQ lack of activity was merely caused by acidic pH. Moreover, unlike CQ, Lys-01 was able to kill low pH-adapted cell lines, although higher concentrations were required as compared with cells cultured at normal pH conditions. Notably, buffering medium pH in low pH-adapted cell lines reverted CQ resistance. In vivo analysis of tumors treated with CQ showed that accumulation of strong LC3 signals was observed only in normoxic areas but not in hypoxic/acidic regions. Our observations suggest that targeting autophagy in the tumor environment by CQ may be limited to well-perfused regions but not achieved in acidic regions, predicting possible limitations in efficacy of CQ in antitumor therapies. PMID:24492472

  8. Organochlorines inhibit acetaminophen glucuronidation by redirecting UDP-glucuronic acid towards the D-glucuronate pathway

    SciTech Connect

    Chan, Tom S. Wilson, John X.; Selliah, Subajini; Bilodeau, Marc; Zwingmann, Claudia; Poon, Raymond; O'Brien, Peter J.

    2008-11-01

    Industry-derived organochlorines are persistent environmental pollutants that are a continuing health concern. The effects of these compounds on drug metabolism are not well understood. In the current study we present evidence that the inhibition of acetaminophen (APAP) glucuronidation by minute concentrations of organochlorines correlates well with their ability to stimulate the D-glucuronate pathway leading to ascorbate synthesis. A set of 6 arylated organochlorines, including 5 PCB (polychlorinated biphenyl) congeners, were assessed for their effects on APAP glucuronidation in isolated hepatocytes from male Sprague-Dawley rats. The capacity of each organochlorine to inhibit APAP glucuronidation was found to be directly proportional to its capacity to stimulate ascorbate synthesis. PCB153, PCB28 and bis-(4-chlorophenyl sulfone) (BCPS) in increasing order were the most effective organochlorines for inhibiting APAP glucuronidation and stimulating the D-glucuronate pathway. None of the 3 inhibitors of APAP glucuronidation were able to alter the expression of UGT1A6, UGT1A7 and UGT1A8 (the major isoforms responsible for APAP glucuronidation in the rat), however, their efficacy at inhibiting APAP glucuronidation was proportional to their capacity to deplete UDP-glucuronic acid (UDPGA). BCPS-mediated inhibition of APAP glucuronidation in isolated hepatocytes had non-competitive characteristics and was insensitive to the inactivation of cytochrome P450. The effective organochlorines were also able to selectively stimulate the hydrolysis of UDPGA to UDP and glucuronate in isolated microsomes, but could not inhibit APAP glucuronidation in microsomes when UDPGA was in excess. We conclude that organochlorines are able to inhibit APAP glucuronidation in hepatocytes by depleting UDPGA via redirecting UDPGA towards the D-glucuronate pathway. Because the inhibition is non-competitive, low concentrations of these compounds could have long term inhibitory effects on the

  9. Proteomic Signature of Fatty Acid Biosynthesis Inhibition Available for In Vivo Mechanism-of-Action Studies▿

    PubMed Central

    Wenzel, Michaela; Patra, Malay; Albrecht, Dirk; Chen, David Y.-K.; Nicolaou, K. C.; Metzler-Nolte, Nils; Bandow, Julia E.

    2011-01-01

    Fatty acid biosynthesis is a promising novel antibiotic target. Two inhibitors of fatty acid biosynthesis, platencin and platensimycin, were recently discovered and their molecular targets identified. Numerous structure-activity relationship studies for both platencin and platensimycin are currently being undertaken. We established a proteomic signature for fatty acid biosynthesis inhibition in Bacillus subtilis using platencin, platensimycin, cerulenin, and triclosan. The induced proteins, FabHA, FabHB, FabF, FabI, PlsX, and PanB, are enzymes involved in fatty acid biosynthesis and thus linked directly to the target pathway. The proteomic signature can now be used to assess the in vivo mechanisms of action of compounds derived from structure-activity relationship programs, as demonstrated for the platensimycin-inspired chromium bioorganometallic PM47. It will further serve as a reference signature for structurally novel natural and synthetic antimicrobial compounds with unknown mechanisms of action. In summary, we described a proteomic signature in B. subtilis consisting of six upregulated proteins that is diagnostic of fatty acid biosynthesis inhibition and thus can be applied to advance antibacterial drug discovery programs. PMID:21383089

  10. Inhibition of Fatty Acid Synthesis Induces Apoptosis of Human Pancreatic Cancer Cells.

    PubMed

    Nishi, Koji; Suzuki, Kenta; Sawamoto, Junpei; Tokizawa, Yuma; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko

    2016-09-01

    Cancer cells tend to have a high requirement for lipids, including fatty acids, cholesterol and triglyceride, because of their rapid proliferative rate compared to normal cells. In this study, we investigated the effects of inhibition of lipid synthesis on the proliferation and viability of human pancreatic cancer cells. Of the inhibitors of lipid synthesis that were tested, 5-(tetradecyloxy)-2-furoic acid (TOFA), which is an inhibitor of acetyl-CoA carboxylase, and the fatty acid synthase (FAS) inhibitors cerulenin and irgasan, significantly suppressed the proliferation of MiaPaCa-2 and AsPC-1 cells. Treatment of MiaPaCa-2 cells with these inhibitors significantly increased the number of apoptotic cells. In addition, TOFA increased caspase-3 activity and induced cleavage of poly (ADP-ribose) polymerase in MiaPaCa-2 cells. Moreover, addition of palmitate to MiaPaCa-2 cells treated with TOFA rescued cells from apoptotic cell death. These results suggest that TOFA induces apoptosis via depletion of fatty acids and that, among the various aspects of lipid metabolism, inhibition of fatty acid synthesis may be a notable target for the treatment of human pancreatic cancer cells. PMID:27630308

  11. Complete inhibition of food-stimulated gastric acid secretion by combined application of pirenzepine and ranitidine.

    PubMed Central

    Londong, W; Londong, V; Ruthe, C; Weizert, P

    1981-01-01

    In a double-blind, placebo controlled and randomised secretory study the effectiveness of pirenzepine, ranitidine, and their combination was compared intraindividually in eight healthy subjects receiving intravenous bolus injections. Pirenzepine (0.15 mg/kg) plus ranitidine (0.6 mg/kg) suppressed peptone-stimulated gastric acid secretion from 69 +/- 11 to 2 +/- 0.4 mmol H+/3 h; the mean percentage inhibition was 97%. Postprandial gastrin was unaffected. There were only minor side-effects in a few experiments (reduction of salivation, brief blurring of vision), but no prolactin stimulation after ranitidine or ranitidine plus pirenzepine. The combined application of ranitidine and pirenzepine inhibited meal-stimulated acid secretion more effectively and produced fewer side-effects than the combination of cimetidine plus pirenzepine studied previously. PMID:6114900

  12. Inhibition of aberrant complement activation by a dimer of acetylsalicylic acid.

    PubMed

    Lee, Moonhee; Wathier, Matthew; Love, Jennifer A; McGeer, Edith; McGeer, Patrick L

    2015-10-01

    We here report synthesis for the first time of the acetyl salicylic acid dimer 5,5'-methylenebis(2-acetoxybenzoic acid) (DAS). DAS inhibits aberrant complement activation by selectively blocking factor D of the alternative complement pathway and C9 of the membrane attack complex. We have previously identified aurin tricarboxylic and its oligomers as promising agents in this regard. DAS is much more potent, inhibiting erythrocyte hemolysis by complement-activated serum with an IC50 in the 100-170 nanomolar range. There are numerous conditions where self-damage from the complement system has been implicated in the pathology, including such chronic degenerative diseases of aging as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and age-related macular degeneration. Consequently, there is a high priority for the discovery and development of agents that can successfully treat such conditions. DAS holds considerable promise for being such an agent.

  13. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging.

    PubMed

    Sandoval, Laura N; López, Monserrat; Montes-Díaz, Elizabeth; Espadín, Andres; Tecante, Alberto; Gimeno, Miquel; Shirai, Keiko

    2016-04-08

    A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA) in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH) losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.

  14. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging.

    PubMed

    Sandoval, Laura N; López, Monserrat; Montes-Díaz, Elizabeth; Espadín, Andres; Tecante, Alberto; Gimeno, Miquel; Shirai, Keiko

    2016-01-01

    A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA) in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH) losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging. PMID:27070568

  15. Anti-Cancer Effect of Lambertianic Acid by Inhibiting the AR in LNCaP Cells

    PubMed Central

    Lee, Myoung-Sun; Lee, Seon-Ok; Kim, Sung-Hoon; Lee, Eun-Ok; Lee, Hyo-Jeong

    2016-01-01

    Lambertianic acid (LA) is known to have anti-allergic and antibacterial effects. However, the anticancer activities and mechanism of action of LA have not been investigated. Therefore, the anticancer effects and mechanism of LA are investigated in this study. LA decreased not only AR protein levels, but also cellular and secretory levels of PSA. Furthermore, LA inhibited nuclear translocation of the AR induced by mibolerone. LA suppressed cell proliferation by inducing G1 arrest, downregulating CDK4/6 and cyclin D1 and activating p53 and its downstream molecules, p21 and p27. LA induced apoptosis and the expression of related proteins, including cleaved caspase-9 and -3, c-PARP and BAX, and inhibited BCl-2. The role of AR in LA-induced apoptosis was assessed by using siRNA. Collectively, these findings suggest that LA exerts the anticancer effect by inhibiting AR and is a valuable therapeutic agent in prostate cancer treatment. PMID:27399684

  16. Gallic acid induces mitotic catastrophe and inhibits centrosomal clustering in HeLa cells.

    PubMed

    Tan, Si; Guan, Xin; Grün, Christoph; Zhou, Zhiqin; Schepers, Ute; Nick, Peter

    2015-12-25

    Cancer cells divide rapidly, providing medical targets for anticancer agents. The polyphenolic gallic acid (GA) is known to be toxic for certain cancer cells. However, the cellular mode of action has not been elucidated. Therefore, the current study addressed a potential effect of GA on the mitosis of cancer cells. GA inhibited viability of HeLa cells in a dose-dependent and time-dependent manner. We could show, using fluorescence-activated cell sorting (FACS), that this inhibition was accompanied by elevated frequency of cells arrested at the G2/M transition. This cell-cycle arrest was accompanied by mitotic catastrophe, and formation of cells with multiple nuclei. These aberrations were preceded by impaired centrosomal clustering. We arrive at a model of action, where GA inhibits the progression of the cell cycle at the G2/M phase by impairing centrosomal clustering which will stimulate mitotic catastrophe. Thus, GA has potential as compound against cervical cancer.

  17. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids.

    PubMed

    Busi, Roberto

    2014-09-01

    Herbicides that act by inhibiting the biosynthesis of very-long-chain fatty acids (VLCFAs) have been used to control grass weeds in major crops throughout the world for the past 60 years. VLCFA-inhibiting herbicides are generally highly selective in crops, induce similar symptoms in susceptible grasses and can be found within the herbicide groups classified by the HRAC as K3 and N. Even after many years of continuous use, only 12 grass weed species have evolved resistance to VLCFA-inhibiting herbicides. Here, the cases of resistance that have evolved in major grass weed species belonging to the Avena, Echinochloa and Lolium genera in three different agricultural systems are reviewed. In particular we explore the possible reasons why VLCFA herbicides have been slow to select resistant weeds, outline the herbicide mode of action and discuss the resistance mechanisms that are most likely to have been selected.

  18. Inhibition of mycotoxin-producing Aspergillus nomius vsc 23 by lactic acid bacteria and Saccharomyces cerevisiae

    PubMed Central

    Muñoz, R; Arena, M.E.; Silva, J.; González, S.N.

    2010-01-01

    The effect of different fermenting microorganisms on growth of a mycotoxin- producing Aspergillus nomius was assayed. Two lactic acid bacteria, Lactobacillus fermentum and Lactobacillus rhamnosus, and Saccharomyces cerevisiae, all of which are widely used in fermentation and preservation of food, were assayed on their fungus inhibitory properties. Assays were carried out by simultaneous inoculation of one of the possible inhibiting microorganisms and the fungus or subsequent inoculation of one of the microorganisms followed by the fungus. All three microorganisms assayed showed growth inhibition of the mycotoxin-producing Aspergillus strain. L. rhamnosus O236, isolated from sheep milk and selected for its technological properties, showed highest fungal inhibition of the microorganisms assayed. The use of antifungal LAB with excellent technological properties rather than chemical preservatives would enable the food industry to produce organic food without addition of chemical substances. PMID:24031582

  19. Inhibition of iron corrosion in 0.5 M sulphuric acid by metal cations

    NASA Astrophysics Data System (ADS)

    Sathiyanarayanan, S.; Jeyaprabha, C.; Muralidharan, S.; Venkatachari, G.

    2006-09-01

    Corrosion inhibitors are widely used in acid solutions during pickling and descaling. Mostly organic compounds containing N, O, and S groups are employed as inhibitors. In this study, the inhibition performance of metal cations such as Zn 2+, Mn 2+ and Ce 4+ ions in the concentration range 1-10 × 10 -3 M has been found out. The corrosion behaviour of iron in 0.5 M H 2SO 4 in the presence of metal cations is studied using polarization and impedance methods. It is found that the addition of these metal cations inhibits the corrosion markedly. The inhibition effect is in the following order Ce 4+ ≫ Mn 2+ > Zn 2+.

  20. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter.

    PubMed

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid reabsorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, and a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested, and their K(i) values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or nonpotent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  1. Computational Models for Drug Inhibition of the Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E.

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid re-absorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, as well as a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested and their Ki values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or non-potent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  2. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter.

    PubMed

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid reabsorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, and a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested, and their K(i) values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or nonpotent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors.

  3. Theoretical study of inhibition efficiencies of some amino acids on corrosion of carbon steel in acidic media: green corrosion inhibitors.

    PubMed

    Dehdab, Maryam; Shahraki, Mehdi; Habibi-Khorassani, Sayyed Mostafa

    2016-01-01

    Inhibition efficiencies of three amino acids [tryptophan (B), tyrosine (c), and serine (A)] have been studied as green corrosion inhibitors on corrosion of carbon steel using density functional theory (DFT) method in gas and aqueous phases. Quantum chemical parameters such as EH OMO (highest occupied molecular orbital energy), E LUMO (lowest unoccupied molecular orbital energy), hardness (η), polarizability ([Formula: see text]), total negative charges on atoms (TNC), molecular volume (MV) and total energy (TE) have been calculated at the B3LYP level of theory with 6-311++G** basis set. Consistent with experimental data, theoretical results showed that the order of inhibition efficiency is tryptophan (B) > tyrosine (C) > serine (A). In order to determine the possible sites of nucleophilic and electrophilic attacks, local reactivity has been evaluated through Fukui indices.

  4. Inhibition of mammalian carbonic anhydrase isoforms I-XIV with a series of phenolic acid esters.

    PubMed

    Maresca, Alfonso; Akyuz, Gulay; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T

    2015-11-15

    A series of phenolic acid esters incorporating caffeic, ferulic, and p-coumaric acid, and benzyl, m/p-hydroxyphenethyl- as well as p-hydroxy-phenethoxy-phenethyl moieties were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Many of the mammalian isozymes of human (h) or murine (m) origin, hCA I-hCA XII, mCA XIII and hCA XIV, were inhibited in the submicromolar range by these derivatives (with KIs of 0.31-1.03 μM against hCA VA, VB, VI, VII, IX and XIV). The off-target, highly abundant isoforms hCA I and II, as well as hCA III, IV and XII were poorly inhibited by many of these esters, although the original phenolic acids were micromolar inhibitors. These phenols, like others investigated earlier, possess a CA inhibition mechanism distinct of the sulfonamides/sulfamates, clinically used drugs for the treatment of a multitude of pathologies, but with severe side effects due to hCA I/II inhibition. Unlike the sulfonamides, which bind to the catalytic zinc ion, phenols are anchored at the Zn(II)-coordinated water molecule, binding more externally within the active site cavity, and making contacts with amino acid residues at the entrance of the active site. As this is the region with the highest variability between the many CA isozymes found in mammals, this class of compounds shows isoform-selective inhibitory profiles, which may be exploited for obtaining pharmacological agents with less side effects compared to other classes of inhibitors. PMID:26498394

  5. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID

  6. Inhibition of tumor-stromal interaction through HGF/Met signaling by valproic acid

    SciTech Connect

    Matsumoto, Yohsuke; Motoki, Takahiro; Kubota, Satoshi; Takigawa, Masaharu; Tsubouchi, Hirohito; Gohda, Eiichi

    2008-02-01

    Hepatocyte growth factor (HGF), which is produced by surrounding stromal cells, including fibroblasts and endothelial cells, has been shown to be a significant factor responsible for cancer cell invasion mediated by tumor-stromal interactions. We found in this study that the anti-tumor agent valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, strongly inhibited tumor-stromal interaction. VPA inhibited HGF production in fibroblasts induced by epidermal growth factor (EGF), platelet-derived growth factor, basic fibroblast growth factor, phorbol 12-myristate 13-acetate (PMA) and prostaglandin E{sub 2} without any appreciable cytotoxic effect. Other HDAC inhibitors, including butyric acid and trichostatin A (TSA), showed similar inhibitory effects on HGF production stimulated by various inducers. Up-regulations of HGF gene expression induced by PMA and EGF were also suppressed by VPA and TSA. Furthermore, VPA significantly inhibited HGF-induced invasion of HepG2 hepatocellular carcinoma cells. VPA, however, did not affect the increases in phosphorylation of MAPK and Akt in HGF-treated HepG2 cells. These results demonstrated that VPA inhibited two critical processes of tumor-stromal interaction, induction of fibroblastic HGF production and HGF-induced invasion of HepG2 cells, and suggest that those activities serve for other anti-tumor mechanisms of VPA besides causing proliferation arrest, differentiation, and/or apoptosis of tumor cells.

  7. Mixture additives inhibit the dermal permeation of the fatty acid, ricinoleic acid.

    PubMed

    Baynes, R E; Riviere, J E

    2004-02-28

    Ricinoleic acid (RA) like many of the ingredients in machine cutting fluids and other industrial formulations are potential dermal irritants, yet very little is known about its permeability in skin. 3H-ricinoleic acid mixtures were formulated with three commonly used cutting fluid additives; namely, triazine (TRI), linear alkylbenzene sulfonate (LAS), and triethanolamine (TEA) and topically applied to inert silastic membranes and porcine skin in vitro as aqueous mineral oil (MO) or polyethylene glycol (PEG) mixtures. These additives significantly decreased ricinoleic acid partitioning from the formulation into the stratum corneum (SC) in PEG-based mixtures. Except for LAS, all other additives produced a more basic formulation (pH = 9.3-10.3). In silastic membranes and porcine skin, individual additives or combination of additives significantly reduced ricinoleic permeability. This trend in ricinoleic acid disposition in both membranes suggests that the mixture interaction is more physicochemical in nature and probably not related to the chemical-induced changes in the biological membrane as may be assumed with topical exposures to potentially irritant formulations.

  8. Inhibition of enzymatic browning of chlorogenic acid by sulfur-containing compounds.

    PubMed

    Kuijpers, Tomas F M; Narváez-Cuenca, Carlos-Eduardo; Vincken, Jean-Paul; Verloop, Annewieke J W; van Berkel, Willem J H; Gruppen, Harry

    2012-04-01

    The antibrowning activity of sodium hydrogen sulfite (NaHSO(3)) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color (spectral analysis), oxygen consumption, and reaction product formation (RP-UHPLC-PDA-MS) were monitored in time. It was found that the compounds showing antibrowning activity either prevented browning by forming colorless addition products with o-quinones of 5-CQA (NaHSO(3), cysteine, and glutathione) or inhibiting the enzymatic activity of tyrosinase (NaHSO(3) and dithiothreitol). NaHSO(3) was different from the other sulfur-containing compounds investigated, because it showed a dual inhibitory effect on browning. Initial browning was prevented by trapping the o-quinones formed in colorless addition products (sulfochlorogenic acid), while at the same time, tyrosinase activity was inhibited in a time-dependent way, as shown by pre-incubation experiments of tyrosinase with NaHSO(3). Furthermore, it was demonstrated that sulfochlorogenic and cysteinylchlorogenic acids were not inhibitors of mushroom tyrosinase.

  9. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis.

    PubMed

    Hyde, C A C; Missailidis, S

    2009-06-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention. PMID:19239926

  10. Molecular sequelae of histone deacetylase inhibition in human malignant B cells.

    PubMed

    Mitsiades, Nicholas; Mitsiades, Constantine S; Richardson, Paul G; McMullan, Ciaran; Poulaki, Vassiliki; Fanourakis, Galinos; Schlossman, Robert; Chauhan, Dharminder; Munshi, Nikhil C; Hideshima, Teru; Richon, Victoria M; Marks, Paul A; Anderson, Kenneth C

    2003-05-15

    Histone acetylation modulates gene expression, cellular differentiation, and survival and is regulated by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDAC inhibition results in accumulation of acetylated nucleosomal histones and induces differentiation and/or apoptosis in transformed cells. In this study, we characterized the effect of suberoylanilide hydroxamic acid (SAHA), the prototype of a series of hydroxamic acid-based HDAC inhibitors, in cell lines and patient cells from B-cell malignancies, including multiple myeloma (MM) and related disorders. SAHA induced apoptosis in all tumor cells tested, with increased p21 and p53 protein levels and dephosphorylation of Rb. We also detected cleavage of Bid, suggesting a role for Bcl-2 family members in regulation of SAHA-induced cell death. Transfection of Bcl-2 cDNA into MM.1S cells completely abrogated SAHA-induced apoptosis, confirming its protective role. SAHA did not induce cleavage of caspase-8, -9, or -3 in MM.1S cells during the early phase of apoptosis, and the pan-caspase inhibitor ZVAD-FMK did not protect against SAHA. Conversely, poly(ADP)ribose polymerase (PARP) was cleaved in a pattern indicative of calpain activation, and the calpain inhibitor calpeptin abrogated SAHA-induced cell death. Importantly, SAHA sensitized MM.1S cells to death receptor-mediated apoptosis and inhibited the secretion of interleukin 6 (IL-6) induced in bone marrow stromal cells (BMSCs) by binding of MM cells, suggesting that it can overcome cell adhesion-mediated drug resistance. Our studies delineate the mechanisms whereby HDAC inhibitors mediate anti-MM activity and overcome drug resistance in the BM milieu and provide the framework for clinical evaluation of SAHA, which is bioavailable, well tolerated, and bioactive after oral administration, to improve patient outcome.

  11. Na+ Inhibits the Epithelial Na+ Channel by Binding to a Site in an Extracellular Acidic Cleft*

    PubMed Central

    Kashlan, Ossama B.; Blobner, Brandon M.; Zuzek, Zachary; Tolino, Michael; Kleyman, Thomas R.

    2015-01-01

    The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl−, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family. PMID:25389295

  12. Na+ inhibits the epithelial Na+ channel by binding to a site in an extracellular acidic cleft.

    PubMed

    Kashlan, Ossama B; Blobner, Brandon M; Zuzek, Zachary; Tolino, Michael; Kleyman, Thomas R

    2015-01-01

    The epithelial Na(+) channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na(+), Cl(-), protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na(+) concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na(+) binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na(+). Mutations at selected sites altered the cation inhibitory preference to favor Li(+) or K(+) rather than Na(+). Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na(+). Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family. PMID:25389295

  13. D-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections.

    PubMed

    Ramón-Peréz, Miriam L; Diaz-Cedillo, Francisco; Ibarra, J Antonio; Torales-Cardeña, Azael; Rodríguez-Martínez, Sandra; Jan-Roblero, Janet; Cancino-Diaz, Mario E; Cancino-Diaz, Juan C

    2014-10-01

    Biofilm formation on medical and surgical devices is a major virulence determinant for Staphylococcus epidermidis. The bacterium S. epidermidis is able to produce biofilms on biotic and abiotic surfaces and is the cause of ocular infection (OI). Recent studies have shown that d-amino acids inhibit and disrupt biofilm formation in the prototype strains Bacillus subtilis NCBI3610 and Staphylococcus aureus SCO1. The effect of d-amino acids on S. epidermidis biofilm formation has yet to be tested for clinical or commensal isolates. S. epidermidis strains isolated from healthy skin (n = 3), conjunctiva (n = 9) and OI (n = 19) were treated with d-Leu, d-Tyr, d-Pro, d-Phe, d-Met or d-Ala and tested for biofilm formation. The presence of d-amino acids during biofilm formation resulted in a variety of patterns. Some strains were sensitive to all amino acids tested, while others were sensitive to one or more, and one strain was resistant to all of them when added individually; in this way d-Met inhibited most of the strains (26/31), followed by d-Phe (21/31). Additionally, the use of d-Met inhibited biofilm formation on a contact lens. The use of l-isomers caused no defect in biofilm formation in all strains tested. In contrast, when biofilms were already formed d-Met, d-Phe and d-Pro were able to disrupt it. In summary, here we demonstrated the inhibitory effect of d-amino acids on biofilm formation in S. epidermidis. Moreover, we showed, for the first time, that S. epidermidis clinical strains have a different sensitivity to these compounds during biofilm formation.

  14. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields.

  15. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields. PMID:15898503

  16. Inhibition of acid sensing ion channel by ligustrazine on angina model in rat

    PubMed Central

    Zhang, Zhi-Gang; Zhang, Xiao-Lan; Wang, Xian-Yue; Luo, Zhu-Rong; Song, Jing-Chun

    2015-01-01

    Ligustrazine, a compound extracted from roots of Ligusticum chuanxiong, is widely used in Chinese traditional medicine to treat cardiac and cerebrovascular diseases and pain, including angina. The mechanism(s) of ligustrazine’s effect to reduce angina is not clear. Angina is mediated by cardiac afferent sensory neurons. These neurons display a large acid-evoked depolarizing sodium current that can initiate action potentials in response to acidification that accompanies myocardial ischemia. Acid-sensing ion channels (ASICs) mediate this current. Here we tested the hypothesis that ligustrazine reduces ischemia-induced cardiac dysfunction and acid-evoked pain by an action to inhibit ASIC-mediated current. The effects of ligustrazine to attenuate ischemia-induced ST-segment depression, T wave changes, and myocardial infarct size in hearts of anesthetized rats were determined. Effects of ligustrazine on currents mediated by ASICs expressed in cultured Chinese hamster ovary cells, and effects of the drug on acid-induced nociceptive behavior and acid-induced currents in isolated dorsal root ganglions cells were measured. Ligustrazine significantly attenuated acid-induced ASIC currents, reduced cardiac ischemia-induced electrical dysfunction and infarct size, and decreased the nociceptive response to injection of acid into the paw of the rat hindlimb. The ASIC channel inhibitor A-317567 similarly reduced electrical dysfunction, infarct size, and nociceptive behavior in the rat. Inhibition of ASICs by ligustrazine may explain at least in part the beneficial effects of the drug that are observed in patients with ischemic heart disease and angina. PMID:26692925

  17. Asiatic Acid Inhibits Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Li, Zhiling; Xiao, Xianzhong; Yang, Mingshi

    2016-10-01

    Asiatic acid (AA), a major triterpene isolated from Centella asiatica (L.) Urban, is known to exert various pharmacological activities, including anti-inflammatory and antioxidant effects. The aim of this study was to evaluate the anti-inflammatory effects of AA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and clarify the underlying mechanisms. Lung pathological changes were assessed by H&E staining. The myeloperoxidase (MPO) activity was detected by MPO assay. The levels of inflammatory cytokines were measured by ELISA. TLR4 and NF-kB expression was detected by Western blot analysis. AA obviously inhibited LPS-induced lung histopathological changes, MPO activity, and inflammatory cell numbers in bronchoalveolar lavage fluid (BALF). Treatment of AA also inhibited LPS-induced TNF-α, IL-6, and IL-1β production. Furthermore, Western blot analysis showed that AA inhibited LPS-induced TLR4 expression and NF-kB activation. In conclusion, AA inhibited LPS-induced ALI in mice by inhibiting inflammatory cytokine production, which is mediated via blocking of the TLR4/NF-kB signaling pathway.

  18. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    SciTech Connect

    Cao, Xueming; Chen, Aihua Yang, Pingzhen; Song, Xudong; Liu, Yingfeng; Li, Zhiliang; Wang, Xianbao; Wang, Lizi; Li, Yunpeng

    2013-11-29

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.

  19. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs.

    PubMed

    Eisses, John F; Criscimanna, Angela; Dionise, Zachary R; Orabi, Abrahim I; Javed, Tanveer A; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W; Tosun, Akif Burak; Ozolek, John A; Lowe, Mark E; Monga, Satdarshan P; Rohde, Gustavo K; Esni, Farzad; Husain, Sohail Z

    2015-12-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury.

  20. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  1. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs.

    PubMed

    Eisses, John F; Criscimanna, Angela; Dionise, Zachary R; Orabi, Abrahim I; Javed, Tanveer A; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W; Tosun, Akif Burak; Ozolek, John A; Lowe, Mark E; Monga, Satdarshan P; Rohde, Gustavo K; Esni, Farzad; Husain, Sohail Z

    2015-12-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury. PMID:26476347

  2. Nordihydroguaiaretic acid inhibits insulin-like growth factor signaling, growth, and survival in human neuroblastoma cells.

    PubMed

    Meyer, Gary E; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A; Goldenberg, David D; Youngren, Jack F; Goldfine, Ira D; Weiss, William A; Matthay, Katherine K; Rosenthal, Stephen M

    2007-12-15

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling.

  3. Tachykinin inhibition of acid-induced gastric hyperaemia in the rat.

    PubMed Central

    Heinemann, A.; Jocic, M.; Herzeg, G.; Holzer, P.

    1996-01-01

    1. Primary afferent neurones releasing the vasodilator, calcitonin gene-related peptide, mediate the gastric hyperaemic response to acid back-diffusion. The tachykinins neurokinin A (NKA) and substance P (SP) are located in the same neurones and are co-released with calcitonin gene-related peptide. In this study we investigated the effect and possible role of tachykinins in the acid-evoked gastric vasodilatation in urethane-anaesthetized rats. 2. Gastric acid back-diffusion, induced by perfusing the stomach with 15% ethanol in the presence of 0.05 M HCl, increased gastric mucosal blood flow by 60-90%, as determined by the hydrogen clearance technique. NKA and SP (0.14-3.78 nmol min-1 kg-1, infused intra-aortically) inhibited the gastric mucosal hyperaemic response to acid back-diffusion in a dose-dependent manner, an effect that was accompanied by aggravation of ethanol/acid-induced macroscopic haemorrhagic lesions. 3. The inhibitory effect of NKA (1.26 nmol min-1 kg-1) on the acid-induced gastric mucosal vasodilatation was prevented by the tachykinin NK2 receptor antagonists, MEN 10,627 (200 nmol kg-1) but left unaltered by the NK1 receptor antagonist, SR 140,333 (300 nmol kg-1) and the mast-cell stabilizer, ketotifen (4.6 mumol kg-1). 4. Under basal conditions, with 0.05 M HCl being perfused through the stomach, NKA (1.26 nmol min-1 kg-1) reduced gastric mucosal blood flow by about 25%, an effect that was abolished by SR 140,333 but not MEN 10,627 or ketotifen. 5. SR 140,333, MEN 10,627 or ketotifen had no significant effect on basal gastric mucosal blood flow nor did they modify the gastric mucosal hyperaemic reaction to acid back-diffusion. 6. The effect of NKA (1.26 nmol min-1 kg-1) in causing vasoconstriction and inhibiting the vasodilator response to acid back-diffusion was also seen when blood flow in the left gastric artery was measured with the ultrasonic transit time shift technique. 7. Arginine vasopressin (AVP, 0.1 nmol min-1 kg-1) induced gastric

  4. Inhibition of protein synthesis may explain the bactericidal properties of hypochlorous acid produced by phagocytic cells

    SciTech Connect

    McKenna, S.M.; Davies, K.J.A.

    1986-05-01

    The authors find that hypochlorous acid (HOCl) and hydrogen peroxide (H/sub 2/O/sub 2/) inhibit protein synthesis in E. coli: HOCl is similarly ordered 10x more efficient than H/sub 2/O/sub 2/. This result may underlie the mechanism of bacterial killing by phagocytes, which use H/sub 2/O/sub 2/ and myeloperoxidase (MPO) to oxidize Cl/sup -/ to HOCl. Protein synthesis (/sup 3/H-leu incorporation) was completely inhibited by 50..mu..M HOCl, whereas 50..mu..M H/sub 2/O/sub 2/ only gave similarly ordered 10% inhibition. Complete inhibition by H/sub 2/O/sub 2/ was only observed at concentrations < 0.5 mM. HOCl was also a more potent inhibitor of cell growth (cultured in M9 medium + glucose) than was H/sub 2/O/sub 2/. No growth occurred at 50..mu..M HOCl: in contrast 0.5 mM H/sub 2/O/sub 2/ was required for similar results. During time-course experiments it was found that the inhibition of cell growth by both HOCl and H/sub 2/O/sub 2/ reached a maximum within 30 min (at any concentration used). HOCl reacts avidly with amino groups to form N-chloroamines but H/sub 2/O/sub 2/ is unreactive. Amino acids (ala, lys, met, trp) or taurine (all at 10 mM) prevented the effects of HOCl but did not affect H/sub 2/O/sub 2/ results. There was an excellent correlation between decreased protein synthesis and diminished cell growth. Inhibition of cell growth was not explained by proteolysis (release of acid-soluble counts), or by loss of membrane integrity. They propose that inhibition of protein synthesis may be a fundamental aspect of the bactericidal functions of phagocytes, and that the production of HOCl by MPO represents a quantitative advantage over H/sub 2/O/sub 2/.

  5. Thermospectroscopic study of the adsorption mechanism of the hydroxamic siderophore ferrioxamine B by calcium montmorillonite.

    PubMed

    Siebner-Freibach, Hagar; Hadar, Yitzhak; Yariv, Shmuel; Lapides, Isaak; Chen, Yona

    2006-02-22

    The behavior of iron-chelating agents in soils is highly affected by interactions with the solid phase. Still this aspect is frequently ignored. In this research the adsorption of the siderophore ferrioxamine B by Ca-montmorillonite, as a free ligand (desferrioxamine B, DFOB) and as a complex with Fe3+ (ferrioxamine B, FOB), was studied, using thermo X-ray diffraction (thermo-XRD) in the temperature range 25-360 degrees C and thermo-FTIR spectroscopy in the temperature range 25-170 degrees C. The effect of pH (4-7.5) on the adsorption was examined. Extensive use of curve-fitting analysis was required due to significant overlapping of the characteristic absorption bands of the various functional groups. Thermo-XRD analysis showed that both DFOB and FOB penetrated into the interlayer space of Ca-montmorillonite. FTIR results indicated strong interactions of DFOB within the interlayer, which involved all functional groups (NH3+, secondary amide groups, and hydroxamate groups). In contrast, the folded Fe complex of FOB retained its molecular configuration upon adsorption, and the basal spacing of the clay increased correspondingly. FOB interacted in the interlayer space of the clay, mainly through the NH of the secondary amide groups and NH3+, while the functional groups bound to the central Fe cation remained unchanged. The suspension pH had no significant effect on both DFOB and FOB adsorption at the examined range. Adsorption protected the adsorbates from thermal degradation compared to the nonadsorbed samples up to 105 degrees C. At 170 degrees C both DFOB and FOB were already partially degraded, but to a lesser extent than the nonadsorbed samples. Degradation of the molecules occurred mainly through the hydroxamic groups, which constitute the Fe-chelating center in the hydroxamic siderophore. PMID:16478266

  6. Carnosic Acid Inhibits the Epithelial-Mesenchymal Transition in B16F10 Melanoma Cells: A Possible Mechanism for the Inhibition of Cell Migration

    PubMed Central

    Park, So Young; Song, Hyerim; Sung, Mi-Kyung; Kang, Young-Hee; Lee, Ki Won; Park, Jung Han Yoon

    2014-01-01

    Carnosic acid is a natural benzenediol abietane diterpene found in rosemary and exhibits anti-inflammatory, antioxidant, and anti-carcinogenic activities. In this study, we evaluated the effects of carnosic acid on the metastatic characteristics of B16F10 melanoma cells. When B16F10 cells were cultured in an in vitro Transwell system, carnosic acid inhibited cell migration in a dose-dependent manner. Carnosic acid suppressed the adhesion of B16F10 cells, as well as the secretion of matrix metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1, urokinase plasminogen activator (uPA), and vascular cell adhesion molecule (VCAM)-1. Interestingly, secretion of TIMP-2 increased significantly in B16F10 cells treated with 10 μmol/L carnosic acid. Additionally, carnosic acid suppressed the mesenchymal markers snail, slug, vimentin, and N-cadherin and induced epithelial marker E-cadherin. Furthermore, carnosic acid suppressed phosphorylation of Src, FAK, and AKT. These results indicate that inhibition of the epithelial-mesenchymal transition may be important for the carnosic acid-induced inhibition of B16F10 cell migration. PMID:25036034

  7. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes.

    PubMed

    Heimann, Emilia; Nyman, Margareta; Degerman, Eva

    2015-01-01

    Fermentation of dietary fibers by colonic microbiota generates short-chain fatty acids (SCFAs), e.g., propionic acid and butyric acid, which have been described to have "anti-obesity properties" by ameliorating fasting glycaemia, body weight and insulin tolerance in animal models. In the present study, we therefore investigate if propionic acid and butyric acid have effects on lipolysis, de novo lipogenesis and glucose uptake in primary rat adipocytes. We show that both propionic acid and butyric acid inhibit isoproterenol- and adenosine deaminase-stimulated lipolysis as well as isoproterenol-stimulated lipolysis in the presence of a phosphodiesterase (PDE3) inhibitor. In addition, we show that propionic acid and butyric acid inhibit basal and insulin-stimulated de novo lipogenesis, which is associated with increased phosphorylation and thus inhibition of acetyl CoA carboxylase, a rate-limiting enzyme in fatty acid synthesis. Furthermore, we show that propionic acid and butyric acid increase insulin-stimulated glucose uptake. To conclude, our study shows that SCFAs have effects on fat storage and mobilization as well as glucose uptake in rat primary adipocytes. Thus, the SCFAs might contribute to healthier adipocytes and subsequently also to improved energy metabolism with for example less circulating free fatty acids, which is beneficial in the context of obesity and type 2 diabetes. PMID:26167409

  8. Clavulanic Acid: a Beta-Lactamase-Inhibiting Beta-Lactam from Streptomyces clavuligerus

    PubMed Central

    Reading, C.; Cole, M.

    1977-01-01

    A novel β-lactamase inhibitor has been isolated from Streptomyces clavuligerus ATCC 27064 and given the name clavulanic acid. Conditions for the cultivation of the organism and detection and isolation of clavulanic acid are described. This compound resembles the nucleus of a penicillin but differs in having no acylamino side chain, having oxygen instead of sulfur, and containing a β-hydroxyethylidine substituent in the oxazolidine ring. Clavulanic acid is a potent inhibitor of many β-lactamases, including those found in Escherichia coli (plasmid mediated), Klebsiella aerogenes, Proteus mirabilis, and Staphylococcus aureus, the inhibition being of a progressive type. The cephalosporinase type of β-lactamase found in Pseudomonas aeruginosa and Enterobacter cloacae P99 and the chromosomally mediated β-lactamase of E. coli are less well inhibited. The minimum inhibitory concentrations of ampicillin and cephaloridine against β-lactamase-producing, penicillin-resistant strains of S. aureus, K. aerogenes, P. mirabilis, and E. coli have been shown to be considerably reduced by the addition of low concentrations of clavulanic acid. Images PMID:879738

  9. How many carbonic anhydrase inhibition mechanisms exist?

    PubMed

    Supuran, Claudiu T

    2016-01-01

    Six genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described to date. Inhibition of CAs has pharmacologic applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents. New classes of CA inhibitors (CAIs) were described in the last decade with enzyme inhibition mechanisms differing considerably from the classical inhibitors of the sulfonamide or anion type. Five different CA inhibition mechanisms are known: (i) the zinc binders coordinate to the catalytically crucial Zn(II) ion from the enzyme active site, with the metal in tetrahedral or trigonal bipyramidal geometries. Sulfonamides and their isosters, most anions, dithiocarbamates and their isosters, carboxylates, and hydroxamates bind in this way; (ii) inhibitors that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, 2-thioxocoumarins, sulfocoumarins); (iii) inhibitors which occlude the entrance to the active site cavity (coumarins and their isosters), this binding site coinciding with that where CA activators bind; (iv) compounds which bind out of the active site cavity (a carboxylic acid derivative was seen to inhibit CA in this manner), and (v) compounds for which the inhibition mechanism is not known, among which the secondary/tertiary sulfonamides as well as imatinib/nilotinib are the most investigated examples. As CAIs are used clinically in many pathologies, with a sulfonamide inhibitor (SLC-0111) in Phase I clinical trials for the management of metastatic solid tumors, this review updates the recent findings in the field which may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes. PMID:26619898

  10. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell.

    PubMed

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma. PMID:27158383

  11. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation

    PubMed Central

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-01-01

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation. PMID:26139989

  12. Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat.

    PubMed Central

    Lewus, C B; Kaiser, A; Montville, T J

    1991-01-01

    Ten strains of bacteriocin-producing lactic acid bacteria were isolated from retail cuts of meat. These 10 strains along with 11 other bacteriocin-producing lactic acid bacteria were tested for inhibitory activity against psychotrophic pathogens, including four strains of Listeria monocytogenes, two strains of Aeromonas hydrophila, and two strains of Staphylococcus aureus. Inhibition due to acid, hydrogen peroxide, and lytic bacteriophage were excluded. The proteinaceous nature of the inhibitory substance was confirmed by demonstration of its sensitivity to proteolytic enzymes. Eight of the meat isolates had inhibitory activity against all four L. monocytogenes strains. Bacteriocin activity against L. monocytogenes was found in all of the strains obtained from other sources. Activity against A. hydrophila and S. aureus was also common. Images PMID:1908209

  13. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    PubMed

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation. PMID:26139989

  14. Structural basis of the inhibition of class C acid phosphatases by adenosine 5;#8242;-phosphorothioate

    SciTech Connect

    Singh, Harkewal; Reilly, Thomas J.; Tanner, John J.

    2012-01-20

    The inhibition of phosphatases by adenosine 5'-phosphorothioate (AMPS) was first reported in the late 1960s; however, the structural basis for the inhibition has remained unknown. Here, it is shown that AMPS is a submicromolar inhibitor of class C acid phosphatases, a group of bacterial outer membrane enzymes belonging to the haloacid dehalogenase structural superfamily. Furthermore, the 1.35-{angstrom} resolution crystal structure of the inhibited recombinant Haemophilus influenzae class C acid phosphatase was determined; this is the first structure of a phosphatase complexed with AMPS. The conformation of AMPS is identical to that of the substrate 5'-AMP, except that steric factors force a rotation of the thiophosphoryl out of the normal phosphoryl-binding pocket. This conformation is catalytically nonproductive, because the P atom is not positioned optimally for nucleophilic attack by Asp64, and the O atom of the scissile O-P bond is too far from the Asp (Asp66) that protonates the leaving group. The structure of 5'-AMP complexed with the Asp64 {yields} Asn mutant enzyme was also determined at 1.35-{angstrom} resolution. This mutation induces the substrate to adopt the same nonproductive binding mode that is observed in the AMPS complex. In this case, electrostatic considerations, rather than steric factors, underlie the movement of the phosphoryl. The structures not only provide an explanation for the inhibition by AMPS, but also highlight the precise steric and electrostatic requirements of phosphoryl recognition by class C acid phosphatases. Moreover, the structure of the Asp64 {yields} Asn mutant illustrates how a seemingly innocuous mutation can cause an unexpected structural change.

  15. Eicosapentaenoic acid inhibits voltage-gated sodium channels and invasiveness in prostate cancer cells

    PubMed Central

    Nakajima, T; Kubota, N; Tsutsumi, T; Oguri, A; Imuta, H; Jo, T; Oonuma, H; Soma, M; Meguro, K; Takano, H; Nagase, T; Nagata, T

    2009-01-01

    Background and purpose: The voltage-gated Na+ channels (Nav) and their corresponding current (INa) are involved in several cellular processes, crucial to metastasis of cancer cells. We investigated the effects of eicosapentaenoic (EPA), an omega-3 polyunsaturated fatty acid, on INa and metastatic functions (cell proliferation, endocytosis and invasion) in human and rat prostate cancer cell lines (PC-3 and Mat-LyLu cells). Experimental approach: The whole-cell voltage clamp technique and conventional/quantitative real-time reverse transcriptase polymerase chain reaction analysis were used. The presence of Nav proteins was shown by immunohistochemical methods. Alterations in the fatty acid composition of phospholipids after treatment with EPA and metastatic functions were also examined. Key results: A transient inward Na+ current (INa), highly sensitive to tetrodotoxin, and NaV proteins were found in these cells. Expression of NaV1.6 and NaV1.7 transcripts (SCN8A and SCN9A) was predominant in PC-3 cells, while NaV1.7 transcript (SCN9A) was the major component in Mat-LyLu cells. Tetrodotoxin or synthetic small interfering RNA targeted for SCN8A and SCN9A inhibited metastatic functions (endocytosis and invasion), but failed to inhibit proliferation in PC-3 cells. Exposure to EPA produced a rapid and concentration-dependent suppression of INa. In cells chronically treated (up to 72h) with EPA, the EPA content of cell lipids increased time-dependently, while arachidonic acid content decreased. Treatment of PC-3 cells with EPA decreased levels of mRNA for SCN9A and SCN8A, cell proliferation, invasion and endocytosis. Conclusion and implications: Treatment with EPA inhibited INa directly and also indirectly, by down-regulation of Nav mRNA expression in prostate cancer cells, thus inhibiting their metastatic potential. PMID:19154441

  16. Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline-polyacrylonitrile composite matrix.

    PubMed

    Shan, Dan; Shi, Qiaofang; Zhu, Daobin; Xue, Huaiguo

    2007-07-31

    A novel sensitive and stable phenols amperometric biosensor, based on polyaniline-polyacrylonitrile composite matrix, was applied for determination of benzoic acid. The electrochemical biosensor functioning was based on the inhibition effect of benzoic acid on the biocatalytic activity of the polyphenol oxidase (PPO) to its substrate (catechol) in 0.1M phosphate buffer solution (pH 6.5). A potential value of -50 mV versus SCE, and a constant catechol concentration of 20 microM were selective to carry out the amperometric inhibition measurement. The kinetic parameters Michaelis-Menten constant (K(M)(app)) and maximum current (I(max)) in the absence and in the presence of benzoic acid were also evaluated and the possible inhibition mechanism was deduced. The inhibiting action of benzoic acid on the polyphenol oxidase electrode was reversible and of the typical competitive type, with an apparent inhibition constant of 38 microM. This proposed biosensor detected levels of benzoic acid as low as 2x10(-7)M in solution. In addition, the effects of temperature, pH value of solution on the inhibition and the interferences were investigated and discussed herein. Inhibition studies revealed that the proposed electrochemical biosensor was applicable for monitoring benzoic acid in real sample such as milk, yoghurt, sprite and cola. PMID:19071830

  17. Non-coding nucleotides and amino acids near the active site regulate peptide deformylase expression and inhibitor susceptibility in Chlamydia trachomatis

    PubMed Central

    Bao, Xiaofeng; Pachikara, Niseema D.; Oey, Christopher B.; Balakrishnan, Amit; Westblade, Lars F.; Tan, Ming; Chase, Theodore; Nickels, Bryce E.

    2011-01-01

    Chlamydia trachomatis, an obligate intracellular bacterium, is a highly prevalent human pathogen. Hydroxamic-acid-based matrix metalloprotease inhibitors can effectively inhibit the pathogen both in vitro and in vivo, and have exhibited therapeutic potential. Here, we provide genome sequencing data indicating that peptide deformylase (PDF) is the sole target of the inhibitors in this organism. We further report molecular mechanisms that control chlamydial PDF (cPDF) expression and inhibition efficiency. In particular, we identify the σ66-dependent promoter that controls cPDF gene expression and demonstrate that point mutations in this promoter lead to resistance by increasing cPDF transcription. Furthermore, we show that substitution of two amino acids near the active site of the enzyme alters enzyme kinetics and protein stability. PMID:21719536

  18. The inhibitive effect of some quaternary ammonium salts towards corrosion of aluminium in hydrochloric acid solution

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-M. K.; Al-Nadjm, A.; Fouda, A.-A. S.

    1998-10-01

    The inhibitive action of some quaternary ammonium salts towards the corrosion of aluminium in hydrochloric acid was tested by thermometric, mass loss and polarization measurements. Parallelism between the different methods was established. It is suggested that the tested compounds act as cathodic inhibitors. The inhibitors appear to function through adsorption, following the Temkin adsorption isotherm. The values of free energy of adsorption have been calculated and discussed. The inhibitor character of the additives depends upon the concentration as well as the composition of the inhibitor. Within the given homolegous series the contribution of the functional group to adsorption increases with the length of the chain. The aim of this article is to throw some light on the mechanism of inhibition of these bulky molecules on the corrosion of aluminium in hydrochloric acid. L'action inhibitrice de certains sels d'ammonium quaternaires vis-à-vis de la corrosion de l'aluminium dans l'acide chlorhydrique en solution a été testée par des mesures thermiques de perte de matière et de polarisation. Il est suggéré que les composés testés agissent comme des inhibiteurs cathodiques, fonctionnant par adsorption suivant l'isotherme de Temkin. Les énergies libres d'adsorption ont été calculées et discutées. Le caractère inhibiteur des additifs dépend aussi bien de leur concentration que de leur composition. Pour une série d'inhibiteurs homologues, la contribution à l'adsorption du groupe fonctionnel augmente avec la longueur de la chaîne. Le but de cet article est de mieux comprendre le mécanisme d'inhibition de ces grosses molécules sur la corrosion de l'aluminium dans l'acide chlorhydrique.

  19. Controlling enzyme inhibition using an expanded set of genetically encoded amino acids.

    PubMed

    Zheng, Shun; Kwon, Inchan

    2013-09-01

    Enzyme inhibition plays an important role in drug development, metabolic pathway regulation, and biocatalysis with product inhibition. When an inhibitor has high structural similarities to the substrate of an enzyme, controlling inhibitor binding without affecting enzyme substrate binding is often challenging and requires fine-tuning of the active site. We hypothesize that an extended set of genetically encoded amino acids can be used to design an enzyme active site that reduces enzyme inhibitor binding without compromising substrate binding. As a model case, we chose murine dihydrofolate reductase (mDHFR), substrate dihydrofolate, and inhibitor methotrexate. Structural models of mDHFR variants containing non-natural amino acids complexed with each ligand were constructed to identify a key residue for inhibitor binding and non-natural amino acids to replace the key residue. Then, we discovered that replacing the key phenylalanine residue with two phenylalanine analogs (p-bromophenylalanine (pBrF) and L-2-naphthylalanine (2Nal)) enhances binding affinity toward the substrate dihydrofolate over the inhibitor by 4.0 and 5.8-fold, respectively. Such an enhanced selectivity is mainly due to a reduced inhibitor binding affinity by 2.1 and 4.3-fold, respectively. The catalytic efficiency of the mDHFR variant containing pBrF is comparable to that of wild-type mDHFR, whereas the mDHFR variant containing 2Nal exhibits a moderate decrease in the catalytic efficiency. The work described here clearly demonstrates the feasibility of selectively controlling enzyme inhibition using an expanded set of genetically encoded amino acids.

  20. 4-Coumaroyl and caffeoyl shikimic acids inhibit 4-coumaric acid:coenzyme A ligases and modulate metabolic flux for 3-hydroxylation in monolignol biosynthesis of Populus trichocarpa.

    PubMed

    Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Chen, Hsi-Chuan; Liu, Jie; Loziuk, Philip; Song, Jina; Williams, Cranos; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2015-01-01

    Downregulation of 4-coumaric acid:coenzyme A ligase (4CL) can reduce lignin content in a number of plant species. In lignin precursor (monolignol) biosynthesis during stem wood formation in Populus trichocarpa, two enzymes, Ptr4CL3 and Ptr4CL5, catalyze the coenzyme A (CoA) ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. CoA ligation of 4-coumaric acid is essential for the 3-hydroxylation of 4-coumaroyl shikimic acid. This hydroxylation results from sequential reactions of 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) and 4-coumaric acid 3-hydroxylase 3 (PtrC3H3). Alternatively, 3-hydroxylation of 4-coumaric acid to caffeic acid may occur through an enzyme complex of cinnamic acid 4-hydroxylase 1 and 2 (PtrC4H1 and PtrC4H2) and PtrC3H3. We found that 4-coumaroyl and caffeoyl shikimic acids are inhibitors of Ptr4CL3 and Ptr4CL5. 4-Coumaroyl shikimic acid strongly inhibits the formation of 4-coumaroyl-CoA and caffeoyl-CoA. Caffeoyl shikimic acid inhibits only the formation of 4-coumaroyl-CoA. 4-Coumaroyl and caffeoyl shikimic acids both act as competitive and uncompetitive inhibitors. Metabolic flux in wild-type and PtrC3H3 downregulated P. trichocarpa transgenics has been estimated by absolute protein and metabolite quantification based on liquid chromatography-tandem mass spectrometry, mass action kinetics, and inhibition equations. Inhibition by 4-coumaroyl and caffeoyl shikimic acids may play significant regulatory roles when these inhibitors accumulate.

  1. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed.

  2. Inhibition of N-nitrosamine carcinogenesis and aflatoxin DNA damage by ellagic acid

    SciTech Connect

    Mandal-Chaudhuri, S.

    1988-01-01

    The effect of ellagic acid (EA), on the tumorigenicity of N-nitrosobenzylmethylamine (NBMA) in the rat esophagus was investigated. Groups of 30 male F-344 rats were fed a semipurified diet containing EA for 27 weeks. N-nitrosobenzylmethylamine was administered subcutaneously, once a week for 18 weeks. Ellagic acid produced a significant inhibition in the average number of esophageal tumors at both 20 weeks and 27 weeks. To investigate the mechanism(s) of this inhibition, EA was tested for its effect on the metabolism, DNA-binding and DNA-adduct formation of NBMA in cultured explants of rat esophagus. Explants were incubated in medium containing EA at concentrations of 10, 50, and 100 {mu}M for 16 hours, followed by the addition of 1{mu}M ({sup 3}H)NBMA and EA for 12 hours. Explant DNA was isolated by phenol extraction and hydroxylapatite chromatography, and benzaldehyde formation was determined by h.p.l.c. analysis of the culture medium. Finally, EA was examined for its ability to inhibit DNA damage induced by aflatoxin B{sub 1} (AFB{sub 1}) in cultured explants of rat trachea and esophagus, and human tracheobronchus.

  3. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. PMID:26116387

  4. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting RAGE Signaling in Diabetic Atherosclerosis.

    PubMed

    Chung, Jihwa; An, Shung Hyun; Kang, Sang Won; Kwon, Kihwan

    2016-01-01

    A naturally occurring bile acid, ursodeoxycholic acid (UDCA), is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, the detailed action mechanisms of UDCA in atherosclerosis are not fully understood. In this study, we demonstrated whether UDCA exerts anti-atherogenic activity in diabetic atherosclerosis by targeting ER stress and "receptor for advanced glycation endproduct" (RAGE) signaling. UDCA markedly reduced ER stress, RAGE expression, and pro-inflammatory responses [including NF-κB activation and reactive oxygen species (ROS) production] induced in endothelial cells (ECs) by high glucose (HG). In particular, UDCA inhibited HG-induced ROS production by increasing the Nrf2 level. In macrophages, UDCA also blocked HG-induced RAGE and pro-inflammatory cytokine expression and inhibited foam cell formation via upregulation of the ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1. In the diabetic mouse model, UDCA inhibited atheromatous plaque formation by decreasing ER stress, and the levels of RAGE and adhesion molecules. In conclusion, UDCA exerts an anti-atherogenic activity in diabetic atherosclerosis by targeting both ER stress and RAGE signaling. Our work implicates UDCA as a potential therapeutic agent for prevention or treatment of diabetic atherosclerosis. PMID:26807573

  5. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting RAGE Signaling in Diabetic Atherosclerosis

    PubMed Central

    Chung, Jihwa; An, Shung Hyun; Kang, Sang Won; Kwon, Kihwan

    2016-01-01

    A naturally occurring bile acid, ursodeoxycholic acid (UDCA), is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, the detailed action mechanisms of UDCA in atherosclerosis are not fully understood. In this study, we demonstrated whether UDCA exerts anti-atherogenic activity in diabetic atherosclerosis by targeting ER stress and “receptor for advanced glycation endproduct” (RAGE) signaling. UDCA markedly reduced ER stress, RAGE expression, and pro-inflammatory responses [including NF-κB activation and reactive oxygen species (ROS) production] induced in endothelial cells (ECs) by high glucose (HG). In particular, UDCA inhibited HG-induced ROS production by increasing the Nrf2 level. In macrophages, UDCA also blocked HG-induced RAGE and pro-inflammatory cytokine expression and inhibited foam cell formation via upregulation of the ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1. In the diabetic mouse model, UDCA inhibited atheromatous plaque formation by decreasing ER stress, and the levels of RAGE and adhesion molecules. In conclusion, UDCA exerts an anti-atherogenic activity in diabetic atherosclerosis by targeting both ER stress and RAGE signaling. Our work implicates UDCA as a potential therapeutic agent for prevention or treatment of diabetic atherosclerosis. PMID:26807573

  6. 2-Octynoic Acid Inhibits Hepatitis C Virus Infection through Activation of AMP-Activated Protein Kinase

    PubMed Central

    Yang, Darong; Xue, Binbin; Wang, Xiaohong; Yu, Xiaoyan; Liu, Nianli; Gao, Yimin; Liu, Chen; Zhu, Haizhen

    2013-01-01

    Many chronic hepatitis C virus (HCV)-infected patients with current therapy do not clear the virus. It is necessary to find novel treatments. The effect of 2-octynoic acid (2-OA) on HCV infection in human hepatocytes was examined. The mechanism of 2-OA antiviral activity was explored. Our data showed that 2-OA abrogated lipid accumulation in HCV replicon cells and virus-infected hepatocytes. It suppressed HCV RNA replication and infectious virus production with no cytotoxicity to the host cells. 2-OA did not affect hepatitis B virus replication in HepG2.2.15 cells derived from HepG2 cells transfected with full genome of HBV. Further study demonstrated that 2-OA activated AMP-activated protein kinase (AMPK) and inhibited acetyl-CoA carboxylase in viral-infected cells. Compound C, a specific inhibitor of AMPK, inhibited AMPK activity and reversed the reduction of intracellular lipid accumulation and the antiviral effect of 2-OA. Knockdown of AMPK expression by RNA interference abolished the activation of AMPK by 2-OA and blocked 2-OA antiviral activity. Interestingly, 2-OA induced interferon-stimulated genes (ISGs) and inhibited microRNA-122 (miR-122) expression in virus-infected hepatocytes. MiR-122 overexpression reversed the antiviral effect of 2-OA. Furthermore, knockdown of AMPK expression reversed both the induction of ISGs and suppression of miR-122 by 2-OA, implying that activated AMPK induces the intracellular innate response through the induction of ISGs and inhibiting miR-122 expression. 2-OA inhibits HCV infection through regulation of innate immune response by activated AMPK. These findings reveal a novel mechanism by which active AMPK inhibits HCV infection. 2-OA and its derivatives hold promise for novel drug development for chronic hepatitis C. PMID:23741428

  7. Faecal free fatty acids in tropical sprue and their possible role in the production of diarrhoea by inhibition of ATPases.

    PubMed Central

    Tiruppathi, C; Balasubramanian, K A; Hill, P G; Mathan, V I

    1983-01-01

    Faecal excretion of fatty acids is increased in patients with tropical sprue because of unabsorbed dietary fatty acids. The excretion of fatty acids correlates well with faecal wet weight. In vitro unsaturated fatty acids inhibited Na K-ATPase and Mg-ATPase isolated from basolateral membranes of enterocytes and colonocytes. These findings are a possible explanation for the observed abnormalities in water and electrolyte absorption by the colon in patients with tropical sprue and steatorrhoea. PMID:6219925

  8. Inhibition of vaccinia mRNA methylation by 2',5'-linked oligo(adenylic acid) triphosphate

    SciTech Connect

    Sharma, O.K.; Goswami, B.B.

    1981-04-01

    Extracts of interferon-treated cells synthesize unique 2',5'-linked oligo(adenylic acid) 5'-phosphates in the presence of ATP and double-stranded RNA. 2',5'-linked oligo(adenylic acid) 5'-triphosphate inhibits protein synthesis at nanomolar concentrations by activating RNase. We have observed that oligo(adenylic acid) 5'-monophosphate and 5'-triphosphate are potent inhibitors of vaccinia mRNA methylation in vitro. Both the methylation of the 5'-terminal guanine at the 7 position and the 2'-O-ribose methylation of the penultimate nucleoside are inhibited. Such inhibition of mRNA methylation is not due to degradation of the mRNA. Inhibition of the requisite modification of the 5' terminus of mRNA by 2',5'-linked oligo(adenylic acids) may be a mechanism of interferon action against both DNA and RNA viruses in which mRNAs derived from them are capped.

  9. Comparison of sodium acid sulfate to citric acid to inhibit browning of fresh-cut potatoes.

    PubMed

    Calder, Beth L; Kash, Emily A; Davis-Dentici, Katherine; Bushway, Alfred A

    2011-04-01

    Sodium acid sulfate (SAS) dip treatments were evaluated against a distilled water control and citric acid (CA) to compare its effectiveness in reducing enzymatic browning of raw, French-fry cut potatoes. Two separate studies were conducted with dip concentrations ranging from 0%, 1%, and 3% in experiment 1 to 0%, 2%, and 2.5% in experiment 2 to determine optimal dip concentrations. Russet Burbank potatoes were peeled, sliced, and dipped for 1 min and stored at 3 °C. Color, texture, fry surface pH, and microbiological analyses were conducted on days 0, 7, and 14. The 3% SAS- and CA-treated samples had significantly (p<0.0001) lower pH levels on fry surfaces than all other treatments. Both acidulants had significantly (p≤0.05) lower aerobic plate counts compared to controls in both studies by day 7. However, SAS appeared to be the most effective at the 3% level in maintaining a light fry color up to day 14 and had the highest L-values than all other treatments. The 3% SAS-treated fry slices appeared to have the least change in textural properties over storage time, having a significantly (p=0.0002) higher force value (kg force [kgf]) than the other treatments during experiment 1, without any signs of case-hardening that appeared in the control and CA-treated samples. SAS was just as comparable to CA in reducing surface fry pH and also lowering microbial counts over storage time. According to the results, SAS may be another viable acidulant to be utilized in the fresh-cut fruit and vegetable industry.

  10. Acupuncture inhibits vagal gastric acid secretion stimulated by sham feeding in healthy subjects.

    PubMed Central

    Lux, G; Hagel, J; Bäcker, P; Bäcker, G; Vogl, R; Ruppin, H; Domschke, S; Domschke, W

    1994-01-01

    In a prospective randomised study, the effect of acupuncture on sham feeding stimulated gastric acid secretion was investigated. In eight healthy volunteers (five men, three women, mean (SEM) age 26.3 (4.7) years) various methods of acupuncture were performed. Apart from the sham procedure, the acupuncture was performed at the classic acupuncture points. Electroacupuncture reduced gastric acid secretion expressed as median (range) significantly during the first 30 minute period to 1.6 (0-5.2) mmol compared with 3.8 (2.3-14.5) mmol (p < 0.05) during control period (sham feeding without acupuncture). Inhibition of gastric acid secretion by electroacupuncture was also significant during the second 30 minute period (0.2 (0-5.6) v 3.6 (0.3-9.1) mmol; p < 0.05) and for peak acid output (0.8 (0.2-5.1) v 7.6 (3.4-12.1) mmol; p < 0.05). Transcutaneous electrical nerve stimulation also resulted in significant reduction of gastric acid secretion during the first 30 minute period (1.0 (0-3.6) mmol v 3.8 (2.3-14.5) mmol; p < 0.05), and peak acid output (3.6 (1.2-12.0) v 7.6 (3.4-12.1) mmol; p < 0.05). The classic needle acupuncture, laser acupuncture, and sham acupuncture had no significant effect on gastric acid secretion. This study shows firstly that in healthy volunteers, only the versions of acupuncture using more pronounced stimulation (electroacupuncture, transcutaneous electrical nerve stimulation), but not those with only mild stimulation of the nerves (classic needle acupuncture, laser acupuncture), and secondly only acupuncture performed at defined points lead to significant reduction in gastric acid secretion. PMID:7926899

  11. Acupuncture inhibits vagal gastric acid secretion stimulated by sham feeding in healthy subjects.

    PubMed

    Lux, G; Hagel, J; Bäcker, P; Bäcker, G; Vogl, R; Ruppin, H; Domschke, S; Domschke, W

    1994-08-01

    In a prospective randomised study, the effect of acupuncture on sham feeding stimulated gastric acid secretion was investigated. In eight healthy volunteers (five men, three women, mean (SEM) age 26.3 (4.7) years) various methods of acupuncture were performed. Apart from the sham procedure, the acupuncture was performed at the classic acupuncture points. Electroacupuncture reduced gastric acid secretion expressed as median (range) significantly during the first 30 minute period to 1.6 (0-5.2) mmol compared with 3.8 (2.3-14.5) mmol (p < 0.05) during control period (sham feeding without acupuncture). Inhibition of gastric acid secretion by electroacupuncture was also significant during the second 30 minute period (0.2 (0-5.6) v 3.6 (0.3-9.1) mmol; p < 0.05) and for peak acid output (0.8 (0.2-5.1) v 7.6 (3.4-12.1) mmol; p < 0.05). Transcutaneous electrical nerve stimulation also resulted in significant reduction of gastric acid secretion during the first 30 minute period (1.0 (0-3.6) mmol v 3.8 (2.3-14.5) mmol; p < 0.05), and peak acid output (3.6 (1.2-12.0) v 7.6 (3.4-12.1) mmol; p < 0.05). The classic needle acupuncture, laser acupuncture, and sham acupuncture had no significant effect on gastric acid secretion. This study shows firstly that in healthy volunteers, only the versions of acupuncture using more pronounced stimulation (electroacupuncture, transcutaneous electrical nerve stimulation), but not those with only mild stimulation of the nerves (classic needle acupuncture, laser acupuncture), and secondly only acupuncture performed at defined points lead to significant reduction in gastric acid secretion.

  12. Glycochenodeoxycholic acid inhibits calcium phosphate precipitation in vitro by preventing the transformation of amorphous calcium phosphate to calcium hydroxyapatite.

    PubMed Central

    Qiu, S M; Wen, G; Hirakawa, N; Soloway, R D; Hong, N K; Crowther, R S

    1991-01-01

    Calcium hydroxyapatite can be a significant component of black pigment gallstones. Diverse molecules that bind calcium phosphate inhibit hydroxyapatite precipitation. Because glycine-conjugated bile acids, but not their taurine counterparts, bind calcium phosphate, we studied whether glycochenodeoxycholic acid inhibits calcium hydroxyapatite formation. Glycochenodeoxycholic acid (2 mM) totally inhibited transformation of amorphous calcium phosphate microprecipitates to macroscopic crystalline calcium hydroxyapatite. This inhibition was not mediated by decreased Ca2+ activity. Taurocholic acid (2-12 mM) did not affect hydroxyapatite formation, but antagonized glycochenodeoxycholic acid. Both amorphous and crystalline precipitates contained a surface fraction relatively rich in phosphate. The surface phosphate content was diminish by increasing glycochenodeoxycholic acid concentrations, and this relationship was interpreted as competition between bile acid and HPO4(-4) for binding sites on the calcium phosphate surface. A phosphate-rich crystal surface was associated with rapid transition from amorphous to crystalline states. These results indicate that glycochenodeoxycholic acid prevents transformation of amorphous calcium phosphate to crystalline hydroxyapatite by competitively inhibiting the accumulation of phosphate on the crystal embryo surface. PMID:1655828

  13. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage

    PubMed Central

    Li, Xiao-Qiang; Tian, Wen; Liu, Xiao-Xiao; Zhang, Kai; Huo, Jun-Cheng; Liu, Wen-Juan; Li, Ping; Xiao, Xiong; Zhao, Ming-Gao; Cao, Wei

    2016-01-01

    Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM). This study aimed to explore the effects of corosolic acid (CA) on the renal damage of DM and the mechanisms behind these effects. The renoprotective effect of CA was investigated in type 1 diabetic rats and db/db mice. The kidneys and glomerular mesangial cells (GMCs) were used to study the proliferation of GMCs by immunostaining and MTT assay. Further immunoblotting, siRNA, qPCR analysis, and detecting of NADPH oxidase activity and reactive oxygen species (ROS) generation were performed to explore relevant molecular mechanisms. In CA-treated diabetic animals, diabetes-induced albuminuria, increased serum creatinine and blood urea nitrogen were significantly attenuated, and glomerular hypertrophy, mesangial expansion and fibrosis were ameliorated. Furthermore, CA significantly inhibited proliferation of GMCs and phosphorylation of ERK1/2 and p38 MAPK in both diabetic animals and high glucose (HG)-induced GMCs. CA also normalized Δψm and inhibited HG-induced NADPH oxidase activity, ROS generation and NOX4, NOX2, p22phox and p47phox expression. More importantly, CA inhibited GMC proliferation mediated by NADPH/ERK1/2 and p38 MAPK signaling pathways. These findings suggest that CA exert the protective effect on DN by anti-proliferation resulted from inhibition of p38 MAPK- and NADPH-mediated inactivation of ERK1/2. PMID:27229751

  14. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    PubMed Central

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  15. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis.

    PubMed

    Nishio, Takashi; Usami, Mai; Awaji, Mizuki; Shinohara, Sumire; Sato, Kazuomi

    2016-01-01

    Acetylsalicylic acid (ASA) is widely used as an analgesic/antipyretic drug. It exhibits a wide range of biological effects, including preventative effects against heart attack and stroke, and the induction of apoptosis in various cancer cells. We previously found that ASA inhibits melanogenesis in B16 melanoma cells. However, the mechanisms of how ASA down-regulates melanin synthesis remain unclear. Here, we investigated the effect of ASA on melanogenic pathways, such as extracellular signal-regulated kinase (ERK) and microphthalmia-associated transcription factor (Mitf) transcription. ASA significantly inhibited melanin synthesis in a dose-dependent manner without oxidative stress and cell death. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that the inhibitory effect of ASA might be due to the inhibition of Mitf gene transcription. Interestingly, ASA also induced ERK phosphorylation. Additionally, treatment with PD98059, a specific ERK phosphorylation inhibitor, abolished the anti-melanogenic effect of ASA. These results suggest that the depigmenting effect of ASA results from down-regulation of Mitf, which is induced by both the induction of ERK phosphorylation and the inhibition of Mitf transcription.

  16. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis.

    PubMed

    Nishio, Takashi; Usami, Mai; Awaji, Mizuki; Shinohara, Sumire; Sato, Kazuomi

    2016-01-01

    Acetylsalicylic acid (ASA) is widely used as an analgesic/antipyretic drug. It exhibits a wide range of biological effects, including preventative effects against heart attack and stroke, and the induction of apoptosis in various cancer cells. We previously found that ASA inhibits melanogenesis in B16 melanoma cells. However, the mechanisms of how ASA down-regulates melanin synthesis remain unclear. Here, we investigated the effect of ASA on melanogenic pathways, such as extracellular signal-regulated kinase (ERK) and microphthalmia-associated transcription factor (Mitf) transcription. ASA significantly inhibited melanin synthesis in a dose-dependent manner without oxidative stress and cell death. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that the inhibitory effect of ASA might be due to the inhibition of Mitf gene transcription. Interestingly, ASA also induced ERK phosphorylation. Additionally, treatment with PD98059, a specific ERK phosphorylation inhibitor, abolished the anti-melanogenic effect of ASA. These results suggest that the depigmenting effect of ASA results from down-regulation of Mitf, which is induced by both the induction of ERK phosphorylation and the inhibition of Mitf transcription. PMID:26699907

  17. Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol.

    PubMed

    Zhang, Chongben; Hwarng, Gwen; Cooper, Daniel E; Grevengoed, Trisha J; Eaton, James M; Natarajan, Viswanathan; Harris, Thurl E; Coleman, Rosalind A

    2015-02-01

    Although an elevated triacylglycerol content in non-adipose tissues is often associated with insulin resistance, the mechanistic relationship remains unclear. The data support roles for intermediates in the glycerol-3-phosphate pathway of triacylglycerol synthesis: diacylglycerol (DAG), which may cause insulin resistance in liver by activating PKCϵ, and phosphatidic acid (PA), which inhibits insulin action in hepatocytes by disrupting the assembly of mTOR and rictor. To determine whether increases in DAG and PA impair insulin signaling when produced by pathways other than that of de novo synthesis, we examined primary mouse hepatocytes after enzymatically manipulating the cellular content of DAG or PA. Overexpressing phospholipase D1 or phospholipase D2 inhibited insulin signaling and was accompanied by an elevated cellular content of total PA, without a change in total DAG. Overexpression of diacylglycerol kinase-θ inhibited insulin signaling and was accompanied by an elevated cellular content of total PA and a decreased cellular content of total DAG. Overexpressing glycerol-3-phosphate acyltransferase-1 or -4 inhibited insulin signaling and increased the cellular content of both PA and DAG. Insulin signaling impairment caused by overexpression of phospholipase D1/D2 or diacylglycerol kinase-θ was always accompanied by disassociation of mTOR/rictor and reduction of mTORC2 kinase activity. However, although the protein ratio of membrane to cytosolic PKCϵ increased, PKC activity itself was unaltered. These data suggest that PA, but not DAG, is associated with impaired insulin action in mouse hepatocytes.

  18. Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARgamma by cyclic phosphatidic acid.

    PubMed

    Tsukahara, Tamotsu; Tsukahara, Ryoko; Fujiwara, Yuko; Yue, Junming; Cheng, Yunhui; Guo, Huazhang; Bolen, Alyssa; Zhang, Chunxiang; Balazs, Louisa; Re, Fabio; Du, Guangwei; Frohman, Michael A; Baker, Daniel L; Parrill, Abby L; Uchiyama, Ayako; Kobayashi, Tetsuyuki; Murakami-Murofushi, Kimiko; Tigyi, Gabor

    2010-08-13

    Cyclic phosphatidic acid (1-acyl-2,3-cyclic-glycerophosphate, CPA), one of nature's simplest phospholipids, is found in cells from slime mold to humans and has a largely unknown function. We find here that CPA is generated in mammalian cells in a stimulus-coupled manner by phospholipase D2 (PLD2) and binds to and inhibits the nuclear hormone receptor PPARgamma with nanomolar affinity and high specificity through stabilizing its interaction with the corepressor SMRT. CPA production inhibits the PPARgamma target-gene transcription that normally drives adipocytic differentiation of 3T3-L1 cells, lipid accumulation in RAW264.7 cells and primary mouse macrophages, and arterial wall remodeling in a rat model in vivo. Inhibition of PLD2 by shRNA, a dominant-negative mutant, or a small molecule inhibitor blocks CPA production and relieves PPARgamma inhibition. We conclude that CPA is a second messenger and a physiological inhibitor of PPARgamma, revealing that PPARgamma is regulated by endogenous agonists as well as by antagonists. PMID:20705243

  19. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway

    PubMed Central

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis. PMID:27278104

  20. Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication.

    PubMed

    Wilsky, Steffi; Sobotta, Katharina; Wiesener, Nadine; Pilas, Johanna; Althof, Nadine; Munder, Thomas; Wutzler, Peter; Henke, Andreas

    2012-02-01

    Coxsackievirus B3 (CVB3) is a human pathogen that causes acute and chronic infections, but an antiviral drug to treat these diseases has not yet been developed for clinical use. Several intracellular pathways are altered to assist viral transcription, RNA replication, and progeny release. Among these, fatty acid synthase (FAS) expression is increased. In order to test the potential of FAS inhibition as an anti-CVB3 strategy, several experiments were performed, including studies on the correlation of CVB3 replication and FAS expression in human Raji cells and an analysis of the time and dose dependence of the antiviral effect of FAS inhibition due to treatment with amentoflavone. The results demonstrate that CVB3 infection induces an up-regulation of FAS expression already at 1 h postinfection (p.i.). Incubation with increasing concentrations of amentoflavone inhibited CVB3 replication significantly up to 8 h p.i. In addition, suppression of p38 MAP kinase activity by treatment with SB239063 decreased FAS expression as well as viral replication. These data provide evidence that FAS inhibition via amentoflavone administration might present a target for anti-CVB3 therapy. PMID:22075919

  1. Differential Inhibition by Ferulic Acid of Nitrate and Ammonium Uptake in Zea mays L. 1

    PubMed Central

    Bergmark, Christine L.; Jackson, William A.; Volk, Richard J.; Blum, Udo

    1992-01-01

    The influence of the allelopathic compound ferulic acid (FA) on nitrogen uptake from solutions containing both NO3− and NH4+ was examined in 8-day-old nitrogen-depleted corn (Zea mays L.) seedlings. Concurrent effects on uptake of Cl− and K+ also were assessed. The presence of 250 micromolar FA inhibited the initial (0-1 hours) rate of NO3− uptake and also prevented development of the NO3−-inducible accelerated rate. The pattern of recovery when FA was removed was interpreted as indicating a rapid relief of FA-restricted NO3− uptake activity, followed by a reinitiation of the induction of that activity. No inhibition of NO3− reduction was detected. Ammonium uptake was less sensitive than NO3− uptake to inhibition by FA. An inhibition of Cl− uptake occurred as induction of the NO3− transport system developed in the absence of FA. Alterations of Cl− uptake in the presence of FA were, therefore, a result of a beneficial effect, because NO3− uptake was restricted, and a direct inhibitory effect. The presence of FA increased the initial net K+ loss from the roots during exposure to the low K, ammonium nitrate uptake solution and delayed the recovery to positive net uptake, but it did not alter the general pattern of the response. The implications of the observations are discussed for growth of plants under natural conditions and cultural practices that foster periodic accumulation of allelopathic substances. PMID:16668689

  2. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation.

    PubMed

    Yan, Yiqing; Jiang, Wei; Spinetti, Thibaud; Tardivel, Aubry; Castillo, Rosa; Bourquin, Carole; Guarda, Greta; Tian, Zhigang; Tschopp, Jurg; Zhou, Rongbin

    2013-06-27

    Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases.

  3. Inhibition of nocturnal acidity is important but not essential for duodenal ulcer healing.

    PubMed Central

    Bianchi Porro, G; Parente, F; Sangaletti, O

    1990-01-01

    We have determined the relative importance of day and night time gastric acid inhibition for duodenal ulcer healing by comparing the anti-ulcer efficacy of a single morning with that of a single bedtime dose of ranitidine. One hundred and thirty patients with active duodenal ulcer were randomly assigned to a double-blind therapy with ranitidine 300 mg at 8 am or the same dose at 10 pm for up to eight weeks. The antisecretory effects of these regimens were also assessed by 24 h intragastric pH monitoring in 18 of these patients. At four weeks ulcers had healed in 41/61 (67%) of patients taking the morning dose and in 47/63 (75%) of those receiving the nocturnal dose (95% CI for the difference -0.09 +0.25; p ns). At eight weeks, the corresponding healing rates were 82% and 85.5%, respectively (95% CI for the difference -0.11 +0.17; p ns). Both treatments were significantly superior to placebo in raising 24 h intragastric pH, although the effects of the morning dose were of shorter duration than those of the nocturnal dose. These findings suggest that suppression of nocturnal acidity is important but not essential to promote healing of duodenal ulcers; a prolonged period of acid inhibition during the day (as obtained with a single large morning dose of H2-blockers) may be equally effective. PMID:2186980

  4. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation.

    PubMed

    Yan, Yiqing; Jiang, Wei; Spinetti, Thibaud; Tardivel, Aubry; Castillo, Rosa; Bourquin, Carole; Guarda, Greta; Tian, Zhigang; Tschopp, Jurg; Zhou, Rongbin

    2013-06-27

    Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases. PMID:23809162

  5. Sialic acid glycoproteins inhibit in vitro and in vivo replication of rotaviruses.

    PubMed Central

    Yolken, R H; Willoughby, R; Wee, S B; Miskuff, R; Vonderfecht, S

    1987-01-01

    We investigated the interactions of rotaviruses with glycoproteins and cells that support rotaviral replication. We found that a wide range of naturally occurring glycoproteins, including ovalbumins and ovomucoids from chicken and turkey eggs, and mucin derived from bovine submaxillary glands, inhibit the replication of rotaviruses in MA-104 cells. Our studies further indicated that the glycoproteins bind directly to rotaviruses and that virus-glycoprotein binding is dependent largely upon interactions with sialic acid oligosaccharides. We found that accessible sialic acid oligosaccharides are required for efficient rotavirus infection of MA-104 cells, thus demonstrating that sialic acid oligosaccharides play an important role in the interactions of rotaviruses with both glycoproteins and cells that support rotaviral replication. Bovine submaxillary mucin and chicken ovoinhibitor can also prevent the shedding of rotavirus antigen and the development of rotavirus gastroenteritis in a mouse model of rotavirus infection. Our findings document that a range of glycoproteins inhibit the in vivo and in vitro replication of rotaviruses and suggest that the alteration in the quantity or chemical composition of intestinal glycoproteins is a potential means for the modulation of enteric infections. Images PMID:3025257

  6. Tannic acid inhibited norovirus binding to HBGA receptors, a study of 50 Chinese medicinal herbs.

    PubMed

    Zhang, Xu-Fu; Dai, Ying-Chun; Zhong, Weiming; Tan, Ming; Lv, Zhi-Ping; Zhou, Ying-Chun; Jiang, Xi

    2012-02-15

    Noroviruses (NoVs) are the leading cause of viral acute gastroenteritis affecting people of all ages worldwide. The disease is difficult to control due to its widespread nature and lack of an antiviral or vaccine. NoV infection relies on the interaction of the viruses with histo-blood group antigens (HBGAs) as host receptors. Here we investigated inhibition effects of Chinese medicinal herbs against NoVs binding to HBGAs for potential antivirals against NoVs. Blocking assays was performed using the NoV protrusion (P) protein as NoV surrogate and saliva as HBGAs. Among 50 clinically effective Chinese medicinal herbs against gastroenteritis diseases, two herbs were found highly effective. Chinese Gall blocked NoV P dimer binding to type A saliva at IC(50)=5.35 μg/ml and to B saliva at IC(50)=21.7 μg/ml. Similarly, Pomegranate blocked binding of NoV P dimer to type A saliva at IC(50)=15.59 μg/ml and B saliva at IC(50)=66.67 μg/ml. Literature data on preliminary biochemistry analysis showed that tannic acid is a common composition in the extracts of the two herbs, so we speculate that it might be the effective compound and further studies using commercially available, highly purified tannic acid confirmed the tannic acid as a strong inhibitor in the binding of NoV P protein to both A and B saliva (IC(50)≈0.1 μM). In addition, we tested different forms of hydrolysable tannins with different alkyl esters, including gallic acid, ethyl gallate, lauryl gallate, octyl gallate and propyl gallate. However, none of these tannins-derivatives revealed detectable inhibiting activities. Our data suggested that tannic acid is a promising candidate antiviral against NoVs.

  7. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors

    NASA Astrophysics Data System (ADS)

    Goracci, Laura; Deschamps, Nathalie; Randazzo, Giuseppe Marco; Petit, Charlotte; Dos Santos Passos, Carolina; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2016-07-01

    The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development.

  8. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors

    PubMed Central

    Goracci, Laura; Deschamps, Nathalie; Randazzo, Giuseppe Marco; Petit, Charlotte; Dos Santos Passos, Carolina; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2016-01-01

    The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development. PMID:27404291

  9. Protection from hypertension in mice by the Mediterranean diet is mediated by nitro fatty acid inhibition of soluble epoxide hydrolase

    PubMed Central

    Charles, Rebecca L.; Rudyk, Olena; Prysyazhna, Oleksandra; Kamynina, Alisa; Yang, Jun; Morisseau, Christophe; Hammock, Bruce D.; Freeman, Bruce A.; Eaton, Philip

    2014-01-01

    Soluble epoxide hydrolase (sEH) is inhibited by electrophilic lipids by their adduction to Cys521 proximal to its catalytic center. This inhibition prevents hydrolysis of the enzymes’ epoxyeicosatrienoic acid (EET) substrates, so they accumulate inducing vasodilation to lower blood pressure (BP). We generated a Cys521Ser sEH redox-dead knockin (KI) mouse model that was resistant to this mode of inhibition. The electrophilic lipid 10-nitro-oleic acid (NO2-OA) inhibited hydrolase activity and also lowered BP in an angiotensin II-induced hypertension model in wild-type (WT) but not KI mice. Furthermore, EET/dihydroxy-epoxyeicosatrienoic acid isomer ratios were elevated in plasma from WT but not KI mice following NO2-OA treatment, consistent with the redox-dead mutant being resistant to inhibition by lipid electrophiles. sEH was inhibited in WT mice fed linoleic acid and nitrite, key constituents of the Mediterranean diet that elevates electrophilic nitro fatty acid levels, whereas KIs were unaffected. These observations reveal that lipid electrophiles such as NO2-OA mediate antihypertensive signaling actions by inhibiting sEH and suggest a mechanism accounting for protection from hypertension afforded by the Mediterranean diet. PMID:24843165

  10. Rosmarinic acid in Argusia argentea inhibits snake venom-induced hemorrhage.

    PubMed

    Aung, Hnin Thanda; Nikai, Toshiaki; Niwa, Masatake; Takaya, Yoshiaki

    2010-10-01

    A methanolic extract of Argusia (or Messerschmidia or Tournefortia) argentea (Boraginaceae) significantly inhibited hemorrhage induced by crude venom of Trimeresurus flavoviridis. The extract was then separated according to antivenom activity by using silica gel column chromatography and HPLC equipped with an octadecylsilanized silica gel (ODS) column to afford rosmarinic acid (RA) (1) as an active principle. RA (1) significantly inhibited the hemorrhagic effect of crude venoms of T. flavoviridis, Crotalus atrox, Gloydius blomhoffii, Bitis arietans as well as snake venom metalloproteinases, HT-b (C. atrox), bilitoxin 2 (Agkistrodon bilineatus), HF (B. arietans), and Ac1-proteinase (Deinagkistrodon acutus). This is the first report of the antihemorrhage activity of RA (1), and RA (1) greatly contributes to the antihemorrhagic efficiency of A. argentea against crude snake venoms and hemorrhagic toxins.

  11. Inhibition of natural killer cell activity by eicosapentaenoic acid in vivo and in vitro

    SciTech Connect

    Yamashita, N.; Sugiyama, E.; Hamazaki, T.; Yano, S.

    1988-01-15

    To examine the effects of in vivo eicosapentaenoic acid (EPA) on natural killer (NK) cell activity, C3H/He mice each received a single intraperitoneal bolus of an emulsion of trieicosapentaenoyl-glycerol (EPA-TG). Spleen cells were tested for NK activity using /sup 51/Chromium-release assays against YAC-1 target cells. Forty eight hours after injection, NK activity was inhibited in a dose-dependent manner. EPA-TG emulsion also inhibited the NK activity of NK-enriched effector cells. Decreased cytotoxicity was first noted 24 hr after injection; it resumed the baseline by 7 days. The addition of EPA-TG emulsion to a cytotoxicity assay system resulted in moderate depression of NK activity. These results demonstrate that EPA has significant immunomodulatory effects on NK activity.

  12. Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway

    PubMed Central

    Ku, Chung-Yu; Wang, Ying-Ren; Lin, Hsuan-Yuan; Lu, Shao-Chun; Lin, Jung-Yaw

    2015-01-01

    Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC). In this study, we identified corosolic acid (CA), which exists in the root of Actinidia chinensis, as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity in vitro. In an in vivo model, CA exhibited an effective dose (5 mg/kg/day) on tumor growth. We further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations. In conclusion, this research elucidates the effects and molecular mechanism for CA on HCC cells and suggests that CA could be a therapeutic or adjuvant strategy for patients with aggressive HCC. PMID:25978354

  13. Mealtime versus nighttime acid inhibition. A clinical pharmacological study with ranitidine.

    PubMed

    Savarino, V; Mela, G S; Zentilin, P; Vigneri, S; Cutela, P; Mele, R; Di Mario, F

    1992-09-01

    This study was carried out in order to compare the effects of mealtime and bedtime regimens of ranitidine on gastric acidity. Fifteen duodenal ulcer patients in clinical remission were randomized to receive in single-blind fashion either placebo, ranitidine 300 mg at night (2200 hr) or ranitidine 150 mg three times a day given before each of the three daily meals (1800, 0800 and 1200 hr). Over 24 hr, the two active treatments produced a significantly greater acid inhibition than placebo, while the single daily regimen was superior to the three times a day regimen of ranitidine in terms of both rise in pH values (P less than 0.001) and duration of action expressed as time spent above 3.0 pH units (P less than 0.05). The analysis of these two parameters during fractioned periods of the circadian cycle showed that the three divided doses of ranitidine were more effective during the daytime (P less than 0.01) and the evening (P less than 0.001), whereas the bedtime dose of ranitidine was superior during the night (P less than 0.0001). Thus a short-lasting antisecretory action, which is, however, capable of fully controlling the high acidity of postprandial periods, might be the key to understanding the results of several recent clinical trials in which the suppression of daytime gastric acidity has been shown to promote similar or even faster duodenal ulcer healing rates than the suppression of nocturnal acidity.

  14. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation

    PubMed Central

    Nakaya, Helder I; Khan, Nooruddin; Ma, Hualing; Gama, Leonardo; Machiah, Deepa K; Lawson, Benton; Hakimpour, Paul; Wang, Yi-chong; Li, Shuzhao; Sharma, Prachi; Kaufman, Randal J; Martinez, Jennifer; Pulendran, Bali

    2016-01-01

    Summary The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled nonrepressed (GCN2) kinase is a key orchestrator of the ISR, and modulates cellular metabolism in response to amino acid starvation. Here we demonstrate that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of GCN2 in CD11c+ APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and Th17 responses, due to enhanced inflammasome activation and IL-1β production. This was caused by reduced autophagy in GCN2−/− intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes1. Thus, conditional ablation of Atg5 and Atg7 in intestinal APCs resulted in enhanced ROS and Th17 responses. Furthermore, in vivo blockade of ROS and IL-1β resulted in inhibition of Th17 responses and reduced inflammation in GCN2−/− mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2. PMID:26982722

  15. INHIBITION OF FATTY ACID DESATURASES IN Drosophila melanogaster LARVAE BLOCKS FEEDING AND DEVELOPMENTAL PROGRESSION.

    PubMed

    Wang, Yiwen; da Cruz, Tina Correia; Pulfemuller, Alicia; Grégoire, Stéphane; Ferveur, Jean-François; Moussian, Bernard

    2016-05-01

    Fatty acid desaturases are metabolic setscrews. To study their systemic impact on growth in Drosophila melanogaster, we inhibited fatty acid desaturases using the inhibitor CAY10566. As expected, the amount of desaturated lipids is reduced in larvae fed with CAY10566. These animals cease feeding soon after hatching, and their growth is strongly attenuated. A starvation program is not launched, but the expression of distinct metabolic genes is activated, possibly to mobilize storage material. Without attaining the normal size, inhibitor-fed larvae molt to the next stage indicating that the steroid hormone ecdysone triggers molting correctly. Nevertheless, after molting, expression of ecdysone-dependent regulators is not induced. While control larvae molt a second time, these larvae fail to do so and die after few days of straying. These effects are similar to those observed in experiments using larvae deficient for the fatty acid desaturase1 gene. Based on these data, we propose that the ratio of saturated to unsaturated fatty acids adjusts a sensor system that directs feeding behavior. We also hypothesize that loss of fatty acid desaturase activity leads to a block of the genetic program of development progression indirectly by switching on a metabolic compensation program. PMID:27037621

  16. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation.

    PubMed

    Ravindran, Rajesh; Loebbermann, Jens; Nakaya, Helder I; Khan, Nooruddin; Ma, Hualing; Gama, Leonardo; Machiah, Deepa K; Lawson, Benton; Hakimpour, Paul; Wang, Yi-chong; Li, Shuzhao; Sharma, Prachi; Kaufman, Randal J; Martinez, Jennifer; Pulendran, Bali

    2016-03-24

    The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled non-repressed (GCN2) kinase is a key orchestrator of the ISR, and modulates protein synthesis in response to amino acid starvation. Here we demonstrate in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of Gcn2 (also known as Eif2ka4) in CD11c(+) APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and T helper 17 cell (TH17) responses, owing to enhanced inflammasome activation and interleukin (IL)-1β production. This was caused by reduced autophagy in Gcn2(-/-) intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes. Thus, conditional ablation of Atg5 or Atg7 in intestinal APCs resulted in enhanced ROS and TH17 responses. Furthermore, in vivo blockade of ROS and IL-1β resulted in inhibition of TH17 responses and reduced inflammation in Gcn2(-/-) mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2.

  17. Boric acid inhibits germination and colonization of Saprolegnia spores in vitro and in vivo.

    PubMed

    Ali, Shimaa E; Thoen, Even; Evensen, Øystein; Skaar, Ida

    2014-01-01

    Saprolegnia infections cause severe economic losses among freshwater fish and their eggs. The banning of malachite green increased the demand for finding effective alternative treatments to control the disease. In the present study, we investigated the ability of boric acid to control saprolegniosis in salmon eggs and yolk sac fry. Under in vitro conditions, boric acid was able to decrease Saprolegnia spore activity and mycelial growth in all tested concentrations above 0.2 g/L, while complete inhibition of germination and growth was observed at a concentration of 0.8 g/L. In in vivo experiments using Atlantic salmon eyed eggs, saprolegniosis was controlled by boric acid at concentrations ranging from 0.2-1.4 g/L during continuous exposure, and at 1.0-4.0 g/L during intermittent exposure. The same effect was observed on salmon yolk sac fry exposed continuously to 0.5 g/L boric acid during the natural outbreak of saprolegniosis. During the experiments no negative impact with regard to hatchability and viability was observed in either eggs or fry, which indicate safety of use at all tested concentrations. The high hatchability and survival rates recorded following the in vivo testing suggest that boric acid is a candidate for prophylaxis and control of saprolegniosis.

  18. Inhibition kinetics of acid and alkaline phosphatases by atrazine and methomyl pesticides.

    PubMed

    El-Aswad, Ahmed F; Badawy, Mohamed E I

    2015-01-01

    The main objective of this work was to investigate the kinetic characteristics of acid and alkaline phosphatases isolated from different sources and to study the effects of the herbicide atrazine and insecticide methomyl on the activity and kinetic properties of the enzymes. Acid phosphatase (ACP) was isolated from the tomato plant (Solanum lycopersicum L. var. lycopersicum); alkaline phosphatase (ALP) was isolated from two sources, including mature earthworms (Aporrectodea caliginosa) and larvae of the Egyptian cotton leafworm (Spodoptera littoralis). The specific activities of the enzymes were 33.31, 5.56 and 0.72 mmol substrate hydrolyzed per minute per milligram protein for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. The inhibition kinetics indicated that atrazine and methomyl caused competitive-non-competitive inhibition of the enzymes. The relationships between estimates of K(m) and V(max) calculated from the Michaelis-Menten equation have been explored. The extent of the inhibition was different, as estimated by the values of the inhibition constant Ki that were found to be 3.34 × 10(-3), 1.12 × 10(-2) and 1.07 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively, with methomyl. In the case of atrazine, K(i) were found to be 8.99 × 10(-3), 3.55 × 10(-2) and 1.36 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. PMID:25996812

  19. Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells.

    PubMed

    Jeon, Min Ji; Kim, Won Gu; Lim, Seonhee; Choi, Hyun-Jeung; Sim, Soyoung; Kim, Tae Yong; Shong, Young Kee; Kim, Won Bae

    2016-01-01

    The naturally occurring short-chain fatty acid, α-lipoic acid (ALA) is a powerful antioxidant which is clinically used for treatment of diabetic neuropathy. Recent studies suggested the possibility of ALA as a potential anti-cancer agent, because it could activate adenosine monophosphate activated protein kinase (AMPK) and inhibit transforming growth factor-β (TGFβ) pathway. In this study, we evaluate the effects of ALA on thyroid cancer cell proliferation, migration and invasion. We performed in vitro cell proliferation analysis using BCPAP, HTH-83, CAL-62 and FTC-133 cells. ALA suppressed thyroid cancer cell proliferation through activation of AMPK and subsequent down-regulation of mammalian target of rapamycin (mTOR)-S6 signaling pathway. Low-dose ALA, which had minimal effects on cell proliferation, also decreased cell migration and invasion of BCPAP, CAL-62 and HTH-83 cells. ALA inhibited epithelial mesenchymal transition (EMT) evidently by increase of E-cadherin and decreases of activated β-catenin, vimentin, snail, and twist in these cells. ALA suppressed TGFβ production and inhibited induction of p-Smad2 and twist by TGFβ1 or TGFβ2. These findings indicate that ALA reduces cancer cell migration and invasion through suppression of TGFβ production and inhibition of TGFβ signaling pathways in thyroid cancer cells. ALA also significantly suppressed tumor growth in mouse xenograft model using BCPAP and FTC-133 cells. This is the first study to show anti-cancer effect of ALA on thyroid cancer cells. ALA could be a potential therapeutic agent for treatment of advanced thyroid cancer, possibly as an adjuvant therapy with other systemic therapeutic agents.

  20. [Cyclooxygenase inhibitors in some dietary vegetables inhibit platelet aggregation function induced by arachidonic acid].

    PubMed

    Wang, Xin-Hua; Shao, Dong-Hua; Liang, Guo-Wei; Zhang, Ru; Xin, Qin; Zhang, Tao; Cao, Qing-Yun

    2011-10-01

    The study was purposed to investigate whether the cyclooxygenase inhibitors from some dietary vegetables can inhibit platelet aggregation function by the arachidonic acid (AA). The vegetable juice was mixed with platelet rich plasma (PRP), and asprin was used as positive control. The maximum ratio of platelet aggregation induced by AA was measured on the aggregometer; heme and cyclooxygenase-1 (COX(1)) or cyclooxygenase-2 (COX(2)) were added to test tubes containing COX reaction buffer, the mixture was vortex-mixed and exposed to aspirin or vegetable juice, followed by addition of AA and then hydrochloric acid (1 mol/L) was added to stop the COX reaction, followed by chemical reduction with stannous chloride solution. The concentration of COX inhibitors was detected by the enzyme immunoassay kit; vegetable juice (aspirin as positive control) was mixed with whole blood, which was followed by the addition of AA, and then the reaction was stopped by adding indomethacin, centrifuged, then the supernatant was collected, and the plasma thromboxane B(2) (TXB(2)) was measured by radioimmunoassay. The results showed that spinach juice, garlic bolt juice, blanched garlic leave juice and Chinese leek juice could inhibit by 80% human platelet aggregation induced by AA. 4 kinds of vegetables were all found a certain amount of cyclooxygenase inhibitors, which COX(1) and COX(2) inhibitor concentrations of spinach were higher than that of aspirin; 4 vegetable juice could significantly reduce the human plasma concentrations of TXB(2) induced by AA (p < 0.05). It is concluded that 4 kinds of raw vegetables containing cyclooxygenase inhibitors inhibit the production of TXA(2) and thus hinder platelet aggregation. Raw spinach, garlic bolt, blanched garlic and chinese leek inhibit significantly AA-induced human platelet aggregation in vitro. 4 kinds of vegetables may have a good potential perspective of anti-platelet aggregation therapy or prevention of thrombosis.

  1. Molecular hairpin: a possible model for inhibition of tau aggregation by tannic acid.

    PubMed

    Yao, Junliang; Gao, Xing; Sun, Wenliang; Yao, Tianming; Shi, Shuo; Ji, Liangnian

    2013-03-19

    Inhibition of anomalous aggregation of tau protein would be an attractive therapeutic target for Alzheimer's disease (AD). In this study, tannic acid (TA), a polymeric plant polyphenol, and its monomer, gallic acid (GA), were introduced as the references to afford a molecular framework that integrates tau binding properties and inhibitory effects. Using a thioflavin S fluorescence assay and electron microscopy, we demonstrated that TA could competently inhibit the in vitro aggregation of tau peptide R3, corresponding to the third repeat unit of the microtubule-binding domain, with an IC50 of 3.5 μM, while GA's inhibition was comparatively piddling (with an IC50 of 92 μM). In the isothermal titration calorimetry experiment, we found that TA could strongly bind to R3 with a large amount of heat released. Circular dichroism spectra showed TA dose-dependently suppressed the conformational transition of R3 from a random coil structure to a β-sheet structure during the aggregation process. Finally, a structural model was built using molecular docking simulation to elucidate the possible binding sites for TA on the tau peptide surface. Our results suggest that TA recognizably interacts with tau peptide by forming a hairpin binding motif, a key framework required for inhibiting tau polymerization, in addition to hydrogen bonding, hydrophilic-hydrophobic interactions, and static electrical interactions, as reported previously. The inhibitory effect of TA on human full-length tau protein (tau441) was also verified by electron microscopy. This finding hints at the possibility of TA as a leading compound of anti-AD drugs and offers a new stratagem for the rational molecular design of a tau aggregation inhibitor. PMID:23442089

  2. Inhibition of Listeria monocytogenes and Salmonella by combinations of oriental mustard, malic acid, and EDTA.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2014-04-01

    The antimicrobial activities of oriental mustard extract alone or combined with malic acid and EDTA were investigated against Salmonella spp. or Listeria monocytogenes at different temperatures. Five strain Salmonella or L. monocytogenes cocktails were separately inoculated in Brain Heart Infusion broth containing 0.5% (w/v) aqueous oriental mustard extract and incubated at 4 °C to 21 °C for 21 d. For inhibitor combination tests, Salmonella Typhimurium 02:8423 and L. monocytogenes 2-243 were individually inoculated in Mueller Hinton broth containing the mustard extract with either or both 0.2% (w/v) malic acid and 0.2% (w/v) EDTA and incubated at 10 °C or 21 °C for 10 to 14 d. Mustard extract inhibited growth of the L. monocytogenes cocktail at 4 °C up to 21 d (2.3 log10 CFU/mL inhibition) or at 10 °C for 7 d (2.4 log10 CFU/mL inhibition). Salmonella spp. viability was slightly, but significantly reduced by mustard extract at 4 °C by 21 d. Although hydrolysis of sinigrin in mustard extract by both pathogens was 2 to 6 times higher at 21 °C than at 4 °C to 10 °C, mustard was not inhibitory at 21 °C, perhaps because of the instability of its hydrolysis product (allyl isothiocyanate). At 21 °C, additive inhibitory effects of mustard extract with EDTA or malic acid led to undetectable levels of S. Typhimurium and L. monocytogenes by 7 d and 10 d, respectively. At 10 °C, S. Typhimurium was similarly susceptible, but combinations of antimicrobials were not more inhibitory to L. monocytogenes than the individual agents.

  3. Folic acid prevents behavioral impairment and Na(+), K(+) -ATPase inhibition caused by neonatal hypoxia-ischemia.

    PubMed

    Carletti, Jaqueline Vieira; Deniz, Bruna Ferrary; Miguel, Patrícia Maidana; Rojas, Joseane Jiménez; Kolling, Janaína; Scherer, Emilene Barros; de Souza Wyse, Angela Teresinha; Netto, Carlos Alexandre; Pereira, Lenir Orlandi

    2012-08-01

    Folic acid plays an important role in neuroplasticity and acts as a neuroprotective agent, as observed in experimental brain ischemia studies. The aim of this study was to investigate the effects of folic acid on locomotor activity, aversive memory and Na(+),K(+)-ATPase activity in the frontal cortex and striatum in animals subjected to neonatal hypoxia-ischemia (HI). Wistar rats of both sexes at postnatal day 7 underwent HI procedure and were treated with intraperitoneal injections of folic acid (0.011 μmol/g body weight) once a day, until the 30th postnatal day. Starting on the day after, behavioral assessment was run in the open field and in the inhibitory avoidance task. Animals were sacrificed by decapitation 24 h after testing and striatum and frontal cortex were dissected out for Na(+),K(+)-ATPase activity analysis. Results show anxiogenic effect in the open field and an impairment of aversive memory in the inhibitory avoidance test in HI rats; folic acid treatment prevented both behavioral effects. A decreased Na(+),K(+)-ATPase activity in striatum, both ipsilateral and contralateral to ischemia, was identified after HI; a total recovery was observed in animals treated with folic acid. A partial recovery of Na(+),K(+)-ATPase activity was yet seen in frontal cortex of HI animals receiving folic acid supplementation. Presented results support that folic acid treatment prevents memory deficit and anxiety-like behavior, as well as prevents Na(+),K(+)-ATPase inhibition in the striatum and frontal cortex caused by neonatal hypoxia-ischemia.

  4. Inhibition of Interjacent Ribonucleic Acid (26S) Synthesis in Cells Infected by Sindbis Virus

    PubMed Central

    Scheele, Christina M.; Pfefferkorn, E. R.

    1969-01-01

    The interrelationship of viral ribonucleic acid (RNA) and protein synthesis in cells infected by Sindbis virus was investigated. When cultures were treated with puromycin early in the course of infection, the synthesis of interjacent RNA (26S) was preferentially inhibited. A similar result was obtained by shifting cells infected by one temperature-sensitive mutant defective in RNA synthesis from the permissive (29 C) to the nonpermissive (41.5 C) temperature. Under both conditions, the viral RNA produced appeared to be fully active biologically. Once underway, the synthesis of viral RNA in wild-type Sindbis infections did not require concomitant protein synthesis. PMID:5817400

  5. Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media

    NASA Astrophysics Data System (ADS)

    Jeyaprabha, C.; Sathiyanarayanan, S.; Phani, K. L. N.; Venkatachari, G.

    2005-11-01

    The inhibitor performance of chemically synthesized water soluble poly(aminoquinone) (PAQ) on iron corrosion in 0.5 M sulphuric acid was studied in relation to inhibitor concentration using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. On comparing the inhibition performance of PAQ with that of the monomer o-phenylenediamine (OPD), the OPD gave an efficiency of 80% for 1000 ppm while it was 90% for 100 ppm of PAQ. PAQ was found to be a mixed inhibitor. Besides, PAQ was able to improve the passivation tendency of iron in 0.5 M H 2SO 4 markedly.

  6. Inhibition of ultraviolet-induced carcinogenesis by all-trans retinoic acid

    SciTech Connect

    Epstein, J.H.; Grekin, D.A.

    1981-03-01

    The effects of all-trans retinoic acid (RA) in 0.05%, 0.025% and 0.005% concentrations on ultraviolet (UV) induced carcinogenesis was investigated in the skin of Uscd strain hairless mice. A carcinogenic amount of UV energy was delivered over the 12-mo period of the study. The 0.025% and 0.005% RA solutions did not alter the development of cutaneous cancers. However, the 0.05% RA concentration significantly inhibited the tumor formation in this study.

  7. What Makes Hydroxamate a Promising Anchoring Group in Dye-Sensitized Solar Cells? Insights from Theoretical Investigation.

    PubMed

    Li, Wei; Rego, Luis G C; Bai, Fu-Quan; Wang, Jian; Jia, Ran; Xie, Li-Ming; Zhang, Hong-Xing

    2014-11-20

    We report, from a theoretical point of view, the first comparative study between the highly water-stable hydroxamate and the widely used carboxylate, in addition to the robust phosphate anchors. Theoretical calculations reveal that hydroxamate would be better for photoabsorption. A quantum dynamics description of the interfacial electron transfer (IET), including the underlying nuclear motion effect, is presented. We find that both hydroxamate and carboxylate would have efficient IET character; for phosphate the injection time is significantly longer (several hundred femtoseconds). We also verified that the symmetry of the geometry of the anchoring group plays important roles in the electronic charge delocalization. We conclude that hydroxamate can be a promising anchoring group, as compared to carboxylate and phosphate, due to its better photoabsorption and comparable IET time scale as well as the experimental advantage of water stability. We expect the implications of these findings to be relevant for the design of more efficient anchoring groups for dye-sensitized solar cell (DSSC) application.

  8. Inhibition of mild steel corrosion by sodium dodecyl benzene sulfonate and sodium oleate in acidic solutions

    SciTech Connect

    Luo, H.; Han, K.N.; Guan, Y.C.

    1998-08-01

    Inhibition of mild steel corrosion by sodium dodecyl benzene sulfonate (C{sub 12}H{sub 25}C{sub 6}H{sub 4}SO{sub 3}Na [SDBS]) and sodium oleate (CH{sub 3}[CH{sub 2}]{sub 7}CH{double_bond}CH[CH{sub 2}]{sub 7}COONa) in acidic solutions was investigated using a potentiostat, a lock-in amplifier, a contact angle goniometer, A fourier transform infrared (FTIR) spectrometer, and an ultraviolet (UV)/visible spectrophotometer. In the presence of the organic inhibitors, the corrosion rate was reduced significantly, Anionic SDBS was adsorbed on the positively charged mild steel surface through the electrostatic attraction. However, for sodium oleate, the soluble oleic acid (CH{sub 3}[CH{sub 2}]{sub 7}CH{double_bond}CH[CH]{sub 7}COOH) chemisorbed on the steel surface at the first stage. Then, insoluble colloid adsorbed on the chemisorbed surface through van der Waals forces.

  9. Effects of inhibition gastric acid secretion on arterial acid-base status during digestion in the toad Bufo marinus.

    PubMed

    Andersen, Johnnie B; Andrade, Denis V; Wang, Tobias

    2003-07-01

    Digestion affects acid-base status, because the net transfer of HCl from the blood to the stomach lumen leads to an increase in HCO3(-) levels in both extra- and intracellular compartments. The increase in plasma [HCO3(-)], the alkaline tide, is particularly pronounced in amphibians and reptiles, but is not associated with an increased arterial pH, because of a concomitant rise in arterial PCO2 caused by a relative hypoventilation. In this study, we investigate whether the postprandial increase in PaCO2 of the toad Bufo marinus represents a compensatory response to the increased plasma [HCO3(-)] or a state-dependent change in the control of pulmonary ventilation. To this end, we successfully prevented the alkaline tide, by inhibiting gastric acid secretion with omeprazole, and compared the response to that of untreated toads determined in our laboratory during the same period. In addition, we used vascular infusions of bicarbonate to mimic the alkaline tide in fasting animals. Omeprazole did not affect blood gases, acid-base and haematological parameters in fasting toads, but abolished the postprandial increase in plasma [HCO3(-)] and the rise in arterial PCO2 that normally peaks 48 h into the digestive period. Vascular infusion of HCO3(-), that mimicked the postprandial rise in plasma [HCO3(-)], led to a progressive respiratory compensation of arterial pH through increased arterial PCO2. Thus, irrespective of whether the metabolic alkalosis is caused by gastric acid secretion in response to a meal or experimental infusion of bicarbonate, arterial pH is being maintained by an increased arterial PCO2. It seems, therefore, that the elevated PCO2, occuring during the postprandial period, constitutes of a regulated response to maintain pH rather than a state-dependent change in ventilatory control.

  10. Iron-Binding Compounds from Agrobacterium spp.: Biological Control Strain Agrobacterium rhizogenes K84 Produces a Hydroxamate Siderophore

    PubMed Central

    Penyalver, Ramón; Oger, Philippe; López, María M.; Farrand, Stephen K.

    2001-01-01

    Iron-binding compounds were produced in various amounts in response to iron starvation by a collection of Agrobacterium strains belonging to the species A. tumefaciens, A. rhizogenes, and A. vitis. The crown gall biocontrol agent A. rhizogenes strain K84 produced a hydroxamate iron chelator in large amounts. Production of this compound, and also of a previously described antibiotic-like substance called ALS84, occurred only in cultures of strain K84 grown in iron-deficient medium. Similarly, sensitivity to ALS84 was expressed only when susceptible cells were tested in low-iron media. Five independent Tn5-induced mutants of strain K84 affected in the production of the hydroxamate iron chelator showed a similar reduction in the production of ALS84. One of these mutants, M8-10, was completely deficient in the production of both agents and grew poorly compared to the wild type under iron-limiting conditions. Thus, the hydroxamate compound has siderophore activity. A 9.1-kb fragment of chromosomal DNA containing the Tn5 insertion from this mutant was cloned and marker exchanged into wild-type strain K84. The homogenote lost the ability to produce the hydroxamate siderophore and also ALS84. A cosmid clone was isolated from a genomic library of strain K84 that restored to strain M8-10 the ability to produce of the siderophore and ALS84, as well as growth in iron-deficient medium. This cosmid clone contained the region in which Tn5 was located in the mutant. Sequence analysis showed that the Tn5 insert in this mutant was located in an open reading frame coding for a protein that has similarity to those of the gramicidin S synthetase repeat superfamily. Some such proteins are required for synthesis of hydroxamate siderophores by other bacteria. Southern analysis revealed that the biosynthetic gene from strain K84 is present only in isolates of A. rhizogenes that produce hydroxamate-type compounds under low-iron conditions. Based on physiological and genetic analyses showing

  11. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    PubMed Central

    Ventura, Richard; Mordec, Kasia; Waszczuk, Joanna; Wang, Zhaoti; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George; Heuer, Timothy S.

    2015-01-01

    Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20–200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K–AKT–mTOR and β-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. Research in context Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for

  12. Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides.

    PubMed Central

    Simon, P M; Goode, P L; Mobasseri, A; Zopf, D

    1997-01-01

    Helicobacterpylori, the ulcer pathogen residing in the human stomach, binds to epithelial cells of the gastric antrum. We have examined binding of 13 bacterial isolates to epithelial cell lines by use of a sensitive microtiter plate method in which measurement of bacterial urease activity provides the means for quantitation of bound organisms. Several established human gastrointestinal carcinoma cell lines grown as monolayers were compared for suitability in these assays, and the duodenum-derived cell line HuTu-80 was selected for testing bacterial binding inhibitors. When bacteria are pretreated with oligosaccharides, glycoproteins, and glycolipids, a complex picture of bacterial-epithelial adherence specificities emerges. Among the monovalent inhibitors tested, 3'-sialyllactose (NeuAc alpha2-3Gal beta1-4Glc; 3'SL) was the most active oligosaccharide, inhibiting adherence for recent clinical isolates of H. pylori with a millimolar 50% inhibitory concentration (IC50). Its alpha2-6 isomer (6'SL) was less active. Most of the recent clinical isolates examined were inhibited by sialyllactose, whereas long-passaged isolates were insensitive. Among the long-passaged bacterial strains whose binding was not inhibited by 3'SL was the strain ATCC 43504, also known as NCTC 11637 and CCUG 17874, in which the proposed sialyllactose adhesin was recently reported to lack surface expression (P. G. O'Toole, L. Janzon, P. Doig, J. Huang, M. Kostrzynska, and T. H. Trust, J. Bacteriol. 177:6049-6057, 1995). Pretreatment of the epithelial monolayer with neuraminidase reduced the extent of binding by those bacteria that are sensitive to inhibition by 3'SL. Other potent inhibitors of bacterial binding are the glycoproteins alpha1-acid glycoprotein, fetuin, porcine gastric and bovine submaxillary mucins, and the glycolipid sulfatide, all of which present multivalent sialylated and/or sulfated galactosyl residues under the conditions of the binding assay. Consistent with this pattern, a

  13. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    PubMed Central

    Çevik, Kübra; Ulusoy, Seyhan

    2015-01-01

    Objective(s): The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods: The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. Results: The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation. PMID:26557964

  14. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  15. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy.

    PubMed

    Lee, Ting-I; Kao, Yu-Hsun; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5' adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines. PMID:27446205

  16. Inhibition profile of a series of phenolic acids on bovine lactoperoxidase enzyme.

    PubMed

    Sarikaya, S Beyza Ozturk; Sisecioglu, Melda; Cankaya, Murat; Gulcin, İlhami; Ozdemir, Hasan

    2015-06-01

    Lactoperoxidase (LPO) catalyzes the oxidation of numerous of organic and inorganic substrates by hydrogen peroxide. It has very vital activity in the innate immune system by decreasing or stopping the activation of the bacteria in milk and mucosal secretions. This study's purpose was to investigate in vitro effect of some phenolic acids (ellagic, gallic, ferulic, caffeic, quercetin, p-coumaric, syringic, catechol and epicatechin) on the purified LPO. This enzyme was purified from milk by using different methods such as Amberlite CG-50 resin, CM-Sephadex C-50 ion-exchange and Sephadex G-100 gel filtration chromatography. LPO was purified 28.7-fold with a yield of 20.03%. We found phenolic acids have inhibition effects on bovine LPO enzyme to different concentrations. Our study showed lower concentrations of caffeic acid, ferulic acid and quercetin exhibited much higher inhibitory effect on enzyme, so these three of them were clearly a more potent inhibitor than the others were. All of compounds were non-competitive inhibitors.

  17. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes.

    PubMed

    Chen, Lihong; Yao, Xiaozhou; Young, Andrew; McNulty, Judi; Anderson, Don; Liu, Yaping; Nystrom, Christopher; Croom, Dallas; Ross, Sean; Collins, Jon; Rajpal, Deepak; Hamlet, Kimberly; Smith, Chari; Gedulin, Bronislava

    2012-01-01

    Bile acids are recognized as metabolic modulators. The present study was aimed at evaluating the effects of a potent Asbt inhibitor (264W94), which blocks intestinal absorption of bile acids, on glucose homeostasis in Zucker Diabetic Fatty (ZDF) rats. Oral administration of 264W94 for two wk increased fecal bile acid concentrations and elevated non-fasting plasma total Glp-1. Treatment of 264W94 significantly decreased HbA1c and glucose, and prevented the drop of insulin levels typical of ZDF rats in a dose-dependent manner. An oral glucose tolerance test revealed up to two-fold increase in plasma total Glp-1 and three-fold increase in insulin in 264W94 treated ZDF rats at doses sufficient to achieve glycemic control. Tissue mRNA analysis indicated a decrease in farnesoid X receptor (Fxr) activation in small intestines and the liver but co-administration of a Fxr agonist (GW4064) did not attenuate 264W94 induced glucose lowering effects. In summary, our results demonstrate that inhibition of Asbt increases bile acids in the distal intestine, promotes Glp-1 release and may offer a new therapeutic strategy for type 2 diabetes mellitus.

  18. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus.

  19. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis

    PubMed Central

    ZHAO, PENG; MAO, JUN-MIN; ZHANG, SHU-YUN; ZHOU, ZE-QUAN; TAN, YANG; ZHANG, YU

    2014-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a ‘chemopreventer’. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer. PMID:25009654

  20. Computational insights into function and inhibition of fatty acid amide hydrolase.

    PubMed

    Palermo, Giulia; Rothlisberger, Ursula; Cavalli, Andrea; De Vivo, Marco

    2015-02-16

    The Fatty Acid Amide Hydrolase (FAAH) enzyme is a membrane-bound serine hydrolase responsible for the deactivating hydrolysis of a family of naturally occurring fatty acid amides. FAAH is a critical enzyme of the endocannabinoid system, being mainly responsible for regulating the level of its main cannabinoid substrate anandamide. For this reason, pharmacological inhibition of FAAH, which increases the level of endogenous anandamide, is a promising strategy to cure a variety of diseases including pain, inflammation, and cancer. Much structural, mutagenesis, and kinetic data on FAAH has been generated over the last couple of decades. This has prompted several informative computational investigations to elucidate, at the atomic-level, mechanistic details on catalysis and inhibition of this pharmaceutically relevant enzyme. Here, we review how these computational studies - based on classical molecular dynamics, full quantum mechanics, and hybrid QM/MM methods - have clarified the binding and reactivity of some relevant substrates and inhibitors of FAAH. We also discuss the experimental implications of these computational insights, which have provided a thoughtful elucidation of the complex physical and chemical steps of the enzymatic mechanism of FAAH. Finally, we discuss how computations have been helpful for building structure-activity relationships of potent FAAH inhibitors. PMID:25240419

  1. Short-chain fatty acids inhibit intestinal trefoil factor gene expression in colon cancer cells.

    PubMed

    Tran, C P; Familari, M; Parker, L M; Whitehead, R H; Giraud, A S

    1998-07-01

    Intestinal trefoil factor (ITF) gene expression was detected in five colon cancer cell lines. ITF was synthesized by mucous cells of LIM 1215 and LIM 1863 lines, from which it is secreted constitutively. The ITF mRNA transcript was estimated to be 0.6 kb. In LIM 1215 cells, the expression of ITF was potently and dose-dependently inhibited by short-chain fatty acids (butyrate > propionate > acetate) within 8 h of application. The inhibitory effect of butyrate was ablated by actinomycin D and preceded its effects on differentiation of LIM 1215 cells as indicated by induction of alkaline phosphatase activity and counting of periodic acid-Schiff-positive cells. The human ITF promoter contained an 11-residue consensus sequence with high homology to the butyrate response element of the cyclin D1 gene. Mobility shift assays show specific binding of this response element to nuclear protein extracts of LIM 1215 cells. We conclude that butyrate inhibits ITF expression in colon cancer cells and that this effect may be mediated transcriptionally and independently of its effects on differentiation.

  2. Oleanolic acid modulates multiple intracellular targets to inhibit colorectal cancer growth.

    PubMed

    Li, Li; Wei, Lihui; Shen, Aling; Chu, Jianfeng; Lin, Jiumao; Peng, Jun

    2015-12-01

    Due to drug resistance and unacceptable cytotoxicity of most currently-used cancer chemotherapies, naturally occurring products have gained attention in the field of anticancer treatment. Oleanolic acid (OA) is a natural pentacyclic triterpenoic acid and a principal active compound in many medicinal herbs that have long been used to clinically treat various types of human malignancies. Using a colorectal cancer (CRC) mouse xenograft model and the cell line HT-29, we evaluated the effect of OA on tumor growth in vivo and in vitro, and investigated the underlying molecular mechanisms in the present study. We found that OA significantly inhibited tumor growth in volume and weight in CRC xenograft mice. In addition, OA treatment led to the induction of apoptosis and inhibition of cell proliferation. OA significantly reduced the expression of Bcl-2, Cyclin D1 and CKD4, whereas Bax and p21 expression was profoundly increased after OA treatment. Furthermore, OA significantly suppressed the activation of Akt, p70S6K and MAPK signalings, but promoted p53 pathway activation. Collectively, findings from this study suggest that OA possesses a broad range of anticancer effects via modulation of multiple intracellular targets. PMID:26459864

  3. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway

    SciTech Connect

    Yonezawa, Takayuki; Hasegawa, Shin-ichi; Ahn, Jae-Yong; Cha, Byung-Yoon; Teruya, Toshiaki; Hagiwara, Hiromi; Nagai, Kazuo; Woo, Je-Tae; E-mail: jwoo@isc.chubu.ac.jp

    2007-03-30

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-{kappa}B ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.

  4. Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources

    PubMed Central

    Hartmann, Anja; Gostner, Johanna; Fuchs, Julian E.; Chaita, Eliza; Aligiannis, Nektarios; Skaltsounis, Leandros; Ganzera, Markus

    2015-01-01

    Matrix metalloproteinases (MMP) play an important role in extracellular matrix remodeling. Excessive activity of these enzymes can be induced by UV light and leads to skin damage, a process known as photoaging. In this study we investigated the collagenase inhibition potential of mycosporine-like amino acids (MAA), compounds that have been isolated from marine organisms and are known photoprotectants against UV-A and UV-B. For this purpose the commonly used collagenase assay was optimized and for the first time validated in terms of relationships between enzyme-substrate concentrations, temperature, incubation time and enzyme stability. Three compounds were isolated from the marine red algae Porphyra sp. and Palmaria palmata, and evaluated for their inhibitory properties against Chlostridium histolyticum collagenase (Chc). A dose-dependent, but very moderate inhibition was observed for all substances and IC50 values of 104.0 μM for shinorine, 105.9 μM for porphyra and 158.9 μM for palythine were determined. Additionally, computer-aided docking models suggested that the MAA binding to the active site of the enzyme is a competitive inhibition. PMID:26039265

  5. Lonicera hypoglauca inhibits xanthine oxidase and reduces serum uric acid in mice.

    PubMed

    Chien, Shih-Chang; Yang, Chen-Wei; Tseng, Yen-Hsueh; Tsay, Hsin-Sheng; Kuo, Yueh-Hsiung; Wang, Sheng-Yang

    2009-03-01

    Xanthine oxidase (XOD) catalyzes the oxidation of hypoxanthine to xanthine and then to uric acid, and is a key enzyme in the pathogenesis of hyperuricemia. The ability of extracts of Lonicera hypoglauca (Caprifoliaceae) to inhibit XOD was investigated in this study. An ethanol extract (LH-crude) of the leaves of L. hypoglauca and its derived EtOAc soluble sub-fractions (LH-EA) significantly inhibited XOD activity, with IC50 values for LH-crude and LH-EA of 48.8 and 35.2 microg/mL. Moreover, LH-EA reduced serum urate levels IN VIVO in a potassium oxonate-induced hyperuricemic mouse model, by 70.1% and 93.7% of the hyperuricemic untreated group at doses of 300 and 500 mg/kg of LH-EA, respectively. Finally, we used bioactivity-guided fractionation to isolate a new bisflavonoid, loniceraflavone, which showed significant inhibition of XOD (IC50=0.85 microg/mL). These results suggest that L. hypoglauca and its extracts may have a considerable potential for development as an anti-hyperuricemia agent for clinical application.

  6. Nordihydroguaiaretic Acid Inhibits an Activated FGFR3 Mutant, and Blocks Downstream Signaling in Multiple Myeloma Cells

    PubMed Central

    Meyer, April N.; McAndrew, Christopher W.; Donoghue, Daniel J.

    2008-01-01

    Activating mutations within Fibroblast Growth Factor Receptor 3 (FGFR3), a receptor tyrosine kinase, are responsible for human skeletal dysplasias including achondroplasia and the neonatal lethal syndromes, Thanatophoric Dysplasia (TD) type I and II. Several of these same FGFR3 mutations have also been identified somatically in human cancers, including multiple myeloma, bladder carcinoma and cervical cancer. Based on reports that strongly activated mutants of FGFR3 such as the TDII (K650E) mutant signal preferentially from within the secretory pathway, the inhibitory properties of nordihydroguaiaretic acid (NDGA), which blocks protein transport through the Golgi, were investigated. NDGA was able to inhibit FGFR3 autophosphorylation both in vitro and in vivo. In addition, signaling molecules downstream of FGFR3 activation such as STAT1, STAT3 and MAPK were inhibited by NDGA treatment. Using HEK293 cells expressing activated FGFR3-TDII, together with several multiple myeloma cell lines expressing activated forms of FGFR3, NDGA generally resulted in a decrease in MAPK activation by 1 hour, and resulted in increased apoptosis over 24 hours. The effects of NDGA on activated FGFR3 derivatives targeted either to the plasma membrane or the cytoplasm were also examined. These results suggest that inhibitory small molecules such as NDGA that target a specific subcellular compartment may be beneficial in the inhibition of activated receptors such as FGFR3 that signal from the same compartment. PMID:18794123

  7. Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells

    PubMed Central

    OMORI, AKINA; YOSHIMURA, YOSHITAKA; DEYAMA, YOSHIAKI; SUZUKI, KUNIAKI

    2015-01-01

    The present study investigated the effect of the natural polyphenols, rosmarinic acid and arbutin, on osteoclast differentiation in RAW 264.7 cells. Rosmarinic acid and arbutin suppressed osteoclast differentiation and had no cytotoxic effect on osteoclast precursor cells. Rosmarinic acid and arbutin inhibited superoxide production in a dose-dependent manner. mRNA expression of the master regulator of osteoclastogenesis, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and the osteoclast marker genes, matrix metalloproteinase-9, tartrate-resistant acid phosphatase and cathepsin-K, decreased following treatments with rosmarinic acid and arbutin. Furthermore, resorption activity decreased with the number of osteoclasts. These results suggest that rosmarinic acid and arbutin may be useful for the prevention and treatment of bone diseases, such as osteoporosis, through mechanisms involving inhibition of superoxide and downregulation of NFATc1. PMID:26171153

  8. Novel off-target effect of tamoxifen--inhibition of acid ceramidase activity in cancer cells.

    PubMed

    Morad, Samy A F; Levin, Jonathan C; Tan, Su-Fern; Fox, Todd E; Feith, David J; Cabot, Myles C

    2013-12-01

    Acid ceramidase (AC), EC 3.5.1.23, a lysosomal enzyme, catalyzes the hydrolysis of ceramide to constituent sphingoid base, sphingosine, and fatty acid. Because AC regulates the levels of pro-apoptotic ceramide and mitogenic sphingosine-1-phosphate, it is considered an apt target in cancer therapy. The present study reveals, for the first time, that the prominent antiestrogen, tamoxifen, is a pan-effective AC inhibitor in the low, single digit micromolar range, as demonstrated in a wide spectrum of cancer cell types, prostate, pancreatic, colorectal, and breast. Prostate cancer cells were chosen for the detailed investigations. Treatment of intact PC-3 cells with tamoxifen produced time- and dose-dependent inhibition of AC activity. Tamoxifen did not impact cell viability nor did it inhibit AC activity in cell-free assays. In pursuit of mechanism of action, we demonstrate that tamoxifen induced time-, as early as 5min, and dose-dependent, as low as 5μM, increases in lysosomal membrane permeability (LMP), and time- and dose-dependent downregulation of AC protein expression. Assessing various protease inhibitors revealed that a cathepsin B inhibitor blocked tamoxifen-elicited downregulation of AC protein; however, this action failed to restore AC activity unless assayed in a cell-free system at pH4.5. In addition, pretreatment with tamoxifen inhibited PC-3 cell migration. Toremifene, an antiestrogen structurally similar to tamoxifen, was also a potent inhibitor of AC activity. This study reveals a new, off-target action of tamoxifen that may be of benefit to enhance anticancer therapies that either incorporate ceramide or target ceramide metabolism. PMID:23939396

  9. Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism.

    PubMed

    Mason, R Preston; Jacob, Robert F

    2015-02-01

    Lipid oxidation leads to endothelial dysfunction, inflammation, and foam cell formation during atherogenesis. Glucose also contributes to lipid oxidation and promotes pathologic changes in membrane structural organization, including the development of cholesterol crystalline domains. In this study, we tested the comparative effects of eicosapentaenoic acid (EPA), an omega-3 fatty acid indicated for the treatment of very high triglyceride (TG) levels, and other TG-lowering agents (fenofibrate, niacin, and gemfibrozil) on lipid oxidation in human low-density lipoprotein (LDL) as well as membrane lipid vesicles prepared in the presence of glucose (200 mg/dL). We also examined the antioxidant effects of EPA in combination with atorvastatin o-hydroxy (active) metabolite (ATM). Glucose-induced changes in membrane structural organization were measured using small angle x-ray scattering approaches and correlated with changes in lipid hydroperoxide (LOOH) levels. EPA was found to inhibit LDL oxidation in a dose-dependent manner (1.0-10.0 µM) and was distinguished from the other TG-lowering agents, which had no significant effect as compared to vehicle treatment alone. Similar effects were observed in membrane lipid vesicles exposed to hyperglycemic conditions. The antioxidant activity of EPA, as observed in glucose-treated vesicles, was significantly enhanced in combination with ATM. Glucose treatment produced highly-ordered, membrane-restricted, cholesterol crystalline domains, which correlated with increased LOOH levels. Of the agents tested in this study, only EPA inhibited glucose-induced cholesterol domain formation. These data demonstrate that EPA, at pharmacologic levels, inhibits hyperglycemia-induced changes in membrane lipid structural organization through a potent antioxidant mechanism associated with its distinct, physicochemical interactions with the membrane bilayer. PMID:25449996

  10. Acid extrusion is induced by osteoclast attachment to bone. Inhibition by alendronate and calcitonin.

    PubMed Central

    Zimolo, Z; Wesolowski, G; Rodan, G A

    1995-01-01

    Acid extrusion is essential for osteoclast (OC) activity. We examined Na+ and HCO3(-)-independent H+ extrusion in rat- and mouse OCs by measuring intracellular pH (pHi) changes, with the pHi indicator BCECF (biscarboxyethyl-5-(6) carboxyfluorescein) after H+ loading with an ammonium pulse. 90% of OCs attached to glass do not possess HCO3- and Na(+)-independent H(+)-extrusion (rate of pHi recovery = 0.043 +/- 0.007 (SEM) pH U/min, n = 26). In contrast, in OCs attached to bone, the pHi recovery rate is 0.228 +/- 0.011 pHi U/min, n = 25. OCs on bone also possess a NH(4+)-permeable pathway not seen on glass. The bone-induced H+ extrusion was inhibited by salmon calcitonin (10(-8) M, for 2 h), and was not present after pretreating the bone slices with the aminobisphosphonate alendronate (ALN). At ALN levels of 0.22 nmol/mm2 bone, H+ extrusion was virtually absent 12 h after cell seeding (0.004 +/- 0.002 pH U/min) and approximately 50% inhibition was observed at 0.022 pmol ALN/mm2 bone. The Na(+)-independent H+ extrusion was not inhibited by bafilomycin A1 (up to 10(-7) M), although a bafilomycin A1 (10(-8) M)-sensitive H+ pump was present in membrane vesicles isolated from these osteoclasts. These findings indicate that Na(+)-independent acid extrusion is stimulated by osteoclast attachment to bone and is virtually absent when bone is preincubated with ALN, or when osteoclasts are treated with salmon calcitonin. Images PMID:7593614

  11. Combination of intermittent calorie restriction and eicosapentaenoic acid for inhibition of mammary tumors

    PubMed Central

    Mizuno, Nancy K.; Rogozina, Olga P.; Seppanen, Christine M.; Liao, D. Joshua; Cleary, Margot P.; Grossmann, Michael E.

    2013-01-01

    There are a number of dietary interventions capable of inhibiting mammary tumorigenesis however the effectiveness of dietary combinations is largely unexplored. Here we combined two interventions previously shown individually to inhibit mammary tumor development. The first was the use of the omega-3 fatty acid, eicosapentaenoic acid (EPA), and the second was the implementation of calorie restriction. MMTV-Her2/neu mice were used as a model for human breast cancers which over express Her2/neu. Six groups of mice were enrolled. Half were fed a control (Con) diet with 10.1% fat calories from soy oil, while the other half consumed a diet with 72% fat calories from EPA. Within each diet mice were further divided into ad libitum (AL), chronic calorie restricted (CCR) or intermittent calorie restricted (ICR) groups. Mammary tumor incidence was lowest in ICR-EPA (15%) and highest in AL-Con mice (87%) while AL-EPA, CCR-Con, CCR-EPA and ICR-Con groups had mammary tumor incidence rates of 63%, 47%, 40% and 59% respectively. Survival was effected similarly by the interventions. Consumption of EPA dramatically reduced serum leptin (P<0.02) and increased serum adiponectin in the AL-EPA mice compared to AL-Con mice (P<0.001). Both CCR and ICR decreased serum leptin and IGF-I compared to AL mice but not compared to each other. These results illustrate that mammary tumor inhibition is significantly increased when ICR and EPA are combined as compared to either intervention alone. This response may be related to alterations in the balance of serum growth factors and adipokines. PMID:23550153

  12. Inhibition of Human Group IIA-Secreted Phospholipase A2 and THP-1 Monocyte Recruitment by Maslinic Acid.

    PubMed

    Yap, Wei Hsum; Ahmed, Nafees; Lim, Yang Mooi

    2016-10-01

    Maslinic acid is a natural pentacyclic triterpenoid which has anti-inflammatory properties. A recent study showed that secretory phospholipase A2 (sPLA2) may be a potential binding target of maslinic acid. The human group IIA (hGIIA)-sPLA2 is found in human sera and their levels are correlated with severity of inflammation. This study aims to determine whether maslinic acid interacts with hGIIA-sPLA2 and inhibits inflammatory response induced by this enzyme. It is shown that maslinic acid enhanced intrinsic fluorescence of hGIIA-sPLA2 and inhibited its enzyme activity in a concentration-dependent manner. Molecular docking revealed that maslinic acid binds to calcium binding and interfacial phospholipid binding site, suggesting that it inhibit access of catalytic calcium ion for enzymatic reaction and block binding of the enzyme to membrane phospholipid. The hGIIA-sPLA2 enzyme is also responsible in mediating monocyte recruitment and differentiation. Results showed that maslinic acid inhibit hGIIA-sPLA2-induced THP-1 cell differentiation and migration, and the effect observed is specific to hGIIA-sPLA2 as cells treated with maslinic acid alone did not significantly affect the number of adherent and migrated cells. Considering that hGIIA-sPLA2 enzyme is known to hydrolyze glyceroacylphospholipids present in lipoproteins and cell membranes, maslinic acid may bind and inhibit hGIIA-sPLA2 enzymatic activity, thereby reduces the release of fatty acids and lysophospholipids which stimulates monocyte migration and differentiation. This study is the first to report on the molecular interaction between maslinic acid and inflammatory target hGIIA-sPLA2 as well as its effect towards hGIIA-sPLA2-induced THP-1 monocyte adhesive and migratory capabilities, an important immune-inflammation process in atherosclerosis.

  13. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    SciTech Connect

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun Chung, Won-Yoon

    2014-03-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  14. In vitro inhibition of human cytomegalovirus replication by calcium trinatrium diethylenetriaminepentaacetic acid.

    PubMed

    Cinatl, J; Hoffmann, F; Cinatl, J; Weber, B; Scholz, M; Rabenau, H; Stieneker, F; Kabickova, H; Blasko, M; Doerr, H W

    1996-06-01

    Desferrioxamine (DFO) has been shown to inhibit human cytomegalovirus (CMV) replication in vitro. In the present study, we compared antiviral effects of DFO in human foreskin fibroblast (HFF) cells against several CMV strains with those of other chelators that interact with iron and other ions from different pools. DFO, a hydrophilic chelator, that may chelate both intracellular and extracellular ions inhibited production of CMV late antigen at 50% effective concentrations (EC50S) ranging from 6.2 to 8.9 microM. EC50S for calcium trinatrium diethylenetriaminepentaacetic acid (CaDTPA) ranged from 6.1 to 9.9 microM. EC50S for 2,2'-bipyridine (BPD), a hydrophobic chelator, which diffuses into cell membranes ranged from 65 to 72 microM. Concentrations which inhibited BrdU incorporation into cellular DNA by 50% (IC50S) ranged from 8.2 to 12.0 microM (DFO), from 65 to 89 microM (BPD), and from 139 to 249 microM (CaDTPA). CaDTPA was the only chelator which completely inhibited production of infectious virus in HFF and vascular endothelial cells at concentrations which had no significant effects on cellular DNA synthesis and growth. Addition of stoichiometric amounts of Fe3+ in the culture medium of HFF cells completely eliminated antiviral effects of DFO while antiviral effects of CaDTPA and BPD were only moderately affected. Fe2+ and Cu2+ were stronger inhibitors of CaDTPA than Fe3+; however, Mn2+ and Zn2+ completely suppressed antiviral effects of CaDTPA. The results show that CaDTPA is a novel nontoxic inhibitor of CMV replication. The antiviral activity of CaDTPA is suppressed by metal ions with a decreasing potency order of Mn2+/Zn2+ > Fe2+ > Cu2+ > Fe3+.

  15. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases

    PubMed Central

    Saha, Piu; Yeoh, Beng San; Singh, Rajbir; Chandrasekar, Bhargavi; Vemula, Praveen Kumar; Haribabu, Bodduluri; Vijay-Kumar, Matam; Jala, Venkatakrishna R.

    2016-01-01

    Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in

  16. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases.

    PubMed

    Saha, Piu; Yeoh, Beng San; Singh, Rajbir; Chandrasekar, Bhargavi; Vemula, Praveen Kumar; Haribabu, Bodduluri; Vijay-Kumar, Matam; Jala, Venkatakrishna R

    2016-01-01

    Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in

  17. Gut Microbiota Conversion of Dietary Ellagic Acid into Bioactive Phytoceutical Urolithin A Inhibits Heme Peroxidases.

    PubMed

    Saha, Piu; Yeoh, Beng San; Singh, Rajbir; Chandrasekar, Bhargavi; Vemula, Praveen Kumar; Haribabu, Bodduluri; Vijay-Kumar, Matam; Jala, Venkatakrishna R

    2016-01-01

    Numerous studies signify that diets rich in phytochemicals offer many beneficial functions specifically during pathologic conditions, yet their effects are often not uniform due to inter-individual variation. The host indigenous gut microbiota and their modifications of dietary phytochemicals have emerged as factors that greatly influence the efficacy of phytoceutical-based intervention. Here, we investigated the biological activities of one such active microbial metabolite, Urolithin A (UA or 3,8-dihydroxybenzo[c]chromen-6-one), which is derived from the ellagic acid (EA). Our study demonstrates that UA potently inhibits heme peroxidases i.e. myeloperoxidase (MPO) and lactoperoxidase (LPO) when compared to the parent compound EA. In addition, chrome azurol S (CAS) assay suggests that EA, but not UA, is capable of binding to Fe3+, due to its catechol-like structure, although its modest heme peroxidase inhibitory activity is abrogated upon Fe3+-binding. Interestingly, UA-mediated MPO and LPO inhibition can be prevented by innate immune protein human NGAL or its murine ortholog lipocalin 2 (Lcn2), implying the complex nature of host innate immunity-microbiota interactions. Spectral analysis indicates that UA inhibits heme peroxidase-catalyzed reaction by reverting the peroxidase back to its inactive native state. In support of these in vitro results, UA significantly reduced phorbol myristate acetate (PMA)-induced superoxide generation in neutrophils, however, EA failed to block the superoxide generation. Treatment with UA significantly reduced PMA-induced mouse ear edema and MPO activity compared to EA treated mice. Collectively, our results demonstrate that microbiota-mediated conversion of EA to UA is advantageous to both host and microbiota i.e. UA-mediated inhibition of pro-oxidant enzymes reduce tissue inflammation, mitigate non-specific killing of gut bacteria, and abrogate iron-binding property of EA, thus providing a competitive edge to the microbiota in

  18. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    SciTech Connect

    Cuadrado, Irene; Estevez-Braun, Ana; Heras, Beatriz de las

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE{sub 2} production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  19. Ursolic Acid Inhibits Adipogenesis in 3T3-L1 Adipocytes through LKB1/AMPK Pathway

    PubMed Central

    He, Yonghan; Li, Ying; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Background Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. Objective As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. Conclusions Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway

  20. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells

    PubMed Central

    Liu, Guangming; Bibus, Douglas M.; Bode, Ann M.; Ma, Wei-Ya; Holman, Ralph T.; Dong, Zigang

    2001-01-01

    Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the ω3 fatty acids EPA and DHA and of the ω6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of ω3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of ω6 to ω3 fatty acids may be a significant factor in mediating tumor development. PMID:11416221

  1. Inhibition of Pig Phosphoenolpyruvate Carboxykinase Isoenzymes by 3-Mercaptopicolinic Acid and Novel Inhibitors.

    PubMed

    Hidalgo, Jorge; Latorre, Pedro; Carrodeguas, José Alberto; Velázquez-Campoy, Adrián; Sancho, Javier; López-Buesa, Pascual

    2016-01-01

    There exist two isoforms of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in pig populations that differ in a single amino acid (Met139Leu). The isoenzymes have different kinetic properties, affecting more strongly the Km and Vmax of nucleotides. They are associated to different phenotypes modifying traits of considerable economic interest. In this work we use inhibitors of phosphoenolpyruvate carboxykinase activity to search for further differences between these isoenzymes. On the one hand we have used the well-known inhibitor 3-mercaptopicolinic acid. Its inhibition patterns were the same for both isoenzymes: a three-fold decrease of the Ki values for GTP in 139Met and 139Leu (273 and 873 μM, respectively). On the other hand, through screening of a chemical library we have found two novel compounds with inhibitory effects of a similar magnitude to that of 3-mercaptopicolinic acid but with less solubility and specificity. One of these novel compounds, (N'1-({5-[1-methyl-5-(trifluoromethyl)-1H-pyrazol-3-yl]-2-thienyl}methylidene)-2,4-dichlorobenzene-1-carbohydrazide), exhibited significantly different inhibitory effects on either isoenzyme: it enhanced threefold the apparent Km value for GTP in 139Met, whereas in 139Leu, it reduced it from 99 to 69 μM. The finding of those significant differences in the binding of GTP reinforces the hypothesis that the Met139Leu substitution affects strongly the nucleotide binding site of PEPCK-C.

  2. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    PubMed Central

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  3. Evaluation of the inhibitive effect of benzotriazole on archeological bronze in acidic medium

    NASA Astrophysics Data System (ADS)

    Hassairi, Hèla; Bousselmi, Latifa; Khosrof, Slim; Triki, Ezzeddine

    2013-12-01

    An archaeological bronze artefact was a Punic coin excavated from the north east of Tunisia in 2001. The composition of the copper alloy revealed a content of 3.5 % of tin and 1.4 % of lead with the presence of some sulphur heterogeneity. The surface presents some roughnesses and cracks and is covered by a corrosion layer of 20-40 μm thickness. The use of benzotriazole (BTA) as an inhibitor has become a standard element for the preservation of cuprous-based metals. In order to investigate the behaviour of BTA in an acidic medium, an Electrochemical Impedance Spectroscopy (EIS) investigation was performed to characterize the electrochemical behaviour of the interface of the archaeological bronze sample/acidic medium without and with BTA addition. Impedance diagrams obtained at different immersion times show that the presence of the inhibitor prevents the diffusional process observed in the absence of BTA. The inhibition of the pre-polarized bronze surface revealed that the mechanism of action of the benzotriazole molecule in an acidic medium is governed by the chemisorption process.

  4. Inhibition of Pig Phosphoenolpyruvate Carboxykinase Isoenzymes by 3-Mercaptopicolinic Acid and Novel Inhibitors

    PubMed Central

    Hidalgo, Jorge; Latorre, Pedro; Carrodeguas, José Alberto; Velázquez-Campoy, Adrián; Sancho, Javier; López-Buesa, Pascual

    2016-01-01

    There exist two isoforms of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in pig populations that differ in a single amino acid (Met139Leu). The isoenzymes have different kinetic properties, affecting more strongly the Km and Vmax of nucleotides. They are associated to different phenotypes modifying traits of considerable economic interest. In this work we use inhibitors of phosphoenolpyruvate carboxykinase activity to search for further differences between these isoenzymes. On the one hand we have used the well-known inhibitor 3-mercaptopicolinic acid. Its inhibition patterns were the same for both isoenzymes: a three-fold decrease of the Ki values for GTP in 139Met and 139Leu (273 and 873 μM, respectively). On the other hand, through screening of a chemical library we have found two novel compounds with inhibitory effects of a similar magnitude to that of 3-mercaptopicolinic acid but with less solubility and specificity. One of these novel compounds, (N'1-({5-[1-methyl-5-(trifluoromethyl)-1H-pyrazol-3-yl]-2-thienyl}methylidene)-2,4-dichlorobenzene-1-carbohydrazide), exhibited significantly different inhibitory effects on either isoenzyme: it enhanced threefold the apparent Km value for GTP in 139Met, whereas in 139Leu, it reduced it from 99 to 69 μM. The finding of those significant differences in the binding of GTP reinforces the hypothesis that the Met139Leu substitution affects strongly the nucleotide binding site of PEPCK-C. PMID:27391465

  5. Hydrogen assisted cracking and inhibition of spring alloys in acidizing solutions

    SciTech Connect

    Coyle, W.R.; Chitwood, G.B.; Rice, P.W.; Walker, M.L.

    1994-12-31

    Several experiments were conducted to investigate and compare the hydrogen assisted cracking resistance of high strength, corrosion resistant spring alloys to acidizing fluids. Two cobalt-based alloys, UNS R30035 and UNS R30003, and one nickel-based alloy, UNS N07750, were evaluated. The tests involved exposing stressed spring segments of all alloys and C-rings of R30035 to uninhibited 28% HCl, 28% HCl with two different inhibitors, and the NACE TM0177 solution. Failures of N07750 spring segments in the uninhibited acid parallel field performance of this alloy. There were no failures of the R30035 or R30003 spring segments in the environments tested. Springs made from N07750 are more susceptible to hydrogen embrittlement than either R30035 or R30003. The C-ring tests of R30035 revealed the benefit of corrosion inhibition as a means of elevating the threshold cracking stress and increasing the time to failure in corrosive media. A strong beneficial effect of elevated-temperature thermal processing was observed for UNS R30035. High performance acidizing inhibitors are required in order to provide effective protection to high alloy spring materials.

  6. Inhibition of Pig Phosphoenolpyruvate Carboxykinase Isoenzymes by 3-Mercaptopicolinic Acid and Novel Inhibitors.

    PubMed

    Hidalgo, Jorge; Latorre, Pedro; Carrodeguas, José Alberto; Velázquez-Campoy, Adrián; Sancho, Javier; López-Buesa, Pascual

    2016-01-01

    There exist two isoforms of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) in pig populations that differ in a single amino acid (Met139Leu). The isoenzymes have different kinetic properties, affecting more strongly the Km and Vmax of nucleotides. They are associated to different phenotypes modifying traits of considerable economic interest. In this work we use inhibitors of phosphoenolpyruvate carboxykinase activity to search for further differences between these isoenzymes. On the one hand we have used the well-known inhibitor 3-mercaptopicolinic acid. Its inhibition patterns were the same for both isoenzymes: a three-fold decrease of the Ki values for GTP in 139Met and 139Leu (273 and 873 μM, respectively). On the other hand, through screening of a chemical library we have found two novel compounds with inhibitory effects of a similar magnitude to that of 3-mercaptopicolinic acid but with less solubility and specificity. One of these novel compounds, (N'1-({5-[1-methyl-5-(trifluoromethyl)-1H-pyrazol-3-yl]-2-thienyl}methylidene)-2,4-dichlorobenzene-1-carbohydrazide), exhibited significantly different inhibitory effects on either isoenzyme: it enhanced threefold the apparent Km value for GTP in 139Met, whereas in 139Leu, it reduced it from 99 to 69 μM. The finding of those significant differences in the binding of GTP reinforces the hypothesis that the Met139Leu substitution affects strongly the nucleotide binding site of PEPCK-C. PMID:27391465

  7. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  8. Ursolic acid sensitized colon cancer cells to chemotherapy under hypoxia by inhibiting MDR1 through HIF-1α*

    PubMed Central

    Shan, Jian-zhen; Xuan, Yan-yan; Zhang, Qi; Huang, Jian-jin

    2016-01-01

    Objective: To explore the efficacy of ursolic acid in sensitizing colon cancer cells to chemotherapy under hypoxia and its underlying mechanisms. Methods: Three colon cancer cell lines (RKO, LoVo, and SW480) were used as in vitro models. 5-Fluorouracil (5-FU) and oxaliplatin were used as chemotherapeutic drugs. Cell viability and apoptosis were tested to evaluate the sensitivity of colon cancer cells to chemotherapy. The transcription and expression levels of hypoxia-inducible factor-1α (HIF-1α), multidrug resistance gene 1 (MDR1), and vascular endothelial growth factors (VEGF) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblotting. Cycloheximide and MG132 were used to inhibit protein synthesis and degradation, respectively. In vitro tube formation assay was used to evaluate angiogenesis. Results: We demonstrated the chemosensitizing effects of ursolic acid with 5-FU and oxaliplatin in three colon cancer cell lines under hypoxia. This effect was correlated to its inhibition of MDR1 through HIF-1α. Moreover, ursolic acid was capable of inhibiting HIF-1α accumulation with little effects on its constitutional expression in normoxia. In addition, ursolic acid also down-regulated VEGF and inhibited tumor angiogenesis. Conclusions: Ursolic acid exerted chemosensitizing effects in colon cancer cells under hypoxia by inhibiting HIF-1α accumulation and the subsequent expression of the MDR1 and VEGF. PMID:27604859

  9. Oxymetazoline inhibits proinflammatory reactions: effect on arachidonic acid-derived metabolites.

    PubMed

    Beck-Speier, Ingrid; Dayal, Niru; Karg, Erwin; Maier, Konrad L; Schumann, Gabriele; Semmler, Manuela; Koelsch, Stephan M

    2006-02-01

    The nasal decongestant oxymetazoline effectively reduces rhinitis symptoms. We hypothesized that oxymetazoline affects arachidonic acid-derived metabolites concerning inflammatory and oxidative stress-dependent reactions. The ability of oxymetazoline to model pro- and anti-inflammatory and oxidative stress responses was evaluated in cell-free systems, including 5-lipoxygenase (5-LO) as proinflammatory, 15-lipoxygenase (15-LO) as anti-inflammatory enzymes, and oxidation of methionine by agglomerates of ultrafine carbon particles (UCPs), indicating oxidative stress. In a cellular approach using canine alveolar macrophages (AMs), the impact of oxymetazoline on phospholipase A(2) (PLA(2)) activity, respiratory burst and synthesis of prostaglandin E(2) (PGE(2)), 15(S)-hydroxy-eicosatetraenoic acid (15-HETE), leukotriene B(4) (LTB(4)), and 8-isoprostane was measured in the absence and presence of UCP or opsonized zymosan as particulate stimulants. In cell-free systems, oxymetazoline (0.4-1 mM) inhibited 5-LO but not 15-LO activity and did not alter UCP-induced oxidation of methionine. In AMs, oxymetazoline induced PLA(2) activity and 15-HETE at 1 mM, enhanced PGE(2) at 0.1 mM, strongly inhibited LTB(4) and respiratory burst at 0.4/0.1 mM (p < 0.05), but did not affect 8-isoprostane formation. In contrast, oxymetazoline did not alter UCP-induced PLA(2) activity and PGE(2) and 15-HETE formation in AMs but inhibited UCP-induced LTB(4) formation and respiratory burst at 0.1 mM and 8-isoprostane formation at 0.001 mM (p < 0.05). In opsonized zymosan-stimulated AMs, oxymetazoline inhibited LTB(4) formation and respiratory burst at 0.1 mM (p < 0.05). In conclusion, in canine AMs, oxymetazoline suppressed proinflammatory reactions including 5-LO activity, LTB(4) formation, and respiratory burst and prevented particle-induced oxidative stress, whereas PLA(2) activity and synthesis of immune-modulating PGE(2) and 15-HETE were not affected.

  10. Phyllostachys edulis Compounds Inhibit Palmitic Acid-Induced Monocyte Chemoattractant Protein 1 (MCP-1) Production

    PubMed Central

    Higa, Jason K.; Liang, Zhibin; Williams, Philip G.; Panee, Jun

    2012-01-01

    Background Phyllostachys edulis Carriere (Poaceae) is a bamboo species that is part of the traditional Chinese medicine pharmacopoeia. Compounds and extracts from this species have shown potential applications towards several diseases. One of many complications found in obesity and diabetes is the link between elevated circulatory free fatty acids (FFAs) and chronic inflammation. This study aims to present a possible application of P. edulis extract in relieving inflammation caused by FFAs. Monocyte chemoattractant protein 1 (MCP-1/CCL2) is a pro-inflammatory cytokine implicated in chronic inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1) are transcription factors activated in response to inflammatory stimuli, and upregulate pro-inflammatory cytokines such as MCP-1. This study examines the effect of P. edulis extract on cellular production of MCP-1 and on the NF-κB and AP-1 pathways in response to treatment with palmitic acid (PA), a FFA. Methodology/Principal Findings MCP-1 protein was measured by cytometric bead assay. NF-κB and AP-1 nuclear localization was detected by colorimetric DNA-binding ELISA. Relative MCP-1 mRNA was measured by real-time quantitative PCR. Murine cells were treated with PA to induce inflammation. PA increased expression of MCP-1 mRNA and protein, and increased nuclear localization of NF-κB and AP-1. Adding bamboo extract (BEX) inhibited the effects of PA, reduced MCP-1 production, and inhibited nuclear translocation of NF-κB and AP-1 subunits. Compounds isolated from BEX inhibited MCP-1 secretion with different potencies. Conclusions/Significance PA induced MCP-1 production in murine adipose, muscle, and liver cells. BEX ameliorated PA-induced production of MCP-1 by inhibiting nuclear translocation of NF-κB and AP-1. Two O-methylated flavones were isolated from BEX with functional effects on MCP-1 production. These results may represent a possible therapeutic

  11. The Hydroxamate Siderophore Rhequichelin Is Required for Virulence of the Pathogenic Actinomycete Rhodococcus equi

    PubMed Central

    Coulson, Garry B.; Miranda-CasoLuengo, Aleksandra; Vázquez-Boland, José A.; Hondalus, Mary K.

    2012-01-01

    We previously showed that the facultative intracellular pathogen Rhodococcus equi produces a nondiffusible and catecholate-containing siderophore (rhequibactin) involved in iron acquisition during saprophytic growth. Here, we provide evidence that the rhbABCDE cluster directs the biosynthesis of a hydroxamate siderophore, rhequichelin, that plays a key role in virulence. The rhbC gene encodes a nonribosomal peptide synthetase that is predicted to produce a tetrapeptide consisting of N5-formyl-N5-hydroxyornithine, serine, N5-hydroxyornithine, and N5-acyl-N5-hydroxyornithine. The other rhb genes encode putative tailoring enzymes mediating modification of ornithine residues incorporated into the hydroxamate product of RhbC. Transcription of rhbC was upregulated during growth in iron-depleted medium, suggesting that it plays a role in iron acquisition. This was confirmed by deletion of rhbCD, rendering the resulting strain R. equi SID2 unable to grow in the presence of the iron chelator 2,2-dipyridyl. Supernatant of the wild-type strain rescued the phenotype of R. equi SID2. The importance of rhequichelin in virulence was highlighted by the rapid increase in transcription levels of rhbC following infection and the inability of R. equi SID2 to grow within macrophages. Unlike the wild-type strain, R. equi SID2 was unable to replicate in vivo and was rapidly cleared from the lungs of infected mice. Rhequichelin is thus a key virulence-associated factor, although nonpathogenic Rhodococcus species also appear to produce rhequichelin or a structurally closely related compound. Rhequichelin biosynthesis may therefore be considered an example of cooption of a core actinobacterial trait in the evolution of R. equi virulence. PMID:22966042

  12. Effect of molecular structure of aniline-formaldehyde copolymers on corrosion inhibition of mild steel in hydrochloric acid solution.

    PubMed

    Zhang, Yan; Nie, Mengyan; Wang, Xiutong; Zhu, Yukun; Shi, Fuhua; Yu, Jianqiang; Hou, Baorong

    2015-05-30

    Aniline-formaldehyde copolymers with different molecular structures have been prepared and investigated for the purpose of corrosion control of mild steel in hydrochloric acid. The copolymers were synthesized by a condensation polymerization process with different ratios of aniline to formaldehyde in acidic precursor solutions. The corrosion inhibition efficiency of as-synthesized copolymers for Q235 mild steel was investigated in 1.0 mol L(-1) hydrochloric acid solution by weight loss measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy, respectively. All the results demonstrate that as-prepared aniline-formaldehyde copolymers are efficient mixed-type corrosion inhibitors for mild steels in hydrochloric acid. The corrosion inhibition mechanism is discussed in terms of the role of molecular structure on adsorption of the copolymers onto the steel surface in acid solution.

  13. Eicosapentaenoic acid inhibits TNF-{alpha}-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    SciTech Connect

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul Chung, Jin Ho

    2008-04-04

    Eicosapentaenoic acid (EPA) is an omega-3 ({omega}-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-{kappa}B activation induced by tumor necrosis factor (TNF)-{alpha} or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-{alpha}-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-{alpha} induced MMP-9 expression by NF-{kappa}B-dependent pathway. Pretreatment of EPA inhibited TNF-{alpha}-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect I{kappa}B-{alpha} phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-{kappa}B. EPA inhibited TNF-{alpha}-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKK{alpha}-dependent event. Taken together, we demonstrate that EPA inhibits TNF-{alpha}-induced MMP-9 expression through inhibition of p38 and Akt activation.

  14. Conformationally-restricted amino acid analogues bearing a distal sulfonic acid show selective inhibition of system x(c)(-) over the vesicular glutamate transporter.

    PubMed

    Etoga, Jean-Louis G; Ahmed, S Kaleem; Patel, Sarjubhai; Bridges, Richard J; Thompson, Charles M

    2010-04-15

    A panel of amino acid analogs and conformationally-restricted amino acids bearing a sulfonic acid were synthesized and tested for their ability to preferentially inhibit the obligate cysteine-glutamate transporter system x(c)(-) versus the vesicular glutamate transporter (VGLUT). Several promising candidate molecules were identified: R/S-4-[4'-carboxyphenyl]-phenylglycine, a biphenyl substituted analog of 4-carboxyphenylglycine and 2-thiopheneglycine-5-sulfonic acid both of which reduced glutamate uptake at system x(c)(-) by 70-75% while having modest to no effect on glutamate uptake at VGLUT.

  15. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    PubMed Central

    Lee, Ting-I; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5′ adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1), DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines. PMID:27446205

  16. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells

    PubMed Central

    WEN, CHUANGYU; HUANG, LANLAN; CHEN, JUNXIONG; LIN, MENGMENG; LI, WEN; LU, BIYAN; RUTNAM, ZINA JEYAPALAN; IWAMOTO, AIKICHI; WANG, ZHONGYANG; YANG, XIANGLING; LIU, HUANLIANG

    2015-01-01

    The emergence of chemoresistance is a major limitation of colorectal cancer (CRC) therapies and novel biologically based therapies are urgently needed. Natural products represent a novel potential anticancer therapy. Gambogic acid (GA), a small molecule derived from Garcinia hanburyi Hook. f., has been demonstrated to be highly cytotoxic to several types of cancer cells and have low toxicity to the hematopoietic system. However, the potential role of GA in colorectal cancer and its ability to overcome the chemotherapeutic resistance in CRC cells have not been well studied. In the present study, we showed that GA directly inhibited proliferation and induced apoptosis in both 5-fluorouracil (5-FU) sensitive and 5-FU resistant colorectal cancer cells; induced apoptosis via activating JNK signaling pathway. The data, therefore, suggested an alternative strategy to overcome 5-FU resistance in CRC and that GA could be a promising medicinal compound for colorectal cancer therapy. PMID:26397804

  17. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition

    PubMed Central

    Shi, Xianping; Lan, Xiaoying; Chen, Xin; Zhao, Chong; Li, Xiaofen; Liu, Shouting; Huang, Hongbiao; Liu, Ningning; Zang, Dan; Liao, Yuning; Zhang, Peiquan; Wang, Xuejun; Liu, Jinbao

    2015-01-01

    Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment. PMID:25853502

  18. Inhibition of Poly(ADP-Ribose) Polymerase by Nucleic Acid Metabolite 7-Methylguanine

    PubMed Central

    Nilov, D. K.; Tararov, V. I.; Kulikov, A. V.; Zakharenko, A. L.; Gushchina, I. V.; Mikhailov, S. N.; Lavrik, O. I.; Švedas, V. K.

    2016-01-01

    The ability of 7-methylguanine, a nucleic acid metabolite, to inhibit poly(ADP-ribose)polymerase-1 (PARP-1) and poly(ADP-ribose)polymerase-2 (PARP-2) has been identified in silico and studied experimentally. The amino group at position 2 and the methyl group at position 7 were shown to be important substituents for the efficient binding of purine derivatives to PARPs. The activity of both tested enzymes, PARP-1 and PARP-2, was suppressed by 7-methylguanine with IC50 values of 150 and 50 μM, respectively. At the PARP inhibitory concentration, 7-methylguanine itself was not cytotoxic, but it was able to accelerate apoptotic death of BRCA1-deficient breast cancer cells induced by cisplatin and doxorubicin, the widely used DNA-damaging chemotherapeutic agents. 7-Methylguanine possesses attractive predictable pharmacokinetics and an adverse-effect profile and may be considered as a new additive to chemotherapeutic treatment. PMID:27437145

  19. Inhibition of norsolorinic acid accumulation to Aspergillus parasiticus by marine actinomycetes

    NASA Astrophysics Data System (ADS)

    Yan, Peisheng; Shi, Cuijuan; Shen, Jihong; Wang, Kai; Gao, Xiujun; Li, Ping

    2014-11-01

    Thirty-six strains of marine actinomycetes were isolated from a sample of marine sediment collected from the Yellow Sea and evaluated in terms of their inhibitory activity on the growth of Aspergillus parasiticus and the production of norsolorinic acid using dual culture plate assay and agar diffusion methods. Among them, three strains showed strong antifungal activity and were subsequently identified as Streptomyces sp. by 16S rRNA gene sequencing analysis. The supernatant from the fermentation of the MA01 strain was extracted sequentially with chloroform and ethyl acetate, and the activities of the extracts were determined by tip culture assay. The assay results show that both extracts inhibited mycelium growth and toxin production, and the inhibitory activities of the extracts increased as their concentrations increased. The results of this study suggest that marine actinomycetes are biologically important for the control of mycotoxins, and that these bacteria could be used as novel biopesticides against mycotoxins.

  20. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.

    PubMed

    Schilderink, Ronald; Verseijden, Caroline; Seppen, Jurgen; Muncan, Vanesa; van den Brink, Gijs R; Lambers, Tim T; van Tol, Eric A; de Jonge, Wouter J

    2016-06-01

    In the intestinal mucosa, retinoic acid (RA) is a critical signaling molecule. RA is derived from dietary vitamin A (retinol) through conversion by aldehyde dehydrogenases (aldh). Reduced levels of short-chain fatty acids (SCFAs) are associated with pathological microbial dysbiosis, inflammatory disease, and allergy. We hypothesized that SCFAs contribute to mucosal homeostasis by enhancing RA production in intestinal epithelia. With the use of human and mouse epithelial cell lines and primary enteroids, we studied the effect of SCFAs on the production of RA. Functional RA conversion was analyzed by Adlefluor activity assays. Butyrate (0-20 mM), in contrast to other SCFAs, dose dependently induced aldh1a1 or aldh1a3 transcript expression and increased RA conversion in human and mouse epithelial cells. Epithelial cell line data were replicated in intestinal organoids. In these organoids, butyrate (2-5 mM) upregulated aldh1a3 expression (36-fold over control), whereas aldh1a1 was not significantly affected. Butyrate enhanced maturation markers (Mucin-2 and villin) but did not consistently affect stemness markers or other Wnt target genes (lgr5, olfm4, ascl2, cdkn1). In enteroids, the stimulation of RA production by SCFA was mimicked by inhibitors of histone deacetylase 3 (HDAC3) but not by HDAC1/2 inhibitors nor by agonists of butyrate receptors G-protein-coupled receptor (GPR)43 or GPR109A, indicating that butyrate stimulates RA production via HDAC3 inhibition. We conclude that the SCFA butyrate inhibits HDAC3 and thereby supports epithelial RA production. PMID:27151945

  1. First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment.

    PubMed

    El Ghachtouli, N; Martin-Tanguy, J; Paynot, M; Gianinazzi, S

    1996-05-01

    DFMO (alpha-DL-difluoromethylornithine), a specific irreversible inhibitor of ornithine decarboxylase (ODC), a polyamine biosynthetic pathway enzyme, strongly inhibits root growth and arbuscular mycorrhizal infection of Pisum sativum (P56 myc+, isogenic mutant of cv. Frisson). This inhibition is reversed when exogenous polyamine (putrescine) is included in the DFMO treatment, showing that the effect of DFMO on arbuscular mycorrhizal infection is indeed due to putrescine limitation and suggesting that ODC may have a role in root growth and mycorrhizal infection. However, treatment with gibberellic acid (GA3) which increased root titers of polyamines strongly inhibited arbuscular mycorrhizal development. The possible role of polyamines in the regulation of the development of arbuscular mycorrhizal infection is discussed. PMID:8647248

  2. A Quantitative Description of Suicide Inhibition of Dichloroacetic Acid in Rats and Mice

    SciTech Connect

    Keys, Deborah A.; Schultz, Irv R.; Mahle, Deirdre A.; Fisher, Jeffrey W.

    2004-09-16

    Dichloroacetic acid (DCA), a minor metabolite of trichloroethylene (TCE) and water disinfection byproduct, remains an important risk assessment issue because of its carcinogenic potency. DCA has been shown to inhibit its own metabolism by irreversibly inactivating glutathione transferase zeta (GSTzeta). To better predict internal dosimetry of DCA, a physiologically based pharmacokinetic (PBPK) model of DCA was developed. Suicide inhibition was described dynamically by varying the rate of maximal GSTzeta mediated metabolism of DCA (Vmax) over time. Resynthesis (zero-order) and degradation (first-order) of metabolic activity were described. Published iv pharmacokinetic studies in native rats were used to estimate an initial Vmax value, with Km set to an in vitro determined value. Degradation and resynthesis rates were set to estimated values from a published immunoreactive GSTzeta protein time course. The first-order inhibition rate, kd, was estimated to this same time course. A secondary, linear non-GSTzeta-mediated metabolic pathway is proposed to fit DCA time courses following treatment with DCA in drinking water. The PBPK model predictions were validated by comparing predicted DCA concentrations to measured concentrations in published studies of rats pretreated with DCA following iv exposure to 0.05 to 20 mg/kg DCA. The same model structure was parameterized to simulate DCA time courses following iv exposure in native and pretreated mice. Blood and liver concentrations during and postexposure to DCA in drinking water were predicted. Comparisons of PBPK model predicted to measured values were favorable, lending support for the further development of this model for application to DCA or TCE human health risk assessment.

  3. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    PubMed

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  4. Inhibition of release of taurine and excitatory amino acids in ischemia and neuroprotection.

    PubMed

    Kimelberg, Harold K; Nestor, Nestor B; Feustel, Paul J

    2004-01-01

    Volume regulated anion channels (VRAC) have been extensively studied in purified single cell systems like cell cultures where they can be activated by cell swelling. This provides a convenient way of analyzing mechanisms and will likely lead to the holy grails of the field, namely the nature or natures of the volume sensor and the nature or natures of VRACs. Important reasons for such an understanding are that these channels are ubiquitous and have important physiological functions which under pathological conditions convert to deleterious effects. Here we summarize data showing the involvement of VRACs in ischemia-induced release of excitatory amino acids (EAAs) in a rat model of global ischemia. Using microdialysis studies we found that reversal of the astrocytic glutamate transporter and VRACs contribute about equally to the large initial release of EAAs and together account for around 80% of the total release. We used the very potent VRAC blocker, tamoxifen, to see if such inhibition of EAA release via VRACs led to significant neuroprotection. Treatment in the focal rat MCA occlusion model led to around 80% reduction in infarct size with an effective post initiation of ischemia therapeutic window of three hours. However, the common problem of other effects for even the most potent inhibitors pertains here, as tamoxifen has other, potentially neuroprotective, effects. Thus it inhibits nitrotyrosine formation, likely due to its inhibition of nNOS and reduction of peroxynitrite formation. Although tamoxifen cannot therefore be used as a test of the "VRAC-excitotxicity" hypothesis it may prove successful for translation of basic stroke research to the clinic because of its multiple targets.

  5. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  6. All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells

    PubMed Central

    Zanetti, Adriana; Affatato, Roberta; Centritto, Floriana; Fratelli, Maddalena; Kurosaki, Mami; Barzago, Maria Monica; Bolis, Marco; Terao, Mineko; Garattini, Enrico; Paroni, Gabriela

    2015-01-01

    All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-β1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-β1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFβ contributes to the anti-migratory effect of ATRA. The retinoid switches TGFβ from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway. PMID:26018078

  7. Pharmacologic retinoid signaling and physiologic retinoic acid receptor signaling inhibit basal cell carcinoma tumorigenesis.

    PubMed

    So, Po-Lin; Fujimoto, Michele A; Epstein, Ervin H

    2008-05-01

    Basal cell carcinoma (BCC) is the most common human cancer. Patients with basal cell nevus syndrome (Gorlin syndrome) are highly susceptible to developing many BCCs as a result of a constitutive inactivating mutation in one allele of PATCHED 1, which encodes a tumor suppressor that is a major inhibitor of Hedgehog signaling. Dysregulated Hedgehog signaling is a common feature of both hereditary and sporadic BCCs. Recently, we showed remarkable anti-BCC chemopreventive efficacy of tazarotene, a retinoid with retinoic acid receptor (RAR) beta/gamma specificity, in Ptch1+/- mice when treatment was commenced before carcinogenic insults. In this study, we assessed whether the effect of tazarotene against BCC carcinogenesis is sustained after its withdrawal and whether tazarotene is effective against preexisting microscopic BCC lesions. We found that BCCs did not reappear for at least 5 months after topical drug treatment was stopped and that already developed, microscopic BCCs were susceptible to tazarotene inhibition. In vitro, tazarotene inhibited a murine BCC keratinocyte cell line, ASZ001, suggesting that its effect in vivo is by direct action on the actual tumor cells. Down-regulation of Gli1, a target gene of Hedgehog signaling and up-regulation of CRABPII, a target gene of retinoid signaling, were observed with tazarotene treatment. Finally, we investigated the effects of topical applications of other retinoid-related compounds on BCC tumorigenesis in vivo. Tazarotene was the most effective of the preparations studied, and its effect most likely was mediated by RARgamma activation. Furthermore, inhibition of basal RAR signaling in the skin promoted BCC carcinogenesis, suggesting that endogenous RAR signaling restrains BCC growth.

  8. Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity

    SciTech Connect

    Feng, Ying; Yang, Shi-gao; Du, Xue-ting; Zhang, Xi; Sun, Xiao-xia; Zhao, Min; Sun, Gui-yuan; Liu, Rui-tian

    2009-12-25

    Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.

  9. Essential role for acid sphingomyelinase-inhibited autophagy in melanoma response to cisplatin.

    PubMed

    Cervia, Davide; Assi, Emma; De Palma, Clara; Giovarelli, Matteo; Bizzozero, Laura; Pambianco, Sarah; Di Renzo, Ilaria; Zecchini, Silvia; Moscheni, Claudia; Vantaggiato, Chiara; Procacci, Patrizia; Clementi, Emilio; Perrotta, Cristiana

    2016-05-01

    The sphingolipid metabolising enzyme Acid Sphingomyelinase (A-SMase) has been recently shown to inhibit melanoma progression and correlate inversely to tumour grade. In this study we have investigated the role of A-SMase in the chemo-resistance to anticancer treatmentusing mice with melanoma allografts and melanoma cells differing in terms of expression/activity of A-SMase. Since autophagy is emerging as a key mechanism in tumour growth and chemo-resistance, we have also investigated whether an action of A-SMase in autophagy can explain its role. Melanoma sensitivity to chemotherapeutic agent cisplatin in terms of cell viability/apoptosis, tumour growth, and animal survival depended directly on the A-SMase levels in tumoural cells. A-SMase action was due to inhibition of autophagy through activation of Akt/mammalian target of rapamycin (mTOR) pathway. Treatment of melanoma-bearing mice with the autophagy inhibitor chloroquine restored sensitivity to cisplatin of tumours expressing low levels of A-SMase while no additive effects were observed in tumours characterised by sustained A-SMase levels. The fact that A-SMase in melanomas affects mTOR-regulated autophagy and plays a central role in cisplatin efficacy encourages pre-clinical testing on the modulation of A-SMase levels/activity as possible novel anti-neoplastic strategy. PMID:27107419

  10. Mycophenolic Acid Inhibits Migration and Invasion of Gastric Cancer Cells via Multiple Molecular Pathways

    PubMed Central

    Dun, Boying; Sharma, Ashok; Teng, Yong; Liu, Haitao; Purohit, Sharad; Xu, Heng; Zeng, Lingwen; She, Jin-Xiong

    2013-01-01

    Mycophenolic acid (MPA) is the metabolized product and active element of mycophenolate mofetil (MMF) that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH) that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA’s antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer) cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA) and proteins (PRKCA, AKT, SRC, CD147 and MMP1) with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1). However, a few genes that may promote migration (CYR61 and NOS3) were up-regulated. Therefore, MPA’s overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment. PMID:24260584

  11. Corrosion inhibition of a mild steel by aniline and alkylamines in acidic solutions

    SciTech Connect

    Luo, H.; Han, K.N.; Guan, Y.C.

    1998-09-01

    Corrosion inhibition of a mild steel in acid solutions by alkylamines (ALK-AM) and aniline hydrochloric (ANL-HCl) salts was investigated in the presence of sodium sulfate (Na{sub 2}SO{sub 4}) and sodium chloride (NaCl) using a potentiostat, a contact-angle goniometer, a scanning electron microscope (SEM), a Fourier transform infrared spectrometer (FTIR), and an atomic force microscope (AFM). Results showed chloride ions (Cl{sup {minus}}) had a pronounced effect on inhibition of amines and ANL for corrosion of mild steel. In the presence of Cl{sup {minus}} ions, cationic types of surfactants (ALK-AM and ANL) were attached to the surface through formation of chloride precipitate at the surface. In the absence of the organic inhibitors, corrosion initiated along grain boundaries of ferrite and pearlite structures. In the presence of the organic inhibitor, however, the steel surface was covered by an organic salt precipitation, and the corrosion rate was reduced significantly.

  12. The effect of thiobarbituric acid on tyrosinase: inhibition kinetics and computational simulation.

    PubMed

    Yin, Shang-Jun; Si, Yue-Xiu; Wang, Zhi-Jiang; Wang, Su-Fang; Oh, Sangho; Lee, Sanghyuk; Sim, Seon-Mi; Yang, Jun-Mo; Qian, Guo-Ying; Lee, Jinhyuk; Park, Yong-Doo

    2011-12-01

    Tyrosinase plays various roles in organisms and much research has focused on the regulation of tyrosinase activity. We studied the inhibitory effect of thiobarbituric acid (TBA) on tyrosinase. Our kinetic study showed that TBA inhibited tyrosinase in a reversible noncompetitive manner (K(i) 5 14.0 ± 8.5 mM and IC₅₀ 5 8.0 ± 1.0 mM). Intrinsic and ANS-binding fluorescences studies were also performed to gain more information regarding the binding mechanism. The results showed that no tertiary structural changes were obviously observed. For further insight, we predicted the 3D structure of tyrosinase and simulated the docking between tyrosinase and TBA. The docking simulation was successful with significant scores (binding energy for AutoDock4: -5.52 kcal/mol) and suggested that TBA was located in the active site. The 11 ns molecular dynamics simulation convinced that the four HIS residues (residue numbers: 57, 90, 250, and 282) were commonly responsible for the interaction with TBA. Our results provide a new inhibition strategy that works using an antioxidant rather than targeting the copper ions within the tyrosinase active site. PMID:22066533

  13. Lysophosphatidic Acid (LPA) Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response1

    PubMed Central

    Shotts, Kristin; Donovan, Erin E.; Strauch, Pamela; Pujanauski, Lindsey M.; Victorino, Francisco; Al-Shami, Amin; Fujiwara, Yuko; Tigyi, Gabor; Oravecz, Tamas; Pelanda, Roberta; Torres, Raul M.

    2014-01-01

    Lysophospholipids have emerged as biologically important chemoattractants capable of directing lymphocyte development, trafficking and localization. Lysophosphatidic acid (LPA) is a major lysophospholipid found systemically and whose levels are elevated in certain pathological settings such as cancer and infections. Here, we demonstrate that BCR signal transduction by mature murine B cells is inhibited upon LPA engagement of the LPA5 (GPR92) receptor via a Gα12/13 – Arhgef1 pathway. The inhibition of BCR signaling by LPA5 manifests by impaired intracellular calcium store release and most likely by interfering with inositol 1,4,5-trisphosphate receptor activity. We further show that LPA5 also limits antigen-specific induction of CD69 and CD86 expression and that LPA5-deficient B cells display enhanced antibody responses. Thus, these data show that LPA5 negatively regulates BCR signaling, B cell activation and immune response. Our findings extend the influence of lysophospholipids on immune function and suggest that alterations in LPA levels likely influence adaptive humoral immunity. PMID:24890721

  14. Amino acid metabolism inhibits antibody-driven kidney injury by inducing autophagy.

    PubMed

    Chaudhary, Kapil; Shinde, Rahul; Liu, Haiyun; Gnana-Prakasam, Jaya P; Veeranan-Karmegam, Rajalakshmi; Huang, Lei; Ravishankar, Buvana; Bradley, Jillian; Kvirkvelia, Nino; McMenamin, Malgorzata; Xiao, Wei; Kleven, Daniel; Mellor, Andrew L; Madaio, Michael P; McGaha, Tracy L

    2015-06-15

    Inflammatory kidney disease is a major clinical problem that can result in end-stage renal failure. In this article, we show that Ab-mediated inflammatory kidney injury and renal disease in a mouse nephrotoxic serum nephritis model was inhibited by amino acid metabolism and a protective autophagic response. The metabolic signal was driven by IFN-γ-mediated induction of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity with subsequent activation of a stress response dependent on the eIF2α kinase general control nonderepressible 2 (GCN2). Activation of GCN2 suppressed proinflammatory cytokine production in glomeruli and reduced macrophage recruitment to the kidney during the incipient stage of Ab-induced glomerular inflammation. Further, inhibition of autophagy or genetic ablation of Ido1 or Gcn2 converted Ab-induced, self-limiting nephritis to fatal end-stage renal disease. Conversely, increasing kidney IDO1 activity or treating mice with a GCN2 agonist induced autophagy and protected mice from nephritic kidney damage. Finally, kidney tissue from patients with Ab-driven nephropathy showed increased IDO1 abundance and stress gene expression. Thus, these findings support the hypothesis that the IDO-GCN2 pathway in glomerular stromal cells is a critical negative feedback mechanism that limits inflammatory renal pathologic changes by inducing autophagy.

  15. Lysophosphatidic Acid Inhibits Apoptosis Induced by Cisplatin in Cervical Cancer Cells

    PubMed Central

    Sui, Yanxia; Yang, Ya; Wang, Ji; Li, Yi; Ma, Hongbing; Cai, Hui; Liu, Xiaoping; Zhang, Yong; Wang, Shufeng; Li, Zongfang; Zhang, Xiaozhi; Wang, Jiansheng; Liu, Rui; Yan, Yanli; Xue, Chaofan; Shi, Xiaowei; Tan, Li; Ren, Juan

    2015-01-01

    Cervical cancer is the second most common cause of cancer death in women worldwide. Lysophosphatidic acid (LPA) level has been found significantly increased in the serum of patients with ovarian, cervical, and colon cancers. LPA level in cervical cancer patients is significantly higher than in healthy controls. LPA receptors were found highly expressed in cervical cancer cells, suggesting LPA may play a role in the development of cervical cancer. The aim of this study is to investigate the effect of LPA on the apoptosis induced by cisplatin (DDP) in cervical cancer cell line and the underlying changes in signaling pathways. Our study found that cisplatin induced apoptosis of Hela cell through inhibiting expression of Bcl-2, upregulating the expression of Bax, Fas-L, and the enzyme activity of caspase-3 (p < 0.05); LPA significantly provided protection against the apoptosis induced by cisplatin by inhibiting the above alterations in apoptotic factor caused by cisplatin (p < 0.05). Moreover, PI3K/AKT pathway was found to be important for the LPA antiapoptosis effect, and administration of PI3K/AKT partially reversed the LPA-mediated protection against cisplatin-induced apoptosis (p < 0.05). These findings have shed new lights on the LPA bioactivity in cervical cancer cells and pointed to a possible sensitization scheme through combined administration of PI3K inhibitor and cisplatin for better treatment of cervical cancer patients, especially those with elevated LPA levels. PMID:26366416

  16. Mycophenolic acid potently inhibits rotavirus infection with a high barrier to resistance development.

    PubMed

    Yin, Yuebang; Wang, Yijin; Dang, Wen; Xu, Lei; Su, Junhong; Zhou, Xinying; Wang, Wenshi; Felczak, Krzysztof; van der Laan, Luc J W; Pankiewicz, Krzysztof W; van der Eijk, Annemiek A; Bijvelds, Marcel; Sprengers, Dave; de Jonge, Hugo; Koopmans, Marion P G; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-09-01

    Rotavirus infection has emerged as an important cause of complications in organ transplantation recipients. Immunosuppressants used to prevent alloreactivity can also interfere with virus infection, but the direct effects of the specific type of immunosuppressants on rotavirus infection are still unclear. Here we profiled the effects of different immunosuppressants on rotavirus using a 2D culture model of Caco2 human intestinal cell line and a 3D model of human primary intestinal organoids inoculated with laboratory and patient-derived rotavirus strains. We found that the responsiveness of rotavirus to Cyclosporine A treatment was moderate and strictly regulated in an opposite direction by its cellular targets cyclophilin A and B. Treatment with mycophenolic acid (MPA) resulted in a 99% inhibition of viral RNA production at the clinically relevant concentration (10 μg/ml) in Caco2 cells. This effect was further confirmed in organoids. Importantly, continuous treatment with MPA for 30 passages did not attenuate its antiviral potency, indicating a high barrier to drug resistance development. Mechanistically, the antiviral effects of MPA act via inhibiting the IMPDH enzyme and resulting in guanosine nucleotide depletion. Thus for transplantation patients at risk for rotavirus infection, the choice of MPA as an immunosuppressive agent appears rational. PMID:27468950

  17. Essential role for acid sphingomyelinase-inhibited autophagy in melanoma response to cisplatin

    PubMed Central

    Cervia, Davide; Assi, Emma; De Palma, Clara; Giovarelli, Matteo; Bizzozero, Laura; Pambianco, Sarah; Di Renzo, Ilaria; Zecchini, Silvia; Moscheni, Claudia; Vantaggiato, Chiara; Procacci, Patrizia; Clementi, Emilio; Perrotta, Cristiana

    2016-01-01

    The sphingolipid metabolising enzyme Acid Sphingomyelinase (A-SMase) has been recently shown to inhibit melanoma progression and correlate inversely to tumour grade. In this study we have investigated the role of A-SMase in the chemo-resistance to anticancer treatmentusing mice with melanoma allografts and melanoma cells differing in terms of expression/activity of A-SMase. Since autophagy is emerging as a key mechanism in tumour growth and chemo-resistance, we have also investigated whether an action of A-SMase in autophagy can explain its role. Melanoma sensitivity to chemotherapeutic agent cisplatin in terms of cell viability/apoptosis, tumour growth, and animal survival depended directly on the A-SMase levels in tumoural cells. A-SMase action was due to inhibition of autophagy through activation of Akt/mammalian target of rapamycin (mTOR) pathway. Treatment of melanoma-bearing mice with the autophagy inhibitor chloroquine restored sensitivity to cisplatin of tumours expressing low levels of A-SMase while no additive effects were observed in tumours characterised by sustained A-SMase levels. The fact that A-SMase in melanomas affects mTOR-regulated autophagy and plays a central role in cisplatin efficacy encourages pre-clinical testing on the modulation of A-SMase levels/activity as possible novel anti-neoplastic strategy. PMID:27107419

  18. Inhibition of cold rolled steel corrosion by Tween-20 in sulfuric acid: weight loss, electrochemical and AFM approaches.

    PubMed

    Mu, Guannan; Li, Xianghong

    2005-09-01

    The inhibiting action of a nonionic surfactant of Tween-20 on the corrosion of cold rolled steel (CRS) in 0.5-7.0 M sulfuric acid (H(2)SO(4)) was studied by weight loss and potentiodynamic polarization methods. Atomic force microscope (AFM) provided the surface conditions. The results show that inhibition efficiency increases with the inhibitor concentration, while it decreases with the sulfuric acid concentration. The adsorption of inhibitor on the cold rolled steel surface obeys the Langmuir adsorption isotherm equation. Effect of immersion time was studied and discussed. The effect of temperature on the corrosion behavior of cold rolled steel was also studied at four temperatures ranging from 30 to 60 degrees C, the thermodynamic parameters such as adsorption heat, adsorption free energy, and adsorption entropy were calculated. The results revealed that the adsorption was physisorption mechanism. A kinetic study of cold rolled steel in uninhibited and inhibited acid was also discussed. The kinetic parameters such as apparent activation energy, pre-exponential factor, rate constant, and reaction constant were calculated for the reactions of corrosion. The inhibition effect is satisfactorily explained by both thermodynamic and kinetic models. Polarization curves show that Tween-20 is a cathodic-type inhibitor in sulfuric acid. The results obtained from weight loss and potentiodynamic polarization are in good agreement, and the Tween-20 inhibition action could also be evidenced by surface AFM images.

  19. Arsenic acid inhibits proliferation of skin fibroblasts, and increases cellular senescence through ROS mediated MST1-FOXO signaling pathway.

    PubMed

    Yamaguchi, Yuya; Madhyastha, Harishkumar; Madhyastha, Radha; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Pengjam, Yutthana; Nakajima, Yuichi; Maruyama, Masugi

    2016-02-01

    Arsenic exposure through drinking water is a major public health problem. It causes a number of toxic effects on skin. Arsenic has been reported to inhibit cell proliferation in in vitro conditions. However, reports about the molecular mechanisms are limited. Here, we investigated the mechanism involved in arsenic acid-mediated inhibition of cell proliferation using mouse skin fibroblast cell line. The present study found that 10 ppm arsenic acid inhibited cell proliferation, without any effect on cell death. Arsenic acid induced the generation of reactive oxygen species (ROS), resulting in oxidative stress to DNA. It also activated the mammalian Ste20-like protein kinase 1 (MST1); however the serine/threonine kinase Akt was downregulated. Forkhead box O (FOXO) transcription factors are activated through phosphorylation by MST1 under stress conditions. They are inhibited by phosphorylation by Akt through external and internal stimuli. Activation of FOXOs results in their nuclear localization, followed by an increase in transcriptional activity. Our results showed that arsenic induced the nuclear translocation of FOXO1 and FOXO3a, and altered the cell cycle, with cells accumulating at the G2/M phase. These effects caused cellular senescence. Taken together, our results indicate that arsenic acid inhibited cell proliferation through cellular senescence process regulated by MST1-FOXO signaling pathway. PMID:26763397

  20. Myristoleic acid inhibits osteoclast formation and bone resorption by suppressing the RANKL activation of Src and Pyk2.

    PubMed

    Kwon, Jun-Oh; Jin, Won Jong; Kim, Bongjun; Kim, Hong-Hee; Lee, Zang Hee

    2015-12-01

    Cytoskeletal changes in osteoclasts such as formation of actin ring is required for bone-resorbing activity. The tyrosine kinase Src is a key player in massive cytoskeletal change of osteoclasts, thereby in bone destruction. In order for Src to be activated, trafficking to the inner plasma membrane via myristoylation is of importance. A previous study reported that myristoleic acid derived from myristic acid, inhibited N-myristoyl-transferase, an essential enzyme for myristoylation process. This prompted us to investigate whether myristoleic acid could affect osteoclastogenesis. Indeed, we observed that myristoleic acid inhibited RANKL-induced osteoclast formation in vitro, especially, at later stages of differentiation. Myristoleic acid attenuated the tyrosine phosphorylation of c-Src and Pyk2, which associates with Src, by RANKL. When myristoleic acid was co-administered with soluble RANKL into mice, RANKL-induced bone loss was substantially prevented. Bone dissection clearly revealed that the number of multinucleated osteoclasts was significantly diminished by myristoleic acid. On the other hand, myristoleic acid treatment had little or no influence on early osteoclast differentiation markers, such as c-Fos and NFATc1, and proteins related to cytoskeletal rearrangement, including DC-STAMP, integrin αv and integrin β3 in vitro. Taken together, our data suggest that myristoleic acid is capable of blocking the formation of large multinucleated osteoclasts and bone resorption likely through suppressing activation of Src and Pyk2.

  1. Ascorbic acid inhibits TPA-induced HL-60 cell differentiation by decreasing cellular H₂O₂ and ERK phosphorylation.

    PubMed

    Yiang, Giou-Teng; Chen, Jen-Ni; Wu, Tsai-Kun; Wang, Hsueh-Fang; Hung, Yu-Ting; Chang, Wei-Jung; Chen, Chinshuh; Wei, Chyou-Wei; Yu, Yung-Luen

    2015-10-01

    Retinoic acid (RA), vitamin D and 12-O‑tetradecanoyl phorbol-13-acetate (TPA) can induce HL-60 cells to differentiate into granulocytes, monocytes and macrophages, respectively. Similar to RA and vitamin D, ascorbic acid also belongs to the vitamin family. High‑dose ascorbic acid (>100 µM) induces HL‑60 cell apoptosis and induces a small fraction of HL‑60 cells to express the granulocyte marker, CD66b. In addition, ascorbic acid exerts an anti‑oxidative stress function. Oxidative stress is required for HL‑60 cell differentiation following treatment with TPA, however, the effect of ascorbic acid on HL‑60 cell differentiation in combination with TPA treatment remains to be fully elucidated. The aim of the present study was to investigate the cellular effects of ascorbic acid treatment on TPA-differentiated HL-60 cells. TPA-differentiated HL-60 cells were used for this investigation, this study and the levels of cellular hydrogen peroxide (H2O2), caspase activity and ERK phosphorylation were determined following combined treatment with TPA and ascorbic acid. The results demonstrated that low‑dose ascorbic acid (5 µM) reduced the cellular levels of H2O2 and inhibited the differentiation of HL‑60 cells into macrophages following treatment with TPA. In addition, the results of the present study further demonstrated that low‑dose ascorbic acid inactivates the ERK phosphorylation pathway, which inhibited HL‑60 cell differentiation following treatment with TPA.

  2. Inhibition of irritation and contact hypersensitivity by phenoxyacetic acid methyl ester in mice.

    PubMed

    Wille, J J; Kydonieus, A; Kalish, R S

    2000-01-01

    New anti-irritant treatments are required to prevent irritation and sensitization reactions to consumer medicines and dermatological drugs. We report here that phenoxyacetic acid methyl ester (PAME) is an effective agent to prevent and treat irritant and allergic contact dermatitis. Balb/c mice skin-treated with 1% PAME do not lose weight relative to vehicle-treated mice, nor is it irritating to mouse skin. Topical PAME prevents skin irritation to a wide variety of irritants including: arachidonic acid, capsaicin, sodium lauryl sulfate (SLS), disodium laureth sulfosuccinate and tetradecanoylphorbol-13-acetate. Histological studies showed that 1% PAME greatly diminished dermal neutrophilic infiltration and dermal capillary vessel dilation, and prevented epidermal hyperproliferation and hyperkeratosis that accompanies detergent (SLS)-induced skin irritation. Topical PAME inhibited ear swelling following ear challenge during the elicitation phase of contact hypersensitivity in mice sensitized with 1-chloro-2, 4-dinitrochlorobenzene (DNCB), oxazolone and the hair coloring dye rho-phenylenediamine (PPD). Finally, topical administration of 1% PAME prior to PPD or DNCB sensitization prevented the induction phase of contact hypersensitivity. These results indicate that PAME represents a potential new category of potent topical anti-inflammatory agents. PMID:10754454

  3. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5

    PubMed Central

    Huang, Yue; Yan, Jingli; Li, Qi; Li, Jiafei; Gong, Shouzhe; Zhou, Hu; Gan, Jianhua; Jiang, Hualiang; Jia, Gui-Fang; Luo, Cheng; Yang, Cai-Guang

    2015-01-01

    Two human demethylases, the fat mass and obesity-associated (FTO) enzyme and ALKBH5, oxidatively demethylate abundant N6-methyladenosine (m6A) residues in mRNA. Achieving a method for selective inhibition of FTO over ALKBH5 remains a challenge, however. Here, we have identified meclofenamic acid (MA) as a highly selective inhibitor of FTO. MA is a non-steroidal, anti-inflammatory drug that mechanistic studies indicate competes with FTO binding for the m6A-containing nucleic acid. The structure of FTO/MA has revealed much about the inhibitory function of FTO. Our newfound understanding, revealed herein, of the part of the nucleotide recognition lid (NRL) in FTO, for example, has helped elucidate the principles behind the selectivity of FTO over ALKBH5. Treatment of HeLa cells with the ethyl ester form of MA (MA2) has led to elevated levels of m6A modification in mRNA. Our collective results highlight the development of functional probes of the FTO enzyme that will (i) enable future biological studies and (ii) pave the way for the rational design of potent and specific inhibitors of FTO for use in medicine. PMID:25452335

  4. Acetylsalicylic acid inhibits IL-18-induced cardiac fibroblast migration through the induction of RECK.

    PubMed

    Siddesha, Jalahalli M; Valente, Anthony J; Sakamuri, Siva S V P; Gardner, Jason D; Delafontaine, Patrice; Noda, Makoto; Chandrasekar, Bysani

    2014-07-01

    The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18-induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18-induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Sp1-mediated RECK suppression, mechanisms that required Nox4-dependent H(2)O(2) generation. Notably, forced expression of RECK attenuated IL-18-induced MMP9 activation and CF migration. Further, therapeutic concentrations of ASA inhibited IL-18-induced H(2)O(2) generation, MMP9 activation, RECK suppression, and CF migration. The salicylic acid moiety of ASA similarly attenuated IL-18-induced CF migration. Thus, ASA may exert potential beneficial effect in cardiac fibrosis through multiple protective mechanisms.

  5. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5.

    PubMed

    Huang, Yue; Yan, Jingli; Li, Qi; Li, Jiafei; Gong, Shouzhe; Zhou, Hu; Gan, Jianhua; Jiang, Hualiang; Jia, Gui-Fang; Luo, Cheng; Yang, Cai-Guang

    2015-01-01

    Two human demethylases, the fat mass and obesity-associated (FTO) enzyme and ALKBH5, oxidatively demethylate abundant N(6)-methyladenosine (m(6)A) residues in mRNA. Achieving a method for selective inhibition of FTO over ALKBH5 remains a challenge, however. Here, we have identified meclofenamic acid (MA) as a highly selective inhibitor of FTO. MA is a non-steroidal, anti-inflammatory drug that mechanistic studies indicate competes with FTO binding for the m(6)A-containing nucleic acid. The structure of FTO/MA has revealed much about the inhibitory function of FTO. Our newfound understanding, revealed herein, of the part of the nucleotide recognition lid (NRL) in FTO, for example, has helped elucidate the principles behind the selectivity of FTO over ALKBH5. Treatment of HeLa cells with the ethyl ester form of MA (MA2) has led to elevated levels of m(6)A modification in mRNA. Our collective results highlight the development of functional probes of the FTO enzyme that will (i) enable future biological studies and (ii) pave the way for the rational design of potent and specific inhibitors of FTO for use in medicine. PMID:25452335

  6. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid.

    PubMed

    Wang, M; Oppedijk, B J; Lu, X; Van Duijn, B; Schilperoort, R A

    1996-12-01

    During germination of barley grains, DNA fragmentation was observed in the aleurone. The appearance of DNA fragmentation in the aleurone layer, observed by TUNEL staining in aleurone sections, started near the embryo and extended to the aleurone cells far from the embryo in a time dependent manner. The same spatial temporal activities of hydrolytic enzymes such as alpha-amylase were observed in aleurone. DNA fragmentation could also be seen in vitro under osmotic stress, in isolated aleurone. During aleurone protoplast isolation, a very enhanced and strong DNA fragmentation occurred which was not seen in protoplast preparations of tobacco leaves. ABA was found to inhibit DNA fragmentation occurring in barley aleurone under osmotic stress condition and during protoplast isolation, while the plant growth regulator gibberellic acid counteracted the effect of ABA. Addition of auxin or cytokinin had no significant effect on DNA fragmentation in these cells. To study the role of phosphorylation in ABA signal transduction leading to control of DNA fragmentation (apoptosis), the effects of the phosphatase inhibitor okadaic acid and of phenylarisine oxide on apoptosis were studied. We hypothesize that the regulation of DNA fragmentation in aleurone plays a very important role in spatial and temporal control of aleurone activities during germination. The possible signal transduction pathway of ABA leading to the regulation of DNA fragmentation is discussed.

  7. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    SciTech Connect

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  8. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis

    PubMed Central

    Han, Suxia; Lei, Jianjun; Xu, Qinhong; Chen, Xin; Jiang, Zhengdong; Nan, Ligang; Li, Jiahui; Chen, Ke; Han, Liang; Wang, Zheng; Li, Xuqi; Wu, Erxi; Huo, Xiongwei

    2015-01-01

    Ginkgolic acid (GA) is a botanical drug extracted from the seed coat of Ginkgo biloba L. with a wide range of bioactive properties, including anti-tumor effect. However, whether GA has antitumor effect on pancreatic cancer cells and the underlying mechanisms have yet to be investigated. In this study, we show that GA suppressed the viability of cancer cells but has little toxicity on normal cells, e.g, HUVEC cells. Furthermore, treatment of GA resulted in impaired colony formation, migration, and invasion ability and increased apoptosis of cancer cells. In addition, GA inhibited the de novo lipogenesis of cancer cells through inducing activation of AMP-activated protein kinase (AMPK) signaling and downregulated the expression of key enzymes (e.g. acetyl-CoA carboxylase [ACC], fatty acid synthase [FASN]) involved in lipogenesis. Moreover, the in vivo experiment showed that GA reduced the expression of the key enzymes involved in lipogenesis and restrained the tumor growth. Taken together, our results suggest that GA may serve as a new candidate against tumor growth of pancreatic cancer partially through targeting pathway driving lipogenesis. PMID:25895130

  9. Inhibition effect of poly(γ-glutamic acid) on lead-induced toxicity in mice.

    PubMed

    Wang, T L; Kao, T H; Inbaraj, B Stephen; Su, Y T; Chen, B H

    2010-12-01

    The objectives of this study were to evaluate the efficiency in treatment of lead-induced intoxication in mice with γ-PGA as chelating agent and compare with the drug (meso-2,3-dimercaptosuccinic acid). The results showed the incorporation of γ-PGA at 200 and 400 mg/kg could reduce the accumulation of lead in the liver, heart, and testis; however, the latter was more effective in decreasing the lead content in the kidney and spleen. Nevertheless, both doses failed to inhibit the lead accumulation in the lung and brain. Additionally, both doses of γ-PGA could reduce TBARs in the kidney and brain, as well as elevate δ-aminolevulinic acid dehydrase (δ-ALAD) activity in blood and decrease glutamic pyruvic transaminase (GPT) and lactic dehydrogenase (LDH) activities in the serum. For hematological parameters, both white blood cells (WBCs) and hematocrite (HCT) were raised by 400 mg/kg of γ-PGA, while for both doses of γ-PGA, a slight decline in hemoglobin (HGB), mean cell volume (MCV), mean cell hemoglobin (MCH), and mean cell hemoglobin concentration (MCHC) was observed, with the red blood cells (RBCs) being unaffected.

  10. Differences in Expression of Key DNA Damage Repair Genes after Epigenetic-Induced BRCAness Dictate Synthetic Lethality with PARP1 Inhibition.

    PubMed

    Wiegmans, Adrian P; Yap, Pei-Yi; Ward, Ambber; Lim, Yi Chieh; Khanna, Kum Kum

    2015-10-01

    The triple-negative breast cancer (TNBC) subtype represents a cancer that is highly aggressive with poor patient outcome. Current preclinical success has been gained through synthetic lethality, targeting genome instability with PARP inhibition in breast cancer cells that harbor silencing of the homologous recombination (HR) pathway. Histone deacetylase inhibitors (HDACi) are a class of drugs that mediate epigenetic changes in expression of HR pathway genes. Here, we compare the activity of the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), the class I/IIa HDAC inhibitor valproic acid (VPA), and the HDAC1/2-specific inhibitor romidepsin (ROMI) for their capability to regulate DNA damage repair gene expression and in sensitizing TNBC to PARPi. We found that two of the HDACis tested, SAHA and ROMI, but not VPA, indeed inhibit HR repair and that RAD51, BARD1, and FANCD2 represent key proteins whose inhibition is required for HDACi-mediated therapy with PARP inhibition in TNBC. We also observed that restoration of BRCA1 function stabilizes the genome compared with mutant BRCA1 that results in enhanced polyploid population after combination treatment with HDACi and PARPi. Furthermore, we found that overexpression of the key HR protein RAD51 represents a mechanism for this resistance, promoting aberrant repair and the enhanced polyploidy observed. These findings highlight the key components of HR in guiding synthetic lethality with PARP inhibition and support the rationale for utilizing the novel combination of HDACi and PARPi against TNBC in the clinical setting. PMID:26294743

  11. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles.

    PubMed

    Gauthier, Kathryn M; Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D; Gutterman, David D; Falck, J R; Campbell, William B

    2011-10-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H(2)O(2)), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H(2)O(2) causes vasoconstriction. To determine the physiological contribution of H(2)O(2), catalase is used to inactivate H(2)O(2). However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10-50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1-10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (V(max) = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase(-1)·min(-1), respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H(2)O(2) and EETs.

  12. Protease Inhibition by Oleic Acid Transfer From Chronic Wound Dressings to Albumin

    SciTech Connect

    Edwards, J. V.; Howley, Phyllis; Davis, Rachel M.; Mashchak, Andrew D.; Goheen, Steven C.

    2007-08-01

    High elastase and cathepsin G activities have been observed in chronic wounds. These levels can inhibit healing through degradation of growth factors, cytokines, and extracellular matrix proteins. Oleic acid (18:1) is a non-toxic elastase inhibitor with some potential for redressing the imbalance of elastase activity found in chronic wounds. Cotton wound dressing material was characterized as a transfer carrier for affinity uptake of 18:1 by albumin under conditions mimicking chronic wounds. 18:1-treated cotton was examined for its ability to bind and release the fatty acid in the presence of albumin. The mechanism of 18:1 uptake from cotton and binding by albumin was examined with both intact dressings and cotton fiber-designed chromatography. Raman spectra of the albumin-18:1 complexes under liquid-liquid equilibrium conditions revealed fully saturated albumin-18:1 complexes with a 1:1 weight ratio of albumin:18:1. Cotton chromatography under liquid-solid equilibrium conditions revealed oleic acid transfer from cotton to albumin at 27 mole equivalents of 18:1 per mole albumin. Cotton was contrasted with hydrogel, and hydrocolloid wound dressing for its comparative ability to lower elastase activity. Each dressing material evaluated was found to release 18:1 in the presence of albumin with significant inhibition of elastase activity. The 18:1-formulated wound dressings lowered elastase activity in a dose dependent manner in the order cotton gauze > hydrogel > hydrocolloid. In contrast the cationic serine protease Cathepsin G was inihibited by 18:1 within a narrow range of 18:1-cotton formulations. Four per cent Albumin solutions were most effective in binding cotton bound-18:1. However, 2% albumin was sufficient to transfer quantities of 18:1 necessary to achieve a significant elastase-lowering effect. Formulations with 128 mg 18:1/g cotton gauze had equivalent elastase lowering with 1 - 4% albumin. 18:1 bound to cotton wound dressings may have promise in the

  13. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles.

    PubMed

    Gauthier, Kathryn M; Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D; Gutterman, David D; Falck, J R; Campbell, William B

    2011-10-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H(2)O(2)), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H(2)O(2) causes vasoconstriction. To determine the physiological contribution of H(2)O(2), catalase is used to inactivate H(2)O(2). However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10-50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1-10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (V(max) = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase(-1)·min(-1), respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H(2)O(2) and EETs. PMID:21753077

  14. Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch

    PubMed Central

    Morales-Lázaro, Sara L.; Llorente, Itzel; Sierra-Ramírez, Félix; López-Romero, Ana E.; Ortíz-Rentería, Miguel; Serrano-Flores, Barbara; Simon, Sidney A.; Islas, León D.; Rosenbaum, Tamara

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits TRPV1 activity, and also pain and itch responses in mice by interacting with the vanilloid (capsaicin)-binding pocket and promoting the stabilization of a closed state conformation. Moreover, we report an itch-inducing molecule, cyclic phosphatidic acid, that activates TRPV1 and whose pruritic activity, as well as that of histamine, occurs through the activation of this ion channel. These findings provide insights into the molecular basis of oleic acid inhibition of TRPV1 and also into a way of reducing the pathophysiological effects resulting from its activation. PMID:27721373

  15. Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation.

    PubMed

    Zhang, Litao; Liu, Jianguo

    2016-07-01

    The purpose of this study was to clarify the interrelation between the mitochondrial alternative oxidase (AOX) pathway and fatty acid accumulation in marine microalga Isochrysis galbana. Under normal conditions, the activity of the AOX pathway was maintained at a low level in I. galbana. Compared with the normal condition, nitrogen deprivation significantly increased the AOX pathway activity and fatty acid accumulation. Under nitrogen deprivation, the inhibition of the AOX pathway by salicylhydroxamic acid caused the accumulation of reducing equivalents and the over-reduction of chloroplasts in I. galbana cells, leading to a decrease in the photosynthetic O2 evolution rate. The over-production of reducing equivalents due to the inhibition of the AOX pathway under nitrogen deprivation further enhanced the accumulation of fatty acids in I. galbana cells.

  16. Composite IS1 elements encoding hydroxamate-mediated iron uptake in FIme plasmids from epidemic Salmonella spp.

    PubMed Central

    Colonna, B; Nicoletti, M; Visca, P; Casalino, M; Valenti, P; Maimone, F

    1985-01-01

    Eleven FIme plasmids representative of those identified in epidemic strains of Salmonella wien and Salmonella typhimurium isolated in North Africa, Europe, and the Middle East have been examined for the presence of determinants of toxigenicity, adherence, and iron-sequestering mechanisms. Chemical and genetic data indicated that all plasmids code for a hydroxamate-mediated iron assimilation system. Detailed analysis of derivative plasmids and cloned fragments of FIme plasmid pZM61 demonstrated that the general genetic and structural organization of the DNA region containing the genes for hydroxamate biosynthesis and cloacin DF13 receptor was virtually identical to that described for the aerobactin-mediated iron uptake system of pColV-K30. This DNA region is part of a composite element that is 16.7 kilobases long and carries its IS1 modules as inverted repeats. A very similar element is present in either orientation in all nine FIme plasmids analyzed. Images PMID:2984176

  17. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.

    PubMed

    Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young

    2016-08-15

    Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses.

  18. Highly Fluorescent Group 13 Metal Complexes with Cyclic, Aromatic Hydroxamic Acid Ligands

    SciTech Connect

    Seitz, Michael; Moore, Evan G.; Raymond, Kenneth N.

    2008-02-11

    The neutral complexes of two ligands based on the 1-oxo-2-hydroxy-isoquinoline (1,2-HOIQO) motif with group 13 metals (Al, Ga, In) show bright blue-violet luminescence in organic solvents. The corresponding transition can be attributed to ligand-centered singlet emission, characterized by a small Stokes shifts of only a few nm combined with lifetimes in the range between 1-3 ns. The fluorescence efficiency is high, with quantum yields of up to 37% in benzene solution. The crystal structure of one of the indium(III) complexes (trigonal space group R-3, a = b = 13.0384(15) {angstrom}, c = 32.870(8) {angstrom}, ? = {beta} = 90{sup o}, {gamma} = 120{sup o}, V = 4839.3(14) {angstrom}{sup 3}, Z = 6) shows a six-coordinate geometry around the indium center which is close to trigonal-prismatic, with a twist angle between the two trigonal faces of 20.7{sup o}. Time-dependent density functional theory (TD-DFT) calculations (Al and Ga: B3LYP/6-31G(d)); In: B3LYP/LANL2DZ of the fac and mer isomers with one of the two ligands indicate that there is no clear preference for either one of the isomeric forms of the metal complexes. In addition, the metal centers do not have a significant influence on the electronic structure, and as a consequence, on the predominant intraligand optical transitions.

  19. Suberoylanilide hydroxamic acid (SAHA) and cladribine synergistically induce apoptosis in NK-LGL leukaemia.

    PubMed

    Sun, Xiaoshen; Hasanali, Zainul S; Chen, Allshine; Zhang, Dianzheng; Liu, Xin; Wang, Hong-Gang; Feith, David J; Loughran, Thomas P; Xu, Kailin

    2015-02-01

    Natural killer (NK) large granular lymphocyte (LGL) leukaemia features a clonal proliferation of CD3(-) NK cells that can be classified into either aggressive or chronic categories. The NKL cell line, derived from an aggressive Asian NK cell leukaemia, and patient samples from chronic NK-LGL leukaemia were used in our study to probe for synergistic efficacy of the epigenetic drugs vorinostat (SAHA) and cladribine in this disease. We demonstrate that histone deacetylases (HDACs) are over-expressed in both aggressive and chronic NK leukaemia. Administration of the HDAC inhibitor SAHA reduces class I and II HDAC expression and enhances histone acetylation in leukaemic NK cells. In vitro combination treatment with SAHA and cladribine dose-dependently exerts synergistic cytotoxic and apoptotic effects on leukaemic NK cells. Expression profiling of apoptotic regulatory genes suggests that both compounds led to caspase-dependent apoptosis through activation of intrinsic mitochondrial and extrinsic death receptor pathways. Collectively, these data show that combined epigenetic therapy, using HDAC and DNA methyltransferase inhibitors, may be a promising therapeutic approach for NK-LGL leukaemia.

  20. Benzoxazinoids-cyclic hydroxamic acids, lactams and their corresponding glucosides in the genus Aphelandra (Acanthaceae).

    PubMed

    Baumeler, A; Hesse, M; Werner, C

    2000-01-01

    An improved method of sample preparation and simultaneous HPLC separation was developed that allowed the separation of 2,4-dihydroxy-1,4-benzoxazine-3(4H)-one (DIBOA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazine-3(4H)-one (DIMBOA), 2-hydroxy-1,4-benzoxazine-3(2H)-one (HBOA), 2-hydroxy-7-methoxy-1,4-benzoxazine-3(2H)-one (HMBOA) and their corresponding glucosides as well as the benzoxazolinones BOA and MBOA. The amount and distribution of these compounds was determined in the roots of Aphelandra squarrosa and A. fuscopunctata plants. There is a significant difference in the amount and distribution of this substance class in the two species analyzed. The results are discussed in relation to their function as defence compounds and allelochemicals.

  1. Dose-Responsive Gene Expression in Suberoylanilide Hydroxamic Acid (SAHA) Treated Resting CD4+ T Cells

    PubMed Central

    Reardon, Brian; Beliakova-Bethell, Nadejda; Spina, Celsa A.; Singhania, Akul; Margolis, David M.; Richman, Douglas R.; Woelk, Christopher H.

    2015-01-01

    Design Persistent latently infected CD4+ T cells represent a major obstacle to HIV eradication. Histone deacetylase inhibitors (HDACis) are a proposed activation therapy. However, off-target effects on expression in host immune cells are poorly understood. We hypothesized that HDACi-modulated genes would be best identified with dose-response analysis. Methods Resting primary CD4+ T cells were treated with 0.34, 1, 3, or 10 μM of the HDACi, SAHA, for 24 hours and subjected to microarray gene expression analysis. Genes with dose-correlated expression were filtered to identify a subset with consistent up or downregulation at each SAHA dose. Histone modifications were characterized in 6 SAHA dose-responsive genes by chromatin immunoprecipitation (ChIP-RT-qPCR). Results A large number of genes were shown to be up (N=657) or downregulated (N=725) by SAHA in a dose-responsive manner (FDR p-value < 0.05, fold change ≥ |2|). Several genes (CTNNAL1, DPEP2, H1F0, IRGM, PHF15, and SELL) are potential in vivo biomarkers of SAHA activity. SAHA dose-responsive genes included transcription factors, HIV restriction factors, histone methyltransferases, and host proteins that interact with HIV. Pathway analysis suggested net downregulation of T cell activation with increasing SAHA dose. Histone acetylation was not correlated with host gene expression, but plausible alternative mechanisms for SAHA-modulated gene expression were identified. Conclusions Numerous genes in CD4+ T cells are modulated by SAHA in a dose-responsive manner, including genes that may negatively influence HIV activation from latency. Our study suggests that SAHA influences gene expression through a confluence of several mechanisms, including histone modification, and altered expression and activity of transcription factors. PMID:26258524

  2. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity.

    PubMed

    Yu, Fei; Addison, Owen; Baker, Stephen J; Davenport, Alison J

    2015-09-14

    Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4-7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo.

  3. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity

    PubMed Central

    Yu, Fei; Addison, Owen; Baker, Stephen J; Davenport, Alison J

    2015-01-01

    Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo. PMID:25634122

  4. Zoledronic acid cooperates with a cyclooxygenase-2 inhibitor and gefitinib in inhibiting breast and prostate cancer.

    PubMed

    Melisi, Davide; Caputo, Rosa; Damiano, Vincenzo; Bianco, Roberto; Veneziani, Bianca Maria; Bianco, A Raffaele; De Placido, Sabino; Ciardiello, Fortunato; Tortora, Giampaolo

    2005-12-01

    Biphosphonates (BPs) are widely used to inhibit osteoclastic activity in malignant diseases such as bone metastatic breast and prostate carcinoma. Recent studies reported that BPs could also cause a direct antitumor effect, probably due to their ability to interfere with several intracellular signalling molecules. The enzyme cyclooxygenase-2 (COX-2) and the epidermal growth factor receptor (EGFR) play an important role in the control of cancer cell growth and inhibitors of COX-2 and EGFR have shown antitumor activity in vitro and in vivo in several tumor types. We, and others, have previously shown that EGFR and COX-2 may be directly related to each other and that their selective inhibitors may have a cooperative effect. In the present study we have evaluated the combined effect of zoledronic acid, the most potent nitrogen-containing BP, with the COX-2 inhibitor SC-236 and the selective EGFR-tyrosine kinase inhibitor gefitinib, on breast and prostate cancer models in vitro and in xenografted nude mice. We show that combination of zoledronic acid with SC-236 and gefitinib causes a cooperative antitumor effect accompanied by induction of apoptosis and regulation of the expression of mitogenic factors, proangiogenic factors and cell cycle controllers both in vitro and in xenografted nude mice. The modulatory effect on protein expression and the inhibitory effect on tumor growth is much more potent when the three agents are used together. Since studies are ongoing to explore the antitumor effect of zoledronic acid, our results provide new insights into the mechanism of action of these agents and a novel rationale to translate this feasible combination treatment strategy into a clinical setting.

  5. Acute Copper and Ascorbic Acid Supplementation Inhibits Non-heme Iron Absorption in Humans.

    PubMed

    Olivares, Manuel; Figueroa, Constanza; Pizarro, Fernando

    2016-08-01

    The objective of the study is to determine the effect of copper (Cu) plus the reducing agent ascorbic acid (AA) on the absorption of non-heme iron (Fe). Experimental study with block design in which each subject was his own control. After signing an informed consent, 14 adult women using an effective method of contraception and negative pregnancy test received 0.5 mg Fe, as ferrous sulfate, alone or with Cu, as copper sulfate, plus ascorbic acid (AA/Cu 2/1 molar ratio) at 4/1; 6/1 and 8/1 Cu/Fe molar ratios as an aqueous solution on days 1, 2, 14, and 15 of the study. Fe absorption was assessed by erythrocyte incorporation of iron radioisotopes (55)Fe and (59)Fe. Geometric mean (range ± SD) absorption of Fe at 4/1 and 6/1 Cu/Fe molar ratios (and AA/Cu 2/1 molar ratio) and Fe alone was 57.4 % (35.7-92.1 %), 64.2 % (45.8-89.9 %), and 38.8 % (20.4-73.8 %), respectively (ANOVA for repeated measures p < 0.001; post hoc test Scheffé, p < 0.05). This is attributable to the enhancing effect of AA on non-heme Fe absorption; however, Fe absorption at Cu/Fe 8/1 molar ratio was 47.3 % (27.7-80.8) (p = NS compared with Fe alone). It was expected that Fe absorption would have been equal or greater than at 4/1 and 6/1 molar ratios. Copper in the presence of ascorbic acid inhibits non-heme Fe absorption at Cu/Fe 8/1 molar ratio.