Sample records for hydroxamic acids

  1. Facile access to amides and hydroxamic acids directly from nitroarenes.

    PubMed

    Jain, Shreyans K; Aravinda Kumar, K A; Bharate, Sandip B; Vishwakarma, Ram A

    2014-09-07

    A new method for synthesis of amides and hydroxamic acids from nitroarenes and aldehydes is described. The MnO2 catalyzed thermal deoxygenation of nitrobenzene resulted in formation of a reactive nitroso intermediate which on reaction with aldehydes provided amides and hydroxamic acids. The thermal neat reaction in the presence of 0.01 mmol KOH predominantly led to formation of hydroxamic acid whereas reaction in the presence of 1 mmol acetic acid produced amides as the only product.

  2. Controlling Plasma Stability of Hydroxamic Acids: A MedChem Toolbox.

    PubMed

    Hermant, Paul; Bosc, Damien; Piveteau, Catherine; Gealageas, Ronan; Lam, BaoVy; Ronco, Cyril; Roignant, Matthieu; Tolojanahary, Hasina; Jean, Ludovic; Renard, Pierre-Yves; Lemdani, Mohamed; Bourotte, Marilyne; Herledan, Adrien; Bedart, Corentin; Biela, Alexandre; Leroux, Florence; Deprez, Benoit; Deprez-Poulain, Rebecca

    2017-11-09

    Hydroxamic acids are outstanding zinc chelating groups that can be used to design potent and selective metalloenzyme inhibitors in various therapeutic areas. Some hydroxamic acids display a high plasma clearance resulting in poor in vivo activity, though they may be very potent compounds in vitro. We designed a 57-member library of hydroxamic acids to explore the structure-plasma stability relationships in these series and to identify which enzyme(s) and which pharmacophores are critical for plasma stability. Arylesterases and carboxylesterases were identified as the main metabolic enzymes for hydroxamic acids. Finally, we suggest structural features to be introduced or removed to improve stability. This work thus provides the first medicinal chemistry toolbox (experimental procedures and structural guidance) to assess and control the plasma stability of hydroxamic acids and realize their full potential as in vivo pharmacological probes and therapeutic agents. This study is particularly relevant to preclinical development as it allows obtaining compounds equally stable in human and rodent models.

  3. Hydrolysis of aceto-hydroxamic acid under UREX+ conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alyapyshev, M.; Paulenova, A.; Tkac, P.

    2007-07-01

    Aceto-hydroxamic acid (AHA) is used as a stripping agent In the UREX process. While extraction yields of uranium remain high upon addition of AHA, hexavalent plutonium and neptunium are rapidly reduced to the pentavalent state while the tetravalent species and removed from the product stream. However, under acidic conditions, aceto-hydroxamic acid undergoes hydrolytic degradation. In this study, the kinetics of the hydrolysis of aceto-hydroxamic acid in nitric and perchloric acid media was investigated at several temperatures. The decrease of the concentration of AHA was determined via its ferric complex using UV-Vis spectroscopy. The data obtained were analyzed using the methodmore » of initial rates. The data follow the pseudo-first order reaction model. Gamma irradiation of AHA/HNO{sub 3} solutions with 33 kGy/s caused two-fold faster degradation of AHA. The rate equation and thermodynamic data will be presented for the hydrolysis reaction with respect to the concentrations of aceto-hydroxamic acid, nitrate and hydronium ions, and radiation dose. (authors)« less

  4. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors.

    PubMed

    Shinji, Chihiro; Maeda, Satoko; Imai, Keisuke; Yoshida, Minoru; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2006-11-15

    A series of hydroxamic acid derivatives bearing a cyclic amide/imide group as a linker and/or cap structure, prepared during our structural development studies based on thalidomide, showed class-selective potent histone deacetylase (HDAC)-inhibitory activity. Structure-activity relationship studies indicated that the steric character of the substituent introduced at the cyclic amide/imide nitrogen atom, the presence of the amide/imide carbonyl group, the hydroxamic acid structure, the shape of the linking group, and the distance between the zinc-binding hydroxamic acid group and the cap structure are all important for HDAC-inhibitory activity and class selectivity. A representative compound (30w) showed potent p21 promoter activity, comparable with that of trichostatin A (TSA), and its cytostatic activity against cells of the human prostate cell line LNCaP was more potent than that of the well-known HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA).

  5. Salinomycin Hydroxamic Acids: Synthesis, Structure, and Biological Activity of Polyether Ionophore Hybrids.

    PubMed

    Borgström, Björn; Huang, Xiaoli; Chygorin, Eduard; Oredsson, Stina; Strand, Daniel

    2016-06-09

    The polyether ionophore salinomycin has recently gained attention due to its exceptional ability to selectively reduce the proportion of cancer stem cells within a number of cancer cell lines. Efficient single step strategies for the preparation of hydroxamic acid hybrids of this compound varying in N- and O-alkylation are presented. The parent hydroxamic acid, salinomycin-NHOH, forms both inclusion complexes and well-defined electroneutral complexes with potassium and sodium cations via 1,3-coordination by the hydroxamic acid moiety to the metal ion. A crystal structure of an cationic sodium complex with a noncoordinating anion corroborates this finding and, moreover, reveals a novel type of hydrogen bond network that stabilizes the head-to-tail conformation that encapsulates the cation analogously to the native structure. The hydroxamic acid derivatives display down to single digit micromolar activity against cancer cells but unlike salinomycin selective reduction of ALDH(+) cells, a phenotype associated with cancer stem cells was not observed. Mechanistic implications are discussed.

  6. Salinomycin Hydroxamic Acids: Synthesis, Structure, and Biological Activity of Polyether Ionophore Hybrids

    PubMed Central

    2016-01-01

    The polyether ionophore salinomycin has recently gained attention due to its exceptional ability to selectively reduce the proportion of cancer stem cells within a number of cancer cell lines. Efficient single step strategies for the preparation of hydroxamic acid hybrids of this compound varying in N- and O-alkylation are presented. The parent hydroxamic acid, salinomycin-NHOH, forms both inclusion complexes and well-defined electroneutral complexes with potassium and sodium cations via 1,3-coordination by the hydroxamic acid moiety to the metal ion. A crystal structure of an cationic sodium complex with a noncoordinating anion corroborates this finding and, moreover, reveals a novel type of hydrogen bond network that stabilizes the head-to-tail conformation that encapsulates the cation analogously to the native structure. The hydroxamic acid derivatives display down to single digit micromolar activity against cancer cells but unlike salinomycin selective reduction of ALDH+ cells, a phenotype associated with cancer stem cells was not observed. Mechanistic implications are discussed. PMID:27326340

  7. Chemical basis for the phytotoxicity of N-aryl hydroxamic acids and acetanilide analogues.

    PubMed

    Bravo, Héctor R; Villarroel, Elisa; Copaja, Sylvia V; Argandoña, Victor H

    2008-01-01

    Germination inhibition activity of N-aryl hydroxamic acids and acetanilide analogues was measured on lettuce seeds (Lactuca sativa). Lipophilicity of the compounds was determined by HPLC. A correlation between lipophilicity values and percentage of germination inhibition was established. A model mechanism of action for auxin was used for analyzing the effect of the substituent at the alpha carbon atom (Ca) on the polarization of hydroxamic and amide functions in relation to the germination inhibition activity observed. Results suggest that the lipophilic and acidic properties play an important role in the phytotoxicity of the compounds. A test with the microalga Chlorella vulgaris was used to evaluate the potential herbicide activity of the hydroxamic acids and acetanilides.

  8. Hydroxamic acid content and toxicity of rye at selected growth stages.

    PubMed

    Rice, Clifford P; Park, Yong Bong; Adam, Frédérick; Abdul-Baki, Aref A; Teasdale, John R

    2005-08-01

    Rye (Secale cereale L.) is an important cover crop that provides many benefits to cropping systems including weed and pest suppression resulting from allelopathic substances. Hydroxamic acids have been identified as allelopathic compounds in rye. This research was conducted to improve the methodology for quantifying hydroxamic acids and to determine the relationship between hydroxamic acid content and phytotoxicity of extracts of rye root and shoot tissue harvested at selected growth stages. Detection limits for an LC/MS-MS method for analysis of hydroxamic acids from crude aqueous extracts were better than have been reported previously. (2R)-2-beta-D-Glucopyranosyloxy-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-G), 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA), benzoxazolin-2(3H)-one (BOA), and the methoxy-substituted form of these compounds, (2R)-2-beta-D-glucopyranosyloxy-4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA glucose), 2,4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), and 6-methoxy-benzoxazolin-2(3H)-one (MBOA), were all detected in rye tissue. DIBOA and BOA were prevalent in shoot tissue, whereas the methoxy-substituted compounds, DIMBOA glucose and MBOA, were prevalent in root tissue. Total hydroxamic acid concentration in rye tissue generally declined with age. Aqueous crude extracts of rye shoot tissue were more toxic than extracts of root tissue to lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) root length. Extracts of rye seedlings (Feekes growth stage 2) were most phytotoxic, but there was no pattern to the phytotoxicity of extracts of rye sampled at growth stages 4 to 10.5.4, and no correlation of hydroxamic acid content and phytotoxicity (I50 values). Analysis of dose-response model slope coefficients indicated a lack of parallelism among models for rye extracts from different growth stages, suggesting that phytotoxicity may be attributed to compounds with different modes of action at different stages. Hydroxamic acids may account for the phytoxicity of extracts derived from rye at early growth stages, but other compounds are probably responsible in later growth stages.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Mary Patricia

    The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK as and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pK a = 5.94, logβ 120 = 10.92; acetohydroxamic acid, pK a = 9.34, logβ 120 = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinatemore » geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is logβ 120 = 41.7. The solubility limited speciation of 242Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.« less

  10. Discovery, synthesis, and pharmacological evaluation of spiropiperidine hydroxamic acid based derivatives as structurally novel histone deacetylase (HDAC) inhibitors.

    PubMed

    Varasi, Mario; Thaler, Florian; Abate, Agnese; Bigogno, Chiara; Boggio, Roberto; Carenzi, Giacomo; Cataudella, Tiziana; Dal Zuffo, Roberto; Fulco, Maria Carmela; Rozio, Marco Giulio; Mai, Antonello; Dondio, Giulio; Minucci, Saverio; Mercurio, Ciro

    2011-04-28

    New spiro[chromane-2,4'-piperidine] and spiro[benzofuran-2,4'-piperidine] hydroxamic acid derivatives as HDAC inhibitors have been identified by combining privileged structures with a hydroxamic acid moiety as zinc binding group. The compounds were evaluated for their ability to inhibit nuclear extract HDACs and for their in vitro antiproliferative activity on different tumor cell lines. This work resulted in the discovery of spirocycle 30d that shows good oral bioavailability and tumor growth inhibition in an HCT-116 murine xenograft model.

  11. Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors.

    PubMed

    Pabba, Chittari; Gregg, Brian T; Kitchen, Douglas B; Chen, Zhen Jia; Judkins, Angela

    2011-01-01

    A series of novel hydroxamic acid based histone deacetylases (HDAC) inhibitors with aryl ether and aryl sulfone residues at the terminus of a substituted, unsaturated 5-carbon spacer moiety have been synthesized for the first time and evaluated. Compounds with meta- and para-substitution on the aryl ring of ether hydroxamic acids 19c, 20c, 19e, 19f and 19g are potent HDAC inhibitors with activities at low nanomolar levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Tabun scavengers based on hydroxamic acid containing cyclodextrins.

    PubMed

    Brandhuber, Florian; Zengerle, Michael; Porwol, Luzian; Bierwisch, Anne; Koller, Marianne; Reiter, Georg; Worek, Franz; Kubik, Stefan

    2013-04-28

    Arrangement of several hydroxamic acid-derived substituents along the cavity of a cyclodextrin ring leads to compounds that detoxify tabun in TRIS-HCl buffer at physiological pH and 37.0 °C with half-times as low as 3 min.

  13. Benzyl and Methyl Fatty Hydroxamic Acids Based on Palm Kernel Oil as Chelating Agent for Liquid-Liquid Iron(III) Extraction

    PubMed Central

    Haron, Md Jelas; Jahangirian, Hossein; Silong, Sidik; Yusof, Nor Azah; Kassim, Anuar; Rafiee-Moghaddam, Roshanak; Mahdavi, Behnam; Peyda, Mazyar; Abdollahi, Yadollah; Amin, Jamileh

    2012-01-01

    Liquid-liquid iron(III) extraction was investigated using benzyl fatty hydroxamic acids (BFHAs) and methyl fatty hydroxamic acids (MFHAs) as chelating agents through the formation of iron(III) methyl fatty hydroxamate (Fe-MFHs) or iron(III) benzyl fatty hydroxamate (Fe-BFHs) in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III) at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1% for MFHAs and BFHAs, respectively). The presence of a large amount of Mg(II), Ni(II), Al(III), Mn(II) and Co(II) ions did affect the iron(III) extraction. Finally stripping studies for recovering iron(III) from organic phase (Fe-MFHs or Fe-BFHs dissolved in hexane) were carried out at various concentrations of HCl, HNO3 and H2SO4. The results showed that the desired acid for recovery of iron(III) was 5 M HCl and quantitative recovery of iron(III) was achieved from Fe(III)-MFHs and Fe(III)-BFHs solutions in hexane containing 5 mg/L of Fe(III). PMID:22408444

  14. pH-Dependence of Binding Constants and Desorption Rates of Phosphonate- and Hydroxamate-Anchored [Ru(bpy)3]2+ on TiO2 and WO3.

    PubMed

    Esarey, Samuel L; Bartlett, Bart M

    2018-04-17

    The binding constants and rate constants for desorption of the modified molecular dye [Ru(bpy) 3 ] 2+ anchored by either phosphonate or hydroxamate on the bipyridine ligand to anatase TiO 2 and WO 3 have been measured. In aqueous media at pH 1-10, repulsive electrostatic interactions between the negatively charged anchor and the negatively charged surface govern phosphonate desorption under neutral and basic conditions for TiO 2 anatase due to the high acidity of phosphonic acid (p K a,4 = 5.1). In contrast, the lower acidity of hydroxamate (p K a,1 = 6.5, p K a,2 = 9.1) leads to little change in adsorption/desorption properties as a function of pH from 1 to 7. The binding constant for hydroxamate is 10 3 in water, independent of pH in this range. These results are true for WO 3 as well, but are not reported at pH > 4 due to its Arrhenius acidity. Kinetics for desorption as a function of pH are reported, with a proposed mechanism for phosphonate desorption at high pH being the electrostatic repulsion of negative charges between the surface and the anionic anchor. Further, the hydroxamic acid anchor itself is likely the site of quasi-reversible redox activity in [Ru(bpy) 2 (2,2'-bpy-4,4'-(C(O)N(OH)) 2 )] 2+ , which does not lead to any measurable deterioration of the complex within 2 h of dark cyclic voltammogram scans in aqueous media. These results posit phosphonate as the preferred anchoring group under acidic conditions and hydroxamate for neutral/basic conditions.

  15. Zinc binding in HDAC inhibitors: a DFT study.

    PubMed

    Wang, Difei; Helquist, Paul; Wiest, Olaf

    2007-07-06

    Histone deacetylases (HDACs) are attractive targets for the treatment of cancers and a variety of other diseases. Most currently studied HDAC inhibitors contain hydroxamic acids, which are potentially problematic in the development of practical drugs. DFT calculations of the binding modes and free energies of binding for a variety of other functionalities in a model active site of HDAC are described. The protonation state of hydroxamic acids in the active site and the origin of the high affinity are discussed. These results emphasize the importance of a carefully chosen pKa for zinc binding and provide guidance for the design of novel, non-hydroxamic acid HDAC inhibitors.

  16. A Hydroxamic Acid Anchoring Group for Durable Dye-Sensitized Solar Cells Incorporating a Cobalt Redox Shuttle.

    PubMed

    Higashino, Tomohiro; Kurumisawa, Yuma; Cai, Ning; Fujimori, Yamato; Tsuji, Yukihiro; Nimura, Shimpei; Packwood, Daniel M; Park, Jaehong; Imahori, Hiroshi

    2017-09-11

    A hydroxamic acid group has been employed for the first time as an anchoring group for cobalt-based dye-sensitized solar cells (DSSCs). The porphyrin dye YD2-o-C8HA including a hydroxamic acid anchoring group exhibited a power conversion efficiency (η) of 6.4 %, which is close to that of YD2-o-C8, a representative porphyrin dye incorporating a conventional carboxylic acid. More importantly, YD2-o-C8HA was found to be superior to YD2-o-C8 in terms of both binding ability to TiO 2 and durability of cobalt-based DSSCs. Notably, YD2-o-C8HA photocells revealed a higher η-value (4.1 %) than YD2-o-C8 (2.8 %) after 500 h illumination. These results suggest that the hydroxamic acid can be used for DSSCs with other transition-metal-based redox shuttle to ensure high cell durability as well as excellent photovoltaic performance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2.

    PubMed

    Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N

    2016-06-25

    In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Specific Inhibition of the Cyanide-insensitive Respiratory Pathway in Plant Mitochondria by Hydroxamic Acids

    PubMed Central

    Schonbaum, Gregory R.; Bonner, Walter D.; Storey, Bayard T.; Bahr, James T.

    1971-01-01

    Hydroxamic acids, R-CONHOH, are inhibitors specific to the respiratory pathway through the alternate, cyanide-insensitive terminal oxidase of plant mitochondria. The nature of the R group in these compounds affects the concentration at which the hydroxamic acids are effective, but it appears that all hydroxamic acids inhibit if high enough concentrations are used. The benzhydroxamic acids are effective at relatively low concentrations; of these, the most effective are m-chlorobenzhydroxamic acid and m-iodobenzhydroxamic acid. The concentrations required for half-maximal inhibition of the alternate oxidase pathway in mung bean (Phaseolus aureus) mitochondria are 0.03 mm for m-chlorobenzhydroxamic acid and 0.02 mm for m-iodobenzhydroxamic acid. With skunk cabbage (Symplocarpus foetidus) mitochondria, the required concentrations are 0.16 for m-chlorobenzhydroxamic acid and 0.05 for m-iodobenzhydroxamic acid. At concentrations which inhibit completely the alternate oxidase pathway, these two compounds have no discernible effect on either the respiratory pathway through cytochrome oxidase, or on the energy coupling reactions of these mitochondria. These inhibitors make it possible to isolate the two respiratory pathways and study their mode of action separately. These inhibitors also enhance an electron paramagnetic resonance signal near g = 2 in anaerobic, submitochondrial particles from skunk cabbage, which appears to be specific to the alternate oxidase and thus provides a means for its assay. PMID:5543780

  19. Zinc chelation with hydroxamate in histone deacetylases modulated by water access to the linker binding channel.

    PubMed

    Wu, Ruibo; Lu, Zhenyu; Cao, Zexing; Zhang, Yingkai

    2011-04-27

    It is of significant biological interest and medical importance to develop class- and isoform-selective histone deacetylase (HDAC) modulators. The impact of the linker component on HDAC inhibition specificity has been revealed but is not understood. Using Born-Oppenheimer ab initio QM/MM MD simulations, a state-of-the-art approach to simulating metallo-enzymes, we have found that the hydroxamic acid remains to be protonated upon its binding to HDAC8, and thus disproved the mechanistic hypothesis that the distinct zinc-hydroxamate chelation modes between two HDAC subclasses come from different protonation states of the hydroxamic acid. Instead, our simulations suggest a novel mechanism in which the chelation mode of hydroxamate with the zinc ion in HDACs is modulated by water access to the linker binding channel. This new insight into the interplay between the linker binding and the zinc chelation emphasizes its importance and gives guidance regarding linker design for the development of new class-IIa-specific HDAC inhibitors.

  20. Hydroxamic acid interactions with solvated cerium hydroxides in the flotation of monazite and bastnäsite-Experiments and DFT study

    NASA Astrophysics Data System (ADS)

    Sarvaramini, A.; Azizi, D.; Larachi, F.

    2016-11-01

    Density functional theory (DFT) simulations and experiments were performed to clarify the interaction mechanisms between hydroxamic acid collectors and cerium hydroxides during the flotation of bastnäsite and monazite minerals. These minerals showed considerable floatability at moderately alkaline pH which was related to the adsorption of hydroxamic acids on their surfaces as confirmed by vibrational spectroscopic and zeta potential measurements. DFT simulations showed that at moderately alkaline pH, the interactions between solvated Ce(OH)2+ and Ce(OH)2+ and heptyl-hydroxamic acid (HHA) anions resulted in the formation of, respectively, [Ce(OH)(HHA)x(H2O)y]2-x (x[y = ] = 1[6],2[3],3[1]) and [Ce(OH)2(HHA)x(H2O)y]1-x (x[y = ] = 1[5],2[1],3[0]) complexes. The collector anions were found to interact directly through formation of two covalent bonds between their two polar-head oxygen atoms and cerium in the hydroxide complexes. However, formation of such new bonds resulted in breakage of a few covalent/electrostatic bonds between cerium and water molecules initially present in the first hydration shell of the rare-earth metal cation. Building up in the electric double layer of the semi-soluble minerals, these complexes, and by extension, those from other rare-earth elements belonging to monazite and bastnäsite, are speculated to play a role in the interactions between rare-earth minerals and hydroxamic acid collectors.

  1. Isoxazole moiety in the linker region of HDAC inhibitors adjacent to the Zn-chelating group: effects on HDAC biology and antiproliferative activity.

    PubMed

    Tapadar, Subhasish; He, Rong; Luchini, Doris N; Billadeau, Daniel D; Kozikowski, Alan P

    2009-06-01

    A series of hydroxamic acid based histone deacetylase inhibitors 6-15, containing an isoxazole moiety adjacent to the Zn-chelating hydroxamic acid, is reported herein. Some of these compounds showed nanomolar activity in the HDAC isoform inhibitory assay and exhibited micro molar inhibitory activity against five pancreatic cancer cell lines.

  2. Oxidative cycloaddition of hydroxamic acids with dienes or guaiacols mediated by iodine(III) reagents.

    PubMed

    Shimizu, Hisato; Yoshimura, Akira; Noguchi, Keiichi; Nemykin, Victor N; Zhdankin, Viktor V; Saito, Akio

    2018-01-01

    [Bis(trifluoroacetoxy)iodo]benzene (BTI) and (diacetoxyiodo)benzene (DIB) efficiently promote the formation of acylnitroso species from hydroxamic acids in the presence of various dienes to give the corresponding hetero-Diels-Alder (HDA) adducts in moderate to high yields. The present method could be applied to the HDA reactions of acylnitroso species with o -benzoquinones generated by the oxidative dearomatization of guaiacols.

  3. Hybrids from Farnesylthiosalicylic Acid and Hydroxamic Acid as Dual Ras-Related Signaling and Histone Deacetylase (HDAC) Inhibitors: Design, Synthesis and Biological Evaluation.

    PubMed

    Ling, Yong; Wang, Xuemin; Wang, Chenniu; Xu, Chenjun; Zhang, Wei; Zhang, Yihua; Zhang, Yanan

    2015-06-01

    A novel series of hybrids was designed and synthesized by combining key elements from farnesylthiosalicylic acid (FTS) and hydroxamic acid. Several 3,7,11-trimethyldodeca-2,6,10-trien-1-yl) thio)benzamide derivatives, particularly those with branched and linear aliphatic linkers between the hydroxamic zinc binding group (ZBG) and the benzamide core, not only displayed significant antitumor activities against six human cancer cells but also exhibited histone deacetylase (HDAC) inhibitory effects in vitro. Among them, N-(4-(hydroxyamino)-4-oxobutyl)-2-(((2E,6E)-3,7,11-trimethyldodeca-2,6, 10-trien-1-yl)thio)benzamide (8 d) was the most potent, with IC50 values of 4.9-7.6 μM; these activities are eight- to sixteen-fold more potent than FTS and comparable to that of suberoylanilide hydroxamic acid (SAHA). Derivative 8 d induced cell cycle arrest in the G0/G1 phase, inhibited the acetylation of histone H3 and α-tubulin, and blocked Ras-related signaling pathways in a dose-dependent manner. The improved tumor growth inhibition and cell-cycle arrest in vitro might result from the dual inhibition. These findings suggest dual inhibitors of Ras-related signaling pathway and HDAC hold promise as therapeutic agents for the treatment of cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 3-Hydroxypyridin-2-thione as Novel Zinc Binding Group for Selective Histone Deacetylase Inhibition

    PubMed Central

    Patil, Vishal; Sodji, Quaovi H.; Kornacki, James R.; Mrksich, Milan; Oyelere, Adegboyega K.

    2013-01-01

    Small molecules bearing hydroxamic acid as the zinc binding group (ZBG) have been the most effective histone deacetylase inhibitor (HDACi) to date. However, concerns about the pharmacokinetic liabilities of the hydroxamic acid moiety have stimulated research efforts aimed at finding alternative non-hydroxamate ZBGs. We have identified 3-hydroxypyridin-2-thione (3-HPT) as a novel ZBG that is compatible with HDAC inhibition. 3-HPT inhibits HDAC 6 and HDAC 8 with an IC50 of 681 nM and 3675 nM respectively. Remarkably, 3-HPT gives no inhibition of HDAC 1. Subsequent optimization led to several novel 3HPT-based HDACi that are selective for HDAC 6 and HDAC 8. Furthermore, a subset of these inhibitors induces apoptosis in various cancer cell lines. PMID:23547652

  5. Dual function catalysts. Dehydrogenation and asymmetric intramolecular Diels-Alder cycloaddition of N-hydroxy formate esters and hydroxamic acids: evidence for a ruthenium-acylnitroso intermediate.

    PubMed

    Chow, Chun P; Shea, Kenneth J

    2005-03-23

    The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.

  6. Inhibitors incorporating zinc-binding groups target the GlcNAc-PI de-N-acetylase in Trypanosoma brucei, the causative agent of African sleeping sickness.

    PubMed

    Abdelwahab, Nuha Z; Crossman, Arthur T; Sullivan, Lauren; Ferguson, Michael A J; Urbaniak, Michael D

    2012-03-01

    Disruption of glycosylphosphatidylinositol biosynthesis is genetically and chemically validated as a drug target against the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. The N-acetylglucosamine-phosphatidylinositol de-N-acetylase (deNAc) is a zinc metalloenzyme responsible for the second step of glycosylphosphatidylinositol biosynthesis. We recently reported the synthesis of eight deoxy-2-C-branched monosaccharides containing carboxylic acid, hydroxamic acid, or N-hydroxyurea substituents at the C2 position that may act as zinc-binding groups. Here, we describe the synthesis of a glucocyclitol-phospholipid incorporating a hydroxamic acid moiety and report the biochemical evaluation of the monosaccharides and the glucocyclitol-phospholipid as inhibitors of the trypanosome deNAc in the cell-free system and against recombinant enzyme. Monosaccharides with carboxylic acid or hydroxamic acid substituents were found to be the inhibitors of the trypanosome deNAc with IC(50) values 0.1-1.5mM and the glucocyclitol-phospholipid was found to be a dual inhibitor of the deNAc and the α1-4-mannose transferase with an apparent IC(50)= 19±0.5μm. © 2011 John Wiley & Sons A/S.

  7. Synthesis of Pyrrolo[1,2-a]pyrimidine Enantiomers via Domino Ring-Closure followed by Retro Diels-Alder Protocol.

    PubMed

    Fekete, Beáta; Palkó, Márta; Haukka, Matti; Fülöp, Ferenc

    2017-04-13

    From 2-aminonorbornene hydroxamic acids, a simple and efficient method for the preparation of pyrrolo[1,2- a ]pyrimidine enantiomers is reported. The synthesis is based on domino ring-closure followed by microwave-induced retro Diels-Alder (RDA) protocols, where the chirality of the desired products is transferred from norbornene derivatives. The stereochemistry of the synthesized compounds was proven by X-ray crystallography. The absolute configuration of the product is determined by the configuration of the starting amino hydroxamic acid.

  8. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation

    NASA Astrophysics Data System (ADS)

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Hoshina, Hiroyuki; Srinuttrakul, Wannee; Seko, Noriaki

    2012-08-01

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.

  9. Design, synthesis, molecular docking, anti-Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives.

    PubMed

    Abdullah, Mohammed A A; Abuo-Rahma, Gamal El-Din A A; Abdelhafez, El-Shimaa M N; Hassan, Heba A; Abd El-Baky, Rehab M

    2017-02-01

    New hydroxamic acid, hydrazide and amide derivatives of ciprofloxacin in addition to their analogues of levofloxacin were prepared and identified by different spectroscopic techniques. Some of the prepared compounds revealed good activity against the urease splitting bacteria, Proteus mirabilis. The urease inhibitory activity was investigated using indophenol method. Most of the tested compounds showed better activity than the reference acetohydroxamic acid (AHA). The ciprofloxacin hydrazide derivative 3a and levofloxacin hydroxamic acid 7 experienced the highest activity (IC 50 =1.22μM and 2.20μM, respectively). Molecular docking study revealed high spontaneous binding ability of the tested compounds to the active site of urease. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Alkyl piperidine and piperazine hydroxamic acids as HDAC inhibitors.

    PubMed

    Rossi, Cristina; Porcelloni, Marina; D'Andrea, Piero; Fincham, Christopher I; Ettorre, Alessandro; Mauro, Sandro; Squarcia, Antonella; Bigioni, Mario; Parlani, Massimo; Nardelli, Federica; Binaschi, Monica; Maggi, Carlo A; Fattori, Daniela

    2011-04-15

    We report here the strategy used in our research group to find a new class of histone deacetylase (HDAC) inhibitors. A series of N-substituted 4-alkylpiperazine and 4-alkylpiperidine hydroxamic acids, corresponding to the basic structure of HDAC inhibitors (zinc binding moiety-linker-capping group) has been designed, prepared, and tested for HDAC inhibition. Linker length and aromatic capping group connection were systematically varied to find the optimal geometric parameters. A new series of submicromolar inhibitors was thus identified, which showed antiproliferative activity on HCT-116 colon carcinoma cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin

    PubMed Central

    Furumai, Ryohei; Komatsu, Yasuhiko; Nishino, Norikazu; Khochbin, Saadi; Yoshida, Minoru; Horinouchi, Sueharu

    2001-01-01

    Trichostatin A (TSA) and trapoxin (TPX) are potent inhibitors of histone deacetylases (HDACs). TSA is proposed to block the catalytic reaction by chelating a zinc ion in the active-site pocket through its hydroxamic acid group. On the other hand, the epoxyketone is suggested to be the functional group of TPX capable of alkylating the enzyme. We synthesized a novel TPX analogue containing a hydroxamic acid instead of the epoxyketone. The hybrid compound cyclic hydroxamic acid-containing peptide (CHAP) 1 inhibited HDAC1 at low nanomolar concentrations. The HDAC1 inhibition by CHAP1 was reversible as it was by TSA, in contrast to the irreversible inhibition by TPX. CHAP with an aliphatic chain length of five, which corresponded to that of acetylated lysine, was stronger than those with other lengths. These results suggest that TPX is a substrate mimic and that the replacement of the epoxyketone with the hydroxamic acid converted TPX to an inhibitor chelating the zinc like TSA. Interestingly, HDAC6, but not HDAC1 or HDAC4, was resistant to TPX and CHAP1, whereas TSA inhibited these HDACs to a similar extent. HDAC6 inhibition by TPX at a high concentration was reversible, probably because HDAC6 is not alkylated by TPX. We further synthesized the counterparts of all known naturally occurring cyclic tetrapeptides containing the epoxyketone. HDAC1 was highly sensitive to all these CHAPs much more than HDAC6, indicating that the structure of the cyclic tetrapeptide framework affects the target enzyme specificity. These results suggest that CHAP is a unique lead to develop isoform-specific HDAC inhibitors. PMID:11134513

  12. 45Ti extraction using hydroxamate resin

    NASA Astrophysics Data System (ADS)

    Gagnon, K.; Severin, G. W.; Barnhart, T. E.; Engle, J. W.; Valdovinos, H. F.; Nickles, R. J.

    2012-12-01

    As an attractive radionuclide for positron emission tomography, this study explores the extraction and reactivity of 45Ti produced via the 45Sc(p,n)45Ti reaction on a GE PETtrace. Using a small hydroxamate column, we have demonstrated an overall recovery of >50% of 45Ti in ˜1 mL of 1M oxalic acid. Conditions for reacting with desferal were also explored, with effective specific activities up to 38 GBq/μmol obtained.

  13. Speciation of plutonium and other metals under UREX process conditIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulenova, Alena; Tkac, Peter; Matteson, Brent S.

    2007-07-01

    The extractability of various Pu and Np species into tri-n-butyl phosphate (TBP) was investigated. The concentration effects of aceto-hydroxamic acid, nitric acid and nitrate on the distribution ratio of U, Pu and Np were investigated. The considerable ability of AHA to form complexes with the studied elements even under strong acidic conditions was found. While the difference in the extraction of uranyl in the presence and absence of AHA is minimal, extraction yields of Pu and Np decrease significantly. The UV-Vis-NIR and FT-IR spectroscopic investigations of uranium, plutonium, and neptunium species in the presence and absence of AHA in bothmore » aqueous and organic extraction phase were also performed. Spectroscopic analysis showed that the organic phase can contain a substantial amount of metal-hydroxamate species. A solvated ternary complex of uranium UO{sub 2}.AHA.NO{sub 3}.2TBP was observed only after prolonged contact between the aqueous and organic phases, whereas the plutonium hydroxamate species, presumably Pu(AHA){sub x}(NO{sub 3}){sub 4-x}.2TBP, appeared in the organic phase after a four minute extraction. (authors)« less

  14. Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids.

    PubMed

    Kreituss, Imants; Bode, Jeffrey W

    2016-12-20

    The preparation of enantioenriched chiral compounds by kinetic resolution dates back to the laboratories of Louis Pasteur in the middle of the 19th century. Unlike asymmetric synthesis, this process can always deliver enantiopure material (ee > 99%) if the reactions are allowed to proceed to sufficient conversion and the selectivity of the process is not unity (s > 1). One of the most appealing and practical variants is acylative kinetic resolution, which affords easily separable reaction products, and several highly efficient enzymatic and small molecule catalysts are available. Unfortunately, this method is applicable to limited substrate classes such as alcohols and primary benzylamines. This Account focuses on our work in catalytic acylative kinetic resolution of saturated N-heterocycles, a class of molecules that has been notoriously difficult to access via asymmetric synthesis. We document the development of hydroxamic acids as suitable catalysts for enantioselective acylation of amines through relay catalysis. Alongside catalyst optimization and reaction development, we present mechanistic studies and theoretical calculation accounting for the origins of selectivity and revealing the concerted nature of many amide-bond forming reactions. Immobilization of the hydroxamic acid to form a polymer supported reagent allows simplification of the experimental setup, improvement in product purification, and extension of the substrate scope. The kinetic resolutions are operationally straight forward: reactions proceed at room temperature and open to air conditions, without generation of difficult-to-remove side products. This was utilized to achieve decagram scale resolution of antimalarial drug mefloquine to prepare more than 50 g of (+)-erythro-meflqouine (er > 99:1) from the racemate. The immobilized quasienantiomeric acyl hydroxamic acid reagents were also exploited for a rare practical implementation of parallel kinetic resolution that affords both enantiomers of the amine products in high enantiopurity. The success of this process relied on identification of two cleavable acyl groups alongside implementation of flow-chemistry techniques to ensure reusability of the resolving agents. The work discussed in this Account has laid foundations for new catalyst design as well as development of desymmetrization and dynamic kinetic resolution processes. In the meantime, as all the requisite reagents are commercially available, we hope that hydroxamic acid promoted acylative kinetic resolution will become a method of choice for preparation of saturated N-heterocycles in enantiopure form.

  15. Multimodal HDAC Inhibitors with Improved Anticancer Activity.

    PubMed

    Schobert, Rainer; Biersack, Bernhard

    2018-01-01

    Histone deacetylases (HDACs) play a significant role in the proliferation and dissemination of cancer and represent promising epigenetic drug targets. The HDAC inhibitor vorinostat featuring a zinc-binding hydroxamate fragment was already clinically approved. However, HDAC inhibitors containing hydroxamic acids are often hampered by acquired or intrinsic drug resistance and may lead to enhanced tumor aggressiveness. In order to overcome these drawbacks of hydroxamate HDAC inhibitors, a series of multimodal derivatives of this compound class, including such with different zinc-binding groups, was recently developed and showed promising anticancer activity. This review provides an overview of the chemistry and pleiotropic anticancer modes of action of these conceptually new HDAC inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Exploiting the biosynthetic machinery of Streptomyces pilosus to engineer a water-soluble zirconium(iv) chelator.

    PubMed

    Richardson-Sanchez, Tomas; Tieu, William; Gotsbacher, Michael P; Telfer, Thomas J; Codd, Rachel

    2017-07-21

    The water solubility of a natural product-inspired octadentate hydroxamic acid chelator designed to coordinate Zr(iv)-89 has been improved by using a combined microbiological-chemical approach to engineer four ether oxygen atoms into the main-chain region of a methylene-containing analogue. First, an analogue of the trimeric hydroxamic acid desferrioxamine B (DFOB) that contained three main-chain ether oxygen atoms (DFOB-O 3 ) was generated from cultures of the native DFOB-producer Streptomyces pilosus supplemented with oxybis(ethanamine) (OBEA), which competed against the native 1,5-diaminopentane (DP) substrate during DFOB assembly. This precursor-directed biosynthesis (PDB) approach generated a suite of DFOB analogues containing one (DFOB-O 1 ), two (DFOB-O 2 ) or three (DFOB-O 3 ) ether oxygen atoms, with the latter produced as the major species. Log P measurements showed DFOB-O 3 was about 45 times more water soluble than DFOB. Second, a peptide coupling chain-extension reaction between DFOB-O 3 and the synthetic ether-containing endo-hydroxamic acid monomer 4-((2-(2-aminoethoxy)ethyl)(hydroxy)amino)-4-oxobutanoic acid (PBH-O 1 ) gave the water soluble tetrameric hydroxamic acid DFOB-O 3 -PBH-O 1 as an isostere of sparingly water soluble DFOB-PBH. The complex between DFOB-O 3 -PBH-O 1 and nat Zr(iv), examined as a surrogate measure of the radiolabelling procedure, analysed by LC-MS as the protonated adduct ([M + H] + , m/z obs = 855.2; m/z calc = 855.3), with supporting HRMS data. The use of a microbiological system to generate a water-soluble analogue of a natural product for downstream semi-synthetic chemistry is an attractive pathway for developing new drugs and imaging agents. The improved water solubility of DFOB-O 3 -PBH-O 1 could facilitate the synthesis and purification of downstream products, as part of the ongoing development of ligands optimised for Zr(iv)-89 immunological PET imaging.

  17. Discovery of novel hydroxamates as highly potent tumor necrosis factor-[alpha] converting enzyme inhibitors. Part II: Optimization of the S3′ pocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzola Jr., Robert D.; Zhu, Zhaoning; Sinning, Lisa

    2010-10-01

    A series of cyclopropyl hydroxamic acids were prepared. Many of the compounds displayed picomolar affinity for the TACE enzyme while maintaining good to excellent selectivity profiles versus MMP-1, -2, -3, -7, -14, and ADAM-10. X-ray analysis of an inhibitor in the TACE active site indicated that the molecules bound to the enzyme in the S1{prime}-S3{prime} pocket.

  18. Hydroxamic acids as weak base indicators: protonation in strong acid media.

    PubMed

    García, B; Ibeas, S; Hoyuelos, F J; Leal, J M; Secco, F; Venturini, M

    2001-11-30

    The protonation equilibria of N-phenylbenzohydroxamic, benzohydroxamic, salicylhydroxamic, and N-p-tolylcinnamohydroxamic acids have been studied at 25 degrees C in concentrated sulfuric, hydrochloric, and perchloric acid media; the UV-vis spectral measurements were analyzed using the Hammett equation and the Bunnett-Olsen and excess acidity methods. The medium effects observed in the UV spectral curves were corrected with the Cox-Yates and vector analysis methods. The H(A) acidity function based on benzamides provided the best results. The range of variation of the solvation coefficient m is similar to that of amides, this indicating similar solvation requirements for amides and hydroxamic acids. For the same substrate, the observed variations of pK(BH)(+) with the mineral acid used was justified by formation of solvent-separated ion pairs; for the same mineral acid, the observed changes in pK(BH)(+) can be explained by the solvation of BH(+). The change of the pK(BH)(+) values was in reasonably good agreement with the sequence of the catalytic efficiency of the mineral acids used, HCl > H(2)SO(4) > HClO(4).

  19. Design, synthesis and biological evaluation of di-substituted cinnamic hydroxamic acids bearing urea/thiourea unit as potent histone deacetylase inhibitors.

    PubMed

    Ning, Chengqing; Bi, Yanjing; He, Yujun; Huang, WenYuan; Liu, Lifei; Li, Yi; Zhang, Sihan; Liu, Xiaoyu; Yu, Niefang

    2013-12-01

    A novel class of di-substituted cinnamic hydroxamic acid derivatives containing urea or thiourea unit was designed, synthesized and evaluated as HDAC inhibitors. All tested compounds demonstrated significant HDAC inhibitory activities and anti-proliferative effects against diverse human tumor cell lines. Among them, 7l exhibited most potent pan-HDAC inhibitory activity, with an IC50 value of 130 nM. It also showed strong cellular inhibition against diverse cell lines including HCT-116, MCF-7, MDB-MB-435 and NCI-460, with GI50 values of 0.35, 0.22, 0.51 and 0.48 μM, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Carbamates as Potential Prodrugs and a New Warhead for HDAC Inhibition.

    PubMed

    King, Kristina; Hauser, Alexander-Thomas; Melesina, Jelena; Sippl, Wolfgang; Jung, Manfred

    2018-02-02

    We designed and synthesized carbamates of the clinically-approved HDAC (histone deacetylase) inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) in order to validate our previously-proposed hypothesis that these carbamates might serve as prodrugs for hydroxamic acid containing HDAC inhibitors. Biochemical assays proved our new compounds to be potent inhibitors of histone deacetylases in vitro, and they also showed antiproliferative effects in leukemic cells. These results, as well as stability analysis led to the suggestion that the intact carbamates are inhibitors of histone deacetylases themselves, representing a new zinc-binding warhead in HDAC inhibitor design. This suggestion was further supported by the synthesis and evaluation of a carbamate derivative of the HDAC6-selective inhibitor bufexamac.

  1. Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice.

    PubMed

    Ono, Tetsuo; Li, Chong; Mizutani, Eiji; Terashita, Yukari; Yamagata, Kazuo; Wakayama, Teruhiko

    2010-12-01

    Since the first mouse clone was produced by somatic cell nuclear transfer, the success rate of cloning in mice has been extremely low. Some histone deacetylase inhibitors, such as trichostatin A and scriptaid, have improved the full-term development of mouse clones significantly, but the mechanisms allowing for this are unclear. Here, we found that two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities. However, another inhibitor, valproic acid, could not improve cloning efficiency. Suberoylanilide hydroxamic acid, oxamflatin, trichostatin A, and scriptaid are inhibitors for classes I and IIa/b histone deacetylase, whereas valproic acid is an inhibitor for classes I and IIa, suggesting that inhibiting class IIb histone deacetylase is an important step for reprogramming mouse cloning efficiency.

  2. Serendipitous Discovery of α-Hydroxyalkyl Esters as β-Lactamase Substrates†

    PubMed Central

    Pelto, Ryan B.; Pratt, R. F.

    2010-01-01

    O-(1-Carboxy-1-alkyloxycarbonyl) hydroxamates were found to spontaneously decarboxylate in aqueous neutral buffer to form O-(2-hydroxyalkylcarbonyl) hydroxamates. While the former molecules do not react rapidly with serine β-lactamases, the latter are quite good substrates of representative classes A and C, but not D, enzymes, and particularly of a class C enzyme. The enzymes catalyze hydrolysis of these compounds to a mixture of the α-hydroxyacid and hydroxamate. Analogous compounds containing aryloxy leaving groups rather that hydroxamates are also substrates. Structure-activity experiments showed that the α-hydroxyl group was required for any substantial substrate activity. Although both D- and L-α-hydroxy acid derivatives were substrates, the former were preferred. The response of the class C activity to pH and to alternative nucleophiles (methanol and D-phenylalanine) suggested that the same active site functional groups participated in catalysis as for classical substrates. Molecular modeling was employed to explore how the α-hydroxy group might interact with the class C β-lactamase active site. Incorporation of the α-hydroxyalkyl moiety into novel inhibitors will be of considerable interest. PMID:21087009

  3. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators.

    PubMed

    Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-04-01

    Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Suberoylanilide hydroxamic acid (vorinostat): its role on equine corneal fibrosis and matrix metalloproteinase activity.

    PubMed

    Donnelly, Kevin S; Giuliano, Elizabeth A; Sharm, Ajay; Mohan, Rajiv R

    2014-07-01

    To explore the effect of suberoylanilide hydroxamic acid (SAHA) (i) on corneal fibroblast differentiation, morphology, and viability; and (ii) on the expression levels of matrix metalloproteinases (MMPs) 2 and 9 using an in vitro model of equine corneal fibrosis. Healthy donor corneas were used to generate primary cultures of equine corneal fibroblasts. The fibroblasts were exposed to 5 ng/mL TGFβ1 to induce myofibroblast formation. The cultures were treated with either 5 μm or 10 μm SAHA for 72 h in the presence of TGFβ1. Real-time PCR and immunocytochemistry were used to determine the antifibrotic efficacy of SAHA by quantifying α-smooth muscle actin (αSMA), a marker of myofibroblast formation and fibrosis. Real-time PCR was used to determine the effects of SAHA on MMP2 and MMP9 expression. Cytotoxicity of SAHA was evaluated with phase contrast microscopy and trypan blue exclusion assays. Suberoylanilide hydroxamic acid (SAHA) significantly attenuated TGFβ1-induced differentiation of equine fibroblasts to myofibroblasts as indicated by 3- to 3.5-fold (P < 0.001) decrease in αSMA mRNA and 86-88% (P < 0.001) decrease in αSMA+ immunocytochemical staining. SAHA treatment also resulted in 4.5- to 5.5-fold (P < 0.01) decrease in MMP9 expression. A dose-dependent bimodal effect of SAHA on MMP2 expression was noted (3.5-fold increase with 5 μm dose; 0.5-fold decrease with 10 μm dose). No change in fibroblast viability was observed with a 5 μm SAHA dose, whereas a 10 μm dose resulted in a moderate 17% decrease in cell viability. Suberoylanilide hydroxamic acid (SAHA) can effectively inhibit TGFβ-induced differentiation of equine corneal fibroblasts to myofibroblasts and modulates MMP production in vitro. © 2013 American College of Veterinary Ophthalmologists.

  5. Facile solid-phase synthesis of C-terminal peptide aldehydes and hydroxamates from a common Backbone Amide-Linked (BAL) intermediate.

    PubMed

    Gazal, S; Masterson, L R; Barany, G

    2005-12-01

    C-Terminal peptide aldehydes and hydroxamates comprise two separate classes of effective inhibitors of a number of serine, aspartate, cysteine, and metalloproteases. Presented here is a method for preparation of both classes of peptide derivatives from the same resin-bound Weinreb amide precursor. Thus, 5-[(2 or 4)-formyl-3,5-dimethoxyphenoxy]butyramido-polyethylene glycol-polystyrene (BAL-PEG-PS) was treated with methoxylamine hydrochloride in the presence of sodium cyanoborohydride to provide a resin-bound methoxylamine, which was efficiently acylated by different Fmoc-amino acids upon bromo-tris-pyrrolidone-phosphonium hexafluorophosphate (PyBrOP) activation. Solid-phase chain elongation gave backbone amide-linked (BAL) peptide Weinreb amides, which were cleaved either by trifluoroacetic acid (TFA) in the presence of scavengers to provide the corresponding peptide hydroxamates, or by lithium aluminum hydride in tetrahydrofuran (THF) to provide the corresponding C-terminal peptide aldehydes. With several model sequences, peptide hydroxamates were obtained in crude yields of 68-83% and initial purities of at least 85%, whereas peptide aldehydes were obtained in crude yields of 16-53% and initial purities in the range of 30-40%. Under the LiAlH4 cleavage conditions used, those model peptides containing t-Bu-protected aspartate residues underwent partial side chain reduction to the corresponding homoserine-containing peptides. Similar results were obtained when working with high-load aminomethyl-polystyrene, suggesting that this chemistry will be generally applicable to a range of supporting materials.

  6. Improved production and processing of ⁸⁹Zr using a solution target.

    PubMed

    Pandey, Mukesh K; Bansal, Aditya; Engelbrecht, Hendrik P; Byrne, John F; Packard, Alan B; DeGrado, Timothy R

    2016-01-01

    The objectives of the present work were to improve the cyclotron production yield of (89)Zr using a solution target, develop a practical synthesis of the hydroxamate resin used to process the target, and develop a biocompatible medium for (89)Zr elution from the hydroxamate resin. A new solution target (BMLT-2) with enhanced heat dissipation capabilities was designed by using helium-cooled dual foils (0.2 mm Al and 25 μ Havar) and an enhanced water-cooled, elongated solution cavity in the target insert. Irradiations were performed with 14 MeV protons on a 2M solution of yttrium nitrate in 1.25 M nitric acid at 40-μA beam current for 2 h in a closed system. Zirconium-89 was separated from Y by use of a hydroxamate resin. A one-pot synthesis of hydroxamate resin was accomplished by activating the carboxylate groups on a carboxymethyl cation exchange resin using methyl chloroformate followed by reaction with hydroxylamine hydrochloride. After trapping of (89)Zr on hydroxamate resin and rinsing the resin with HCl and water to release Y, (89)Zr was eluted with 1.2 M K2HPO4/KH2PO4 buffer (pH3.5). ICP-MS was used to measure metal contaminants in the final (89)Zr solution. The BMLT-2 target produced 349±49 MBq (9.4±1.2 mCi) of (89)Zr at the end of irradiation with a specific activity of 1.18±0.79 GBq/μg. The hydroxamate resin prepared using the new synthesis method showed a trapping efficiency of 93% with a 75 mg resin bed and 96-97% with a 100-120 mg resin bed. The elution efficiency of (89)Zr with 1.2M K2HPO4/KH2PO4 solution was found to be 91.7±3.7%, compared to >95% for 1 M oxalic acid. Elution with phosphate buffer gave very small levels of metal contaminants: Al=0.40-0.86 μg (n=2), Fe=1.22±0.71 μg (n=3), Y=0.29 μg (n=1). The BMLT-2 target allowed doubling of the beam current for production of (89)Zr, resulting in a greater than 2-fold increase in production yield in comparison with a conventional liquid target. The new one-pot synthesis of hydroxamate resin provides a simpler synthesis method for the (89)Zr trapping resin. Finally, phosphate buffer elutes the (89)Zrfrom the hydroxamate resin in high efficiency while at the same time providing a more biocompatible medium for subsequent use of (89)Zr. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Potent, selective, orally bioavailable inhibitors of tumor necrosis factor-alpha converting enzyme (TACE): discovery of indole, benzofuran, imidazopyridine and pyrazolopyridine P1' substituents.

    PubMed

    Lu, Zhonghui; Ott, Gregory R; Anand, Rajan; Liu, Rui-Qin; Covington, Maryanne B; Vaddi, Krishna; Qian, Mingxin; Newton, Robert C; Christ, David D; Trzaskos, James; Duan, James J-W

    2008-03-15

    Potent and selective inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with several new heterocyclic P1' groups in conjunction with cyclic beta-amino hydroxamic acid scaffolds. Among them, the pyrazolopyridine provided the best overall profile when combined with tetrahydropyran beta-amino hydroxamic acid scaffold. Specifically, inhibitor 49 showed IC(50) value of 1 nM against porcine TACE and 170 nM in the suppression of LPS-induced TNF-alpha of human whole blood. Compound 49 also displayed excellent selectivity over a wide panel of MMPs as well as excellent oral bioavailability (F%>90%) in rat n-in-1 PK studies.

  8. Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Tine Kragh; Hildmann, Christian; Riester, Daniel

    2007-04-01

    The crystal structure of HDAH FB188 in complex with a trifluoromethylketone at 2.2 Å resolution is reported and compared to a previously determined inhibitor complex. Histone deacetylases (HDACs) have emerged as attractive targets in anticancer drug development. To date, a number of HDAC inhibitors have been developed and most of them are hydroxamic acid derivatives, typified by suberoylanilide hydroxamic acid (SAHA). Not surprisingly, structural information that can greatly enhance the design of novel HDAC inhibitors is so far only available for hydroxamic acids in complex with HDAC or HDAC-like enzymes. Here, the first structure of an enzyme complex with amore » nonhydroxamate HDAC inhibitor is presented. The structure of the trifluoromethyl ketone inhibitor 9,9,9-trifluoro-8-oxo-N-phenylnonanamide in complex with bacterial FB188 HDAH (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes strain FB188) has been determined. HDAH reveals high sequential and functional homology to human class 2 HDACs and a high structural homology to human class 1 HDACs. Comparison with the structure of HDAH in complex with SAHA reveals that the two inhibitors superimpose well. However, significant differences in binding to the active site of HDAH were observed. In the presented structure the O atom of the trifluoromethyl ketone moiety is within binding distance of the Zn atom of the enzyme and the F atoms participate in interactions with the enzyme, thereby involving more amino acids in enzyme–inhibitor binding.« less

  9. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  10. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    2002-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  11. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    1999-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  12. Synergistic Effect of the Combination of Novel Suberoylanilide Hydroxamic Acid Derivatives with Cisplatin on Anti-proliferation of Human Cancer Cells.

    PubMed

    Xie, Rui; Shi, Jinghua; Cheng, Chunhui; Yun, Fan; Liu, Xia; Tang, Pingwah; Wu, Xinying; Yang, Ming; Yuan, Qipeng

    2016-01-01

    A novel, green, and atom-economical boric acid catalyzed direct amidation without the use of any coupling agents for the preparation of suberoylanilide hydroxamic acid (SAHA) and SAHA-based inhibitors targeting anti-proliferation of cancer cells is provided. The new SAHA-based inhibitor B123, when used alone, exhibited higher anti-proliferative activities than SAHA or Cisplatin against a number of human cancer cells. We have examined the effect of combination of these SAHA-based inhibitors with Cisplatin. We found synergistic effects of the combination of SAHA-based inhibitors with Cisplatin over a wide range of concentrations against human liver cancer cells HepG2 and two human lung cancer cell lines H1299 and H460. This synergism leads up to 8-fold of dose reduction for Cisplatin in the combination with our synthesized inhibitor B123 against H1299.

  13. 3-Hydroxypyridin-2-thione as novel zinc binding group for selective histone deacetylase inhibition.

    PubMed

    Patil, Vishal; Sodji, Quaovi H; Kornacki, James R; Mrksich, Milan; Oyelere, Adegboyega K

    2013-05-09

    Small molecules bearing hydroxamic acid as the zinc binding group (ZBG) have been the most effective histone deacetylase inhibitors (HDACi) to date. However, concerns about the pharmacokinetic liabilities of the hydroxamic acid moiety have stimulated research efforts aimed at finding alternative nonhydroxamate ZBGs. We have identified 3-hydroxypyridin-2-thione (3-HPT) as a novel ZBG that is compatible with HDAC inhibition. 3-HPT inhibits HDAC 6 and HDAC 8 with an IC50 of 681 and 3675 nM, respectively. Remarkably, 3-HPT gives no inhibition of HDAC 1. Subsequent optimization led to several novel 3HPT-based HDACi that are selective for HDAC 6 and HDAC 8. Furthermore, a subset of these inhibitors induces apoptosis in various cancer cell lines.

  14. Nitroreductase-dependent mutagenicity of p-nitrophenylhydroxylamine and its N-acetyl and N-formyl hydroxamic acids.

    PubMed

    Corbett, M D; Wei, C; Corbett, B R

    1985-05-01

    p-Nitrophenylhydroxylamine (NPH) and two hydroxamic acids derived from it were synthesized and subjected to mutagenicity testing in Salmonella typhimurium strains TA98, TA98NR, TA1538 and TA1538NR. In addition, p-dinitrobenzene (DNB), p-nitroaniline (NA) and p-nitroacetanilide (AcNA) were simultaneously examined for mutagenic action against these four tester strains. NPH, its N-acetyl (AcNPH) and N-formyl (FoNPH) derivatives, and also DNB displayed strong mutagenic action to the nitroreductase-containing strains, TA98 and TA1538. NPH was the most potent chemical in this series against both of these strains, while the two hydroxamic acids AcNPH and FoNPH, and also DNB displayed approximately the same degree of mutagenicity. In the nitroreductase-deficient strains, TA98NR and TA1538NR, the mutagenicity of these four compounds was markedly reduced. The necessity for nitroreduction in order to activate these promutagens is fairly certain; however, the lack of mutagenicity of NA and AcNA towards all four tester strains made the interpretation of these data somewhat more complicated. Several possible bioactivation pathways were presented, with one mechanism in particular being proposed. This mechanism requires only that the strong electron-withdrawing nitro group be converted to an electron-donating group by bacterial nitroreductase. Such a mechanism is unique for the bioactivation of nitro aromatics by nitroreductase, since the enzymatic reduction need not produce the intermediary hydroxylamine metabolite.

  15. Metabolic changes in rat serum after administration of suberoylanilide hydroxamic acid and discriminated by SVM.

    PubMed

    Yu, J; Wu, H; Lin, Z; Su, K; Zhang, J; Sun, F; Wang, X; Wen, C; Cao, H; Hu, L

    2017-12-01

    Suberoylanilide hydroxamic acid (SAHA) exerts marked anticancer effects via promotion of apoptosis, cell cycle arrest, and prevention of oncogene expression. In this study, serum metabolomics and artificial intelligence recognition were used to investigate SAHA toxicity. Forty rats (220 ± 20 g) were randomly divided into control and three SAHA groups (low, medium, and high); the experimental groups were treated with 12.3, 24.5, or 49.0 mg kg -1 SAHA once a day via intragastric administration. After 7 days, blood samples from the four groups were collected and analyzed by gas chromatography-mass spectrometry, and pathological changes in the liver were examined using microscopy. The results showed that increased levels of urea, oleic acid, and glutaconic acid were the most significant indicators of toxicity. Octadecanoic acid, pentadecanoic acid, glycerol, propanoic acid, and uric acid levels were lower in the high SAHA group. Microscopic observation revealed no obvious damage to the liver. Based on these data, a support vector machine (SVM) discrimination model was established that recognized the metabolic changes in the three SAHA groups and the control group with 100% accuracy. In conclusion, the main toxicity caused by SAHA was due to excessive metabolism of saturated fatty acids, which could be recognized by an SVM model.

  16. Inhibition of urease activity in the urinary tract pathogen Staphylococcus saprophyticus.

    PubMed

    Loes, A N; Ruyle, L; Arvizu, M; Gresko, K E; Wilson, A L; Deutch, C E

    2014-01-01

    Urease is a virulence factor for the Gram-positive urinary tract pathogen Staphylococcus saprophyticus. The susceptibility of this enzyme to chemical inhibition was determined using soluble extracts of Staph. saprophyticus strain ATCC 15305. Acetohydroxamic acid (Ki = 8.2 μg ml(-1) = 0.106 mmol l(-1) ) and DL-phenylalanine hydroxamic acid (Ki = 21 μg ml(-1) = 0.116 mmol l(-1) ) inhibited urease activity competitively. The phosphorodiamidate fluorofamide also caused competitive inhibition (Ki = 0.12 μg ml(-1) = 0.553 μmol l(-1) = 0.000553 mmol l(-1) ), but the imidazole omeprazole had no effect. Two flavonoids found in green tea extract [(+)-catechin hydrate (Ki = 357 μg ml(-1) = 1.23 mmol l(-1) ) and (-)-epigallocatechin gallate (Ki = 210 μg ml(-1) = 0.460 mmol l(-1) )] gave mixed inhibition. Acetohydroxamic acid, DL-phenylalanine hydroxamic acid, fluorofamide, (+)-catechin hydrate and (-)-epigallocatechin gallate also inhibited urease activity in whole cells of strains ATCC 15305, ATCC 35552 and ATCC 49907 grown in a rich medium or an artificial urine medium. Addition of acetohydroxamic acid or fluorofamide to cultures of Staph. saprophyticus in an artificial urine medium delayed the increase in pH that normally occurs during growth. These results suggest that urease inhibitors may be useful for treating urinary tract infections caused by Staph. saprophyticus. The enzyme urease is a virulence factor for the Gram-positive urinary tract pathogen Staphylococcus saprophyticus. We have shown that urease activity in cell-free extracts and whole bacterial cells is susceptible to inhibition by hydroxamates, phosphorodiamidates and flavonoids, but not by imidazoles. Acetohydroxamic acid and fluorofamide in particular can temporarily delay the increase in pH that occurs when Staph. saprophyticus is grown in an artificial urine medium. These results suggest that urease inhibitors may be useful as chemotherapeutic agents for the treatment of urinary tract infections caused by this micro-organism. © 2013 The Society for Applied Microbiology.

  17. Chiral mercaptoacetamides display enantioselective inhibition of histone deacetylase 6 and exhibit neuroprotection in cortical neuron models of oxidative stress.

    PubMed

    Kalin, Jay H; Zhang, Hankun; Gaudrel-Grosay, Sophie; Vistoli, Giulio; Kozikowski, Alan P

    2012-03-05

    Mercaptoacetamide-based ligands have been designed as a new class of histone deacetylase (HDAC) inhibitors for possible use in the treatment of neurodegenerative diseases. The thiol group of these compounds provides a key binding element for interaction with the catalytic zinc ion, and thus differs from the more typically employed hydroxamic acid based zinc binding groups. Herein we disclose the chemistry and biology of some substituted mercaptoacetamides with the intention of increasing HDAC6 isoform selectivity while maintaining potency similar to their hydroxamic acid analogues. The introduction of a stereocenter α to the thiol group was found to have a considerable impact on HDAC inhibitor potency. These new compounds were also profiled for their therapeutic potential in an in vitro model of stress-induced neuronal injury and were found to act as nontoxic neuroprotective agents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bio-waste corn-cob cellulose supported poly(hydroxamic acid) copper complex for Huisgen reaction: Waste to wealth approach.

    PubMed

    Mandal, Bablu Hira; Rahman, Md Lutfor; Yusoff, Mashitah Mohd; Chong, Kwok Feng; Sarkar, Shaheen M

    2017-01-20

    Corn-cob cellulose supported poly(hydroxamic acid) Cu(II) complex was prepared by the surface modification of waste corn-cob cellulose through graft copolymerization and subsequent hydroximation. The complex was characterized by IR, UV, FESEM, TEM, XPS, EDX and ICP-AES analyses. The complex has been found to be an efficient catalyst for 1,3-dipolar Huisgen cycloaddition (CuAAC) of aryl/alkyl azides with a variety of alkynes as well as one-pot three-components reaction in the presence of sodium ascorbate to give the corresponding cycloaddition products in up to 96% yield and high turn over number (TON 18,600) and turn over frequency (TOF 930h -1 ) were achieved. The complex was easy to recover from the reaction mixture and reused six times without significant loss of its catalytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Synthesis and structure of a heptanuclear nickel(II) complex uniquely exhibiting four distinct binding modes, two of which are novel, for a hydroxamate ligand.

    PubMed

    Gaynor, Declan; Starikova, Zoya A; Ostrovsky, Sergei; Haase, Wolfgang; Nolan, Kevin B

    2002-03-07

    The reaction of 2-(dimethylamino)phenylhydroxamic acid (2-dmAphaH) with NiSO(4).6H2O gives the complex [Ni7(2-dmAphaH-1)2(2-dmApha)8(H2O)2]SO(4).15H2O uniquely exhibiting four distinct hydroxamate binding modes, two of which are novel, and showing both antiferromagnetic and ferromagnetic interactions in contrast to [Cu5(2-dmAphaH-1)4(HSO4)2(MeOH)2].2MeOH, a strongly antiferromagnetic metallacrown formed with CuSO(4).5H2O.

  20. Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens

    PubMed Central

    Bakri, Ridla; Parikesit, Arli Aditya; Satriyanto, Cipta Prio; Kerami, Djati; Tambunan, Usman Sumo Friend

    2014-01-01

    Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔG binding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations. PMID:25214833

  1. Investigation on the ZBG-functionality of phenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase inhibitors.

    PubMed

    Musso, Loana; Cincinelli, Raffaella; Zuco, Valentina; Zunino, Franco; Nurisso, Alessandra; Cuendet, Muriel; Giannini, Giuseppe; Vesci, Loredana; Pisano, Claudio; Dallavalle, Sabrina

    2015-10-15

    A series of alternative Zn-binding groups were explored in the design of phenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Most of the synthesized compounds were less effective than the parent hydroxamic acid. However, the profile of activity shown by the analog bearing a hydroxyurea head group, makes this derivative promising for further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Exploring alternative Zn-binding groups in the design of HDAC inhibitors: squaric acid, N-hydroxyurea, and oxazoline analogues of SAHA.

    PubMed

    Hanessian, Stephen; Vinci, Valerio; Auzzas, Luciana; Marzi, Mauro; Giannini, Giuseppe

    2006-09-15

    Analogues of suberoylanilide hydroxamic acid (SAHA) were prepared by replacing the Zn-binding group with squaric acid, N-hydroxyurea, and 4-hydroxymethyl oxazoline units, also varying the length of the aliphatic chain. No inhibitory activity on HDAC was observed below 1.0 microM and no cytotoxic activity on different tumor cell lines was seen below 20.0 microM.

  3. Carboxylic acid isosteres improve the activity of ring-fused 2-pyridones that inhibit pilus biogenesis in E. coli

    PubMed Central

    Åberg, Veronica; Das, Pralay; Chorell, Erik; Hedenström, Mattias; Pinkner, Jerome S.; Hultgren, Scott J.; Almqvist, Fredrik

    2009-01-01

    Ring-fused 2-pyridones, termed pilicides, are small synthetic compounds that inhibit pilus assembly in uropathogenic E. coli. Their biological activity is clearly dependent upon a carboxylic acid functionality. Here we present the synthesis and biological evaluation of carboxylic acid isosteres, including e.g. tetrazoles, acyl sulfonamides and hydroxamic acids, of two lead 2-pyridones. Two independent biological evaluations show that acyl sulfonamides and tetrazoles significantly improve pilicide activity against uropathogenic E. coli. PMID:18499455

  4. Synthesis and structure-activity relationship of histone deacetylase (HDAC) inhibitors with triazole-linked cap group.

    PubMed

    Chen, Po C; Patil, Vishal; Guerrant, William; Green, Patience; Oyelere, Adegboyega K

    2008-05-01

    Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. Small molecule HDAC inhibitors identified so far fall in to three distinct structural motifs: the zinc-binding group (ZBG), a hydrophobic linker, and a recognition cap group. Here we report the suitability of a 1,2,3-triazole ring as a surface recognition cap group-linking moiety in suberoylanilide hydroxamic acid-like (SAHA-like) HDAC inhibitors. Using "click" chemistry (Huisgen cycloaddition reaction), several triazole-linked SAHA-like hydroxamates were synthesized. Structure-activity relationship revealed that the position of the triazole moiety as well as the identity of the cap group markedly affected the in vitro HDAC inhibition and cell growth inhibitory activities of this class of compounds.

  5. Glutamic acid is an active site residue of angiotensin I-converting enzyme. Use of the Lossen rearrangement for identification of dicarboxylic acid residues.

    PubMed

    Harris, R B; Wilson, I B

    1983-01-25

    A set of chemical reactions was used to show that one glutamic acid residue at the active site of bovine lung angiotensin I-converting enzyme is esterified with the alkylating agent p-[N,N-bis(chloroethyl)amino] phenylbutyryl-L-Pro (chlorambucyl-L-Pro), an affinity label for this enzyme (Harris, R. B., and Wilson, I. B. (1982) J. Biol. Chem. 257, 811-815). The same procedure was used to confirm that a glutamic acid residue of carboxypeptidase A alpha is esterified by reaction with bromoacetyl-N-methyl-L-phenylalanine (Haas, G. M., and Neurath, H. (1971) Biochemistry 10, 3535-3546). In the procedure described in this paper, the esterified residue at the active site is converted to the hydroxamic acid by reaction with hydroxylamine and the hydroxamic acid is subject to the Lossen rearrangement. If a glutamic acid residue was esterified, 1 eq of 2,4-diaminobutyric acid will be formed. Aspartyl esters will give 2,3-diaminopropionic acid. The diamino acids can be quantitatively measured using the short column of an amino acid analyzer if the amount of lysine and histidine is largely decreased by modification with suitable side chain protecting groups. With carboxypeptidase A, the reactions were done on the whole undigested enzyme. With the converting enzyme, we first cleaved the esterified enzyme with cyanogen bromide. Twenty-nine cleavage peptides were separated on high performance liquid chromatography and one of these contained all of the bound radioactive inhibitor. This active site peptide was then subjected to the derivatization and Lossen procedures, and 1 eq of 2,4-diaminobutyric acid was obtained.

  6. Interaction of solid organic acids with carbon nanotube field effect transistors

    NASA Astrophysics Data System (ADS)

    Klinke, Christian; Afzali, Ali; Avouris, Phaedon

    2006-10-01

    A series of solid organic acids were used to p-dope carbon nanotubes. The extent of doping is shown to be dependent on the pKa value of the acids. Highly fluorinated carboxylic acids and sulfonic acids are very effective in shifting the threshold voltage and making carbon nanotube field effect transistors to be more p-type devices. Weaker acids like phosphonic or hydroxamic acids had less effect. The doping of the devices was accompanied by a reduction of the hysteresis in the transfer characteristics. In-solution doping survives standard fabrication processes and renders p-doped carbon nanotube field effect transistors with good transport characteristics.

  7. Development of Matrix Metalloproteinase-2 Inhibitors for Cardioprotection

    PubMed Central

    Bencsik, Péter; Kupai, Krisztina; Görbe, Anikó; Kenyeres, Éva; Varga, Zoltán V.; Pálóczi, János; Gáspár, Renáta; Kovács, László; Weber, Lutz; Takács, Ferenc; Hajdú, István; Fabó, Gabriella; Cseh, Sándor; Barna, László; Csont, Tamás; Csonka, Csaba; Dormán, György; Ferdinandy, Péter

    2018-01-01

    The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction. PMID:29674965

  8. Nanostructured delivery system for Suberoylanilide hydroxamic acid against lung cancer cells.

    PubMed

    Sankar, Renu; Karthik, Selvaraju; Subramanian, Natesan; Krishnaswami, Venkateshwaran; Sonnemann, Jürgen; Ravikumar, Vilwanathan

    2015-06-01

    With the objective to provide a potential approach for the treatment of lung cancer, nanotechnology based Suberoylanilide hydroxamic acid (SAHA)-loaded Poly-d, l-lactide-co glycolide (PLGA) nanoparticles have been formulated using the nanoprecipitation technique. The acquired nanoparticles were characterized by various throughput techniques and the analyses showed the presence of smooth and spherical shaped SAHA-loaded PLGA nanoparticles, with an encapsulation efficiency of 44.8% and a particle size of 208nm. The compatibility between polymer and drug in the formulation was tested using FT-IR, Micro-Raman spectrum and DSC thermogram analyses, revealing a major interaction between the drug and polymer. The in vitro drug release from the SAHA-loaded PLGA nanoparticles was found to be biphasic with an initial burst followed by a sustained release for up to 50h. In experiments using the lung cancer cell line A549, SAHA-loaded PLGA nanoparticles demonstrated a superior antineoplastic activity over free SAHA. In conclusion, SAHA-loaded PLGA nanoparticles may be a useful novel approach for the treatment of lung cancer. Copyright © 2015. Published by Elsevier B.V.

  9. LBH589, A Hydroxamic Acid-Derived HDAC Inhibitor, is Neuroprotective in Mouse Models of Huntington’s Disease

    PubMed Central

    Chopra, Vanita; Quinti, Luisa; Khanna, Prarthana; Paganetti, Paolo; Kuhn, Rainer; Young, Anne B.; Kazantsev, Aleksey G.; Hersch, Steven

    2016-01-01

    Background: Modulation of gene transcription by HDAC inhibitors has been shown repeatedly to be neuroprotective in cellular, invertebrate, and rodent models of Huntington’s disease (HD). It has been difficult to translate these treatments to the clinic, however, because existing compounds have limited potency or brain bioavailability. Objective: In the present study, we assessed the therapeutic potential of LBH589, an orally bioavailable hydroxamic acid-derived nonselective HDAC inhibitor in mouse models of HD. Method: The efficacy of LBH589 is tested in two HD mouse models using various biochemical, behavioral and neuropathological outcome measures. Results: We show that LBH589 crosses the blood brain barrier; induces histone hyperacetylation and prevents striatal neuronal shrinkage in R6/2 HD mice. In full-length knock-in HD mice LBH589-treatment improves motor performance and reduces neuronal atrophy. Conclusions: Our efficacious results of LBH589 in fragment and full-length mouse models of HD suggest that LBH589 is a promising candidate for clinical assessment in HD patients and provides confirmation that non-selective HDAC inhibitors can be viable clinical candidates. PMID:27983565

  10. Influence of natural and synthetic histone deacetylase inhibitors on chromatin.

    PubMed

    Licciardi, Paul V; Kwa, Faith A A; Ververis, Katherine; Di Costanzo, Natasha; Balcerczyk, Aneta; Tang, Mimi L; El-Osta, Assam; Karagiannis, Tom C

    2012-07-15

    Histone deacetylase inhibitors (HDACIs) have emerged as a new class of anticancer therapeutics. The hydroxamic acid, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™), and the cyclic peptide, depsipeptide (Romidepsin, Istodax™), were approved by the U.S. Food and Drug Administration (FDA) for the treatment of cutaneous T-cell lymphoma in 2006 and 2009, respectively. At least 15 HDACIs are currently undergoing clinical trials either alone or in combination with other therapeutic modalities for the treatment of numerous hematological and solid malignancies. The potential utility of HDACIs has been extended to nononcologic applications, including autoimmune disorders, inflammation, diseases of the central nervous system, and malaria. Given the promise of HDACIs, there is growing interest in the potential of dietary compounds that possess HDAC inhibition activity. This review is focused on the identification of and recent findings with HDACIs from dietary, medicinal plant, and microbial sources. We discuss the mechanisms of action and clinical potential of natural HDACIs. Apart from identification of further HDACI compounds from dietary sources, further research will be aimed at understanding the effects on gene regulation on lifetime exposure to these compounds. Another important issue that requires clarification.

  11. Epigenetic therapy potential of suberoylanilide hydroxamic acid on invasive human non-small cell lung cancer cells.

    PubMed

    Zhang, Shirong; Wu, Kan; Feng, Jianguo; Wu, Zhibing; Deng, Qinghua; Guo, Chao; Xia, Bing; Zhang, Jing; Huang, Haixiu; Zhu, Lucheng; Zhang, Ke; Shen, Binghui; Chen, Xufeng; Ma, Shenglin

    2016-10-18

    Metastasis is the reason for most cancer death, and a crucial primary step for cancer metastasis is invasion of the surrounding tissue, which may be initiated by some rare tumor cells that escape the heterogeneous primary tumor. In this study, we isolated invasive subpopulations of cancer cells from human non-small cell lung cancer (NSCLC) H460 and H1299 cell lines, and determined the gene expression profiles and the responses of these invasive cancer cells to treatments of ionizing radiation and chemotherapeutic agents. The subpopulation of highly invasive NSCLC cells showed epigenetic signatures of epithelial-mesenchymal transition, cancer cell stemness, increased DNA damage repair and cell survival signaling. We also investigated the epigenetic therapy potential of suberoylanilide hydroxamic acid (SAHA) on invasive cancer cells, and found that SAHA suppresses cancer cell invasiveness and sensitizes cancer cells to treatments of IR and chemotherapeutic agents. Our results provide guidelines for identification of metastatic predictors and for clinical management of NSCLC. This study also suggests a beneficial clinical potential of SAHA as a chemotherapeutic agent for NSCLC patients.

  12. Exploration and Pharmacokinetic Profiling of Phenylalanine Based Carbamates as Novel Substance P 1–7 Analogues

    PubMed Central

    2014-01-01

    The bioactive metabolite of Substance P, the heptapeptide SP1–7 (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH), has been shown to attenuate signs of hyperalgesia in diabetic mice, which indicate a possible use of compounds targeting the SP1–7 binding site as analgesics for neuropathic pain. Aiming at the development of drug-like SP1–7 peptidomimetics we have previously reported on the discovery of H-Phe-Phe-NH2 as a high affinity lead compound. Unfortunately, the pharmacophore of this compound was accompanied by a poor pharmacokinetic (PK) profile. Herein, further lead optimization of H-Phe-Phe-NH2 by substituting the N-terminal phenylalanine for a benzylcarbamate group giving a new type of SP1–7 analogues with good binding affinities is reported. Extensive in vitro as well as in vivo PK characterization is presented for this compound. Evaluation of different C-terminal functional groups, i.e., hydroxamic acid, acyl sulfonamide, acyl cyanamide, acyl hydrazine, and oxadiazole, suggested hydroxamic acid as a bioisosteric replacement for the original primary amide. PMID:25516784

  13. Exploration and pharmacokinetic profiling of phenylalanine based carbamates as novel substance p 1-7 analogues.

    PubMed

    Fransson, Rebecca; Nordvall, Gunnar; Bylund, Johan; Carlsson-Jonsson, Anna; Kratz, Jadel M; Svensson, Richard; Artursson, Per; Hallberg, Mathias; Sandström, Anja

    2014-12-11

    The bioactive metabolite of Substance P, the heptapeptide SP1-7 (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH), has been shown to attenuate signs of hyperalgesia in diabetic mice, which indicate a possible use of compounds targeting the SP1-7 binding site as analgesics for neuropathic pain. Aiming at the development of drug-like SP1-7 peptidomimetics we have previously reported on the discovery of H-Phe-Phe-NH2 as a high affinity lead compound. Unfortunately, the pharmacophore of this compound was accompanied by a poor pharmacokinetic (PK) profile. Herein, further lead optimization of H-Phe-Phe-NH2 by substituting the N-terminal phenylalanine for a benzylcarbamate group giving a new type of SP1-7 analogues with good binding affinities is reported. Extensive in vitro as well as in vivo PK characterization is presented for this compound. Evaluation of different C-terminal functional groups, i.e., hydroxamic acid, acyl sulfonamide, acyl cyanamide, acyl hydrazine, and oxadiazole, suggested hydroxamic acid as a bioisosteric replacement for the original primary amide.

  14. Selective matrix metalloproteinase inhibitor, N-biphenyl sulfonyl phenylalanine hydroxamic acid, inhibits the migration of CD4+ T lymphocytes in patients with HTLV-I-associated myelopathy.

    PubMed

    Ikegami, Mayumi; Umehara, Fujio; Ikegami, Naohito; Maekawa, Ryuji; Osame, Mitsuhiro

    2002-06-01

    Matrix metalloproteinases (MMPs) have been reported to be involved in various inflammatory disorders. Previous studies revealed that MMP-2 and MMP-9 might play important roles in the breakdown of the blood-brain barrier (BBB) in the central nervous system (CNS) of patients with HTLV-I-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). N-Biphenyl sulfonyl-phenylalanine hydroxamic acid (BPHA) selectively inhibits MMP-2, -9 and -14, but not MMP-1, -3 and -7. In the present study, we examined whether or not the selective MMP inhibitor BPHA could inhibit the heightened migrating activity of CD4+ T cells in HAM/TSP patients. The migration assay using an invasion chamber showed that migration of CD4+ T cells in HAM/TSP patients was inhibited by 25 microM BPHA. In addition, the inhibitory ratio of migrating CD4+ lymphocytes was higher in HAM patients compared to normal controls. These results suggest that the selective MMP inhibitor BPHA has therapeutic potential for HAM/TSP.

  15. LBH589, A Hydroxamic Acid-Derived HDAC Inhibitor, is Neuroprotective in Mouse Models of Huntington's Disease.

    PubMed

    Chopra, Vanita; Quinti, Luisa; Khanna, Prarthana; Paganetti, Paolo; Kuhn, Rainer; Young, Anne B; Kazantsev, Aleksey G; Hersch, Steven

    2016-12-15

    Modulation of gene transcription by HDAC inhibitors has been shown repeatedly to be neuroprotective in cellular, invertebrate, and rodent models of Huntington's disease (HD). It has been difficult to translate these treatments to the clinic, however, because existing compounds have limited potency or brain bioavailability. In the present study, we assessed the therapeutic potential of LBH589, an orally bioavailable hydroxamic acid-derived nonselective HDAC inhibitor in mouse models of HD. The efficacy of LBH589 is tested in two HD mouse models using various biochemical, behavioral and neuropathological outcome measures. We show that LBH589 crosses the blood brain barrier; induces histone hyperacetylation and prevents striatal neuronal shrinkage in R6/2 HD mice. In full-length knock-in HD mice LBH589-treatment improves motor performance and reduces neuronal atrophy. Our efficacious results of LBH589 in fragment and full-length mouse models of HD suggest that LBH589 is a promising candidate for clinical assessment in HD patients and provides confirmation that non-selective HDAC inhibitors can be viable clinical candidates.

  16. In silico modification of Zn2+ binding group of suberoylanilide hydroxamic acid (SAHA) by organoselenium compounds as Homo sapiens class II HDAC inhibitor of cervical cancer

    NASA Astrophysics Data System (ADS)

    Sumo Friend Tambunan, Usman; Bakri, Ridla; Aditya Parikesit, Arli; Ariyani, Titin; Dyah Puspitasari, Ratih; Kerami, Djati

    2016-02-01

    Cervical cancer is the most common cancer in women, and ranks seventh of all cancers worldwide, with 529000 cases in 2008 and more than 85% cases occur in developing countries. One way to treat this cancer is through the inhibition of HDAC enzymes which play a strategic role in the regulation of gene expression. Suberoyl Anilide Hydroxamic Acid (SAHA) or Vorinostat is a drug which commercially available to treat the cancer, but still has some side effects. This research present in silico SAHA modification in Zinc Binding Group (ZBG) by organoselenium compound to get ligands which less side effect. From molecular docking simulation, and interaction analysis, there are five best ligands, namely CC27, HA27, HB28, IB25, and KA7. These five ligands have better binding affinity than the standards, and also have interaction with Zn2+ cofactor of inhibited HDAC enzymes. This research is expected to produce more potent HDAC inhibitor as novel drug for cervical cancer treatment.

  17. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors.

    PubMed

    Tashima, Toshihiko; Murata, Hiroaki; Kodama, Hidehiko

    2014-07-15

    Histone deacetylase (HDAC) inhibitions are known to elicit anticancer effects. We designed and synthesized several HDAC inhibitors. Among these compounds, compound 40 exhibited a more than 10-fold stronger inhibitory activity compared with that of suberoylanilide hydroxamic acid (SAHA) against each human HDAC isozyme in vitro (IC50 values of 40: HDAC1, 0.0038μM; HDAC2, 0.0082μM; HDAC3, 0.015μM; HDAC8, 0.0060μM; HDAC4, 0.058μM; HDAC9, 0.0052μM; HDAC6, 0.058μM). The dose of the administered HDAC inhibitors that contain hydroxamic acid as the zinc-binding group may be reduced by 40. Because the carbostyril subunit is a time-tested structural component of drugs and biologically active compounds, 40 most likely exhibits good absorption, distribution, metabolism, excretion, and toxicity (ADMET). Thus, compound 40 is expected to be a promising therapeutic agent or chemical tool for the investigation of life process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Chemical heterogeneity as a result of hydroxylamine cleavage of a fusion protein of human insulin-like growth factor I.

    PubMed Central

    Canova-Davis, E; Eng, M; Mukku, V; Reifsnyder, D H; Olson, C V; Ling, V T

    1992-01-01

    Recombinant DNA techniques were used to biosynthesize human insulin-like growth factor I (hIGF-I) as a fusion protein wherein the fusion polypeptide is an IgG-binding moiety derived from staphylococcal protein A. This fusion protein is produced in Escherichia coli and secreted into the fermentation broth. In order to release mature recombinant-derived hIGF-I (rhIGF-I), the fusion protein is treated with hydroxylamine, which cleaves a susceptible Asn-Gly bond that has been engineered into the fusion protein gene. Reversed-phase h.p.l.c. was used to estimate the purity of the rhIGF-I preparations, especially for the quantification of the methionine sulphoxide-containing variant. It was determined that hydroxylamine cleavage of the fusion protein produced, as a side reaction, hydroxamates of the asparagine and glutamine residues in rhIGF-I. Although isoelectric focusing was effective in detecting, and reversed-phase h.p.l.c. for producing enriched fractions of the hydroxamate variants, ion-exchange chromatography was a more definitive procedure, as it allowed quantification and facile removal of these variants. The identity of the variants as hydroxamates was established by Staphylococcus aureus V8 proteinase digestion, followed by m.s., as the modification was transparent to amino acid and N-terminal sequence analyses. The biological activity of rhIGF-I was established by its ability to incorporate [3H]thymidine into the DNA of BALB/c373 cells and by a radioreceptor assay utilizing human placental membranes. Both assays demonstrate that the native, recombinant and methionine sulphoxide and hydroxamate IGF-I variants are essentially equipotent. Images Fig. 2. PMID:1637301

  19. Comparative molecular dynamics simulations of histone deacetylase-like protein: binding modes and free energy analysis to hydroxamic acid inhibitors.

    PubMed

    Yan, Chunli; Xiu, Zhilong; Li, Xiaohui; Li, Shenmin; Hao, Ce; Teng, Hu

    2008-10-01

    Histone deacetylases (HDACs) play an important role in gene transcription, and inhibitors of HDACs can induce cell differentiation and suppress cell proliferation in tumor cells. Histone deacetylase1 (HDAC1) binds suberanilohydroxamic acid (SAHA) and 7-phenyl-2, 4, 6-hepta-trienoyl hydroxamic acid (CG-1521) with moderately low affinity (DeltaG = -8.6 and -7.8 kcal mol(-1)). The structurally related (E)-2-(3-(3-(hydroxyamino)-3-oxoprop-1-enyl)phenyl)-N(1),N(3)-diphenylmalonamide (SK-683), a Trichostatin A (TSA)-like HDAC1 inhibitor, and TSA are bound to the HDAC1 with -12.3 and -10.3 kcal mol(-1) of DeltaG, higher binding free energies than SAHA and CG-1521. Histone deacetylase-like protein (HDLP), an HDAC homologue, shows a 35.2% sequence identity of HDLP and human HDAC1. Molecular dynamics simulation and the molecular mechanics/generalized-Born surface area (MM-GBSA) free energy calculations were applied to investigate the factors responsible for the relatively activity of these four inhibitors to HDLP. In addition, computational alanine scanning of the binding site residues was carried out to determine the contribution components from van der Waals, electrostatic interaction, nonpolar and polar energy of solvation as well as the effects of backbones and side-chains with the MM-GBSA method. MM-GBSA methods reproduced the experimental relative affinities of the four inhibitors in good agreement (R(2) = 0.996) between experimental and computed binding energies. The MM-GBSA calculations showed that, the number of hydrogen bonds formed between the HDLP and inhibitors, which varied in the system studied, and electrostatic interactions determined the magnitude of the free energies for HDLP-inhibitor interactions. The MM-GBSA calculations revealed that the binding of HDLP to these four hydroxamic acid inhibitors is mainly driven by van der Waals/nonpolar interactions. This study can be a guide for the optimization of HDAC inhibitors and future design of new therapeutic agents for the treatment of cancer.

  20. N-Alkyl Urea Hydroxamic Acids as a New Class of Peptide Deformylase Inhibitors with Antibacterial Activity

    PubMed Central

    Hackbarth, Corinne J.; Chen, Dawn Z.; Lewis, Jason G.; Clark, Kirk; Mangold, James B.; Cramer, Jeffrey A.; Margolis, Peter S.; Wang, Wen; Koehn, Jim; Wu, Charlotte; Lopez, S.; Withers III, George; Gu, Helen; Dunn, Elina; Kulathila, R.; Pan, Shi-Hao; Porter, Wilma L.; Jacobs, Jeff; Trias, Joaquim; Patel, Dinesh V.; Weidmann, Beat; White, Richard J.; Yuan, Zhengyu

    2002-01-01

    Peptide deformylase (PDF) is a prokaryotic metalloenzyme that is essential for bacterial growth and is a new target for the development of antibacterial agents. All previously reported PDF inhibitors with sufficient antibacterial activity share the structural feature of a 2-substituted alkanoyl at the P1′ site. Using a combination of iterative parallel synthesis and traditional medicinal chemistry, we have identified a new class of PDF inhibitors with N-alkyl urea at the P1′ site. Compounds with MICs of ≤4 μg/ml against gram-positive and gram-negative pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae, have been identified. The concentrations needed to inhibit 50% of enzyme activity (IC50s) for Escherichia coli Ni-PDF were ≤0.1 μM, demonstrating the specificity of the inhibitors. In addition, these compounds were very selective for PDF, with IC50s of consistently >200 μM for matrilysin and other mammalian metalloproteases. Structure-activity relationship analysis identified preferred substitutions resulting in improved potency and decreased cytotoxity. One of the compounds (VRC4307) was cocrystallized with PDF, and the enzyme-inhibitor structure was determined at a resolution of 1.7 Å. This structural information indicated that the urea compounds adopt a binding position similar to that previously determined for succinate hydroxamates. Two compounds, VRC4232 and VRC4307, displayed in vivo efficacy in a mouse protection assay, with 50% protective doses of 30.8 and 17.9 mg/kg of body weight, respectively. These N-alkyl urea hydroxamic acids provide a starting point for identifying new PDF inhibitors that can serve as antimicrobial agents. PMID:12183225

  1. Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Justin I.; Brown, Matthew F.; Reilly, Usa

    The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.

  2. Photometric microdetermination of malathion

    USGS Publications Warehouse

    Kallman, B.J.

    1962-01-01

    Carboxylic esters and lactones react with alkaline hydroxylamine to yield hydroxamates; these in acidic solution form colored iron(III) complexes. A photometric determination of such esters and lactones is thus permitted and has been extensively applied ( I-6). Hestrin ( 3) utilized this method for the microdetermination of acetylcholine and his procedure is much used for the in vitro study of cholinesterase activity and inhibition (4-6).

  3. The discovery of novel tartrate-based TNF-[alpha] converting enzyme (TACE) inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosner, Kristin E.; Guo, Zhuyan; Orth, Peter

    2010-09-17

    A novel series of TNF-{alpha} convertase (TACE) inhibitors which are non-hydroxamate have been discovered. These compounds are bis-amides of L-tartaric acid (tartrate) and coordinate to the active site zinc in a tridentate manner. They are selective for TACE over other MMP's. We report the first X-ray crystal structure for a tartrate-based TACE inhibitor.

  4. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity.

    PubMed

    Ieda, Naoya; Yamada, Sota; Kawaguchi, Mitsuyasu; Miyata, Naoki; Nakagawa, Hidehiko

    2016-06-15

    Histone deacetylases (HDACs) are involved in epigenetic control of the expression of various genes by catalyzing deacetylation of ε-acetylated lysine residues. Here, we report the design, synthesis and evaluation of the (7-diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid (AC-SAHA) as a caged HDAC inhibitor, which releases the known pan-HDAC inhibitor SAHA upon cleavage of the photolabile (7-diethylaminocoumarin-4-yl)methyl protecting group in response to photoirradiation. A key advantage of AC-SAHA is that the caged derivative itself shows essentially no HDAC-inhibitory activity. Upon photoirradiation, AC-SAHA decomposes to SAHA and a 7-diethylaminocoumarin derivative, together with some minor products. We confirmed that AC-SAHA inhibits HDAC in response to photoirradiation in vitro by means of chemiluminescence assay. AC-SAHA also showed photoinduced inhibition of proliferation of human colon cancer cell line HCT116, as determined by MTT assay. Thus, AC-SAHA should be a useful tool for spatiotemporally controlled inhibition of HDAC activity, as well as a candidate chemotherapeutic reagent for human colon cancer. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients.

    PubMed

    Almeida, Sandra; Gao, Fuying; Coppola, Giovanni; Gao, Fen-Biao

    2016-06-01

    Mutations in the granulin (GRN) gene cause frontotemporal dementia (FTD) due to progranulin haploinsufficiency. Compounds that can increase progranulin production and secretion may be considered as potential therapeutic drugs; however, very few of them have been directly tested on human cortical neurons. To this end, we differentiated 9 induced pluripotent stem cell lines derived from a control subject, a sporadic FTD case and an FTD patient with progranulin S116X mutation. Treatment with 1 μM suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, increased the production of progranulin in cortical neurons of all subjects at both the mRNA and protein levels without affecting their viability. Microarray analysis revealed that SAHA treatment not only reversed some gene expression changes caused by progranulin haploinsufficiency but also caused massive alterations in the overall transcriptome. Thus, histone deacetylase inhibitors may be considered as therapeutic drugs for GRN mutation carriers. However, this class of drugs also causes drastic changes in overall gene expression in human cortical neurons and their side effects and potential impacts on other pathways should be carefully evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Discovery of a new class of histone deacetylase inhibitors with a novel zinc binding group.

    PubMed

    Li, Youxuan; Woster, Patrick M

    2015-04-01

    Small molecules featuring a hydroxamic acid or a benzamide zinc binding group (ZBG) are the most thoroughly studied histone deacetylase (HDAC) inhibitors. However, concerns about the pharmacokinetic liabilities of the hydroxamic acid moiety and potential metabolic toxicity of the aniline portion of benzamide HDAC inhibitors have stimulated research efforts aimed at discovering alternative ZBGs. Here we report the 2-(oxazol-2-yl)phenol moiety as a novel ZBG that can be used to produce compounds that are potent HDAC inhibitors. A series of analogues with this novel ZBG have been synthesized, and these analogues exhibit selective inhibition against HDAC1 as well as the class IIb HDACs (HDAC6 and HDAC10). Compound 10 possesses an IC 50 value of 7.5 μM in the MV-4-11 leukemia cell line, and induces a comparable amount of acetylated histone 3 lysine 9 (H3K9) and p21Waf1/CIP1 as 0.5 μM of SAHA. Modeling of compound 10 in the active site of HDAC2 demonstrates that the 2-(oxazol-2-yl)phenol moiety has a zinc-binding pattern similar to benzamide HDAC inhibitors.

  7. Histone Deacetylase Inhibitors: An Attractive Therapeutic Strategy Against Breast Cancer.

    PubMed

    Damaskos, Christos; Garmpis, Nikolaos; Valsami, Serena; Kontos, Michael; Spartalis, Eleftherios; Kalampokas, Theodoros; Kalampokas, Emmanouil; Athanasiou, Antonios; Moris, Demetrios; Daskalopoulou, Afrodite; Davakis, Spyridon; Tsourouflis, Gerasimos; Kontzoglou, Konstantinos; Perrea, Despina; Nikiteas, Nikolaos; Dimitroulis, Dimitrios

    2017-01-01

    With a lifetime risk estimated to be one in eight in industrialized countries, breast cancer is the most frequent type of cancer among women worldwide. Patients are often treated with anti-estrogens, but it is common that some tumors develop resistance to therapy. The causation and progression of cancer is controlled by epigenetic processes, so there is an ongoing interest in research into mechanisms, genes and signaling pathways associating carcinogenesis with epigenetic modulation of gene expression. Given the fact that histone deacetylases (HDACs) have a great impact on chromatin remodeling and epigenetics, their inhibitors have become a very interesting field of research. This review focused on the use of HDAC inhibitors as anticancer treatment and explains the mechanisms of therapeutic effects on breast cancer. We anticipate further clinical benefits of this new class of drugs, both as single agents and in combination therapy. Molecules such as suberoylanilide hydroxamic acid, trichostatin A, suberoylbis-hydroxamic acid, panobinostat, entinostat, valproic acid, sodium butyrate, SK7041, FTY720, N-(2-hydroxyphenyl)-2-propylpentanamide, Scriptaid, YCW1, santacruzamate A and ferrocenyl have shown promising antitumor effects against breast cancer. HDAC inhibitors consists an attractive field for targeted therapy against breast cancer. Future therapeutic strategies will include combination of HDAC inhibitors and chemotherapy or other inhibitors, in order to target multiple oncogenic signaling pathways. More trials are needed. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells.

    PubMed

    Brewster, Timothy P; Konezny, Steven J; Sheehan, Stafford W; Martini, Lauren A; Schmuttenmaer, Charles A; Batista, Victor S; Crabtree, Robert H

    2013-06-03

    We present the first analysis of performance of hydroxamate linkers as compared to carboxylate and phosphonate groups when anchoring ruthenium-polypyridyl dyes to TiO2 surfaces in dye-sensitized solar cells (DSSCs). The study provides fundamental insight into structure/function relationships that are critical for cell performance. Our DSSCs have been produced by using newly synthesized dye molecules and characterized by combining measurements and simulations of experimental current density-voltage (J-V) characteristic curves. We show that the choice of anchoring group has a direct effect on the overall sunlight-to-electricity conversion efficiency (η), with hydroxamate anchors showing the best performance. Solar cells based on the pyridyl-hydroxamate complex exhibit higher efficiency since they suppress electron transfer from the photoanode to the electrolyte and have superior photoinjection characteristics. These findings suggest that hydroxamate anchoring groups should be particularly valuable in DSSCs and photocatalytic applications based on molecular adsorbates covalently bound to semiconductor surfaces. In contrast, analogous acetylacetonate anchors might undergo decomposition under similar conditions suggesting limited potential in future applications.

  9. Development of iron chelators for Cooley's anemia. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosby, W.H.; Green, R.

    Iron chelators were screened in an iron-loaded rat model using selective radioiron probes. In all experiments, chelators D and F, in that order, induced significant loss of radioiron compared with controls. However, use of chelator D was associated with side effects, and resulted in the death of some animals. There was some evidence that chelator A also caused iron loss significantly greater than controls. Chelators B, C and E were without apparent enhancing effect on radioiron excretion. This was a blind study and the compounds used were A - 2,3-Dihydroxybenzoic acid; B - N,N1-Dimethyladipohydroxamic acid; C - DL-Phenylalanine hydroxamic acid;more » D - Ethylenediamine-N,N1-bis(2-hydroxphenylacetic acid); E - Propionohydroxamic acid; and F - Deferrioxamine B.« less

  10. Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum

    PubMed Central

    Friebe, A.; Vilich, V.; Hennig, L.; Kluge, M.; Sicker, D.

    1998-01-01

    The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var. tritici, Gaeumannomyces graminis var. graminis, Gaeumannomyces graminis var. avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminis var. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var. tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA. N-(2-Hydroxyphenyl)-malonamic acid and N-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis and G. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. tritici metabolite of BOA. No metabolite accumulation was detected for G. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance of Gaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability of Gaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds. PMID:9647804

  11. Evaluation of adamantane hydroxamates as botulinum neurotoxin inhibitors: synthesis, crystallography, modeling, kinetic and cellular based studies.

    PubMed

    Šilhár, Peter; Silvaggi, Nicholas R; Pellett, Sabine; Čapková, Kateřina; Johnson, Eric A; Allen, Karen N; Janda, Kim D

    2013-03-01

    Botulinum neurotoxins (BoNTs) are the most lethal biotoxins known to mankind and are responsible for the neuroparalytic disease botulism. Current treatments for botulinum poisoning are all protein based and thus have a limited window of treatment opportunity. Inhibition of the BoNT light chain protease (LC) has emerged as a therapeutic strategy for the treatment of botulism as it may provide an effective post exposure remedy. Using a combination of crystallographic and modeling studies a series of hydroxamates derived from 1-adamantylacetohydroxamic acid (3a) were prepared. From this group of compounds, an improved potency of about 17-fold was observed for two derivatives. Detailed mechanistic studies on these structures revealed a competitive inhibition model, with a K(i)=27 nM, which makes these compounds some of the most potent small molecule, non-peptidic BoNT/A LC inhibitors reported to date. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Suberoylanilide hydroxamic acid sensitizes neuroblastoma to paclitaxel by inhibiting thioredoxin-related protein 14-mediated autophagy.

    PubMed

    Zhen, Zijun; Yang, Kaibin; Ye, Litong; You, Zhiyao; Chen, Rirong; Liu, Ying; He, Youjian

    2017-07-01

    Paclitaxel is not as effective for neuroblastoma as most of the front-line chemotherapeutics due to drug resistance. This study explored the regulatory mechanism of paclitaxel-associated autophagy and potential solutions to paclitaxel resistance in neuroblastoma. The formation of autophagic vesicles was detected by scanning transmission electron microscopy and flow cytometry. The autophagy-associated proteins were assessed by western blot. Autophagy was induced and the autophagy-associated proteins LC3-I, LC3-II, Beclin 1, and thioredoxin-related protein 14 (TRP14), were found to be upregulated in neuroblastoma cells that were exposed to paclitaxel. The inhibition of Beclin 1 or TRP14 by siRNA increased the sensitivity of the tumor cells to paclitaxel. In addition, Beclin 1-mediated autophagy was regulated by TRP14. Furthermore, the TRP14 inhibitor suberoylanilide hydroxamic acid (SAHA) downregulated paclitaxel-induced autophagy and enhanced the anticancer effects of paclitaxel in normal control cancer cells but not in cells with upregulated Beclin 1 and TRP14 expression. Our findings showed that paclitaxel-induced autophagy in neuroblastoma cells was regulated by TRP14 and that SAHA could sensitize neuroblastoma cells to paclitaxel by specifically inhibiting TRP14. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

    PubMed

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-03-31

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level.

  14. 8-Hydroxyquinoline and hydroxamic acid inhibitors of botulinum neurotoxin BoNT/A.

    PubMed

    Dickerson, Tobin J; Smith, Garry R; Pelletier, Jeffrey C; Reitz, Allen B

    2014-01-01

    We describe here the state of the art of certain aspects concerning potential small molecule therapy directed toward botulism, by inhibition of the zinc-protease containing light chain (LC) of botulinum neurotoxin BoNT/A from the anaerobic bacillus Clostridium botulinum. Botulinum neurotoxins (BoNTs) are comprised of eight serologically-distinct proteins (A - H), several of which are further divided, such as BoNT/A which has five subtypes. The BoNTs are the most toxic substances known to mankind, causing a form of flaccid paralysis that can be rapid and is often lethal. BoNT/A is comprised of a ~100 kDa heavy chain (HC) attached via a single disulfide Cys-Cys bond to a ~50 kDa LC. The HC mediates transport to and uptake by presynaptic glutamatergic neurons, where the LC cleaves the protein SNAP-25 and thus prevents vesicular trafficking and release of acetylcholine. The Zn-endoprotease activity of the LC of BoNT/A is a target for the development of small molecule inhibitors of BoNT/A-mediated toxicity. A variety of BoNT/A LC inhibitors have been described to date and we focus here primarily on the Zn-binding 8-hydroxyquinoline structural type as well as some of the previously-described hydroxamic acids.

  15. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor.

    PubMed

    Vannini, Alessandro; Volpari, Cinzia; Filocamo, Gessica; Casavola, Elena Caroli; Brunetti, Mirko; Renzoni, Debora; Chakravarty, Prasun; Paolini, Chantal; De Francesco, Raffaele; Gallinari, Paola; Steinkühler, Christian; Di Marco, Stefania

    2004-10-19

    Histone deacetylases (HDACs) are a family of enzymes involved in the regulation of gene expression, DNA repair, and stress response. These processes often are altered in tumors, and HDAC inhibitors have had pronounced antitumor activity with promising results in clinical trials. Here, we report the crystal structure of human HDAC8 in complex with a hydroxamic acid inhibitor. Such a structure of a eukaryotic zinc-dependent HDAC has not be described previously. Similar to bacterial HDAC-like protein, HDAC8 folds in a single alpha/beta domain. The inhibitor and the zinc-binding sites are similar in both proteins. However, significant differences are observed in the length and structure of the loops surrounding the active site, including the presence of two potassium ions in HDAC8 structure, one of which interacts with key catalytic residues. CD data suggest a direct role of potassium in the fold stabilization of HDAC8. Knockdown of HDAC8 by RNA interference inhibits growth of human lung, colon, and cervical cancer cell lines, highlighting the importance of this HDAC subtype for tumor cell proliferation. Our findings open the way for the design and development of selective inhibitors of HDAC8 as possible antitumor agents.

  16. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy

    PubMed Central

    Avila, Amy M.; Burnett, Barrington G.; Taye, Addis A.; Gabanella, Francesca; Knight, Melanie A.; Hartenstein, Parvana; Cizman, Ziga; Di Prospero, Nicholas A.; Pellizzoni, Livio; Fischbeck, Kenneth H.; Sumner, Charlotte J.

    2007-01-01

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by mutation of the telomeric survival motor neuron 1 (SMN1) gene with retention of the centromeric SMN2 gene. We sought to establish whether the potent and specific hydroxamic acid class of histone deacetylase (HDAC) inhibitors activates SMN2 gene expression in vivo and modulates the SMA disease phenotype when delivered after disease onset. Single intraperitoneal doses of 10 mg/kg trichostatin A (TSA) in nontransgenic and SMA model mice resulted in increased levels of acetylated H3 and H4 histones and modest increases in SMN gene expression. Repeated daily doses of TSA caused increases in both SMN2-derived transcript and SMN protein levels in neural tissues and muscle, which were associated with an improvement in small nuclear ribonucleoprotein (snRNP) assembly. When TSA was delivered daily beginning on P5, after the onset of weight loss and motor deficit, there was improved survival, attenuated weight loss, and enhanced motor behavior. Pathological analysis showed increased myofiber size and number and increased anterior horn cell size. These results indicate that the hydroxamic acid class of HDAC inhibitors activates SMN2 gene expression in vivo and has an ameliorating effect on the SMA disease phenotype when administered after disease onset. PMID:17318264

  17. Tandem mass spectrometry of coprogen and deferoxamine hydroxamic siderophores.

    PubMed

    Simionato, Ana V C; de Souza, Gezimar D; Rodrigues-Filho, Edson; Glick, James; Vouros, Paul; Carrilho, Emanuel

    2006-01-01

    Mechanisms of fragmentation of hydroxamic siderophores are proposed comparing deuterated and nondeuterated samples. Standard siderophores (e.g. deferoxamine and coprogen) were directly injected into both ion trap and linear quadrupole mass spectrometers with electrospray ionization (ESI). Four and two fragmentation steps were carried out for deferoxamine and coprogen (analyzed by positive and negative ESI, respectively). Deferoxamine cleavages occurred in both peptide and hydroxamic bonds while the coprogen fragmentation pattern is more elaborate, since it contains Fe(III) in its structure.

  18. FhuD1, a Ferric Hydroxamate-binding Lipoprotein in Staphylococcus aureus - A case of gene duplication and lateral transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebulsky, M. Tom; Speziali, Craig D.; Shilton, Brian H.

    Staphylococcus aureus can utilize ferric hydroxamates as a source of iron under iron-restricted growth conditions. Proteins involved in this transport process are: FhuCBG, which encodes a traffic ATPase; FhuD2, a post-translationally modified lipoprotein that acts as a high affinity receptor at the cytoplasmic membrane for the efficient capture of ferric hydroxamates; and FhuD1, a protein with similarity to FhuD2. Gene duplication likely gave rise to fhuD1 and fhuD2. While the genomic locations of fhuCBG and fhuD2 in S. aureus strains are conserved, both the presence and the location of fhuD1 are variable. The apparent redundancy of FhuD1 led us tomore » examine the role of this protein. We demonstrate that FhuD1 is expressed only under conditions of iron limitation through the regulatory activity of Fur. FhuD1 fractions with the cell membrane and binds hydroxamate siderophores but with lower affinity than FhuD2. Using small angle x-ray scattering, the solution structure of FhuD1 resembles that of FhuD2, and only a small conformational change is associated with ferrichrome binding. FhuD1, therefore, appears to be a receptor for ferric hydroxamates, like FhuD2. Our data to date suggest, however, that FhuD1 is redundant to FhuD2 and plays a minor role in hydroxamate transport. However, given the very real possibility that we have not yet identified the proper conditions where FhuD1 does provide an advantage over FhuD2, we anticipate that FhuD1 serves an enhanced role in the transport of untested hydroxamate siderophores and that it may play a prominent role during the growth of S. aureus in its natural environments.« less

  19. Promotion of Germination Using Hydroxamic Acid Inhibitors of 9-cis-Epoxycarotenoid Dioxygenase

    PubMed Central

    Awan, Sajjad Z.; Chandler, Jake O.; Harrison, Peter J.; Sergeant, Martin J.; Bugg, Timothy D. H.; Thompson, Andrew J.

    2017-01-01

    Abscisic acid (ABA) inhibits seed germination and the regulation of ABA biosynthesis has a role in maintenance of seed dormancy. The key rate-limiting step in ABA biosynthesis is catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED). Two hydroxamic acid inhibitors of carotenoid cleavage dioxygenase (CCD), D4 and D7, previously found to inhibit CCD and NCED in vitro, are shown to have the novel property of decreasing mean germination time of tomato (Solanum lycopersicum L.) seeds constitutively overexpressing LeNCED1. Post-germination, D4 exhibited no negative effects on tomato seedling growth in terms of height, dry weight, and fresh weight. Tobacco (Nicotiana tabacum L.) seeds containing a tetracycline-inducible LeNCED1 transgene were used to show that germination could be negatively and positively controlled through the chemical induction of gene expression and the chemical inhibition of the NCED protein: application of tetracycline increased mean germination time and delayed hypocotyl emergence in a similar manner to that observed when exogenous ABA was applied and this was reversed by D4 when NCED expression was induced at intermediate levels. D4 also improved germination in lettuce (Lactuca sativa L.) seeds under thermoinhibitory temperatures and in tomato seeds imbibed in high osmolarity solutions of polyethylene glycol. D4 reduced ABA and dihydrophaseic acid accumulation in tomato seeds overexpressing LeNCED1 and reduced ABA accumulation in wild type tomato seeds imbibed on polyethylene glycol. The evidence supports a mode of action of D4 through NCED inhibition, and this molecule provides a lead compound for the design of NCED inhibitors with greater specificity and potency. PMID:28373878

  20. Regioselective copper-catalyzed alkylation of [2.2.2]-acylnitroso cycloadducts: remarkable effect of the halide of Grignard reagents.

    PubMed

    Crotti, Stefano; Bertolini, Ferruccio; di Bussolo, Valeria; Pineschi, Mauro

    2010-04-16

    Ring opening with organometallic reagents of [2.2.2]-acylnitroso cycloadducts, including an enantioselective kinetic resolution of these compounds, has been accomplished for the first time. By the careful choice of reaction conditions, it was possible to obtain new cyclohexenyl hydroxamic acids with complete anti-stereoselectivity and a nice regioalternating control. A remarkable effect of the halogen of the Grignard reagent was observed during ring opening.

  1. Exploring bis-(indolyl)methane moiety as an alternative and innovative CAP group in the design of histone deacetylase (HDAC) inhibitors.

    PubMed

    Giannini, Giuseppe; Marzi, Mauro; Marzo, Maria Di; Battistuzzi, Gianfranco; Pezzi, Riccardo; Brunetti, Tiziana; Cabri, Walter; Vesci, Loredana; Pisano, Claudio

    2009-05-15

    In order to gather further knowledge about the structural requirements on histone deacetylase inhibitors (HDACi), starting from the schematic model of the common pharmacophore that characterizes this class of molecules (surface recognition CAP group-connection unit-linker region-Zinc Binding Group), we designed and synthesized a series of hydroxamic acids containing a bis-(indolyl)methane moiety. HDAC inhibition profile and antiproliferative activity were evaluated.

  2. Anti-tumor effects of suberoylanilide hydroxamic acid on Epstein–Barr virus-associated T cell and natural killer cell lymphoma

    PubMed Central

    Siddiquey, Mohammed NA; Nakagawa, Hikaru; Iwata, Seiko; Kanazawa, Tetsuhiro; Suzuki, Michio; Imadome, Ken-Ichi; Fujiwara, Shigeyoshi; Goshima, Fumi; Murata, Takayuki; Kimura, Hiroshi

    2014-01-01

    The ubiquitous Epstein–Barr virus (EBV) infects not only B cells but also T cells and natural killer (NK) cells and is associated with various lymphoid malignancies. Recent studies have reported that histone deacetylase (HDAC) inhibitors exert anticancer effects against various tumor cells. In the present study, we have evaluated both the in vitro and in vivo effects of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on EBV-positive and EBV-negative T and NK lymphoma cells. Several EBV-positive and EBV-negative T and NK cell lines were treated with various concentrations of SAHA. SAHA suppressed the proliferation of T and NK cell lines, although no significant difference was observed between EBV-positive and EBV-negative cell lines. SAHA induced apoptosis and/or cell cycle arrest in several T and NK cell lines. In addition, SAHA increased the expression of EBV-lytic genes and decreased the expression of EBV-latent genes. Next, EBV-positive NK cell lymphoma cells were subcutaneously inoculated into severely immunodeficient NOD/Shi-scid/IL-2Rγnull mice, and then SAHA was administered intraperitoneally. SAHA inhibited tumor progression and metastasis in the murine xenograft model. SAHA displayed a marked suppressive effect against EBV-associated T and NK cell lymphomas through either induction of apoptosis or cell cycle arrest, and may represent an alternative treatment option. PMID:24712440

  3. A quantum chemical study of molecular properties and QSPR modeling of oximes, amidoximes and hydroxamic acids with nucleophilic activity against toxic organophosphorus agents

    NASA Astrophysics Data System (ADS)

    Alencar Filho, Edilson B.; Santos, Aline A.; Oliveira, Boaz G.

    2017-04-01

    The proposal of this work includes the use of quantum chemical methods and cheminformatics strategies in order to understand the structural profile and reactivity of α-nucleophiles compounds such as oximes, amidoximes and hydroxamic acids, related to hydrolysis rate of organophosphates. Theoretical conformational study of 41 compounds were carried out through the PM3 semiempirical Hamiltonian, followed by the geometry optimization at the B3LYP/6-31+G(d,p) level of theory, complemented by Polarized Continuum Model (PCM) to simulate the aqueous environment. In line with the experimental hypothesis about hydrolytic power, the strength of the Intramolecular Hydrogen Bonds (IHBs) at light of the Bader's Quantum Theory of Atoms in Molecules (QTAIM) is related to the preferential conformations of α-nucleophiles. A set of E-Dragon descriptors (1,666) were submitted to a variable selection through Ordered Predictor Selection (OPS) algorithm. Five descriptors, including atomic charges obtained from the Natural Bond Orbitals (NBO) protocol jointly with a fragment index associated to the presence/absence of IHBs, provided a Quantitative Structure-Property Relationship (QSPR) model via Multiple Linear Regression (MLR). This model showed good validation parameters (R2 = 0.80, Qloo2 = 0.67 and Qext2 = 0.81) and allowed the identification of significant physicochemical features on the molecular scaffold in order to design compounds potentially more active against organophosphorus poisoning.

  4. Efficacy and Safety Comparison Between Suberoylanilide Hydroxamic Acid and Mitomycin C in Reducing the Risk of Corneal Haze After PRK Treatment In Vivo.

    PubMed

    Anumanthan, Govindaraj; Sharma, Ajay; Waggoner, Michael; Hamm, Chuck W; Gupta, Suneel; Hesemann, Nathan P; Mohan, Rajiv R

    2017-12-01

    This study compared the efficacy and safety of suberoylanilide hydroxamic acid (SAHA) and mitomycin C (MMC) up to 4 months in the prevention of corneal haze induced by photorefractive keratectomy (PRK) in rabbits in vivo. Corneal haze in rabbits was produced with -9.00 diopter PRK. A single application of SAHA (25 μM) or MMC (0.02%) was applied topically immediately after PRK. Effects of the two drugs were analyzed by slit-lamp microscope, specular microscope, TUNEL assay, and immunofluorescence. Single topical adjunct use of SAHA (25 μM) or MMC (0.02%) after PRK attenuated more than 95% corneal haze and myofibroblast formation (P < .001). SAHA did not reduce keratocyte density, cause keratocyte apoptosis, or increase immune cell infiltration compared to MMC (P < .01 or .001). Furthermore, SAHA dosing did not compromise corneal endothelial phenotype, density, or function in rabbit eyes, whereas MMC application did (P < .01 or .001). SAHA and MMC significantly decreased corneal haze after PRK in rabbits in vivo. SAHA exhibited significantly reduced short- and long-term damage to the corneal endothelium compared to MMC in rabbits. SAHA is an effective and potentially safer alternative to MMC for the prevention of corneal haze after PRK. Clinical trials are warranted. [J Refract Surg. 2017;33(12):834-839.]. Copyright 2017, SLACK Incorporated.

  5. The epigenetic agents suberoylanilide hydroxamic acid and 5‑AZA‑2' deoxycytidine decrease cell proliferation, induce cell death and delay the growth of MiaPaCa2 pancreatic cancer cells in vivo.

    PubMed

    Susanto, Johana M; Colvin, Emily K; Pinese, Mark; Chang, David K; Pajic, Marina; Mawson, Amanda; Caldon, C Elizabeth; Musgrove, Elizabeth A; Henshall, Susan M; Sutherland, Robert L; Biankin, Andrew V; Scarlett, Christopher J

    2015-05-01

    Despite incremental advances in the diagnosis and treatment for pancreatic cancer (PC), the 5‑year survival rate remains <5%. Novel therapies to increase survival and quality of life for PC patients are desperately needed. Epigenetic thera-peutic agents such as histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have demonstrated therapeutic benefits in human cancer. We assessed the efficacy of these epigenetic therapeutic agents as potential therapies for PC using in vitro and in vivo models. Treatment with HDACi [suberoylanilide hydroxamic acid (SAHA)] and DNMTi [5‑AZA‑2' deoxycytidine (5‑AZA‑dc)] decreased cell proliferation in MiaPaCa2 cells, and SAHA treatment, with or without 5‑AZA‑dc, resulted in higher cell death and lower DNA synthesis compared to 5‑AZA‑dc alone and controls (DMSO). Further, combination treatment with SAHA and 5‑AZA‑dc significantly increased expression of p21WAF1, leading to G1 arrest. Treatment with epigenetic agents delayed tumour growth in vivo, but did not decrease growth of established pancreatic tumours. In conclusion, these data demonstrate a potential role for epigenetic modifier drugs for the management of PC, specifically in the chemoprevention of PC, in combination with other chemotherapeutic agents.

  6. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  7. Differential protein acetylation induced by novel histone deacetylase inhibitors.

    PubMed

    Glaser, K B; Li, J; Pease, L J; Staver, M J; Marcotte, P A; Guo, J; Frey, R R; Garland, R B; Heyman, H R; Wada, C K; Vasudevan, A; Michaelides, M R; Davidsen, S K; Curtin, M L

    2004-12-17

    Histone deacetylase (HDAC) inhibitors induce the hyperacetylation of nucleosomal histones in carcinoma cells resulting in the expression of repressed genes that cause growth arrest, terminal differentiation, and/or apoptosis. In vitro selectivity of several novel hydroxamate HDAC inhibitors including succinimide macrocyclic hydroxamates and the non-hydroxamate alpha-ketoamide inhibitors was investigated using isolated enzyme preparations and cellular assays. In vitro selectivity for the HDAC isozymes (HDAC1/2, 3, 4/3, and 6) was not observed for these HDAC inhibitors or the reference HDAC inhibitors, MS-275 and SAHA. In T24 and HCT116 cells these compounds caused the accumulation of acetylated histones H3 and H4; however, the succinimide macrocyclic hydroxamates and the alpha-ketoamides did not cause the accumulation of acetylated alpha-tubulin. These data suggest "selectivity" can be observed at the cellular level with HDAC inhibitors and that the nature of the zinc-chelating moiety is an important determinant of activity against tubulin deacetylase.

  8. Virtual medicinal chemistry: in silico pre-docking functional group transformation for discovery of novel inhibitors of botulinum toxin serotype A light chain.

    PubMed

    O'Malley, Sean; Sareth, Sina; Jiao, Guan-Sheng; Kim, Seongjin; Thai, April; Cregar-Hernandez, Lynne; McKasson, Linda; Margosiak, Stephen A; Johnson, Alan T

    2013-05-01

    A novel method for applying high-throughput docking to challenging metalloenzyme targets is described. The method utilizes information-based virtual transformation of library carboxylates to hydroxamic acids prior to docking, followed by compound acquisition, one-pot (two steps) chemical synthesis and in vitro screening. In two experiments targeting the botulinum neurotoxin serotype A metalloprotease light chain, hit rates of 32% and 18% were observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. 4-(1-Ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide - A new pleiotropic HDAC inhibitor targeting cancer cell signalling and cytoskeletal organisation.

    PubMed

    Mahal, Katharina; Kahlen, Philip; Biersack, Bernhard; Schobert, Rainer

    2015-08-15

    Histone deacetylases (HDAC) which play a crucial role in cancer cell proliferation are promising drug targets. However, HDAC inhibitors (HDACi) modelled on natural hydroxamic acids such as trichostatin A frequently lead to resistance or even an increased agressiveness of tumours. As a workaround we developed 4-(1-ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide (etacrox), a hydroxamic acid that combines HDAC inhibition with synergistic effects of the 4,5-diarylimidazole residue. Etacrox proved highly cytotoxic against a panel of metastatic and resistant cancer cell lines while showing greater specificity for cancer over non-malignant cells when compared to the approved HDACi vorinostat. Like the latter, etacrox and the closely related imidazoles bimacroxam and animacroxam acted as pan-HDACi yet showed some specificity for HDAC6. Akt signalling and interference with nuclear beta-catenin localisation were elicited by etacrox at lower concentrations when compared to vorinostat. Moreover, etacrox disrupted the microtubule and focal adhesion dynamics of cancer cells and inhibited the proteolytic activity of prometastatic and proangiogenic matrix metalloproteinases. As a consequence, etacrox acted strongly antimigratory and antiinvasive against various cancer cell lines in three-dimensional transwell invasion assays and also antiangiogenic in vivo with respect to blood vessel formation in the chorioallantoic membrane assay. These pleiotropic effects and its water-solubility and tolerance by mice render etacrox a promising new HDACi candidate. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Thiol Versus Hydroxamate as Zinc Binding Group In HDAC Inhibition: An Ab Initio QM/MM Molecular Dynamics Study

    PubMed Central

    Gong, Wenjing; Wu, Ruibo; Zhang, Yingkai

    2015-01-01

    Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding towards class IIa HDACs. PMID:26452222

  11. Thiol versus hydroxamate as zinc binding group in HDAC inhibition: An ab initio QM/MM molecular dynamics study.

    PubMed

    Gong, Wenjing; Wu, Ruibo; Zhang, Yingkai

    2015-11-15

    Zinc-dependent histone deacetylases (HDACs) play a critical role in transcriptional repression and gene silencing, and are among the most attractive targets for the development of new therapeutics against cancer and various other diseases. Two HDAC inhibitors have been approved by FDA as anti-cancer drugs: one is SAHA whose hydroxamate is directly bound to zinc, the other is FK228 whose active form may use thiol as the zinc binding group. In spite of extensive studies, it remains to be ambiguous regarding how thiol and hydroxamate are bound to the zinc active site of HDACs. In this work, our computational approaches center on Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics with umbrella sampling, which allow for modeling of the zinc active site with reasonable accuracy while properly including dynamics and effects of protein environment. Meanwhile, an improved short-long effective function (SLEF2) to describe non-bonded interactions between zinc and other atoms has been employed in initial MM equilibrations. Our ab initio QM/MM MD simulations have confirmed that hydroxamate is neutral when it is bound to HDAC8, and found that thiol is deprotonated when directly bound to zinc in the HDAC active site. By comparing thiol and hydroxamate, our results elucidated the differences in their binding environment in the HDAC active sites, and emphasized the importance of the linker design to achieve more specific binding toward class IIa HDACs. © 2015 Wiley Periodicals, Inc.

  12. Synthesis and structural characterization of dioxomolybdenum and dioxotungsten hydroxamato complexes and their function in the protection of radiation induced DNA damage.

    PubMed

    Paul, Shiv Shankar; Selim, Md; Saha, Abhijit; Mukherjea, Kalyan K

    2014-02-21

    The synthesis and structural characterization of two novel dioxomolybdenum(VI) (1) and dioxotungsten(VI) (2) complexes with 2-phenylacetylhydroxamic acid (PAHH) [M(O)2(PAH)2] [M = Mo, W] have been accomplished. The dioxomolybdenum(VI) and dioxotungsten(VI) moiety is coordinated by the hydroxamate group (-CONHO(-)) of the 2-phenylacetylhydroxamate (PAH) ligand in a bi-dentate fashion. In both the complexes the PAHH ligand is coordinated through oxygen atoms forming a five membered chelate. The hydrogen atom of N-H of the hydroxamate group is engaged in intermolecular H-bonding with the carbonyl oxygen of another coordinated hydroxamate ligand, thereby forming an extended 1D chain. The ligand as well as both the complexes exhibit the ability to protect from radiation induced damage both in CTDNA as well as in pUC19 plasmid DNA. As the damage to DNA is caused by the radicals generated during radiolysis, its scavenging imparts protection from the damage to DNA. To understand the mechanism of protection, binding affinities of the ligand and the complex with DNA were determined using absorption and emission spectral studies and viscosity measurements, whereby the results indicate that both the complexes and the hydroxamate ligand interact with calf thymus DNA in the minor groove. The intrinsic binding constants, obtained from UV-vis studies, are 7.2 × 10(3) M(-1), 5.2 × 10(4) M(-1) and 1.2 × 10(4) M(-1) for the ligand and complexes 1 and 2 respectively. The Stern-Volmer quenching constants obtained from a luminescence study for both the complexes are 5.6 × 10(4) M(-1) and 1.6 × 10(4) M(-1) respectively. The dioxomolybdenum(VI) complex is found to be a more potent radioprotector compared to the dioxotungsten(VI) complex and the ligand. Radical scavenging chemical studies suggest that the complexes have a greater ability to scavenge both the hydroxyl as well as the superoxide radicals compared to the ligand. The free radical scavenging ability of the ligand and the complexes was further established by EPR spectroscopy using a stable free radical, the DPPH, as a probe. The experimental results of DNA binding are further supported by molecular docking studies.

  13. Synthesis of hexavalent molybdenum formo- and aceto-hydroxamates and deferoxamine via liquid-liquid metal partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breshears, Andrew T.; Brown, M. Alex; Bloom, Ira

    We report a new method of crystal growth and synthesis based on liquid-liquid partitioning that allows for isolation and in-depth characterization of molybdenyl bis(formohydroxamate), Mo-FHA, molybdenyl bis(acetohydroxamate), Mo-AHA, and molybdenyl deferoxamine, Mo-DFO, for the first time. This novel approach affords shorter crystal growth time (hourly timeframe) without sacrificing crystal size or integrity when other methods of crystallization were unsuccessful. All three Mo complexes are characterized in solution via FTIR, NMR, UV-vis, and EXAFS spectroscopy. Mo-AHA and Mo-FHA structures are resolved by single crystal X-ray diffraction. Using the molybdenyl hydroxamate structural information, the speciation of Mo in a siderophore complex (Mo-DFO)more » is determined via complimentary spectroscopic methods and confirmed by DFT calculations. ESI-MS verifies that a complex of 1:1 molybdenum to deferoxamine is present in solution. Additionally, the Mo solution speciation in the precursor organic phase, MoO2(NO3)2HEH[EHP]2 (where HEH[EHP] is 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester), is characterized by FTIR and EXAFS spectroscopy as well as DFT calculations.« less

  14. Novel Bis-(arylsulfonamide) hydroxamate-Based Selective MMP Inhibitors

    PubMed Central

    Subramaniam, Rajesh; Haldar, Manas K.; Tobwala, Shakila; Ganguly, Bratati; Srivastava, D. K.; Mallik, Sanku

    2008-01-01

    A series of bis-(arylsulfonamide) hydroxamate inhibitors were synthesized. These compounds exhibit good potency against MMP-7 and MMP-9 depending on the nature, steric bulk and substitution pattern of the substituents in the benzene ring. In general, the preliminary structure-activity relationships (SAR) suggest that among the DAPA hydroxamates (i) electron-rich benzene rings of the sulfonamides may produce better inhibitors than electron-poor analogs. However, potential H-bond acceptors can reverse the trend depending on the isozyme; (ii) isozyme-selectivity between MMP-7 and -9 can be conferred through steric bulk and substitution pattern of the substituents in the benzene ring and (iii) the MMP-10 inhibition pattern of the compounds paralleled that for MMP-9. PMID:18442906

  15. [Modeling of linoleyl hydroxamic acid influence on lipoxygenases in vitro].

    PubMed

    Skaterna, T D; Kopich, V M; Tserniuk, V M; Kharchenko, O V

    2009-01-01

    5-Lipoxygenase (5-LO) (1.13.11.12) demonstrates its activity in membrane-associated state. A system in vitro with increasing quantity of mixed micelle of nonionic detergent Lubrol PX and substrate--linoleic acid (LA) was used for understanding of 5-LO catalytic activity mechanism, which depends on the membrane environment. Physical parameters of micelles with molar ratio LA-Lubrol PX = 0.3:1 and micelles with 5-LO inhibitor--linoleyl hydroxamic acid (LHA), LA and Lubrol PX (0.03:0.3:1) were characterized by gel-filtration method on Sephadex G-200. It was determined, that Stock's radii were 4.83-5.79 nm for micelles with total LA--50-2000 microM and average molecular mass--177 000-212 000 Da. The presence of 10 microM LHA has no influence on physical parameters of the system. Influence of LHA on kinetic parameters of LA oxidation reaction catalized by potato tubers 5-LO in characterized mixed micelle system was also studied. Substrate dependences curves of 5-LO LA oxidation steady-state rates under conditions of the mixed micelle with ratio LA-lubrol PX = 0.3:1, LHA-LA-Lubrol PX = 0.03:0.3:1 and LHA-LA-Lubrol PX = 0.12:0.3:1 were typical of the substrate inhibition. The presence of inhibitor had no effect on the number of additional substrate molecules--LA which contact with enzyme-substrate complex and decreased V(max) essentially. To predict further inhibitor transformation in the cell the influence of 13-hydroperoxy- and 13-hydroxy LHA on potato tubers 5-LO and porcine leucocyte 12-LO was investigated. It was established that LHA oxidized forms displayed as no less effective inhibitors of the analyzed enzymes; 13-hydroperoxy LHA efficiency increased by an order (IC50 was 0.7 microM) for 12-LO. The possibility of 5-LO to oxidize inhibitor LHA under 50 microM phosphatidic acid at pH 5.0 was demonstrated.

  16. Trithiocarbonates: exploration of a new head group for HDAC inhibitors.

    PubMed

    Dehmel, Florian; Ciossek, Thomas; Maier, Thomas; Weinbrenner, Steffen; Schmidt, Beate; Zoche, Martin; Beckers, Thomas

    2007-09-01

    Inhibition of histone deacetylases class I/II enzymes is a new, promising approach for cancer therapy. In the present study, we disclose a new structural class of HDAC inhibitors with the trithiocarbonate motif. A clear structure-activity-relationship was obtained for the cap-linker motif and the putative Zn(2+) complexing head group. Selected analogs display potent inhibition of HDAC enzymatic activity and a cellular potency comparable to that of suberoylanilide hydroxamic acid (SAHA), recently approved for treatment of patients with advanced cutaneous T-cell lymphoma.

  17. A cyclodextrin-capped histone deacetylase inhibitor.

    PubMed

    Amin, Jahangir; Puglisi, Antonino; Clarke, James; Milton, John; Wang, Minghua; Paranal, Ronald M; Bradner, James E; Spencer, John

    2013-06-01

    We have synthesized a β-cyclodextrin (βCD)-capped histone deacetylase (HDAC) inhibitor 3 containing an alkyl linker and a zinc-binding hydroxamic acid motif. Biological evaluation (HDAC inhibition studies) of 3 enabled us to establish the effect of replacing an aryl cap (in SAHA (vorinostat,)) 1 by a large saccharidic scaffold "cap". HDAC inhibition was observed for 3, to a lesser extent than SAHA, and rationalized by molecular docking into the active site of HDAC8. However, compound 3 displayed no cellular activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Computational exploration of zinc binding groups for HDAC inhibition.

    PubMed

    Chen, Kai; Xu, Liping; Wiest, Olaf

    2013-05-17

    Histone deacetylases (HDACs) have emerged as important drug targets in epigenetics. The most common HDAC inhibitors use hydroxamic acids as zinc binding groups despite unfavorable pharmacokinetic properties. A two-stage protocol of M05-2X calculations of a library of 48 fragments in a small model active site, followed by QM/MM hybrid calculations of the full enzyme with selected binders, is used to prospectively select potential bidentate zinc binders. The energetics and interaction patterns of several zinc binders not previously used for the inhibition of HDACs are discussed.

  19. Non-coding nucleotides and amino acids near the active site regulate peptide deformylase expression and inhibitor susceptibility in Chlamydia trachomatis

    PubMed Central

    Bao, Xiaofeng; Pachikara, Niseema D.; Oey, Christopher B.; Balakrishnan, Amit; Westblade, Lars F.; Tan, Ming; Chase, Theodore; Nickels, Bryce E.

    2011-01-01

    Chlamydia trachomatis, an obligate intracellular bacterium, is a highly prevalent human pathogen. Hydroxamic-acid-based matrix metalloprotease inhibitors can effectively inhibit the pathogen both in vitro and in vivo, and have exhibited therapeutic potential. Here, we provide genome sequencing data indicating that peptide deformylase (PDF) is the sole target of the inhibitors in this organism. We further report molecular mechanisms that control chlamydial PDF (cPDF) expression and inhibition efficiency. In particular, we identify the σ66-dependent promoter that controls cPDF gene expression and demonstrate that point mutations in this promoter lead to resistance by increasing cPDF transcription. Furthermore, we show that substitution of two amino acids near the active site of the enzyme alters enzyme kinetics and protein stability. PMID:21719536

  20. Functional differences in epigenetic modulators-superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies.

    PubMed

    Kozikowski, Alan P; Chen, Yufeng; Gaysin, Arsen; Chen, Bin; D'Annibale, Melissa A; Suto, Carla M; Langley, Brett C

    2007-06-28

    We compare the ability of two structurally different classes of epigenetic modulators, namely, histone deacetylase (HDAC) inhibitors containing either a hydroxamate or a mercaptoacetamide as the zinc binding group, to protect cortical neurons in culture from oxidative stress-induced death. This study reveals that some of the mercaptoacetamide-based HDAC inhibitors are fully protective, whereas the hydroxamates show toxicity at higher concentrations. Our present results appear to be consistent with the possibility that the mercaptoacetamide-based HDAC inhibitors interact with a different subset of the HDAC isozymes [less activity at HDAC1 and 2 correlates with less inhibitor toxicity], or alternatively, are interacting selectively with only the cytoplasmic HDACs that are crucial for protection from oxidative stress.

  1. Equilibrium of molybdenum in selected extraction systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkac, Peter; Paulenova, Alena

    2007-07-01

    The concentration of molybdenum(VI) in dissolved irradiated nuclear fuel is comparable with the concentrations of Tc, Am and Np. Therefore it is of big interest to understand its behavior under conditions related to the UREX/TRUEX process. The effect of the poly-speciation of molybdenum in aqueous solution on its extraction by neutral solvents TBP and CMPO/TBP was studied. Extraction yields of molybdenum decreased significantly when AHA was added to aqueous phase. Our investigation confirmed a strong ability of the aceto-hydroxamic acid to form complexes with Mo in high acidic solutions. Spectroscopic data (UV-Vis) confirmed that a fraction of the Mo(VI)-AHA complexmore » is present in the organic phase after extraction. (authors)« less

  2. Studies at the Ionizable Position of Cephalosporins and Penicillins: Hydroxamates as Substitutes for the Traditional Carboxylate Group

    PubMed Central

    Majewski, Mark W.; Miller, Patricia A.; Miller, Marvin J.

    2016-01-01

    Classically, β-lactams need an ionizable group to potentiate antibacterial activity. Sets of cephalosporins and penicillins featuring different substituted hydroxamates in place of the traditional carboxylate group have been synthesized and tested for antibiotic activity. Many of the compounds exhibited anti-bacterial activities with notable MIC values in the range of 6-0.2 μM. PMID:27999444

  3. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell

    2013-10-01

    Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but itmore » is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold promises as a replacement for AHA. FHA undergoes hydrolysis to formic acid which is volatile, thus allowing the recycling of nitric acid. Unfortunately, FHA powder was not stable in the experiments we ran in our laboratory. In addition, AHA and FHA also decompose to hydroxylamine which may undergo an autocatalytic reaction. Other reductants are available and could be extremely useful for actinides separation. The review presents the current plutonium reductants used in used nuclear fuel reprocessing and will introduce innovative and novel reductants that could become reducers for future research on UNF separation.« less

  4. Altering histone acetylation status in donor cells with suberoylanilide hydroxamic acid does not affect dog cloning efficiency.

    PubMed

    Kim, Min Jung; Oh, Hyun Ju; Kim, Geon A; Suh, Han Na; Jo, Young Kwang; Choi, Yoo Bin; Kim, Dong Hoon; Han, Ho Jae; Lee, Byeong Chun

    2015-10-15

    Although dog cloning technology has been applied to conservation of endangered canids, propagation of elite dogs, and production of transgenic dogs, the efficiency of cloning is still very low. To help overcome this problem, we evaluated the effect of treating donor cells with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on dog cloning efficiency. Relative messenger RNA expressions of the bax1/bcl2 ratio and Dnmt1 in fibroblasts treated with different concentrations (0, 1, 10, 50 μM) of SAHA and durations (0, 20, 44 hours) were compared. Treatment with 1 μM for 20 hours showed significantly lower bax1/bcl2 and Dnmt1 transcript abundance. Acetylation of H3K9 was significantly increased after SAHA treatment, but H4K5, H4K8 and H4K16 were not changed. After SCNT using control or donor cells treated with SAHA, a total of 76 and 64 cloned embryos were transferred to seven and five recipients, respectively. Three fetuses were diagnosed in both control and SAHA-treated groups by ultrasonography 29 days after the embryo transfer, but there was no significant difference in the pregnancy rate (4.2% vs. 4.3%). In conclusion, although SAHA treatment as used in this study significantly decreased bax1/bcl2 and Dnmt1 transcripts of donor nuclei, as well as increased H3 acetylation, it was not enough to increase in vivo developmental competence of cloned dog embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Experimental and theoretical vibrational spectroscopy studies of acetohydroxamic acid and desferrioxamine B in aqueous solution: Effects of pH and iron complexation

    NASA Astrophysics Data System (ADS)

    Edwards, David C.; Nielsen, Steen B.; Jarzęcki, Andrzej A.; Spiro, Thomas G.; Myneni, Satish C. B.

    2005-07-01

    The deprotonation and iron complexation of the hydroxamate siderophore, desferrioxamine B (desB), and a model hydroxamate ligand, acetohydroxamic acid (aHa), were studied using infrared, resonance Raman and UV-vis spectroscopy. The experimental spectra were interpreted by a comparison with DFT calculated spectra of aHa (partly hydrated) and desB (reactive groups of unhydrated molecule) at the B3LYP/6-31G* level of theory. The ab initio models include three water molecules surrounding the deprotonation site of aHa to account for partial hydration. Experiments and calculations were also conducted in D 2O to verify spectral assignments. These studies of aHa suggest that the cis-keto-aHa is the dominant form, and its deprotonation occurs at the oxime oxygen atom in aqueous solutions. The stable form of iron-complexed aHa is identified as Fe(aHa) 3 for a wide range of pH conditions. The spectral information of aHa and an ab initio model of desB were used to interpret the chemical state of different functional groups in desB. Vibrational spectra of desB indicate that the oxime and amide carbonyl groups can be identified unambiguously. Vibrational spectral analysis of the oxime carbonyl after deprotonation and iron complexation of desB indicates that the conformational changes between anion and the iron-complexed anion are small. Enhanced electron delocalization in the oxime group of Fe-desB when compared to that of Fe(aHa) 3 may be responsible for higher stability constant of the former.

  6. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    PubMed

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  7. A novel histone deacetylase inhibitor, CG200745, potentiates anticancer effect of docetaxel in prostate cancer via decreasing Mcl-1 and Bcl-XL.

    PubMed

    Hwang, Jung Jin; Kim, Yong Sook; Kim, Taelim; Kim, Mi Joung; Jeong, In Gab; Lee, Je-Hwan; Choi, Jene; Jang, Sejin; Ro, Seonggu; Kim, Choung-Soo

    2012-08-01

    We synthesized a novel hydroxamate-based pan-histone deacetylase inhibitor (HDACI), CG200745 {(E)-2-(Naphthalen-1-yloxymethyl)-oct-2-enedioic acid 1-[(3-dimethylamino-propyl)-amide] 8-hydroxyamide]}. Like other inhibitors, for example vorinostat and belinostat, CG200745 has the hydroxamic acid moiety to bind zinc at the bottom of catalytic pocket. Firstly, we analyzed its inhibitory activity against histone deacetylase (HDAC) in hormone-dependent LNCaP cells and hormone-independent DU145 and PC3 cells. CG200745 inhibited deacetylation of histone H3 and tubulin as much as vorinostat and belinostat did. CG200745 also inhibited growth of prostate cancer cells, increased sub-G1 population, and activated caspase-9, -3 and -8 in LNCaP, DU145 and PC3 cells. These results indicate that CG200745 induces apoptosis. Next, we examined the effect of CG200745 on cell death induced by docetaxel in DU145 cells in vitro and in vivo. Compared to mono-treatment with each drug, pre-treatment of DU145 cells with docetaxel followed by CG200745 showed synergistic cytotoxicity, and increased the apoptotic sub-G1 population, caspase activation, and tubulin acetylation. Moreover, the combination treatment decreased Mcl-1 and Bcl-(XL). Docetaxel and CG200745 combination reduced tumor size in the DU145 xenograft model. These preclinical results show that combination treatment with docetaxel and new HDACI, CG200745, potentiated anti-tumor effect in hormone-refractory prostate cancer (HRPC) cells via activation of apoptosis.

  8. Histone deacetylase inhibitors selectively suppress expression of HDAC7.

    PubMed

    Dokmanovic, Milos; Perez, Gisela; Xu, Weisheng; Ngo, Lang; Clarke, Cathy; Parmigiani, Raphael B; Marks, Paul A

    2007-09-01

    There are 18 histone deacetylases (HDAC) generally divided into four classes based on homology to yeast HDACs. HDACs have many protein substrates in addition to histones that are involved in regulation of gene expression, cell proliferation, and cell death. Inhibition of HDACs can cause accumulation of acetylated forms of these proteins, thus altering their function. HDAC inhibitors (HDACi), such as the hydroxamic acid-based vorinostat (suberoylanilide hydroxamic acid), inhibit the zinc-containing classes I, II, and IV, but not the NAD(+)-dependent class III, enzymes. HDACis are a group of novel anticancer agents. Vorinostat is the first HDACi approved for clinical use in the treatment of the cancer cutaneous T-cell lymphoma. Factors affecting expression of HDACs are not well understood. This study focuses on the effect of the HDACi vorinostat on the expression of class I and class II HDACs. We found that vorinostat selectively down-regulates HDAC7 with little or no effect on the expression of other class I or class II HDACs. Fourteen cell lines were examined, including normal, immortalized, genetically transformed, and human cancer-derived cell lines. Down-regulation of HDAC7 by vorinostat is more pronounced in transformed cells sensitive to inhibitor-induced cell death than in normal cells or cancer cells resistant to induced cell death. Modulation of HDAC7 levels by small interfering RNA-mediated knockdown or by HDAC7 overexpression is associated with growth arrest but without detectable changes in acetylation of histones or p21 gene expression. Selective down-regulation of HDAC7 protein may serve as a marker of response of tumors to HDACi.

  9. Structure of ‘linkerless’ hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabackman, Alexa A.; Frankson, Rochelle; Marsan, Eric S.

    Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and non-histone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza®), romidepsinmore » (FK228, Istodax®), belinostat (Beleodaq®), and panobinostat (Farydak®). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98 Å resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition.« less

  10. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells

    PubMed Central

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-01-01

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter −223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors. PMID:28099148

  11. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation.

    PubMed

    Liu, Sheng; Zhong, Hong; Liu, Guangyi; Xu, Zhenghe

    2018-02-15

    Hydroxamate and sulfhydryl surfactants are effective collectors for flotation of copper minerals. The combination application of hydroxamate and sulfhydryl collectors has been proved to be an effective approach for improving the flotation recovery of non-sulfide copper minerals. A surfactant owing both hydroxamate and dithiocarbamate groups might exhibit strong affinity to non-sulfide copper minerals through double sites adsorption, rendering an enhanced hydrophobization to non-sulfide copper minerals flotation. The flotation performance of S-[(2-hydroxyamino)-2-oxoethyl]- N,N-dibutyldithiocarbamate (HABTC) to malachite, calcite and quartz were first evaluated through systematic micro-flotation experiments. HABTC's hydrophobic mechanism to malachite was further investigated and analyzed by zeta potential, Fourier transform infrared spectroscopy (FTIR), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The micro-flotation results demonstrated HABTC was an excellent collector for malachite flotation and exhibited favorable selectivity for flotation separation of malachite from quartz or calcite under pH 8.5-10.3. Zeta potential and FTIR implied that HABTC might bond with the surface copper atoms of malachite, with releasing the H + ions of its hydroxamate group into pulp. ToF-SIMS provided clear evidences that the Cu-hydroxamate and Cu-dithiocarbamate groups were formed on malachite surfaces after HABTC adsorption. XPS revealed that Cu(I)/Cu(II) mixed-valence surface complexes of HABTC anchored on malachite through formation of Cu(I)S and Cu(II)O bonds, accompanying with reduction of partial surface Cu(II) to Cu(I). The Cu(I)/Cu(II) mixed-valence double chelating character and "chair"-shape N,N-dibutyldithiocarbamate hydrophobic group, resulting in an enhanced affinity and hydrophobization of HABTC to malachite flotation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Consumption and utilization of experimentally altered corn by southern armyworm: Iron, nitrogen, and cyclic hydroxamates.

    PubMed

    Manuwoto, S; Scriber, J M

    1985-11-01

    The effects of differential leaf water, leaf nitrogen and cyclic hydroxamate (DIMBOA) concentrations in corn seedlings were analyzed for a polyphagous insect, the southern armyworm (Spodoptera eridania Cram.). Six different combinations of nutrients and allelochemicals [DIMBOA = 2,4-dihydroxy-7-methoxy(2H)-benzoxazin-3(4H)-one] were generated using two corn genotypes (WF9 and CI3IA) and three fertility regimes (complete nutrient, Fe-deficient, and N-deficient solutions) in the University Biotron. Poorest larval growth was observed in the low-nitrogen treatments (1.2% and 1.7% leaf N) and was the result of both low consumption rates and high metabolic costs (low efficiency of conversion of digested food, ECD). Fastest growth rates were observed forthe larvae fed leaves from the high-nitrogen treatments (4.6% and 4.4% leaf N). It is noteworthy that these treatments also contained the highest concentration of cyclic hydroxamates, which are generally believed to be the primary defensive chemicals mediating resistance against the European corn borer,Ostrinia nubilalis (Hubner). If these hydroxamates do have any deleterious or costly effects (perhaps accounting for a large portion of metabolic expenditures), the high digestibility of the leaf tissue and the increased consumption rates more than compensate, resulting in rapid growth (growth rate = consumption rate × approximate digestibility × efficiency of conversion of the digested food). These studies illustrate that variation in key nutrients and allelochemicals within a single plant species (Zea mays L.) may have significantly different effects upon various potential leaf-chewing caterpillars, such as these armyworms versus corn borers (which cannot handle the cyclic hydroxamates, even if provided with young nutritious leaf tissues).

  13. Contaminant Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satish C. B. Myneni

    2005-12-13

    Siderophores are biological macromolecules (400-2000 Da) released by bacteria in iron limiting situations to sequester Fe from iron oxyhydroxides and silicates in the natural environment. These molecules contain hydroxamate and phenolate functional groups, and exhibit very high affinity for Fe{sup 3+}. While several studies were conducted to understand the behavior of siderophores and their application to the metal sequestration and mineral dissolution, only a few of them have examined the molecular structure of siderophores and their interactions with metals and mineral surfaces in aqueous solutions. Improved understanding of the chemical state of different functional moieties in siderophores can assist inmore » the application of these biological molecules in actinide separation, sequestration and decontamination processes. The focus of our research group is to evaluate the (a) functional group chemistry of selected siderophores and their metal complexes in aqueous solutions, and (b) the nature of siderophore interactions at the mineral-water interfaces. We selected desferrioxamine B (desB), a hydroxamate siderophore, and its small structural analogue, acetohydroxamic acid (aHa), for this investigation. We examined the functional group chemistry of these molecules as a function of pH, and their complexation with aqueous and solid phase Fe(III). For solid phase Fe, we synthesized all naturally occurring Fe(III)-oxyhydroxides (goethite, lepidocrocite, akaganeite, feroxyhite) and hematite. We also synthesized Fe-oxides (goethite and hematite) of different sizes to evaluate the influence of particle size on mineral dissolution kinetics. We used a series of molecular techniques to explore the functional group chemistry of these molecules and their complexes. Infrared spectroscopy is used to specifically identify the variations in oxime group as a function of pH and Fe(III) complexation. Resonance Raman spectroscopy was used to evaluate the nature of hydroxamate binding in the case of Fe(III)-siderophore complexes and model ligands. Soft and hard X-ray spectroscopy techniques were used to examine the electronic structure of binding groups, and their local structural environment. The synchrotron X-ray studies were conducted at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (Lawrence Berkeley National Laboratory). These experimental vibrational and X-ray spectroscopy studies were complemented with density functional theory calculations. The highlight of this study is the evaluation of the fundamental electronic state information of the hydroxamate moiety in siderophores during deprotonation and Fe(III) complexation. The applications of soft X-ray studies are also new, and were applied, for the first time, to examine the chemistry of organic macromolecules in aqueous solutions.« less

  14. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses vasculogenic mimicry and proliferation of highly aggressive pancreatic cancer PaTu8988 cells

    PubMed Central

    2014-01-01

    Background Pancreatic cancer is one of the most aggressive human malignancies with a extremely low 5-year survival rate. Hence, the search for more effective anti-pancreatic cancer agents is urgent. Methods PaTu8988 pancreatic cancer cells were treated with different concentrations of suberoylanilide hydroxamic acid (SAHA), cell survival, proliferation, migration and vasculogenic mimicry (VM) were analyzed. Associated signaling changes were also analyzed by RT-PCR and Western blots. Results Here, we reported that SAHA, a histone deacetylase inhibitor (HDACi), exerted significant inhibitory efficiency against pancreatic cancer cell survival, proliferation, migration and VM. SAHA dose-dependently inhibited PaTu8988 pancreatic cancer cell growth with the IC-50 of 3.4 ± 0. 7 μM. Meanwhile, SAHA suppressed PaTu8988 cell cycle progression through inducing G2/M arrest, which was associated with cyclin-dependent kinase 1 (CDK-1)/cyclin-B1 degradation and p21/p27 upregulation. Further, SAHA induced both apoptotic and non-apoptotic death of PaTu8988 cells. Significantly, SAHA suppressed PaTu8988 cell in vitro migration and cell-dominant tube formation or VM, which was accompanied by semaphorin-4D (Sema-4D) and integrin-β5 down-regulation. Our evidences showed that Akt activation might be important for Sema-4D expression in PaTu8988 cells, and SAHA-induced Sema-4D down-regulation might be associated with Akt inhibition. Conclusions This study is among the first to report the VM formation in cultured human pancreatic cancer cells. And we provided strong evidence to suggest that SAHA executes significant anti-VM efficiency in the progressive pancreatic cancer cells. Thus, SAHA could be further investigated as a promising anti-pancreatic cancer agent. PMID:24886166

  15. Effect of Suberoylanilide Hydroxamic Acid (SAHA) Administration on the Residual Virus Pool in a Model of Combination Antiretroviral Therapy-Mediated Suppression in SIVmac239-Infected Indian Rhesus Macaques

    PubMed Central

    Del Prete, Gregory Q.; Shoemaker, Rebecca; Oswald, Kelli; Lara, Abigail; Trubey, Charles M.; Fast, Randy; Schneider, Douglas K.; Kiser, Rebecca; Coalter, Vicky; Wiles, Adam; Wiles, Rodney; Freemire, Brandi; Keele, Brandon F.; Estes, Jacob D.; Quiñones, Octavio A.; Smedley, Jeremy; Macallister, Rhonda; Sanchez, Rosa I.; Wai, John S.; Tan, Christopher M.; Alvord, W. Gregory; Hazuda, Daria J.; Piatak, Michael

    2014-01-01

    Nonhuman primate models are needed for evaluations of proposed strategies targeting residual virus that persists in HIV-1-infected individuals receiving suppressive combination antiretroviral therapy (cART). However, relevant nonhuman primate (NHP) models of cART-mediated suppression have proven challenging to develop. We used a novel three-class, six-drug cART regimen to achieve durable 4.0- to 5.5-log reductions in plasma viremia levels and declines in cell-associated viral RNA and DNA in blood and tissues of simian immunodeficiency virus SIVmac239-infected Indian-origin rhesus macaques, then evaluated the impact of treatment with the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA; Vorinostat) on the residual virus pool. Ex vivo SAHA treatment of CD4+ T cells obtained from cART-suppressed animals increased histone acetylation and viral RNA levels in culture supernatants. cART-suppressed animals each received 84 total doses of oral SAHA. We observed SAHA dose-dependent increases in acetylated histones with evidence for sustained modulation as well as refractoriness following prolonged administration. In vivo virologic activity was demonstrated based on the ratio of viral RNA to viral DNA in peripheral blood mononuclear cells, a presumptive measure of viral transcription, which significantly increased in SAHA-treated animals. However, residual virus was readily detected at the end of treatment, suggesting that SAHA alone may be insufficient for viral eradication in the setting of suppressive cART. The effects observed were similar to emerging data for repeat-dose SAHA treatment of HIV-infected individuals on cART, demonstrating the feasibility, utility, and relevance of NHP models of cART-mediated suppression for in vivo assessments of AIDS virus functional cure/eradication approaches. PMID:25182644

  16. Endogenous sulfur dioxide aggravates myocardial injury in isolated rat heart with ischemia and reperfusion.

    PubMed

    Zhang, Suqing; Du, Junbao; Jin, Hongfang; Li, Wei; Liang, Yinfang; Geng, Bin; Li, Shukui; Zhang, Chunyu; Tang, Chaoshu

    2009-02-27

    Ischemia-reperfusion (I/R) injury is an important clinical problem. This article investigated the role of sulfur dioxide (SO2) in the regulation of cardiac function and in the pathogenesis of cardiac I/R injury in isolated rat heart. Rat hearts isolated on a Langendorff apparatus were divided into control, I/R, I/R+SO2, and I/R+hydroxamate groups. Hydroxamate is an inhibitor of SO2 synthetase. I/R treatment was ischemia for 2 hr in hypothermic solution (4 degrees C), then reperfusion/rewarming (37 degrees C) for 60 min. Cardiac function was monitored by MacLab analog to a digital converter. Determination of sulfite content involved reverse-phase high performance liquid chromatography with fluorescence detection. Myoglobin content of coronary perfusate was determined at 410 nm. Myocardial malondialdehyde (MDA) was determined by thiobarbituric acid method, and conjugated diene (CD) was extracted by chloroform. 5,50-Dithiobis-2-nitrobenzoic acid was used to determine glutathione (GSH). The results showed that I/R treatment obviously increased myocardial sulfite content, and sulfite content of myocardium was negatively correlated with the recovery rate of left-ventricle developed pressure and positively correlated with the leakage of myoglobin. In postreperfusion, myocardial function recovery was decreased by SO2. During reperfusion, myocardium-released enzymes, MDA and CD level were increased but myocardial GSH content was depressed with the treatment of SO2 donor. Incubation of myocardial tissue with SO2 significantly increased MDA and CD generation. Endogenous SO2 might be involved in the pathogenesis of myocardial I/R injury, and its mechanism might be associated with an increase in lipid peroxide level and a decrease in GSH generation.

  17. Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophore of Azotobacter vinelandii.

    PubMed

    Palanché, Tania; Blanc, Sylvie; Hennard, Christophe; Abdallah, Mohamed A; Albrecht-Gary, Anne-Marie

    2004-02-09

    Azotobacter vinelandii, a nitrogen-fixing soil bacterium, secretes in iron deficiency azotobactin delta, a highly fluorescent pyoverdin-like chromopeptidic hexadentate siderophore. The chromophore, derived from 2,3-diamino-6,7 dihydroxyquinoline, is bound to a peptide chain of 10 amino acids: (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-beta-threo-HOAsp-(L)-Ser-(D)-Cit-(L)-Hse-(L)-Hse lactone-(D)-N(delta)-Acetyl, N(delta)-HOOrn. Azotobactin delta has three different iron(III) binding sites which are one hydroxamate group at the C-terminal end of the peptidic chain (N(delta)-Acetyl, N(delta)-HOOrn), one alpha-hydroxycarboxylic function in the middle of the chain (beta-threo-hydroxyaspartic acid), and one catechol group on the chromophore. The coordination properties of its iron(III) and iron(II) complexes were measured by spectrophotometry, potentiometry, and voltammetry after the determination of the acid-base functions of the uncomplexed free siderophore. Strongly negatively charged ferric species were observed at neutral p[H]'s corresponding to a predominant absolute configuration Lambda of the ferric complex in solution as deduced from CD measurements. The presence of an alpha-hydroxycarboxylic chelating group does not decrease the stability of the iron(III) complex when compared to the main trishydroxamate siderophores or to pyoverdins. The value of the redox potential of ferric azotobactin is highly consistent with a reductive step by physiological reductants for the iron release. Formation and dissociation kinetics of the azotobactin delta ferric complex point out that both ends of this long siderophore chain get coordinated to Fe(III) before the middle. The most striking result provided by fluorescence measurements is the lasting quenching of the fluorophore in the course of the protonation of the ferric azotobactin delta complex. Despite the release of the hydroxyacid and of the catechol, the fluorescence remains indeed quenched, when iron(III) is bound only to the hydroxamic acid, suggesting a folded conformation at this stage, around the metal ion, in contrast to the unfolded species observed for other siderophores such as ferrioxamine or pyoverdin PaA.

  18. Penicillins and other acylamino compounds synthesized by the cell-bound penicillin acylase of Escherichia coli

    PubMed Central

    Cole, M.

    1969-01-01

    1. The penicillin acylase of Eschericha coli N.C.I.B. 8743 is a reversible enzyme. Reaction rates for the two directions have been determined. 2. Measurements of the rates of enzymic synthesis of penicillins from 6-aminopenicillanic acid and various carboxylic acids revealed that p-hydroxyphenylacetic acid was the best substrate, followed by phenylacetic, 2-thienylacetic, substituted phenylacetic, 3-hexenoic and n-hexanoic acids. 3. The rate of synthesis of penicillin improved when amides or N-acylglycines were used; α-aminobenzylpenicillin and phenoxymethylpenicillin were only synthesized when using these more energy-rich compounds. 4. Phenyl-acetylglycine was the best substrate for the synthesis of benzylpenicillin compared with other derivatives of phenylacetic acid. 5. The enzyme was specific for acyl-l-amino acids, benzylpenicillin being synthesized from phenylacetyl-l-α-aminophenylacetic acid but not from phenylacetyl-d-α-aminophenylacetic acid. 6. α-Phenoxyethylpenicillin was synthesized from 6-aminopenicillanic acid and α-phenoxypropionylthioglycollic acid non-enzymically, but the rate was faster in the presence of the enzyme. 7. The E. coli acylase catalysed the acylation of hydroxylamine by acids or amides to give hydroxamic acids, the phenylacetyl group being the most suitable acyl group. The enzyme also catalysed other acyl-group transfers. PMID:4982418

  19. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paviet-Hartmann, P.; Riddle, C.; Campbell, K.

    2013-07-01

    The most widely used reductant to partition plutonium from uranium in the Purex process was ferrous sulfamate, other alternates were proposed such as hydrazine-stabilized ferrous nitrate or uranous nitrate, platinum catalyzed hydrogen, and hydrazine, hydroxylamine salts. New candidates to replace hydrazine or hydroxylamine nitrate (HAN) are pursued worldwide. They may improve the performance of the industrial Purex process towards different operations such as de-extraction of plutonium and reduction of the amount of hydrazine which will limit the formation of hydrazoic acid. When looking at future recycling technologies using hydroxamic ligands, neither acetohydroxamic acid (AHA) nor formohydroxamic acid (FHA) seem promisingmore » because they hydrolyze to give hydroxylamine and the parent carboxylic acid. Hydroxyethylhydrazine, HOC{sub 2}H{sub 4}N{sub 2}H{sub 3} (HEH) is a promising non-salt-forming reductant of Np and Pu ions because it is selective to neptunium and plutonium ions at room temperature and at relatively low acidity, it could serve as a replacement of HAN or AHA for the development of a novel used nuclear fuel recycling process.« less

  20. Evolution of siderophore pathways in human pathogenic bacteria.

    PubMed

    Franke, Jakob; Ishida, Keishi; Hertweck, Christian

    2014-04-16

    Ornibactin and malleobactin are hydroxamate siderophores employed by human pathogenic bacteria belonging to the genus Burkholderia. Similarities in their structures and corresponding biosynthesis gene clusters strongly suggest an evolutionary relationship. Through gene coexpression and targeted gene manipulations, the malleobactin pathway was successfully morphed into an ornibactin assembly line. Such an evolutionary-guided approach has been unprecedented for nonribosomal peptide synthetases. Furthermore, the timing of amino acid acylation before peptide assembly, the absolute configuration of the ornibactin side chain, and the function of the acyl transferase were elucidated. Beyond providing a proof of principle for the rational design of siderophore pathways, a compelling model for the evolution of virulence traits is presented.

  1. Hematologic Response to Vorinostat Treatment in Relapsed Myeloid Leukemia of Down Syndrome.

    PubMed

    Scheer, Carina; Kratz, Christian; Witt, Olaf; Creutzig, Ursula; Reinhardt, Dirk; Klusmann, Jan-Henning

    2016-09-01

    Children with Down syndrome are at high risk to develop myeloid leukemia (ML-DS). Despite their excellent prognosis, children with ML-DS particularly suffer from severe therapy-related toxicities and for relapsed ML-DS the cure rates are very poor. Here we report the clinical course of one child with ML-DS treated with the histone deacetylase (HDAC) inhibitor vorinostat (suberoylanilide hydroxamic acid) after second relapse. The child had previously received conventional chemotherapy and stem cell transplantation, yet showed a remarkable clinical and hematologic response. Thus, HDAC inhibitor may represent an effective class of drugs for the treatment of ML-DS. © 2016 Wiley Periodicals, Inc.

  2. Metabolism of 4-Chloronitrobenzene by the Yeast Rhodosporidium sp

    PubMed Central

    Corbett, Michael D.; Corbett, Bernadette R.

    1981-01-01

    The yeast Rhodosporidium sp. metabolized 4-chloronitrobenzene by a reductive pathway to give 4-chloroacetanilide and 4-chloro-2-hydroxyacetanilide as the major final metabolites. The intermediate production of 4-chloronitrosobenzene, 4-chlorophenylhydroxylamine, and 4-chloroaniline was demonstrated by high-pressure liquid chromatography. Additional studies with selected metabolites established that the metabolite 4-chloro-2-hydroxyacetanilide was produced by an initial Bamberger rearrangement of the hydroxylamine metabolite, followed by acetylation. Direct C hydroxylation of the aromatic ring was not observed in this species. No hydroxamic acid production was detected, even though significant concentrations of the nitroso and hydroxylamine precursors to this functional group were observed. PMID:16345757

  3. Zinc binding groups for histone deacetylase inhibitors.

    PubMed

    Zhang, Lei; Zhang, Jian; Jiang, Qixiao; Zhang, Li; Song, Weiguo

    2018-12-01

    Zinc binding groups (ZBGs) play a crucial role in targeting histone deacetylase inhibitors (HDACIs) to the active site of histone deacetylases (HDACs), thus determining the potency of HDACIs. Due to the high affinity to the zinc ion, hydroxamic acid is the most commonly used ZBG in the structure of HDACs. An alternative ZBG is benzamide group, which features excellent inhibitory selectivity for class I HDACs. Various ZBGs have been designed and tested to improve the activity and selectivity of HDACIs, and to overcome the pharmacokinetic limitations of current HDACIs. Herein, different kinds of ZBGs are reviewed and their features have been discussed for further design of HDACIs.

  4. Quinolone-based HDAC inhibitors.

    PubMed

    Balasubramanian, Gopalan; Kilambi, Narasimhan; Rathinasamy, Suresh; Rajendran, Praveen; Narayanan, Shridhar; Rajagopal, Sridharan

    2014-08-01

    HDAC inhibitors emerged as promising drug candidates in combating wide variety of cancers. At present, two of the compounds SAHA and Romidepsin were approved by FDA for cutaneous T-cell lymphoma and many are in various clinical phases. A new quinolone cap structure was explored with hydroxamic acid as zinc-binding group (ZBG). The pan HDAC inhibitory and antiproliferative activities against three human cancer cell lines HCT-116 (colon), NCI-H460 (lung) and U251 (glioblastoma) of the compounds (4a-4w) were evaluated. Introduction of heterocyclic amines in CAP region increased the enzyme inhibitory and antiproliferative activities and few of the compounds tested are metabolically stable in both MLM and HLM.

  5. Histone deacetylase inhibitors with a primary amide zinc binding group display antitumor activity in xenograft model.

    PubMed

    Attenni, Barbara; Ontoria, Jesus M; Cruz, Jonathan C; Rowley, Michael; Schultz-Fademrecht, Carsten; Steinkühler, Christian; Jones, Philip

    2009-06-01

    Histone deacetylase (HDAC) inhibition causes hyperacetylation of histones leading to differentiation, growth arrest and apoptosis of malignant cells, representing a new strategy in cancer therapy. Many of the known HDAC inhibitors (HDACi) that are in clinical trials possess a hydroxamic acid, that is a strong Zn(2+) binding group, thereby inhibiting some of the class I and class II isoforms. Herein we describe the identification of a selective class I HDAC inhibitor bearing a primary carboxamide moiety as zinc binding group. This HDACi displays good antiproliferative activity against multiple cancer cell lines, and demonstrates efficacy in a xenograft model comparable to vorinostat.

  6. Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus.

    PubMed

    Wencewicz, Timothy A; Long, Timothy E; Möllmann, Ute; Miller, Marvin J

    2013-03-20

    Siderophores are multidentate iron(III) chelators used by bacteria for iron assimilation. Sideromycins, also called siderophore-antibiotic conjugates, are a unique subset of siderophores that enter bacterial cells via siderophore uptake pathways and deliver the toxic antibiotic in a "Trojan horse" fashion. Sideromycins represent a novel antibiotic delivery technology with untapped potential for developing sophisticated microbe-selective antibacterial agents that limit the emergence of bacterial resistance. The chemical synthesis of a series of mono-, bis-, and trihydroxamate sideromycins are described here along with their biological evaluation in antibacterial susceptibility assays. The linear hydroxamate siderophores used for the sideromycins in this study were derived from the ferrioxamine family and inspired by the naturally occurring salmycin sideromycins. The antibacterial agents used were a β-lactam carbacepholosporin, Lorabid, and a fluoroquinolone, ciprofloxacin, chosen for the different locations of their biological targets, the periplasm (extracellular) and the cytoplasm (intracellular). The linear hydroxamate-based sideromycins were selectively toxic toward Gram-positive bacteria, especially Staphylococcus aureus SG511 (MIC = 1.0 μM for the trihydroxamate-fluoroquinolone sideromycin). Siderophore-sideromycin competition assays demonstrated that only the fluoroquinolone sideromycins required membrane transport to reach their cytoplasmic biological target and that a trihydroxamate siderophore backbone was required for protein-mediated active transport of the sideromycins into S. aureus cells via siderophore uptake pathways. This work represents a comprehensive study of linear hydroxamate sideromycins and teaches how to build effective hydroxamate-based sideromycins as Gram-positive selective antibiotic agents.

  7. Study on the spectrophotometric detection of free fatty acids in palm oil utilizing enzymatic reactions.

    PubMed

    Azeman, Nur Hidayah; Yusof, Nor Azah; Abdullah, Jaafar; Yunus, Robiah; Hamidon, Mohd Nizar; Hajian, Reza

    2015-07-07

    In this paper, a comprehensive study has been made on the detection of free fatty acids (FFAs) in palm oil via an optical technique based on enzymatic aminolysis reactions. FFAs in crude palm oil (CPO) were converted into fatty hydroxamic acids (FHAs) in a biphasic lipid/aqueous medium in the presence of immobilized lipase. The colored compound formed after complexation between FHA and vanadium (V) ion solution was proportional to the FFA content in the CPO samples and was analyzed using a spectrophotometric method. In order to develop a rapid detection system, the parameters involved in the aminolysis process were studied. The utilization of immobilized lipase as catalyst during the aminolysis process offers simplicity in the product isolation and the possibility of conducting the process under extreme reaction conditions. A good agreement was found between the developed method using immobilized Thermomyces lanuginose lipase as catalyst for the aminolysis process and the Malaysian Palm Oil Board (MPOB) standard titration method (R2 = 0.9453).

  8. Prevention of acetic acid-induced colitis by desferrithiocin analogs in a rat model.

    PubMed

    Bergeron, Raymond J; Wiegand, Jan; Weimar, William R; Nguyen, John Nhut; Sninsky, Charles A

    2003-02-01

    Iron contributes significantly to the formation of reactive oxygen species via the Fenton reaction. Therefore, we assessed whether a series of desferrithiocin analogs, both carboxylic acids and hydroxamates, could (1) either promote or diminish the iron-mediated oxidation of ascorbate, (2) quench a model radical species, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), and (3) when applied topically, prevent acetic acid-induced colitis in rats. Surprisingly, most of the desferrithiocin analogs inhibited the Fenton reaction to an approximately equivalent degree; however, substantial differences were observed in the capacity of the analogs to scavenge the model radical cation. Four carboxylic acid desferrithiocin analogs and their respective N-methylhydroxamates were tested along with desferrioxamine and Rowasa, a currently accepted topical therapeutic agent for inflammatory bowel disease (IBD), in a rodent model of acetic acid-induced colitis. The colonic damage was quantitated by two independent measurements. Although neither radical scavenging nor prevention of Fenton chemistry was a definitive predictor of in vivo efficacy, the overall trend is that desferrithiocin analogs substituted with an N-methylhydroxamate in the place of the carboxylic acid are both better free radical scavengers and more active against acetic acid-induced colitis. These results represent an intriguing alternative avenue to the development of improved IBD therapeutic agents.

  9. Foam and gel methods for the decontamination of metallic surfaces

    DOEpatents

    Nunez, Luis; Kaminski, Michael Donald

    2007-01-23

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment. In this invention, we discuss gel and foam based diphosphonic acid (HEDPA) chemical solutions that are unique in that these solutions can be applied at room temperature; provide protection to the base metal for continued applications of the equipment; and reduce the final waste form production to one step. The HEDPA gels and foams are formulated with benign chemicals, including various solvents, such as ionic liquids and reducing and complexing agents such as hydroxamic acids, and formaldehyde sulfoxylate. Gel and foam based HEDPA processes allow for decontamination of difficult to reach surfaces that are unmanageable with traditional aqueous process methods. Also, the gel and foam components are optimized to maximize the dissolution rate and assist in the chemical transformation of the gel and foam to a stable waste form.

  10. Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones.

    PubMed

    Frébortová, Jitka; Novák, Ondrej; Frébort, Ivo; Jorda, Radek

    2010-02-01

    Hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-one (DIMBOA) was isolated from maize phloem sap as a compound enhancing the degradation of isopentenyl adenine by maize cytokinin dehydrogenase (CKX), after oxidative conversion by either laccase or peroxidase. Laccase and peroxidase catalyze oxidative cleavage of DIMBOA to 4-nitrosoresorcinol-1-monomethyl ether (coniferron), which serves as a weak electron acceptor of CKX. The oxidation of DIMBOA and coniferron generates transitional free radicals that are used by CKX as effective electron acceptors. The function of free radicals in the CKX-catalyzed reaction was also verified with a stable free radical of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid. Application of exogenous cytokinin to maize seedlings resulted in an enhanced benzoxazinoid content in maize phloem sap. The results indicate a new function for DIMBOA in the metabolism of the cytokinin group of plant hormones.

  11. Identification of novel potential scaffold for class I HDACs inhibition: An in-silico protocol based on virtual screening, molecular dynamics, mathematical analysis and machine learning.

    PubMed

    Fan, Cong; Huang, Yanxin

    2017-09-23

    Histone deacetylases (HDACs) family has been widely reported as an important class of enzyme targets for cancer therapy. Much effort has been made in discovery of novel scaffolds for HDACs inhibition besides existing hydroxamic acids, cyclic peptides, benzamides, and short-chain fatty acids. Herein we set up an in-silico protocol which not only could detect potential Zn 2+ chelation bonds but also still adopted non-bonded model to be effective in discovery of Class I HDACs inhibitors, with little human's subjective visual judgment involved. We applied the protocol to screening of Chembridge database and selected out 7 scaffolds, 3 with probability of more than 99%. Biological assay results demonstrated that two of them exhibited HDAC-inhibitory activity and are thus considerable for structure modification to further improve their bio-activity. Copyright © 2017. Published by Elsevier Inc.

  12. A Novel Hydroxamate-Based Compound WMJ-J-09 Causes Head and Neck Squamous Cell Carcinoma Cell Death via LKB1-AMPK-p38MAPK-p63-Survivin Cascade.

    PubMed

    Yen, Chia-Sheng; Choy, Cheuk-Sing; Huang, Wei-Jan; Huang, Shiu-Wen; Lai, Pin-Ye; Yu, Meng-Chieh; Shiue, Ching; Hsu, Ya-Fen; Hsu, Ming-Jen

    2018-01-01

    Growing evidence shows that hydroxamate-based compounds exhibit broad-spectrum pharmacological properties including anti-tumor activity. However, the precise mechanisms underlying hydroxamate derivative-induced cancer cell death remain incomplete understood. In this study, we explored the anti-tumor mechanisms of a novel aliphatic hydroxamate-based compound, WMJ-J-09, in FaDu head and neck squamous cell carcinoma (HNSCC) cells. WMJ-J-09 induced G2/M cell cycle arrest and apoptosis in FaDu cells. These actions were associated with liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (p38MAPK) activation, transcription factor p63 phosphorylation, as well as modulation of p21 and survivin. LKB1-AMPK-p38MAPK signaling blockade reduced WMJ-J-09's enhancing effects in p63 phosphorylation, p21 elevation and survivin reduction. Moreover, WMJ-J-09 caused an increase in α-tubulin acetylation and interfered with microtubule assembly. Furthermore, WMJ-J-09 suppressed the growth of subcutaneous FaDu xenografts in vivo . Taken together, WMJ-J-09-induced FaDu cell death may involve LKB1-AMPK-p38MAPK-p63-survivin signaling cascade. HDACs inhibition and disruption of microtubule assembly may also contribute to WMJ-J-09's actions in FaDu cells. This study suggests that WMJ-J-09 may be a potential lead compound and warrant the clinical development in the treatment of HNSCC.

  13. Entropy as a Driver of Selectivity for Inhibitor Binding to Histone Deacetylase 6.

    PubMed

    Porter, Nicholas J; Wagner, Florence F; Christianson, David W

    2018-05-18

    Among the metal-dependent histone deacetylases, the class IIb isozyme HDAC6 is remarkable because of its role in the regulation of microtubule dynamics in the cytosol. Selective inhibition of HDAC6 results in microtubule hyperacetylation, leading to cell cycle arrest and apoptosis, which is a validated strategy for cancer chemotherapy and the treatment of other disorders. HDAC6 inhibitors generally consist of a Zn 2+ -binding group such as a hydroxamate, a linker, and a capping group; the capping group is a critical determinant of isozyme selectivity. Surprisingly, however, even "capless" inhibitors exhibit appreciable HDAC6 selectivity. To probe the chemical basis for this selectivity, we now report high-resolution crystal structures of HDAC6 complexed with capless cycloalkyl hydroxamate inhibitors 1-4. Each inhibitor hydroxamate group coordinates to the catalytic Zn 2+ ion with canonical bidentate geometry. Additionally, the olefin moieties of compounds 2 and 4 bind in an aromatic crevice between the side chains of F583 and F643. Reasoning that similar binding could be achieved in the representative class I isozyme HDAC8, we employed isothermal titration calorimetry to study the thermodynamics of inhibitor binding. These measurements indicate that the entropy of inhibitor binding is generally positive for binding to HDAC6 and negative for binding to HDAC8, resulting in ≤313-fold selectivity for binding to HDAC6 relative to HDAC8. Thus, favorable binding entropy contributes to HDAC6 selectivity. Notably, cyclohexenyl hydroxamate 2 represents a promising lead for derivatization with capping groups that may further enhance its impressive 313-fold thermodynamic selectivity for HDAC6 inhibition.

  14. Isolation of an iron-binding compound from Pseudomonas aeruginosa.

    PubMed Central

    Cox, C D; Graham, R

    1979-01-01

    An iron-binding compound was isolated from ethyl acetate extracts of culture supernatant fluids of Pseudomonas aeruginosa and was purified by successive paper and thin-layer chromatographic procedures. The purified compound was characterized by UV, visible, infrared, and fluorescence spectroscopy. The compound possesses phenolic characteristics, with little or no similarity to dihydroxybenzoates and no indication of a hydroxamate group. P. aeruginosa synthesized the compound during active growth in culture media containing less than 5 X 10(-6) M added FeCl3. When added to iron-poor cultures of P. aeruginosa, the compound promoted the growth of the bacterium and also reversed growth inhibition by the iron chelator ethylenediamine-di-(o-hydroxyphenylacetic acid). PMID:104968

  15. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent HDAC inhibitors with improved cellular efficacy.

    PubMed

    Gong, Chao-Jun; Gao, An-Hui; Zhang, Yang-Ming; Su, Ming-Bo; Chen, Fei; Sheng, Li; Zhou, Yu-Bo; Li, Jing-Ya; Li, Jia; Nan, Fa-Jun

    2016-04-13

    Histone deacetylases (HDACs) are a class of epigenetic modulators with complex functions in histone post-translational modifications and are well known targets for antineoplastic drugs. We have previously developed a series of bisthiazole-based hydroxamic acids as novel potent HDAC inhibitors. In the present work, a new series of bisthiazole-based compounds with different zinc binding groups (ZBGs) have been designed and synthesized. Among them is compound 7, containing a trifluoromethyl ketone as the ZBG, which displays potent inhibitory activity towards human HDACs and improved antiproliferative activity in several cancer cell lines. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Histone Deacetylase (HDAC) Inhibitor Kinetic Rate Constants Correlate with Cellular Histone Acetylation but Not Transcription and Cell Viability

    PubMed Central

    Lauffer, Benjamin E. L.; Mintzer, Robert; Fong, Rina; Mukund, Susmith; Tam, Christine; Zilberleyb, Inna; Flicke, Birgit; Ritscher, Allegra; Fedorowicz, Grazyna; Vallero, Roxanne; Ortwine, Daniel F.; Gunzner, Janet; Modrusan, Zora; Neumann, Lars; Koth, Christopher M.; Lupardus, Patrick J.; Kaminker, Joshua S.; Heise, Christopher E.; Steiner, Pascal

    2013-01-01

    Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility. PMID:23897821

  17. Kinetic and Thermodynamic Rationale for SAHA Being a Preferential Human HDAC8 Inhibitor as Compared to the Structurally Similar Ligand, TSA

    PubMed Central

    Singh, Raushan K.; Lall, Naveena; Leedahl, Travis S.; McGillivray, Abigail; Mandal, Tanmay; Haldar, Manas; Mallik, Sanku; Cook, Gregory; Srivastava, D.K.

    2013-01-01

    Of the different hydroxamate-based histone deacetylase (HDAC) inhibitors, Suberoylanilide hydroxamic acid (SAHA) has been approved by the FDA for treatment of T-cell lymphoma. Interestingly, a structurally similar inhibitor, Trichostatin A (TSA), which has a higher in vitro inhibitory-potency against HDAC8, reportedly shows a poor efficacy in clinical settings. In order to gain the molecular insight into the above discriminatory feature, we performed transient kinetic and isothermal titration calorimetric studies for the interaction of SAHA and TSA to the recombinant form of human HDAC8. The transient kinetic data revealed that the binding of both the inhibitors to the enzyme showed the biphasic profiles, which represented an initial encounter of enzyme with the inhibitor followed by the isomerization of the transient enzyme-inhibitor complexes. The temperature-dependent transient kinetic studies with the above inhibitors revealed that the bimolecular process is primarily dominated by favorable enthalpic changes, as opposed to the isomerization step; which is solely contributed by entropic changes. The standard binding-enthalpy (ΔH0) of SAHA, deduced from the transient kinetic as well as the isothermal titration calorimetric experiments, was 2–3 kcal/mol higher as compared to TSA. The experimental data presented herein suggests that SAHA serves as a preferential (target-specific/selective) HDAC8 inhibitor as compared to TSA. Arguments are presented that the detailed kinetic and thermodynamic studies may guide in the rational design of HDAC inhibitors as therapeutic agents. PMID:24079912

  18. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability.

    PubMed

    Lauffer, Benjamin E L; Mintzer, Robert; Fong, Rina; Mukund, Susmith; Tam, Christine; Zilberleyb, Inna; Flicke, Birgit; Ritscher, Allegra; Fedorowicz, Grazyna; Vallero, Roxanne; Ortwine, Daniel F; Gunzner, Janet; Modrusan, Zora; Neumann, Lars; Koth, Christopher M; Lupardus, Patrick J; Kaminker, Joshua S; Heise, Christopher E; Steiner, Pascal

    2013-09-13

    Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility.

  19. Effects of the microbial siderophore DFO-B on Pb and Cd speciation in aqueous solution.

    PubMed

    Mishra, Bhoopesh; Haack, Elizabeth A; Maurice, Patricia A; Bunker, Bruce A

    2009-01-01

    This study investigates the complexation environments of aqueous Pb and Cd in the presence of the trihydroxamate microbial siderophore, desferrioxamine-B (DFO-B) as a function of pH. Complexation of aqueous Pb and Cd with DFO-B was predicted using equilibrium speciation calculation. Synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy at Pb L(III) edge and Cd K edge was used to characterize Pb and Cd-DFO-B complexes at pH values predicted to best represent each of the metal-siderophore complexes. Pb was not found to be complexed measurably by DFO-B at pH 3.0, but was complexed by all three hydroxamate groups to form a totally "caged" hexadentate structure at pH 7.5-9.0. At the intermediate pH value (pH 4.8), a mixture of Pb-DFOB complexes involving binding of the metal through one and two hydroxamate groups was observed. Cd, on the other hand, remained as hydrated Cd2+ at pH 5.0, occurred as a mixture of Cd-DFOB and inorganic species at pH 8.0, and was bound by three hydroxamate groups from DFO-B at pH 9.0. Overall, the solution species observed with EXAFS were consistent with those predicted thermodynamically. However, Pb speciation at higher pH values differed from that predicted and suggests that published constants underestimate the binding constant for complexation of Pb with all three hydroxamate groups of the DFO-B ligand. This molecular-level understanding of metal-siderophore solution coordination provides physical evidence for complexes of Pb and Cd with DFO-B, and is an important first step toward understanding processes at the microbial- and/or mineral-water interface in the presence of siderophores.

  20. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Chia-Wen; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Yao, Ju-Hsien

    2011-11-15

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivomore » in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: Black-Right-Pointing-Pointer ATO and SAHA are therapeutic agents with different action modes. Black-Right-Pointing-Pointer Combination of ATO and SAHA synergistically inhibits tumor cell growth. Black-Right-Pointing-Pointer SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. Black-Right-Pointing-Pointer ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.« less

  1. Combination of suberoylanilide hydroxamic acid with heavy ion therapy shows promising effects in infantile sarcoma cell lines

    PubMed Central

    2011-01-01

    Introduction The pan-HDAC inhibitor (HDACI) suberoylanilide hydroxamic acid (SAHA) has previously shown to be a radio-sensitizer to conventional photon radiotherapy (XRT) in pediatric sarcoma cell lines. Here, we investigate its effect on the response of two sarcoma cell lines and a normal tissue cell line to heavy ion irradiation (HIT). Materials and methods Clonogenic assays after different doses of heavy ions were performed. DNA damage and repair were evaluated by measuring γH2AX via flow-cytometry. Apoptosis and cell cycle analysis were also measured via flow cytometry. Protein expression of repair proteins, p53 and p21 were measured using immunoblot analysis. Changes of nuclear architecture after treatment with SAHA and HIT were observed in one of the sarcoma cell lines via light microscopy after staining towards chromatin and γH2AX. Results Corresponding with previously reported photon data, SAHA lead to an increase of sensitivity to heavy ions along with an increase of DSB and apoptosis in the two sarcoma cell lines. In contrast, in the osteoblast cell line (hFOB 1.19), the combination of SAHA and HIT showed a significant radio-protective effect. Laser scanning microscopy revealed no significant morphologic changes after HIT compared to the combined treatment with SAHA. Immunoblot analysis revealed no significant up or down regulation of p53. However, p21 was significantly increased by SAHA and combination treatment as compared to HIT only in the two sarcoma cell lines - again in contrast to the osteoblast cell line. Changes in the repair kinetics of DSB p53-independent apoptosis with p21 involvement may be part of the underlying mechanisms for radio-sensitization by SAHA. Conclusion Our in vitro data suggest an increase of the therapeutic ratio by the combination of SAHA with HIT in infantile sarcoma cell lines. PMID:21933400

  2. Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA) on SIV-infected Chinese rhesus macaques.

    PubMed

    Ling, Binhua; Piatak, Michael; Rogers, Linda; Johnson, Ann-Marie; Russell-Lodrigue, Kasi; Hazuda, Daria J; Lifson, Jeffrey D; Veazey, Ronald S

    2014-01-01

    Viral reservoirs-persistent residual virus despite combination antiretroviral therapy (cART)-remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM) treated with intensive combination antiretroviral therapy (cART) and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA). SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations. Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters. The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations.

  3. 4-(1-Ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide – A new pleiotropic HDAC inhibitor targeting cancer cell signalling and cytoskeletal organisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahal, Katharina, E-mail: katharina.mahal@uni-bayreuth.de; Kahlen, Philip, E-mail: philip.kahlen@uni-bayreuth.de; Biersack, Bernhard, E-mail: bernhard.biersack@yahoo.com

    2015-08-15

    Histone deacetylases (HDAC) which play a crucial role in cancer cell proliferation are promising drug targets. However, HDAC inhibitors (HDACi) modelled on natural hydroxamic acids such as trichostatin A frequently lead to resistance or even an increased agressiveness of tumours. As a workaround we developed 4-(1-ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide (etacrox), a hydroxamic acid that combines HDAC inhibition with synergistic effects of the 4,5-diarylimidazole residue. Etacrox proved highly cytotoxic against a panel of metastatic and resistant cancer cell lines while showing greater specificity for cancer over non-malignant cells when compared to the approved HDACi vorinostat. Like the latter, etacrox and the closely related imidazolesmore » bimacroxam and animacroxam acted as pan-HDACi yet showed some specificity for HDAC6. Akt signalling and interference with nuclear beta-catenin localisation were elicited by etacrox at lower concentrations when compared to vorinostat. Moreover, etacrox disrupted the microtubule and focal adhesion dynamics of cancer cells and inhibited the proteolytic activity of prometastatic and proangiogenic matrix metalloproteinases. As a consequence, etacrox acted strongly antimigratory and antiinvasive against various cancer cell lines in three-dimensional transwell invasion assays and also antiangiogenic in vivo with respect to blood vessel formation in the chorioallantoic membrane assay. These pleiotropic effects and its water-solubility and tolerance by mice render etacrox a promising new HDACi candidate. - Graphical abstract: A novel histone deacetylase inhibitor with pleiotropic anticancer effects. - Highlights: • Etacrox is a new HDACi with cytotoxic, antiangiogenic and antiinvasive activity. • Etacrox causes aberrant cancer cell signalling and cytoskeletal reorganisation. • Pro-metastatic and angiogenic matrix metalloproteinases are inhibited by etacrox. • Etacrox impairs blood vessel maturation in vivo and cancer cell invasion in vitro. • Etacrox is tolerated well by mice in doses as high as 150 mg/kg.« less

  4. Identifying Novel Type ZBGs and Nonhydroxamate HDAC Inhibitors Through a SVM Based Virtual Screening Approach.

    PubMed

    Liu, X H; Song, H Y; Zhang, J X; Han, B C; Wei, X N; Ma, X H; Cui, W K; Chen, Y Z

    2010-05-17

    Histone deacetylase inhibitors (HDACi) have been successfully used for the treatment of cancers and other diseases. Search for novel type ZBGs and development of non-hydroxamate HDACi has become a focus in current research. To complement this, it is desirable to explore a virtual screening (VS) tool capable of identifying different types of potential inhibitors from large compound libraries with high yields and low false-hit rates similar to HTS. This work explored the use of support vector machines (SVM) combined with our newly developed putative non-inhibitor generation method as such a tool. SVM trained by 702 pre-2008 hydroxamate HDACi and 64334 putative non-HDACi showed good yields and low false-hit rates in cross-validation test and independent test using 220 diverse types of HDACi reported since 2008. The SVM hit rates in scanning 13.56 M PubChem and 168K MDDR compounds are comparable to HTS rates. Further structural analysis of SVM virtual hits suggests its potential for identification of non-hydroxamate HDACi. From this analysis, a series of novel ZBG and cap groups were proposed for HDACi design. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  6. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells.

    PubMed

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-29

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics.

  7. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S.

    2016-06-24

    Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated usingmore » a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.« less

  8. Antiproliferative effects of TSA, PXD‑101 and MS‑275 in A2780 and MCF7 cells: Acetylated histone H4 and acetylated tubulin as markers for HDACi potency and selectivity.

    PubMed

    Androutsopoulos, Vasilis P; Spandidos, Demetrios A

    2017-12-01

    Inhibition of histone deacetylase enzymes (HDACs) has been well documented as an attractive target for the development of chemotherapeutic drugs. The present study investigated the effects of two prototype hydroxamic acid HDAC inhibitors, namely Trichostatin A (TSA) and Belinostat (PXD‑101) and the benzamide Entinostat (MS‑275) in A2780 ovarian carcinoma and MCF7 breast adenocarcinoma cells. The three HDACi inhibited the proliferation of A2780 and MCF7 cells at comparable levels, below the µM range. Enzyme inhibition assays in a cell‑free system showed that TSA was the most potent inhibitor of total HDAC enzyme activity followed by PXD‑101 and MS‑275. Incubation of A2780 and MCF7 cells with the hydroxamates TSA and PXD‑101 for 24 h resulted in a dramatic increase of acetylated tubulin induction (up to 30‑fold for TSA). In contrast to acetylated tubulin, western blot analysis and flow cytometry indicated that the induction of acetylated histone H4 was considerably smaller. The benzamide MS‑275 exhibited nearly a 2‑fold induction of acetylated histone H4 and an even smaller induction of acetylated tubulin in A2780 and MCF7 cells. Taken together, these data suggest that although the three HDACi were equipotent in inhibiting proliferation of MCF7 and A2780 cells, only the benzamide MS‑275 did not induce acetylated tubulin expression, a marker of class IIb HDACs.

  9. Analysis of hydroxamate siderophores in soil solution using liquid chromatography with mass spectrometry and tandem mass spectrometry with on-line sample preconcentration.

    PubMed

    Olofsson, Madelen A; Bylund, Dan

    2015-10-01

    A liquid chromatography with electrospray ionization mass spectrometry method was developed to quantitatively and qualitatively analyze 13 hydroxamate siderophores (ferrichrome, ferrirubin, ferrirhodin, ferrichrysin, ferricrocin, ferrioxamine B, D1 , E and G, neocoprogen I and II, coprogen and triacetylfusarinine C). Samples were preconcentrated on-line by a switch-valve setup prior to analyte separation on a Kinetex C18 column. Gradient elution was performed using a mixture of an ammonium formate buffer and acetonitrile. Total analysis time including column conditioning was 20.5 min. Analytes were fragmented by applying collision-induced dissociation, enabling structural identification by tandem mass spectrometry. Limit of detection values for the selected ion monitoring method ranged from 71 pM to 1.5 nM with corresponding values of two to nine times higher for the multiple reaction monitoring method. The liquid chromatography with mass spectrometry method resulted in a robust and sensitive quantification of hydroxamate siderophores as indicated by retention time stability, linearity, sensitivity, precision and recovery. The analytical error of the methods, assessed through random-order, duplicate analysis of soil samples extracted with a mixture of 10 mM phosphate buffer and methanol, appears negligible in relation to between-sample variations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors

    NASA Astrophysics Data System (ADS)

    Goracci, Laura; Deschamps, Nathalie; Randazzo, Giuseppe Marco; Petit, Charlotte; Dos Santos Passos, Carolina; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2016-07-01

    The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development.

  11. An additional role for the Brønsted acid-base catalysts of mandelate racemase in transition state stabilization.

    PubMed

    Nagar, Mitesh; Bearne, Stephen L

    2015-11-10

    Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelate and serves as a paradigm for understanding the enzyme-catalyzed abstraction of an α-proton from a carbon acid substrate with a high pKa. The enzyme utilizes a two-base mechanism with Lys 166 and His 297 acting as Brønsted acid and base catalysts, respectively, in the R → S reaction direction. In the S → R reaction direction, their roles are reversed. Using isothermal titration calorimetry (ITC), MR is shown to bind the intermediate/transition state (TS) analogue inhibitor benzohydroxamate (BzH) in an entropy-driven process with a value of ΔCp equal to -358 ± 3 cal mol(-1) K(-1), consistent with an increased number of hydrophobic interactions. However, MR binds BzH with an affinity that is ∼2 orders of magnitude greater than that predicted solely on the basis of hydrophobic interactions [St. Maurice, M., and Bearne, S. L. (2004) Biochemistry 43, 2524], suggesting that additional specific interactions contribute to binding. To test the hypothesis that cation-π/NH-π interactions between the side chains of Lys 166 and His 297 and the aromatic ring and/or the hydroxamate/hydroximate moiety of BzH contribute to the binding of BzH, site-directed mutagenesis was used to generate the MR variants K166M, K166C, H297N, and K166M/H297N and their binding affinity for various ligands determined using ITC. Comparison of the binding affinities of these MR variants with the intermediate/TS analogues BzH and cyclohexanecarbohydroxamate revealed that cation-π/NH-π interactions between His 297 and the hydroxamate/hydroximate moiety and the phenyl ring of BzH contribute approximately 0.26 and 0.91 kcal/mol to binding, respectively, while interactions with Lys 166 contribute approximately 1.74 and 1.74 kcal/mol, respectively. Similarly, comparison of the binding affinities of these mutants with substrate analogues revealed that Lys 166 contributes >2.93 kcal/mol to the binding of (R)-atrolactate, and His 297 contributes 2.46 kcal/mol to the binding of (S)-atrolactate. These results are consistent with Lys 166 and His 297 playing dual roles in catalysis: they act as Brønsted acid-base catalysts, and they stabilize both the enolate moiety and phenyl ring of the altered substrate in the TS.

  12. Role of growth media and chemical enhancers in secondary metabolites production from Aspergillus carbonarius (NRL-369) and their pharmaceutical potentials.

    PubMed

    Khan, Abid Ali; Bacha, Nafess; Ahmad, Bashir; Cox, R J; Bakht, Jehan

    2016-07-01

    The present study investigates the effect of different growth media and chemical enhancer on silent genes in Aspergillus carbonarius (NRL-369) for secondary metabolites production and its in vitro biological activities. Results revealed that Aspergillus carbonarius (NRL-369) grown in Czapeak yeast extract broth medium produced more metabolites compared with other media. Chemical epigenetic modifiers (suberoyl-anilide hydroxamic acid (SAHA) and 5-azacytidine (5-AZA) at concentration of 15mM were effective for the expression of silent genes resulting in increased secondary metabolites production. Secondary metabolites extracted in ethyl acetate and fractionized in n-Hexane showed variable degree of growth inhibitions of the tested microorganisms. Similarly, these samples were also active against brine shrimps and Lemna.

  13. 4-N-Hydroxy-4-[1-(sulfonyl)piperidin-4-yl]-butyramides as HDAC inhibitors.

    PubMed

    Rossi, Cristina; Fincham, Christopher I; D'Andrea, Piero; Porcelloni, Marina; Ettorre, Alessandro; Mauro, Sandro; Bigioni, Mario; Binaschi, Monica; Maggi, Carlo A; Nardelli, Federica; Parlani, Massimo; Fattori, Daniela

    2011-11-15

    A series of N-substituted 4-alkylpiperidine hydroxamic acids, corresponding to the basic structure of histone deacetylase (HDAC) inhibitors (zinc binding moiety-linker-capping group) has been previously reported by our group. Linker length and aromatic capping group connection were systematically varied to find the optimal geometric parameters. A new series of submicromolar inhibitors was thus identified, which showed antiproliferative activity on HCT-116 colon carcinoma cells. We report here the second part of the strategy used in our research group to find a new class of HDAC inhibitors, namely the SAR study for the compounds bearing a sulfonyl group on the piperidine nitrogen. In the present work, we have considered both sulfonamides and sulfonyl ureas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases.

    PubMed

    Sainsbury, Paul D; Mineyeva, Yelena; Mycroft, Zoe; Bugg, Timothy D H

    2015-06-01

    Bacterial lignin degradation could be used to generate aromatic chemicals from the renewable resource lignin, provided that the breakdown pathways can be manipulated. In this study, selective inhibitors of enzymatic steps in bacterial degradation pathways were developed and tested for their effects upon lignin degradation. Screening of a collection of hydroxamic acid metallo-oxygenase inhibitors against two catechol dioxygenase enzymes, protocatechuate 3,4-dioxygenase (3,4-PCD) and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB), resulted in the identification of selective inhibitors D13 for 3,4-PCD (IC50 15μM) and D3 for MhpB (IC50 110μM). Application of D13 to Rhodococcus jostii RHA1 in minimal media containing ferulic acid led to the appearance of metabolic precursor protocatechuic acid at low concentration. Application of 1mM disulfiram, an inhibitor of mammalian aldehyde dehydrogenase, to R. jostii RHA1, gave rise to 4-carboxymuconolactone on the β-ketoadipate pathway, whereas in Pseudomonas fluorescens Pf-5 disulfiram treatment gave rise to a metabolite found to be glycine betaine aldehyde. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma

    PubMed Central

    Landreville, Solange; Agapova, Olga A.; Matatall, Katie A.; Kneass, Zachary T.; Onken, Michael D.; Lee, Ryan S.; Bowcock, Anne M.; Harbour, J. William

    2011-01-01

    Purpose Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma and metastasis (UM). The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM. Experimental Design In silico screens were performed to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid, trichostatin A, LBH-589 and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, BrdU incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model. Results HDAC inhibitors induced morphologic differentiation, cell cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. Valproic acid inhibited the growth of UM tumors in vivo. Conclusions These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM. PMID:22038994

  16. Application of INEPT nitrogen-15 and silicon-29 nuclear magnetic resonance spectrometry to derivatized fulvic acids

    USGS Publications Warehouse

    Thorn, K.A.; Folan, D.W.; Arterburn, J.B.; Mikita, M.A.; MacCarthy, P.

    1989-01-01

    Use of the INEPT experiment has been examined in two derivatization studies of the Suwannee River fulvic acid. In the first study, the fulvic acid was derivatized with 15N enriched hydroxylamine. The quantitative 15N NMR spectrum, acquired with a 45° pulse angle, 2.0 second pulse delay and inverse gated decoupling, showed that oximes (390-340 ppm) were the major derivatives, followed by nitriles (270-240 ppm), hydroxamic acids (170-160 ppm), secondary amides (150-115 ppm), and lactams (115-90 ppm). The INEPT 15N NMR spectrum was acquired using refocussing delays and polarization transfer times optimized for signal enhancement of singly protonated nitrogens. INEPT greatly enhanced the amide and lactam resonances, and showed that resonances downfield of 180 ppm in the quantitative spectrum represented nonprotonated nitrogens. In the second study, the fulvic acid was first methylated with diazomethane and then silylated with hexamethyldisilazane. The 29Si NMR spectra exhibited two major peaks, from approximately 33 to 22 ppm, representing silyl esters of carboxylic acids, and from 22 to 13 ppm, representing silyl ethers of alcohols and phenols. The INEPT 29Si NMR spectrum was virtually identical to the quantitative 29Si spectrum, acquired with a 90° pulse angle, 5.0 second pulse delay, inverse gated decoupling, and relaxation reagent. INEPT therefore can be used for quantitative analysis of trimethylsilyl derivatives of the fulvic acid, saving spectrometer time and eliminating the need for relaxation reagents.

  17. Cardiomyogenic Differentiation of Human Dental Follicle-derived Stem Cells by Suberoylanilide Hydroxamic Acid and Their In Vivo Homing Property.

    PubMed

    Sung, Iel-Yong; Son, Han-Na; Ullah, Imran; Bharti, Dinesh; Park, Ju-Mi; Cho, Yeong-Cheol; Byun, June-Ho; Kang, Young-Hoon; Sung, Su-Jin; Kim, Jong-Woo; Rho, Gyu-Jin; Park, Bong-Wook

    2016-01-01

    The purpose of the present study was to investigate the in vitro cardiomyogenic differentiation potential of human dental follicle-derived stem cells (DFCs) under the influence of suberoylanilide hydroxamic acid (SAHA), a member of the histone deacetylase inhibitor family, and analyze the in vivo homing capacity of induced cardiomyocytes (iCMs) when transplanted systemically. DFCs from extracted wisdom teeth showed mesenchymal stem cell (MSC) characteristics such as plate adherent growing, expression of MSC markers (CD44, CD90, and CD105), and mesenchymal lineage-specific differentiation potential. Adding SAHA to the culture medium induced the successful in vitro differentiation of DFCs into cardiomyocytes. These iCMs expressed cardiomyogenic markers, including alpha-smooth muscle actin (α-SMA), cardiac muscle troponin T (TNNT2), Desmin, and cardiac muscle alpha actin (ACTC1) , at both the mRNA and protein level. For the assessment of homing capacity, PKH26 labeled iCMs were intraperitoneally injected (1×10 6 cells in 100 µL of PBS) into the experimental mice, and the ratios of PKH26 positive cells to the total number of injected cells, in multiple organs were determined. The calculated homing ratios, 14 days after systemic cell transplantation, were 5.6 ± 1.0%, 3.6 ± 1.1%, and 11.6 ± 2.7% in heart, liver, and kidney respectively. There was no difference in the serum levels of interleukin-2 and interleukin-10 at 14 days after transplantation, between the experimental (iCM injected) and control (no injection or PBS injection) groups. These results demonstrate that DFCs can be an excellent source for cardiomyocyte differentiation and regeneration. Moreover, the iCMs can be delivered into heart muscle via systemic administration without eliciting inflammatory or immune response. This can serve as the pilot study for further investigations into the in vitro cardiomyogenic differentiation potential of DFCs under the influence of SAHA and the in vivo homing capacity of the iCMs into the heart muscle, when injected systemically.

  18. Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts.

    PubMed

    McGee-Lawrence, Meghan E; McCleary-Wheeler, Angela L; Secreto, Frank J; Razidlo, David F; Zhang, Minzhi; Stensgard, Bridget A; Li, Xiaodong; Stein, Gary S; Lian, Jane B; Westendorf, Jennifer J

    2011-05-01

    Histone deacetylase (Hdac) inhibitors are used clinically to treat cancer and epilepsy. Although Hdac inhibition accelerates osteoblast maturation and suppresses osteoclast maturation in vitro, the effects of Hdac inhibitors on the skeleton are not understood. The purpose of this study was to determine how the pan-Hdac inhibitor, suberoylanilide hydroxamic acid (SAHA; a.k.a. vorinostat or Zolinza(TM)) affects bone mass and remodeling in vivo. Male C57BL/6J mice received daily SAHA (100mg/kg) or vehicle injections for 3 to 4weeks. SAHA decreased trabecular bone volume fraction and trabecular number in the distal femur. Cortical bone at the femoral midshaft was not affected. SAHA reduced serum levels of P1NP, a bone formation marker, and also suppressed tibial mRNA levels of type I collagen, osteocalcin and osteopontin, but did not alter Runx2 or osterix transcripts. SAHA decreased histological measures of osteoblast number but interestingly increased indices of osteoblast activity including mineral apposition rate and bone formation rate. Neither serum (TRAcP 5b) nor histological markers of bone resorption were affected by SAHA. P1NP levels returned to baseline in animals which were allowed to recover for 4weeks after 4weeks of daily SAHA injections, but bone density remained low. In vitro, SAHA suppressed osteogenic colony formation, decreased osteoblastic gene expression, induced cell cycle arrest, and caused DNA damage in bone marrow-derived adherent cells. Collectively, these data demonstrate that bone loss following treatment with SAHA is primarily due to a reduction in osteoblast number. Moreover, these decreases in osteoblast number can be attributed to the deleterious effects of SAHA on immature osteoblasts, even while mature osteoblasts are resistant to the harmful effects and demonstrate increased activity in vivo, indicating that the response of osteoblasts to SAHA is dependent upon their differentiation state. These studies suggest that clinical use of SAHA and other Hdac inhibitors to treat cancer, epilepsy or other conditions may potentially compromise skeletal structure and function. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Design, synthesis and anticancer activity of piperazine hydroxamates and their histone deacetylase (HDAC) inhibitory activity.

    PubMed

    Chetan, Bhadaliya; Bunha, Mahesh; Jagrat, Monika; Sinha, Barij Nayan; Saiko, Philipp; Graser, Geraldine; Szekeres, Thomas; Raman, Ganapathy; Rajendran, Praveen; Moorthy, Dhatchana; Basu, Arijit; Jayaprakash, Venkatesan

    2010-07-01

    Six compounds were synthesized with piperazine in linker region and hydroxamate as Zinc Binding Group (ZBG). They were screened against three cancer cell-lines (NCIH460; HCT116; U251). Compounds 5c and 5f with GI(50) value of 9.33+/-1.3 microM and 12.03+/-4 microM, respectively, were tested for their inhibitory potential on hHDAC8. Compound 5c had IC(50) of 33.67 microM. Compounds were also screened for their anticancer activity against HL60 human promyelocytic leukemia cell line due to the presence of pharmacophoric features of RR inhibitors in them. Compound 5c had IC(50) of 0.6 microM at 48h. 2010 Elsevier Ltd. All rights reserved.

  20. Studies of benzamide- and thiol-based histone deacetylase inhibitors in models of oxidative-stress-induced neuronal death: identification of some HDAC3-selective inhibitors.

    PubMed

    Chen, Yufeng; He, Rong; Chen, Yihua; D'Annibale, Melissa A; Langley, Brett; Kozikowski, Alan P

    2009-05-01

    We compare three structurally different classes of histone deacetylase (HDAC) inhibitors that contain benzamide, hydroxamate, or thiol groups as the zinc binding group (ZBG) for their ability to protect cortical neurons in culture from cell death induced by oxidative stress. This study reveals that none of the benzamide-based HDAC inhibitors (HDACIs) provides any neuroprotection whatsoever, in distinct contrast to HDACIs that contain other ZBGs. Some of the sulfur-containing HDACIs, namely the thiols, thioesters, and disulfides present modest neuroprotective activity but show toxicity at higher concentrations. Taken together, these data demonstrate that the HDAC6-selective mercaptoacetamides that were reported previously provide the best protection in the homocysteic acid model of oxidative stress, thus further supporting their study in animal models of neurodegenerative diseases.

  1. Plants Release Precursors of Histone Deacetylase Inhibitors to Suppress Growth of Competitors[OPEN

    PubMed Central

    Venturelli, Sascha; Belz, Regina G.; Kämper, Andreas; Berger, Alexander; von Horn, Kyra; Wegner, André; Böcker, Alexander; Zabulon, Gérald; Barneche, Fredy; Lauer, Ulrich M.; Bitzer, Michael

    2015-01-01

    To secure their access to water, light, and nutrients, many plant species have developed allelopathic strategies to suppress competitors. To this end, they release into the rhizosphere phytotoxic substances that inhibit the germination and growth of neighbors. Despite the importance of allelopathy in shaping natural plant communities and for agricultural production, the underlying molecular mechanisms are largely unknown. Here, we report that allelochemicals derived from the common class of cyclic hydroxamic acid root exudates directly affect the chromatin-modifying machinery in Arabidopsis thaliana. These allelochemicals inhibit histone deacetylases both in vitro and in vivo and exert their activity through locus-specific alterations of histone acetylation and associated gene expression. Our multilevel analysis collectively shows how plant-plant interactions interfere with a fundamental cellular process, histone acetylation, by targeting an evolutionarily highly conserved class of enzymes. PMID:26530086

  2. Design, Synthesis, and Properties of a Potent Inhibitor of Pseudomonas aeruginosa Deacetylase LpxC.

    PubMed

    Piizzi, Grazia; Parker, David T; Peng, Yunshan; Dobler, Markus; Patnaik, Anup; Wattanasin, Som; Liu, Eugene; Lenoir, Francois; Nunez, Jill; Kerrigan, John; McKenney, David; Osborne, Colin; Yu, Donghui; Lanieri, Leanne; Bojkovic, Jade; Dzink-Fox, JoAnn; Lilly, Maria-Dawn; Sprague, Elizabeth R; Lu, Yipin; Wang, Hongming; Ranjitkar, Srijan; Xie, Lili; Wang, Bing; Glick, Meir; Hamann, Lawrence G; Tommasi, Ruben; Yang, Xia; Dean, Charles R

    2017-06-22

    Over the past several decades, the frequency of antibacterial resistance in hospitals, including multidrug resistance (MDR) and its association with serious infectious diseases, has increased at alarming rates. Pseudomonas aeruginosa is a leading cause of nosocomial infections, and resistance to virtually all approved antibacterial agents is emerging in this pathogen. To address the need for new agents to treat MDR P. aeruginosa, we focused on inhibiting the first committed step in the biosynthesis of lipid A, the deacetylation of uridyldiphospho-3-O-(R-hydroxydecanoyl)-N-acetylglucosamine by the enzyme LpxC. We approached this through the design, synthesis, and biological evaluation of novel hydroxamic acid LpxC inhibitors, exemplified by 1, where cytotoxicity against mammalian cell lines was reduced, solubility and plasma-protein binding were improved while retaining potent anti-pseudomonal activity in vitro and in vivo.

  3. Iron chelated cyclic peptide, ferrichrysin, for oral treatment of iron deficiency: solution properties and efficacy in anemic rats.

    PubMed

    Suzuki, Sachiko; Fukuda, Katsuharu; Irie, Motoko; Hata, Yoji

    2007-01-01

    Ferrichrysin (Fcy), which is produced by Aspergillus oryzae and is present in foods used for human consumption, belongs to a group of hydroxamate siderophore ferric iron chelators. Fcy (100 mg/mL) dissolves completely at both pH 2.0 and 7.0, being very stable at a wide range of pH, high temperatures and pressures, with little reactivity to dietary iron absorption inhibitors, phytic acid, tannic acid, and catechin. We studied the effect of Fcy in male Sprague-Dawley rats with iron-deficiency anemia, which were separated into three different dietary groups (n=5) and supplementing diets as follows: (i) ferric citrate, (ii) heme iron concentrate, and (iii) Fcy (35 mg Fe/kg diet) for three weeks. Fcy exhibited the same beneficial effect in improving iron deficiency anemia as ferric citrate, being significantly greater than the effect of heme iron. The iron concentration of liver in the Fcy group was 35% greater than that in the ferric citrate group. These findings indicate that Fcy could be an efficient oral iron supplement to prevent or treat iron deficiency.

  4. PLGA-PEG Nanoparticles Coated with Anti-CD45RO and Loaded with HDAC Plus Protease Inhibitors Activate Latent HIV and Inhibit Viral Spread

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Liang, Yong; Liu, Xinkuang; Zhou, Shuping; Liu, Liang; Zhang, Fujina; Xie, Chunmei; Cai, Shuyu; Wei, Jia; Zhu, Yongqiang; Hou, Wei

    2015-10-01

    Activating HIV-1 proviruses in latent reservoirs combined with inhibiting viral spread might be an effective anti-HIV therapeutic strategy. Active specific delivery of therapeutic drugs into cells harboring latent HIV, without the use of viral vectors, is a critical challenge to this objective. In this study, nanoparticles of poly(lactic-co-glycolic acid)-polyethylene glycol diblock copolymers conjugated with anti-CD45RO antibody and loaded with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and/or protease inhibitor nelfinavir (Nel) were tested for activity against latent virus in vitro. Nanoparticles loaded with SAHA, Nel, and SAHA + Nel were characterized in terms of size, surface morphology, zeta potential, entrapment efficiency, drug release, and toxicity to ACH-2 cells. We show that SAHA- and SAHA + Nel-loaded nanoparticles can target latently infected CD4+ T-cells and stimulate virus production. Moreover, nanoparticles loaded with SAHA + NEL were capable of both activating latent virus and inhibiting viral spread. Taken together, these data demonstrate the potential of this novel reagent for targeting and eliminating latent HIV reservoirs.

  5. Differentiation and upregulation of heat shock protein 70 induced by a subset of histone deacetylase inhibitors in mouse and human embryonic stem cells.

    PubMed

    Park, Jeong-A; Kim, Young-Eun; Seok, Hyun-Jeong; Park, Woo-Youn; Kwon, Hyung-Joo; Lee, Younghee

    2011-03-01

    Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heatshock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/ JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.

  6. N-(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells.

    PubMed

    Prestegui-Martel, Berenice; Bermúdez-Lugo, Jorge Antonio; Chávez-Blanco, Alma; Dueñas-González, Alfonso; García-Sánchez, José Rubén; Pérez-González, Oscar Alberto; Padilla-Martínez, Itzia Irene; Fragoso-Vázquez, Manuel Jonathan; Mendieta-Wejebe, Jessica Elena; Correa-Basurto, Ana María; Méndez-Luna, David; Trujillo-Ferrara, José; Correa-Basurto, José

    2016-01-01

    Epigenetic alterations are associated with cancer and their targeting is a promising approach for treatment of this disease. Among current epigenetic drugs, histone deacetylase (HDAC) inhibitors induce changes in gene expression that can lead to cell death in tumors. Valproic acid (VPA) is a HDAC inhibitor that has antitumor activity at mM range. However, it is known that VPA is a hepatotoxic drug. Therefore, the aim of this study was to design a set of VPA derivatives adding the arylamine core of the suberoylanilide hydroxamic acid (SAHA) with different substituents at its carboxyl group. These derivatives were submitted to docking simulations to select the most promising compound. The compound 2 (N-(2-hydroxyphenyl)-2-propylpentanamide) was the best candidate to be synthesized and evaluated in vitro as an anti-cancer agent against HeLa, rhabdomyosarcoma and breast cancer cell lines. Compound 2 showed a better IC 50 (μM range) than VPA (mM range) on these cancer cells. And also, 2 was particularly effective on triple negative breast cancer cells. In conclusion, 2 is an example of drugs designed in silico that show biological properties against human cancer difficult to treat as triple negative breast cancer.

  7. Rational Design Synthesis and Evaluation of New Selective Inhibitors of Microbial Class II (Zinc Dependent) Fructose Bis-phosphate Aldolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R Daher; M Coincon; M Fonvielle

    2011-12-31

    We report the synthesis and biochemical evaluation of several selective inhibitors of class II (zinc dependent) fructose bis-phosphate aldolases (Fba). The products were designed as transition-state analogues of the catalyzed reaction, structurally related to the substrate fructose bis-phosphate (or sedoheptulose bis-phosphate) and based on an N-substituted hydroxamic acid, as a chelator of the zinc ion present in active site. The compounds synthesized were tested on class II Fbas from various pathogenic microorganisms and, by comparison, on a mammalian class I Fba. The best inhibitor shows Ki against class II Fbas from various pathogens in the nM range, with very highmore » selectivity (up to 105). Structural analyses of inhibitors in complex with aldolases rationalize and corroborate the enzymatic kinetics results. These inhibitors represent lead compounds for the preparation of new synthetic antibiotics, notably for tuberculosis prophylaxis.« less

  8. HDAC Inhibitors Disrupt Programmed Resistance to Apoptosis During Drosophila Development.

    PubMed

    Kang, Yunsik; Marischuk, Khailee; Castelvecchi, Gina D; Bashirullah, Arash

    2017-06-07

    We have previously shown that the ability to respond to apoptotic triggers is regulated during Drosophila development, effectively dividing the fly life cycle into stages that are either sensitive or resistant to apoptosis. Here, we show that the developmentally programmed resistance to apoptosis involves transcriptional repression of critical proapoptotic genes by histone deacetylases (HDACs). Administration of HDAC inhibitors (HDACi), like trichostatin A or suberoylanilide hydroxamic acid, increases expression of proapoptotic genes and is sufficient to sensitize otherwise resistant stages. Conversely, reducing levels of proapoptotic genes confers resistance to otherwise sensitive stages. Given that resistance to apoptosis is a hallmark of cancer cells, and that HDACi have been recently added to the repertoire of FDA-approved agents for cancer therapy, our results provide new insights for how HDACi help kill malignant cells and also raise concerns for their potential unintended effects on healthy cells. Copyright © 2017 Kang et al.

  9. Characterization of PAH matrix with monazite stream containing uranium, gadolinium and iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Sangita, E-mail: sangpal@barc.gov.in; Goswami, D.; Meena, Sher Singh

    2016-05-23

    Uranium (U) gadolinium (Gd) and iron (Fe) containing alkaline waste simulated effluent (relevant to alkaline effluent of monazite ore) has been treated with a novel amphoteric resin viz, Polyamidehydroxamate (PAH) containing amide and hydroxamic acid groups. The resin has been synthesized in an eco-friendly manner by polymerization nad conversion to functional groups characterized by FT-IR spectra and architectural overview by SEM. Coloration of the loaded matrix and de-coloration after extraction of uranium is the special characteristic of the matrix. Effluent streams have been analyzed by ICP-AES, U loaded PAH has been characterized by FT-IR, EXAFS, Gd and Fe by X-raymore » energy values of EDXRF at 6.053 KeVand 6.405 KeV respectively. The remarkable change has been observed in Mössbauer spectrum of Fe-loaded PAH samples.« less

  10. Recent advances in the discovery of potent and selective HDAC6 inhibitors.

    PubMed

    Wang, Xiu-Xiu; Wan, Ren-Zhong; Liu, Zhao-Peng

    2018-01-01

    Histone deacetylase HDAC6, a member of the class IIb HDAC family, is unique among HDAC enzymes in having two active catalytic domains, and has unique physiological function. In addition to the modification of histone, HDAC6 targets specific substrates including α-tubulin and HSP90, and are involved in protein trafficking and degradation, cell shape and migration. Selective HDAC6 inhibitors are an emerging class of pharmaceuticals due to the involvement of HDAC6 in different pathways related to neurodegenerative diseases, cancer, and immunology. Therefore, extensive investigations have been made in the discovery of selective HDAC6 inhibitors. Based on their different zinc binding groups (ZBGs), in this review, HDAC6 inhibitors are grouped as hydroxamic acids, a sulfur containing ZBG based derivatives and other ZBG-derived compounds, and their enzymatic inhibitory activity, selectivity and other biological activities are introduced and summarized. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. The evolution of the matrix metalloproteinase inhibitor drug discovery program at abbott laboratories.

    PubMed

    Wada, Carol K

    2004-01-01

    Matrix metalloproteinases (MMPs) have been implicated in several pathologies. At Abbott Laboratories, the matrix metalloproteinases inhibitor drug discovery program has focused on the discovery of a potent, selective, orally bioavailable MMP inhibitor for the treatment of cancer. The program evolved from early succinate-based inhibitors to utilizing in-house technology such as SAR by NMR to develop a novel class of biaryl hydroxamate MMP inhibitors. The metabolic instability of the biaryl hydroxamates led to the discovery of a new class of N-formylhydroxylamine (retrohydroxamate) biaryl ethers, exemplified by ABT-770 (16). Toxicity issues with this pre-clinical candidate led to the discovery of another novel class of retrohydroxamate MMP inhibitors, the phenoxyphenyl sulfones such as ABT-518 (19j). ABT-518 is a potent, orally bioavailable, selective inhibitor of MMP-2 and 9 over MMP-1 that has been evaluated in Phase I clinical trials in cancer patients.

  12. Siderophore-mediated iron acquisition mechanisms in Vibrio vulnificus biotype 2.

    PubMed Central

    Biosca, E G; Fouz, B; Alcaide, E; Amaro, C

    1996-01-01

    Vibrio vulnificus biotype 2 is a primary pathogen for eels and, as has recently been suggested, an opportunistic pathogen for humans. In this study we have investigated the ability of V. vulnificus biotype 2 to obtain iron by siderophore-mediated mechanisms and evaluated the importance of free iron in vibriosis. The virulence degree for eels was dependent on iron availability from host fluids, as was revealed by a reduction in the 50% lethal dose for iron-overloaded eels. This biotype produced both phenolate- and hydroxamate-type siderophores of an unknown nature and two new outer membrane proteins of around 84 and 72 kDa in response to iron starvation. No alterations in lipopolysaccharide patterns were detected in response to iron stress. Finally, our data suggest that V. vulnificus biotype 2 uses the hydroxamate-type siderophore for removal of iron from transferrin rather than relying on a receptor for this iron-binding protein. PMID:8975620

  13. Selective flotation of phosphate minerals with hydroxamate collectors

    DOEpatents

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  14. Investigation of non-hydroxamate scaffolds against HDAC6 inhibition: A pharmacophore modeling, molecular docking, and molecular dynamics simulation approach.

    PubMed

    Zeb, Amir; Park, Chanin; Son, Minky; Rampogu, Shailima; Alam, Syed Ibrar; Park, Seok Ju; Lee, Keun Woo

    2018-06-01

    Proteins deacetylation by Histone deacetylase 6 (HDAC6) has been shown in various human chronic diseases like neurodegenerative diseases and cancer, and hence is an important therapeutic target. Since, the existing inhibitors have hydroxamate group, and are not HDAC6-selective, therefore, this study has designed to investigate non-hydroxamate HDAC6 inhibitors. Ligand-based pharmacophore was generated from 26 training set compounds of HDAC6 inhibitors. The statistical parameters of pharmacophore (Hypo1) included lowest total cost of 115.63, highest cost difference of 135.00, lowest RMSD of 0.70 and the highest correlation of 0.98. The pharmacophore was validated by Fischer's Randomization and Test Set validation, and used as screening tool for chemical databases. The screened compounds were filtered by fit value ([Formula: see text]), estimated Inhibitory Concentration (IC[Formula: see text]) ([Formula: see text]), Lipinski's Rule of Five and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Descriptors to identify drug-like compounds. Furthermore, the drug-like compounds were docked into the active site of HDAC6. The best docked compounds were selected having goldfitness score [Formula: see text] and [Formula: see text], and hydrogen bond interaction with catalytic active residues. Finally, three inhibitors having sulfamoyl group were selected by Molecular Dynamic (MD) simulation, which showed stable root mean square deviation (RMSD) (1.6-1.9[Formula: see text]Å), lowest potential energy ([Formula: see text][Formula: see text]kJ/mol), and hydrogen bonding with catalytic active residues of HDAC6.

  15. Histone Deacetylase (HDAC) Inhibitors: Current Evidence for Therapeutic Activities in Pancreatic Cancer.

    PubMed

    Damaskos, Christos; Garmpis, Nikolaos; Karatzas, Theodore; Nikolidakis, Lampros; Kostakis, Ioannis D; Garmpi, Anna; Karamaroudis, Stefanos; Boutsikos, Georgios; Damaskou, Zoi; Kostakis, Alkiviadis; Kouraklis, Gregory

    2015-06-01

    Pancreatic carcinoma is one of the leading causes of cancer death. Current standard treatments include surgical resection, chemotherapy and radiotherapy but patient's prognosis remains poor and present severe side-effects. Contemporary oncology found a wide variety of novel anticancer drugs that regulate the epigenetic mechanisms of tumor genesis. Histone deacetylases (HDACs) are enzymes with pleiotropic activities that control critical functions of the cell through regulation of the acetylation states of histone proteins and other non-histone protein targets. They are divided into four groups, each with different localization in the cell, role and structure. Histone deacetylase inhibitors (HDACIs) are substances, which inhibit the function of HDACs. We recognize four leading groups (hydroxamic acid, cyclic tetrapeptide, benzamide, aliphatic acid). There are many HDACIs currently in pre-clinical and two (vorinostat, romidepsin) in clinical stages of investigation for pancreatic cancer. Numerous studies argue for the use HDACIs as monotherapy, others suggest that combination of HDACIs with other antitumor drugs has better therapeutic results. This review focuses on the use of HDACIs as novel anticancer drugs and will explain the mechanisms of therapeutic effect on pancreatic cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. A comparative study based on docking and molecular dynamics simulations over HDAC-tubulin dual inhibitors.

    PubMed

    Hassanzadeh, Malihe; Bagherzadeh, Kowsar; Amanlou, Massoud

    2016-11-01

    Nowadays the ability to prediction of complex behavior rationally based on the computational approaches has been a successful technique in drug discovery. In the present study interactions of a new series of hybrids, which were made by linking colchicine as a tubulin inhibitor and suberoylanilide hydroxamic acid (SAHA) as a HDAC inhibitor, with HDAC8 and HDAC1 were investigated and compared. This research has been facilitated by the availability of experimental information besides employing docking methodology as well as classical molecular dynamics simulations and binding free energy calculation were performed. The obtained findings indicate different modes of interactions and inhibition strengths of the studied inhibitors for HDAC8 and HDAC1. HDAC8 binding free energies (-34.35 to -26.27kcal/mol) revealed higher binding affinity to HDAC8 compared to HDAC1 (-33.17 to -7.99kcal/mol). The binding energy contribution of each residue with the hybrid compounds 4a-4e within the active site of HDAC1 and HDAC8 was analyzed and the results confirmed the rule of key amino acids in interaction with the hybrid compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease

    PubMed Central

    Karagiannis, Tom C.; Ververis, Katherine

    2012-01-01

    Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes. PMID:22953035

  18. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease.

    PubMed

    Karagiannis, Tom C; Ververis, Katherine

    2012-01-01

    Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.

  19. Controlling lipid oxidation via a biomimetic iron chelating active packaging material.

    PubMed

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2013-12-18

    Previously, a siderophore-mimetic metal chelating active packaging film was developed by grafting poly(hydroxamic acid) (PHA) from the surface of polypropylene (PP) films. The objective of the current work was to demonstrate the potential applicability of this PP-g-PHA film to control iron-promoted lipid oxidation in food emulsions. The iron chelating activity of this film was investigated, and the surface chemistry and color intensity of films were also analyzed after iron chelation. In comparison to the iron chelating activity in the free Fe(3+) solution, the PP-g-PHA film retained approximately 50 and 30% of its activity in nitrilotriacetic acid (NTA)/Fe(3+) and citric acid/Fe(3+) solutions, respectively (pH 5.0), indicating a strong chelating strength for iron. The ability of PP-g-PHA films to control lipid oxidation was demonstrated in a model emulsion system (pH 3.0). PP-g-PHA films performed even better than ethylenediaminetetraacetic acid (EDTA) in preventing the formation of volatile oxidation products. The particle size and ζ potential results of emulsions indicated that PP-g-PHA films had no adverse effects on the stability of the emulsion system. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis suggested a non-migratory nature of the PP-g-PHA film surface. These results suggest that such biomimetic, non-migratory metal chelating active packaging films have commercial potential in protecting foods against iron-promoted lipid oxidation.

  20. Fundamental Chemical Kinetic And Thermodynamic Data For Purex Process Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, R.J.; Fox, O.D.; Sarsfield, M.J.

    2007-07-01

    To support either the continued operations of current reprocessing plants or the development of future fuel processing using hydrometallurgical processes, such as Advanced Purex or UREX type flowsheets, the accurate simulation of Purex solvent extraction is required. In recent years we have developed advanced process modeling capabilities that utilize modern software platforms such as Aspen Custom Modeler and can be run in steady state and dynamic simulations. However, such advanced models of the Purex process require a wide range of fundamental data including all relevant basic chemical kinetic and thermodynamic data for the major species present in the process. Thismore » paper will summarize some of these recent process chemistry studies that underpin our simulation, design and testing of Purex solvent extraction flowsheets. Whilst much kinetic data for actinide redox reactions in nitric acid exists in the literature, the data on reactions in the diluted TBP solvent phase is much rarer. This inhibits the accurate modelization of the Purex process particularly when species show a significant extractability in to the solvent phase or when cycling between solvent and aqueous phases occurs, for example in the reductive stripping of Pu(IV) by ferrous sulfamate in the Magnox reprocessing plant. To support current oxide reprocessing, we have investigated a range of solvent phase reactions: - U(IV)+HNO{sub 3}; - U(IV)+HNO{sub 2}; - U(IV)+HNO{sub 3} (Pu catalysis); - U(IV)+HNO{sub 3} (Tc catalysis); - U(IV)+ Np(VI); - U(IV)+Np(V); - Np(IV)+HNO{sub 3}; - Np(V)+Np(V); Rate equations have been determined for all these reactions and kinetic rate constants and activation energies are now available. Specific features of these reactions in the TBP phase include the roles of water and hydrolyzed intermediates in the reaction mechanisms. In reactions involving Np(V), cation-cation complex formation, which is much more favourable in TBP than in HNO{sub 3}, also occurs and complicates the redox chemistry. Whilst some features of the redox chemistry in TBP appear similar to the corresponding reactions in aqueous HNO{sub 3}, there are notable differences in rates, the forms of the rate equations and mechanisms. Secondly, to underpin the development of advanced single cycle flowsheets using the complexant aceto-hydroxamic acid, we have also characterised in some detail its redox chemistry and solvent extraction behaviour with both Np and Pu ions. We find that simple hydroxamic acids are remarkably rapid reducing agents for Np(VI). They also reduce Pu(VI) and cause a much slower reduction of Pu(IV) through a complex mechanism involving acid hydrolysis of the ligand. AHA is a strong hydrophilic and selective complexant for the tetravalent actinide ions as evidenced by stability constant and solvent extraction data for An(IV), M(III) and U(VI) ions. This has allowed the successful design of U/Pu+Np separation flowsheets suitable for advanced fuel cycles. (authors)« less

  1. Adsorption of Salicylhydroxamic Acid on Selected Rare Earth Oxides and Carbonates

    NASA Astrophysics Data System (ADS)

    Galt, Greer Elaine

    Adsorption behavior of the anionic collector salicylhydroxamic acid (SHA) on a selected group of rare earth oxides (REOs) and carbonates (RECs) was studied via experimental methods and modelling software. Synthetic oxide and carbonate powders of the rare earth elements cerium (Ce), praseodymium (Pr), europium (Eu), and terbium (Tb) were tested for this research. Studies were conducted at different pH levels to analyze the kinetics of collector adsorption onto the oxide and carbonate surfaces in attempts to optimize recovery parameters for commercial flotation processes using SHA. In addition, thermodynamic software StabCal was implemented to compare theoretical adsorption behavior of collectors SHA and octylhydroxamic acid (OHA) on these four rare earth oxides and carbonates. Theoretical points of zero charge were also estimated via StabCal and compared to experimental values to establish validity. Results for oxides indicate that both the amount and rate of SHA adsorption are highest for lighter REOs, decreasing as ionic diameter increases, a chelation phenomenon common with hydroxamates. However, results for the carbonates exhibit the opposite trend: strongest SHA adsorption was seen in the heavy RECs. This pattern correlates to the increasing stability of the carbonate such that ionic diameter of the REs becomes more amenable to chelation due to differences in bonding chemistry. Overall, adsorption kinetics appear dependent on pH, coordination chemistry, and cation size.

  2. Endogeous sulfur dioxide protects against oleic acid-induced acute lung injury in association with inhibition of oxidative stress in rats.

    PubMed

    Chen, Siyao; Zheng, Saijun; Liu, Zhiwei; Tang, Chaoshu; Zhao, Bin; Du, Junbao; Jin, Hongfang

    2015-02-01

    The role of endogenous sulfur dioxide (SO2), an efficient gasotransmitter maintaining homeostasis, in the development of acute lung injury (ALI) remains unidentified. We aimed to investigate the role of endogenous SO2 in the pathogenesis of ALI. An oleic acid (OA)-induced ALI rat model was established. Endogenous SO2 levels, lung injury, oxidative stress markers and apoptosis were examined. OA-induced ALI rats showed a markedly downregulated endogenous SO2/aspartate aminotransferase 1 (AAT1)/AAT2 pathway and severe lung injury. Chemical colorimetry assays demonstrated upregulated reactive oxygen species generation and downregulated antioxidant capacity in OA-induced ALI rats. However, SO2 increased endogenous SO2 levels, protected against oxidative stress and alleviated ALI. Moreover, compared with OA-treated cells, in human alveolar epithelial cells SO2 downregulated O2(-) and OH(-) generation. In contrast, L-aspartic acid-β-hydroxamate (HDX, Sigma-Aldrich Corporation), an inhibitor of endogenous SO2 generating enzyme, promoted free radical generation, upregulated poly (ADP-ribose) polymerase expression, activated caspase-3, as well as promoted cell apoptosis. Importantly, apoptosis could be inhibited by the free radical scavengers glutathione (GSH) and N-acetyl-L-cysteine (NAC). The results suggest that SO2/AAT1/AAT2 pathway might protect against the development of OA-induced ALI by inhibiting oxidative stress.

  3. Inhibition of monomethylarsonous acid (MMA(III))-induced cell malignant transformation through restoring dysregulated histone acetylation.

    PubMed

    Ge, Yichen; Gong, Zhihong; Olson, James R; Xu, Peilin; Buck, Michael J; Ren, Xuefeng

    2013-10-04

    Inorganic arsenic (iAs) and its high toxic metabolite, monomethylarsonous acid (MMA(III)), are able to induce malignant transformation of human cells. Chronic exposure to these chemicals is associated with an increased risk of developing multiple cancers in human. However, the mechanisms contributing to iAs/MMA(III)-induced cell malignant transformation and carcinogenesis are not fully elucidated. We recently showed that iAs/MMA(III) exposure to human cells led to a decreased level of histone acetylation globally, which was associated with an increased sensitivity to arsenic cytotoxicity. In the current study, it demonstrated that prolonged exposure to low-level MMA(III) in human urothelial cells significantly increased the expression and activity of histone deacetylases (HDACs) with an associated reduction of histone acetylation levels both globally and lysine specifically. Administration of the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), at 4 weeks after the initial MMA(III) treatment inhibited the MMA(III)-mediated up-regulation of the expression and activities of HDACs, leading to increase histone acetylation and prevention of MMA(III)-induced malignant transformation. These new findings suggest that histone acetylation dysregulation may be a key mechanism in MMA(III)-induced malignant transformation and carcinogenesis, and that HDAC inhibitors could be targeted to prevent or treat iAs-related cancers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Studies on the mucin derived from human colloid breast carcinoma

    PubMed Central

    Adams, J. B.

    1965-01-01

    1. A non-diffusible mucoid, showing a single peak in the ultracentrifuge, was isolated from human colloid breast carcinoma by treatment with trypsin and pepsin. The material contained threonine, leucine (isoleucine), valine, proline, glycine and glutamic acid in the approximate molar proportions 5:1:1:2:1:1. Smaller amounts of aspartic acid and serine were also found. For each 5 threonine residues, 6 N-acetylgalactosamine and 3–4 galactose residues were present. 2. The mucoid possessed reducing properties by the Park & Johnson (1949) procedure; these were attributable to the action of mild alkali, as employed in this procedure. Mild alkaline treatment by the Aminoff, Morgan & Watkins (1952) procedure gave rise to a diffusible N-acetylgalactosamine chromophore that gave an enhanced colour with Ehrlich's reagent. That galactosyl-(1→3)-N-acetylgalactosamine residues were liberated was supported by periodate studies. 3. Alkaline liberation of hexosamine residues was accompanied by a specific destruction of threonine. After 40 min. at 100° in 0·18 n-lithium hydroxide, both moieties had almost completely disappeared from the ninhydrin-positive components formed on subsequent acid hydrolysis. Glycine and α-oxobutyric acid were present in the acid hydrolysate, showing that both possible pathways of a β-elimination reaction were involved. Formation of diffusible peptide on very mild alkaline treatment was attributable to the rupture of the original peptide core, necessitated by the second of these two pathways. 4. Hydroxamate formation on treatment with hydroxylamine showed the presence of carbohydrate linkage to glutamic acid or aspartic acid residues or both. This could account for the single N-acetylgalactosamine residue not linked to threonine. 5. The native mucin contained sialic acid, which was cleaved by the acid environment used in the treatment with pepsin. A statistical model of the mucin would require each prosthetic group to be linked, via N-acetylgalactosamine, to threonine, which would occupy every alternate position among the amino acids in the peptide core. ImagesFig. 1.Fig. 4. PMID:14348196

  5. The effects of a novel aliphatic-chain hydroxamate derivative WMJ-S-001 in HCT116 colorectal cancer cell death

    PubMed Central

    Huang, Yu-Han; Huang, Shiu-Wen; Hsu, Ya-Fen; Ou, George; Huang, Wei-Jan; Hsu, Ming-Jen

    2015-01-01

    Hydroxamate derivatives have attracted considerable attention due to their broad pharmacological properties and have been extensively investigated. We recently demonstrated that WMJ-S-001, a novel aliphatic hydroxamate derivative, exhibits anti-inflammatory and anti-angiogenic activities. In this study, we explored the underlying mechanisms by which WMJ-S-001 induces HCT116 colorectal cancer cell death. WMJ-S-001 inhibited cell proliferation and induced cell apoptosis in HCT116 cells. These actions were associated with AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK) activation, p53 phosphorylation and acetylation, as well as the modulation of p21cip/Waf1, cyclin D1, survivin and Bax. AMPK-p38MAPK signaling blockade reduced WMJ-S-001-induced p53 phosphorylation. Transfection with AMPK dominant negative mutant (DN) reduced WMJ-S-001’s effects on p53 and Sp1 binding to the survivn promoter region. Transfection with HDAC3-Flag or HDAC4-Flag also abrogated WMJ-S-001’s enhancing effect on p53 acetylation. WMJ-S-001’s actions on p21cip/Waf1, cyclin D1, survivin, Bax were reduced in p53-null HCT116 cells. Furthermore, WMJ-S-001 was shown to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. In summary, the death of HCT116 colorectal cancer cells exposed to WMJ-S-001 may involve AMPK-p38MAPK-p53-survivin cascade. These results support the role of WMJ-S-001 as a potential drug candidate and warrant the clinical development in the treatment of cancer. PMID:26510776

  6. One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool.

    PubMed

    Rütschlin, Sina; Gunesch, Sandra; Böttcher, Thomas

    2017-05-18

    Shewanella algae B516 produces avaroferrin, an asymmetric hydroxamate siderophore, which has been shown to inhibit swarming motility of Vibrio alginolyticus. We aimed to elucidate the biosynthesis of this siderophore and to investigate how S. algae coordinates the production of avaroferrin and its two symmetric counterparts. We reconstituted the reaction in vitro with the main enzyme AvbD and the putative biosynthetic precursors, and demonstrate that multispecificity of this enzyme results in the production of all three cyclic hydroxamate siderophores that were previously isolated as natural products from S. algae. Surprisingly, purified AvbD exhibited a clear preference for the larger cadaverine-derived substrate. In live cells, however, siderophore ratios are maximized toward avaroferrin production, and we demonstrate that these siderophore ratios are the result of a regulation on substrate pool level, which may allow rapid evolutionary adaptation to environmental changes. Our results thereby give insights into a unique evolutionary strategy toward metabolite diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group.

    PubMed

    Lobera, Mercedes; Madauss, Kevin P; Pohlhaus, Denise T; Wright, Quentin G; Trocha, Mark; Schmidt, Darby R; Baloglu, Erkan; Trump, Ryan P; Head, Martha S; Hofmann, Glenn A; Murray-Thompson, Monique; Schwartz, Benjamin; Chakravorty, Subhas; Wu, Zining; Mander, Palwinder K; Kruidenier, Laurens; Reid, Robert A; Burkhart, William; Turunen, Brandon J; Rong, James X; Wagner, Craig; Moyer, Mary B; Wells, Carrow; Hong, Xuan; Moore, John T; Williams, Jon D; Soler, Dulce; Ghosh, Shomir; Nolan, Michael A

    2013-05-01

    In contrast to studies on class I histone deacetylase (HDAC) inhibitors, the elucidation of the molecular mechanisms and therapeutic potential of class IIa HDACs (HDAC4, HDAC5, HDAC7 and HDAC9) is impaired by the lack of potent and selective chemical probes. Here we report the discovery of inhibitors that fill this void with an unprecedented metal-binding group, trifluoromethyloxadiazole (TFMO), which circumvents the selectivity and pharmacologic liabilities of hydroxamates. We confirm direct metal binding of the TFMO through crystallographic approaches and use chemoproteomics to demonstrate the superior selectivity of the TFMO series relative to a hydroxamate-substituted analog. We further apply these tool compounds to reveal gene regulation dependent on the catalytic active site of class IIa HDACs. The discovery of these inhibitors challenges the design process for targeting metalloenzymes through a chelating metal-binding group and suggests therapeutic potential for class IIa HDAC enzyme blockers distinct in mechanism and application compared to current HDAC inhibitors.

  8. Structure-activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: reality behind anticancer drug discovery.

    PubMed

    Amin, Sk Abdul; Adhikari, Nilanjan; Jha, Tarun

    2017-12-01

    The pan-histone deacetylase (HDAC) inhibitors comprise a fish-like structural orientation where hydrophobic aryl- and zinc-binding groups act as head and tail, respectively of a fish. The linker moiety correlates the body of the fish linking head and tail groups. Despite these pan-HDAC inhibitors, selective HDAC-8 inhibitors are still in demand as a safe remedy. HDAC-8 is involved in invasion and metastasis in cancer. This review deals with the rationale behind HDAC-8 inhibitory activity and selectivity along with detailed structure-activity relationships of diverse hydroxamate-based HDAC-8 inhibitors. HDAC-8 inhibitory potency may be increased by modifying the fish-like pharmacophoric features of such type of pan-HDAC inhibitors. This review may provide a preliminary basis to design and optimize new lead molecules with higher HDAC-8 inhibitory activity. This work may surely enlighten in providing useful information in the field of target-specific anticancer therapy.

  9. Design and synthetic considerations of matrix metalloproteinase inhibitors.

    PubMed

    Skotnicki, J S; Zask, A; Nelson, F C; Albright, J D; Levin, J I

    1999-06-30

    Experimental evidence confirms that the matrix metalloproteinases (MMPs) play a fundamental role in a wide variety of pathologic conditions that involve connective tissue destruction including osteoarthritis and rheumatoid arthritis, tumor metastasis and angiogenesis, corneal ulceration, multiple sclerosis, periodontal disease, and atherosclerosis. Modulation of MMP regulation is possible at several biochemical sites, but direct inhibition of enzyme action provides a particularly attractive target for therapeutic intervention. Hypotheses concerning inhibition of specific MMP(s) with respect to disease target and/or side-effect profile have emerged. Examples are presented of recent advances in medicinal chemistry approaches to the design of matrix metalloproteinase inhibitors (MMPIs), approaches that address structural requirements and that influence potency, selectivity, and bioavailability. Two important approaches to the design, synthesis, and biological evaluation of MMPIs are highlighted: (1) the invention of alternatives to hydroxamic acid zinc chelators and (2) the construction of nonpeptide scaffolds. One current example in each of these two approaches from our own work is described.

  10. Substrate-Directed Catalytic Selective Chemical Reactions.

    PubMed

    Sawano, Takahiro; Yamamoto, Hisashi

    2018-05-04

    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  11. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma.

    PubMed

    Zhang, Heng; Liu, Limei; Liu, Chungang; Pan, Jinhong; Lu, Gensheng; Zhou, Zhansong; Chen, Zhiwen; Qian, Cheng

    2017-05-23

    Abnormal activation of Notch signaling is involved in the etiology of various diseases, including cancer, but the association between Notch3 expression in urothelial cancer and clinical outcome remains unclear, and the molecular mechanisms underlying Notch3 signaling activation are not well defined. In this study we examined 59 urothelial cancer patients and found that Notch3 was more highly expressed in human urothelial cancer tissues than in non-tumorous bladder tissue samples, with Notch3 overexpression being associated with poor clinical outcome. Notch3 knockdown resulted in decreased proliferation of urothelial cancer cells in vitro and decreased xenograft tumor growth in vivo. In addition, Notch3 knockdown rendered urothelial cancer cells more sensitive to cisplatin. Furthermore, suberoylanilide hydroxamic acid (SAHA, a histone deacetylase [HDAC] inhibitor) induced acetylation of NOTCH3, downregulated Notch 3, prevented urothelial cancer cell proliferation, and induced cell cycle arrest. Taken together, these data suggested that Notch 3 overexpression promotes growth and chemoresistance in urothelial cancer.

  12. Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma

    PubMed Central

    Zhang, Heng; Liu, Limei; Liu, Chungang; Pan, Jinhong; Lu, Gensheng; Zhou, Zhansong; Chen, Zhiwen; Qian, Cheng

    2017-01-01

    Abnormal activation of Notch signaling is involved in the etiology of various diseases, including cancer, but the association between Notch3 expression in urothelial cancer and clinical outcome remains unclear, and the molecular mechanisms underlying Notch3 signaling activation are not well defined. In this study we examined 59 urothelial cancer patients and found that Notch3 was more highly expressed in human urothelial cancer tissues than in non-tumorous bladder tissue samples, with Notch3 overexpression being associated with poor clinical outcome. Notch3 knockdown resulted in decreased proliferation of urothelial cancer cells in vitro and decreased xenograft tumor growth in vivo. In addition, Notch3 knockdown rendered urothelial cancer cells more sensitive to cisplatin. Furthermore, suberoylanilide hydroxamic acid (SAHA, a histone deacetylase [HDAC] inhibitor) induced acetylation of NOTCH3, downregulated Notch 3, prevented urothelial cancer cell proliferation, and induced cell cycle arrest. Taken together, these data suggested that Notch 3 overexpression promotes growth and chemoresistance in urothelial cancer. PMID:28416766

  13. SAHA-based novel HDAC inhibitor design by core hopping method.

    PubMed

    Zang, Lan-Lan; Wang, Xue-Jiao; Li, Xiao-Bo; Wang, Shu-Qing; Xu, Wei-Ren; Xie, Xian-Bin; Cheng, Xian-Chao; Ma, Huan; Wang, Run-Ling

    2014-11-01

    The catalytic activity of the histone deacetylase (HDAC) is directly relevant to the pathogenesis of cancer, and HDAC inhibitors represented a promising strategy for cancer therapy. SAHA (suberoanilide hydroxamic acid), an effective HDAC inhibitor, is an anti-cancer agent against T-cell lymphoma. However, SAHA has adverse effects such as poor pharmacokinetic properties and severe toxicities in clinical use. In order to identify better HDAC inhibitors, a compound database was established by core hopping of SAHA, which was then docked into HDAC-8 (PDB ID: 1T69) active site to select a number of candidates with higher docking score and better interaction with catalytic zinc ion. Further ADMET prediction was done to give ten compounds. Molecular dynamics simulation of the representative compound 101 was performed to study the stability of HDAC8-inhibitor system. This work provided an approach to design novel high-efficiency HDAC inhibitors with better ADMET properties. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Mass Spectrometric Characterization of Benzoxazinoid Glycosides from Rhizopus-Elicited Wheat (Triticum aestivum) Seedlings.

    PubMed

    de Bruijn, Wouter J C; Vincken, Jean-Paul; Duran, Katharina; Gruppen, Harry

    2016-08-17

    Benzoxazinoids function as defense compounds and have been suggested to possess health-promoting effects. In this work, the mass spectrometric behavior of benzoxazinoids from the classes benzoxazin-3-ones (with subclasses lactams, hydroxamic acids, and methyl derivatives) and benzoxazolinones was studied. Wheat seeds were germinated with simultaneous elicitation by Rhizopus. The seedling extract was screened for the presence of benzoxazinoid (glycosides) using reversed-phase ultra-high-performance liquid chromatography with photodiode array detection coupled in line to multiple-stage mass spectrometry (RP-UHPLC-PDA-MS(n)). Benzoxazin-3-ones from the different subclasses showed distinctly different ionization and fragmentation behaviors. These features were incorporated into a newly proposed decision guideline to aid the classification of benzoxazinoids. Glycosides of the methyl derivative 2-hydroxy-4-methoxy-1,4-benzoxazin-3-one were tentatively identified for the first time in wheat. We conclude that wheat seedlings germinated with simultaneous fungal elicitation contain a diverse array of benzoxazinoids, mainly constituted by benzoxazin-3-one glycosides.

  15. [Lentivirus-mediated shRNA silencing of LAMP2A inhibits the proliferation of multiple myeloma cells].

    PubMed

    Li, Lixuan; Li, Jia

    2015-05-01

    To study the effects of lentivirus-mediated short hairpin RNA (shRNA) silencing of lysosome-associated membrane protein type 2A (LAMP2A) expression on the proliferation of multiple myeloma cells. The constructed shRNA lentiviral vector was applied to infect human multiple myeloma cell line MM.1S, and stable expression cell line was obtained by puromycin screening. Western blotting was used to verify the inhibitory effect on LAMP2A protein expression. MTT assay was conducted to detect the effect of knocked-down LAMP2A on MM.1S cell proliferation, and the anti-tumor potency of suberoylanilide hydroxamic acid (SAHA) against the obtained MM.1S LAMP2A(shRNA) stable cell line. Lactate assay was performed to observe the impact of low LAMP2A expression on cell glycolysis. The stable cell line with low LAMP2A expression were obtained with the constructed human LAMP2A-shRNA lentiviral vector. Down-regulation of LAMP2A expression significantly inhibited MM.1S cell proliferation and enhanced the anti-tumor activity of SAHA. Interestingly, decreased LAMP2A expression also inhibited MM.1S cell lactic acid secretion. Down-regulation of LAMP2A expression could inhibit cell proliferation in multiple myeloma cells.

  16. SCL/TAL1-mediated transcriptional network enhances megakaryocytic specification of human embryonic stem cells.

    PubMed

    Toscano, Miguel G; Navarro-Montero, Oscar; Ayllon, Veronica; Ramos-Mejia, Veronica; Guerrero-Carreno, Xiomara; Bueno, Clara; Romero, Tamara; Lamolda, Mar; Cobo, Marien; Martin, Francisco; Menendez, Pablo; Real, Pedro J

    2015-01-01

    Human embryonic stem cells (hESCs) are a unique in vitro model for studying human developmental biology and represent a potential source for cell replacement strategies. Platelets can be generated from cord blood progenitors and hESCs; however, the molecular mechanisms and determinants controlling the in vitro megakaryocytic specification of hESCs remain elusive. We have recently shown that stem cell leukemia (SCL) overexpression accelerates the emergence of hemato-endothelial progenitors from hESCs and promotes their subsequent differentiation into blood cells with higher clonogenic potential. Given that SCL participates in megakaryocytic commitment, we hypothesized that it may potentiate megakaryopoiesis from hESCs. We show that ectopic SCL expression enhances the emergence of megakaryocytic precursors, mature megakaryocytes (MKs), and platelets in vitro. SCL-overexpressing MKs and platelets respond to different activating stimuli similar to their control counterparts. Gene expression profiling of megakaryocytic precursors shows that SCL overexpression renders a megakaryopoietic molecular signature. Connectivity Map analysis reveals that trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), both histone deacetylase (HDAC) inhibitors, functionally mimic SCL-induced effects. Finally, we confirm that both TSA and SAHA treatment promote the emergence of CD34(+) progenitors, whereas valproic acid, another HDAC inhibitor, potentiates MK and platelet production. We demonstrate that SCL and HDAC inhibitors are megakaryopoiesis regulators in hESCs.

  17. HDAC Inhibitors as Novel Anti-Cancer Therapeutics.

    PubMed

    De Souza, Cristabelle; Chatterji, Biswa Prasun

    2015-01-01

    Malignant growth of cells is a condition characterized by unchecked cellular proliferation, genetic instability and epigenetic dysregulation. Up-regulated HDAC (Histone Deacetylase) enzyme activity is associated with a closed chromatin assembly and subsequent gene repression, forming a characteristic feature of malignantly transformed cells. Novel therapeutics are now targeting the zinc containing HDAC enzymes for treating various types of cancers. Recently, a spate of drugs acting via HDAC inhibition have been undergoing clinical trials and several patents present exciting molecules like PCI-24781 (Abexinostat), ITF- 2357 (Givinostat); MS-275 (Entinostat), MGCD 0103 (Mocetinostat), LBH-589 (Panobinostat), FK228 (Romidepsin), PXD-101 (Belinostat) and Valproic Acid to be used as alternatives or adjuvants to traditional chemotherapeutics. However, only three HDAC inhibitors have acquired FDA approval till date. Recently, PXD-101 obtained FDA approval for the treatment of Refractory or Relapsed Peripheral T cell lymphoma. The current article reviews patents that have introduced novel molecules that are HDAC isoform specific, superior to first generation HDAC inhibitors like SAHA (Suberoylanilide Hydroxamic Acid) and TSA (Trichostatin A) and can be modified structurally to reduce toxic side effects and increase specificity. These molecules can combine the best characteristics of an ideal HDAC inhibiting drug either as monotherapy or in combinatorial therapy for cancer treatment thus, indicating promise to be included in the next generation of target specific HDAC inhibiting drugs.

  18. Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes.

    PubMed

    Ververis, Katherine; Rodd, Annabelle L; Tang, Michelle M; El-Osta, Assam; Karagiannis, Tom C

    2011-12-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.

  19. Aspergillus fumigatus (Af) Hydroxamate Siderophores Protect Formation of Af Biofilms from the Pseudomonas aeruginosa (Pa) Product Pyoverdine

    PubMed Central

    Sass, Gabriele; Stevens, David A

    2017-01-01

    Abstract Background Pa and Af are pathogens frequently found together in airways of immunocompromised patients and patients with cystic fibrosis (CF). Hence, interactions of Pa and Af require understanding. Both Pa and Af are crucially dependent on the availability of iron, and therefore are competitors in their microenvironment. We have shown, using deletion mutants of Pa, that the Pa siderophore pyoverdine, the dominant Pa inhibitor of Af, interferes with Af biofilms by iron chelation, and denial of iron to the fungus. Methods Protective compounds in Af supernatants were evaluated using assays for the quantification of Af biofilm metabolism by XTT measurement, spectrometric pyoverdine measurement, as well as Chrome Azorole S (CAS) assay for the determination of siderophore production. Results Here we provide evidence that whereas iron usage by Af promotes pyoverdine production by Pa, Af has developed a defense mechanism against anti-fungal pyoverdine effects. The ability of Af to produce hydroxamate siderophores, and shed these into the surrounding medium, where they sequester and transport iron, is a key factor for Af self-defense against Pa. Under low iron conditions, such as in the presence of high amounts of the Pa siderophore pyoverdine, siderophore-bound iron is then fed to Af, protecting the fungus from iron starvation. Af with a deletion mutation in sidA, a gene essential for the production of hydroxamate siderophores, was significantly more sensitive to Pa supernatants, as well as pure pyoverdine, than wild-type Af. Af supernatants, produced in the presence of celastrol, an inhibitor of SidA-generated biosynthesis of siderophores, or produced by the sidA mutant, were not able to protect Af from iron starvation. Conclusion Interference with the iron-dependent Af self-defense mechanism might represent a new approach for therapy against aspergillosis. Disclosures All authors: No reported disclosures.

  20. Cortisol inhibits CSF2 and CSF3 via DNA methylation and inhibits invasion in first-trimester trophoblast cells

    PubMed Central

    Smith, Arianna; Witte, Elizabeth; McGee, Devin; Knott, Jason; Narang, Kavita; Racicot, Karen

    2018-01-01

    Problem Heightened maternal stress affects trophoblast function and increases risk for adverse pregnancy outcomes. Methods of Study Studies were performed using the first-trimester trophoblast cell line, Sw.71. Cytokines were quantified using qPCR and ELISA. Epigenetic regulation of cytokines was characterized by inhibiting histone deacetylation (1 μmol/L suberoylanilide hydroxamic acid [SAHA]) or methylation (5 μmol/L 5-azacytidine), or with chromatin immunoprecipitation (ChIP) with a pan-acetyl histone-3 antibody. Invasion assays used Matrigel chambers. Results Cortisol inhibited expression of CSF2 (GM-CSF) and CSF3 (G-CSF) in trophoblast cells. Cortisol-associated inhibition was dependent on DNA methylation and was not affected by acetylation. There was also a modest decrease in trophoblast invasion, not dependent on loss of CSFs. Conclusion In first-trimester trophoblast cells, the physiological glucocorticoid, cortisol, inhibited two cytokines with roles in placental development and decreased trophoblast invasion. Cortisol-associated changes in trophoblast function could increase the risk for immune-mediated abortion or other adverse pregnancy outcomes. PMID:28846166

  1. Stereoselective HDAC inhibition from cysteine-derived zinc-binding groups.

    PubMed

    Butler, Kyle V; He, Rong; McLaughlin, Kathryn; Vistoli, Giulio; Langley, Brett; Kozikowski, Alan P

    2009-08-01

    A series of small-molecule histone deacetylase (HDAC) inhibitors, which feature zinc binding groups derived from cysteine, were synthesized. These inhibitors were tested against multiple HDAC isoforms, and the most potent, compound 10, was determined to have IC(50) values below 1 microM. The compounds were also tested in a cellular assay of oxidative stress-induced neurodegeneration. Many of the inhibitors gave near-complete protection against cell death at 10 microM without the neurotoxicity seen with hydroxamic acid-based inhibitors, and were far more neuroprotective than HDAC inhibitors currently in clinical trials. Both enantiomers of cysteine were used in the synthesis of a variety of novel zinc-binding groups (ZBGs). Derivatives of L-cysteine were active in the HDAC inhibition assays, while the derivatives of D-cysteine were inactive. Notably, the finding that both the D- and L-cysteine derivatives were active in the neuroprotection assays suggests that multiple mechanisms are working to protect the neurons from cell death. Molecular modeling was employed to investigate the differences in inhibitory activity between the HDAC inhibitors generated from the two enantiomeric forms of cysteine.

  2. Acetyl transfer in arylamine metabolism

    PubMed Central

    Booth, J.

    1966-01-01

    1. N-Hydroxyacetamidoaryl compounds (hydroxamic acids) are metabolites of arylamides, and an enzyme that transfers the acetyl group from these derivatives to arylamines has been found in rat tissues. The reaction products were identified by thin-layer chromatography and a spectrophotometric method, with 4-amino-azobenzene as acetyl acceptor, was used to measure enzyme activity. 2. The acetyltransferase was in the soluble fraction of rat liver, required a thiol for maximum activity and had a pH optimum between 6·0 and 7·5. 3. The soluble fractions of various rat tissues showed decreasing activity in the following order: liver, adrenal, kidney, lung, spleen, testis, heart; brain was inactive. 4. With the exception of aniline and aniline derivatives all the arylamines tested were effective as acetyl acceptors but aromatic compounds with side-chain amino groups were inactive. 5. The N-hydroxyacetamido derivatives of 2-naphthylamine, 4-amino-biphenyl and 2-aminofluorene were active acetyl donors but N-hydroxyacetanilide showed only slight activity. Acetyl-CoA was not a donor. 6. Some properties of the enzyme are compared with those of other acetyltransferases. PMID:5969287

  3. Process for the displacement of cyanide ions from metal-cyanide complexes

    DOEpatents

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  4. Intramolecular Diels-Alder Reaction of N-Alkyl-2-cyano-1-azadienes: A Study of the Eschenmoser Cycloreversion of Dihydrooxazines as a Route to N-Alkyl-2-cyano-1-azadienes.

    PubMed

    Motorina, Irina A.; Fowler, Frank W.; Grierson, David S.

    1997-04-04

    In connection with the development of the intramolecular Diels-Alder reaction (IMDA) of 1-azadienes, the 5,6-dihydro-4H-1,2-oxazine 12has been evaluated as a synthon equivalent of the 2-cyano-1-azadiene system. It was found that the dihydrooxazonium salt 27, generated in situ from the cyclic hydroxamic acid derivative 26, is converted directly to azadiene 4a via tautomerization to the corresponding enamine and a particularly facile Eschenmoser type cycloreversion process. Conditions were subsequently found for the preparation of synthon 12. N-Alkylation of this intermediate with alkyl bromides in the presence of Ag(+) ion also resulted in direct formation of the 2-cyano-1-azadiene products 38a-dand 4a. Microwave irradiation of a benzene solution of azadiene 4a proved to be a convenient means to effect its IMDA conversion to indolizidine 5a. To avoid decomposition of azadiene 38c, its intramolecular cycloaddition giving 40 (60%) was achieved by flash vacuum thermolysis.

  5. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.

  6. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs.

    PubMed

    Marks, Paul A

    2010-09-01

    Histone deacetylase (HDAC) inhibitors are being developed as a new, targeted class of anticancer drugs. This review focuses on the mechanisms of action of the HDAC inhibitors, which selectively induce cancer cell death. There are 11 zinc-dependent HDACs in humans and the biological roles of these lysine deacetylases are not completely understood. It is clear that these different HDACs are not redundant in their activity. This review focuses on the mechanisms by which HDAC inhibitors can induce transformed cell growth arrest and cell death, inhibit cell mobility and have antiangiogenesis activity. There are more than a dozen HDAC inhibitors, including hydroxamates, cyclic peptides, benzamides and fatty acids, in various stages of clinical trials and many more compounds in preclinical development. The chemically different HDAC inhibitors may target different HDACs. There are extensive preclinical studies with transformed cells in culture and tumor-bearing animal models, as well as limited clinical studies reported to date, which indicate that HDAC inhibitors will be most useful when used in combination with cytotoxic or other targeted anticancer agents.

  7. Oxime amides as a novel zinc binding group in histone deacetylase inhibitors: synthesis, biological activity, and computational evaluation.

    PubMed

    Botta, Cinzia B; Cabri, Walter; Cini, Elena; De Cesare, Lucia; Fattorusso, Caterina; Giannini, Giuseppe; Persico, Marco; Petrella, Antonello; Rondinelli, Francesca; Rodriquez, Manuela; Russo, Adele; Taddei, Maurizio

    2011-04-14

    Several oxime containing molecules, characterized by a SAHA-like structure, were explored to select a potentially new biasing binding element for the zinc in HDAC catalytic site. All compounds were evaluated for their in vitro inhibitory activity against the 11 human HDACs isoforms. After identification of a "hit" molecule, a programmed variation at the cap group and at the linker was carried out in order to increase HDAC inhibition and/or paralogue selectivity. Some of the new derivatives showed increased activity against a number of HDAC isoforms, even if their overall activity range is still far from the inhibition values reported for SAHA. Moreover, different from what was reported for their hydroxamic acid analogues the new α-oxime amide derivatives do not select between class I and class II HDACs; rather they target specific isoforms in each class. These somehow contradictory results were finally rationalized by a computational assisted SAR, which gave us the chance to understand how the oxime derivatives interact with the catalytic site and justify the observed activity profile.

  8. A structure-based virtual screening approach toward the discovery of histone deacetylase inhibitors: identification of promising zinc-chelating groups.

    PubMed

    Park, Hwangseo; Kim, Sukyoung; Kim, Yong Eun; Lim, Soo-Jeong

    2010-04-06

    The inhibitors of histone deacetylases (HDACs) have drawn a great deal of attention due to their promising potential as small-molecule therapeutics for the treatment of cancer. By means of virtual screening with docking simulations under consideration of the effects of ligand solvation, we were able to identify six novel HDAC inhibitors with IC(50) values ranging from 1 to 100 muM. These newly identified inhibitors are structurally diverse and have various chelating groups for the active site zinc ion, including N-[1,3,4]thiadiazol-2-yl sulfonamide, N-thiazol-2-yl sulfonamide, and hydroxamic acid moieties. The former two groups are included in many drugs in current clinical use and have not yet been reported as HDAC inhibitors. Therefore, they can be considered as new inhibitor scaffolds for the development of anticancer drugs by structure-activity relationship studies to improve the inhibitory activities against HDACs. Interactions with the HDAC1 active site residues responsible for stabilizing these new inhibitors are addressed in detail.

  9. Identification of small-molecule antagonists of the Pseudomonas aeruginosa transcriptional regulator PqsR: biophysically guided hit discovery and optimization.

    PubMed

    Klein, Tobias; Henn, Claudia; de Jong, Johannes C; Zimmer, Christina; Kirsch, Benjamin; Maurer, Christine K; Pistorius, Dominik; Müller, Rolf; Steinbach, Anke; Hartmann, Rolf W

    2012-09-21

    The Gram-negative pathogen Pseudomonas aeruginosa produces an intercellular alkyl quinolone signaling molecule, the Pseudomonas quinolone signal. The pqs quorum sensing communication system that is characteristic for P. aeruginosa regulates the production of virulence factors. Therefore, we consider the pqs system a novel target to limit P. aeruginosa pathogenicity. Here, we present small molecules targeting a key player of the pqs system, PqsR. A rational design strategy in combination with surface plasmon resonance biosensor analysis led to the identification of PqsR binders. Determination of thermodynamic binding signatures and functional characterization in E. coli guided the hit optimization, resulting in the potent hydroxamic acid derived PqsR antagonist 11 (IC(50) = 12.5 μM). Remarkably it displayed a comparable potency in P. aeruginosa (IC(50) = 23.6 μM) and reduced the production of the virulence factor pyocyanin. Beyond this, site-directed mutagenesis together with thermodynamic analysis provided insights into the energetic characteristics of protein-ligand interactions. Thus the identified PqsR antagonists are promising scaffolds for further drug design efforts against this important pathogen.

  10. Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells.

    PubMed

    Liu, Jing; Livingston, Man J; Dong, Guie; Tang, Chengyuan; Su, Yunchao; Wu, Guangyu; Yin, Xiao-Ming; Dong, Zheng

    2018-02-23

    Histone deacetylase inhibitors (HDACi) have therapeutic effects in models of various renal diseases including acute kidney injury (AKI); however, the underlying mechanism remains unclear. Here we demonstrate that two widely tested HDACi (suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA)) protect the kidneys in cisplatin-induced AKI by enhancing autophagy. In cultured renal proximal tubular cells, SAHA and TSA enhanced autophagy during cisplatin treatment. We further verified the protective effect of TSA against cisplatin-induced apoptosis in these cells. Notably, inhibition of autophagy by chloroquine or by autophagy gene 7 (Atg7) ablation diminished the protective effect of TSA. In mice, TSA increased autophagy in renal proximal tubules and protected against cisplatin-induced AKI. The in vivo effect of TSA was also abolished by chloroquine and by Atg7 knockout specifically from renal proximal tubules. Mechanistically, TSA stimulated AMPK and inactivated mTOR during cisplatin treatment of proximal tubule cells and kidneys in mice. Together, these results suggest that HDACi may protect kidneys by activating autophagy in proximal tubular cells.

  11. Immunomodulatory effects of histone deacetylase inhibitors.

    PubMed

    Licciardi, P V; Ververis, K; Tang, M L; El-Osta, A; Karagiannis, T C

    2013-05-01

    Histone deacetylase inhibitors (HDACi) have emerged as a new generation of anticancer therapeutics. The classical broad-spectrum HDACi typically alter the cell cycle distribution and induce cell death, apoptosis and differentiation in malignant and transformed cells. This provides the basis for the clinical potential of HDACi in cancer therapy. Currently two compounds, suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved for by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Apart from clinical application in oncology, HDACi have also been investigated as potential therapeutics for various pathologies including those of the central nervous system (such as Huntington's disease and multiple sclerosis), cardiac conditions (particularly hypertrophy), arthritis and malaria. Further, evidence is accumulating for potent immunomodulatory effects of classical HDACi which is the focus of this review. We review the antiinflammatory effects of HDACi and in particular findings implicating regulation of the innate and adaptive immune systems by HDAC enzymes. The recent findings highlighting the immunomodulatory function of HDAC11 which relates to balancing immune activation versus tolerance are also discussed.

  12. Study on separation of minor actinides from HLLW with new extractant of TODGA-DHOA/Kerosene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Guo-an; Zhu, Wen-bin; Li, Feng-feng

    2013-07-01

    The extraction behavior of U, Np, Pu, Am, rare earth elements and Sr from nitric acid solutions by TODGA/dodecan, DHOA/dodecane and TODGA-DHOA/dodecane were investigated, respectively. Based on experimental results, a separation process was proposed for minor actinide isolation from high level liquid waste (HLLW): the TODGA-DHOA/kerosene system. The multi-stage counter-current cascade experiments were carried out for the purpose by 0.1 mol/l TODGA-1.0 mol/l DHOA/kerosene with miniature mixer- settler contactor rigs (8 stages for extraction, 6 stages for scrubbing, 8 stages for first stripping, 8 stages for second stripping). The results show that the recovery efficiencies of the actinides and lanthanidesmore » are more than 99.9%, whereas less than 1% Sr was extracted by 0.1 mol/l TODGA - 1.0 mol/l DHOA/kerosene. The stripping efficiencies of U, Np and Pu are more than 95% in the first stripping step by 0.5 mol/l HNO{sub 3} + 0.5 mol/l AHA(aceto-hydroxamic acid), all of the remained actinides and lanthanides can be stripped by 0.01 mol/l HNO{sub 3} in the second stripping step. 99% Sr was extracted by 0.1 mol/l TODGA/kerosene, so Sr can be recovered efficiently directly from the raffinate by 0.1 mol/l TODGA/kerosene. (authors)« less

  13. Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine

    PubMed Central

    Mohamed, Elham A.; Zhao, Yunqi; Meshali, Mahasen M.; Remsberg, Connie M.; Borg, Thanaa M.; Foda, Abdel Monem M.; Takemoto, Jody K.; Sayre, Casey; Martinez, Stephanie; Davies, Neal M.; Forrest, M. Laird

    2015-01-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. PMID:22806441

  14. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.

    PubMed

    Mohamed, Elham A; Zhao, Yunqi; Meshali, Mahasen M; Remsberg, Connie M; Borg, Thanaa M; Foda, Abdel Monem M; Takemoto, Jody K; Sayre, Casey L; Martinez, Stephanie E; Davies, Neal M; Forrest, M Laird

    2012-10-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anticancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat's pharmacokinetics in rats was investigated after intravenous (i.v.) (10 mg/kg) and oral (p.o.) (50 mg/kg) micellar administrations and compared with a conventional polyethylene glycol 400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 to 8.15 ± 0.60 and 10.24 ± 0.92 mg/mL at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19%, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the p.o. and i.v. pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. Copyright © 2012 Wiley Periodicals, Inc.

  15. Growth stimulation of Brevibacterium sp. by siderophores.

    PubMed

    Noordman, W H; Reissbrodt, R; Bongers, R S; Rademaker, J L W; Bockelmann, W; Smit, G

    2006-09-01

    To assess which types of siderophores are typically produced by Brevibacterium and how siderophore production and utilization traits are distributed within this genus. During co-cultivation experiments it was found that growth of B. linens Br5 was stimulated by B. linens NIZO B1410 by two orders of magnitude. The stimulation was caused by the production of hydroxamate siderophores by B. linens NIZO B1410 that enabled the siderophore-auxotrophic strain Br5 to grow faster under the applied iron-limited growth conditions. Different patterns of siderophore production and utilization were observed within the genus Brevibacterium. These patterns did not reflect the phylogenetic relations within the group as determined by partial 16S rDNA sequencing. Most Brevibacterium strains were found to utilize hydroxamate siderophores. Brevibacteria can produce and utilize siderophores although certain strains within this genus are siderophore-auxotrophic. It is reported for the first time that brevibacteria produce and utilize siderophores. This knowledge can be utilized to stimulate growth of auxotrophic strains under certain conditions. Enhancing the growth rate of Brevibacterium is of importance for the application of this species, for example, for cheese manufacturing or for industrial production of enzymes or metabolites.

  16. Impact of the uranium (VI) speciation in mineralised urines on its extraction by calix[6]arene bearing hydroxamic groups used in chromatography columns.

    PubMed

    Baghdadi, S; Bouvier-Capely, C; Ritt, A; Peroux, A; Fevrier, L; Rebiere, F; Agarande, M; Cote, G

    2015-11-01

    Actinides determination in urine samples is part of the analyses performed to monitor internal contamination in case of an accident or a terrorist attack involving nuclear matter. Mineralisation is the first step of any of these analyses. It aims at reducing the sample volume and at destroying all organic compounds present. The mineralisation protocol is usually based on a wet ashing step, followed by actinides co-precipitation and a furnace ashing step, before redissolution and the quantification of the actinides by the appropriate techniques. Amongst the existing methods to perform the actinides co-precipitation, alkali-earth (typically calcium) precipitation is widely used. In the present work, the extraction of uranium(VI), plutonium(IV) and americium(III) from the redissolution solutions (called "mineralised urines") on calix[6]arene columns bearing hydroxamic groups was investigated as such an extraction is a necessary step before their determination by ICP-MS or alpha spectrometry. Difficulties were encountered in the transfer of uranium(VI) from raw to mineralised urines, with yield of transfer ranging between 0% and 85%, compared to about 90% for Pu and Am, depending on the starting raw urines. To understand the origin of such a difficulty, the speciation of uranium (VI) in mineralised urines was investigated by computer simulation using the MEDUSA software and the associated HYDRA database, compiled with recently published data. These calculations showed that the presence of phosphates in the "mineralised urines" leads to the formation of strong uranyl-phosphate complexes (such as UO2HPO4) which compete with the uranium (VI) extraction by the calix[6]arene bearing hydroxamic groups. The extraction constant of uranium (VI) by calix[6]arene bearing hydroxamic groups was determined in a 0.04 mol L(-1) sodium nitrate solution (logK=4.86±0.03) and implemented in an extraction model taking into account the speciation in the aqueous phase. This model allowed to simulate satisfactorily the experimental uranium extraction data and to support the preliminary conclusions about the role of the phosphates present in mineralised urines. These calculations also showed that the phosphate/calcium ratio is a key parameter as far as the efficiency of the uranium (VI) extraction by the calix[6]arene columns is concerned. It predicted that the addition of CaCl2 in mineralised urines would release uranium (VI) from phosphates by forming calcium (II)-phosphate complexes and thus facilitate the uranium (VI) extraction on calix[6]arene columns. These predictions were confirmed experimentally as the addition of 0.1 mol L(-1) CaCl2 to a mineralised urine containing naturally a high concentration of phosphate (typically 0.04 mol L(-1)) significantly increased the percentage of uranium (VI) extraction on the calix[6]arene columns. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Histone Deacetylase Inhibitors: A Novel Therapeutic Weapon Against Medullary Thyroid Cancer?

    PubMed

    Damaskos, Christos; Garmpis, Nikolaos; Valsami, Serena; Spartalis, Eleftherios; Antoniou, Efstathios A; Tomos, Periklis; Karamaroudis, Stefanos; Zoumpou, Theofano; Pergialiotis, Vasilios; Stergios, Konstantinos; Michaelides, Constantinos; Kontzoglou, Konstantinos; Perrea, Despina; Nikiteas, Nikolaos; Dimitroulis, Dimitrios

    2016-10-01

    Medullary thyroid cancer (MTC) is highly malignant, metastatic and recurrent, remaining generally incurable, and responsible for approximately 14% of all thyroid carcinoma-related deaths. MTC can metastasize to lymph nodes, trachea and distant organs, such as brain, lungs, liver and bones. MTC cells are resistant to chemotherapy and traditional external therapies are not showing definite clinical benefits. Scientists are trying to understand the molecular background of carcinogenesis and histone deacetylase (HDAC) seems to play a potential role to gene transcription. On the other hand, HDAC inhibitors (HDACI) hamper the HDAC action giving promising results as new anticancer drugs. The purpose of this review was to evaluate the current status of research considering the role of HDACIs in MTC treatment and to present the latest trends in MTC treatment protocols. This literature review was accomplished using the MEDLINE database. The key words/phrases were; HDACI, medullary thyroid cancer, HDACI in the therapy of neuroendocrine tumors, HDACI in MTC. Forty-one articles were selected from the total number of the search's results. Only sixteen papers focus on the use of HDACIs in the treatment of MTC. In order to extract our conclusions, we took into account some studies whose main topic does not strictly refer to the MTC but they contain noteworthy and useful information. Only English articles published up to August 2016 were assessed and used for writing this review. Molecules, such as valproid acid (VPA), vorinostat, suberoyl bis-hydroxamic acid (SBHA), depsipeptide, belinostat, m-carboxycinnamic acid bis-hydroxamine (CBHA) and AB3 have shown promising antitumor effects against MTC. HDACIs represent a promising field for targeted therapy both for its anticancer properties, as well as for augmenting radiotherapeutic modalities. More trials are needed. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Iron acquisition by Haemophilus influenzae.

    PubMed Central

    Pidcock, K A; Wooten, J A; Daley, B A; Stull, T L

    1988-01-01

    The mechanisms for acquisition of iron by Haemophilus influenzae and their role in pathogenesis are not known. Heme and nonheme sources of iron were evaluated for their effect on growth of type b and nontypable strains of H. influenzae in an iron-restricted, defined medium. All 13 strains acquired iron from heme, hemoglobin, hemoglobin-haptoglobin, and heme-hemopexin. Among nonheme sources of protein-bound iron, growth of H. influenzae was enhanced by partially saturated human transferrin but not by lactoferrin or ferritin. Purified ferrienterochelin and ferridesferrioxamine failed to provide iron to H. influenzae, and the supernatants of H. influenzae E1a grown in iron-restricted medium failed to enhance iron-restricted growth of siderophore-dependent strains of Escherichia coli, Salmonella typhimurium, and Arthrobacter terregens. Marked alterations in the profile of outer membrane proteins of H. influenzae were observed when the level of free iron was varied between 1 microM and 1 mM. Catechols were not detected in the supernatants of strain E1a; however, iron-related hydroxamate production was detected by two biochemical assays. We conclude that the sources of iron for H. influenzae are diverse. The significance of hydroxamate production and iron-related outer membrane proteins to H. influenzae iron acquisition is not yet clear. Images PMID:2964410

  19. New hydroxamate inhibitors of neurotensin-degrading enzymes. Synthesis and enzyme active-site recognition.

    PubMed

    Bourdel, E; Doulut, S; Jarretou, G; Labbe-Jullie, C; Fehrentz, J A; Doumbia, O; Kitabgi, P; Martinez, J

    1996-08-01

    Selective and mixed inhibitors of the three zinc metallopeptidases that degrade neurotensin (NT), e.g. endopeptidase 24-16 (EC 3.4.24.16), endopeptidase 24-11 (EC 3.4.24.11 or neutral endopeptidase, NEP) and endopeptidase 24-15 (EC 3.4.24.15), and leucine-aminopeptidase (type IV-S), that degrades the NT-related peptides, Neuromedin N (NN), are of great interest. On the structural basis of compound JMV 390-1 (N-[3-[(hydroxyamino)carbonyl]-1-oxo-2(R)-benzylpropyl]-L- isoleucyl-L-leucine), which was a full inhibitor of the major NT degrading enzymes, several hydroxamate inhibitors corresponding to the general formula HONHCO-CH2-CH(CH2-C6H5)CO-X-Y-OH (with X-Y = dipeptide) have been synthesized. Compound 7a (X-Y = Ile-Ala) was nearly 40-times more potent in inhibiting EC 24-16 than NEP and more than 800-times more potent than EC 24-15, with an IC50 (12 nM) almost equivalent to that of compound JMV 390-1. Therefore, this compound is an interesting selective inhibitor of EC 24-16, and should be an interesting probe to explore the physiological involvement of EC 24-16 in the metabolism of neurotensin.

  20. Hydroxamate Production as a High Affinity Iron Acquisition Mechanism in Paracoccidioides Spp

    PubMed Central

    Silva-Bailão, Mirelle Garcia; Bailão, Elisa Flávia Luiz Cardoso; Lechner, Beatrix Elisabeth; Gauthier, Gregory M.; Lindner, Herbert; Bailão, Alexandre Melo; Haas, Hubertus; de Almeida Soares, Célia Maria

    2014-01-01

    Iron is a micronutrient required by almost all living organisms, including fungi. Although this metal is abundant, its bioavailability is low either in aerobic environments or within mammalian hosts. As a consequence, pathogenic microorganisms evolved high affinity iron acquisition mechanisms which include the production and uptake of siderophores. Here we investigated the utilization of these molecules by species of the Paracoccidioides genus, the causative agents of a systemic mycosis. It was demonstrated that iron starvation induces the expression of Paracoccidioides ortholog genes for siderophore biosynthesis and transport. Reversed-phase HPLC analysis revealed that the fungus produces and secretes coprogen B, which generates dimerumic acid as a breakdown product. Ferricrocin and ferrichrome C were detected in Paracoccidioides as the intracellular produced siderophores. Moreover, the fungus is also able to grow in presence of siderophores as the only iron sources, demonstrating that beyond producing, Paracoccidioides is also able to utilize siderophores for growth, including the xenosiderophore ferrioxamine. Exposure to exogenous ferrioxamine and dimerumic acid increased fungus survival during co-cultivation with macrophages indicating that these molecules play a role during host-pathogen interaction. Furthermore, cross-feeding experiments revealed that Paracoccidioides siderophores promotes growth of Aspergillus nidulans strain unable to produce these iron chelators. Together, these data denote that synthesis and utilization of siderophores is a mechanism used by Paracoccidioides to surpass iron limitation. As iron paucity is found within the host, siderophore production may be related to fungus pathogenicity. PMID:25157575

  1. Development of Iron-Chelating Poly(ethylene terephthalate) Packaging for Inhibiting Lipid Oxidation in Oil-in-Water Emulsions.

    PubMed

    Johnson, David R; Tian, Fang; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-05-27

    Foods such as bulk oils, salad dressings, and nutritionally fortified beverages that are susceptible to oxidative degradation are often packaged in poly(ethylene terephthalate) (PET) bottles with metal chelators added to the food to maintain product quality. In the present work, a metal-chelating active packaging material is designed and characterized, in which poly(hydroxamic acid) (PHA) metal-chelating moieties were grafted from the surface of PET. Biomimetic PHA groups were grafted in a two-step UV-initiated process without the use of a photoinitiator. Surface characterization of the films by attenuated total reflective Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) suggested successful grafting and conversion of poly(hydroxyethyl acrylate) (PHEA) to PHA chelating moieties from the surface of PET. Colorimetric (ferrozine) and inductively coupled plasma mass spectroscopy (ICP-MS) assays demonstrated the ability of PET-g-PHA to chelate iron in a low-pH (3.0) environment containing a competitive metal chelator (citric acid). Lipid oxidation studies demonstrated the antioxidant activity of PET-g-PHA films in inhibiting iron-promoted oxidation in an acidified oil-in-water (O/W) emulsion model system (pH 3.0). Particle size and ζ-potential analysis indicated that the addition of PET-g-PHA films did not affect the physical stability of the emulsion system. This work suggests that biomimetic chelating moieties can be grafted from PET and effectively inhibit iron-promoted degradation reactions, enabling removal of metal-chelating additives from product formulations.

  2. The Impact of Chemical Substitutions on Interfacial Properties of REE Orthophosphates (Monazite, Xenotime)

    NASA Astrophysics Data System (ADS)

    Gamage McEvoy, J.; Thibault, Y.

    2016-12-01

    Mineral surface properties strongly influence liquid-solid interface behaviour in the presence of various ligands, and can significantly affect processes of natural (ex. fluids, melts) and industrial (ex. oil recovery) relevance. Many Rare Earth Element (REE)-bearing minerals display extensive solid solutions resulting in significant chemical variations which influence their crystal and surface properties and, can consequently impact the interfacial features of their interaction with substances such as organic molecules (i.e. reactivity and sorption). For example, the surface charge properties of some REE orthophosphates show an uncharacteristically wide variation in reported values, where large differences in literature are commonly attributed to compositional differences between samples. However the impact of these chemical substitutions remains largely unknown. As such, the aim of this research was to systematically investigate the influence of mineralogical variation within the compositional space of the REE orthophosphates on their surface chemistry and resulting interaction with organic molecules. To better isolate the chemical, structural, and morphological variables, the synthesis of REE orthophosphate crystals along a number of defined substitutions was conducted, and their surface chemistry characteristics benchmarked against well-characterized natural monazite and xenotime from various localities. The interaction of these crystal surfaces with model organic molecules (long chain carboxylic acids and alkyl hydroxamic acids, respectively) was then studied and characterized via surface (X-ray photoelectron) and near-surface (vibrational) spectroscopic techniques. The implications of crystal surface-organic molecule interactions to mineral processing through flotation were also experimentally investigated.

  3. A Co16 cluster and a 1-D Mn chain complex supported by benzohydroxamic acid.

    PubMed

    Cao, Yanyuan; Chen, Yanmei; Li, Lei; Gao, Dandan; Liu, Wei; Hu, Hailiang; Li, Wu; Li, Yahong

    2013-08-14

    The syntheses, crystal structures and magnetic properties are described for a {Co16} cluster [Co(II)16O(OH)2(bha)12(PhCO2)4(Phen)2(MeOH)4]·2MeOH (1) and a 1-D Mn(II) chain complex [Mn(Hbha)2]n·(2MeOH)n (2) (H2bha = benzohydroxamic acid; Phen = 1,10-phenanthroline). The 1 : 1 : 0.5 reaction of Co(O2CMe)2·4H2O, H2bha and 1,10-phenanthroline in MeOH at 100 °C under autogenous pressure gave cluster 1. Complex 2 was obtained from the 1 : 1 reaction mixture of Mn(O2CMe)2·2H2O and H2bha in MeOH under solvothermal conditions. The {Co16} cluster can be thought as a face-centered cube with two wings. The H2bha ligands show hydroximic form in 1 and exhibit hydroxamic mode in 2. The hydroximate ligands in 1 display three distinct binding modes, one of which is novel. Variable-temperature solid-state dc magnetic susceptibility studies have been performed in the 2.0-300 K range for complexes 1 and 2. Antiferromagnetic M(II)···M(II) exchange interactions were found for both 1 and 2. This work also demonstrates that solvothermal method is a potential synthetic approach for the design and growth of high nuclearity clusters or chain complexes of the H2bha ligand.

  4. The HDAC inhibitor SB939 overcomes resistance to BCR-ABL kinase Inhibitors conferred by the BIM deletion polymorphism in chronic myeloid leukemia.

    PubMed

    Rauzan, Muhammad; Chuah, Charles T H; Ko, Tun Kiat; Ong, S Tiong

    2017-01-01

    Chronic myeloid leukemia (CML) treatment has been improved by tyrosine kinase inhibitors (TKIs) such as imatinib mesylate (IM) but various factors can cause TKI resistance in patients with CML. One factor which contributes to TKI resistance is a germline intronic deletion polymorphism in the BCL2-like 11 (BIM) gene which impairs the expression of pro-apoptotic splice isoforms of BIM. SB939 (pracinostat) is a hydroxamic acid based HDAC inhibitor with favorable pharmacokinetic, physicochemical and pharmaceutical properties, and we investigated if this drug could overcome BIM deletion polymorphism-induced TKI resistance. We found that SB939 corrects BIM pre-mRNA splicing in CML cells with the BIM deletion polymorphism, and induces apoptotic cell death in CML cell lines and primary cells with the BIM deletion polymorphism. More importantly, SB939 both decreases the viability of CML cell lines and primary CML progenitors with the BIM deletion and restores TKI-sensitivity. Our results demonstrate that SB939 overcomes BIM deletion polymorphism-induced TKI resistance, and suggest that SB939 may be useful in treating CML patients with BIM deletion-associated TKI resistance.

  5. Effects of FR235222, a novel HDAC inhibitor, in proliferation and apoptosis of human leukaemia cell lines: role of annexin A1.

    PubMed

    Petrella, Antonello; D'Acunto, Cosimo Walter; Rodriquez, Manuela; Festa, Michela; Tosco, Alessandra; Bruno, Ines; Terracciano, Stefania; Taddei, Maurizio; Paloma, Luigi Gomez; Parente, Luca

    2008-03-01

    FR235222, a novel histone deacetylase inhibitor (HDACi), at 50nM caused accumulation of acetylated histone H4, inhibition of cell proliferation and G1 cycle arrest accompanied by increase of p21 and down-regulation of cyclin E in human promyelocytic leukaemia U937 cells. The compound was also able to increase the protein and mRNA levels of annexin A1 (ANXA1) without effects on apoptosis. Similar effects were observed in human chronic myelogenous leukaemia K562 cells and human T cell leukaemia Jurkat cells. Cycle arrest and ANXA1 expression, without significant effects on apoptosis, were also induced by different HDACi like suberoylanilide hydroxamic acid (SAHA) and trichostatin-A (TSA). FR235222 at 0.5 microM stimulated apoptosis of all leukaemia cell lines associated to an increased expression of the full-length (37kDa) protein and the appearance of a 33kDa N-terminal cleavage product in both cytosol and membrane. These results suggest that ANXA1 expression may mediate cycle arrest induced by low doses FR235222, whereas apoptosis induced by high doses FR235222 is associated to ANXA1 processing.

  6. Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma.

    PubMed

    Hideshima, T; Cottini, F; Ohguchi, H; Jakubikova, J; Gorgun, G; Mimura, N; Tai, Y-T; Munshi, N C; Richardson, P G; Anderson, K C

    2015-05-15

    Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide (Len) and pomalidomide trigger anti-tumor activities in multiple myeloma (MM) by targetting cereblon and thereby impacting IZF1/3, c-Myc and IRF4. Histone deacetylase inhibitors (HDACi) also downregulate c-Myc. We therefore determined whether IMiDs with HDACi trigger significant MM cell growth inhibition by inhibiting or downregulating c-Myc. Combination treatment of Len with non-selective HDACi suberoylanilide hydroxamic acid or class-I HDAC-selective inhibitor MS275 induces synergic cytotoxicity, associated with downregulation of c-Myc. Unexpectedly, we observed that decreased levels of cereblon (CRBN), a primary target protein of IMiDs, was triggered by these agents. Indeed, sequential treatment of MM cells with MS275 followed by Len shows less efficacy than simultaneous treatment with this combination. Importantly ACY1215, an HDAC6 inhibitor with minimal effects on class-I HDACs, together with Len induces synergistic MM cytotoxicity without alteration of CRBN expression. Our results showed that only modest class-I HDAC inhibition is able to induce synergistic MM cytotoxicity in combination with Len. These studies may provide the framework for utilizing HDACi in combination with Len to both avoid CRBN downregulation and enhance anti-MM activities.

  7. Histone Deacetylase Inhibition Promotes Osteoblast Maturation by Altering the Histone H4 Epigenome and Reduces Akt Phosphorylation*

    PubMed Central

    Dudakovic, Amel; Evans, Jared M.; Li, Ying; Middha, Sumit; McGee-Lawrence, Meghan E.; van Wijnen, Andre J.; Westendorf, Jennifer J.

    2013-01-01

    Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor β, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro. PMID:23940046

  8. Synthesis, antimalarial properties, and SAR studies of alkoxyurea-based HDAC inhibitors.

    PubMed

    Hansen, Finn K; Skinner-Adams, Tina S; Duffy, Sandra; Marek, Linda; Sumanadasa, Subathdrage D M; Kuna, Krystina; Held, Jana; Avery, Vicky M; Andrews, Katherine T; Kurz, Thomas

    2014-03-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of potential antimalarial drugs. We investigated the antiplasmodial properties of 16 alkoxyurea-based HDAC inhibitors containing various cap and zinc binding groups (ZBGs). Ten compounds displayed sub-micromolar activity against the 3D7 line of Plasmodium falciparum. Structure-activity relationship studies revealed that a hydroxamic acid ZBG is crucial for antiplasmodial activity, and that the introduction of bulky alkyl substituents to cap groups increases potency against asexual blood-stage parasites. We also demonstrate that selected compounds cause hyperacetylation of P. falciparum histone H4, indicating inhibition of one or more PfHDACs. To assess the selectivity of alkoxyurea-based HDAC inhibitors for parasite over normal mammalian cells, the cytotoxicity of representative compounds was evaluated against neonatal foreskin fibroblast (NFF) cells. The most active compound, 6-((3-(4-(tert-butyl)phenyl)ureido)oxy)-N-hydroxyhexanamide (1 e, Pf3D7 IC50 : 0.16 μM) was 31-fold more toxic against the asexual blood stages than towards normal mammalian cells. Moreover, a subset of four structurally diverse HDAC inhibitors revealed moderate activity against late-stage (IV-V) gametocytes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electron injection dynamics in high-potential porphyrin photoanodes.

    PubMed

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    There is a growing need to utilize carbon neutral energy sources, and it is well known that solar energy can easily satisfy all of humanity's requirements. In order to make solar energy a viable alternative to fossil fuels, the problem of intermittency must be solved. Batteries and supercapacitors are an area of active research, but they currently have relatively low energy-to-mass storage capacity. An alternative and very promising possibility is to store energy in chemical bonds, or make a solar fuel. The process of making solar fuel is not new, since photosynthesis has been occurring on earth for about 3 billion years. In order to produce any fuel, protons and electrons must be harvested from a species in its oxidized form. Photosynthesis uses the only viable source of electrons and protons on the scale needed for global energy demands: water. Because artificial photosynthesis is a lofty goal, water oxidation, which is a crucial step in the process, has been the initial focus. This Account provides an overview of how terahertz spectroscopy is used to study electron injection, highlights trends from previously published reports, and concludes with a future outlook. It begins by exploring similarities and differences between dye-sensitized solar cells (DSSCs) for producing electricity and a putative device for splitting water and producing a solar fuel. It then identifies two important problems encountered when adapting DSSC technology to water oxidation-improper energy matching between sensitizer energy levels with the potential for water oxidation and the instability of common anchoring groups in water-and discusses steps to address them. Emphasis is placed on electron injection from sensitizers to metal oxides because this process is the initial step in charge transport. Both the rate and efficiency of electron injection are analyzed on a sub-picosecond time scale using time-resolved terahertz spectroscopy (TRTS). Bio-inspired pentafluorophenyl porphyrins are promising sensitizers because their high reduction potentials are compatible with the energy requirements of water oxidation. TRTS of free-base and metalated pentafluorophenyl porphyrins reveal inefficient electron injection into TiO2 nanoparticles but more efficient electron injection into SnO2 nanoparticles. With SnO2, injection time scales depend strongly on the identity of the central substituent and are affected by competition with excited-state deactivation processes. Heavy or paramagnetic metal ions increase the electron injection time scale by roughly one order of magnitude relative to free-base or Zn(2+) porphyrins due to the possibility of electron injection from longer-lived, lower-lying triplet states. Furthermore, electron injection efficiency loosely correlates with DSSC performance. The carboxylate anchoring group is commonly used to bind DSSC sensitizers to metal oxide surfaces but typically is not stable under the aqueous and oxidative conditions required for water oxidation. Electron injection efficiency of several water-stable alternatives, including phosphonic acid, hydroxamic acid, acetylacetone, and boronic acid, were evaluated using TRTS, and hydroxamate was found to perform as well as the carboxylate. The next challenge is incorporating a water oxidation catalyst into the design. An early example, in which an Ir-based precatalyst is cosensitized with a fluorinated porphyrin, reveals decreased electron injection efficiency despite an increase in photocurrent. Future research will seek to better understand and address these difficulties.

  10. A Single Sfp-Type Phosphopantetheinyl Transferase Plays a Major Role in the Biosynthesis of PKS and NRPS Derived Metabolites in Streptomyces ambofaciens ATCC23877

    PubMed Central

    Bunet, Robert; Riclea, Ramona; Laureti, Luisa; Hôtel, Laurence; Paris, Cédric; Girardet, Jean-Michel; Spiteller, Dieter; Dickschat, Jeroen S.; Leblond, Pierre; Aigle, Bertrand

    2014-01-01

    The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones. PMID:24498152

  11. Role of the Fur Regulon in Iron Transport in Bacillus subtilis

    PubMed Central

    Ollinger, Juliane; Song, Kyung-Bok; Antelmann, Haike; Hecker, Michael; Helmann, John D.

    2006-01-01

    The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding ∼40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT. PMID:16672620

  12. Role of the Fur regulon in iron transport in Bacillus subtilis.

    PubMed

    Ollinger, Juliane; Song, Kyung-Bok; Antelmann, Haike; Hecker, Michael; Helmann, John D

    2006-05-01

    The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding approximately 40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT.

  13. Kinetic method for the large-scale analysis of the binding mechanism of histone deacetylase inhibitors.

    PubMed

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-09-01

    Performing kinetic studies on protein ligand interactions provides important information on complex formation and dissociation. Beside kinetic parameters such as association rates and residence times, kinetic experiments also reveal insights into reaction mechanisms. Exploiting intrinsic tryptophan fluorescence a parallelized high-throughput Förster resonance energy transfer (FRET)-based reporter displacement assay with very low protein consumption was developed to enable the large-scale kinetic characterization of the binding of ligands to recombinant human histone deacetylases (HDACs) and a bacterial histone deacetylase-like amidohydrolase (HDAH) from Bordetella/Alcaligenes. For the binding of trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), and two other SAHA derivatives to HDAH, two different modes of action, simple one-step binding and a two-step mechanism comprising initial binding and induced fit, were verified. In contrast to HDAH, all compounds bound to human HDAC1, HDAC6, and HDAC8 through a two-step mechanism. A quantitative view on the inhibitor-HDAC systems revealed two types of interaction, fast binding and slow dissociation. We provide arguments for the thesis that the relationship between quantitative kinetic and mechanistic information and chemical structures of compounds will serve as a valuable tool for drug optimization. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of Alzheimer's disease.

    PubMed

    Yu, Chao-Wu; Chang, Pei-Teh; Hsin, Ling-Wei; Chern, Ji-Wang

    2013-09-12

    Novel quinazolin-4-one derivatives containing a hydroxamic acid moiety were designed and synthesized. All compounds were subjected to histone deacetylase (HDAC) enzymatic assays to identify selective HDAC6 inhibitors with nanomolar IC50 values. (E)-3-(2-Ethyl-7-fluoro-4-oxo-3-phenethyl-3,4-dihydroquinazolin-6-yl)-N-hydroxyacrylamide, 4b, is the most potent HDAC6 inhibitor (IC50, 8 nM). In vitro, these compounds induced neurite outgrowth accompanied by growth-associated protein 43 expression, and they enhanced the synaptic activities of PC12 and SH-SY5Y neuronal cells without producing toxic or mitogenic effects. Several of the compounds dramatically increased nonhistone protein acetylation, specifically of α-tubulin. Some of the more potent HDAC6 inhibitors decreased zinc-mediated β-amyloid aggregation in vitro. N-Hydroxy-3-(2-methyl-4-oxo-3-phenethyl-3,4-dihydro-quinazolin-7-yl)-acrylamide, 3f, the most promising drug candidate, selectively inhibits HDAC6 (IC50, 29 nM), practically does not affect human ether-a-go-go-related membrane channel activity (IC50 >10 μM) or cytochrome P450 activity (IC50 >6.5 μM) in vitro, and significantly improves learning-based performances of mice with β-amyloid-induced hippocampal lesions.

  15. Synergistic effects of combined treatment with histone deacetylase inhibitor suberoylanilide hydroxamic acid and TRAIL on human breast cancer cells

    PubMed Central

    Zhou, Weiqiang; Feng, Xiuyan; Han Han; Guo, Shanchun; Wang, Guangdi

    2016-01-01

    Previous studies showed that either histone deacetylase (HDAC) inhibitors or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in tumor cells including breast cancer. However, the underling mechanisms of combining HDAC inhibitors with TRAIL in the treatment of breast cancer are poorly understood. In this study, we determined the ability of SAHA and TRAIL as single agents or in combination to inhibit the growth and survival of MCF-7 and MDA-MB-231 breast cancer cells. Our results demonstrate that the distinct effects of SAHA or TRAIL individually and in combination on the proliferation, cell viability, apoptosis, cell cycle distribution, and morphological changes of MDA-MB-231 and MCF-7 cells. We further determined the different effects of SAHA or TRAIL alone and combining SAHA with TRAIL on the expression of a number of apoptosis-related molecules, cell cycle, growth factors and their receptors in cancer cells. Our results demonstrated that the combinatorial treatment of SAHA and TRAIL may target multiple pathways and serve as an effective therapeutic strategy against breast cancer. An improved understanding of the molecular mechanisms may facilitate either SAHA or TRAIL targeted use and the selection of suitable combinations. PMID:27292433

  16. Combinatorial Treatment of DNA and Chromatin-Modifying Drugs Cause Cell Death in Human and Canine Osteosarcoma Cell Lines

    PubMed Central

    Thayanithy, Venugopal; Park, ChangWon; Sarver, Aaron L.; Kartha, Reena V.; Korpela, Derek M.; Graef, Ashley J.; Steer, Clifford J.; Modiano, Jaime F.; Subramanian, Subbaya

    2012-01-01

    Downregulation of microRNAs (miRNAs) at the 14q32 locus stabilizes the expression of cMYC, thus significantly contributing to osteosarcoma (OS) pathobiology. Here, we show that downregulation of 14q32 miRNAs is epigenetically regulated. The predicted promoter regions of miRNA clusters at 14q32 locus showed no recurrent patterns of differential methylation, but Saos2 cells showed elevated histone deacetylase (HDAC) activity. Treatment with 4-phenylbutyrate increased acetylation of histones associated with 14q32 miRNAs, but interestingly, robust restoration of 14q32 miRNA expression, attenuation of cMYC expression, and induction of apoptosis required concomitant treatment with 5-Azacytidine, an inhibitor of DNA methylation. These events were associated with genome-wide gene expression changes including induction of pro-apoptotic genes and downregulation of cell cycle genes. Comparable effects were achieved in human and canine OS cells using the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA/Vorinostat) and the DNA methylation inhibitor Zebularine (Zeb), with significantly more pronounced cytotoxicity in cells whose molecular phenotypes were indicative of aggressive biological behavior. These results suggested that the combination of these chromatin-modifying drugs may be a useful adjuvant in the treatment of rapidly progressive OS. PMID:22957032

  17. Synthesis and biological evaluation of Santacruzamate-A based analogues.

    PubMed

    Randino, Rosario; Gazzerro, Patrizia; Mazitschek, Ralph; Rodriquez, Manuela

    2017-12-15

    Several derivatives of Santacruzamate-A, a natural product that is structurally related to SAHA, were synthesized to explore the potential of carbamates and oxalylamides as novel biasing element for targeting the catalytic site of zinc-dependent histone deacetylases (HDACs). An additional class of Santacruzamate-A derivatives was synthesized to investigate the influence of the cap group and the linker element on HDAC inhibitory activity. All compounds were evaluated in dose response for their in vitro cytotoxic activity in MTT assay in HCT116 cells. HDAC inhibitory activity was evaluated in vitro by western blot analysis for histone hyperacetylation assay and biochemically for representative human HDACs isoforms. Two novel compounds were identified to exhibit potent time dependent anti proliferative activity. However, unlike hydroxamic acid analogues, the tested Santacruzamate-A derivatives showed no noticeable HDAC inhibitory activity. The ethylcarbamate moiety as unusual zinc-binding group displayed no ability to coordinate the zinc ion and thus, presumably, was not able to reproduce known inhibitor-substrate zinc-binding group interactions with the HDAC catalytic site. This study confirmed that the accommodation of the zinc-binding group is deeply critical of the positioning of the linker and the projection of the cap group toward the different surface pockets of the enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Inhibitors of procollagen C-terminal proteinase block gastrulation and spicule elongation in the sea urchin embryo.

    PubMed

    Huggins, L G; Lennarz, W J

    2001-08-01

    In the sea urchin embryo, inhibition of collagen processing and deposition affects both gastrulation and embryonic skeleton (spicule) formation. It has been found that cell-free extracts of gastrula-stage embryos of Strongylocentrotus purpuratus contain a procollagen C-terminal proteinase (PCP) activity. A rationally designed non-peptidic organic hydroxamate, which is a potent and specific inhibitor of human recombinant PCP (FG-HL1), inhibited both the sea urchin PCP as well as purified chick embryo tendon PCP. In the sea urchin embryo, FG-HL1 inhibited gastrulation and blocked spicule elongation, but not spicule nucleation. A related compound with a terminal carboxylate rather than a hydroxamate (FG-HL2) did not inhibit either chick PCP or sea urchin PCP activity in a procollagen-cleavage assay. However, FG-HL2 did block spicule elongation without affecting spicule nucleation or gastrulation. Neither compound was toxic, because their effects were reversible on removal. It was shown that the inhibition of gastrulation and spicule elongation were independent of tissue specification events, because both the endoderm specific marker Endo1 and the primary mesenchyme cell specific marker SM50 were expressed in embryos treated with FG-HL1 and FG-HL2. These results suggest that disruption of the fibrillar collagen deposition in the blastocoele blocks the cell movements of gastrulation and may disrupt the positional information contained within the extracellular matrix, which is necessary for spicule formation.

  19. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand?

    PubMed Central

    Whittle, Nigel; Singewald, Nicolas

    2014-01-01

    A novel strategy to treat anxiety and fear-related disorders such as phobias, panic and PTSD (post-traumatic stress disorder) is combining CBT (cognitive behavioural therapy), including extinction-based exposure therapy, with cognitive enhancers. By targeting and boosting mechanisms underlying learning, drug development in this field aims at designing CBT-augmenting compounds that help to overcome extinction learning deficits, promote long-term fear inhibition and thus support relapse prevention. Progress in revealing the role of epigenetic regulation of specific genes associated with extinction memory generation has opened new avenues in this direction. The present review examines recent evidence from pre-clinical studies showing that increasing histone acetylation, either via genetic or pharmacological inhibition of HDACs (histone deacetylases) by e.g. vorinostat/SAHA (suberoylanilide hydroxamic acid), entinostat/MS-275, sodium butyrate, TSA (trichostatin A) or VPA (valproic acid), or by targeting HATs (histone acetyltransferases), augments fear extinction and, importantly, generates a long-term extinction memory that can protect from return of fear phenomena. The molecular mechanisms and pathways involved including BDNF (brain-derived neurotrophic factor) and NMDA (N-methyl-D-aspartate) receptor signalling are just beginning to be revealed. First studies in healthy humans are in support of extinction-facilitating effects of HDAC inhibitors. Very recent evidence that HDAC inhibitors can rescue deficits in extinction-memory-impaired rodents indicates a potential clinical utility of this approach also for exposure therapy-resistant patients. Important future work includes investigation of the long-term safety aspects of HDAC inhibitor treatment, as well as design of isotype(s)-specific inhibitors. Taken together, HDAC inhibitors display promising potential as pharmacological adjuncts to augment the efficacy of exposure-based approaches in anxiety and trauma therapy. PMID:24646280

  20. Class I Histone Deacetylase Inhibition by Tianeptinaline Modulates Neuroplasticity and Enhances Memory.

    PubMed

    Zhao, Wen-Ning; Ghosh, Balaram; Tyler, Marshall; Lalonde, Jasmin; Joseph, Nadine F; Kosaric, Nina; Fass, Daniel M; Tsai, Li-Huei; Mazitschek, Ralph; Haggarty, Stephen J

    2018-06-22

    Through epigenetic and other regulatory functions, the histone deacetylase (HDAC) family of enzymes has emerged as a promising therapeutic target for central nervous system and other disorders. Here we report on the synthesis and functional characterization of new HDAC inhibitors based structurally on tianeptine, a drug used primarily to treat major depressive disorder (MDD) that has a poorly understood mechanism of action. Since the chemical structure of tianeptine resembles certain HDAC inhibitors, we profiled the in vitro HDAC inhibitory activity of tianeptine and demonstrated its ability to inhibit the lysine deacetylase activity of a subset of class I HDACs. Consistent with a model of active site Zn 2+ chelation by the carboxylic acid present in tianeptine, newly synthesized analogues containing either a hydroxamic acid or ortho-aminoanilide exhibited increased potency and selectivity among the HDAC family. This in vitro potency translated to improved efficacy in a panel of high-content imaging assays designed to assess HDAC target engagement and functional effects on critical pathways involved in neuroplasticity in both primary mouse neurons and, for the first time, human neurons differentiated from pluripotent stem cells. Most notably, tianeptinaline, a class I HDAC-selective analogue of tianeptine, but not tianeptine itself, increased histone acetylation, and enhanced CREB-mediated transcription and the expression of Arc (activity-regulated cytoskeleton-associated protein). Systemic in vivo administration of tianeptinaline to mice confirmed its brain penetration and was found to enhance contextual fear conditioning, a behavioral test of hippocampal-dependent memory. Tianeptinaline and its derivatives provide new pharmacological tools to dissect chromatin-mediated neuroplasticity underlying memory and other epigenetically related processes implicated in health and disease.

  1. Targeting Histone Deacetylases in Malignant Melanoma: A Future Therapeutic Agent or Just Great Expectations?

    PubMed

    Garmpis, Nikolaos; Damaskos, Christos; Garmpi, Anna; Dimitroulis, Dimitrios; Spartalis, Eleftherios; Margonis, Georgios-Antonios; Schizas, Dimitrios; Deskou, Irini; Doula, Chrysoula; Magkouti, Eleni; Andreatos, Nikolaos; Antoniou, Efstathios A; Nonni, Afroditi; Kontzoglou, Konstantinos; Mantas, Dimitrios

    2017-10-01

    Malignant melanoma is the most aggressive type of skin cancer, with increasing frequency and mortality. Melanoma is characterized by rapid proliferation and metastases. Malignant transformation of normal melanocytes is associated with imbalance between oncogenes' action and tumor suppressor genes. Mutations or inactivation of these genes plays an important role in the pathogenesis of malignant melanoma. Many target-specific agents improved progression-free survival but unfortunately metastatic melanoma remains incurable, so new therapeutic strategies are needed. The balance of histones' acetylation affects cell cycle progression, differentiation and apoptosis. Histone deacetylases (HDAC) are associated with different types of cancer. Histone deacetylase inhibitors (HDACI) are enzymes that inhibit the action of HDAC, resulting in block of tumor cell proliferation. A small number of these enzymes has been studied regarding their anticancer effects in melanoma. The purpose of this article was to review the therapeutic effect of HDACI against malignant melanoma, enlightening the molecular mechanisms of their action. The MEDLINE database was used. The keywords/ phrases were; HDACI, melanoma, targeted therapies for melanoma. Our final conclusions were based on studies that didn't refer solely to melanoma due to their wider experimental data. Thirty-two articles were selected from the total number of the search's results. Only English articles published until March 2017 were used. Molecules, such as valproid acid (VPA), LBH589, LAQ824 (dacinostat), vorinostat, tubacin, sirtinol and tx-527, suberoyl bis-hydroxamic acid (SBHA), depsipeptide and Trichostatin A (TSA) have shown promising antineoplastic effects against melanoma. HDACI represent a promising agent for targeted therapy. More trials are required. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Histone Deacetylase Inhibitors Stimulate Dedifferentiation of Human Breast Cancer Cells through WNT/β-catenin Signaling

    PubMed Central

    Debeb, Bisrat G; Lacerda, Lara; Xu, Wei; Larson, Richard; Solley, Travis; Atkinson, Rachel; Sulman, Erik P.; Ueno, Naoto T; Krishnamurthy, Savitri; Reuben, James M; Buchholz, Thomas A; Woodward, Wendy A

    2015-01-01

    Recent studies have shown that differentiated cancer cells can de-differentiate into cancer stem cells (CSCs) although to date no studies have reported whether this transition is influenced by systemic anti-cancer agents. Valproic acid (VA) is a histone deacetylase (HDAC) inhibitor that promotes self renewal and expansion of hematopietic stem cells and facilitates the generation of induced pluripotent stem cells from somatic cells and is currently being investigated in breast cancer clinical trials. We hypothesized that HDAC inhibitors reprogram differentiated cancer cells towards the more resistant stem cell-like state. Two highly aggressive breast cancer cell lines, SUM159 and MDA-231, were FACS-sorted based on ALDH activity and subsequently ALDH-negative and ALDH-positive cells were treated with one of two known HDAC inhibitors, VA or SAHA (suberoylanilide hydroxamic acid). In addition, primary tumor cells from patients with metastatic breast cancer were evaluated for ALDH activity following treatment with HDAC inhibitors. We demonstrate that single cell sorted ALDH- negative cells spontaneously generated ALDH-positive cells in vitro. Treatment of ALDH-negative cells with HDAC inhibitors promoted the expansion of ALDH-positive cells and increased mammosphere forming efficiency. Most importantly, it significantly increased the tumor-initiating capacity of ALDH- negative cells in limiting dilution outgrowth assays. Moreover, while HDAC inhibitors upregulated β-catenin expression and significantly increased WNT reporter activity, a TCF4 dominant negative construct abolished HDAC-inhibitor induced expansion of CSCs. These results demonstrate that HDAC inhibitors promote the expansion of breast CSCs through dedifferentiation and have important clinical implications for the use of HDAC inhibitors in the treatment of cancer. PMID:22961641

  3. A metabolic screening study of trichostatin A (TSA) and TSA-like histone deacetylase inhibitors in rat and human primary hepatocyte cultures.

    PubMed

    Elaut, G; Laus, G; Alexandre, E; Richert, L; Bachellier, P; Tourwé, D; Rogiers, V; Vanhaecke, T

    2007-04-01

    Hydroxamic acid (HA)-based histone deacetylase (HDAC) inhibitors, with trichostatin A (TSA) as the reference compound, are potential antitumoral drugs and show promise in the creation of long-term primary cell cultures. However, their metabolic properties have barely been investigated. TSA is rapidly inactivated in rodents both in vitro and in vivo. We previously found that 5-(4-dimethylaminobenzoyl)aminovaleric acid hydroxyamide or 4-Me2N-BAVAH (compound 1) is metabolically more stable upon incubation with rat hepatocyte suspensions. In this study, we show that human hepatocytes also metabolize TSA more rapidly than compound 1 and that similar pathways are involved. Furthermore, structural analogs of compound 1 (compounds 2-9) are reported to have the same favorable metabolic properties. Removal of the dimethylamino substituent of compound 1 creates a very stable but 50% less potent inhibitor. Chain lengthening (4 to 5 carbon spacer) slightly improves both potency and metabolic stability, favoring HA reduction to hydrolysis. On the other hand, Calpha-unsaturation and spacer methylation not only reduce HDAC inhibition but also increase the rate of metabolic inactivation approximately 2-fold, mainly through HA reduction. However, in rat hepatocyte monolayer cultures, compound 1 is shown to be extensively metabolized by phase II conjugation. In conclusion, this study suggests that simple structural modifications of amide-linked TSA analogs can improve their phase I metabolic stability in both rat and human hepatocyte suspensions. Phase II glucuronidation, however, can compensate for their lower phase I metabolism in rat hepatocyte monolayers and could play a yet unidentified role in the determination of their in vivo clearance.

  4. Participation of fad and mbt Genes in Synthesis of Mycobactin in Mycobacterium smegmatis

    PubMed Central

    LaMarca, B. Babbette D.; Zhu, Wenming; Arceneaux, Jean E. L.; Rowe Byers, B.; Lundrigan, Michael D.

    2004-01-01

    Colonies of Mycobacterium smegmatis LR222 on iron-limiting (0.1 μM Fe) minimal medium agar fluoresce under UV light due to the accumulation in the cells of the deferri form of the siderophore mycobactin. Two mutants with little or no fluorescence, designated LUN8 and LUN9, were isolated by screening colonies of transposon (Tn611)-mutagenized M. smegmatis. Ferrimycobactin prepared from iron-restricted cells of the wild type had an Rf of 0.62 on high-performance thin-layer chromatography (HPTLC) and a characteristic visible absorption spectrum with a peak near 450 nm. Similar extracts from LUN8 cells contained a small amount of ferrimycobactin with an Rf of 0.58 on HPTLC and an absorption spectrum with the peak shifted to a wavelength lower than that of the wild-type ferrimycobactin. Nuclear magnetic resonance spectroscopy studies suggested that the LUN8 mycobactin may have an altered fatty acid side chain. Mutant strain LUN9 produced no detectable mycobactin. Neither mutant strain produced measurable amounts of excreted mycobactin, although both excreted exochelin (the mycobacterial peptido-hydroxamate siderophore), and both mutants were more sensitive than the wild-type strain to growth inhibition by the iron chelator ethylenediamine-di(o-hydroxyphenylacetic acid). The transposon insertion sites were identified, and sequence analyses of the cloned flanking chromosome regions showed that the mutated gene in LUN9 was an orthologue of the Mycobacterium tuberculosis mycobactin biosynthetic gene mbtE. The mutated gene in LUN8 had homology with M. tuberculosis fadD33 (Rv1345), a gene that may encode an acyl-coenzyme A synthase and which previously was not known to participate in synthesis of mycobactin. PMID:14702306

  5. 3D-quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme.

    PubMed

    Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2008-04-01

    A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.

  6. Rational Design, Development, and Stability Assessment of a Macrocyclic Four-Hydroxamate-Bearing Bifunctional Chelating Agent for 89 Zr.

    PubMed

    Seibold, Uwe; Wängler, Björn; Wängler, Carmen

    2017-09-21

    Zirconium-89 is a positron-emitting radionuclide of high interest for medical imaging applications with positron emission tomography (PET). For the introduction of this radiometal into biologically active targeting vectors, the chelating agent desferrioxamine B (DFO) is commonly applied. However, DFO is known to form 89 Zr complexes of limited in vivo stability. Herein we describe the rational design and chemical development of a new macrocyclic four-hydroxamate-bearing chelating agent-1,10,19,28-tetrahydroxy-1,5,10,14,19,23,28,32-octaazacyclohexatriacontan-2,6,11,15,20,24,29,33-octaone (CTH36)-for the stable complexation of Zr 4+ . For this purpose, we first performed computational studies to determine the optimal chelator geometry before we developed different synthesis pathways toward the target structures. The best results were obtained using an efficient solution-phase-based synthesis strategy toward the target chelating agent. To enable efficient and chemoselective conjugation to biomolecules, a tetrazine-modified variant of CTH36 was also developed. The excellent conjugation characteristics of the so-functionalized chelator were demonstrated on the example of the model peptide TCO-c(RGDfK). We determined the optimal 89 Zr radiolabeling parameters for CTH36 as well as its bioconjugate, and found that 89 Zr radiolabeling proceeds efficiently under very mild reaction conditions. Finally, we performed comparative complex stability tests for 89 Zr-CHT36-c(RGDfK) and 89 Zr-DFO-c(RGDfK), showing improved complex stability for the newly developed chelator CTH36. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Subchronic Toxicities of HZ1006, a Hydroxamate-Based Histone Deacetylase Inhibitor, in Beagle Dogs and Sprague-Dawley Rats.

    PubMed

    Zhang, Xiaofang; Zhang, Xiaodong; Yuan, Bojun; Ren, Lijun; Zhang, Tianbao; Lu, Guocai

    2016-11-30

    Histone deacetylase inhibitors (HDACIs), such as vorinostat and panobinostat, have been shown to have active effects on many hematologic malignancies, including multiple myeloma and cutaneous T-cell lymphoma. Hydroxamate-based (Hb) HDACIs have very good toxicity profiles and are currently being tested in phases I and II clinical trials with promising results in selected neoplasms, such as bladder carcinoma. One of the Hb-HDACIs, HZ1006, has been demonstrated to be a promising drug for clinical use. The aim of our study was to determine the possible target of toxicity and to identify a non-toxic dose of HZ1006 for clinical use. In our studies, the repeated dosage toxicity of HZ1006 in Beagle dogs and Sprague Dawley (SD) rats was identified. Dogs and rats received HZ1006 orally (0-80 and 0-120 mg/kg/day, respectively) on a continuous daily dosing agenda for 28 days following a 14-day dosage-free period. HZ1006's NOAEL (No Observed Adverse Effect Level) by daily oral administration for dogs and rats was 5 mg/kg and 60 mg/kg, respectively, and the minimum toxic dose was 20 and 120 mg/kg, respectively. All the side effects indicated that the digestive tract, the male reproductive tract, the respiratory tract and the hematological systems might be HZ1006 toxic targets in humans. HZ1006 could be a good candidate or a safe succedaneum to other existing HDACIs for the treatment of some solid tumor and hematologic malignancies.

  8. Adsorption and detection of Escherichia coli using an Au substrate modified with a catecholate-type artificial siderophore-Fe3+ complex.

    PubMed

    Inomata, Tomohiko; Tanabashi, Hirohito; Funahashi, Yasuhiro; Ozawa, Tomohiro; Masuda, Hideki

    2013-12-07

    A catecholate-type artificial siderophore with a terminal-NH2 group (1) and its Fe(3+) complex (2) were prepared. Siderophore 1 was characterized by (1)H NMR, FT-IR, and ESI-TOF MS spectroscopy. The corresponding Fe(3+) complex 2 was obtained by reaction of 1 with Fe(acac)3. The absorption band at 500 nm (ε = 4670 M(-1) cm(-1) at pH 7.0) of the electronic absorption spectrum of 2 is assignable as the LMCT (O(catecholate) → Fe(3+)) absorption band. This band indicates the formation of the Fe(3+) complex of 1. The biological activity of 2 with respect to Escherichia coli was clearly confirmed by observing that it permeates into the cell membrane. The self-assembled monolayer of 2 on an Au substrate, 2/Au, was prepared and its preparation was confirmed by FT-IR reflection-absorption spectroscopy (IR-RAS) and cyclic voltammetry (CV). Furthermore, a quartz crystal microbalance (QCM) chip modified with 2 effectively adsorbed E. coli. M. flavescens, an organism which is incapable of synthesizing siderophores and must therefore use exogenous hydroxamate-type siderophores for growth, did not adsorb on 2/Au. In contrast, E. coli did not adsorb on the hydroxamate-type artificial siderophore-Fe(3+) complex (3)-modified Au substrate, 3/Au. These results provide preliminary evidence that microbes recognized Fe(3+) ion-bound siderophores on the surface. The detection limit of 2/Au was ∼10(4) CFU mL(-1).

  9. Adsorption of Pb(ll) and Eu(III) by oxide minerals in the presence of natural and synthetic hydroxamate siderophores.

    PubMed

    Kraemer, Stephan M; Xu, Jide; Raymond, Kenneth N; Sposito, Garrison

    2002-03-15

    Trihydroxamate siderophores have been proposed for use as mediators of actinide and heavy metal mobility in contaminated subsurface zones. These microbially produced ligands, common in terrestrial and marine environments, recently have been derivatized synthetically to enhance their affinity for transuranic metal cations. However, the interactions between these synthetic derivative and adsorbed trace metals have not been characterized. In this paper we compare a natural siderophore, desferrioxamine-B (DFO-B), with its actinide-specific catecholate derivative, N-(2,3-dihydroxy-4-(methylamido)benzoyl)desferrioxamine-B (DFOMTA), as to their effect on the adsorption of Pb(II) and Eu(III) by goethite and boehmite. In the presence of 240 microM DFO-B, a strongly depleting effect on Eu(III) adsorption by goethite and boehmite occurred above pH 6. By contrast, almost total removal of Eu(III) from solution in the neutral to slightly acidic pH range was observed in the presence of either 10 or 100 microM DFOMTA, due primarilyto the formation of metal-DFOMTA precipitates. Addition of DFOMTA caused an increase in Pb(II) adsorption by goethite below pH 5, but a decrease above pH 5, such that the Pb(II) adsorption edge in the presence of DFOMTA strongly resembled the DFOMTA adsorption envelope, which showed a maximum near pH 5 and decreasing adsorption toward lower and higher pH.

  10. The Histoplasma capsulatum Vacuolar ATPase is Required for Iron Homeostasis, Intracellular Replication in Macrophages, and Virulence in a Murine Model of Histoplasmosis

    PubMed Central

    Hilty, Jeremy; Smulian, A. George; Newman, Simon L.

    2008-01-01

    Summary Histoplasma capsulatum is a dimorphic fungal pathogen that survives and replicates within macrophages (Mϕ). To identify specific genes required for intracellular survival, we utilized Agrobacterium tumefaciens-mediated mutagenesis, and screened for H. capsulatum insertional mutants that were unable to survive in human Mϕ. One colony was identified that had an insertion within VMA1, the catalytic subunit A of the vacuolar ATPase (V-ATPase). The vma1 mutant (vma1::HPH) grew normally on iron replete medium, but not on iron deficient media. On iron deficient medium, the growth of the vma1 mutant was restored in the presence of wild type (WT) H. capsulatum yeasts, or the hydroxamate siderophore, rhodotorulic acid. However, the inability to replicate within Mϕ was only partially restored by the addition of exogenous iron. The vma1::HPH mutant also did not grow as a mold at 28°C. Complementation of the mutant (vma/VMA1) restored its ability to replicate in Mϕ, grow on iron poor medium, and grow as a mold at 28°C. The vma1::HPH mutant was avirulent in a mouse model of histoplasmosis, whereas the vma1/VMA1 strain was as pathogenic as WT yeasts. These studies demonstrate the importance of V-ATPase function in the pathogenicity of H. capsulatum, in iron homeostasis, and in fungal dimorphism. PMID:18699866

  11. Enhancement of Radiation Response in Osteosarcoma and Rhabomyosarcoma Cell Lines by Histone Deacetylase Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blattmann, Claudia, E-mail: claudia.blattmann@med.uni-heidelberg.d; Oertel, Susanne; Ehemann, Volker

    2010-09-01

    Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced anmore » inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.« less

  12. Kinome expression profiling of human neuroblastoma tumors identifies potential drug targets for ultra high-risk patients.

    PubMed

    Russo, Roberta; Cimmino, Flora; Pezone, Lucia; Manna, Francesco; Avitabile, Marianna; Langella, Concetta; Koster, Jan; Casale, Fiorina; Raia, Maddalena; Viola, Giampietro; Fischer, Matthias; Iolascon, Achille; Capasso, Mario

    2017-10-01

    Neuroblastoma (NBL) accounts for >7% of malignancies in patients younger than 15 years. Low- and intermediate-risk patients exhibit excellent or good prognosis after treatment, whereas for high-risk (HR) patients, the estimated 5-year survival rates is still <40%. The ability to stratify HR patients that will not respond to standard treatment strategies is critical for informed treatment decisions. In this study, we have generated a specific kinome gene signature, named Kinome-27, which is able to identify a subset of HR-NBL tumors, named ultra-HR NBL, with highly aggressive clinical behavior that not adequately respond to standard treatments. We have demonstrated that NBL cell lines expressing the same kinome signature of ultra-HR tumors (ultra-HR-like cell lines) may be selectively targeted by the use of two drugs [suberoylanilide hydroxamic acid (SAHA) and Radicicol], and that the synergic combination of these drugs is able to block the ultra-HR-like cells in G2/M phase of cell cycle. The use of our signature in clinical practice will allow identifying patients with negative outcome, which would benefit from new and more personalized treatments. Preclinical in vivo studies are needed to consolidate the SAHA and Radicicol treatment in ultra-HR NBL patients. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase–dependent DC functions and regulates experimental graft-versus-host disease in mice

    PubMed Central

    Reddy, Pavan; Sun, Yaping; Toubai, Tomomi; Duran-Struuck, Raimon; Clouthier, Shawn G.; Weisiger, Elizabeth; Maeda, Yoshinobu; Tawara, Isao; Krijanovski, Oleg; Gatza, Erin; Liu, Chen; Malter, Chelsea; Mascagni, Paolo; Dinarello, Charles A.; Ferrara, James L.M.

    2008-01-01

    Histone deacetylase (HDAC) inhibitors are antitumor agents that also have antiinflammatory properties. However, the mechanisms of their immunomodulatory functions are not known. We investigated the mechanisms of action of 2 HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and ITF 2357, on mouse DC responses. Pretreatment of DCs with HDAC inhibitors significantly reduced TLR-induced secretion of proinflammatory cytokines, suppressed the expression of CD40 and CD80, and reduced the in vitro and in vivo allostimulatory responses induced by the DCs. In addition, injection of DCs treated ex vivo with HDAC inhibitors reduced experimental graft-versus-host disease (GVHD) in a murine allogeneic BM transplantation model. Exposure of DCs to HDAC inhibitors increased expression of indoleamine 2,3-dioxygenase (IDO), a suppressor of DC function. Blockade of IDO in WT DCs with siRNA and with DCs from IDO-deficient animals caused substantial reversal of HDAC inhibition–induced in vitro suppression of DC-stimulated responses. Direct injection of HDAC inhibitors early after allogeneic BM transplantation to chimeric animals whose BM-derived cells lacked IDO failed to protect from GVHD, demonstrating an in vivo functional role for IDO. Together, these data show that HDAC inhibitors regulate multiple DC functions through the induction of IDO and suggest that they may represent a novel class of agents to treat immune-mediated diseases. PMID:18568076

  14. Potentiation of apoptosis by histone deacetylase inhibitors and doxorubicin combination: cytoplasmic cathepsin B as a mediator of apoptosis in multiple myeloma.

    PubMed

    Cheriyath, V; Kuhns, M A; Kalaycio, M E; Borden, E C

    2011-03-15

    Although inhibitors of histone deacetylase inhibitors (HDACis) in combination with genotoxins potentiate apoptosis, the role of proteases other than caspases in this process remained elusive. Therefore, we examined the potentiation of apoptosis and related mechanisms of HDACis and doxorubicin combination in a panel of myeloma cell lines and in 25 primary myelomas. At IC(50) concentrations, sodium butyrate (an HDACi) or doxorubicin alone caused little apoptosis. However, their combination potentiated apoptosis and synergistically reduced the viability of myeloma cells independent of p53 and caspase 3-7 activation. Potentiated apoptosis correlated with nuclear translocation of apoptosis-inducing factor, suggesting the induction of caspase 3- and 7-independent pathways. Consistent with this, butyrate and doxorubicin combination significantly increased the activity of cytoplasmic cathepsin B. Inhibition of cathepsin B either with a small-molecule inhibitor or downregulation with a siRNA reversed butyrate- and doxorubicin-potentiated apoptosis. Finally, ex vivo, clinically relevant concentrations of butyrate or SAHA (suberoylanilide hydroxamic acid, vorinostat, an HDACi in clinical testing) in combination with doxorubicin significantly (P<0.0001) reduced the survival of primary myeloma cells. Cathepsin B has a prominent function in mediating apoptosis potentiated by HDACi and doxorubicin combinations in myeloma. Our results support a molecular model of lysosomal-mitochondrial crosstalk in HDACi- and doxorubicin-potentiated apoptosis through the activation of cathepsin B.

  15. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.

    PubMed

    Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D

    2003-03-01

    High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.

  16. Effect of a Histone Deacetylases Inhibitor of IL-18 and TNF-Alpha Secretion in Vitro.

    PubMed

    Dobreva, Zlatka Georgieva; Grigorov, Boncho Grigorov; Stanilova, Spaska Angelova

    2018-02-15

    Interleukin-18 (IL-18) and Tumor Necrosis Factor-alpha (TNF-α) are proinflammatory cytokines that increased the development of Th1 immune response, but have a different type of regulation of the gene expression. Whereas TNF-α has an inducible expression, IL-18 is translated as an inactive protein and required proteolytic cleavage by Casp-1 in inflammasome complexes. To investigate the effect of the histone deacetylases inhibitor Suberoylanilide Hydroxamic Acid (SAHA) on the gene expression and secretion of both cytokines, IL-18 and TNF-α, according to their contribution to the cancer development and anticancer immunity. Isolated peripheral blood mononuclear cells (PBMC) were stimulated with LPS and C3bgp with or without SAHA. Cytokine production was assessed by ELISA at 6 and 24h. IL-18 and TNF-α secretion was significantly increased at 6h and 24h in response to stimulation. TNF-α production from stimulated PBMC was downregulated by SAHA at 6 and 24h. Treatment with SAHA does not inhibit the secretion of IL-18 significantly either at 6 or 24h of stimulation. The inhibition of histone deacetylases by SAHA does not influence the inflammasome-dependent production of immunologically active IL-18. In contrast, the production of proinflammatory TNF-α in cultures was mediated by the activity of HDAC class I and class II enzymes.

  17. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively.

    PubMed

    Dimkpa, C O; Merten, D; Svatos, A; Büchel, G; Kothe, E

    2009-11-01

    As a toxic metal, cadmium (Cd) affects microbial and plant metabolic processes, thereby potentially reducing the efficiency of microbe or plant-mediated remediation of Cd-polluted soil. The role of siderophores produced by Streptomyces tendae F4 in the uptake of Cd by bacteria and plant was investigated to gain insight into the influence of siderophores on Cd availability to micro-organisms and plants. The bacterium was cultured under siderophore-inducing conditions in the presence of Cd. The kinetics of siderophore production and identification of the siderophores and their metal-bound forms were performed using electrospray ionization mass spectrometry. Inductively coupled plasma spectroscopy was used to measure iron (Fe) and Cd contents in the bacterium and in sunflower plant grown in Cd-amended soil. Siderophores significantly reduced the Cd uptake by the bacterium, while supplying it with iron. Bacterial culture filtrates containing three hydroxamate siderophores secreted by S. tendae F4 significantly promoted plant growth and enhanced uptake of Cd and Fe by the plant, relative to the control. Furthermore, application of siderophores caused slightly more Cd, but similar Fe uptake, compared with EDTA. Bioinoculation with Streptomyces caused a dramatic increase in plant Fe content, but resulted only in slight increase in plant Cd content. It is concluded that siderophores can help reduce toxic metal uptake in bacteria, while simultaneously facilitating the uptake of such metals by plants. Also, EDTA is not superior to hydroxamate siderophores in terms of metal solubilization for plant uptake. The study showed that microbial processes could indirectly influence the availability and amount of toxic metals taken up from the rhizosphere of plants. Furthermore, although EDTA is used for chelator-enhanced phytoremediation, microbial siderophores would be ideal for this purpose.

  18. Structure of the metal-dependent deacetylase LpxC from Yersinia enterocolitica complexed with the potent inhibitor CHIR-090 .

    PubMed

    Cole, Kathryn E; Gattis, Samuel G; Angell, Heather D; Fierke, Carol A; Christianson, David W

    2011-01-18

    The first committed step of lipid A biosynthesis is catalyzed by UDP-(3-O-((R)-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase, a metal-dependent deacetylase also known as LpxC. Because lipid A is essential for bacterial viability, the inhibition of LpxC is an appealing therapeutic strategy for the treatment of Gram-negative bacterial infections. Here we report the 1.79 Å resolution X-ray crystal structure of LpxC from Yersinia enterocolitica (YeLpxC) complexed with the potent hydroxamate inhibitor CHIR-090. This enzyme is a nearly identical orthologue of LpxC from Yersinia pestis (99.7% sequence identity), the pathogen that causes bubonic plague. Similar to the inhibition of LpxC from Escherichia coli, CHIR-090 inhibits YeLpxC via a two-step slow, tight-binding mechanism with an apparent K(i) of 0.54 ± 0.14 nM followed by conversion of the E·I to E·I* species with a rate constant of 0.11 ± 0.01 min(-1). The structure of the LpxC complex with CHIR-090 shows that the inhibitor hydroxamate group chelates the active site zinc ion, and the "tail" of the inhibitor binds in the hydrophobic tunnel in the active site. This hydrophobic tunnel is framed by a βαβ subdomain that exhibits significant conformational flexibility as it accommodates inhibitor binding. CHIR-090 displays a 27 mm zone of inhibition against Y. enterocolitica in a Kirby-Bauer antibiotic assay, which is comparable to its reported activity against other Gram-negative species including E. coli and Pseudomonas aeruginosa. This study demonstrates that the inhibition of LpxC should be explored as a potential therapeutic and/or prophylatic response to infection by weaponized Yersinia species.

  19. Infrared multiple photon dissociation spectroscopy of group I and group II metal complexes with Boc-hydroxylamine.

    PubMed

    Dain, Ryan P; Gresham, Gary; Groenewold, Gary S; Steill, Jeffrey D; Oomens, Jos; Van Stipdonk, Michael J

    2013-08-30

    Hydroxamates are essential growth factors for some microbes, acting primarily as siderophores that solubilize iron for transport into a cell. Here we determined the intrinsic structure of 1:1 complexes between Boc-protected hydroxylamine and group I ([M(L)](+)) and group II ([M(L-H)](+)) cations, where M and L are the cation and ligand, respectively, which are convenient models for the functional unit of hydroxamate siderphores. The relevant complex ions were generated by electrospray ionization (ESI) and isolated and stored in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Infrared spectra of the isolated complexes were collected by monitoring (infrared) photodissociation yield as a function of photon energy. Experimental spectra were then compared to those predicted by density functional theory (DFT) calculations. The infrared multiple photon dissociation (IRMPD) spectra collected are in good agreement with those predicted to be lowest-energy by DFT. The spectra for the group I complexes contain six resolved absorptions that can be attributed to amide I and II type and hydroxylamine N-OH vibrations. Similar absorptions are observed for the group II cation complexes, with shifts of the amide I and amide II vibrations due to the change in structure with deprotonation of the hydroxylamine group. IRMPD spectroscopy unequivocally shows that the intrinsic binding mode for the group I cations involves the O atoms of the amide carbonyl and hydroxylamine groups of Boc-hydroxylamine. A similar binding mode is preferred for the group II cations, except that in this case the metal ion is coordinated by the O atom of the deprotonated hydroxylamine group. Copyright © 2013 John Wiley & Sons, Ltd.

  20. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    PubMed

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these plants and were shown to have antagonistic and plant growth promoting abilities. These results clearly suggest the possibility of using endophytic actinomycetes as bioinoculant for plant growth promotion, nutrient mobilization or as biocontrol agent against fungal phytopathogens for sustainable agriculture.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiser, C.; Herdies, L.; McIntosh, L.

    Higher plant mitochondria posses a cyanide-resistant, hydroxamate-sensitive alternative pathway of electron transport that does not conserve energy. Aging of potato tuber slices for 24 hours leads to the development of an alternative pathway capacity. We have shown that a monoclonal antibody raised against the alternative pathway terminal oxidase of Sauromatum guttatum crossreacts with a protein of similar size in aged potato slice mitochondria. This protein was partially purified and characterized by two-dimensional gel electrophoresis, and its relative levels parallel the rise in cyanide-resistant respiration. We are using a putative clone of the S. guttatum alternative oxidase gene to isolate themore » equivalent gene from potato and to examine its expression.« less

  2. Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug.

    PubMed

    Shim, Gayong; Han, Su-Eun; Yu, Yong-Hee; Lee, Sangbin; Lee, Han Young; Kim, Kwangmeyung; Kwon, Ick Chan; Park, Tae Gwan; Kim, Young Bong; Choi, Yong Seok; Kim, Chan-Wha; Oh, Yu-Kyoung

    2011-10-10

    Oligolysine-based cationic lipid derivatives were synthesized for delivery of siRNA, and formulated into cationic liposomes. Among various oligolysine-based lipid derivatives differing in lysine residue number and lipid moiety, trilysinoyl oleylamide (TLO)-based liposomes (TLOL) showed the highest delivery efficiency combined with minimal cytotoxicity. Delivery of siRNA using TLOL silenced target genes both in vitro and in vivo. In green fluorescent protein (GFP)-expressing tumor tissue, a significant reduction of fluorescence was observed after intratumoral administration of siGFP using TLOL compared with control siGL2. Intravenous administration of siMcl1 employing pegylated TLOL (pTLOL) reduced the expression of human Mcl1 protein in KB-xenografted tumor tissue. Despite the reduction in target protein Mcl1 expression following such systemic delivery, tumor growth was only slightly reduced compared to a siGL2-treated control group. To potentiate the anticancer activity of siMcl1, the anticancer drug suberoylanilide hydroxamic acid (SAHA) was additionally encapsulated in pTLOL. After intravenous administration of siMcl1 using SAHA-loaded pTLOL (pSTLOL), a significant reduction in tumor growth was observed compared to that seen in animals treated with free SAHA or siGL2 complexed with pSTLOL. The results indicate that pTLOL could be further developed as a systemic delivery system for synergistic anticancer siRNA and a drug. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Structural characteristics of ScBx genes controlling the biosynthesis of hydroxamic acids in rye (Secale cereale L.).

    PubMed

    Bakera, Beata; Makowska, Bogna; Groszyk, Jolanta; Niziołek, Michał; Orczyk, Wacław; Bolibok-Brągoszewska, Hanna; Hromada-Judycka, Aneta; Rakoczy-Trojanowska, Monika

    2015-08-01

    Benzoxazinoids (BX) are major secondary metabolites of gramineous plants that play an important role in disease resistance and allelopathy. They also have many other unique properties including anti-bacterial and anti-fungal activity, and the ability to reduce alfa-amylase activity. The biosynthesis and modification of BX are controlled by the genes Bx1 ÷ Bx10, GT and glu, and the majority of these Bx genes have been mapped in maize, wheat and rye. However, the genetic basis of BX biosynthesis remains largely uncharacterized apart from some data from maize and wheat. The aim of this study was to isolate, sequence and characterize five genes (ScBx1, ScBx2, ScBx3, ScBx4 and ScBx5) encoding enzymes involved in the synthesis of DIBOA, an important defense compound of rye. Using a modified 3D procedure of BAC library screening, seven BAC clones containing all of the ScBx genes were isolated and sequenced. Bioinformatic analyses of the resulting contigs were used to examine the structure and other features of these genes, including their promoters, introns and 3'UTRs. Comparative analysis showed that the ScBx genes are similar to those of other Poaceae species, especially to the TaBx genes. The polymorphisms present both in the coding sequences and non-coding regions of ScBx in relation to other Bx genes are predicted to have an impact on the expression, structure and properties of the encoded proteins.

  4. The HDAC inhibitor SAHA does not rescue CFTR membrane expression in Cystic Fibrosis.

    PubMed

    Bergougnoux, Anne; Petit, Aurélie; Knabe, Lucie; Bribes, Estelle; Chiron, Raphaël; De Sario, Albertina; Claustres, Mireille; Molinari, Nicolas; Vachier, Isabelle; Taulan-Cadars, Magali; Bourdin, Arnaud

    2017-07-01

    The development of suitable Cystic Fibrosis (CF) models for preclinical bench tests of therapeutic candidates is challenging. Indeed, the validation of molecules to rescue the p.Phe508del-CFTR channel (encoded by the Cystic Fibrosis Transmembrane conductance Regulator gene carrying the p.Phe508del mutation) requires taking into account their overall effects on the epithelium. Suberoylanilide Hydroxamic Acid (SAHA), a histone deacetylase inhibitor (HDACi), was previously shown to be a CFTR corrector via proteostasis modulation in CFTR-deficient immortalized cells. Here, we tested SAHA effects on goblet cell metaplasia using an ex vivo model based on the air-liquid interface (ALI) culture of differentiated airway epithelial cells obtained by nasal scraping from CF patients and healthy controls. Ex vivo epithelium grew successfully in ALI cultures with significant rise in the expression of CFTR and of markers of airway epithelial differentiation compared to monolayer cell culture. SAHA decreased CFTR transcript and protein levels in CF and non-CF epithelia. Whereas SAHA induced lysine hyperacetylation, it did not change histone modifications at the CFTR promoter. SAHA reduced MUC5AC and MUC5B expression and inhibited goblet epithelial cell differentiation. Similar effects were obtained in CF and non-CF epithelia. All the effects were fully reversible within five days from SAHA withdrawal. We conclude that, ex vivo, SAHA modulate the structure of airway epithelia without specific effect on CFTR gene and protein suggesting that HDACi cannot be useful for CF treatment. Copyright © 2017. Published by Elsevier Ltd.

  5. Soluble Axl Is Generated by ADAM10-Dependent Cleavage and Associates with Gas6 in Mouse Serum†

    PubMed Central

    Budagian, Vadim; Bulanova, Elena; Orinska, Zane; Duitman, Erwin; Brandt, Katja; Ludwig, Andreas; Hartmann, Dieter; Lemke, Greg; Saftig, Paul; Bulfone-Paus, Silvia

    2005-01-01

    Axl receptor tyrosine kinase exists as a transmembrane protein and as a soluble molecule. We show that constitutive and phorbol 12-myristate 13-acetate-induced generation of soluble Axl (sAxl) involves the activity of disintegrin-like metalloproteinase 10 (ADAM10). Spontaneous and inducible Axl cleavage was inhibited by the broad-spectrum metalloproteinase inhibitor GM6001 and by hydroxamate GW280264X, which is capable of blocking ADAM10 and ADAM17. Furthermore, murine fibroblasts deficient in ADAM10 expression exhibited a significant reduction in constitutive and inducible Axl shedding, whereas reconstitution of ADAM10 restored sAxl production, suggesting that ADAM10-mediated proteolysis constitutes a major mechanism for sAxl generation in mice. Partially overlapping 14-amino-acid stretch deletions in the membrane-proximal region of Axl dramatically affected sAxl generation, indicating that these regions are involved in regulating the access of the protease to the cleavage site. Importantly, relatively high circulating levels of sAxl are present in mouse sera in a heterocomplex with Axl ligand Gas6. Conversely, two other family members, Tyro3 and Mer, were not detected in mouse sera and conditioned medium. sAxl is constitutively released by murine primary cells such as dendritic and transformed cell lines. Upon immobilization, sAxl promoted cell migration and induced the phosphorylation of Axl and phosphatidylinositol 3-kinase. Thus, ADAM10-mediated generation of sAxl might play an important role in diverse biological processes. PMID:16227584

  6. BCL11B-Mediated Epigenetic Repression Is a Crucial Target for Histone Deacetylase Inhibitors in Cutaneous T-Cell Lymphoma.

    PubMed

    Fu, Wenjing; Yi, Shengguo; Qiu, Lei; Sun, Jingru; Tu, Ping; Wang, Yang

    2017-07-01

    The treatment options for advanced cutaneous T-cell lymphoma (CTCL) are limited because of its unclear pathogenesis. Histone deacetylase (HDAC) inhibitors (HDACis) are recently developed therapeutics approved for refractory CTCL. However, the response rate is relatively low and unpredictable. Previously, we discovered that BCL11B, a key T-cell development regulator, was aberrantly overexpressed in mycosis fungoides, the most common CTCL, as compared with benign inflammatory skin. In this study, we identified a positive correlation between BCL11B expression and sensitivity to HDACi in CTCL lines. BCL11B suppression in BCL11B-high cells induced cell apoptosis by de-repressing apoptotic pathways and showed synergistic effects with suberoylanilide hydroxamic acid (SAHA), a pan-HDACi. Next, we identified the physical interaction and shared downstream genes between BCL11B and HDAC1/2 in CTCL lines. This interaction was essential in the anti-apoptosis effect of BCL11B, and the synergism between BCL11B suppression and HDACi treatment. Further, in clinical samples from 46 mycosis fungoides patients, BCL11B showed increased but varied expression in advanced tumor stage. Analysis of four patients receiving SAHA treatment suggested a positive correlation between BCL11B expression and favorable response to SAHA treatment. In conclusion, BCL11B may serve as a therapeutic target and a useful marker for improving HDACi efficacy in advanced CTCL. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition.

    PubMed

    Huang, Jiansheng; Schriefer, Andrew E; Yang, Wei; Cliften, Paul F; Rudnick, David A

    2014-11-01

    Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration.

  8. Histone deacetylase inhibitors: Potential in cancer therapy.

    PubMed

    Marks, P A; Xu, W-S

    2009-07-01

    The role of histone deacetylases (HDAC) and the potential of these enzymes as therapeutic targets for cancer, neurodegenerative diseases and a number of other disorders is an area of rapidly expanding investigation. There are 18 HDACs in humans. These enzymes are not redundant in function. Eleven of the HDACs are zinc dependent, classified on the basis of homology to yeast HDACs: Class I includes HDACs 1, 2, 3, and 8; Class IIA includes HDACs 4, 5, 7, and 9; Class IIB, HDACs 6 and 10; and Class IV, HDAC 11. Class III HDACs, sirtuins 1-7, have an absolute requirement for NAD(+), are not zinc dependent and generally not inhibited by compounds that inhibit zinc dependent deacetylases. In addition to histones, HDACs have many nonhistone protein substrates which have a role in regulation of gene expression, cell proliferation, cell migration, cell death, and angiogenesis. HDAC inhibitors (HDACi) have been discovered of different chemical structure. HDACi cause accumulation of acetylated forms of proteins which can alter their structure and function. HDACi can induce different phenotypes in various transformed cells, including growth arrest, apoptosis, reactive oxygen species facilitated cell death and mitotic cell death. Normal cells are relatively resistant to HDACi induced cell death. Several HDACi are in various stages of development, including clinical trials as monotherapy and in combination with other anti-cancer drugs and radiation. The first HDACi approved by the FDA for cancer therapy is suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza), approved for treatment of cutaneous T-cell lymphoma. 2009 Wiley-Liss, Inc.

  9. Repression of PDGF-R-α after cellular injury involves TNF-α, formation of a c-Fos-YY1 complex, and negative regulation by HDAC.

    PubMed

    Zhang, Ning; Chan, Cecilia W S; Sanchez-Guerrero, Estella; Khachigian, Levon M

    2012-06-01

    Wound healing is a complex dynamic process involving a variety of cell types, including fibroblasts that express and respond to cytokines and growth factors in the local microenvironment. The mechanisms controlling gene expression after injury at a transcriptional level are poorly understood. Here we show that decreased expression of a key receptor, PDGF-receptor (R)-α, after fibroblast injury is due to the release and paracrine activity of TNF-α. TNF-α inhibits PDGF-R-α expression and this involves formation of a c-Fos-Yin Yang 1 (YY1) complex and histone deacetylase (HDAC) activity. c-Fos, induced by TNF-α, negatively regulates PDGF-R-α transcription. Small interfering RNA (siRNA) targeting c-Fos or the zinc finger transcription factor YY1 inhibits TNF-α suppression of PDGF-R-α expression. Coimmunoprecipitation studies show that TNF-α stimulates the formation of a complex between c-Fos with YY1. Furthermore, chromatin immunoprecipitation (ChIP) analysis reveals the enrichment of c-Fos, YY1, and HDAC-1 at the PDGF-R-α promoter in cells exposed to TNF-α. With suberoylanilide hydroxamic acid (SAHA) and HDAC-1 siRNA, we demonstrate that HDAC mediates TNF-α repression of PDGF-R-α. These findings demonstrate that transcriptional repression of PDGF-R-α after fibroblast injury involves paracrine activity of endogenous TNF-α, the formation of a c-Fos-YY1 complex, and negative regulatory activity by HDAC.

  10. Therapeutic utility and medicinal chemistry of cathepsin C inhibitors.

    PubMed

    Guay, Daniel; Beaulieu, Christian; Percival, M David

    2010-01-01

    The lysosomal cysteine protease cathepsin C (Cat C), also known as dipeptidyl peptidase I, activates a number of granule-associated serine proteases with pro-inflammatory and immune functions by removal of their inhibitory N-terminal dipeptides. Thus, Cat C is a therapeutic target for the treatment of a number of inflammatory and autoimmune diseases. Cathepsin C null mice and humans with Cat C loss of function mutations (Papillon-Lefèvre syndrome) show deficiencies in disease-relevant proteases including neutrophil elastase, cathepsin G, chymases and granzymes and the Cat C mice are protected in a number of disease models. Several methodologies have been recently reported for assessing the effects of Cat C inhibitors on serine protease activities in cellular assays and prolonged treatment of rats with a reversible, selective Cat C inhibitor reduced the activity of three leukocyte serine proteases. Nearly all potent and selective Cat C inhibitors described are based on the preferred dipeptide substrates bearing either irreversible (e.g. diazomethylketone, acyloxymethyl ketone, o-acyl hydroxamic acid and vinyl sulfone) or reversible (e.g. semicarbazide, nitrile and cyanamide) electrophilic warheads. While potent and highly selective, the best inhibitors described to date still have poor stability and/or rodent pharmacokinetics, likely resulting from their peptidic nature. The lack of selective compounds with appropriate rodent pharmacokinetic properties has hampered the assessment of the effects of Cat C inhibitors on the activation of disease-relevant proteases in vivo and the full evaluation of the therapeutic utility of Cat C inhibitors.

  11. Peptide Deformylase Inhibitors as Potent Antimycobacterial Agents▿ †

    PubMed Central

    Teo, Jeanette W. P.; Thayalan, Pamela; Beer, David; Yap, Amelia S. L.; Nanjundappa, Mahesh; Ngew, Xinyi; Duraiswamy, Jeyaraj; Liung, Sarah; Dartois, Veronique; Schreiber, Mark; Hasan, Samiul ; Cynamon, Michael; Ryder, Neil S.; Yang, Xia; Weidmann, Beat; Bracken, Kathryn ; Dick, Thomas; Mukherjee, Kakoli

    2006-01-01

    Peptide deformylase (PDF) catalyzes the hydrolytic removal of the N-terminal formyl group from nascent proteins. This is an essential step in bacterial protein synthesis, making PDF an attractive target for antibacterial drug development. Essentiality of the def gene, encoding PDF from Mycobacterium tuberculosis, was demonstrated through genetic knockout experiments with Mycobacterium bovis BCG. PDF from M. tuberculosis strain H37Rv was cloned, expressed, and purified as an N-terminal histidine-tagged recombinant protein in Escherichia coli. A novel class of PDF inhibitors (PDF-I), the N-alkyl urea hydroxamic acids, were synthesized and evaluated for their activities against the M. tuberculosis PDF enzyme as well as their antimycobacterial effects. Several compounds from the new class had 50% inhibitory concentration (IC50) values of <100 nM. Some of the PDF-I displayed antibacterial activity against M. tuberculosis, including MDR strains with MIC90 values of <1 μM. Pharmacokinetic studies of potential leads showed that the compounds were orally bioavailable. Spontaneous resistance towards these inhibitors arose at a frequency of ≤5 × 10−7 in M. bovis BCG. DNA sequence analysis of several spontaneous PDF-I-resistant mutants revealed that half of the mutants had acquired point mutations in their formyl methyltransferase gene (fmt), which formylated Met-tRNA. The results from this study validate M. tuberculosis PDF as a drug target and suggest that this class of compounds have the potential to be developed as novel antimycobacterial agents. PMID:16966397

  12. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation.

    PubMed

    Gao, Yuesheng; Gao, Zhiyong; Sun, Wei; Yin, Zhigang; Wang, Jianjun; Hu, Yuehua

    2018-02-15

    The efficient separation of scheelite from calcium-bearing minerals, especially calcite, remains a challenge in practice. In this work, a novel reagent scheme incorporating a depressant of sodium hexametaphosphate (SHMP) and a collector mixture of octyl hydroxamic acid (HXMA-8) and sodium oleate (NaOl) was employed in both single and mixed binary mineral flotation, and it proved to be highly effective for the separation. Furthermore, the role of the pH value in the separation was evaluated. Additionally, the mechanism of the selective separation was investigated systemically via zeta potential measurements, fourier transform infrared (FTIR) spectroscopy analysis, X-ray photoelectron (XPS) spectroscopy analysis and crystal chemistry calculations. It turns out that the selective chemisorption of SHMP on calcite (in the form of complexation between H 2 PO 4 - /HPO 4 2- and Ca 2+ ) over scheelite is ascribed to the stronger reactivity and higher density of Ca ions on the commonly exposed surfaces of calcite minerals. The intense adsorption of HXMA-8 on scheelite over calcite due to the match of the OO distances in WO 4 2- of scheelite and CONHOH of HXMA-8 holds the key to the successful separation. We were also interested in warranting the previous claim that NaOl is readily adsorbed on both minerals via chemisorption. Our results provided valuable insights into the application of mixed collectors and an effective depressant for flotation separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Novel histone deacetylase inhibitor N25 exerts anti-tumor effects and induces autophagy in human glioma cells by inhibiting HDAC3

    PubMed Central

    Sun, Xin-Yuan; Qu, Yue; Ni, An-Ran; Wang, Gui-Xiang; Huang, Wei-Bin; Chen, Zhong-Ping; Lv, Zhu-Fen; Zhang, Song; Lindsay, Holly; Zhao, Sibo; Li, Xiao-Nan; Feng, Bing-Hong

    2017-01-01

    N25, a novel histone deacetylase inhibitor, was created through structural modification of suberoylanilide hydroxamic acid. To evaluate the anti-tumor activity of N25 and clarify its molecular mechanism of inducing autophagy in glioma cells, we investigated its in vitro anti-proliferative effect and in vivo anticancer effect. Moreover, we detected whether N25 induces autophagy in glioma cells by transmission electron microscope and analyzed the protein expression level of HDAC3, Tip60, LC3 in glioma samples by western blot. We additionally analyzed the protein expression level of HDAC3, Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment with N25 in glioma cells. Our results showed that the anti-tumor activity of N25 in glioma cells is slightly stronger than SAHA both in vitro and in vivo. We found that N25 induced autophagy, and HDAC3 was significantly elevated and Tip60 and LC3 significantly decreased in glioma samples compared with normal brain tissues. Nevertheless, N25 inhibited HDAC3 and up-regulated the protein expression of Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment of glioma cells with N25. In conclusion, these data suggest that N25 has striking anti-tumor activity in part due to inhibition of HDAC3. Additionally, N25 may induce autophagy through inhibiting HDAC3. PMID:29088860

  14. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13.

    PubMed

    Wen, Hanyu; Qin, Yuan; Zhong, Weilong; Li, Cong; Liu, Xiang; Shen, Yehua

    2016-10-01

    Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications. Copyright © 2016. Published by Elsevier Inc.

  15. Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium

    PubMed Central

    Martinez, Jennifer S.; Carter-Franklin, Jayme N.; Mann, Elizabeth L.; Martin, Jessica D.; Haygood, Margo G.; Butler, Alison

    2003-01-01

    Iron concentrations in the ocean are low enough to limit the growth of marine microorganisms, which raises questions about the molecular mechanisms these organisms use to acquire iron. Marine bacteria have been shown to produce siderophores to facilitate iron(III) uptake. We describe the structures of a suite of amphiphilic siderophores, named the amphibactins, which are produced by a nearshore isolate, γ Proteobacterium, Vibrio sp. R-10. Each amphibactin has the same Tris-hydroxamate-containing peptidic headgroup composed of three ornithine residues and one serine residue but differs in the acyl appendage, which ranges from C-14 to C-18 and varies in the degree of saturation and hydroxylation. Although amphiphilic siderophores are relatively rare, cell-associated amphiphilic siderophores are even less common. We find that the amphibactins are cell-associated siderophores. As a result of the variation in the nature of the fatty acid appendage and the cellular location of the amphibactins, the membrane partitioning of these siderophores was investigated. The physiological mixture of amphibactins had a range of membrane affinities (3.8 × 103 to 8.3 × 102 M−1) that are larger overall than other amphiphilic siderophores, likely accounting for their cell association. This cell association is likely an important defense against siderophore diffusion in the oceanic environment. The phylogenetic affiliation of Vibrio sp. R-10 is discussed, as well as the observed predominance of amphiphilic siderophores produced by marine bacteria in contrast to those produced by terrestrial bacteria. PMID:12651947

  16. Drug forecast - the peptide deformylase inhibitors as antibacterial agents.

    PubMed

    Guay, David R P

    2007-08-01

    The relatively rapid development of microbial resistance after the entry of every new antimicrobial into the marketplace necessitates a constant supply of new agents to maintain effective pharmacotherapy. Despite extensive efforts to identify novel lead compounds from molecular targets, only the peptide deformylase inhibitors (PDIs) have shown any real promise, with some advancing to phase I human trials. Bacterial peptide deformylase, which catalyzes the removal of the N-formyl group from N-terminal methionine following translation, is essential for bacterial protein synthesis, growth, and survival. The majority of PDIs are pseudopeptide hydroxamic acids and two of these (IV BB-83698 and oral NVP LBM-415) entered phase I human trials. However, agents to the present have suffered from major potential liabilities. Their in vitro activity has been limited to gram-positive aerobes and some anaerobes and has been quite modest against the majority of such species (MIC(90) values ranging from 1-8 mg/L). They have exerted bacteriostatic, not bacteriocidal, activity, thus reducing their potential usefulness in the management of serious infections in the immunocompromised. The relative ease with which microorganisms have been able to develop resistance and the multiple available mechanisms of resistance (mutations in fmt, defB, folD genes; AcrAB/TolC efflux pump; overexpression of peptide deformylase) are worrisome. These could portend a short timespan of efficacy after marketing. Despite these current liabilities, further pursuit of more potent and broader spectrum PDIs which are less susceptible to bacterial mechanisms of resistance is still warranted.

  17. SAHA and S116836, a novel tyrosine kinase inhibitor, synergistically induce apoptosis in imatinib-resistant chronic myelogenous leukemia cells

    PubMed Central

    Bu, Qiangui; Cui, Lijing; Li, Juan; Du, Xin; Zou, Waiyi; Ding, Ke; Pan, Jingxuan

    2014-01-01

    Limited treatment options are available for chronic myelogenous leukemia (CML) patients who develop imatinib mesylate (IM) resistance. Here we proposed a novel combination regimen, a co-administration of S116836, a novel small molecule multi-targeted tyrosine kinase inhibitor that was synthesized by rational design, and histone deacetylases inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA), to overcome IM resistance in CML. S116836 at low concentrations used in the present study mildly downregulates auto-tyrosine phosphorylation of Bcr-Abl. SAHA, an FDA-approved HDACi drug, at 1 μM has modest anti-tumor activity in treating CML. However, we found a synergistic interaction between SAHA and S116836 in Bcr-Abl-positive CML cells that were sensitive or resistant to IM. Exposure of KBM5 and KBM5-T315I cells to minimal or non-toxic concentrations of SAHA and S116836 synergistically reduced cell viability and induced cell death. Co-treatment with SAHA and S116838 repressed the expressions of anti-apoptosis proteins, such as Mcl-1 and XIAP, but promoted Bim expression and mitochondrial damage. Of importance, treatment with both drugs significantly reduced cell viability of primary human CML cells, as compared with either agent alone. Taken together, our findings suggest that SAHA exerts synergistically with S116836 at a non-toxic concentration to promote apoptosis in the CML, including those resistant to imatinib or dasatinib. PMID:24759597

  18. HDACi Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury.

    PubMed

    Ruess, Dietrich A; Probst, Moriz; Marjanovic, Goran; Wittel, Uwe A; Hopt, Ulrich T; Keck, Tobias; Bausch, Dirk

    2016-01-01

    Histone deacetylases (HDAC) catalyze N-terminal deacetylation of lysine-residues on histones and multiple nuclear and cytoplasmic proteins. In various animal models, such as trauma/hemorrhagic shock, ischemic stroke or myocardial infarction, HDAC inhibitor (HDACi) application is cyto- and organoprotective and promotes survival. HDACi reduce stress signaling, cell death and inflammation. Hepatic ischemia-reperfusion (I/R) injury during major liver resection or transplantation increases morbidity and mortality. Assuming protective properties, the aim of this study was to investigate the effect of the HDACi VPA and SAHA on warm hepatic I/R. Male Wistar-Kyoto rats (age: 6-8 weeks) were randomized to VPA, SAHA, vehicle control (pre-) treatment or sham-groups and underwent partial no-flow liver ischemia for 90 minutes with subsequent reperfusion for 6, 12, 24 and 60 hours. Injury and regeneration was quantified by serum AST and ALT levels, by macroscopic aspect and (immuno-) histology. HDACi treatment efficiency, impact on MAPK/SAPK-activation and Hippo-YAP signaling was determined by Western blot. Treatment with HDACi significantly enhanced hyperacetylation of Histone H3-K9 during I/R, indicative of adequate treatment efficiency. Liver injury, as measured by macroscopic aspect, serum transaminases and histology, was delayed, but not alleviated in VPA and SAHA treated animals. Importantly, tissue destruction was significantly more pronounced with VPA. SAPK-activation (p38 and JNK) was reduced by VPA and SAHA in the early (6h) reperfusion phase, but augmented later on (JNK, 24h). Regeneration appeared enhanced in SAHA and VPA treated animals and was dependent on Hippo-YAP signaling. VPA and SAHA delay warm hepatic I/R injury at least in part through modulation of SAPK-activation. However, these HDACi fail to exert organoprotective effects, in this setting. For VPA, belated damage is even aggravated.

  19. Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes.

    PubMed

    Wada, Masayoshi; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Nakamura, Kensuke; Hirai, Masami Y; Ohta, Daisaku; Kanaya, Shigehiko

    2012-07-15

    Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of E<10(-5)) are included in 27 clusters. Five clusters are associated with metabolism, containing P450 genes restricted to the Brassica family and predicted to be involved in secondary metabolism. Operon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary metabolic pathways, lipid and fatty-acid metabolism, and the lipid transfer system. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Aspergillus fumigatus SidA is a highly specific ornithine hydroxylase with bound flavin cofactor.

    PubMed

    Chocklett, Samuel W; Sobrado, Pablo

    2010-08-10

    Ferrichrome is a hydroxamate-containing siderophore produced by the pathogenic fungus Aspergillus fumigatus under iron-limiting conditions. This siderophore contains N(5)-hydroxylated l-ornithines essential for iron binding. A. fumigatus siderophore A (Af SidA) catalyzes the flavin- and NADPH-dependent hydroxylation of l-ornithine in ferrichrome biosynthesis. Af SidA was recombinantly expressed and purified as a soluble tetramer and is the first member of this class of flavin monooxygenases to be isolated with a bound flavin cofactor. The enzyme showed typical saturation kinetics with respect to l-ornithine while substrate inhibition was observed at high concentrations of NADPH and NADH. Increasing amounts of hydrogen peroxide were measured as a function of reduced nicotinamide coenzyme concentration, indicating that inhibition was caused by increased uncoupling. Af SidA is highly specific for its amino acid substrate, only hydroxylating l-ornithine. An 8-fold preference in the catalytic efficiency was determined for NADPH compared to NADH. In the absence of substrate, Af SidA can be reduced by NADPH, and a C4a-(hydro)peroxyflavin intermediate is observed. The decay of this intermediate is accelerated by l-ornithine binding. This intermediate was only stabilized by NADPH and not by NADH, suggesting a role for NADP(+) in the stabilization of intermediates in the reaction of Af SidA. NADP(+) is a competitive inhibitor with respect to NADPH, demonstrating that Af SidA forms a ternary complex with NADP(+) and l-ornithine during catalysis. The data suggest that Af SidA likely proceeds by a sequential kinetic mechanism.

  1. A homogeneous cellular histone deacetylase assay suitable for compound profiling and robotic screening.

    PubMed

    Ciossek, Thomas; Julius, Heiko; Wieland, Heike; Maier, Thomas; Beckers, Thomas

    2008-01-01

    Most cellular assays that quantify the efficacy of histone deacetylase (HDAC) inhibitors measure hyperacetylation of core histone proteins H3 and H4. Here we describe a new approach, directly measuring cellular HDAC enzymatic activity using the substrate Boc-K(Ac)-7-amino-4-methylcoumarin (AMC). After penetration into HeLa cervical carcinoma or K562 chronic myeloid leukemia cells, the deacetylated product Boc-K-AMC is formed which, after cell lysis, is cleaved by trypsin, finally releasing the fluorophor AMC. The cellular potency of suberoylanilide hydroxamic acid, LBH589, trichostatin A, and MS275 as well-known HDAC inhibitors was determined using this assay. IC(50) values derived from concentration-effect curves correlated well with EC(50) values derived from a cellomics array scan histone H3 hyperacetylation assay. The cellular HDAC activity assay was adapted to a homogeneous format, fully compatible with robotic screening. Concentration-effect curves generated on a Tecan Genesis Freedom workstation were highly reproducible with a signal-to-noise ratio of 5.7 and a Z' factor of 0.88, indicating a very robust assay. Finally, a HDAC-inhibitor focused library was profiled in a medium-throughput screening campaign. Inhibition of cellular HDAC activity correlated well with cytotoxicity and histone H3 hyperacetylation in HeLa cells and with inhibition of human recombinant HDAC1 in a biochemical assay. Thus, by using Boc-K(Ac)-AMC as a cell-permeable HDAC substrate, the activity of various protein lysine-specific deacetylases including HDAC1-containing complexes is measurable in intact cells in a simple and homogeneous manner.

  2. Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice.

    PubMed

    Liang, De-Yong; Li, XiangQi; Clark, J David

    2013-01-01

    Repeated administration of opioids such as morphine induces persistent behavioral changes including opioid-induced hyperalgesia (OIH), tolerance, and physical dependence. In the current work we explored how the balance of histone acetyltransferase (HAT) versus histone deacetylase (HDAC) might regulate these morphine-induced changes. Nociceptive thresholds, analgesia, and physical dependence were assessed during and for a period of several weeks after morphine exposure. To probe the roles of histone acetylation, the HAT inhibitor curcumin or a selective HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was administered daily to groups of animals. Histone acetylation in spinal cord was assessed by Western blot and immunohistochemistry. Concurrent administration of curcumin with morphine for 4 days significantly reduced development of opioid-induced mechanical allodynia, thermal hyperalgesia, tolerance, and physical dependence. Conversely, the HDAC inhibitor SAHA enhanced these responses. Interestingly, SAHA treatment after the termination of opioid administration sustained these behavioral changes for at least 4 weeks. Histone H3 acetylation in the dorsal horn of the spinal cord was increased after chronic morphine treatment, but H4 acetylation was unchanged. Moreover, we observed a decrease in HDAC activity in the spinal cords of morphine-treated mice while overall HAT activity was unchanged, suggesting a shift toward a state of enhanced histone acetylation. The current study indicates that epigenetic mechanisms play a crucial role in opioid-induced long-lasting neuroplasticity. These results provide new sight into understanding the mechanisms of opioid-induced neuroplasticity and suggest new strategies to limit opioid abuse potential and increase the value of these drugs as analgesics. Copyright © 2013 American Pain Society. All rights reserved.

  3. Studies Using an in Vitro Model Show Evidence of Involvement of Epithelial-Mesenchymal Transition of Human Endometrial Epithelial Cells in Human Embryo Implantation*

    PubMed Central

    Uchida, Hiroshi; Maruyama, Tetsuo; Nishikawa-Uchida, Sayaka; Oda, Hideyuki; Miyazaki, Kaoru; Yamasaki, Akiko; Yoshimura, Yasunori

    2012-01-01

    Human embryo implantation is a critical multistep process consisting of embryo apposition/adhesion, followed by penetration and invasion. Through embryo penetration, the endometrial epithelial cell barrier is disrupted and remodeled by an unknown mechanism. We have previously developed an in vitro model for human embryo implantation employing the human choriocarcinoma cell line JAR and the human endometrial adenocarcinoma cell line Ishikawa. Using this model we have shown that stimulation with ovarian steroid hormones (17β-estradiol and progesterone, E2P4) and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, enhances the attachment and adhesion of JAR spheroids to Ishikawa. In the present study we showed that the attachment and adhesion of JAR spheroids and treatment with E2P4 or SAHA individually induce the epithelial-mesenchymal transition (EMT) in Ishikawa cells. This was evident by up-regulation of N-cadherin and vimentin, a mesenchymal cell marker, and concomitant down-regulation of E-cadherin in Ishikawa cells. Stimulation with E2P4 or SAHA accelerated Ishikawa cell motility, increased JAR spheroid outgrowth, and enhanced the unique redistribution of N-cadherin, which was most prominent in proximity to the adhered spheroids. Moreover, an N-cadherin functional blocking antibody attenuated all events but not JAR spheroid adhesion. These results collectively provide evidence suggesting that E2P4- and implanting embryo-induced EMT of endometrial epithelial cells may play a pivotal role in the subsequent processes of human embryo implantation with functional control of N-cadherin. PMID:22174415

  4. Identification of an epigenetic signature of early mouse liver regeneration that is disrupted by Zn-HDAC inhibition

    PubMed Central

    Huang, Jiansheng; Schriefer, Andrew E; Yang, Wei; Cliften, Paul F; Rudnick, David A

    2014-01-01

    Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration. PMID:25482284

  5. Selective targeting of the repressive transcription factors YY1 and cMyc to disrupt quiescent human immunodeficiency viruses.

    PubMed

    Barton, Kirston; Margolis, David

    2013-02-01

    Quiescent HIV-1 infection of resting CD4(+) T cells is an obstacle to eradication of HIV-1 infection. These reservoirs are maintained, in part, by repressive complexes that bind to the HIV-1 long terminal repeat (LTR) and recruit histone deacetylases (HDACs). cMyc and YY1 are two transcription factors that are recruited as part of well-described, distinct complexes to the HIV-1 LTR and in turn recruit HDACs. In prior studies, depletion of single factors that recruit HDAC1 in various cell lines was sufficient to upregulate LTR activity. We used short hairpin RNAs (shRNAs) to test the effect of targeted disruption of a single transcription factor on quiescent proviruses in T cell lines. In this study, we found that depletion of YY1 significantly increases mRNA and protein expression from the HIV-1 promoter in some contexts, but does not affect HDAC1, HDAC2, HDAC3, or acetylated histone 3 occupancy of the HIV-1 LTR. Conversely, depletion of cMyc or cMyc and YY1 does not significantly alter the level of transcription from the LTR or affect recruitment of HDACs to the HIV-1 LTR. Furthermore, global inhibition of HDACs with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) enhanced the increase in LTR transcription in cells that were depleted of YY1.These findings show that despite prior isolated findings, redundancy in repressors of HIV-1 LTR expression will require selective targeting of multiple restrictive mechanisms to comprehensively induce the escape of quiescent proviruses from latency.

  6. Development of a C3-symmetric benzohydroxamate tripod: Trimetallic complexation with Fe(III), Cr(III) and Al(III)

    NASA Astrophysics Data System (ADS)

    Baral, Minati; Gupta, Amit; Kanungo, B. K.

    2016-06-01

    The design, synthesis and physicochemical characterization of a C3-symmetry Benzene-1,3,5-tricarbonylhydroxamate tripod, noted here as BTHA, are described. The chelator was built from a benzene as an anchor, symmetrically extended by three hydroxamate as ligating moieties, each bearing O, O donor sites. A combination of absorption spectrophotometry, potentiometry and theoretical investigations are used to explore the complexation behavior of the ligand with some trivalent metal ions: Fe(III), Cr(III), and Al(III). Three protonation constants were calculated for the ligand in a pH range of 2-11 in a highly aqueous medium (9:1 H2O: DMSO). A high rigidity in the molecular structure restricts the formation of 1:1 (M/L) metal encapsulation but shows a high binding efficiency for a 3:1 metal ligand stoichiometry giving formation constant (in β unit) 28.73, 26.13 and 19.69 for [M3L]; Mdbnd Fe(III), Al(III) and Cr(III) respectively, and may be considered as an efficient Fe-carrier. The spectrophotometric study reveals of interesting electronic transitions occurred during the complexation. BTHA exhibits a peak at 238 nm in acidic pH and with the increase of pH, a new peak appeared at 270 nm. A substantial shifting in both of the peaks in presence of the metal ions implicates a s coordination between ligand and metal ions. Moreover, complexation of BTHA with iron shows three distinct colors, violet, reddish orange and yellow in different pH, enables the ligand to be considered for the use as colorimetric sensor.

  7. Histone deacetylase inhibitors containing a benzamide functional group and a pyridyl cap are preferentially effective human immunodeficiency virus-1 latency-reversing agents in primary resting CD4+ T cells

    PubMed Central

    Gélinas, Céline

    2017-01-01

    Antiretroviral therapy (ART) can control human immunodeficiency virus-1 (HIV-1) replication in infected individuals. Unfortunately, patients remain persistently infected owing to the establishment of latent infection requiring that ART be maintained indefinitely. One strategy being pursued involves the development of latency-reversing agents (LRAs) to eliminate the latent arm of the infection. One class of molecules that has been tested for LRA activity is the epigenetic modulating compounds histone deacetylases inhibitors (HDACis). Previously, initial screening of these molecules typically commenced using established cell models of viral latency, and although certain drugs such as the HDACi suberoylanilide hydroxamic acid demonstrated strong activity in these models, it did not translate to comparable activity with patient samples. Here we developed a primary cell model of viral latency using primary resting CD4+ T cells infected with Vpx-complemented HIV-1 and found that the activation profile using previously described LRAs mimicked that obtained with patient samples. This primary cell model was used to evaluate 94 epigenetic compounds. Not surprisingly, HDACis were found to be the strongest activators. However, within the HDACi class, the most active LRAs with the least pronounced toxicity contained a benzamide functional moiety with a pyridyl cap group, as exemplified by the HDACi chidamide. The results indicate that HDACis with a benzamide moiety and pyridyl cap group should be considered for further drug development in the pursuit of a successful viral clearance strategy. PMID:28113052

  8. Tolerogenic Dendritic Cells Generated by In Vitro Treatment With SAHA Are Not Stable In Vivo.

    PubMed

    Thewissen, Kristof; Broux, Bieke; Hendriks, Jerome J A; Vanhees, Mandy; Stinissen, Piet; Slaets, Helena; Hellings, Niels

    2016-01-01

    The aim of this study is to examine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can generate dendritic cells (DCs) with a stable tolerogenic phenotype to counteract autoimmune responses in an animal model of multiple sclerosis. We investigated if the tolerogenic potency of DCs could be increased by continuous treatment during in vitro differentiation toward DCs compared to standard 24-h in vitro treatment of already terminally differentiated DCs. We show that in vitro treatment with SAHA reduces the generation of new CD11c(+) DCs out of mouse bone marrow. SAHA-generated DCs show reduced antigen-presenting function as evidenced by a reduction in myelin endocytosis, a decreased MHC II expression, and a failure to upregulate costimulatory molecules upon LPS challenge. In addition, SAHA-generated DCs display a reduction in proinflammatory cytokines and molecules involved in apoptosis induction, inflammatory migration, and TLR signaling, and they are less immunostimulatory compared to untreated DCs. We demonstrated that the underlying mechanism involves a diminished STAT1 phosphorylation and was independent of STAT6 activation. Although in vitro results were promising, SAHA-generated DCs were not able to alleviate the development of experimental autoimmune encephalomyelitis in mice. In vitro washout experiments demonstrated that the tolerogenic phenotype of SAHA-treated DCs is reversible. Taken together, while SAHA potently boosts tolerogenic properties in DCs during the differentiation process in vitro, SAHA-generated DCs were unable to reduce autoimmunity in vivo. Our results imply that caution needs to be taken when developing DC-based therapies to induce tolerance in the context of autoimmune disease.

  9. Impact of novel histone deacetylase inhibitors, CHAP31 and FR901228 (FK228), on adenovirus-mediated transgene expression.

    PubMed

    Taura, Kojiro; Yamamoto, Yuzo; Nakajima, Akio; Hata, Koichiro; Uchinami, Hiroshi; Yonezawa, Kei; Hatano, Etsuro; Nishino, Norikazu; Yamaoka, Yoshio

    2004-05-01

    Histone deacetylase inhibitors (HDIs) are known to enhance adenovirus (Ad)-mediated transgene expression. Recently, novel HDIs, including cyclic hydroxamic-acid-containing peptide 31 (CHAP31) and FR901228 (FK228), have been developed. The effects of these two novel HDIs on Ad-transduced or endogenous gene expression were investigated. Acetylation of core histones and the expression of the coxsackie and adenovirus receptor (CAR) in HDI-treated cells were examined using Western blot and a quantitative reverse transcription polymerase chain reaction (TaqMan RT-PCR), respectively. Their in vivo effect on adenoviral gene expression was investigated in BALB/c mice. Both compounds enhanced and prolonged Ad-mediated beta-galactosidase expression more effectively than did trichostatin A, a classic HDI. The same effect was observed in Ad-transduced heat shock protein 72 (HSP72), but not in hyperthermia-induced endogenous expression of HSP72, suggesting that the effect is specific for transduced gene expression. Hyperacetylation of core histones induced by HDIs was considered responsible for the augmentative effects of gene expression. Intravenous administration of either CHAP31 or FR901228 enhanced beta-galactosidase expression in mice infected with AdLacZ. CHAP31 and FR901228 amplified Ad-mediated transgene expression. The enhancement of transgene expression by HDIs may result in fewer vector doses for necessary gene expression, helping to alleviate disadvantages caused by Ad vectors. This could be a useful tool in overcoming current limitations of gene therapy using adenovirus vectors. Copyright 2004 John Wiley & Sons, Ltd.

  10. Lysine Acetylation in Sexual Stage Malaria Parasites Is a Target for Antimalarial Small Molecules

    PubMed Central

    Trenholme, Katharine; Marek, Linda; Duffy, Sandra; Pradel, Gabriele; Fisher, Gillian; Hansen, Finn K.; Skinner-Adams, Tina S.; Butterworth, Alice; Ngwa, Che Julius; Moecking, Jonas; Goodman, Christopher D.; McFadden, Geoffrey I.; Sumanadasa, Subathdrage D. M.; Fairlie, David P.; Avery, Vicky M.

    2014-01-01

    Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology. PMID:24733477

  11. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR

    PubMed Central

    Thorn, Kevin A.; Cox, Larry G.

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected. PMID:26556054

  12. Targeting the GPI biosynthetic pathway.

    PubMed

    Yadav, Usha; Khan, Mohd Ashraf

    2018-02-27

    The GPI (Glycosylphosphatidylinositol) biosynthetic pathway is a multistep conserved pathway in eukaryotes that culminates in the generation of GPI glycolipid which in turn anchors many proteins (GPI-APs) to the cell surface. In spite of the overall conservation of the pathway, there still exist subtle differences in the GPI pathway of mammals and other eukaryotes which holds a great promise so far as the development of drugs/inhibitors against specific targets in the GPI pathway of pathogens is concerned. Many of the GPI structures and their anchored proteins in pathogenic protozoans and fungi act as pathogenicity factors. Notable examples include GPI-anchored variant surface glycoprotein (VSG) in Trypanosoma brucei, GPI-anchored merozoite surface protein 1 (MSP1) and MSP2 in Plasmodium falciparum, protein-free GPI related molecules like lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) in Leishmania spp., GPI-anchored Gal/GalNAc lectin and proteophosphoglycans in Entamoeba histolytica or the GPI-anchored mannoproteins in pathogenic fungi like Candida albicans. Research in this active area has already yielded encouraging results in Trypanosoma brucei by the development of parasite-specific inhibitors of GlcNCONH 2 -β-PI, GlcNCONH 2 -(2-O-octyl)-PI and salicylic hydroxamic acid (SHAM) targeting trypanosomal GlcNAc-PI de-N-acetylase as well as the development of antifungal inhibitors like BIQ/E1210/gepinacin/G365/G884 and YW3548/M743/M720 targeting the GPI specific fungal inositol acyltransferase (Gwt1) and the phosphoethanolamine transferase-I (Mcd4), respectively. These confirm the fact that the GPI pathway continues to be the focus of researchers, given its implications for the betterment of human life.

  13. Structures of the Peptidoglycan N-Acetylglucosamine Deacetylase Bc1974 and Its Complexes with Zinc Metalloenzyme Inhibitors.

    PubMed

    Giastas, Petros; Andreou, Athena; Papakyriakou, Athanasios; Koutsioulis, Dimitris; Balomenou, Stavroula; Tzartos, Socrates J; Bouriotis, Vassilis; Eliopoulos, Elias E

    2018-02-06

    The cell wall peptidoglycan is recognized as a primary target of the innate immune system, and usually its disintegration results in bacterial lysis. Bacillus cereus, a close relative of the highly virulent Bacillus anthracis, contains 10 polysaccharide deacetylases. Among these, the peptidoglycan N-acetylglucosamine deacetylase Bc1974 is the highest homologue to the Bacillus anthracis Ba1977 that is required for full virulence and is involved in resistance to the host's lysozyme. These metalloenzymes belong to the carbohydrate esterase family 4 (CE4) and are attractive targets for the development of new anti-infective agents. Herein we report the first X-ray crystal structures of the NodB domain of Bc1974, the conserved catalytic core of CE4s, in the unliganded form and in complex with four known metalloenzyme inhibitors and two amino acid hydroxamates that target the active site metal. These structures revealed the presence of two conformational states of a catalytic loop known as motif-4 (MT4), which were not observed previously for peptidoglycan deacetylases, but were recently shown in the structure of a Vibrio clolerae chitin deacetylase. By employing molecular docking of a substrate model, we describe a catalytic mechanism that probably involves initial binding of the substrate in a receptive, more open state of MT4 and optimal catalytic activity in the closed state of MT4, consistent with the previous observations. The ligand-bound structures presented here, in addition to the five Bc1974 inhibitors identified, provide a valuable basis for the design of antibacterial agents that target the peptidoglycan deacetylase Ba1977.

  14. Synthesis and antimalarial evaluation of prodrugs of novel fosmidomycin analogues.

    PubMed

    Faísca Phillips, Ana Maria; Nogueira, Fátima; Murtinheira, Fernanda; Barros, Maria Teresa

    2015-01-01

    The continuous development of drug resistance by Plasmodium falciparum, the agent responsible for the most severe forms of malaria, creates the need for the development of novel drugs to fight this disease. Fosmidomycin is an effective antimalarial and potent antibiotic, known to act by inhibiting the enzyme 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), essential for the synthesis of isoprenoids in eubacteria and plasmodia, but not in humans. In this study, novel constrained cyclic prodrug analogues of fosmidomycin were synthesized. One, in which the hydroxamate function is incorporated into a six-membered ring, was found have higher antimalarial activity than fosmidomycin against the chloroquine and mefloquine resistant P. falciparum Dd2 strain. In addition, it showed very low cytotoxicity against cultured human cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed tomore » mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.« less

  16. The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence.

    PubMed

    Hissen, Anna H T; Wan, Adrian N C; Warwas, Mark L; Pinto, Linda J; Moore, Margo M

    2005-09-01

    Aspergillus fumigatus is the leading cause of invasive mold infection and is a serious problem in immunocompromised populations worldwide. We have previously shown that survival of A. fumigatus in serum may be related to secretion of siderophores. In this study, we identified and characterized the sidA gene of A. fumigatus, which encodes l-ornithine N(5)-oxygenase, the first committed step in hydroxamate siderophore biosynthesis. A. fumigatus sidA codes for a protein of 501 amino acids with significant homology to other fungal l-ornithine N(5)-oxygenases. A stable DeltasidA strain was created by deletion of A. fumigatus sidA. This strain was unable to synthesize the siderophores N',N",N'''-triacetylfusarinine C (TAF) and ferricrocin. Growth of the DeltasidA strain was the same as that of the wild type in rich media; however, the DeltasidA strain was unable to grow in low-iron defined media or media containing 10% human serum unless supplemented with TAF or ferricrocin. No significant differences in ferric reduction activities were observed between the parental strain and the DeltasidA strain, indicating that blocking siderophore secretion did not result in upregulation of this pathway. Unlike the parental strain, the DeltasidA strain was unable to remove iron from human transferrin. A rescued strain (DeltasidA + sidA) was constructed; it produced siderophores and had the same growth as the wild type on iron-limited media. Unlike the wild-type and rescued strains, the DeltasidA strain was avirulent in a mouse model of invasive aspergillosis, indicating that sidA is necessary for A. fumigatus virulence.

  17. Concentration of benzoxazinoids in roots of field-grown wheat (Triticum aestivum L.) varieties.

    PubMed

    Stochmal, Anna; Kus, Jan; Martyniuk, Stefan; Oleszek, Wieslaw

    2006-02-22

    Benzoxazinones are naturally occurring secondary metabolites of some Gramineae plants, responsible for their resistance to some pathogenic fungi and for their allelopathic action. Six varieties of winter wheat grown in fields under organic or conventional systems and 11 old accessions were tested for two consecutive seasons and three plant development stages for the concentration in their roots of cyclic hydroxamic acids and their degradation products. This is the first report of six benzoxazinones analyzed in plants grown in the field. An analytical technique employing LC-DAD was used for determination. It was shown that 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, its degradation product 6-methoxybenzoxazolin-2-one, and the lactam 2-hydroxy-7-methoxy-1,4-benzoxazin-2-one were predominant compounds in all tested samples. Their concentrations significantly differed with plant development stage and season, but no significant differences were found between varieties and between plant cultivation systems. The concentrations of 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its degradation product benzoxazolin-2-one (BOA) were much lower, ranging from 60 to 430 mg/kg of dry matter, depending on accession, stage of development, and season. There was no significant difference found between plants grown in different cultivation systems, but there were significant differences between old and new varieties; concentrations of DIBOA and its derivatives were significantly lower in old accessions. It was concluded that the concentrations of DIBOA and BOA, which are precursors of highly fungicidal 2-aminophenol, 2-amino-3H-phenoxazin-3-one, and 2-acetylamino-3H-phenoxazin-3-one, are theoretically high enough to protect plants against some soilborne pathogens.

  18. Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules.

    PubMed

    Trenholme, Katharine; Marek, Linda; Duffy, Sandra; Pradel, Gabriele; Fisher, Gillian; Hansen, Finn K; Skinner-Adams, Tina S; Butterworth, Alice; Ngwa, Che Julius; Moecking, Jonas; Goodman, Christopher D; McFadden, Geoffrey I; Sumanadasa, Subathdrage D M; Fairlie, David P; Avery, Vicky M; Kurz, Thomas; Andrews, Katherine T

    2014-07-01

    Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    PubMed

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Skinner-Adams, Tina; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  20. Combined treatment with Ad-hTRAIL and DTIC or SAHA is associated with increased mitochondrial-mediated apoptosis in human melanoma cell lines.

    PubMed

    Lillehammer, Trine; Engesaeter, Birgit O; Prasmickaite, Lina; Maelandsmo, Gunhild M; Fodstad, Oystein; Engebraaten, Olav

    2007-06-01

    Currently, dacarbazine (DTIC) is the only approved systemic treatment for metastatic malignant melanoma. However, the modest treatment effect encourages studies on novel therapeutic molecules, delivery systems and combination therapies. Full-length TRAIL, delivered from an adenoviral vector (Ad-hTRAIL), was studied in combination with DTIC or the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in human melanoma cell lines. The cytotoxic potential of the combination treatments was assessed by cell viability measurements and CalcuSyn analysis. Involvement of apoptosis was analyzed by TUNEL staining, mitochondrial membrane potential measurements, and activation and expression levels of caspases and other mediators of apoptosis. Ad-hTRAIL in combination with DTIC or SAHA resulted in additive or synergistic growth inhibition compared to each treatment used as single agent. Both combinations augmented apoptosis, which was mediated through the death receptor (DR) pathway by enhanced activation of caspase-8, and through increased loss of mitochondrial integrity. Provoked cleavage of Bid, which bridges the extrinsic and intrinsic apoptosis pathways, and downregulation of the anti-apoptotic mediators Bcl-X(L), Mcl-1 and XIAP (but not Bcl-2) were critical contributing factors. Increased levels of DR4 and DR5 were not a common underlying mechanism as DTIC did not affect the levels of either of the receptors. However, SAHA-induced expression of DR4 may have reduced the TRAIL resistance in the SKMEL-28 cell line. Administration of Ad-hTRAIL in combination with DTIC or SAHA enhances apoptosis in human melanoma cell lines, and suggests that the therapeutic potential of such treatment strategies should be further evaluated for possible clinical use.

  1. Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors.

    PubMed

    Dowling, Daniel P; Gantt, Stephanie L; Gattis, Samuel G; Fierke, Carol A; Christianson, David W

    2008-12-23

    Metal-dependent histone deacetylases (HDACs) require Zn(2+) or Fe(2+) to regulate the acetylation of lysine residues in histones and other proteins in eukaryotic cells. Isozyme HDAC8 is perhaps the archetypical member of the class I HDAC family and serves as a paradigm for studying structure-function relationships. Here, we report the structures of HDAC8 complexes with trichostatin A and 3-(1-methyl-4-phenylacetyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamide (APHA) in a new crystal form. The structure of the APHA complex reveals that the hydroxamate CO group accepts a hydrogen bond from Y306 but does not coordinate to Zn(2+) with favorable geometry, perhaps due to the constraints of its extended pi system. Additionally, since APHA binds to only two of the three protein molecules in the asymmetric unit of this complex, the structure of the third monomer represents the first structure of HDAC8 in the unliganded state. Comparison of unliganded and liganded structures illustrates ligand-induced conformational changes in the L2 loop that likely accompany substrate binding and catalysis. Furthermore, these structures, along with those of the D101N, D101E, D101A, and D101L variants, support the proposal that D101 is critical for the function of the L2 loop. However, amino acid substitutions for D101 can also trigger conformational changes of Y111 and W141 that perturb the substrate binding site. Finally, the structure of H143A HDAC8 complexed with an intact acetylated tetrapeptide substrate molecule confirms the importance of D101 for substrate binding and reveals how Y306 and the active site zinc ion together bind and activate the scissile amide linkage of acetyllysine.

  2. Probing the carbonyl functionality of a petroleum resin and asphaltene through oximation and schiff base formation in conjunction with N-15 NMR

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.

  3. RAD51 potentiates synergistic effects of chemotherapy with PCI-24781 and cis-diamminedichloroplatinum on gastric cancer

    PubMed Central

    He, Wei-Ling; Li, Yu-Huang; Hou, Wei-Jian; Ke, Zun-Fu; Chen, Xin-Lin; Lu, Li-Ya; Cai, Shi-Rong; Song, Wu; Zhang, Chang-Hua; He, Yu-Long

    2014-01-01

    AIM: To explore the efficacy of PCI-24781, a broad-spectrum, hydroxamic acid-derived histone deacetylase inhibitor, in the treatment of gastric cancer (GC). METHODS: With or without treatment of PCI-24781 and/or cis-diamminedichloroplatinum (CDDP), GC cell lines were subjected to functional analysis, including cell growth, apoptosis and clonogenic assays. Chromatin immunoprecipitation and luciferase reporter assays were used to determine the interacting molecules and the activity of the enzyme. An in vivo study was carried out in GC xenograft mice. Cell culture-based assays were represented as mean ± SD. ANOVA tests were used to assess differences across groups. All pairwise comparisons between tumor weights among treatment groups were made using the Tukey-Kramer method for multiple comparison adjustment to control experimental-wise type I error rates. Significance was set at P < 0.05. RESULTS: PCI-24781 significantly reduced the growth of the GC cells, enhanced cell apoptosis and suppressed clonogenicity, and these effects synergized with the effects of CDDP. PCI-24781 modulated the cell cycle and significantly reduced the expression of RAD51, which is related to homologous recombination. Depletion of RAD51 augmented the biological functions of PCI-24781, CDDP and the combination treatment, whereas overexpressing RAD51 had the opposite effects. Increased binding of the transcription suppressor E2F4 on the RAD51 promoter appeared to play a major role in these processes. Furthermore, significant suppression of tumor growth and weight in vivo was obtained following PCI-24781 treatment, which synergized with the anticancer effect of CDDP. CONCLUSION: These data suggest that RAD51 potentiates the synergistic effects of chemotherapy with PCI-24781 and CDDP on GC. PMID:25110436

  4. RuvBL2 Is Involved in Histone Deacetylase Inhibitor PCI-24781-Induced Cell Death in SK-N-DZ Neuroblastoma Cells

    PubMed Central

    Zhan, Qinglei; Tsai, Sauna; Lu, Yonghai; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming

    2013-01-01

    Neuroblastoma is the second most common solid tumor diagnosed during infancy. The survival rate among children with high-risk neuroblastoma is less than 40%, highlighting the urgent needs for new treatment strategies. PCI-24781 is a novel hydroxamic acid-based histone deacetylase (HDAC) inhibitor that has high efficacy and safety for cancer treatment. However, the underlying mechanisms of PCI-24781 are not clearly elucidated in neuroblastoma cells. In the present study, we demonstrated that PCI-24781 treatment significantly inhibited tumor growth at very low doses in neuroblastoma cells SK-N-DZ, not in normal cell line HS-68. However, PCI-24781 caused the accumulation of acetylated histone H3 both in SK-N-DZ and HS-68 cell line. Treatment of SK-N-DZ with PCI-24781 also induced cell cycle arrest in G2/M phase and activated apoptosis signaling pathways via the up-regulation of DR4, p21, p53 and caspase 3. Further proteomic analysis revealed differential protein expression profiles between non-treated and PCI-24781 treated SK-N-DZ cells. Totally 42 differentially expressed proteins were identified by MALDI-TOF MS system. Western blotting confirmed the expression level of five candidate proteins including prohibitin, hHR23a, RuvBL2, TRAP1 and PDCD6IP. Selective knockdown of RuvBL2 rescued cells from PCI-24781-induced cell death, implying that RuvBL2 might play an important role in anti-tumor activity of PCI-24781 in SK-N-DZ cells. The present results provide a new insight into the potential mechanism of PCI-24781 in SK-N-DZ cell line. PMID:23977108

  5. Enzymatic characterization of transglutaminase from Streptomyces mobaraensis DSM 40587 in high salt and effect of enzymatic cross-linking of yak milk proteins on functional properties of stirred yogurt.

    PubMed

    Zhang, L; Zhang, L; Yi, H; Du, M; Ma, C; Han, X; Feng, Z; Jiao, Y; Zhang, Y

    2012-07-01

    Streptomyces transglutaminase (TGase) purified from high-salt medium was characterized and applied into yak yogurts. The purified enzyme presented a Michaelis constant of 40.47 mmol and a maximum velocity of 44.44 U/mg of protein for N-carboxybenzoyl-l-glutaminyl-glycine in the hydroxamate procedure. The purified TGase exhibited optimum activity at 55°C and pH 6.0. The enzyme was not stable above 50°C and was stable within a pH range of 5.0 to 10.0 at 4°C for 12h and pH 5.0 to 9.0 at 37°C for 30 min. The TGase activity was not affected by Ca(2+), K(+), Ba(2+), or Na(+), but slightly inhibited by Fe(2+), Mg(2+), and Mn(2+), and strongly by Cu(2+) and Zn(2+). To explore yak milk products, it was used to produce yogurt and TGase was used. It was found that TGase-catalyzed cross-linking was effective in improving functional properties of stirred yak yogurt. Treated yogurt produced a strong acid gel, higher consistency, cohesiveness, index of viscosity, and creamier mouth feel than the untreated product. Furthermore, yak yogurt treated with TGase presented lower wet yak hair or sweat odor, or both. Therefore, TGase can be used to pave the way for exploration of novel yak products to overcome the issues of peculiar wet yak hair or sweat odor, or both. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy.

    PubMed

    Xie, Min; Kong, Yongli; Tan, Wei; May, Herman; Battiprolu, Pavan K; Pedrozo, Zully; Wang, Zhao V; Morales, Cyndi; Luo, Xiang; Cho, Geoffrey; Jiang, Nan; Jessen, Michael E; Warner, John J; Lavandero, Sergio; Gillette, Thomas G; Turer, Aslan T; Hill, Joseph A

    2014-03-11

    Reperfusion accounts for a substantial fraction of the myocardial injury occurring with ischemic heart disease. Yet, no standard therapies are available targeting reperfusion injury. Here, we tested the hypothesis that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor approved for cancer treatment by the US Food and Drug Administration, will blunt reperfusion injury. Twenty-one rabbits were randomly assigned to 3 groups: (1) vehicle control, (2) SAHA pretreatment (1 day before and at surgery), and (3) SAHA treatment at the time of reperfusion only. Each arm was subjected to ischemia/reperfusion surgery (30 minutes coronary ligation, 24 hours reperfusion). In addition, cultured neonatal and adult rat ventricular cardiomyocytes were subjected to simulated ischemia/reperfusion to probe mechanism. SAHA reduced infarct size and partially rescued systolic function when administered either before surgery (pretreatment) or solely at the time of reperfusion. SAHA plasma concentrations were similar to those achieved in patients with cancer. In the infarct border zone, SAHA increased autophagic flux, assayed in both rabbit myocardium and in mice harboring an RFP-GFP-LC3 transgene. In cultured myocytes subjected to simulated ischemia/reperfusion, SAHA pretreatment reduced cell death by 40%. This reduction in cell death correlated with increased autophagic activity in SAHA-treated cells. RNAi-mediated knockdown of ATG7 and ATG5, essential autophagy proteins, abolished SAHA's cardioprotective effects. The US Food and Drug Administration-approved anticancer histone deacetylase inhibitor, SAHA, reduces myocardial infarct size in a large animal model, even when delivered in the clinically relevant context of reperfusion. The cardioprotective effects of SAHA during ischemia/reperfusion occur, at least in part, through the induction of autophagic flux.

  7. Evaluation of 6-([18F] fluoroacetamido)-1-hexanoic-anilide (18F-FAHA) as imaging probe in tumor xenograft mice model

    NASA Astrophysics Data System (ADS)

    Li, Fiona; Cho, Sung Ju; Yu, Lihai; Hudson, Robert H. E.; Luyt, Leonard G.; Pin, Christopher L.; Kovacs, Michael S.; Koropatnick, James; Lee, Ting-Yim

    2016-03-01

    Alteration in genetic expression is as important as gene mutation in cancer development and proliferation. Epigenetic changes affect gene expression without altering the DNA sequence. Histone deacetylase (HDAC), an enzyme facilitating histone remodelling, can lead to silencing of tumor suppressor genes making HDAC inhibitors viable anticancer drugs against tumors with increased activity of the enzyme. In this study we evaluated 18F-fluroacetamido-1-hexanoicanilide (18F-FAHA), an artificial HDAC substrate, as imaging probe of HDAC activity of human tumor xenografts in immunocompromised host mice. Human breast and melanoma cell lines, MDA-MB-468 and MDA-MB-435 respectively, known to overexpress HDAC activity were xenografted into immunocompromised mice and HDAC activity was imaged using 18F-FAHA. The melanoma group was treated with saline, SAHA (suberoylanilide hydroxamic acid, an approved anticancer HDAC inhibitor) in DMSO, or DMSO as positive control. Tracer kinetic modelling and SUV were used to estimate HDAC activity from dynamic PET data. Both breast tumor and melanoma group showed great variability in binding rate constant (BRC) of 18F-FAHA suggesting highly variable inter- and intra-tumoral HDAC activity. For the SAHA treated melanoma group, HDAC activity, as monitored by BRC of 18F-FAHA, decreased more than the two (positive and negative) control groups but not tumor growth. Our preliminary study showed that noninvasive PET imaging with 18F-FAHA has the potential to identify patients for whom treatment with HDAC inhibitors are appropriate, to assess the effectiveness of that treatment as an early marker of target reduction, and also eliminate the need for invasive tissue biopsy to individualize treatment.

  8. Triggering autophagic cell death with a di-manganese(II) developmental therapeutic.

    PubMed

    Slator, Creina; Molphy, Zara; McKee, Vickie; Kellett, Andrew

    2017-08-01

    There is an unmet need for novel metal-based chemotherapeutics with alternative modes of action compared to clinical agents such as cisplatin and metallo-bleomycin. Recent attention in this field has focused on designing intracellular ROS-mediators as powerful cytotoxins of human cancers and identifying potentially unique toxic mechanisms underpinning their utility. Herein, we report the developmental di-manganese(II) therapeutic [Mn 2 (μ-oda)(phen) 4 (H 2 O) 2 ][Mn 2 (μ-oda)(phen) 4 (oda) 2 ]·4H 2 O (Mn-Oda) induces autophagy-promoted apoptosis in human ovarian cancer cells (SKOV3). The complex was initially identified to intercalate DNA by topoisomerase I unwinding and circular dichroism spectroscopy. Intracellular DNA damage, detected by γH2AX and the COMET assay, however, is not linked to direct Mn-Oda free radical generation, but is instead mediated through the promotion of intracellular reactive oxygen species (ROS) leading to autophagic vacuole formation and downstream nuclear degradation. To elucidate the cytotoxic profile of Mn-Oda, a wide range of biomarkers specific to apoptosis and autophagy including caspase release, mitochondrial membrane integrity, fluorogenic probe localisation, and cell cycle analysis were employed. Through these techniques, the activity of Mn-Oda was compared directly to i.) the pro-apoptotic clinical anticancer drug doxorubicin, ii.) the multimodal histone deacetylase inhibitor suberoyanilide hydroxamic acid, and iii.) the autophagy inducer rapamycin. In conjunction with ROS-specific trapping agents and established inhibitors of autophagy, we have identified autophagy-induction linked to mitochondrial superoxide production, with confocal image analysis of SKOV3 cells further supporting autophagosome formation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Histone deacetylase inhibitor SAHA mediates mast cell death and epigenetic silencing of constitutively active D816V KIT in systemic mastocytosis.

    PubMed

    Lyberg, Katarina; Ali, Hani Abdulkadir; Grootens, Jennine; Kjellander, Matilda; Tirfing, Malin; Arock, Michel; Hägglund, Hans; Nilsson, Gunnar; Ungerstedt, Johanna

    2017-02-07

    Systemic mastocytosis (SM) is a clonal bone marrow disorder, where therapeutical options are limited. Over 90% of the patients carry the D816V point mutation in the KIT receptor that renders this receptor constitutively active. We assessed the sensitivity of primary mast cells (MC) and mast cell lines HMC1.2 (D816V mutated), ROSA (KIT WT) and ROSA (KIT D816V) cells to histone deacetylase inhibitor (HDACi) treatment. We found that of four HDACi, suberoyl anilide hydroxamic acid (SAHA) was the most effective in killing mutated MC. SAHA downregulated KIT, followed by major MC apoptosis. Primary SM patient MC cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas primary MC from healthy subjects were less affected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive SM, with almost 100% cell death among MC from the mast cell leukemia patient. Additionally, ROSA (KIT D816V) was more affected by HDACi than ROSA (KIT WT) cells. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/H3 decreased significantly in the KIT region. This epigenetic silencing was seen only in the KIT region and not in control genes upstream and downstream of KIT, indicating that the downregulation of KIT is exerted by specific epigenetic silencing. In conclusion, KIT D816V mutation sensitized MC to HDACi mediated killing, and SAHA may be of value as specific treatment for SM, although the specific mechanism of action requires further investigation.

  10. Histone deacetylase inhibitor SAHA mediates mast cell death and epigenetic silencing of constitutively active D816V KIT in systemic mastocytosis

    PubMed Central

    Lyberg, Katarina; Ali, Hani Abdulkadir; Grootens, Jennine; Kjellander, Matilda; Tirfing, Malin; Arock, Michel; Hägglund, Hans

    2017-01-01

    Systemic mastocytosis (SM) is a clonal bone marrow disorder, where therapeutical options are limited. Over 90% of the patients carry the D816V point mutation in the KIT receptor that renders this receptor constitutively active. We assessed the sensitivity of primary mast cells (MC) and mast cell lines HMC1.2 (D816V mutated), ROSA (KIT WT) and ROSA (KIT D816V) cells to histone deacetylase inhibitor (HDACi) treatment. We found that of four HDACi, suberoyl anilide hydroxamic acid (SAHA) was the most effective in killing mutated MC. SAHA downregulated KIT, followed by major MC apoptosis. Primary SM patient MC cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas primary MC from healthy subjects were less affected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive SM, with almost 100% cell death among MC from the mast cell leukemia patient. Additionally, ROSA (KIT D816V) was more affected by HDACi than ROSA (KIT WT) cells. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/H3 decreased significantly in the KIT region. This epigenetic silencing was seen only in the KIT region and not in control genes upstream and downstream of KIT, indicating that the downregulation of KIT is exerted by specific epigenetic silencing. In conclusion, KIT D816V mutation sensitized MC to HDACi mediated killing, and SAHA may be of value as specific treatment for SM, although the specific mechanism of action requires further investigation. PMID:28038453

  11. Ab initio study of the binding of Trichostatin A (TSA) in the active site of histone deacetylase like protein (HDLP).

    PubMed

    Vanommeslaeghe, Kenno; Van Alsenoy, Christian; De Proft, Frank; Martins, José C; Tourwé, Dirk; Geerlings, Paul

    2003-08-21

    Histone deacetylase (HDAC) inhibitors have recently attracted considerable interest because of their therapeutic potential for the treatment of cell proliferative diseases. An X-ray structure of a very potent inhibitor, Trichostatin A (TSA), bound to HDLP (an HDAC analogue isolated from Aquifex aeolicus), is available. From this structure, an active site model (322 atoms), relevant for the binding of TSA and structural analogues, has been derived, and TSA has been minimized in this active site at HF 3-21G* level. The resulting conformation is in excellent accordance with the X-ray structure, and indicates a deprotonation of the hydroxamic acid in TSA by His 131. Also, a water molecule was minimized in the active site. In addition to a similar deprotonation, in accordance with a possible catalytic mechanism of HDAC as proposed by Finnin et al. (M. S. Finnin, J. R. Donigian, A. Cohen, V. M. Richon, R. A. Rifkind and P. A. Marks, Nature, 1999, 401, 188-193), a displacement of the resulting OH- ion in the active site was observed. Based on these results, the difference in energy of binding between TSA and water was calculated. The resulting value is realistic in respect to experimental binding affinities. Furthermore, the mechanism of action of the His 131-Asp 166 charge relay system was investigated. Although the Asp residue in this motif is known to substantially increase the basicity of the His residue, no proton transfer from His 131 to Asp 166 was observed on binding of TSA or water. However, in the empty protonated active site, this proton transfer does occur.

  12. SAHA Suppresses Peritoneal Fibrosis in Mice

    PubMed Central

    Io, Kumiko; Nishino, Tomoya; Obata, Yoko; Kitamura, Mineaki; Koji, Takehiko; Kohno, Shigeru

    2015-01-01

    ♦ Objective: Long-term peritoneal dialysis causes peritoneal fibrosis in submesothelial areas. However, the mechanism of peritoneal fibrosis is unclear. Epigenetics is the mechanism to induce heritable changes without any changes in DNA sequences. Among epigenetic modifications, histone acetylation leads to the transcriptional activation of genes. Recent studies indicate that histone acetylation is involved in the progression of fibrosis. Therefore, we examined the effect of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on the progression of peritoneal fibrosis in mice. ♦ Methods: Peritoneal fibrosis was induced by the injection of chlorhexidine gluconate (CG) into the peritoneal cavity of mice every other day for 3 weeks. SAHA, or a dimethylsulfoxide and saline vehicle, was administered subcutaneously every day from the start of the CG injections for 3 weeks. Morphologic peritoneal changes were assessed by Masson’s trichrome staining, and fibrosis-associated factors were assessed by immunohistochemistry. ♦ Results: In CG-injected mice, a marked thickening of the submesothelial compact zone was observed. In contrast, the administration of SAHA suppressed the progression of submesothelial thickening and type III collagen accumulation in CG-injected mice. The numbers of fibroblast-specific protein-1-positive cells and α-smooth muscle actin α-positive cells were significantly decreased in the CG + SAHA group compared to that of the CG group. The level of histone acetylation was reduced in the peritoneum of the CG group, whereas it was increased in the CG + SAHA group. ♦ Conclusions: Our results indicate that SAHA can suppress peritoneal thickening and fibrosis in mice through up-regulation of histone acetylation. These results suggest that SAHA may have therapeutic potential for treating peritoneal fibrosis. PMID:24584598

  13. Sequential treatment of CD34+ cells from patients with primary myelofibrosis with chromatin-modifying agents eliminate JAK2V617F-positive NOD/SCID marrow repopulating cells

    PubMed Central

    Wang, Xiaoli; Zhang, Wei; Tripodi, Joseph; Lu, Min; Xu, Mingjiang; Najfeld, Vesna; Li, Yan

    2010-01-01

    Because primary myelofibrosis (PMF) originates at the level of the pluripotent hematopoietic stem cell (HSC), we examined the effects of various therapeutic agents on the in vitro and in vivo behavior of PMF CD34+ cells. Treatment of PMF CD34+ cells with chromatin-modifying agents (CMAs) but not hydroxyurea, Janus kinase 2 (JAK2) inhibitors, or low doses of interferon-α led to the generation of greater numbers of CD34+ chemokine (C-X-C motif) receptor (CXCR)4+ cells, which were capable of migrating in response to chemokine (C-X-C motif) ligand (CXCL)12 and resulted in a reduction in the proportion of hematopoietic progenitor cells (HPCs) that were JAK2V617F+. Furthermore, sequential treatment of PMF CD34+ cells but not normal CD34+ cells with decitabine (5-aza-2′-deoxycytidine [5azaD]), followed by suberoylanilide hydroxamic acid (SAHA; 5azaD/SAHA), or trichostatin A (5azaD/TSA) resulted in a higher degree of apoptosis. Two to 6 months after the transplantation of CMAs treated JAK2V617F+ PMF CD34+ cells into nonobese diabetic/severe combined immunodeficient (SCID)/IL-2Rγnull mice, the percentage of JAK2V617F/JAK2total in human CD45+ marrow cells was dramatically reduced. These findings suggest that both PMF HPCs, short-term and long-term SCID repopulating cells (SRCs), are JAK2V617F+ and that JAK2V617F+ HPCs and SRCs can be eliminated by sequential treatment with CMAs. Sequential treatment with CMAs, therefore, represents a possible effective means of treating PMF at the level of the malignant SRC. PMID:20858855

  14. Differential effects of histone deacetylase inhibitors on cellular drug transporters and their implications for using epigenetic modifiers in combination chemotherapy.

    PubMed

    Valdez, Benigno C; Li, Yang; Murray, David; Brammer, Jonathan E; Liu, Yan; Hosing, Chitra; Nieto, Yago; Champlin, Richard E; Andersson, Borje S

    2016-09-27

    HDAC inhibitors, DNA alkylators and nucleoside analogs are effective components of combination chemotherapy. To determine a possible mechanism of their synergism, we analyzed the effects of HDAC inhibitors on the expression of drug transporters which export DNA alkylators. Exposure of PEER lymphoma T-cells to 15 nM romidepsin (Rom) resulted in 40%-50% reduction in mRNA for the drug transporter MRP1 and up to ~500-fold increase in the MDR1 mRNA within 32-48 hrs. MRP1 protein levels concomitantly decreased while MDR1 increased. Other HDAC inhibitors - panobinostat, belinostat and suberoylanilide hydroxamic acid (SAHA) - had similar effects on these transporters. The protein level of MRP1 correlated with cellular resistance to busulfan and chlorambucil, and Rom exposure sensitized cells to these DNA alkylators. The decrease in MRP1 correlated with decreased cellular drug export activity, and increased level of MDR1 correlated with increased export of daunorubicin. A similar decrease in the level of MRP1 protein, and increase in MDR1, were observed when mononuclear cells derived from patients with T-cell malignancies were exposed to Rom. Decreased MRP1 and increased MDR1 expressions were also observed in blood mononuclear cells from lymphoma patients who received SAHA-containing chemotherapy in a clinical trial. This inhibitory effect of HDAC inhibitors on the expression of MRP1 suggests that their synergism with DNA alkylating agents is partly due to decreased efflux of these alkylators. Our results further imply the possibility of antagonistic effects when HDAC inhibitors are combined with anthracyclines and other MDR1 drug ligands in chemotherapy.

  15. Alterations in histone acetylation following exposure to 60Co γ-rays and their relationship with chromosome damage in human lymphoblastoid cells.

    PubMed

    Tian, Xue-Lei; Lu, Xue; Feng, Jiang-Bin; Cai, Tian-Jing; Li, Shuang; Tian, Mei; Liu, Qing-Jie

    2018-05-17

    Chromosome damage is related to DNA damage and erroneous repair. It can cause cell dysfunction and ultimately induce carcinogenesis. Histone acetylation is crucial for regulating chromatin structure and DNA damage repair. Ionizing radiation (IR) can alter histone acetylation. However, variations in histone acetylation in response to IR exposure and the relationship between histone acetylation and IR-induced chromosome damage remains unclear. Hence, this study investigated the variation in the total acetylation levels of H3 and H4 in human lymphocytes exposed to 0-2 Gy 60 Co γ-rays. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, was added to modify the histone acetylation state of irradiated cells. Then, the total acetylation level, enzyme activity, dicentric plus centric rings (dic + r) frequencies, and micronucleus (MN) frequencies of the treated cells were analyzed. Results indicated that the acetylation levels of H3 and H4 significantly decreased at 1 and 24 h, respectively, after radiation exposure. The acetylation levels of H3 and H4 in irradiated groups treated with SAHA were significantly higher than those in irradiated groups that were not treated with SAHA. SAHA treatment inhibited HDAC activity in cells exposed to 0-1 Gy 60 Co γ-rays. SAHA treatment significantly decreased dic + r/cell and MN/cell in cells exposed to 0.5 or 1.0 Gy 60 Co γ-rays relative to that in cells that did not receive SAHA treatment. In conclusion, histone acetylation is significantly affected by IR and is involved in chromosome damage induced by 60 Co γ-radiation.

  16. Potential non-oncological applications of histone deacetylase inhibitors.

    PubMed

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma.

  17. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents

    PubMed Central

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date. PMID:23459471

  18. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    PubMed

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date.

  19. Potential non-oncological applications of histone deacetylase inhibitors

    PubMed Central

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma. PMID:22046487

  20. Histone Deacetylase Inhibitors Enhance Cytotoxicity Towards Breast Tumors While Preserving the Wound-Healing Function of Adipose-Derived Stem Cells.

    PubMed

    Koko, Kiavash R; Chang, Shaohua; Hagaman, Ashleigh L; Fromer, Marc W; Nolan, Ryan S; Gaughan, John P; Zhang, Ping; Carpenter, Jeffrey P; Brown, Spencer A; Matthews, Martha; Bird, Dorothy

    2017-06-01

    Paclitaxel improves the oncologic response of breast cancer resections; however, it may negatively affect the wound-healing potential of human adipose-derived stem cells (hASCs) for fat grafting and reconstructive surgery. Histone deacetylase inhibitors (HDACis) modify the epigenetic regulation of gene expression and stabilize microtubules similarly to paclitaxel, thus, creating a synergistic mechanism of cell cycle arrest. We aim to combine these drugs to enhance cytotoxicity towards breast cancer cells, while preserving the wound-healing function of hASCs for downstream reconstructive applications. Triple negative breast cancer cells (MBA-MB-231) and hASCs (institutional review board-approved clinical isolates) were treated with a standard therapeutic dose of paclitaxel (1.0 μM) or with low-dose paclitaxel (0.1 μM) combined with the HDACi suberoylanilide hydroxamic acid or trichostatin A. Cell viability, gene expression, apoptosis, and wound-healing/migration were measured via methylthiazol tetrazolium assay, quantitative real-time polymerase chain reaction, annexin V assay, and fibroblast scratch assay, respectively. Combined HDACi and low-dose paclitaxel therapy maintained cytotoxicity towards breast cancer cells and preserved adipose-derived stem cell viability. Histone deacetylase inhibitor demonstrated selective anti-inflammatory effects on adipose-derived stem cell gene expression and decreased expression of the proapoptotic gene FAS. Furthermore, HDACi therapy did not increase relative apoptosis within hASCs. A scratch assay demonstrated enhanced wound healing among injured fibroblasts indirectly co-cultured with HDACi-treated hASCs. Combining HDACi with low-dose paclitaxel improved cytotoxicity towards breast cancer cells and preserved hASC viability. Furthermore, enhanced wound healing was observed by improved migration in a fibroblast scratch assay. These results suggest that the addition of HDACi to taxane chemotherapy regimens may improve oncologic results and wound-healing outcomes after reconstructive surgery.

  1. Solid-supported nitroso hetero Diels-Alder reactions. 1. Acylnitroso dienophiles: scope and limitations.

    PubMed

    Krchnák, Viktor; Moellmann, Ute; Dahse, Hans-Martin; Miller, Marvin J

    2008-01-01

    Polymer-supported acylnitroso dienophiles were prepared and used in hetero Diels-Alder (HDA) reactions with a variety of dienes. The transient acylnitroso dienophiles were prepared in situ from immobilized hydroxamates, which were attached to solid supports via several linkers each cleavable by different cleavage reagents, and served for the synthesis of both N-unsubstituted and N-derivatized HDA adducts. Model compounds were used to (i) optimize reaction conditions for solid-supported HDA reactions, (ii) evaluate the outcome of the reactions with various dienes, (iii) compare relative reactivities of dienes, and (iv) assess the stability of HDA adducts toward cleavage conditions typically used in solid-phase syntheses. Cleaved products were submitted to biological assays, and the results are reported. The accompanying paper, focused on complementary arylnitroso HDA reactions, includes a comparison of both HDA reactions.

  2. Crystal Structure Analyses of the Fosmidomycin-Target Enzyme from Plasmodium Falciparum

    NASA Astrophysics Data System (ADS)

    Umeda, Tomonobu; Kusakabe, Yoshio; Tanaka, Nobutada

    The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people each year. Fosmidomycin has proved to be efficient in the treatment of P. falciparum malaria through the inhibition of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an enzyme of the non-mevalonate pathway of isoprenoid biosynthesis, which is absent in humans. Crystal structure analyses of P. falciparum DXR (PfDXR) revealed that (i) an intrinsic flexibility of the PfDXR molecule accounts for the induced-fit movement to accommodate the bound inhibitor in the active site, and (ii) a cis arrangement of the oxygen atoms of the hydroxamate group of the bound inhibitor is essential for tight binding of the inhibitor to the active site metal. We believe that our study will serve as a useful guide to develop more potent PfDXR inhibitors.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radchenko, Valery; Meyer, Catherine Anne Louise; Engle, Jonathan Ward

    Scandium-44 g (half-life 3.97 h) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, 18F, due to its favorable decay parameters. One source of 44gSc is the long-lived parent nuclide 44Ti (half-life 60.0 a). A 44Ti/ 44gSc generator would have the ability to provide radionuclidically pure 44gSc on a daily basis. The production of 44Ti via the 45Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) 44Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems basedmore » on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Lastly, results indicate that ZR resin in HCl media represents an effective 44Ti/ 44gSc separation system.« less

  4. Pathogenetic aspects of uncomplicated urinary tract infection: recent advances.

    PubMed

    Fünfstück, R; Smith, J W; Tschäpe, H; Stein, G

    1997-01-01

    Urinary tract infections mostly are caused by Enterobacteriaceae; E. coli dominating in 80-90% for uncomplicated diseases. Microorganisms possessing the ability to colonize the uroepithelium (fimbriae/pili) and to cytotoxically damage cells and tissue (hemolysin) may initiate acute infection. Properties such as serum resistance, iron sequesteration, hydroxamate production and the presence of K-antigen are found in strains which persist in the host without initiating clinical symptoms. The ability of bacteria to adhere to cells of the epithelial boundary layer of the host organisms is of initial importance in the origin and progress of an infection. A variety of specific factors, e.g. glycolipids on the surface of the uroepithelium as well as cellular and humoral disorders of immunoreactions in the host determine the course of a disease. The immune response may ameliorate clinical symptoms and select urovirulent characteristics of the causative microorganism in recurrent diseases.

  5. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase

    PubMed Central

    Brockmann-Gretza, Olaf; Kalinowski, Jörn

    2006-01-01

    Background The stringent response is the initial reaction of microorganisms to nutritional stress. During stringent response the small nucleotides (p)ppGpp act as global regulators and reprogram bacterial transcription. In this work, the genetic network controlled by the stringent response was characterized in the amino acid-producing Corynebacterium glutamicum. Results The transcriptome of a C. glutamicum rel gene deletion mutant, unable to synthesize (p)ppGpp and to induce the stringent response, was compared with that of its rel-proficient parent strain by microarray analysis. A total of 357 genes were found to be transcribed differentially in the rel-deficient mutant strain. In a second experiment, the stringent response was induced by addition of DL-serine hydroxamate (SHX) in early exponential growth phase. The time point of the maximal effect on transcription was determined by real-time RT-PCR using the histidine and serine biosynthetic genes. Transcription of all of these genes reached a maximum at 10 minutes after SHX addition. Microarray experiments were performed comparing the transcriptomes of SHX-induced cultures of the rel-proficient strain and the rel mutant. The differentially expressed genes were grouped into three classes. Class A comprises genes which are differentially regulated only in the presence of an intact rel gene. This class includes the non-essential sigma factor gene sigB which was upregulated and a large number of genes involved in nitrogen metabolism which were downregulated. Class B comprises genes which were differentially regulated in response to SHX in both strains, independent of the rel gene. A large number of genes encoding ribosomal proteins fall into this class, all being downregulated. Class C comprises genes which were differentially regulated in response to SHX only in the rel mutant. This class includes genes encoding putative stress proteins and global transcriptional regulators that might be responsible for the complex transcriptional patterns detected in the rel mutant when compared directly with its rel-proficient parent strain. Conclusion In C. glutamicum the stringent response enfolds a fast answer to an induced amino acid starvation on the transcriptome level. It also showed some significant differences to the transcriptional reactions occuring in Escherichia coli and Bacillus subtilis. Notable are the rel-dependent regulation of the nitrogen metabolism genes and the rel-independent regulation of the genes encoding ribosomal proteins. PMID:16961923

  6. HDAC inhibitor-loaded bone cement for advanced local treatment of osteosarcoma and chondrosarcoma.

    PubMed

    Tonak, Marcus; Becker, Marc; Graf, Claudine; Eckhard, Lukas; Theobald, Matthias; Rommens, Pol-Maria; Wehler, Thomas C; Proschek, Dirk

    2014-11-01

    The treatment of osteosarcoma, especially wide resection, is challenging. An additional local drug therapy after resection using anti-neoplastic bone cement (Polymethylmethacrylate (PMMA)) could help improve the outcome of therapy. In this study, we evaluated the effects of PMMA loaded with valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) on the cell activity of a SaOs-2 cell culture, as well as the elution rate of the drugs out of the bone cement. In our experiments, we used the SaOs-2 osteosarcoma and the SW1353 chondrosarcoma cell line. Bone cement clots (5 g) were prepared and loaded with different drug concentrations of VPA (25 mg and 50 mg) and SAHA (1 mg, 2.5 mg and 5 mg). Two control groups were established, one with a native cement clot, the other with human mesenchymal stem cells, in order to evaluate toxicity on non tumor-cells. Cell activity was measured using an Alamar Blue assay on days 1, 2, 3, 4 and 7. The cement clots were additionally examined in a material testing unit for biomechanical and structural changes. Tumor cells showed a significant and complete reduction of activity under therapy with VPA and SAHA. Drug release of VPA was extensive between days 0 and 3 and decreased progressively to day 7. Cumulative drug concentration in the medium continuously increased. Biomechanical testing of the cement clots showed no differences in stability and architecture compared to the control group. SaOs-2 and SW1353 cells with medium from native cement clots without drug therapy presented a cell activity of 100% in all groups and during all measurements. Human mesenchymal stem cells were not significantly affected during therapy with VPA and low concentrations of SAHA. In contrast, cell activity of human mesenchymal stem cells was significantly reduced under therapy with higher concentrations of SAHA, with an approximately linear decrease between days 0-3 and a rapidly decreasing activity between days 4-7. A local cytotoxic therapy in the treatment of osteosarcoma and chondrosarcoma might improve the rate of metastasis and survival of patients. Our results present an encouraging approach to loading PMMA with anti-neoplastic drugs. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling.

    PubMed

    Tsionou, Maria Iris; Knapp, Caroline E; Foley, Calum A; Munteanu, Catherine R; Cakebread, Andrew; Imberti, Cinzia; Eykyn, Thomas R; Young, Jennifer D; Paterson, Brett M; Blower, Philip J; Ma, Michelle T

    2017-10-24

    Gallium-68 ( 68 Ga) is a positron-emitting isotope used for clinical PET imaging of peptide receptor expression. 68 Ga radiopharmaceuticals used in molecular PET imaging consist of disease-targeting biomolecules tethered to chelators that complex 68 Ga 3+ . Ideally, the chelator will rapidly, quantitatively and stably coordinate 68 Ga 3+ at room temperature, near neutral pH and low chelator concentration, allowing for simple routine radiopharmaceutical formulation. Identification of chelators that fulfil these requirements will facilitate development of kit-based 68 Ga radiopharmaceuticals. Herein the reaction of a range of widely used macrocyclic and acyclic chelators with 68 Ga 3+ is reported. Radiochemical yields have been measured under conditions of varying chelator concentrations, pH (3.5 and 6.5) and temperature (25 and 90 °C). These chelators are: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), 1,4,7-triazacyclononane macrocycles substituted with phosphonic (NOTP) and phosphinic (TRAP) groups at the amine, bis(2-hydroxybenzyl)ethylenediaminediacetic acid (HBED), a tris(hydroxypyridinone) containing three 1,6-dimethyl-3-hydroxypyridin-4-one groups (THP) and the hexadentate tris(hydroxamate) siderophore desferrioxamine-B (DFO). Competition studies have also been undertaken to assess relative complexation efficiencies of each chelator for 68 Ga 3+ under different pH and temperature conditions. Performing radiolabelling reactions at pH 6.5, 25 °C and 5-50 μM chelator concentration resulted in near quantitative radiochemical yields for all chelators, except DOTA. Radiochemical yields either decreased or were not substantially improved when the reactions were undertaken at lower pH or at higher temperature, except in the case of DOTA. THP and DFO were the most effective 68 Ga 3+ chelators at near-neutral pH and 25 °C, rapidly providing near-quantitative radiochemical yields at very low chelator concentrations. NOTP and HBED were only slightly less effective under these conditions. In competition studies with all other chelators, THP demonstrated highest reactivity for 68 Ga 3+ complexation under all conditions. These data point to THP possessing ideal properties for rapid, one-step kit-based syntheses of 68 Ga-biomolecules for molecular PET imaging. LC-MS and 1 H, 13 C{ 1 H} and 71 Ga NMR studies of HBED complexes of Ga 3+ showed that under the analytical conditions employed in this study, multiple HBED-bound Ga complexes exist. X-ray diffraction data indicated that crystals isolated from these solutions contained octahedral [Ga(HBED)(H 2 O)], with HBED coordinated in a pentadentate N 2 O 3 mode, with only one phenolic group coordinated to Ga 3+ , and the remaining coordination site occupied by a water molecule.

  8. Propofol exposure during early gestation impairs learning and memory in rat offspring by inhibiting the acetylation of histone.

    PubMed

    Lin, Jiamei; Wang, Shengqiang; Feng, Yunlin; Zhao, Weihong; Zhao, Weilu; Luo, Foquan; Feng, Namin

    2018-05-01

    Propofol is widely used in clinical practice, including non-obstetric surgery in pregnant women. Previously, we found that propofol anaesthesia in maternal rats during the third trimester (E18) caused learning and memory impairment to the offspring rats, but how about the exposure during early pregnancy and the underlying mechanisms? Histone acetylation plays an important role in synaptic plasticity. In this study, propofol was administered to the pregnant rats in the early pregnancy (E7). The learning and memory function of the offspring were tested by Morris water maze (MWM) test on post-natal day 30. Two hours before each MWM trial, histone deacetylase 2 (HDAC2) inhibitor, suberoylanilide hydroxamic acid (SAHA), Senegenin (SEN, traditional Chinese medicine), hippyragranin (HGN) antisense oligonucleotide (HGNA) or vehicle were given to the offspring. The protein levels of HDAC2, acetylated histone 3 (H3) and 4 (H4), cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), N-methyl-D-aspartate receptor (NMDAR) 2 subunit B (NR2B), HGN and synaptophysin in offspring's hippocampus were determined by Western blot or immunofluorescence test. It was discovered that infusion with propofol in maternal rats on E7 leads to impairment of learning and memory in offspring, increased the protein levels of HDAC2 and HGN, decreased the levels of acetylated H3 and H4 and phosphorylated CREB, NR2B and synaptophysin. HDAC2 inhibitor SAHA, Senegenin or HGN antisense oligonucleotide reversed all the changes. Thus, present results indicate exposure to propofol during the early gestation impairs offspring's learning and memory via inhibiting histone acetylation. SAHA, Senegenin and HGN antisense oligonucleotide might have therapeutic value for the adverse effect of propofol. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Two-dimensional parallel array technology as a new approach to automated combinatorial solid-phase organic synthesis

    PubMed

    Brennan; Biddison; Frauendorf; Schwarcz; Keen; Ecker; Davis; Tinder; Swayze

    1998-01-01

    An automated, 96-well parallel array synthesizer for solid-phase organic synthesis has been designed and constructed. The instrument employs a unique reagent array delivery format, in which each reagent utilized has a dedicated plumbing system. An inert atmosphere is maintained during all phases of a synthesis, and temperature can be controlled via a thermal transfer plate which holds the injection molded reaction block. The reaction plate assembly slides in the X-axis direction, while eight nozzle blocks holding the reagent lines slide in the Y-axis direction, allowing for the extremely rapid delivery of any of 64 reagents to 96 wells. In addition, there are six banks of fixed nozzle blocks, which deliver the same reagent or solvent to eight wells at once, for a total of 72 possible reagents. The instrument is controlled by software which allows the straightforward programming of the synthesis of a larger number of compounds. This is accomplished by supplying a general synthetic procedure in the form of a command file, which calls upon certain reagents to be added to specific wells via lookup in a sequence file. The bottle position, flow rate, and concentration of each reagent is stored in a separate reagent table file. To demonstrate the utility of the parallel array synthesizer, a small combinatorial library of hydroxamic acids was prepared in high throughput mode for biological screening. Approximately 1300 compounds were prepared on a 10 μmole scale (3-5 mg) in a few weeks. The resulting crude compounds were generally >80% pure, and were utilized directly for high throughput screening in antibacterial assays. Several active wells were found, and the activity was verified by solution-phase synthesis of analytically pure material, indicating that the system described herein is an efficient means for the parallel synthesis of compounds for lead discovery. Copyright 1998 John Wiley & Sons, Inc.

  10. Synergistic anticancer effects of cisplatin and histone deacetylase inhibitors (SAHA and TSA) on cholangiocarcinoma cell lines.

    PubMed

    Asgar, Md Ali; Senawong, Gulsiri; Sripa, Banchob; Senawong, Thanaset

    2016-01-01

    Clinical application of cisplatin against cholangiocarcinoma is often associated with resistance and toxicity posing urgent demand for combination therapy. In this study, we evaluated the combined anticancer effect of cisplatin and histone deacetylase inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), on the cholangiocarcinoma KKU-100 and KKU-M214 cell lines. Antiproliferative activity was evaluated using MTT assay. Apoptosis induction and cell cycle arrest were analyzed by flow cytometry. Cell cycle and apoptosis regulating proteins were evaluated by western blot analysis. MTT assay showed that cisplatin, SAHA and TSA dose-dependently reduced the viability of KKU-100 and KKU-M214 cells. The combination of cisplatin and HDACIs exerted significantly more cytotoxicity than the single drugs. Combination indices below 1.0 reflect synergism between cisplatin and HDACIs, leading to positive dose reductions of cisplatin and HDACIs. Cisplatin and HDACIs alone induced G0/G1 phase arrest in KKU-100 cells, but the drug combinations increased sub-G1 percent more than either drug. However, cisplatin and HDACIs alone or in combination increased only the sub-G1 percent in KKU-M214 cells. Annexin V-FITC staining revealed that cisplatin and HDACIs combinations induced more apoptotic cell death of both KKU-100 and KKU-M214 cells than the single drug. In KKU-100 cells, growth inhibition was accompanied by upregulation of p53 and p21 and downregulation of CDK4 and Bcl-2 due to exposure to cisplatin, SAHA and TSA alone or in combination. Moreover, combination of agents exerted higher impacts on protein expression. Single agents or combination did not affect p53 expression, however, combination of cisplatin and HDACIs increased the expression of p21 in KKU-M214 cells. Taken together, cisplatin and HDACIs combination may improve the therapeutic outcome in cholangiocarcinoma patients.

  11. TSA increases C/EBP‑α expression by increasing its lysine acetylation in hepatic stellate cells.

    PubMed

    Tao, Li-Li; Ding, Di; Yin, Wei-Hua; Peng, Ji-Ying; Hou, Chen-Jian; Liu, Xiu-Ping; Chen, Yao-Li

    2017-11-01

    CCAAT enhancer binding protein‑α (C/EBP‑α) is a transcription factor expressed only in certain tissues, including the liver. It has been previously demonstrated that C/EBP‑α may induce apoptosis in hepatic stellate cells (HSCs), raising the question of whether acetylation of C/EBP‑α is associated with HSCs, and the potential associated mechanism. A total of three histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), suberoylanilide hydroxamic acid and nicotinamide, were selected to determine whether acetylation affects C/EBP‑α expression. A Cell Counting Kit‑8 assay was used to determine the rate of proliferation inhibition following treatment with varying doses of the three HDACIs in HSC‑T6 and BRL‑3A cells. Western blot analysis was used to examine Caspase‑3, ‑8, ‑9, and ‑12 levels in HSC‑T6 cells treated with adenoviral‑C/EBP‑α and/or TSA. Following treatment with TSA, a combination of reverse transcription‑quantitative polymerase chain reaction and western blot analyses was used to determine the inherent C/EBP‑α mRNA and protein levels in HSC‑T6 cells at 0, 1, 2, 4, 8, 12, 24, 36 and 48 h. Nuclear and cytoplasmic proteins were extracted to examine C/EBP‑α distribution. Co‑immunoprecipitation analysis was used to examine the lysine acetylation of C/EBP‑α. It was observed that TSA inhibited the proliferation of HSC‑T6 cells to a greater extent compared with BRL‑3A cells, following treatment with the three HDACIs. TSA induced apoptosis in HSC‑T6 cells and enhanced the expression of C/EBP‑α. Following treatment of HSC‑T6 cells with TSA, inherent C/EBP‑α expression increased in a time‑dependent manner, and its lysine acetylation simultaneously increased. Therefore, the results of the present study suggested that TSA may increase C/EBP‑α expression by increasing its lysine acetylation in HSCs.

  12. The Therapeutic Potential of AN-7, a Novel Histone Deacetylase Inhibitor, for Treatment of Mycosis Fungoides/Sezary Syndrome Alone or with Doxorubicin

    PubMed Central

    Goldfeiz, Neta; Rephaeli, Ada; Nudelman, Abraham; Weitman, Michal; Tarasenko, Nataly; Gorovitz, Batia; Maron, Leah; Yehezkel, Shiran; Amitay-Laish, Iris; Lubin, Ido; Hodak, Emmilia

    2016-01-01

    The 2 histone deacetylase inhibitors (HDACIs) approved for the treatment of cutaneous T-cell lymphoma (CTCL) including mycosis fungoides/sezary syndrome (MF/SS), suberoylanilide hydroxamic acid (SAHA) and romidepsin, are associated with low rates of overall response and high rates of adverse effects. Data regarding combination treatments with HDACIs is sparse. Butyroyloxymethyl diethylphosphate (AN-7) is a novel HDACI, which was found to have selective anticancer activity in several cell lines and animal models. The aim of this study was to compare the anticancer effects of AN-7 and SAHA, either alone or combined with doxorubicin, on MF/SS cell lines and peripheral blood lymphocytes (PBL) from patients with Sezary syndrome (SPBL). MyLa cells, Hut78 cells, SPBL, and PBL from healthy normal individuals (NPBL) were exposed to the test drugs, and the findings were analyzed by a viability assay, an apoptosis assay, and Western blot. AN-7 was more selectively toxic to MyLa cells, Hut78 cells, and SPBL (relative to NPBL) than SAHA and also acted more rapidly. Both drugs induced apoptosis in MF/SS cell lines, SAHA had a greater effect on MyLa cell line, while AN-7 induced greater apoptosis in SPBL; both caused an accumulation of acetylated histone H3, but AN-7 was associated with earlier kinetics; and both caused a downregulation of the HDAC1 protein in MF/SS cell lines. AN-7 acted synergistically with doxorubicin in both MF/SS cell lines and SPBL, and antagonistically with doxorubicin in NPBL. By contrast, SAHA acted antagonistically with doxorubicin on MF/SS cell lines, SPBL, and NPBL, leaving <50% viable cells. In conclusion, AN-7 holds promise as a therapeutic agent in MF/SS and has several advantages over SAHA. Our data provide a rationale for combining AN-7, but not SAHA, with doxorubicin to induce the cell death in MF/SS. PMID:26752418

  13. The Therapeutic Potential of AN-7, a Novel Histone Deacetylase Inhibitor, for Treatment of Mycosis Fungoides/Sezary Syndrome Alone or with Doxorubicin.

    PubMed

    Moyal, Lilach; Feldbaum, Nataly; Goldfeiz, Neta; Rephaeli, Ada; Nudelman, Abraham; Weitman, Michal; Tarasenko, Nataly; Gorovitz, Batia; Maron, Leah; Yehezkel, Shiran; Amitay-Laish, Iris; Lubin, Ido; Hodak, Emmilia

    2016-01-01

    The 2 histone deacetylase inhibitors (HDACIs) approved for the treatment of cutaneous T-cell lymphoma (CTCL) including mycosis fungoides/sezary syndrome (MF/SS), suberoylanilide hydroxamic acid (SAHA) and romidepsin, are associated with low rates of overall response and high rates of adverse effects. Data regarding combination treatments with HDACIs is sparse. Butyroyloxymethyl diethylphosphate (AN-7) is a novel HDACI, which was found to have selective anticancer activity in several cell lines and animal models. The aim of this study was to compare the anticancer effects of AN-7 and SAHA, either alone or combined with doxorubicin, on MF/SS cell lines and peripheral blood lymphocytes (PBL) from patients with Sezary syndrome (SPBL). MyLa cells, Hut78 cells, SPBL, and PBL from healthy normal individuals (NPBL) were exposed to the test drugs, and the findings were analyzed by a viability assay, an apoptosis assay, and Western blot. AN-7 was more selectively toxic to MyLa cells, Hut78 cells, and SPBL (relative to NPBL) than SAHA and also acted more rapidly. Both drugs induced apoptosis in MF/SS cell lines, SAHA had a greater effect on MyLa cell line, while AN-7 induced greater apoptosis in SPBL; both caused an accumulation of acetylated histone H3, but AN-7 was associated with earlier kinetics; and both caused a downregulation of the HDAC1 protein in MF/SS cell lines. AN-7 acted synergistically with doxorubicin in both MF/SS cell lines and SPBL, and antagonistically with doxorubicin in NPBL. By contrast, SAHA acted antagonistically with doxorubicin on MF/SS cell lines, SPBL, and NPBL, leaving <50% viable cells. In conclusion, AN-7 holds promise as a therapeutic agent in MF/SS and has several advantages over SAHA. Our data provide a rationale for combining AN-7, but not SAHA, with doxorubicin to induce the cell death in MF/SS.

  14. Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth.

    PubMed

    Martín Del Campo, Julia S; Vogelaar, Nancy; Tolani, Karishma; Kizjakina, Karina; Harich, Kim; Sobrado, Pablo

    2016-11-18

    Aspergillus fumigatus is an opportunistic fungal pathogen and the most common causative agent of fatal invasive mycoses. The flavin-dependent monooxygenase siderophore A (SidA) catalyzes the oxygen and NADPH dependent hydroxylation of l-ornithine (l-Orn) to N 5 -l-hydroxyornithine in the biosynthetic pathway of hydroxamate-containing siderophores in A. fumigatus. Deletion of the gene that codes for SidA has shown that it is essential in establishing infection in mice models. Here, a fluorescence polarization high-throughput assay was used to screen a 2320 compound library for inhibitors of SidA. Celastrol, a natural quinone methide, was identified as a noncompetitive inhibitor of SidA with a MIC value of 2 μM. Docking experiments suggest that celastrol binds across the NADPH and l-Orn pocket. Celastrol prevents A. fumigatus growth in blood agar. The addition of purified ferric-siderophore abolished the inhibitory effect of celastrol. Thus, celastrol inhibits A. fumigatus growth by blocking siderophore biosynthesis through SidA inhibiton.

  15. μ-PADs for detection of chemical warfare agents.

    PubMed

    Pardasani, Deepak; Tak, Vijay; Purohit, Ajay K; Dubey, D K

    2012-12-07

    Conventional methods of detection of chemical warfare agents (CWAs) based on chromogenic reactions are time and solvent intensive. The development of cost, time and solvent effective microfluidic paper based analytical devices (μ-PADs) for the detection of nerve and vesicant agents is described. The detection of analytes was based upon their reactions with rhodamine hydroxamate and para-nitrobenzyl pyridine, producing red and blue colours respectively. Reactions were optimized on the μ-PADs to produce the limits of detection (LODs) as low as 100 μM for sulfur mustard in aqueous samples. Results were quantified with the help of a simple desktop scanner and Photoshop software. Sarin achieved a linear response in the two concentration ranges of 20-100 mM and 100-500 mM, whereas the response of sulfur mustard was found to be linear in the concentration range of 10-75 mM. Results were precise enough to establish the μ-PADs as a valuable tool for security personnel fighting against chemical terrorism.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Brian; Cobb, Ryan E.; DeSieno, Matthew A.

    The enzyme FrbF from Streptomyces rubellomurinus has attracted significant attention due to its role in the biosynthesis of the antimalarial phosphonate FR-900098. The enzyme catalyzes acetyl transfer onto the hydroxamate of the FR-900098 precursors cytidine 5'-monophosphate-3-aminopropylphosphonate and cytidine 5'-monophosphate-N-hydroxy-3-aminopropylphosphonate. Despite the established function as a bona fide N-acetyltransferase, FrbF shows no sequence similarity to any member of the GCN5-like N-acetyltransferase (GNAT) superfamily. Here, we present the 2.0 {angstrom} resolution crystal structure of FrbF in complex with acetyl-CoA, which demonstrates a unique architecture that is distinct from those of canonical GNAT-like acetyltransferases. We also utilized the co-crystal structure to guide structure-functionmore » studies that identified the roles of putative active site residues in the acetyltransferase mechanism. The combined biochemical and structural analyses of FrbF provide insights into this previously uncharacterized family of N-acetyltransferases and also provide a molecular framework toward the production of novel N-acyl derivatives of FR-900098.« less

  17. Pyrido[2,3-d]pyrimidin-5-ones: A Novel Class of Antiinflammatory Macrophage Colony-Stimulating Factor-1 Receptor Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hui; Hutta, Daniel A.; Rinker, James M.

    A series of pyrido[2,3-d]pyrimidin-5-ones has been synthesized and evaluated as inhibitors of the kinase domain of macrophage colony-stimulating factor-1 receptor (FMS). FMS inhibitors may be useful in treating rheumatoid arthritis and other chronic inflammatory diseases. Structure-based optimization of the lead amide analogue 10 led to hydroxamate analogue 37, which possessed excellent potency and an improved pharmacokinetic profile. During the chronic phase of streptococcal cell wall-induced arthritis in rats, compound 37 (10, 3, and 1 mg/kg) was highly effective at reversing established joint swelling. In an adjuvant-induced arthritis model in rats, 37 prevented joint swelling partially at 10 mg/kg. In thismore » model, osteoclastogenesis and bone erosion were prevented by low doses (1 or 0.33 mg/kg) that had minimal impact on inflammation. These data underscore the potential of FMS inhibitors to prevent erosions and reduce symptoms in rheumatoid arthritis.« less

  18. SF2312 is a natural phosphonate inhibitor of Enolase

    PubMed Central

    Maxwell, David; Lin, Yu-Hsi; Hammoudi, Naima; Peng, Zhenghong; Pisaneschi, Federica; Link, Todd M.; Lee, Gilbert R.; Sun, Duoli; Prasad, Basvoju A. Bhanu; Di Francesco, Maria Emilia; Czako, Barbara; Asara, John M.; Wang, Y. Alan; Bornmann, William; DePinho, Ronald A.; Muller, Florian L.

    2016-01-01

    Despite being critical for energy generation in most forms of life, few if any microbial antibiotics specifically inhibit glycolysis. To develop a specific inhibitor of the glycolytic enzyme Enolase 2 for the treatment of cancers with deletion of Enolase 1, we modeled the synthetic tool compound inhibitor, Phosphonoacetohydroxamate (PhAH) into the active site of human ENO2. A ring-stabilized analogue of PhAH, with the hydroxamic nitrogen linked to the alpha-carbon by an ethylene bridge, was predicted to increase binding affinity by stabilizing the inhibitor in a bound conformation. Unexpectedly, a structure based search revealed that our hypothesized back-bone-stabilized PhAH bears strong similarity to SF2312, a phosphonate antibiotic of unknown mode of action produced by the actinomycete Micromonospora, which is active under anaerobic conditions. Here, we present multiple lines of evidence, including a novel X-ray structure, that SF2312 is a highly potent, low nM inhibitor of Enolase. PMID:27723749

  19. Selective arylsulfonamide inhibitors of ADAM-17: hit optimization and activity in ovarian cancer cell models.

    PubMed

    Nuti, Elisa; Casalini, Francesca; Santamaria, Salvatore; Fabbi, Marina; Carbotti, Grazia; Ferrini, Silvano; Marinelli, Luciana; La Pietra, Valeria; Novellino, Ettore; Camodeca, Caterina; Orlandini, Elisabetta; Nencetti, Susanna; Rossello, Armando

    2013-10-24

    Activated leukocyte cell adhesion molecule (ALCAM) is expressed at the surface of epithelial ovarian cancer (EOC) cells and is released in a soluble form (sALCAM) by ADAM-17-mediated shedding. This process is relevant to EOC cell motility and invasiveness, which is reduced by inhibitors of ADAM-17. In addition, ADAM-17 plays a key role in EGFR signaling and thus may represent a useful target in anticancer therapy. Herein we report our hit optimization effort to identify potent and selective ADAM-17 inhibitors, starting with previously identified inhibitor 1. A new series of secondary sulfonamido-based hydroxamates was designed and synthesized. The biological activity of the newly synthesized compounds was tested in vitro on isolated enzymes and human EOC cell lines. The optimization process led to compound 21, which showed an IC50 of 1.9 nM on ADAM-17 with greatly increased selectivity. This compound maintained good inhibitory properties on sALCAM shedding in several in vitro assays.

  20. Separation of 44Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of 44Ti/44Sc generator system.

    PubMed

    Radchenko, V; Meyer, C A L; Engle, J W; Naranjo, C M; Unc, G A; Mastren, T; Brugh, M; Birnbaum, E R; John, K D; Nortier, F M; Fassbender, M E

    2016-12-16

    Scandium-44g (half-life 3.97h [1]) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, 18 F, due to its favorable decay parameters. One source of 44g Sc is the long-lived parent nuclide 44 Ti (half-life 60.0 a). A 44 Ti/ 44g Sc generator would have the ability to provide radionuclidically pure 44g Sc on a daily basis. The production of 44 Ti via the 45 Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) 44 Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems based on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Results indicate that ZR resin in HCl media represents an effective 44 Ti/ 44g Sc separation system. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. MicroPET Evaluation of a Hydroxamate-Based MMP Inhibitor, [(18)F]FB-ML5, in a Mouse Model of Cigarette Smoke-Induced Acute Airway Inflammation.

    PubMed

    Matusiak, Nathalie; van Waarde, Aren; Rozeveld, Dennie; van Oosterhout, Antoon J M; Heijink, Irene H; Castelli, Riccardo; Overkleeft, Herman S; Bischoff, Rainer; Dierckx, Rudi A J O; Elsinga, Philip H

    2015-10-01

    Matrix metalloproteinases (MMPs) are the main proteolytic enzymes involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). A radiolabeled MMP inhibitor, [(18)F]FB-ML5, was prepared, and its in vivo kinetics were tested in a mouse model of pulmonary inflammation. BALB/c mice were exposed for 4 days to cigarette smoke (CS) or air. On the fifth day, a dynamic microPET scan was made with [(18)F]FB-ML5. Standardized uptake values (PET-SUVmean) were 0.19 ± 0.06 in the lungs of CS-exposed mice (n = 6) compared to 0.11 ± 0.03 (n = 5) in air-exposed controls (p < 0.05), 90 min post-injection MMP-9 levels in bronchoalveolar lavage fluid (BALF) were increased from undetectable level to 4615 ± 1963 pg/ml by CS exposure. Increased MMP expression in a COPD mouse model was shown to lead to increased retention of [(18)F]FB-ML5.

  2. Inhibition of membrane type-1 matrix metalloproteinase by cancer drugs interferes with the homing of diabetogenic T cells into the pancreas.

    PubMed

    Savinov, Alexei Y; Rozanov, Dmitri V; Golubkov, Vladislav S; Wong, F Susan; Strongin, Alex Y

    2005-07-29

    We have discovered that clinically tested inhibitors of matrix metalloproteinases can control the functional activity of T cell membrane type-1 matrix metalloproteinase (MT1-MMP) and the onset of disease in a rodent model of type 1 diabetes in non-obese diabetic mice. We determined that MT1-MMP proteolysis of the T cell surface CD44 adhesion receptor affects the homing of T cells into the pancreas. We also determined that both the induction of the intrinsic T cell MT1-MMP activity and the shedding of cellular CD44 follow the adhesion of insulin-specific, CD8-positive, Kd-restricted T cells to the matrix. Conversely, inhibition of these events by AG3340 (a potent hydroxamate inhibitor that was widely used in clinical trials in cancer patents) impedes the transmigration of diabetogenic T cells into the pancreas and protects non-obese diabetic mice from diabetes onset. Overall, our studies have divulged a previously unknown function of MT1-MMP and identified a promising novel drug target in type I diabetes.

  3. Development of Thioaryl-Based Matrix Metalloproteinase-12 Inhibitors with Alternative Zinc-Binding Groups: Synthesis, Potentiometric, NMR, and Crystallographic Studies.

    PubMed

    Nuti, Elisa; Cuffaro, Doretta; Bernardini, Elisa; Camodeca, Caterina; Panelli, Laura; Chaves, Sílvia; Ciccone, Lidia; Tepshi, Livia; Vera, Laura; Orlandini, Elisabetta; Nencetti, Susanna; Stura, Enrico A; Santos, M Amélia; Dive, Vincent; Rossello, Armando

    2018-05-24

    Matrix metalloproteinase-12 (MMP-12) selective inhibitors could play a role in the treatment of lung inflammatory and cardiovascular diseases. In the present study, the previously reported 4-methoxybiphenylsulfonyl hydroxamate and carboxylate based inhibitors (1b and 2b) were modified to enhance their selectivity for MMP-12. In the newly synthesized thioaryl derivatives, the nature of the zinc binding group (ZBG) and the sulfur oxidation state were changed. Biological assays carried out in vitro on human MMPs with the resulting compounds led to identification of a sulfide, 4a, bearing an N-1-hydroxypiperidine-2,6-dione (HPD) group as new ZBG. Compound 4a is a promising hit compound since it displayed a nanomolar affinity for MMP-12 with a marked selectivity over MMP-9, MMP-1, and MMP-14. Solution complexation studies with Zn 2+ were performed to characterize the chelating abilities of the new compounds and confirmed the bidentate binding mode of HPD derivatives. X-ray crystallography studies using MMP-12 and MMP-9 catalytic domains were carried out to rationalize the biological results.

  4. The effect of various zinc binding groups on inhibition of histone deacetylases 1-11.

    PubMed

    Madsen, Andreas S; Kristensen, Helle M E; Lanz, Gyrithe; Olsen, Christian A

    2014-03-01

    Histone deacetylases (HDACs) have the ability to cleave the acetyl groups of ε-N-acetylated lysine residues in a variety of proteins. Given that human cells contain thousands of different acetylated lysine residues, HDACS may regulate a wide variety of processes including some implicated in conditions such as cancer and neurodegenerative disorders. Herein we report the synthesis and in vitro biochemical profiling of a series of compounds, including known inhibitors as well as novel chemotypes, that incorporate putative new zinc binding domains. By evaluating the compound collection against all 11 recombinant human HDACs, we found that the trifluoromethyl ketone functionality provides potent inhibition of all four subclasses of the Zn(2+) -dependent HDACs. Potent inhibition was observed with two different scaffolds, demonstrating the efficiency of the trifluoromethyl ketone moiety as a zinc binding motif. Interestingly, we also identified silanediol as a zinc binding group with potential for future development of non-hydroxamate class I and class IIb HDAC inhibitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Separation of 44Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of 44Ti/ 44Sc generator system

    DOE PAGES

    Radchenko, Valery; Meyer, Catherine Anne Louise; Engle, Jonathan Ward; ...

    2016-11-24

    Scandium-44 g (half-life 3.97 h) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, 18F, due to its favorable decay parameters. One source of 44gSc is the long-lived parent nuclide 44Ti (half-life 60.0 a). A 44Ti/ 44gSc generator would have the ability to provide radionuclidically pure 44gSc on a daily basis. The production of 44Ti via the 45Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) 44Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems basedmore » on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Lastly, results indicate that ZR resin in HCl media represents an effective 44Ti/ 44gSc separation system.« less

  6. Iron complexation to histone deacetylase inhibitors SAHA and LAQ824 in PEGylated liposomes can considerably improve pharmacokinetics in rats.

    PubMed

    Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May

    2014-01-01

    The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS. The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS. SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M-1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29-35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h)and 211-fold improvement in the AUC∞ (105.7 µg·h/ml) compared to free LAQ (0.79 h, 0.5 µg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS. We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro release and in vivo pharmacokinetic properties.

  7. Iron Complexation to Histone Deacetylase Inhibitors SAHA and LAQ824 in PEGylated Liposomes Can Considerably Improve Pharmacokinetics in Rats

    PubMed Central

    Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May P.

    2015-01-01

    PURPOSE The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M−1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29–35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h) and 211-fold improvement in the AUC∞ (105.7 μg·h/ml) compared to free LAQ (0.79 h, 0.5 μg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro release and in vivo pharmacokinetic properties. PMID:25579435

  8. An Insight into the Secondary Metabolism of Muscodor yucatanensis: Small-Molecule Epigenetic Modifiers Induce Expression of Secondary Metabolism-Related Genes and Production of New Metabolites in the Endophyte.

    PubMed

    Qadri, Masroor; Nalli, Yedukondalu; Jain, Shreyans K; Chaubey, Asha; Ali, Asif; Strobel, Gary A; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2017-05-01

    Muscodor spp. are proficient producers of bioactive volatile organic compounds (VOCs) with many potential applications. However, all members of this genus produce varying amounts and types of VOCs which suggests the involvement of epigenetics as a possible explanation. The members of this genus are poorly explored for the production of soluble compounds (extrolites). In this study, the polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes from an endophyte, Muscodor yucatanensis Ni30, were cloned and sequenced. The PKS genes belonged to reduced, partially reduced, non-reduced, and highly reduced subtypes. Strains over-expressing PKS genes were developed through the use of small-molecule epigenetic modifiers (suberoylanilide hydroxamic acid (SAHA) and 5-azacytidine). The putative epigenetic variants of this organism differed considerably from the wild type in morphological features and cultural characteristics as well as metabolites that were produced. Each variant produced a different set of VOCs distinct from the wild type, and several VOCs including methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)hexane-2,4-diol and 2-carboxymethyl-3-n-hexylmaleic appeared in the variant strains, the production of which could be attributed to the activity of otherwise silent PKS genes. The bioactive extrolite brefeldin A was isolated and characterized from the wild type. However, this metabolite was not detected in EV-1, but instead, two other products were isolated and characterized as ergosterol and xylaguaianol C. Hence, M. yucatanensis has the genetic potential to produce several previously undetectable VOCs and organic solvent soluble products. It is also the case that small-molecule epigenetic modifiers can be used to produce stable variant strains of fungi with the potential to produce new molecules. Finally, this work hints to the prospect that the epigenetics of an endophytic microorganism can be influenced by any number of environmental and chemical factors associated with its host plant which may help to explain the enormous chemical diversity of secondary metabolic products found in Muscodor spp.

  9. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation

    PubMed Central

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Xu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS-2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro-inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of RSV infection validated these results. Treatment with HDACis alleviated airway inflammation and reduced in vivo RSV replication. Our data demonstrated that RSV reduced histone acetylation by enhancing HDAC2 expression. Treatment with HDACis (TSA/SAHA) significantly inhibited RSV replication and decreased RSV-induced airway inflammation and oxidative stress. Therefore, the inhibition of HDACs represents a novel therapeutic approach in modulating RSV-induced lung disease. PMID:27460781

  10. Evaluation of a novel GRPR antagonist for prostate cancer PET imaging: [64Cu]-DOTHA2-PEG-RM26.

    PubMed

    Mansour, Nematallah; Paquette, Michel; Ait-Mohand, Samia; Dumulon-Perreault, Véronique; Guérin, Brigitte

    2018-01-01

    Gastrin releasing peptide receptors (GRPRs) are significantly over-expressed on a large proportion of prostate cancers making them prime candidates for receptor-mediated nuclear imaging by PET. Recently, we synthesized a novel bifunctional chelator (BFC) bearing hydroxamic acid arms (DOTHA 2 ). Here we investigated the potential of a novel DOTHA 2 -conjugated, 64 Cu-radiolabeled GRPR peptide antagonist, [D-Phe 6 -Sta 13 -Leu 14 -NH 2 ]bombesin(6-14) (DOTHA 2 -PEG-RM26) to visualize prostate tumors by PET imaging. DOTHA 2 -PEG-RM26 was conveniently and efficiently assembled on solid support. The compound was radiolabeled with 64 Cu and its affinity, stability, cellular uptake on PC3 prostate cancer cells were evaluated. The in vitro and in vivo behavior of [ 64 Cu]DOTHA 2 -PEG-RM26 was examined by PET imaging using human PC3 prostate cancer xenografts and its behavior was compared to that of the analogous [ 64 Cu]NOTA-PEG-RM26. The inhibition constant of nat Cu-DOTHA 2 -PEG-RM26 was in the low nanomolar range (0.68±0.19 nM). The [ 64 Cu]DOTHA 2 -PEG-RM26 conjugate was prepared with a labeling yield >95% and molar activity of 56±3 GBq/μmol after a 5-min room temperature labeling. [ 64 Cu]-DOTHA 2 -PEG-RM26 demonstrated rapid blood and renal clearance as well as a high tumor uptake. Small animal PET images confirmed high and specific uptake in PC3 tumor. Both [ 64 Cu]-DOTHA 2 -PEG-RM26 and [ 64 Cu]-NOTA-PEG-RM26 displayed similar tumor and normal tissue uptakes at early time point post injection. [ 64 Cu]-DOTHA 2 -PEG-RM26 allows visualization of prostate tumors by PET imaging. DOTHA 2 enables fast 64 Cu chelation under mild condition, and as such could be used advantageously for the development of other 64 Cu-labeled peptide-derived PET tracers. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Long Noncoding RNA uc002yug.2 Activates HIV-1 Latency through Regulation of mRNA Levels of Various RUNX1 Isoforms and Increased Tat Expression.

    PubMed

    Huan, Chen; Li, Zhaolong; Ning, Shanshan; Wang, Hong; Yu, Xiao-Fang; Zhang, Wenyan

    2018-05-01

    The HIV-1 reservoir is a major obstacle to complete eradication of the virus. Although many proteins and RNAs have been characterized as regulators in HIV-1/AIDS pathogenesis and latency, only a few long noncoding RNAs (lncRNAs) have been shown to be closely associated with HIV-1 replication and latency. In this study, we demonstrated that lncRNA uc002yug.2 plays a key role in HIV-1 replication and latency. uc002yug.2 potentially enhances HIV-1 replication, long terminal repeat (LTR) activity, and the activation of latent HIV-1 in both cell lines and CD4 + T cells from patients. Further investigation revealed that uc002yug.2 activates latent HIV-1 through downregulating RUNX1b and -1c and upregulating Tat protein expression. The accumulated evidence supports our model that the Tat protein has the key role in the uc002yug.2-mediated regulatory effect on HIV-1 reactivation. Moreover, uc002yug.2 showed an ability to activate HIV-1 similar to that of suberoylanilide hydroxamic acid or phorbol 12-myristate 13-acetate using latently infected cell models. These findings improve our understanding of lncRNA regulation of HIV-1 replication and latency, providing new insights into potential targeted therapeutic interventions. IMPORTANCE The latent viral reservoir is the primary obstacle to curing HIV-1 disease. To date, only a few lncRNAs, which play major roles in various biological processes, including viral infection, have been identified as regulators in HIV-1 latency. In this study, we demonstrated that lncRNA uc002yug.2 is important for both HIV-1 replication and activation of latent viruses. Moreover, uc002yug.2 was shown to activate latent HIV-1 through regulating alternative splicing of RUNX1 and increasing the expression of Tat protein. These findings highlight the potential merit of targeting lncRNA uc002yug.2 as an activating agent for latent HIV-1. Copyright © 2018 American Society for Microbiology.

  12. Sensitivity of osteosarcoma cells to HDAC inhibitor AR-42 mediated apoptosis.

    PubMed

    Murahari, Sridhar; Jalkanen, Aimee L; Kulp, Samuel K; Chen, Ching-Shih; Modiano, Jaime F; London, Cheryl A; Kisseberth, William C

    2017-01-21

    Osteosarcoma (OS) is the most common primary bone tumor in both humans and dogs and is the second leading cause of cancer related deaths in children and young adults. Limb sparing surgery along with chemotherapy has been the mainstay of treatment for OS. Many patients are not cured with current therapies, presenting a real need for developing new treatments. Histone deacetylase (HDAC) inhibitors are a promising new class of anticancer agents. In this study, we investigated the activity of the novel HDAC inhibitor AR-42 in a panel of human and canine OS cell lines. The effect of AR-42 and suberoylanilide hydroxamic acid (SAHA) alone or in combination with doxorubicin on OS cell viability was assessed. Induction of histone acetylation after HDAC inhibitor treatment was confirmed by Western blotting. Drug-induced apoptosis was analyzed by FACS. Apoptosis was assessed further by measuring caspase 3/7 enzymatic activity, nucleosome fragmentation, and caspase cleavage. Effects on Akt signaling were demonstrated by assessing phosphorylation of Akt and downstream signaling molecules. AR-42 was a potent inhibitor of cell viability and induced a greater apoptotic response compared to SAHA when used at the same concentrations. Normal osteoblasts were much less sensitive. The combination of AR-42 with doxorubicin resulted in a potent inhibition of cell viability and apparent synergistic effect. Furthermore, we showed that AR-42 and SAHA induced cell death via the activation of the intrinsic mitochondrial pathway through activation of caspase 3/7. This potent apoptotic activity was associated with the greater ability of AR-42 to downregulate survival signaling through Akt. These results confirm that AR-42 is a potent inhibitor of HDAC activity and demonstrates its ability to significantly inhibit cell survival through its pleiotropic effects in both canine and human OS cells and suggests that spontaneous OS in pet dogs may be a useful large animal model for preclinical evaluation of HDAC inhibitors. HDAC inhibition in combination with standard doxorubicin treatment offers promising potential for chemotherapeutic intervention in both canine and human OS.

  13. Therapeutic Drug Monitoring of Asparaginase Activity-Method Comparison of MAAT and AHA Test Used in the International AIEOP-BFM ALL 2009 Trial.

    PubMed

    Lanvers-Kaminsky, Claudia; Rüffer, Andrea; Würthwein, Gudrun; Gerss, Joachim; Zucchetti, Massimo; Ballerini, Andrea; Attarbaschi, Andishe; Smisek, Petr; Nath, Christa; Lee, Samiuela; Elitzur, Sara; Zimmermann, Martin; Möricke, Anja; Schrappe, Martin; Rizzari, Carmelo; Boos, Joachim

    2018-02-01

    In the international AIEOP-BFM ALL 2009 trial, asparaginase (ASE) activity was monitored after each dose of pegylated Escherichia coli ASE (PEG-ASE). Two methods were used: the aspartic acid β-hydroxamate (AHA) test and medac asparaginase activity test (MAAT). As the latter method overestimates PEG-ASE activity because it calibrates using E. coli ASE, method comparison was performed using samples from the AIEOP-BFM ALL 2009 trial. PEG-ASE activities were determined using MAAT and AHA test in 2 sets of samples (first set: 630 samples and second set: 91 samples). Bland-Altman analysis was performed on ratios between MAAT and AHA tests. The mean difference between both methods, limits of agreement, and 95% confidence intervals were calculated and compared for all samples and samples grouped according to the calibration ranges of the MAAT and the AHA test. PEG-ASE activity determined using the MAAT was significantly higher than when determined using the AHA test (P < 0.001; Wilcoxon signed-rank test). Within the calibration range of the MAAT (30-600 U/L), PEG-ASE activities determined using the MAAT were on average 23% higher than PEG-ASE activities determined using the AHA test. This complies with the mean difference reported in the MAAT manual. With PEG-ASE activities >600 U/L, the discrepancies between MAAT and AHA test increased. Above the calibration range of the MAAT (>600 U/L) and the AHA test (>1000 U/L), a mean difference of 42% was determined. Because more than 70% of samples had PEG-ASE activities >600 U/L and required additional sample dilution, an overall mean difference of 37% was calculated for all samples (37% for the first and 34% for the second set). Comparison of the MAAT and AHA test for PEG-ASE activity confirmed a mean difference of 23% between MAAT and AHA test for PEG-ASE activities between 30 and 600 U/L. The discrepancy increased in samples with >600 U/L PEG-ASE activity, which will be especially relevant when evaluating high PEG-ASE activities in relation to toxicity, efficacy, and population pharmacokinetics.

  14. Epigenetic regulation of the TRAIL/Apo2L apoptotic pathway by histone deacetylase inhibitors: an attractive approach to bypass melanoma immunotherapy resistance

    PubMed Central

    Jazirehi, Ali R; Arle, Dylan

    2013-01-01

    TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) is a major cytotoxic mechanism employed by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells to eradicate malignant cells. TRAIL/Apo2L interacts with its cognate receptors located on tumor cell surface namely, TRAIL-R1 (DR4), TRAIL-R2 (DR5), TRAIL-R3 (DcR1), TRAIL-R4 (DcR2) and osteoprotegerin (OPG). The exact function of DcR1 and DcR2 remains elusive. TRAIL/Apo2L or agonistic monoclonal antibodies directed against TRAIL/Apo2L death-inducing receptors (DR4, DR5) have become an attractive immunological therapeutic tools in clinical oncology due to their selective killing of tumors and lack of affinity towards healthy cells. Though a potent anti-cancer modality, some cancer cells exhibit inherent or acquired resistance to TRAIL/Apo2L. Postulated resistance mechanisms include up-regulation of c-FLIP, down-regulation of caspase-8, down-regulation/shedding of death receptors and an imbalanced ratio of pro- to anti-apoptotic genes due to aberrant activity of cellular survival signal transduction pathways. The development of resistance has spurred the use of combination therapy, in particular using small molecule sensitizing agents, to restore apoptosis sensitivity. A novel category of such compounds is histone deacetylase inhibitors (HDACi), which block HDACs from removing acetyl groups from histone tails thereby preventing silencing of pro-apoptotic genes and regulating the expression of non-histone proteins (i.e., apoptosis-associated genes), are effective agents in some malignancies. Some HDACi, such as Suberoylanilide Hydroxamic Acid (SAHA), have received FDA approval for cancer treatment. In various melanoma preclinical models, HDACi in conjunction with TRAIL/Apo2L, via modulation of apoptotic machinery, have proven to overcome acquired/inherent resistance to either agent. Here, we discuss recent findings on the role of TRAIL/Apo2L and its agonistic mAbs in melanoma immunotherapy with discussions on potential cellular and molecular events by which HDACi can sensitize metastatic melanoma to TRAIL/Apo2L-mediated immune-therapy, thereby, overcoming resistance. PMID:23885325

  15. Adaptive evolution of benzoxazinoids in wild emmer wheat, Triticum dicoccoides, at "Evolution Canyon", Mount Carmel, Israel.

    PubMed

    Ben-Abu, Yuval; Beiles, Avigdor; Flom, Dvir; Nevo, Eviatar

    2018-01-01

    "Evolution Canyon" (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution-in-action, highlighting the evolutionary processes of biodiversity evolution, adaptation, and incipient sympatric speciation. A major model organism in ECI is the tetraploid wild emmer wheat, Triticum dicoccoides (TD), the progenitor of cultivated emmer and durum wheat. TD displays dramatic interslope adaptive evolutionary divergence on the tropical, savannoid-hot and dry south-facing, "African" slope (AS), and on the temperate, forested, cool and humid, north-facing, "European" slope (ES), separated on average by 250 m. From the perspective of chemical evolution and metabolomics, it is important to unravel interslope divergence in biologically relevant secondary metabolites between the abutting slope populations. Here, in TD we examined hydroxamic acid (Hx), which is a family of secondary cereal metabolites, and plays a major role in defending the plant against fungi, insects and weeds. Our examination revealed that higher concentrations of DIBOA and DIMBOA were found in seedlings growing in the same greenhouse from seeds collected from the cool and humid forested ES, whereas the seedlings of seeds collected from the savannoid AS (both in root and shoot tissues), showed no DIMBOA. Remarkably, only DIBOA appears in both shoots and roots of the AS seedlings. It rises to a peak and then decreases in both organs and in seedlings from both slopes. The DIMBOA, which appears only in the ES seedlings, rises to a peak and decreases in the shoot, but increased and remained in a plateau in the root, till the end of the experiment. The results suggest stronger genetic resistance of defense compounds DIBOA and DIMBOA against biotic stresses (fungi and other pathogens) by ES seedlings. However, AS seedlings responded earlier but were to the same biotic stresses. The genetic difference found in AS seedlings was caused by the main adaptive selection in AS, which was against climatic, abiotic stresses, and was weaker, or not at all, against biotic stresses. The distinct genetic interslope differences appear important and is very significant and are elaborated in the discussion.

  16. Zeta potentials of the rare earth element fluorcarbonate minerals focusing on bastnäsite and parisite.

    PubMed

    Owens, C L; Nash, G R; Hadler, K; Fitzpatrick, R S; Anderson, C G; Wall, F

    2018-06-01

    Rare earth elements (REE) are critical to a wide range of technologies ranging from mobile phones to wind turbines. Processing and extraction of REE minerals from ore bodies is, however, both challenging and relatively poorly understood, as the majority of deposits contain only limited enrichment of REEs. An improved understanding of the surface properties of the minerals is important in informing and optimising their processing, in particular for separation by froth flotation. The measurement of zeta potential can be used to extract information regarding the electrical double layer, and hence surface properties of these minerals. There are over 34 REE fluorcarbonate minerals currently identified, however bastnäsite, synchysite and parisite are of most economic importance. Bastnäsite-(Ce), the most common REE fluorcarbonate, supplies over 50% of the world's REE. Previous studies of bastnäsite have showed a wide range of surface behaviour, with the iso-electric point (IEP), being measured between pH values of 4.6 and 9.3. In contrast, no values of IEP have been reported for parisite or synchysite. In this work, we review previous studies of the zeta potentials of bastnäsite to investigate the effects of different methodologies and sample preparation. In addition, measurements of zeta potentials of parisite under water, collector and supernatant conditions were conducted, the first to be reported. These results showed an iso-electric point for parisite of 5.6 under water, with a shift to a more negative zeta potential with both collector (hydroxamic and fatty acids) and supernatant conditions. The IEP with collectors and supernatant was <3.5. As zeta potential measurements in the presence of reagents and supernatants are the most rigorous way of determining the efficiency of a flotation reagent, the agreement between parisite zeta potentials obtained here and previous work on bastnäsite suggests that parisite may be processed using similar reagent schemes to bastnäsite. This is important for future processing of REE deposits, comprising of more complex REE mineralogy. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis

    PubMed Central

    Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    The histone deacetylase inhibitors, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Numerous histone deacetylase inhibitors are currently undergoing clinical trials, predominantly in combination with other cancer modalities, for the treatment of various haematological and solid malignancies. Most of the traditional compounds are known as broad-spectrum or pan-histone deacetylase inhibitors, possessing activity against a number of the 11 metal-dependent enzymes. One of the main questions in the field is whether class- or isoform-specific compounds would offer a therapeutic benefit compared to broad-spectrum inhibitors. Therefore, analysis of the relative expression of the different histone deacetylase enzymes in cancer cells and tissues is important to determine whether there are specific targets. We used a panel of antibodies directed against the 11 known mammalian histone deacetylases to determine expression levels in MCF7 breast cancer cells and in tissue representative of invasive ductal cell carcinoma and ductal carcinoma in situ. Firstly, we utilized a semi-quantitative method based on immunofluorescence staining to examine expression of the different histone deacetylases in MCF7 cells. Our findings indicate high expression levels of HDAC1, 3 and 6 in accordance with findings from others using RT-PCR and immunoblotting. Following validation of our approach we examined the expression of the different isoforms in representative control and breast cancer tissue. In general, our findings indicate higher expression of class I histone deacetylases compared to class II enzymes in breast cancer tissue. Analysis of individual cancer cells in the same tissue indicated marked heterogeneity in the expression of most class I enzymes indicating potential complications with the use of class- or isoform-specific compounds. Overall, our approach can be utilized to rapidly compare, in an unbiased semi-quantitative manner, the differential levels of expression of histone deacetylase enzymes in cells and tissues using widely available imaging software. It is anticipated that such analysis will become increasingly important as class- or isoform-specific histone deacetylase inhibitors become more readily available. PMID:22347520

  18. An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis.

    PubMed

    Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    The histone deacetylase inhibitors, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Numerous histone deacetylase inhibitors are currently undergoing clinical trials, predominantly in combination with other cancer modalities, for the treatment of various haematological and solid malignancies. Most of the traditional compounds are known as broad-spectrum or pan-histone deacetylase inhibitors, possessing activity against a number of the 11 metal-dependent enzymes. One of the main questions in the field is whether class- or isoform-specific compounds would offer a therapeutic benefit compared to broad-spectrum inhibitors. Therefore, analysis of the relative expression of the different histone deacetylase enzymes in cancer cells and tissues is important to determine whether there are specific targets. We used a panel of antibodies directed against the 11 known mammalian histone deacetylases to determine expression levels in MCF7 breast cancer cells and in tissue representative of invasive ductal cell carcinoma and ductal carcinoma in situ. Firstly, we utilized a semi-quantitative method based on immunofluorescence staining to examine expression of the different histone deacetylases in MCF7 cells. Our findings indicate high expression levels of HDAC1, 3 and 6 in accordance with findings from others using RT-PCR and immunoblotting. Following validation of our approach we examined the expression of the different isoforms in representative control and breast cancer tissue. In general, our findings indicate higher expression of class I histone deacetylases compared to class II enzymes in breast cancer tissue. Analysis of individual cancer cells in the same tissue indicated marked heterogeneity in the expression of most class I enzymes indicating potential complications with the use of class- or isoform-specific compounds. Overall, our approach can be utilized to rapidly compare, in an unbiased semi-quantitative manner, the differential levels of expression of histone deacetylase enzymes in cells and tissues using widely available imaging software. It is anticipated that such analysis will become increasingly important as class- or isoform-specific histone deacetylase inhibitors become more readily available.

  19. Glucocorticoids and histone deacetylase inhibitors cooperate to block the invasiveness of basal-like breast cancer cells through novel mechanisms

    PubMed Central

    Law, ME; Corsino, PE; Jahn, SC; Davis, BJ; Chen, S; Patel, B; Pham, K; Lu, J; Sheppard, B; Nørgaard, P; Hong, J; Higgins, P; Kim, J-S; Luesch, H; Law, BK

    2013-01-01

    Aggressive cancers often express E-cadherin in cytoplasmic vesicles rather than on the plasma membrane and this may contribute to the invasive phenotype of these tumors. Therapeutic strategies are not currently available that restore the anti-invasive function of E-cadherin in cancers. MDA-MB-231 cells are a frequently used model of invasive triple-negative breast cancer, and these cells express low levels of E-cadherin that is mislocalized to cytoplasmic vesicles. MDA-MB-231 cell lines stably expressing wild-type E-cadherin or E-cadherin fused to glutathione S-transferase or green fluorescent protein were used as experimental systems to probe the mechanisms responsible for cytoplasmic E-cadherin localization in invasive cancers. Although E-cadherin expression partly reduced cell invasion in vitro, E-cadherin was largely localized to the cytoplasm and did not block the invasiveness of the corresponding orthotopic xenograft tumors. Further studies indicated that the glucocorticoid dexamethasone and the highly potent class I histone deacetylase (HDAC) inhibitor largazole cooperated to induce E-cadherin localization to the plasma membrane in triple-negative breast cancers, and to suppress cellular invasion in vitro. Dexamethasone blocked the production of the cleaved form of the CDCP1 (that is, CUB domain-containing protein 1) protein (cCDCP1) previously implicated in the pro-invasive activities of CDCP1 by upregulating the serine protease inhibitor plasminogen activator inhibitor-1. E-cadherin preferentially associated with cCDCP1 compared with the full-length form. In contrast, largazole did not influence CDCP1 cleavage, but increased the association of E-cadherin with γ-catenin. This effect on E-cadherin/γ-catenin complexes was shared with the nonisoform selective HDAC inhibitors trichostatin A (TSA) and vorinostat (suberoylanilide hydroxamic acid, SAHA), although largazole upregulated endogenous E-cadherin levels more strongly than TSA. These results demonstrate that glucocorticoids and HDAC inhibitors, both of which are currently in clinical use, cooperate to suppress the invasiveness of breast cancer cells through novel, complementary mechanisms that converge on E-cadherin. PMID:22543582

  20. Human HDAC7 Harbors a Class IIa Histone Deacetylase-specific Zinc Binding Motif and Cryptic Deacetylase Activity*S⃞

    PubMed Central

    Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P.; Lewis, Timothy A.; Maglathin, Rebecca L.; McLean, Thomas H.; Bochkarev, Alexey; Plotnikov, Alexander N.; Vedadi, Masoud; Arrowsmith, Cheryl H.

    2008-01-01

    Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators. PMID:18285338

  1. Constructing and Validating 3D-pharmacophore Models to a Set of MMP-9 Inhibitors for Designing Novel Anti-melanoma Agents.

    PubMed

    Medeiros Turra, Kely; Pineda Rivelli, Diogo; Berlanga de Moraes Barros, Silvia; Mesquita Pasqualoto, Kerly Fernanda

    2016-07-01

    A receptor-independent (RI) four-dimensional structure-activity relationship (4D-QSAR) formalism was applied to a set of sixty-four β-N-biaryl ether sulfonamide hydroxamate derivatives, previously reported as potent inhibitors against matrix metalloproteinase subtype 9 (MMP-9). MMP-9 belongs to a group of enzymes related to the cleavage of several extracellular matrix components and has been associated to cancer invasiveness/metastasis. The best RI 4D-QSAR model was statistically significant (N=47; r(2) =0.91; q(2) =0.83; LSE=0.09; LOF=0.35; outliers=0). Leave-N-out (LNO) and y-randomization approaches indicated the QSAR model was robust and presented no chance correlation, respectively. Furthermore, it also had good external predictability (82 %) regarding the test set (N=17). In addition, the grid cell occupancy descriptors (GCOD) of the predicted bioactive conformation for the most potent inhibitor were successfully interpreted when docked into the MMP-9 active site. The 3D-pharmacophore findings were used to predict novel ligands and exploit the MMP-9 calculated binding affinity through molecular docking procedure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Crystal structure of bis­(μ-N-hy­droxy­picolin­amid­ato)bis­[bis­(N-hy­droxy­picolinamide)­sodium

    PubMed Central

    Safyanova, Inna S.; Ohui, Kateryna A.; Omelchenko, Irina V.

    2017-01-01

    The title compound, [Na2(C6H5N2O2)2(C6H6N2O2)4], is a centrosymmetric coordination dimer based on the sodium(I) salt of N-hy­droxy­picolinamide. The mol­ecule has an {Na2O6(μ-O)2} core with two bridging carbonyl O atoms and two hydroxamate O atoms of two mono-deprotonated residues of N-hy­droxy­picolinamide, while two neutral N-hy­droxy­picolinamide mol­ecules are coordinated in a monodentate manner to each sodium ion via the carbonyl O atoms [the Na—O distances range from 2.3044 (2) to 2.3716 (2) Å]. The penta­coordinated sodium ion exhibits a distorted trigonal–pyramidal coordination polyhedron. In the crystal, the coordination dimers are linked into chains along the c axis via N—H⋯O and N—H⋯N hydrogen bonds; the chains are linked into a two-dimensional framework parallel to (100) via weak C—H⋯O and π–π stacking inter­actions. PMID:28083127

  3. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity.

    PubMed

    Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P; Lewis, Timothy A; Maglathin, Rebecca L; McLean, Thomas H; Bochkarev, Alexey; Plotnikov, Alexander N; Vedadi, Masoud; Arrowsmith, Cheryl H

    2008-04-25

    Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators.

  4. The bacterial alarmone (p)ppGpp activates the type III secretion system in Erwinia amylovora.

    PubMed

    Ancona, Veronica; Lee, Jae Hoon; Chatnaparat, Tiyakhon; Oh, Jinrok; Hong, Jong-In; Zhao, Youfu

    2015-04-01

    The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp(0)) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp(0) and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp(0) and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for the regulation of the T3SS and virulence in plant-pathogenic bacteria. Furthermore, the recovery of an spoT null mutant, which displayed very unique phenotypes, suggested that small proteins containing a single ppGpp hydrolase domain are functional. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. The Bacterial Alarmone (p)ppGpp Activates the Type III Secretion System in Erwinia amylovora

    PubMed Central

    Ancona, Veronica; Lee, Jae Hoon; Chatnaparat, Tiyakhon; Oh, Jinrok; Hong, Jong-In

    2015-01-01

    ABSTRACT The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp0) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp0 and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp0 and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. IMPORTANCE The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for the regulation of the T3SS and virulence in plant-pathogenic bacteria. Furthermore, the recovery of an spoT null mutant, which displayed very unique phenotypes, suggested that small proteins containing a single ppGpp hydrolase domain are functional. PMID:25666138

  6. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation.

    PubMed

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Χu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-09-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS‑2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro‑inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of RSV infection validated these results. Treatment with HDACis alleviated airway inflammation and reduced in vivo RSV replication. Our data demonstrated that RSV reduced histone acetylation by enhancing HDAC2 expression. Treatment with HDACis (TSA/SAHA) significantly inhibited RSV replication and decreased RSV-induced airway inflammation and oxidative stress. Therefore, the inhibition of HDACs represents a novel therapeutic approach in modulating RSV-induced lung disease.

  7. Design, Synthesis and Biological Evaluation of Histone Deacetylase (HDAC) Inhibitors: Saha (Vorinostat) Analogs and Biaryl Indolyl Benzamide Inhibitors Display Isoform Selectivity

    NASA Astrophysics Data System (ADS)

    Negmeldin, Ahmed Thabet

    HDAC proteins have emerged as interesting targets for anti-cancer drugs due to their involvement in cancers, as well as several other diseases. Several HDAC inhibitors have been approved by the FDA as anti-cancer drugs, including SAHA (suberoylanilide hydroxamic acid, Vorinostat). Unfortunately, SAHA inhibits most HDAC isoforms, which limit its use as a pharmacological tool and may lead to side effects in the clinic. In this work we were interested in developing isoform selective HDAC inhibitors, which may decrease or eliminate the side effects associated with non-selective inhibitors treatment. In addition, isoform selective HDAC inhibitors can be used as biological tools to help understand the HDAC-related cancer biology. Our strategy was based on synthesis and screening of several derivatives of the non-selective FDA approved drug SAHA substituted at different positions of the linker region. Several SAHA analogs modified at the C4 and C5 positions of the linker were synthesized. The new C4- and C5-modified SAHA libraries, along with the previously synthesized C2-modified SAHA analogs were screened in vitro and in cellulo for HDAC isoform selectivity. Interestingly, several analogs exhibited dual HDAC6/HDAC8 selectivity. Enantioselective syntheses of the pure enantiomers of some of the interesting analogs were performed and the enantiomers were screened in vitro. Among the most interesting analogs, ( R)-C4-benzyl SAHA displayed 520- to 1300-fold selectivity for HDAC6 and HDAC8 over HDAC1, 2, and 3, with IC50 values of 48 and 27 nM with HDAC6 and 8, respectively. Docking studies were performed to provide structural rationale for the observed selectivity of the new analogs. In addition, rational design, synthesis, and screening of several other biaryl indolyl benzamide HDAC inhibitors is discussed, and some showed modest HDAC1 selectivity. The new biaryl indolyl benzamides can be useful to further develop HDAC1 selective inhibitors. The dual HDAC6/8 selective inhibitors can be used as lead compounds and as a chemical tool to study HDAC related cancer biology. The observed enhancement of selectivity upon modifying the linker region of the non-selective inhibitor SAHA shows that modifying current drugs, like SAHA, could lead to substantial improvement in its pharmacodynamic properties.

  8. X-ray photoelectron spectroscopic evidence for bacteria-enhanced dissolution of hornblende

    NASA Astrophysics Data System (ADS)

    Kalinowski, B. E.; Liermann, L. J.; Brantley, S. L.; Barnes, A.; Pantano, C. G.

    2000-04-01

    An Arthrobacter species capable of extracting Fe from hornblende was isolated from a soil from the Adirondacks, NY (USA). This bacteria isolate, used in batch experiments with hornblende, accelerated the release of Fe from hornblende without measurably affecting Al release. The isolate produces both low molecular weight organic acids (LMWOA) and a catecholate siderophore. Polished hornblende (glass and crystal) discs were analyzed with X-ray photoelectron spectroscopy (XPS) before and after incubation with growing Arthrobacter sp. to investigate whether the bacteria caused a distinguishable chemical signature on the upper 100 Å of mineral surface. After removal of the arthrobacter grown on hornblende crystal or glass substrates using lysozyme, XPS revealed surface depletion of Fe for samples grown for several days in buffered (crystal) and unbuffered (crystal and glass) media. Fe/Si ratios of hornblende surfaces dissolved under biotic conditions are significantly lower than Fe/Si ratios on surfaces dissolved under abiotic conditions for similar amounts of time. Enhanced Fe release and the formation of Fe-depleted surfaces is inferred to be caused by catechol complexation at the mineral surface. Because natural siderophore was not isolated in sufficient quantities to run bacteria-free leaching experiments, parallel investigations were run with a commercially available siderophore (desferrioxamine B). Desferrioxamine B was observed to enhance release of Fe, Si, and Al from hornblende both with and without added bacteria. Formation of desferrioxamine-Fe surface complexes were probed by studying the multiple splitting and shift in intensities of the N 1s line analyzed by XPS on siderophore ± Fe on gold surfaces and siderophore + hornblende crystal surfaces. Based upon the observed formation of an hydroxamate (desferrioxamine) surface complex on hornblende, we infer that catecholate siderophores, such as those produced by the arthrobacter, also complex on the hornblende surface. Surface complexation is favored because of the extremely high association constants for siderophore + Fe(III). X-ray photoelectron spectroscopic data is therefore consistent with a model wherein enhanced Fe release by these bacteria or desferrioxamine B is caused by Fe-siderophore complexation at the silicate surface. Such complexation presumably weakens bonds between the Fe and the oxide lattice, causing enhanced Fe leaching and an Fe-depleted surface. Some leaching may also be due to LMWOA, although this is interpreted to be of secondary importance.

  9. Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching

    PubMed Central

    2014-01-01

    Background Acetylation of lysine residues in histone tails plays an important role in the regulation of gene transcription. Bromdomains are the readers of acetylated histone marks, and, consequently, bromodomain-containing proteins have a variety of chromatin-related functions. Moreover, they are increasingly being recognised as important mediators of a wide range of diseases. The first potent and selective bromodomain inhibitors are beginning to be described, but the diverse or unknown functions of bromodomain-containing proteins present challenges to systematically demonstrating cellular efficacy and selectivity for these inhibitors. Here we assess the viability of fluorescence recovery after photobleaching (FRAP) assays as a target agnostic method for the direct visualisation of an on-target effect of bromodomain inhibitors in living cells. Results Mutation of a conserved asparagine crucial for binding to acetylated lysines in the bromodomains of BRD3, BRD4 and TRIM24 all resulted in reduction of FRAP recovery times, indicating loss of or significantly reduced binding to acetylated chromatin, as did the addition of known inhibitors. Significant differences between wild type and bromodomain mutants for ATAD2, BAZ2A, BRD1, BRD7, GCN5L2, SMARCA2 and ZMYND11 required the addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) to amplify the binding contribution of the bromodomain. Under these conditions, known inhibitors decreased FRAP recovery times back to mutant control levels. Mutation of the bromodomain did not alter FRAP recovery times for full-length CREBBP, even in the presence of SAHA, indicating that other domains are primarily responsible for anchoring CREBBP to chromatin. However, FRAP assays with multimerised CREBBP bromodomains resulted in a good assay to assess the efficacy of bromodomain inhibitors to this target. The bromodomain and extraterminal protein inhibitor PFI-1 was inactive against other bromodomain targets, demonstrating the specificity of the method. Conclusions Viable FRAP assays were established for 11 representative bromodomain-containing proteins that broadly cover the bromodomain phylogenetic tree. Addition of SAHA can overcome weak binding to chromatin, and the use of tandem bromodomain constructs can eliminate masking effects of other chromatin binding domains. Together, these results demonstrate that FRAP assays offer a potentially pan-bromodomain method for generating cell-based assays, allowing the testing of compounds with respect to cell permeability, on-target efficacy and selectivity. PMID:25097667

  10. Trapping a Highly Reactive Nonheme Iron Intermediate That Oxygenates Strong C-H Bonds with Stereoretention.

    PubMed

    Serrano-Plana, Joan; Oloo, Williamson N; Acosta-Rueda, Laura; Meier, Katlyn K; Verdejo, Begoña; García-España, Enrique; Basallote, Manuel G; Münck, Eckard; Que, Lawrence; Company, Anna; Costas, Miquel

    2015-12-23

    An unprecedentedly reactive iron species (2) has been generated by reaction of excess peracetic acid with a mononuclear iron complex [Fe(II)(CF3SO3)2(PyNMe3)] (1) at cryogenic temperatures, and characterized spectroscopically. Compound 2 is kinetically competent for breaking strong C-H bonds of alkanes (BDE ≈ 100 kcal·mol(-1)) through a hydrogen-atom transfer mechanism, and the transformations proceed with stereoretention and regioselectively, responding to bond strength, as well as to steric and polar effects. Bimolecular reaction rates are at least an order of magnitude faster than those of the most reactive synthetic high-valent nonheme oxoiron species described to date. EPR studies in tandem with kinetic analysis show that the 490 nm chromophore of 2 is associated with two S = 1/2 species in rapid equilibrium. The minor component 2a (∼5% iron) has g-values at 2.20, 2.19, and 1.99 characteristic of a low-spin iron(III) center, and it is assigned as [Fe(III)(OOAc)(PyNMe3)](2+), also by comparison with the EPR parameters of the structurally characterized hydroxamate analogue [Fe(III)(tBuCON(H)O)(PyNMe3)](2+) (4). The major component 2b (∼40% iron, g-values = 2.07, 2.01, 1.95) has unusual EPR parameters, and it is proposed to be [Fe(V)(O)(OAc)(PyNMe3)](2+), where the O-O bond in 2a has been broken. Consistent with this assignment, 2b undergoes exchange of its acetate ligand with CD3CO2D and very rapidly reacts with olefins to produce the corresponding cis-1,2-hydroxoacetate product. Therefore, this work constitutes the first example where a synthetic nonheme iron species responsible for stereospecific and site selective C-H hydroxylation is spectroscopically trapped, and its catalytic reactivity against C-H bonds can be directly interrogated by kinetic methods. The accumulated evidence indicates that 2 consists mainly of an extraordinarily reactive [Fe(V)(O)(OAc)(PyNMe3)](2+) (2b) species capable of hydroxylating unactivated alkyl C-H bonds with stereoretention in a rapid and site-selective manner, and that exists in fast equilibrium with its [Fe(III)(OOAc)(PyNMe3)](2+) precursor.

  11. Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities.

    PubMed

    Chao, Shi-Wei; Chen, Liang-Chieh; Yu, Chia-Chun; Liu, Chang-Yi; Lin, Tony Eight; Guh, Jih-Hwa; Wang, Chen-Yu; Chen, Chun-Yung; Hsu, Kai-Cheng; Huang, Wei-Jan

    2018-01-01

    Histone deacetylase (HDAC) is a validated drug target for various diseases. This study combined indole recognition cap with SAHA, an FDA-approved HDAC inhibitor used to treat cutaneous T-cell lymphoma (CTCL). The structure activity relationship of the resulting compounds that inhibited HDAC was disclosed as well. Some compounds exhibited much stronger inhibitory activities than SAHA. We identified two meta-series compounds 6j and 6k with a two-carbon linker had IC 50 values of 3.9 and 4.5 nM for HDAC1, respectively. In contrast, the same oriented compounds with longer carbon chain linkers showed weaker inhibition. The result suggests that the linker chain length greatly contributed to enzyme inhibitory potency. In addition, comparison of enzyme-inhibiting activity between the compounds and SAHA showed that compounds 6j and 6k displayed higher inhibiting activity for class I (HDAC1, -2, -3 and -8). The molecular docking and structure analysis revealed structural differences with the inhibitor cap and metal-binding regions between the HDAC isozymes that affect interactions with the inhibitors and play a key role for selectivity. Further biological evaluation showed multiple cellular effects associated with compounds 6j- and 6k-induced HDAC inhibitory activity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Neurocytoprotective Effects of Aliphatic Hydroxamates from Lovastatin, a Secondary Metabolite from Monascus-Fermented Red Mold Rice, in 6-Hydroxydopamine (6-OHDA)-Treated Nerve Growth Factor (NGF)-Differentiated PC12 Cells.

    PubMed

    Lin, Chien-Min; Lin, Yi-Tzu; Lin, Rong-Dih; Huang, Wei-Jan; Lee, Mei-Hsien

    2015-05-20

    Lovastatin, a secondary metabolite isolated from Monascus-fermented red rice mold, has neuroprotective activity and permeates the blood-brain barrier. The aim of this study was to enhance the activity of lovastatin for potential use as a treatment for neuronal degeneration in Parkinson's disease. Six lovastatin-derived compounds were semisynthesized and screened for neurocytoprotective activity against 6-hydroxydopamine (6-OHDA)-induced toxicity in human neuroblastoma PC12 cells. Four compounds, designated as 3a, 3d, 3e, and 3f, significantly enhanced cell viability. In particular, compound 3f showed excellent neurocytoprotective activity (97.0 ± 2.7%). Annexin V-FITC and propidium iodide double staining and 4',6-diamidino-2-phenylindole staining indicated that compound 3f reduced 6-OHDA-induced apoptosis in PC12 cells. Compound 3f also reduced caspase-3, -8, and -9 activities, and intracellular calcium concentrations elevated by 6-OHDA in a concentration-dependent manner, without inhibiting reactive oxygen species generation. JC-1 staining indicated that compound 3f also stabilized mitochondrial membrane potential. Thus, compound 3f may be used as a neurocytoprotective agent. Future studies should investigate its potential application as a treatment for Parkinson's disease.

  13. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases

    PubMed Central

    Qi, Jun; Kizjakina, Karina; Robinson, Reeder; Tolani, Karishma; Sobrado, Pablo

    2014-01-01

    N-hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and mycobacteria. NMOs catalyze the hydroxylation of lysine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of l-kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington’s and Alzheimer’s diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin monooxygenases. Fluorescently-labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a Kd value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with Kd values of 2.1 ± 0.2 μM and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we showed that this assay can be used to identify inhibitors of NMOs. A Z’-factor of 0.77 was calculated and we show that the assay exhibits good tolerance to temperature, incubation time, and DMSO concentration. PMID:22410281

  14. Cyanogenic Pseudomonas spp. strains are concentrated in the rhizosphere of alpine pioneer plants.

    PubMed

    Rijavec, Tomaž; Lapanje, Aleš

    2017-01-01

    HCN producing bacteria have previously been isolated from alpine mineral soil and their ecophysiology was presumed to be associated with mineral weathering. Nevertheless, the high ecological patchiness of the alpine environment calls for an extensive and detailed analysis of the spatial distribution of HCN producing bacterial populations and their associated weathering traits. Our results of such an analysis showed that primarily the rhizosphere of pioneer plants was rich in HPPs, harbouring the most potent HCN producers. HCN production incidence and intensity were dependent on the plant-associated microhabitat and type of bedrock/mineral soil, however the HCN+ phenotype was not associated with one of the particular genotypes which we determined by BOX-PCR. In HPP isolates, HCN production most commonly co-occurred with the production of hydroxamate-type siderophores, but was less often associated with inorganic phosphate solubilization activity and the production of catechol-type siderophores. These observations indicate that a plant's physiotype, not species, provide physicochemical conditions that determine selective pressure, which enables the growth of Pseudomonas spp. with a random genotype, but phenotypically predetermined to increase mineral weathering via a particular combination of phosphate solubilization and iron complexation with siderophores and HCN. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases.

    PubMed

    Qi, Jun; Kizjakina, Karina; Robinson, Reeder; Tolani, Karishma; Sobrado, Pablo

    2012-06-01

    N-Hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and bacteria. NMOs catalyze the hydroxylation of sine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington's and Alzheimer's diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin-dependent monooxygenases. Fluorescently labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a K(d) value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with K(d) values of 2.1 ± 0.2 and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we show that this assay can be used to identify inhibitors of NMOs. A Z' factor of 0.77 was calculated, and we show that the assay exhibits good tolerance to temperature, incubation time, and dimethyl sulfoxide concentration. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. An Unprecedented NADPH Domain Conformation in Lysine Monooxygenase NbtG Provides Insights into Uncoupling of Oxygen Consumption from Substrate Hydroxylation

    DOE PAGES

    Binda, Claudia; Robinson, Reeder M.; Martin del Campo, Julia S.; ...

    2015-03-23

    N-hydroxylating monooxygenases (NMOs) are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines, such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on D-Lys although it binds L-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producingmore » more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the FAD domain that precludes binding of the nicotinamide cofactor. This “occluded” structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. We discuss the biological implications of these findings.« less

  17. Structures of plutonium coordination compounds: A review of past work, recent single crystal x-ray diffraction results, and what we're learning about plutonium coordination chemistry

    NASA Astrophysics Data System (ADS)

    Neu, M. P.; Matonic, J. H.; Smith, D. M.; Scott, B. L.

    2000-07-01

    The compounds we have isolated and characterized include plutonium(III) and plutonium(IV) bound by ligands with a range of donor types and denticity (halide, phosphine oxide, hydroxamate, amine, sulfide) in a variety of coordination geometries. For example, we have obtained the first X-ray structure of Pu(III) complexed by a soft donor ligand. Using a "one pot" synthesis beginning with Pu metal strips and iodine in acetonitrile and adding trithiacyclononane we isolated the complex, PuI3(9S3)(MeCN)2 (Figure 1). On the other end of the coordination chemistry spectrum, we have obtained the first single crystal structure of the Pu(IV) hexachloro anion (Figure 2). Although this species has been used in plutonium purification via anion exchange chromatography for decades, the bond distances and exact structure were not known. We have also characterized the first plutonium-biomolecule complex, Pu(IV) bound by the siderophore desferrioxamine E.In this presentation we will review the preparation, structures, and importance of previously known coordination compounds and of those we have recently isolated. We will show the coordination chemistry of plutonium is rich and varied, well worth additional exploration.

  18. A Simple Small Size and Low Cost Sensor Based on Surface Plasmon Resonance for Selective Detection of Fe(III)

    PubMed Central

    Cennamo, Nunzio; Alberti, Giancarla; Pesavento, Maria; D'Agostino, Girolamo; Quattrini, Federico; Biesuz, Raffaela; Zeni, Luigi

    2014-01-01

    A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests. PMID:24608007

  19. A simple small size and low cost sensor based on surface plasmon resonance for selective detection of Fe(III).

    PubMed

    Cennamo, Nunzio; Alberti, Giancarla; Pesavento, Maria; D'Agostino, Girolamo; Quattrini, Federico; Biesuz, Raffaela; Zeni, Luigi

    2014-03-07

    A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests.

  20. Actinobacteria phylogenomics, selective isolation from an iron oligotrophic environment and siderophore functional characterization, unveil new desferrioxamine traits.

    PubMed

    Cruz-Morales, Pablo; Ramos-Aboites, Hilda E; Licona-Cassani, Cuauhtémoc; Selem-Mójica, Nelly; Mejía-Ponce, Paulina M; Souza-Saldívar, Valeria; Barona-Gómez, Francisco

    2017-09-01

    Desferrioxamines are hydroxamate siderophores widely conserved in both aquatic and soil-dwelling Actinobacteria. While the genetic and enzymatic bases of siderophore biosynthesis and their transport in model families of this phylum are well understood, evolutionary studies are lacking. Here, we perform a comprehensive desferrioxamine-centric (des genes) phylogenomic analysis, which includes the genomes of six novel strains isolated from an iron and phosphorous depleted oasis in the Chihuahuan desert of Mexico. Our analyses reveal previously unnoticed desferrioxamine evolutionary patterns, involving both biosynthetic and transport genes, likely to be related to desferrioxamines chemical diversity. The identified patterns were used to postulate experimentally testable hypotheses after phenotypic characterization, including profiling of siderophores production and growth stimulation of co-cultures under iron deficiency. Based in our results, we propose a novel des gene, which we term desG, as responsible for incorporation of phenylacetyl moieties during biosynthesis of previously reported arylated desferrioxamines. Moreover, a genomic-based classification of the siderophore-binding proteins responsible for specific and generalist siderophore assimilation is postulated. This report provides a much-needed evolutionary framework, with specific insights supported by experimental data, to direct the future ecological and functional analysis of desferrioxamines in the environment. © FEMS 2017.

  1. Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis.

    PubMed

    Pi, Hualiang; Helmann, John D

    2017-11-28

    Bacterial cells modulate transcription in response to changes in iron availability. The ferric uptake regulator (Fur) senses intracellular iron availability and plays a central role in maintaining iron homeostasis in Bacillus subtilis Here we utilized FrvA, a high-affinity Fe 2+ efflux transporter from Listeria monocytogenes , as an inducible genetic tool to deplete intracellular iron. We then characterized the responses of the Fur, FsrA, and PerR regulons as cells transition from iron sufficiency to deficiency. Our results indicate that the Fur regulon is derepressed in three distinct waves. First, uptake systems for elemental iron ( efeUOB ), ferric citrate ( fecCDEF ), and petrobactin ( fpbNOPQ ) are induced to prevent iron deficiency. Second, B. subtilis synthesizes its own siderophore bacillibactin ( dhbACEBF ) and turns on bacillibactin ( feuABC ) and hydroxamate siderophore ( fhuBCGD ) uptake systems to scavenge iron from the environment and flavodoxins ( ykuNOP ) to replace ferredoxins. Third, as iron levels decline further, an "iron-sparing" response ( fsrA , fbpAB , and fbpC ) is induced to block the translation of abundant iron-utilizing proteins and thereby permit the most essential iron-dependent enzymes access to the limited iron pools. ChIP experiments demonstrate that in vivo occupancy of Fur correlates with derepression of each operon, and the graded response observed here results, at least in part, from higher-affinity binding of Fur to the "late"-induced genes.

  2. Targeting histone deacetylase inhibitors for anti-malarial therapy.

    PubMed

    Andrews, Katherine T; Tran, Thanh N; Wheatley, Nicole C; Fairlie, David P

    2009-01-01

    It is now clear that histone acetylation plays key roles in regulating gene transcription in both eukaryotes and prokaryotes, the acetylated form inducing gene expression while deacetylation silences genes. Recent studies have identified roles for histone acetyltransferases (HATs) and/or histone deacetylases (HDACs) in a number of parasites including Entamoeba histolytica, Toxoplasma gondii, Schistosoma mansoni, Cryptosporidium sp., Leishmania donovani, Neospora caninum, and Plasmodium falciparum. Here we survey fairly limited efforts to date in profiling antimalarial activities of HDAC inhibitors, showing that such compounds are potent inhibitors of the growth of P. falciparum in vitro and in vivo. Most of the compounds evaluated so far have borne a zinc-binding hydroxamate group that tends to be metabolized in vivo, and thus new zinc-binding groups need to be incorporated into second generation inhibitors in order to mask the catalytic zinc in the active site of HDACs. Also the development of compounds that are selective for parasitic HDACs over mammalian HDACs is still in relative infancy and it will take some time to derive antiparasitic HDAC inhibitor compounds with minimal toxicity for the host and acceptable pharmacokinetic and pharmacodynamic profiles for human treatment. Nevertheless, results to date suggest that HDAC inhibitor development represents a promising new approach to the potential treatment of parasitic infections, including those induced by malaria protozoa, and may offer new therapeutic targets within increasingly drug-resistant malarial parasites.

  3. Docking modes of BB-3497 into the PDF active site--a comparison of the pure MM and QM/MM based docking strategies.

    PubMed

    Kumari, Tripti; Issar, Upasana; Kakkar, Rita

    2014-01-01

    Peptide deformylase (PDF) has emerged as an important antibacterial drug target. Considerable effort is being directed toward developing peptidic and non-peptidic inhibitors for this metalloprotein. In this work, the known peptidic inhibitor BB-3497 and its various ionization and tautomeric states are evaluated for their inhibition efficiency against PDF using a molecular mechanics (MM) approach as well as a mixed quantum mechanics/molecular mechanics (QM/MM) approach, with an aim to understand the interactions in the binding site. The evaluated Gibbs energies of binding with the mixed QM/MM approach are shown to have the best predictive power. The experimental pose is found to have the most negative Gibbs energy of binding, and also the smallest strain energy. A quantum mechanical evaluation of the active site reveals the requirement of strong chelation by the ligand with the metal ion. The investigated ligand chelates the metal ion through the two oxygens of its reverse hydroxamate moiety, particularly the N-O(-) oxygen, forming strong covalent bonds with the metal ion, which is penta-coordinated. In the uninhibited state, the metal ion is tetrahedrally coordinated, and hence chelation with the inhibitor is associated with an increase of the metal ion coordination. Thus, the strong binding of the ligand at the binding site is accounted for.

  4. Preclinical Pharmacokinetics Study of R- and S-Enantiomers of the Histone Deacetylase Inhibitor, AR-42 (NSC 731438), in Rodents.

    PubMed

    Cheng, Hao; Xie, Zhiliang; Jones, William P; Wei, Xiaohui Tracey; Liu, Zhongfa; Wang, Dasheng; Kulp, Samuel K; Wang, Jiang; Coss, Christopher C; Chen, Ching-Shih; Marcucci, Guido; Garzon, Ramiro; Covey, Joseph M; Phelps, Mitch A; Chan, Kenneth K

    2016-05-01

    AR-42, a new orally bioavailable, potent, hydroxamate-tethered phenylbutyrate class I/IIB histone deacetylase inhibitor currently is under evaluation in phase 1 and 2 clinical trials and has demonstrated activity in both hematologic and solid tumor malignancies. This report focuses on the preclinical characterization of the pharmacokinetics of AR-42 in mice and rats. A high-performance liquid chromatography-tandem mass spectrometry assay has been developed and applied to the pharmacokinetic study of the more active stereoisomer, S-AR-42, when administered via intravenous and oral routes in rodents, including plasma, bone marrow, and spleen pharmacokinetics (PK) in CD2F1 mice and plasma PK in F344 rats. Oral bioavailability was estimated to be 26 and 100% in mice and rats, respectively. R-AR-42 was also evaluated intravenously in rats and was shown to display different pharmacokinetics with a much shorter terminal half-life compared to that of S-AR-42. Renal clearance was a minor elimination pathway for parental S-AR-42. Oral administration of S-AR-42 to tumor-bearing mice demonstrated high uptake and exposure of the parent drug in the lymphoid tissues, spleen, and bone marrow. This is the first report of the pharmacokinetics of this novel agent, which is now in early phase clinical trials.

  5. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Nicolaisen, Kerstin; Hahn, Alexander; Valdebenito, Marianne; Moslavac, Suncana; Samborski, Anastazia; Maldener, Iris; Wilken, Corinna; Valladares, Ana; Flores, Enrique; Hantke, Klaus; Schleiff, Enrico

    2010-11-01

    Iron uptake is essential for Gram-negative bacteria including cyanobacteria. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as a cofactor in photosynthesis and nitrogen fixation, but our understanding of iron uptake by cyanobacteria stands behind the knowledge in proteobacteria. Here, two genes involved in this process in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were identified. ORF all4025 encodes SchE, a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. Inactivation of schE resulted in an enhanced sensitivity to high metal concentrations and decreased secretion of hydroxamate-type siderophores. ORF all4026 encodes a predicted outer membrane-localized TonB-dependent iron transporter, IacT. Inactivation of iacT resulted in decreased sensitivity to elevated iron and copper levels. Expression of iacT from the artificial trc promoter (P(trc)) resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because a decreased supply of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in the strain carrying P(trc)-iacT. Our results unravel a link between iron and copper homeostasis in Anabaena sp. PCC 7120. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Response of Staphylococcus aureus isolates from bovine mastitis to exogenous iron sources.

    PubMed

    Diarra, M S; Petitclerc, D; Lacasse, P

    2002-09-01

    Staphylococcus aureus can survive in conditions of extremely low iron concentration. The ability of S. aureus to use two exogenous hydroxamate types of siderophores (desferrioxamine and ferrichrome) and four iron-containing proteins found in cattle (hemin, hemoglobin, ferritin, and lactoferrin) were tested on 16 reference and clinical isolates. For all strains tested, ferrichrome and desferrioxamine showed strong growth-promoting activities in a disk diffusion assay and in liquid medium. The heme proteins hemin and hemoglobin were also found to support growth in culture media lacking other iron sources, while lactoferrin failed to do so. On media containing the iron chelator dipyridyl, ferritin induced a growth inhibition effect that was further enhanced in the presence of lactoferrin in seven of the 13 tested strains. Staphylococcus aureus was able to bind hemin and the level of binding activity was not increased after growth in iron-rich or -poor media. Dot-blot competition tests showed that biotin-labeled lactoferrin binds to S. aureus, and this binding can be inhibited by unlabeled lactoferrin. Expression of lactoferrin-binding activity was independent of the level of iron in the medium and the iron saturation status of lactoferrin. For each strain tested, ligand blots showed lactoferrin-binding proteins of molecular weights ranging from 32 to 92 kDa. Possible functions of these lactoferrin-binding proteins could not be related to iron acquisition mechanism in S. aureus.

  7. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    PubMed

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Gaseous signalling molecule SO2 via Hippo-MST pathway to improve myocardial fibrosis of diabetic rats

    PubMed Central

    Liu, Maojun; Liu, Shengquan; Tan, Wenting; Tang, Fen; Long, Junrong; Li, Zining; Liang, Biao; Chu, Chun; Yang, Jun

    2017-01-01

    Recent studies have indicated the existence of an endogenous sulfur dioxide (SO2)-generating system in the cardiovascular system. The present study aimed to discuss the function and regulatory mechanism of gaseous signal molecule SO2 in inhibiting apoptosis and endoplasmic reticulum stress (ERS) via the Hippo-MST signaling pathway to improve myocardial fibrosis of diabetic rats. A total of 40 male Sprague-Dawley rats were randomly divided into four groups (10 rats per group): Normal control group (control group), diabetic rats group [streptozotocin (STZ) group], SO2 intervention group (STZ+SO2 group) and diabetes mellitus rats treated with L-Aspartic acid β-hydroxamate (HDX) group (HDX group). Diabetic rats models were established by intra-peritoneal injection of STZ (40 mg/kg) Following model establishment, intra-peritoneal injection of Na2SO3/NaHSO3 solution (0.54 mmol/kg) was administered in the STZ+SO2 group, and HDX solution (25 mg/kg/week) was administered in the HDX group. A total of 4 weeks later, echocardiography was performed to evaluate rats' cardiac function; Masson staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and transmission electron microscopy examinations were performed to observe myocardial morphological changes. ELISA was employed to determine the SO2 content. Western blot analysis was performed to detect the expression of proteins associated with apoptosis, ERS and the Hippo-MST signalling pathway. Compared with the control group, the STZ group and HDX group had a disordered arrangement of myocardial cells with apparent myocardial fibrosis, and echocardiography indicated that the cardiac function was lowered, there was an obvious increase of apoptosis in myocardial tissue, the expression levels of apoptosis-associated protein B-cell lymphoma associated protein X, caspase-3 and caspase-9 were upregulated, and Bcl-2 expression was downregulated. The expression of ERS and Hippo-MST pathway-associated proteins, including CHOP, GRP94, MST1 and MST2, were significantly upregulated. By contrast, these above-mentioned changes were reversed by SO2 treatment. Compared with STZ group, the HDX group had a further increase of myocardial fibrosis and apoptosis, while there were no statistically significant differences in the expression of Bax/Bcl-2, caspase-3, caspase-9 and ERS and Hippo-MST pathway-associated proteins. The results of the present study demonstrated that the gaseous signal molecule SO2 can effectively improve the myocardial fibrosis of diabetic rats, and its mechanism may be associated with reduced apoptosis and ERS by downregulated Hippo-MST pathway. PMID:28990064

  9. Gaseous signalling molecule SO2 via Hippo‑MST pathway to improve myocardial fibrosis of diabetic rats.

    PubMed

    Liu, Maojun; Liu, Shengquan; Tan, Wenting; Tang, Fen; Long, Junrong; Li, Zining; Liang, Biao; Chu, Chun; Yang, Jun

    2017-12-01

    Recent studies have indicated the existence of an endogenous sulfur dioxide (SO2)‑generating system in the cardiovascular system. The present study aimed to discuss the function and regulatory mechanism of gaseous signal molecule SO2 in inhibiting apoptosis and endoplasmic reticulum stress (ERS) via the Hippo‑MST signaling pathway to improve myocardial fibrosis of diabetic rats. A total of 40 male Sprague‑Dawley rats were randomly divided into four groups (10 rats per group): Normal control group (control group), diabetic rats group [streptozotocin (STZ) group], SO2 intervention group (STZ+SO2 group) and diabetes mellitus rats treated with L‑Aspartic acid β‑hydroxamate (HDX) group (HDX group). Diabetic rats models were established by intra‑peritoneal injection of STZ (40 mg/kg) Following model establishment, intra‑peritoneal injection of Na2SO3/NaHSO3 solution (0.54 mmol/kg) was administered in the STZ+SO2 group, and HDX solution (25 mg/kg/week) was administered in the HDX group. A total of 4 weeks later, echocardiography was performed to evaluate rats' cardiac function; Masson staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and transmission electron microscopy examinations were performed to observe myocardial morphological changes. ELISA was employed to determine the SO2 content. Western blot analysis was performed to detect the expression of proteins associated with apoptosis, ERS and the Hippo‑MST signalling pathway. Compared with the control group, the STZ group and HDX group had a disordered arrangement of myocardial cells with apparent myocardial fibrosis, and echocardiography indicated that the cardiac function was lowered, there was an obvious increase of apoptosis in myocardial tissue, the expression levels of apoptosis‑associated protein B‑cell lymphoma associated protein X, caspase‑3 and caspase‑9 were upregulated, and Bcl‑2 expression was downregulated. The expression of ERS and Hippo‑MST pathway‑associated proteins, including CHOP, GRP94, MST1 and MST2, were significantly upregulated. By contrast, these above‑mentioned changes were reversed by SO2 treatment. Compared with STZ group, the HDX group had a further increase of myocardial fibrosis and apoptosis, while there were no statistically significant differences in the expression of Bax/Bcl‑2, caspase‑3, caspase‑9 and ERS and Hippo‑MST pathway‑associated proteins. The results of the present study demonstrated that the gaseous signal molecule SO2 can effectively improve the myocardial fibrosis of diabetic rats, and its mechanism may be associated with reduced apoptosis and ERS by downregulated Hippo‑MST pathway.

  10. Siderophore-mediated oxidation of Ce and fractionation of HREE by Mn (hydr)oxide-coprecipitation and sorption on MnO2: Experimental evidence for negative Ce-anomalies in abiogenic manganese precipitates

    NASA Astrophysics Data System (ADS)

    Krämer, Dennis; Tepe, Nathalie; Bau, Michael

    2014-05-01

    We conducted experiments with Rare Earths and Yttrium (REY), where the REY were sorbed on synthetic manganese dioxide as well as on coprecipitating manganese (hydr)oxide in the presence and absence of the siderophore desferrioxamine-B (DFOB). Siderophores are a group of globally abundant biogenic complexing agents which are excreted by plants and bacteria to enhance the bioavailability of Fe in oxic environments. The model siderophore used in this study, DFOB, is a hydroxamate siderophore occurring in almost all environmental settings with concentrations in the nanomolar to millimolar range and is one of the most thoroughly studied siderophores. In the absence of siderophores and other organic ligands, trivalent Ce is usually surface-oxidized to tetravalent Ce during sorption onto manganese (hydr)oxides. Such Mn precipitates, therefore, often show positive Ce anomalies, whereas the ambient solutions exhibit negative Ce anomalies (Ohta and Kawabe, 2001). In marked contrast, however, REY sorption in the presence of DFOB produces negative Ce anomalies in the Mn precipitates and a distinct and characteristic positive Ce anomaly in the residual siderophore-bearing solution. Furthermore, the heavy REY with ionic radii larger than the radius of Sm are also almost completely prevented from sorption onto the Mn solid phases. Sorption of REY onto Mn (hydr)oxides in the presence of DFOB creates a distinct and pronounced fractionation of Ce and the heavy REY from the light and middle REY. Apart from Ce, which is oxidized in solution by the siderophore, the distribution of the other REY mimics the stability constants for multi-dentate complexes of REY with DFOB, as determined by Christenson & Schijf (2011). Heavier REY are forming stronger complexes (and are hence better "protected" from sorption) than light REY, excluding Ce. Preferential partitioning of Ce into the liquid phase during the precipitation of Mn (hydr)oxides has only rarely been described for natural Mn (hydr)oxides (e.g., Tanaka et al., 2010, Loges et al., 2012). Our experimental results demonstrate that biogenic organic ligands such as hydroxamate siderophores, may produce solutions with positive Ce anomaly (Bau et al., 2013) and may even counteract the surface oxidation of Ce on Mn (hydr)oxides. References Bau, M., Tepe, N., Mohwinkel, D., 2013. Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water. Earth Planet. Sci. Lett. 364, 30-36. Christenson E. A. and Schijf J. (2011) Stability of YREE complexes with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength. Geochim. Cosmochim. Acta 75, 7047-7062. Loges, A., Wagner, T., Barth, M., Bau, M., Göb, S., and Markl, G. 2012. Negative Ce anomalies in Mn oxides: The role of Ce4+ mobility during water-mineral interaction. Geochimica and Cosmochimica Acta 86, 296-317 Ohta A. and Kawabe I. (2001) REE (III) adsorption onto Mn dioxide (delta-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by delta-MnO2. Geochim. Cosmochim. Acta 65, 695-703. Tanaka K., Tani Y., Takahashi Y., Tanimizu M., Suzuki Y., Kozai N. and Ohnuki T. (2010) A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. Geochim. Cosmochim. Acta 74, 5463-5477.

  11. Structural and Functional Characterization of Aerobactin Synthetase IucA from a Hypervirulent Pathotype of Klebsiella pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Daniel C.; Drake, Eric J.; Grant, Thomas D.

    Iron is a vital mineral nutrient required by virtually all life forms to prosper; pathogenic bacteria are no exception. Despite the abundance of iron within the human host, highly regulated iron physiology can result in exceedingly low levels of iron bioavailable to prospective invading bacteria. To combat this scarcity of iron, many pathogenic bacteria have acquired specific and efficient iron acquisition systems, which allow them to thrive in iron-deficient host environments. One of the more prominent bacterial iron acquisition systems involves the synthesis, secretion, and reuptake of small-molecule iron chelators known as siderophores. Aerobactin, a citrate-hydroxamate siderophore originally isolated nearlymore » 50 years ago, is produced by a number of pathogenic Gram-negative bacteria. Aerobactin has recently been demonstrated to play a pivotal role in mediating the enhanced virulence of a particularly invasive pathotype of Klebsiella pneumoniae (hvKP). Toward further understanding of this key virulence factor, we report the structural and functional characterization of aerobactin synthetase IucA from a strain of hvKP. The X-ray crystal structures of unliganded and ATP-bound forms of IucA were solved, forming the foundation of our structural analysis. Small angle X-ray scattering (SAXS) data suggest that, unlike its closest structurally characterized homologues, IucA adopts a tetrameric assembly in solution. Finally, we employed activity assays to investigate the substrate specificity and determine the apparent steady-state kinetic parameters of IucA.« less

  12. Molecular design of flotation collectors: A recent progress.

    PubMed

    Liu, Guangyi; Yang, Xianglin; Zhong, Hong

    2017-08-01

    The nature of froth flotation is to selectively hydrophobize valuable minerals by collector adsorption so that the hydrophobized mineral particles can attach air bubbles. In recent years, the increasing commercial production of refractory complex ores has been urgent to develop special collectors for enhancing flotation separation efficiency of valuable minerals from these ores. Molecular design methods offer an effective way for understanding the structure-property relationship of flotation collectors and developing new ones. The conditional stability constant (CSC), molecular mechanics (MM), quantitative structure-activity relationship (QSAR), and first-principle theory, especially density functional theory (DFT), have been adopted to build the criteria for designing flotation collectors. Azole-thiones, guanidines, acyl thioureas and thionocarbamates, amide-hydroxamates, and double minerophilic-group surfactants such as Gemini, dithiourea and dithionocarbamate molecules have been recently developed as high-performance collectors. To design hydrophobic groups, the hydrophilic-hydrophobic balance parameters have been extensively used as criteria. The replacement of aryl group with aliphatic group or CC single bond(s) with CC double bond(s), reduction of carbon numbers, introduction of oxygen atom(s) and addition of trisiloxane to the tail terminal have been proved to be useful approaches for adjusting the surface activity of collectors. The role of molecular design of collectors in practical flotation applications was also summarized. Based on the critical review, some comments and prospects for further research on molecular design of flotation collectors were also presented in the paper. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Expression of multidrug resistance efflux pump gene norA is iron responsive in Staphylococcus aureus.

    PubMed

    Deng, Xin; Sun, Fei; Ji, Quanjiang; Liang, Haihua; Missiakas, Dominique; Lan, Lefu; He, Chuan

    2012-04-01

    Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl(3) repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus.

  14. Expression of Multidrug Resistance Efflux Pump Gene norA Is Iron Responsive in Staphylococcus aureus

    PubMed Central

    Deng, Xin; Sun, Fei; Ji, Quanjiang; Liang, Haihua; Missiakas, Dominique; Lan, Lefu

    2012-01-01

    Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl3 repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus. PMID:22267518

  15. Molecular binding mechanisms of aqueous cadmium and lead to siderophores, bacteria and mineral surfaces

    NASA Astrophysics Data System (ADS)

    Mishra, Bhoopesh

    Recent studies have shown that diverse groups of bacteria adsorb metals to similar extents and uptake can be modeled using a universal adsorption model. In this study, XAFS has been used to resolve whether binding sites determined for single species systems are responsible for adsorption in more complex natural bacterial assemblages. Results obtained from a series of XAFS experiments on pure Gram positive and Gram negative bacterial strains and consortia of bacteria as a function of pH and Cd loading suggests that every bacterial strain has a complex physiology and they are all slightly different from each other. Nevertheless from the metal adsorption chemistry point of view, the main difference between them lies in the site ratio of three fundamental sites only - carboxyl, phosphoryl and sulfide. Two completely different consortia of bacteria (obtained from natural river water, and soil system with severe organic contamination) were successfully modeled in the pH range 3.4--7.8 using the EXAFS models developed for single species systems. Results thus obtained can potentially have very high impact on the modeling of the complex bacterial systems in realistic geological settings, leading to further refinement and development of robust remediation strategies for metal contamination at macroscopic level. In another study, solution speciation of Pb and Cd with DFO-B has been examined using a combination of techniques (ICP, TOC, thermodynamic modeling and XAFS). Results indicate that Pb does not complex with DFO-B at all until about pH 3.5, but forms a totally caged structure at pH 7.5. At intermediate pH conditions, mixture of species (one and two hydroxamate groups complexed) is formed. Cd on the other hand, does not complex until pH 5, forms intermediate complexes at pH 8 and is totally chelated at pH 9. Further studies were conducted for Pb sorption to mineral surface kaolinite with and without DFO-B. In the absence of DFO-B, results suggest outer sphere and inner sphere sorption of Pb on kaolinite surface at acidic and circumneutral pH conditions respectively. In the presence of DFO-B, bulk sorption studies indicated that Pb sorption is enhanced in the presence of DFO-B around pH 6 and inhibited above pH 6.5. This was confirmed by x-ray fluorescence measurements. Extended XAFS study clearly indicated unwrapping of DFO-B molecule at the surface. Our study has unambiguously recognized it as a "Type A" ternary complex ("Type A" complex means surface-metal-ligand type of interaction). Taken together, bulk adsorption measurements and XAFS experiments represent a powerful approach for determining and modeling metal speciation and adsorption.

  16. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium

    DOE PAGES

    Santschi, P. H.; Xu, C.; Zhang, S.; ...

    2017-03-09

    Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less

  17. Establishing reliable production of the PET isotope 89Zr for research use: From target fabrication to preclinical imaging

    NASA Astrophysics Data System (ADS)

    Scharli, R. K.; Price, R. I.; Chan, S.; Cryer, D.; Jeffery, C. M.; Asad, A. H.; Morandeau, L.; Eu, P.; Cullinane, C.; Kasbollah, A.; Katsifis, A.

    2012-12-01

    A semi-automated, in-house external beamline, ≤40 μA at 11.7 MeV for 120 min (degraded from 18 MeV to suppress 88Y & 88Zr co-production) produced 89Zr from 89Y(p,n)89Zr. EOB activity (by HPGe γ-spectr.) of 89Zr in target discs, derived from multiple runs, was 1.42 GBq (±0.45 GBq [SD], n=4) which was 67% (±21%, n=4) of the theoretical activity, with a maximum of 1.84 GBq (87% of theory) achieved. Recovery was 88% (±9%, n=4), radionuclidic purity >99% (n=4) and chemical purity 0.2 ppm Zr (±0.3 ppm, n=3, ICP-MS). The Zr:Y ratio improved from 1:10000 in the pre-filtered solution to 1:10 in the product purified by hydroxamate column. Efficiency of radiolabeling to monoclonal antibody (mAb; trastuzumab) was 100% and purified 89Zr did not bind non-specifically to mAb. Chelator:mAb ratio was 1.3:1. No-carrier-added specific activity of purified 89Zr was 408 MBq/μg (±26 MBq/μg, n=2) via the titration-by-chelator method. Minimum ligand concentration for which 100% labeling occurred was 302 nmol/L. Small animal PET imaging (Philips Mosaic; scan acquisition time 10 min; decay & randoms corrected; image reconstructed using a 3-D RAMLA algorithm) demonstrated marked tumor-specific uptake of 89Zr-labeled mAb but nil 'free' 89Zr (as chloride) tumor uptake.

  18. Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts

    PubMed Central

    Schuetze, Katherine B.; Stratton, Matthew S.; Blakeslee, Weston W.; Wempe, Michael F.; Wagner, Florence F.; Holson, Edward B.; Kuo, Yin-Ming; Andrews, Andrew J.; Gilbert, Tonya M.; Hooker, Jacob M.

    2017-01-01

    Inhibitors of zinc-dependent histone deacetylases (HDACs) profoundly affect cellular function by altering gene expression via changes in nucleosomal histone tail acetylation. Historically, investigators have employed pan-HDAC inhibitors, such as the hydroxamate trichostatin A (TSA), which simultaneously targets members of each of the three zinc-dependent HDAC classes (classes I, II, and IV). More recently, class- and isoform-selective HDAC inhibitors have been developed, providing invaluable chemical biology probes for dissecting the roles of distinct HDACs in the control of various physiologic and pathophysiological processes. For example, the benzamide class I HDAC-selective inhibitor, MGCD0103 [N-(2-aminophenyl)-4-[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl] benzamide], was shown to block cardiac fibrosis, a process involving excess extracellular matrix deposition, which often results in heart dysfunction. Here, we compare the mechanisms of action of structurally distinct HDAC inhibitors in isolated primary cardiac fibroblasts, which are the major extracellular matrix–producing cells of the heart. TSA, MGCD0103, and the cyclic peptide class I HDAC inhibitor, apicidin, exhibited a common ability to enhance histone acetylation, and all potently blocked cardiac fibroblast cell cycle progression. In contrast, MGCD0103, but not TSA or apicidin, paradoxically increased expression of a subset of fibrosis-associated genes. Using the cellular thermal shift assay, we provide evidence that the divergent effects of HDAC inhibitors on cardiac fibroblast gene expression relate to differential engagement of HDAC1- and HDAC2-containing complexes. These findings illustrate the importance of employing multiple compounds when pharmacologically assessing HDAC function in a cellular context and during HDAC inhibitor drug development. PMID:28174211

  19. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santschi, P. H.; Xu, C.; Zhang, S.

    Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less

  20. The Streptococcus agalactiae Stringent Response Enhances Virulence and Persistence in Human Blood

    PubMed Central

    Hooven, Thomas A.; Catomeris, Andrew J.; Bonakdar, Maryam; Tallon, Luke J.; Santana-Cruz, Ivette; Ott, Sandra; Daugherty, Sean C.; Tettelin, Hervé

    2017-01-01

    ABSTRACT Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response—a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of β-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased β-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent. PMID:29109175

  1. Dissecting the role of matrix metalloproteinases (MMP) and integrin alpha(v)beta3 in angiogenesis in vitro: absence of hemopexin C domain bioactivity, but membrane-Type 1-MMP and alpha(v)beta3 are critical.

    PubMed

    Nisato, Riccardo E; Hosseini, Ghamartaj; Sirrenberg, Christian; Butler, Georgina S; Crabbe, Thomas; Docherty, Andrew J P; Wiesner, Matthias; Murphy, Gillian; Overall, Christopher M; Goodman, Simon L; Pepper, Michael S

    2005-10-15

    Matrix metalloproteinase (MMP)-2 and its hemopexin C domain autolytic fragment (also called PEX) have been proposed to be crucial for angiogenesis. Here, we have investigated the dependency of in vitro angiogenesis on MMP-mediated extracellular proteolysis and integrin alpha(v)beta3-mediated cell adhesion in a three-dimensional collagen I model. The hydroxamate-based synthetic inhibitors BB94, CT1399, and CT1847 inhibited endothelial cell invasion, as did neutralizing anti-membrane-type 1-MMP (MT1-MMP) antibodies and tissue inhibitor of MMP (TIMP)-2 and TIMP-3 but not TIMP-1. This confirmed the pivotal importance of MT1-MMP over other MMPs in this model. Invasion was also inhibited by a nonpeptidic antagonist of integrin alpha(v)beta3, EMD 361276. Although PEX strongly inhibited pro-MMP-2 activation, when contaminating lipopolysaccharide was neutralized, PEX neither affected angiogenesis nor bound integrin alpha(v)beta(3). Moreover, no specific binding of pro-MMP-2 to integrin alpha(v)beta3 was found, whereas only one out of four independently prepared enzymatically active MMP-2 preparations could bind integrin alpha(v)beta3 , and this in a PEX-independent manner. Likewise, integrin alpha(v)beta3 -expressing cells did not bind MMP-2-coated surfaces. Hence, these findings show that endothelial cell invasion of collagen I gels is MT1-MMP and alpha(v)beta3 - dependent but MMP-2 independent and does not support a role for PEX in alpha(v)beta3 integrin binding or in modulating angiogenesis in this system.

  2. New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake

    PubMed Central

    Jiang, Hai-Bo; Lou, Wen-Jing; Ke, Wen-Ting; Song, Wei-Yu; Price, Neil M; Qiu, Bao-Sheng

    2015-01-01

    Cyanobacteria are globally important primary producers that have an exceptionally large iron requirement for photosynthesis. In many aquatic ecosystems, the levels of dissolved iron are so low and some of the chemical species so unreactive that growth of cyanobacteria is impaired. Pathways of iron uptake through cyanobacterial membranes are now being elucidated, but the molecular details are still largely unknown. Here we report that the non-siderophore-producing cyanobacterium Synechocystis sp. PCC 6803 contains three exbB-exbD gene clusters that are obligatorily required for growth and are involved in iron acquisition. The three exbB-exbDs are redundant, but single and double mutants have reduced rates of iron uptake compared with wild-type cells, and the triple mutant appeared to be lethal. Short-term measurements in chemically well-defined medium show that iron uptake by Synechocystis depends on inorganic iron (Fe′) concentration and ExbB-ExbD complexes are essentially required for the Fe′ transport process. Although transport of iron bound to a model siderophore, ferrioxamine B, is also reduced in the exbB-exbD mutants, the rate of uptake at similar total [Fe] is about 800-fold slower than Fe′, suggesting that hydroxamate siderophore iron uptake may be less ecologically relevant than free iron. These results provide the first evidence that ExbB-ExbD is involved in inorganic iron uptake and is an essential part of the iron acquisition pathway in cyanobacteria. The involvement of an ExbB-ExbD system for inorganic iron uptake may allow cyanobacteria to more tightly maintain iron homeostasis, particularly in variable environments where iron concentrations range from limiting to sufficient. PMID:25012898

  3. Complexes of a Zn-metalloenzyme binding site with hydroxamate-containing ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown.

    PubMed

    Gresh, Nohad; Perahia, David; de Courcy, Benoit; Foret, Johanna; Roux, Céline; El-Khoury, Lea; Piquemal, Jean-Philip; Salmon, Laurent

    2016-12-15

    Zn-metalloproteins are a major class of targets for drug design. They constitute a demanding testing ground for polarizable molecular mechanics/dynamics aimed at extending the realm of quantum chemistry (QC) to very long-duration molecular dynamics (MD). The reliability of such procedures needs to be demonstrated upon comparing the relative stabilities of competing candidate complexes of inhibitors with the recognition site stabilized in the course of MD. This could be necessary when no information is available regarding the experimental structure of the inhibitor-protein complex. Thus, this study bears on the phosphomannose isomerase (PMI) enzyme, considered as a potential therapeutic target for the treatment of several bacterial and parasitic diseases. We consider its complexes with 5-phospho-d-arabinonohydroxamate and three analog ligands differing by the number and location of their hydroxyl groups. We evaluate the energy accuracy expectable from a polarizable molecular mechanics procedure, SIBFA. This is done by comparisons with ab initio quantum-chemistry (QC) calculations in the following cases: (a) the complexes of the four ligands in three distinct structures extracted from the entire PMI-ligand energy-minimized structures, and totaling up to 264 atoms; (b) the solvation energies of several energy-minimized complexes of each ligand with a shell of 64 water molecules; (c) the conformational energy differences of each ligand in different conformations characterized in the course of energy-minimizations; and (d) the continuum solvation energies of the ligands in different conformations. The agreements with the QC results appear convincing. On these bases, we discuss the prospects of applying the procedure to ligand-macromolecule recognition problems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Integration of multiple stimuli-sensing systems to regulate HrpS and type III secretion system in Erwinia amylovora.

    PubMed

    Lee, Jae Hoon; Zhao, Youfu

    2018-02-01

    The bacterial enhancer binding protein (bEBP) HrpS is essential for Erwinia amylovora virulence by activating the type III secretion system (T3SS). However, how the hrpS gene is regulated remains poorly understood in E. amylovora. In this study, 5' rapid amplification of cDNA ends and promoter deletion analyses showed that the hrpS gene contains two promoters driven by HrpX/HrpY and the Rcs phosphorelay system, respectively. Electrophoretic mobility shift and gene expression assays demonstrated that integration host factor IHF positively regulates hrpS expression through directly binding the hrpX promoter and positively regulating hrpX/hrpY expression. Moreover, hrpX expression was down-regulated in the relA/spoT ((p)ppGpp-deficient) mutant and the dksA mutant, but up-regulated when the wild-type strain was treated with serine hydroxamate, which induced (p)ppGpp-mediated stringent response. Furthermore, the csrA mutant showed significantly reduced transcripts of major hrpS activators, including the hrpX/hrpY, rcsA and rcsB genes, indicating that CsrA is required for full hrpS expression. On the other hand, the csrB mutant exhibited up-regulation of the rcsA and rcsB genes, and hrpS expression was largely diminished in the csrB/rcsB mutant, indicating that the Rcs system is mainly responsible for the increased hrpS expression in the csrB mutant. These findings suggest that E. amylovora recruits multiple stimuli-sensing systems, including HrpX/HrpY, the Rcs phosphorelay system and the Gac-Csr system, to regulate hrpS and T3SS gene expression.

  5. Standardized methods for the production of high specific-activity zirconium-89

    PubMed Central

    Holland, Jason P.; Sheh, Yiauchung; Lewis, Jason S.

    2009-01-01

    Zirconium-89 is an attractive metallo-radionuclide for use in immunoPET due to the favorable decay characteristics. Standardized methods for the routine production and isolation of high purity and high specific-activity 89Zr using a small cyclotron are reported. Optimized cyclotron conditions reveal high average yields of 1.52 ± 0.11 mCi/μA·h at a proton beam energy of 15 MeV and current of 15 μA using a solid, commercially available 89Y-foil target (0.1 mm, 100% natural abundance). 89Zr was isolated in high radionuclidic and radiochemical purity (>99.99%) as [89Zr]Zr-oxalate by using a solid-phase hydroxamate resin with >99.5% recovery of the radioactivity. The effective specific-activity of 89Zr was found to be in the range 5.28 – 13.43 mCi/μg (470 – 1195 Ci/mmol) of zirconium. New methods for the facile production of [89Zr]Zr-chloride are reported. Radiolabeling studies using the trihydroxamate ligand desferrioxamine B (DFO) gave 100% radiochemical yields in <15 min. at room temperature and in vitro stability measurements confirmed that [89Zr]Zr-DFO is stable with respect to ligand dissociation in human serum for >7 days. Small-animal PET imaging studies have demonstrated that free 89Zr(IV) ions administered as [89Zr]Zr-chloride accumulate in the liver whilst [89Zr]Zr-DFO is excreted rapidly via the kidneys within <20 min. These results have important implication for the analysis of immunoPET imaging of 89Zr-labeled monoclonal antibodies. The detailed methods described can be easily translated to other radiochemistry facilities and will facilitate the use of 89Zr in both basic science and clinical investigations. PMID:19720285

  6. Adamantanyl-Histone Deacetylase Inhibitor H6CAHA Exhibits Favorable Pharmacokinetics and Augments Prostate Cancer Radiation Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konsoula, Zacharoula; Cao Hong; Velena, Alfredo

    2011-04-01

    Purpose: To evaluate pharmacological properties of H6CAHA, an adamantyl-hydroxamate histone deacetylase inhibitor, and to investigate its effect on prostate cancer cells following exposure to {gamma}-radiation in vitro and in vivo. Methods and Materials: H6CAHA was assessed for in vitro solubility, lipophilicity and growth inhibition, and in vivo plasma pharmacokinetics. The effect of H6CAHA on radiation clonogenic survival and DNA damage repair was evaluated in human prostate cancer (PC3, DU145, LNCaP) and nonmalignant control epithelial (RWPE1 and 267B1) cell lines. The effect of this agent on the growth of prostate cancer xenografts was also assessed in mice. Results: H6CAHA demonstrated goodmore » solubility and permeability profiles and preferentially inhibited the growth of prostate cancer cells over nonmalignant cells. Plasma pharmacokinetics revealed that the area under the curve of H6CAHA was 8.08 {+-} 0.91 {mu}M x h, and its half-life was 11.17 {+-} 0.87 h. Radiation clonogenic assays revealed that H6CAHA decreased the survival of prostate cancer cells at the dose that exerted limited effect on normal cells. Concomitantly, delayed DNA damage repair following combination treatment was evident in cancer cells, indicated by the prolonged appearance of {gamma}H2AX and Rad51 foci and suppression of DNA damage repair genes (ATM, BRCA1, and BRCA2). Combined modality of H6CAHA (daily intraperitoneal injections for 10 days) with {gamma}-radiation (10 x 2 Gy) completely blocked the growth of PC3 tumor xenografts (p < 0.001) over 60 days. Conclusion: These results support the potential therapeutic value of H6CAHA in combination with radiation and support the rationale for further clinical investigation.« less

  7. Grafting PNIPAAm from β-barrel shaped transmembrane nanopores.

    PubMed

    Charan, Himanshu; Kinzel, Julia; Glebe, Ulrich; Anand, Deepak; Garakani, Tayebeh Mirzaei; Zhu, Leilei; Bocola, Marco; Schwaneberg, Ulrich; Böker, Alexander

    2016-11-01

    The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N-isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts.

    PubMed

    Schuetze, Katherine B; Stratton, Matthew S; Blakeslee, Weston W; Wempe, Michael F; Wagner, Florence F; Holson, Edward B; Kuo, Yin-Ming; Andrews, Andrew J; Gilbert, Tonya M; Hooker, Jacob M; McKinsey, Timothy A

    2017-04-01

    Inhibitors of zinc-dependent histone deacetylases (HDACs) profoundly affect cellular function by altering gene expression via changes in nucleosomal histone tail acetylation. Historically, investigators have employed pan-HDAC inhibitors, such as the hydroxamate trichostatin A (TSA), which simultaneously targets members of each of the three zinc-dependent HDAC classes (classes I, II, and IV). More recently, class- and isoform-selective HDAC inhibitors have been developed, providing invaluable chemical biology probes for dissecting the roles of distinct HDACs in the control of various physiologic and pathophysiological processes. For example, the benzamide class I HDAC-selective inhibitor, MGCD0103 [ N -(2-aminophenyl)-4-[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl] benzamide], was shown to block cardiac fibrosis, a process involving excess extracellular matrix deposition, which often results in heart dysfunction. Here, we compare the mechanisms of action of structurally distinct HDAC inhibitors in isolated primary cardiac fibroblasts, which are the major extracellular matrix-producing cells of the heart. TSA, MGCD0103, and the cyclic peptide class I HDAC inhibitor, apicidin, exhibited a common ability to enhance histone acetylation, and all potently blocked cardiac fibroblast cell cycle progression. In contrast, MGCD0103, but not TSA or apicidin, paradoxically increased expression of a subset of fibrosis-associated genes. Using the cellular thermal shift assay, we provide evidence that the divergent effects of HDAC inhibitors on cardiac fibroblast gene expression relate to differential engagement of HDAC1- and HDAC2-containing complexes. These findings illustrate the importance of employing multiple compounds when pharmacologically assessing HDAC function in a cellular context and during HDAC inhibitor drug development. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Improved estimation of ligand macromolecule binding affinities by linear response approach using a combination of multi-mode MD simulation and QM/MM methods

    NASA Astrophysics Data System (ADS)

    Khandelwal, Akash; Balaz, Stefan

    2007-01-01

    Structure-based predictions of binding affinities of ligands binding to proteins by coordination bonds with transition metals, covalent bonds, and bonds involving charge re-distributions are hindered by the absence of proper force fields. This shortcoming affects all methods which use force-field-based molecular simulation data on complex formation for affinity predictions. One of the most frequently used methods in this category is the Linear Response (LR) approach of Åquist, correlating binding affinities with van der Waals and electrostatic energies, as extended by Jorgensen's inclusion of solvent-accessible surface areas. All these terms represent the differences, upon binding, in the ensemble averages of pertinent quantities, obtained from molecular dynamics (MD) or Monte Carlo simulations of the complex and of single components. Here we report a modification of the LR approach by: (1) the replacement of the two energy terms through the single-point QM/MM energy of the time-averaged complex structure from an MD simulation; and (2) a rigorous consideration of multiple modes (mm) of binding. The first extension alleviates the force-field related problems, while the second extension deals with the ligands exhibiting large-scale motions in the course of an MD simulation. The second modification results in the correlation equation that is nonlinear in optimized coefficients, but does not lead to an increase in the number of optimized coefficients. The application of the resulting mm QM/MM LR approach to the inhibition of zinc-dependent gelatinase B (matrix metalloproteinase 9) by 28 hydroxamate ligands indicates a significant improvement of descriptive and predictive abilities.

  10. Collagen Type I Selectively Activates Ectodomain Shedding of the Discoidin Domain Receptor 1: Involvement of Src Tyrosine Kinase

    PubMed Central

    Slack, Barbara E.; Siniaia, Marina S.; Blusztajn, Jan K.

    2008-01-01

    The discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is highly expressed in breast carcinoma cells. Upon binding to collagen, DDR1 undergoes autophosphorylation followed by limited proteolysis to generate a tyrosine phosphorylated C-terminal fragment (CTF). Although it was postulated that this fragment is formed as a result of shedding of the N-terminal ectodomain, collagen-dependent release of the DDR1 extracellular domain has not been demonstrated. We now report that, in conjunction with CTF formation, collagen type I stimulates concentration-dependent, saturable shedding of the DDR1 ectodomain from two carcinoma cell lines, and from transfected cells. In contrast, collagen did not promote cleavage of other transmembrane proteins including the amyloid precursor protein (APP), ErbB2, and E-cadherin. Collagen-dependent tyrosine phosphorylation and proteolysis of DDR1 in carcinoma cells were reduced by a pharmacologic Src inhibitor. Moreover, expression of a dominant negative Src mutant protein in human embryonic kidney cells inhibited collagen-dependent phosphorylation and shedding of co-transfected DDR1. The hydroxamate-based metalloproteinase inhibitor TAPI-1 (tumor necrosis factor-α protease inhibitor-1), and tissue inhibitor of metalloproteinase (TIMP)-3, also blocked collagen-evoked DDR1 shedding, but did not reduce levels of the phosphorylated CTF. Neither shedding nor CTF formation were affected by the γ-secretase inhibitor, L-685,458. The results demonstrate that collagen-evoked ectodomain cleavage of DDR1 is mediated in part by Src-dependent activation or recruitment of a matrix- or disintegrin metalloproteinase, and that CTF formation can occur independently of ectodomain shedding. Delayed shedding of the DDR1 ectodomain may represent a mechanism that limits DDR1-dependent cell adhesion and migration on collagen matrices. PMID:16440311

  11. Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents.

    PubMed

    Xue, Kai; Gu, Juan J; Zhang, Qunling; Mavis, Cory; Hernandez-Ilizaliturri, Francisco J; Czuczman, Myron S; Guo, Ye

    2016-02-01

    Preclinical models of chemotherapy resistance and clinical observations derived from the prospective multicenter phase III collaborative trial in relapsed aggressive lymphoma (CORAL) study demonstrated that primary refractory/relapsed B cell diffuse large B cell lymphoma has a poor clinical outcome with current available second-line treatments. Preclinically, we found that rituximab resistance is associated with a deregulation on the mitochondrial potential rendering lymphoma cells resistant to chemotherapy-induced apoptotic stimuli. There is a dire need to develop agents capable to execute alternative pathways of cell death in an attempt to overcome chemotherapy resistance. Posttranscriptional histone modification plays an important role in regulating gene transcription and is altered by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs regulate several key cellular functions, including cell proliferation, cell cycle, apoptosis, angiogenesis, migration, antigen presentation, and/or immune regulation. Given their influence in multiple regulatory pathways, HDAC inhibition is an attractive strategy to evaluate its anti-proliferation activity in cancer cells. To this end, we studied the anti-proliferation activity and mechanisms of action of suberoylanilide hydroxamic acid (SAHA, vorinostat) in rituximab-chemotherapy-resistant preclinical models. A panel of rituximab-chemotherapy-sensitive (RSCL) and rituximab-chemotherapy-resistant cell lines (RRCL) and primary tumor cells isolated from relapsed/refractory B cell lymphoma patients were exposed to escalating doses of vorinostat. Changes in mitochondrial potential, ATP synthesis, and cell cycle distribution were determined by Alamar blue reduction, Titer-Glo luminescent assays, and flow cytometric, respectively. Protein lysates were isolated from vorinostat-exposed cells, and changes in members of Bcl-2 family, cell cycle regulatory proteins, and the acetylation status of histone H3 were evaluated by Western blotting. Finally, cell lines were pre-exposed to vorinostat for 48 h and subsequently exposed to several chemotherapy agents (cisplatin, etoposide, or gemcitabine); changes in cell viability were determined by CellTiter-Glo(®) luminescence assay (Promega, Fitchburg, WI), and synergistic activity was evaluated using the CalcuSyn software. Vorinostat induced dose-dependent cell death in RRCL and in primary tumor cells. In addition, in vitro exposure of RRCL to vorinostat resulted in an increase in p21 and acetylation of histone H3 leading to G1 cell cycle arrest. Vorinostat exposure resulted in apoptosis in RSCL cell lines but not in RRCL. This finding suggests that in RRCL, vorinostat induces cell death by alternative pathways (i.e., irreversible cell cycle arrest). Of interest, vorinostat was found to reverse acquired chemotherapy resistance in RRCL. Our data suggest that vorinostat is active in RRCL with a known defective apoptotic machinery, it can active alternative cell death pathways. Given the multiple pathways affected by HDAC inhibition, vorinostat can potentially be used to overcome acquired resistant to chemotherapy in aggressive B cell lymphoma.

  12. Determination of the side-reaction coefficient of the trihydroxamate siderophore desferrioxamine B in metal-free seawater

    NASA Astrophysics Data System (ADS)

    Schijf, J.; Burns, S. M.

    2016-02-01

    Desferrioxamines are a class of trihydroxamate siderophores, members of which occur in surface seawater at low-picomolar concentrations. The total synthesis of desferrioxamine B (DFOB), achieved in the late 1980s and prompted by its use in the treatment of human iron-overload disorders, has ensured a steady commercial supply enabling extensive laboratory studies of its properties. While highly specific for Fe3+, DFOB binds many di-, tri-, and tetravalent metals with substantial affinity and has consequently been employed as a model for strong organic ligands that ostensibly dominate the speciation of several bio-essential metals in the ocean, yet remain largely unidentified. Such comparisons are only meaningful if we know the side-reaction coefficient of DFOB in seawater, which accounts for its binding with the divalent cations Mg2+ and Ca2+. Although quite weak, this has a potentially important effect on the availability of the free ligand, due to the great abundance of these sea salt constituents. We have performed potentiometric titrations to measure the sequential binding of Mg and Ca to the three hydroxamate groups of DFOB, quantified by stability constants β1, β2, and β3. Values of β1 are reported for the first time, however no evidence was found for binding with the terminal amine of DFOB and the corresponding stability constant β4 was thus omitted from the regression model constructed to fit the titration curves. We also examined Mg and Ca binding to methanesulfonate (MSA), a common DFOB counter-ion, by measuring the stability of their complexes with acetohydroxamate in the presence and absence of MSA. Whereas stabilities of metal-MSA complexes have not been published, their similarity to sulfate complexes suggests that MSA may compete with DFOB for Mg and Ca in the titrations. Our calculated side-reaction coefficient is consistent with a previous estimate, but should properly be expressed in terms of protonated forms of DFOB, resulting in a much lower value.

  13. A New Covalent Inhibitor of Class C β-Lactamases Reveals Extended Active Site Specificity.

    PubMed

    Tilvawala, Ronak; Cammarata, Michael; Adediran, S A; Brodbelt, Jennifer S; Pratt, R F

    2015-12-22

    O-Aryloxycarbonyl hydroxamates have previously been shown to efficiently inactivate class C β-lactamases by cross-linking serine and lysine residues in the active site. A new analogue of these inhibitors, D-(R)-O-(phenoxycarbonyl)-N-[(4-amino-4-carboxy-1-butyl)oxycarbonyl]hydroxylamine, designed to inactivate certain low-molecular mass dd-peptidases, has now been synthesized. Although the new molecule was found to be only a poor inactivator of the latter enzymes, it proved, unexpectedly, to be a very effective inactivator (ki = 3.5 × 10(4) M(-1) s(-1)) of class C β-lactamases, more so than the original lead compound, O-phenoxycarbonyl-N-(benzyloxycarbonyl)hydroxylamine. Furthermore, the mechanism of inactivation is different. Mass spectrometry demonstrated that β-lactamase inactivation by the new molecule involved formation of an O-alkoxycarbonylhydroxamate with the nucleophilic active site serine residue. This acyl-enzyme did not cyclize to cross-link the active site as did that from the lead compound. Model building suggested that the rapid enzyme acylation by the new molecule may occur because of favorable interaction between the polar terminus of its side chain and elements of the Ω loop that abuts the active site, Arg 204 in particular. This interaction should be considered in the design of new covalent β-lactamase inhibitors. The initially formed acyl-enzyme partitions (ratio of ∼ 1) between hydrolysis, which regenerates the active enzyme, and formation of an inert second acyl-enzyme. Structural modeling suggests that the latter intermediate arises from conformational movement of the acyl group away from the reaction center, probably enforced by the inflexibility of the acyl group. The new molecule is thus a mechanism-based inhibitor in which an inert complex is formed by noncovalent rearrangement. Phosphyl analogues of the new molecule were efficient inactivators of neither dd-peptidases nor β-lactamases.

  14. Targeting Lysine Deacetylases (KDACs) in Parasites

    PubMed Central

    Wang, Qi; Rosa, Bruce A.; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R.; Mitreva, Makedonka

    2015-01-01

    Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in targeting Plasmodium to develop new anti-malarial treatments, and also pioneers experiments with these KDAC inhibitors as potential new anthelminthics. The selectivity observed begins to address the challenges of targeting specific parasitic diseases while limiting host toxicity. PMID:26402733

  15. Structure of Mandelate Racemase with Bound Intermediate Analogues Benzohydroxamate and Cupferron†

    PubMed Central

    Lietzan, Adam D.; Nagar, Mitesh; Pellmann, Elise A.; Bourque, Jennifer R.; Bearne, Stephen L.; St Maurice, Martin

    2012-01-01

    Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg2+-dependent interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, we solved the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-carboxylate intermediate, benzohydroxamate and cupferron, to 2.2-Å resolution. Benzohydroxamate is shown to be a reasonable mimic of the transition state/intermediate since its binding affinity to 21 MR variants correlates well with changes in the free energy of transition state stabilization afforded by these variants. Both benzohydroxamate and cupferron chelate the active site divalent metal ion and are bound in a conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. Structural overlays of MR complexed with benzohydroxamate, cupferron, and the ground state analogue (S)-atrolacatate reveal that the para-carbon of the substrate phenyl ring moves by 0.8–1.2 Å between the ground state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate analogues is very similar to MR with bound (S)-atrolactate, the intermediate-Mg2+ distance shortens, suggesting a tighter complex with the catalytic Mg2+. In addition, Tyr 54 moves nearer to the phenyl ring of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate in the transition state and the ground state by this proficient enzyme are extremely subtle. PMID:22264153

  16. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding.

    PubMed

    Butler, Georgina S; Dean, Richard A; Tam, Eric M; Overall, Christopher M

    2008-08-01

    Broad-spectrum matrix metalloproteinase (MMP) inhibitors (MMPI) were unsuccessful in cancer clinical trials, partly due to side effects resulting from limited knowledge of the full repertoire of MMP substrates, termed the substrate degradome, and hence the in vivo functions of MMPs. To gain further insight into the degradome of MMP-14 (membrane type 1 MMP) an MMPI, prinomastat (drug code AG3340), was used to reduce proteolytic processing and ectodomain shedding in human MDA-MB-231 breast cancer cells transfected with MMP-14. We report a quantitative proteomic evaluation of the targets and effects of the inhibitor in this cell-based system. Proteins in cell-conditioned medium (the secretome) and membrane fractions with levels that were modulated by the MMPI were identified by isotope-coded affinity tag (ICAT) labeling and tandem mass spectrometry. Comparisons of the expression of MMP-14 with that of a vector control resulted in increased MMP-14/vector ICAT ratios for many proteins in conditioned medium, indicating MMP-14-mediated ectodomain shedding. Following MMPI treatment, the MMPI/vehicle ICAT ratio was reversed, suggesting that MMP-14-mediated shedding of these proteins was blocked by the inhibitor. The reduction in shedding or the release of substrates from pericellular sites in the presence of the MMPI was frequently accompanied by the accumulation of the protein in the plasma membrane, as indicated by high MMPI/vehicle ICAT ratios. Considered together, this is a strong predictor of biologically relevant substrates cleaved in the cellular context that led to the identification of many undescribed MMP-14 substrates, 20 of which we validated biochemically, including DJ-1, galectin-1, Hsp90alpha, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, and dickkopf-1. Other proteins with altered levels, such as Kunitz-type protease inhibitor 1 and beta-2-microglobulin, were not substrates in biochemical assays, suggesting an indirect affect of the MMPI, which might be important in drug development as biomarkers or, in preclinical phases, to predict systemic drug actions and adverse side effects. Hence, this approach describes the dynamic pattern of cell membrane ectodomain shedding and its perturbation upon metalloproteinase drug treatment.

  17. The canonical methionine 392 of matrix metalloproteinase 2 (gelatinase A) is not required for catalytic efficiency or structural integrity: probing the role of the methionine-turn in the metzincin metalloprotease superfamily.

    PubMed

    Butler, Georgina S; Tam, Eric M; Overall, Christopher M

    2004-04-09

    Matrix metalloproteinases (MMPs) are an important family of extracellular proteases that process a variety of biologically significant molecules. MMPs are members of the metzincin superfamily of >770 zinc endopeptidases, which includes astacins, serralysins, adamalysins, leishmanolysins, and snapalysins. Metzincins are characterized by an absolutely conserved methionine residue COOH-terminal to the third histidine in the consensus sequence HEXXHXXGXX(H/D), where the histidine residues chelate a catalytic zinc ion. The canonical methionine is part of a tight 1,4-beta-turn that loops the polypeptide chain beneath the catalytic zinc ion, forming a hydrophobic floor to the Zn(2+) ion binding site. The role of this methionine is uncertain, but its absolute conservation indicates an essential catalytic or structural function. To investigate this hypothesis, we replaced Met-392 that forms the Met-turn of human MMP-2 (gelatinase A) by site-directed mutagenesis. The catalytic competence of leucine and serine mutants was assessed. (M392L)MMP-2 and (M392S)MMP-2 cleaved the physiological substrates gelatin, native type I collagen, and the chemokine monocyte chemoattractant protein-3 with similar efficiency to wild-type MMP-2. These mutants also cleaved two quenched fluorescent peptide substrates with a k(cat)/K(m) comparable to wild-type MMP-2 and underwent 4-aminophenylmercuric acetate-induced autoactivation with similar kinetics. (M392L)MMP-2 and (M392S)MMP-2 were inhibited by tissue inhibitor of metalloproteinases (TIMP)-1, -2, and -4 and by the zinc chelators 1,10-phenanthroline and a synthetic hydroxamate inhibitor, Batimastat, similar to the wild-type protein, indicating an unaltered active site topography. A tryptic susceptibility assay also suggested that (M392L)MMP-2 and (M392S)MMP-2 were correctly folded. These results challenge the dogma that this methionine residue and the Met-turn, which are absolutely conserved in all of the subfamilies of the metzincins, play an essential role in catalysis or active site structure.

  18. Isolation of Vibrio alginolyticus and Vibrio splendidus from Aquacultured Carpet Shell Clam (Ruditapes decussatus) Larvae Associated with Mass Mortalities

    PubMed Central

    Gómez-León, J.; Villamil, L.; Lemos, M. L.; Novoa, B.; Figueras, A.

    2005-01-01

    Two episodes of mortality of cultured carpet shell clams (Ruditapes decussatus) associated with bacterial infections were recorded during 2001 and 2002 in a commercial hatchery located in Spain. Vibrio alginolyticus was isolated as the primary organism from moribund clam larvae that were obtained during the two separate events. Vibrio splendidus biovar II, in addition to V. alginolyticus, was isolated as a result of a mixed Vibrio infection from moribund clam larvae obtained from the second mortality event. The larval mortality rates for these events were 62 and 73%, respectively. Mortality was also detected in spat. To our knowledge, this is the fist time that these bacterial species have been associated with larval and juvenile carpet shell clam mortality. The bacterial strains were identified by morphological and biochemical techniques and also by PCR and sequencing of a conserved region of the 16S rRNA gene. In both cases bacteria isolated in pure culture were inoculated into spat of carpet shell clams by intravalvar injection and by immersion. The mortality was attributed to the inoculated strains, since the bacteria were obtained in pure culture from the soft tissues of experimentally infected clams. V. alginolyticus TA15 and V. splendidus biovar II strain TA2 caused similar histological lesions that affected mainly the mantle, the velum, and the connective tissue of infected organisms. The general enzymatic activity of both live cells and extracellular products (ECPs), as evaluated by the API ZYM system, revealed that whole bacterial cells showed greater enzymatic activity than ECPs and that the activity of most enzymes ceased after heat treatment (100°C for 10 min). Both strain TA15 and strain TA2 produced hydroxamate siderophores, although the activity was greater in strain TA15. ECPs from both bacterial species at high concentrations, as well as viable bacteria, caused significant reductions in hemocyte survival after 4 h of incubation, whereas no significant differences in viability were observed during incubation with heat-killed bacteria. PMID:15640176

  19. Iron as a Cofactor That Limits the Promotion of Cyanobacteria in Lakes Across a Tropic Gradient

    NASA Astrophysics Data System (ADS)

    Sorichetti, R. J.; Creed, I. F.; Trick, C. G.

    2014-12-01

    The frequency and intensity of cyanobacterial blooms (cyanoblooms) is increasing globally. While cyanoblooms in eutrophic (nutrient-rich) freshwater lakes are expected to persist and worsen with climate change projections, many of the "new" cyanobloom reports pertain to oligotrophic (nutrient-poor) freshwater lakes with no prior history of cyanobloom occurrence. Under the pressures of a changing climate, there exists a critical research need to revisit existing conceptual models and identify cyanobloom regulating factors currently unaccounted for. Iron (Fe) is required in nearly all pathways of cyanobacterial macronutrient use, though its precise role in regulating cyanobacterial biomass across the lake trophic gradient is not fully understood. The hypotheses tested were: (1) cyanobacteria will predominate in lakes when bioavailable Fe concentration is low, and (2) cyanobacteria overcome this Fe limitation in all lakes using the siderophore-based Fe acquisition strategy to scavenge Fe providing a competitive advantage over other phytoplankton. These hypotheses were tested using natural lakes across an oligo-meso-eutrophic gradient across Canada. In all lakes sampled, the relative cyanobacterial biomass was highest at low predicted Fe bioavailability (< 1.0 × 10-19 mol L-1). Within this range of low bioavailable Fe, iron-binding organic ligands were measured. Concentrations of ligands with reactive hydroxamate moieties were positively correlated to cyanobacterial biomass in both the oligotrophic (r2 = 0.77, p < 0.001) and eutrophic (r2 = 0.81, p < 0.001) lakes suggesting a possible low-Fe mediated cellular origin, siderophores. Fe-binding ligands with catecholate-type binding sites were detected in all lakes, although lack of a relationship with cyanobacterial biomass and a significant relationship with dissolved organic carbon (DOC) in oligotrophic (r2 = 0.65, p < 0.001) and eutrophic (r2 = 0.65, p < 0.001) lakes may indicate an allochthonous source that is not used by cyanobacteria. These findings suggest that Fe serves as a possible cofactor that maintains cyanobacterial levels across a lake trophic gradient and that cyanobacteria invoke a similar Fe-scavenging system to overcome Fe limitation in lakes of all trophic status.

  20. Pharmacoproteomics of a Metalloproteinase Hydroxamate Inhibitor in Breast Cancer Cells: Dynamics of Membrane Type 1 Matrix Metalloproteinase-Mediated Membrane Protein Shedding ▿ ‡

    PubMed Central

    Butler, Georgina S.; Dean, Richard A.; Tam, Eric M.; Overall, Christopher M.

    2008-01-01

    Broad-spectrum matrix metalloproteinase (MMP) inhibitors (MMPI) were unsuccessful in cancer clinical trials, partly due to side effects resulting from limited knowledge of the full repertoire of MMP substrates, termed the substrate degradome, and hence the in vivo functions of MMPs. To gain further insight into the degradome of MMP-14 (membrane type 1 MMP) an MMPI, prinomastat (drug code AG3340), was used to reduce proteolytic processing and ectodomain shedding in human MDA-MB-231 breast cancer cells transfected with MMP-14. We report a quantitative proteomic evaluation of the targets and effects of the inhibitor in this cell-based system. Proteins in cell-conditioned medium (the secretome) and membrane fractions with levels that were modulated by the MMPI were identified by isotope-coded affinity tag (ICAT) labeling and tandem mass spectrometry. Comparisons of the expression of MMP-14 with that of a vector control resulted in increased MMP-14/vector ICAT ratios for many proteins in conditioned medium, indicating MMP-14-mediated ectodomain shedding. Following MMPI treatment, the MMPI/vehicle ICAT ratio was reversed, suggesting that MMP-14-mediated shedding of these proteins was blocked by the inhibitor. The reduction in shedding or the release of substrates from pericellular sites in the presence of the MMPI was frequently accompanied by the accumulation of the protein in the plasma membrane, as indicated by high MMPI/vehicle ICAT ratios. Considered together, this is a strong predictor of biologically relevant substrates cleaved in the cellular context that led to the identification of many undescribed MMP-14 substrates, 20 of which we validated biochemically, including DJ-1, galectin-1, Hsp90α, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, and dickkopf-1. Other proteins with altered levels, such as Kunitz-type protease inhibitor 1 and beta-2-microglobulin, were not substrates in biochemical assays, suggesting an indirect affect of the MMPI, which might be important in drug development as biomarkers or, in preclinical phases, to predict systemic drug actions and adverse side effects. Hence, this approach describes the dynamic pattern of cell membrane ectodomain shedding and its perturbation upon metalloproteinase drug treatment. PMID:18505826

  1. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  2. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD.

    PubMed

    Arimboor, Ranjith; Kumar, K Sarin; Arumughan, C

    2008-05-12

    A RP-HPLC-DAD method was developed and validated for the simultaneous analysis of nine phenolic acids including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, salicylic acid, p-coumaric acid, cinnamic acid, caffiec acid and ferulic acid in sea buckthorn (SB) (Hippophaë rhamnoides) berries and leaves. The method was validated in terms of linearity, LOD, precision, accuracy and recovery and found to be satisfactory. Phenolic acid derivatives in anatomical parts of SB berries and leaves were separated into free phenolic acids, phenolic acids bound as esters and phenolic acids bound as glycosides and profiled in HPLC. Berry pulp contained a total of 1068 mg/kg phenolic acids, of which 58.8% was derived from phenolic glycosides. Free phenolic acids and phenolic acid esters constituted 20.0% and 21.2%, respectively, of total phenolic acids in SB berry pulp. The total phenolic acid content in seed kernel (5741 mg/kg) was higher than that in berry pulp and seed coat (Table 2). Phenolic acids liberated from soluble esters constituted the major fraction of phenolic acids (57.3% of total phenolic acids) in seed kernel. 8.4% and 34.3% of total phenolic acids in seed kernel were, respectively contributed by free and phenolic acids liberated from glycosidic bonds. The total soluble phenolic acids content in seed coat (448 mg/kg) was lower than that in seed kernel and pulp (Table 2). Proportion of free phenolic acids in total phenolic acids in seed coat was higher than that in seed kernel and pulp. Phenolic acids bound as esters and glycosides, respectively contributed 49.1% and 20.3% of total phenolic acids in seed coat. The major fraction (approximately 70%) of phenolic acids in SB berries was found to be concentrated in the seeds. Gallic acid was the predominant phenolic acid both in free and bound forms in SB berry parts and leaves.

  3. Synthesis of fatty acids from [1-14C]acetylcoenzyme A in subcellular particles of rat epididymal adipose tissue

    PubMed Central

    Kanoh, H.; Lindsay, D. B.

    1972-01-01

    1. Mitochondrial and microsomal fractions of rat epididymal adipose tissue incorporated [1-14C]acetyl-CoA equally well into various fatty acids by a chain-elongation mechanism. C18 and C20 fatty acids were the two major products, and comprised about 80% of the total fatty acids synthesized in both particles. 2. When incubated in air, mitochondria synthesized stearic acid, octadecenoic acid and eicosamonoenoic acid in almost equal amounts (about 20% each), whereas in microsomal fractions, the synthesis of octadecenoic acid was more than fivefold the stearic acid formation. In both fractions, major components of synthesized monoenoic fatty acids were the Δ11:12 isomers. Hexadecenoic acid and octadecenoic acid from whole adipose tissue contained approx. 11 and 14% of the Δ11:12 isomer respectively. 3. When mitochondria or microsomal fractions were incubated in nitrogen, there was increased synthesis of stearic acid and palmitic acid and less of C16 and C18 monoenoic acids; synthesis of C20 acids remained predominantly of the monoenoic acids. Determination of the position of the double bond in the monoenoic acids supported the view that the synthesis of hexadecenoic acid and octadecenoic acid involves a desaturase activity, whereas eicosamonoenoic acid and eicosadienoic acid are formed only by elongation of endogenous fatty acids. 4. Most of the radioactivity was found in free fatty acids (63%) and the phospholipid (26%) fraction. In phospholipids, phosphatidylcholine and phosphatidylethanolamine were the two major components. 5. Most of the fatty acids synthesized, including those not normally found in particle lipids (arachidic acid, eicosamonoenoic acid and eicosadienoic acid) were distributed fairly evenly in the phospholipid and free fatty acid fractions. However, stearic acid was found predominantly in the phospholipid fraction. PMID:4638795

  4. Enantioselective oxidation of racemic lactic acid to D-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM.

    PubMed

    Gao, Chao; Qiu, Jianhua; Li, Jingchen; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2009-03-01

    D-lactic acid and pyruvic acid are two important building block intermediates. Production of D-lactic acid and pyruvic acid from racemic lactic acid by biotransformation is economically interesting. Biocatalyst prepared from 9 g dry cell wt l(-1) of Pseudomonas stutzeri SDM could catalyze 45.00 g l(-1)DL-lactic acid into 25.23 g l(-1)D-lactic acid and 19.70 g l(-1) pyruvic acid in 10h. Using a simple ion exchange process, D-lactic acid and pyruvic acid were effectively separated from the biotransformation system. Co-production of d-lactic acid and pyruvic acid by enantioselective oxidation of racemic lactic acid is technically feasible.

  5. Effect of baseline plasma fatty acids on eicosapentaenoic acid levels in individuals supplemented with alpha-linolenic acid.

    PubMed

    DeFilippis, Andrew P; Harper, Charles R; Cotsonis, George A; Jacobson, Terry A

    2009-01-01

    We previously reported a >50% increase in mean plasma eicosapentaenoic acid levels in a general medicine clinic population after supplementation with alpha-linolenic acid. In the current analysis, we evaluate the variability of changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid and evaluated the impact of baseline plasma fatty acids levels on changes in eicosapentaenoic acid levels in these individuals. Changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid ranged from a 55% decrease to a 967% increase. Baseline plasma fatty acids had no statistically significant effect on changes in eicosapentaenoic levels acid after alpha-linolenic acid supplementation. Changes in eicosapentaenoic acid levels varied considerably in a general internal medicine clinic population supplemented with alpha-linolenic acid. Factors that may impact changes in plasma eicosapentaenoic acid levels after alpha-linolenic acid supplementation warrant further study.

  6. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    PubMed

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G; Cryan, John F; Ross, R Paul; Quigley, Eamonn M; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F; O'Toole, Paul W; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (10(9) microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals.

  7. Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome

    PubMed Central

    Barrett, Eoin; Fitzgerald, Patrick; Dinan, Timothy G.; Cryan, John F.; Ross, R. Paul; Quigley, Eamonn M.; Shanahan, Fergus; Kiely, Barry; Fitzgerald, Gerald F.; O'Toole, Paul W.; Stanton, Catherine

    2012-01-01

    The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15) were orally gavaged with either B. breve DPC6330 (109 microorganisms/day) alone or in combination with 0.5% (w/w) linoleic acid & 0.5% (w/w) α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11) in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05). Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11) in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05), whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05) compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01) and α-linolenic acid in adipose tissue (p<0.001), whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05), and α-linolenic acid in adipose tissue (p<0.001). B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated rats significantly modified the palmitoleic acid, arachidonic acid and docosahexaenoic acid contents in tissues. The effect was not observed in non-separated animals. PMID:23185248

  8. Solid-phase extraction of acidic herbicides.

    PubMed

    Wells, M J; Yu, L Z

    2000-07-14

    A discussion of solid-phase extraction method development for acidic herbicides is presented that reviews sample matrix modification, extraction sorbent selection, derivatization procedures for gas chromatographic analysis, and clean-up procedures for high-performance liquid chromatographic analysis. Acidic herbicides are families of compounds that include derivatives of phenol (dinoseb, dinoterb and pentachlorophenol), benzoic acid (acifluorfen, chloramben, dicamba, 3,5-dichlorobenzoic acid and dacthal--a dibenzoic acid derivative), acetic acid [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)], propanoic acid [dichlorprop, fluazifop, haloxyfop, 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and silvex], butanoic acid [4-(2,4-dichlorophenoxy)butanoic acid (2,4-DB) and 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB)], and other miscellaneous acids such as pyridinecarboxylic acid (picloram) and thiadiazine dioxide (bentazon).

  9. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  10. 21 CFR 357.210 - Cholecystokinetic active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a melting point of 41 to 43.5 °C, an iodine value of 65 to 69, and a fatty acid composition as follows: Fatty acid Percent composition Myristic acid 0.1 Palmitic acid 10.0 Palmitoleic acid 0.1 Stearic acid 13.5 Oleic acid 72.0 Linoleic acid 3.8 Linolenic acid 0.1 Arachidic acid 0.5 Behenic acid 0.2 [54...

  11. 21 CFR 357.210 - Cholecystokinetic active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a melting point of 41 to 43.5 °C, an iodine value of 65 to 69, and a fatty acid composition as follows: Fatty acid Percent composition Myristic acid 0.1 Palmitic acid 10.0 Palmitoleic acid 0.1 Stearic acid 13.5 Oleic acid 72.0 Linoleic acid 3.8 Linolenic acid 0.1 Arachidic acid 0.5 Behenic acid 0.2 [54...

  12. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.

    PubMed

    Liu, Zhipeng; Liu, Rui; Chou, Jing; Yu, Jiaying; Liu, Xiaowei; Sun, Changhao; Li, Ying; Liu, Liyan

    2018-07-15

    Maternal diet during pregnancy can influence offspring's health by affecting development and metabolism. This study aimed to analyze the influence of maternal folic acid (FA) supplementation on the metabolism of rat pups using targeted metabolomics. Twenty female rats were randomly assigned to a FA supplementation (FAS group, n = 10) or control group (n = 10), which were fed AIN93G diet with 2 or 10 mg/kg FA, respectively. We then measured amino acids and their derivatives, biogenic amines, and fatty acids in the female rats and their pups by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC/MS-MS) and gas chromatography-mass spectrometry (GC/MS-MS). In maternal rats, the significant changes of three metabolites (proline, γ-aminobutyric acid and esterified octadecatetraenoic acid, P < 0.05) were observed in FAS group. For the rat pups, FAS pups had significantly lower homocysteine and higher FA levels than control pups. The lower levels of amino acids (leucine, isoleucine, serine, proline) were obtained in FAS pups. Furthermore, there were the decreased esterified fatty acids (arachidonic acid, eicosapentaenoic acid, and docosatetraenoic acid) and free fatty acids (oleic acid, linoleic acid, γ-linolenic acid, octadecatetraenoic acid, arachidonic acid, eicosapentaenoic acid and selacholeic acid) in FAS pups. Metabolic changes in the FAS pups were characterized by changes in fatty acids and amino acids. These results suggested that FA supplementation during pregnancy influenced amino acids and fatty acids metabolism in rat pups. This study provides new insights into the regulation of amino acids and fatty acids metabolism during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Profiling and characterization by LC-MSn of the galloylquinic acids of green tea, tara tannin, and tannic acid.

    PubMed

    Clifford, Michael N; Stoupi, Stavroula; Kuhnert, Nikolai

    2007-04-18

    Green tea, tara tannin, and tannic acid have been profiled for their contents of galloylquinic acids using LC-MS8. These procedures have provided evidence for the first observation of (i) 1-galloylquinic acid (11), 1,3,5-trigalloylquinic acid (22), 4-(digalloyl)quinic acid (28), 5-(digalloyl)quinic acid (29), and either 3-galloyl-5-(digalloyl)quinic acid (32) or 3-(digalloyl)-5-galloylquinic acid (33) from any source; (ii) 4-galloyl-5-(digalloyl)quinic acid (34), 5-galloyl-4-(digalloyl)quinic acid (35), 3-(digalloyl)-4,5-digalloylquinic acid (41), 4-(digalloyl)-3,5-digalloylquinic acid (40), 5-(digalloyl)-3,4-digalloylquinic acid (39), and 1,3,4-trigalloylquinic acid (21) from tara tannin; and (iii) 3-galloylquinic acid (12) and 4-galloylquinic acid (14) from green tea. The first mass spectrometric fragmentation data are reported for galloylquinic acids containing between five and eight gallic acid residues. For each of these mass ranges at least two isomers based on the 1,3,4,5-tetragalloylquinic acid core (25) and at least three based on the 3,4,5-trigalloylquinic acid core (24) were observed. Methanolysis of tara tannin yielded methyl gallate, methyl digallate, and methyl trigallate, demonstrating that some of these galloylquinic acids contained at least one side chain of up to four galloyl residues.

  14. Induction of nodD Gene in a Betarhizobium Isolate, Cupriavidus sp. of Mimosa pudica, by Root Nodule Phenolic Acids.

    PubMed

    Mandal, Santi M; Chakraborty, Dipjyoti; Dutta, Suhrid R; Ghosh, Ananta K; Pati, Bikas R; Korpole, Suresh; Paul, Debarati

    2016-06-01

    A range of phenolic acids, viz., p-coumaric acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, protocatechuic acid, caffeic acid, ferulic acid, and cinnamic acid have been isolated and identified by LC-MS analysis in the roots and root nodules of Mimosa pudica. The effects of identified phenolic acids on the regulation of nodulation (nod) genes have been evaluated in a betarhizobium isolate of M. pudica root nodule. Protocatechuic acid and p-hydroxybenzoic acid were most effective in inducing nod gene, whereas caffeic acid had no significant effect. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were estimated, indicating regulation and metabolism of phenolic acids in root nodules. These results showed that nodD gene expression of betarhizobium is regulated by simple phenolic acids such as protocatechuic acid and p-hydroxybenzoic acid present in host root nodule and sustains nodule organogenesis.

  15. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.

  16. Fatty acids bound to recombinant tear lipocalin and their role in structural stabilization.

    PubMed

    Tsukamoto, Seiichi; Fujiwara, Kazuo; Ikeguchi, Masamichi

    2009-09-01

    A variant of human tear lipocalin was expressed in Escherichia coli, and the bound fatty acids were analysed by gas chromatography, mass spectroscopy and nuclear magnetic resonance spectroscopy. Five major fatty acids were identified as hexadecanoic acid (palmitic acid, PA), cis-9-hexadecenoic acid (palmitoleic acid), 9,10-methylenehexadecanoic acid, cis-11-octadecenoic acid (vaccenic acid) and 11,12-methyleneoctadecanoic acid (lactobacillic acid). The composition of the bound fatty acids was similar to the fatty acid composition of E. coli extract, suggesting that the binding affinities are similar for these fatty acids. The urea-induced and thermal-unfolding transitions of the holoprotein (nondelipidated), apoprotein (delipidated) and PA-bound protein were observed by circular dichroism. Holoproteins and PA-bound proteins showed the same stability against urea and heat, and were more stable than apoprotein. These results show that each bound fatty acid stabilizes recombinant tear lipocalin to a similar extent.

  17. The fatty acid composition of a Vibrio alginolyticus associated with the alga Cladophora coelothrix. Identification of the novel 9-methyl-10-hexadecenoic acid.

    PubMed

    Carballeira, N M; Sostre, A; Stefanov, K; Popov, S; Kujumgiev, A; Dimitrova-Konaklieva, S; Tosteson, C G; Tosteson, T R

    1997-12-01

    The fatty acid composition of a new strain of Vibrio alginolyticus, found in the alga Cladophora coelothrix, was studied. Among 38 different fatty acids, a new fatty acid, 9-methyl-10-hexadecenoic acid and the unusual 11-methyl-12-octadecenoic acid, were identified. Linear alkylbenzene fatty acids, such as 10-phenyldecanoic acid, 12-phenyldodecanoic acid and 14-phenyltetradecanoic acid, were also found in V. alginolyticus. The alga contained 43% saturated fatty acids, and 28% C16-C20 polyunsaturated fatty acids of the n-3 and n-6 families.

  18. Bile acid patterns in commercially available oxgall powders used for the evaluation of the bile tolerance ability of potential probiotics

    PubMed Central

    Hu, Peng-Li; Yuan, Ya-Hong; Yue, Tian-Li

    2018-01-01

    This study aimed to analyze the bile acid patterns in commercially available oxgall powders used for evaluation of the bile tolerance ability of probiotic bacteria. Qxgall powders purchased from Sigma-Aldrich, Oxoid and BD Difco were dissolved in distilled water, and analyzed. Conjugated bile acids were profiled by ion-pair high-performance liquid chromatography (HPLC), free bile acids were detected as their p-bromophenacyl ester derivatives using reversed-phase HPLC after extraction with acetic ether, and total bile acids were analyzed by enzymatic-colorimetric assay. The results showed that 9 individual bile acids (i.e., taurocholic acid, glycocholic acid, taurodeoxycholic acid, glycodeoxycholic acid, taurochenodeoxycholic acid, glycochenodeoxycholic acid, cholic acid, chenodeoxycholic acid, deoxycholic acid) were present in each of the oxgall powders tested. The content of total bile acid among the three oxgall powders was similar; however, the relative contents of the individual bile acids among these oxgall powders were significantly different (P < 0.001). The oxgall powder from Sigma-Aldrich was closer to human bile in the ratios of glycine-conjugated bile acids to taurine-conjugated bile acids, dihydroxy bile acids to trihydroxy bile acids, and free bile acids to conjugated bile acids than the other powders were. It was concluded that the oxgall powder from Sigma-Aldrich should be used instead of those from Oxoid and BD Difco to evaluate the bile tolerance ability of probiotic bacteria as human bile model. PMID:29494656

  19. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    PubMed

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  20. A new low linolenic acid allele of GmFAD3A gene in soybean PE1690

    USDA-ARS?s Scientific Manuscript database

    Relative fatty acid content of soybean oil is about 12 % palmitic acid, 4 % stearic acid, 23 % oleic acid, 54 % linoleic acid, and 8 % linolenic acid. To improve oxidative stability and quality of oil, breeding programs have mainly focused on reducing saturated fatty acids, increasing oleic acid, an...

  1. Amino acid and fatty acid compositions of Rusip from fermented Anchovy fish (Stolephorussp)

    NASA Astrophysics Data System (ADS)

    Koesoemawardani, D.; Hidayati, S.; Subeki

    2018-04-01

    Rusip is a typical food of Bangka Belitung Indonesia made from fermented anchovy. This study aims to determine the properties of chemistry, microbiology, composition of amino acids and fatty acids from fermented fish spontaneously and non spontaneously. Spontaneous rusip treatment is done by anchovy fish (Stolephorussp) after cleaning and added salt 25% (w/w) and palm sugar 10% (w/w). While, non-spontaneous rusip is done by adding a culture mixture of Streptococcus, Leuconostoc, and Lactobacillus bacteria 2% (w/v). The materials are then incubated for 2 weeks. The data obtained were then performed t-test at the level of 5%. Spontaneous and non-spontaneous rusip fermentation process showed significant differences in total acid, reducing sugar, salt content, TVN, total lactic acid bacteria, total mold, and total microbial. The dominant amino acid content of spontaneous and non-spontaneous rusip are glutamic acid and aspartic acid, while the dominant fatty acids in spontaneous and non-spontaneous rusip are docosahexaenoic acid, palmitic acid, oleic acid, arachidonic acid, stearic acid, eicosapentaenoic acid, palmitoleic acid, and myristic acid.

  2. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Uma Devi, P; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. HPLC method for the simultaneous quantification of the major organic acids in Angeleno plum fruit

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Wang, Jing; Cheng, Wei; Zhao, Zhilei; Cao, Jiankang

    2014-08-01

    A method was developed to profile major organic acids in Angeleno fruit by high performance liquid chromatography. Organic acids in plum were extracted by water with ultra- sonication at 50°C for 30 min. The extracts were chromatographed on Waters Atlantis T3 C18 column (4.6 mm×250 mm, 5 μm) with 0.01mol/L sulfuric acid and water as mobile phase, and flow rate was 0.5 ml/min. The column temperature was 40C, and chromatography was monitored by a diode array detector at 210 nm. The result showed that malic acid, citric acid, tartaric acid, oxalic acid, pyruvic acid, acetic acid, succinic acid in Angeleno plum, and the malic acid was the major organic acids. The coefficient of determination of the standard calibration curve is R2 > 0.999. The organic acids recovery ranged from 99.11% for Malic acid to 106.70% for Oxalic acid, and CV (n=6) ranged from 0.95% for Malic acid to 6.23% for Oxalic acid, respectively. The method was accurate, sensitive and feasible in analyzing the organic acids in Angeleno plum.

  4. Microorganisms for producing organic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  5. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  6. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Use of acid to correct...

  7. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Use of acid to correct...

  8. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Use of acid to correct...

  9. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acid, fumaric acid, malic acid, lactic acid or tartaric acid, or a combination of two or more of these... citric acid for other fruit (including berries). (d) Other use of acid. A winemaker desiring to use an... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Use of acid to correct...

  10. Acid Rain: What It Is -- How You Can Help!

    ERIC Educational Resources Information Center

    National Wildlife Federation, Washington, DC.

    This publication discusses the nature and consequences of acid precipitation (commonly called acid rain). Topic areas include: (1) the chemical nature of acid rain; (2) sources of acid rain; (3) geographic areas where acid rain is a problem; (4) effects of acid rain on lakes; (5) effect of acid rain on vegetation; (6) possible effects of acid rain…

  11. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  12. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA. © 2016 Scandinavian Plant Physiology Society.

  13. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted inmore » liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.« less

  15. Stereospecific distribution of plamitic acid in the triacylglycerols of rat adipocytes. Effects of varying the composition of the substrate fatty acid in vitro

    PubMed Central

    Christie, William W.; Hunter, Margaret L.

    1980-01-01

    The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower. PMID:7236215

  16. Phenylpropanoid Metabolism in Suspension Cultures of Vanilla planifolia Andr. 1

    PubMed Central

    Funk, Christoph; Brodelius, Peter E.

    1990-01-01

    Feeding of 4-methoxycinnamic acid, 3,4-dimethoxycinnamic acid and 3,4,5-trimethoxycinnamic acid to cell suspension cultures of Vanilla planifolia resulted in the formation of 4-hydroxybenzoic acid, vanillic acid, and syringic acid, respectively. The homologous 4-methoxybenzoic acids were demethylated to the same products. It is concluded that the side chain degrading enzyme system accepts the 4-methoxylated substrates while the demethylation occurs at the benzoic acid level. The demethylating enzyme is specific for the 4-position. Feeding of [O-14C-methyl]-3,4-dimethoxycinnamic acid revealed that the first step in the conversion is the glycosylation of the cinnamic acid to its glucose ester. A partial purification of a UDP-glucose: trans-cinnamic acid glucosyltransferase is reported. 4-Methoxy substituted cinnamic acids are better substrates for this enzyme than 4-hydroxy substituted cinnamic acid. It is suggested that 4-methoxy substituted cinnamic acids are intermediates in the biosynthetic conversion of cinnamic acids to benzoic acids in cells of V. planifolia. PMID:16667674

  17. Uptake mechanism of valproic acid in human placental choriocarcinoma cell line (BeWo).

    PubMed

    Ushigome, F; Takanaga, H; Matsuo, H; Tsukimori, K; Nakano, H; Ohtani, H; Sawada, Y

    2001-04-13

    Valproic acid is an anticonvulsant widely used for the treatment of epilepsy. However, valproic acid is known to show fetal toxicity, including teratogenicity. In the present study, to elucidate the mechanisms of valproic acid transport across the blood-placental barrier, we carried out transcellular transport and uptake experiments with human placental choriocarcinoma epithelial cells (BeWo cells) in culture. The permeability coefficient of [3H]valproic acid in BeWo cells for the apical-to-basolateral flux was greater than that for the opposite flux, suggesting a higher unidirectional transport in the fetal direction. The uptake of [3H]valproic acid from the apical side was temperature-dependent and enhanced under acidic pH. In the presence of 50 microM carbonyl cyanide p-trifluoromethoxylhydrazone, the uptake of [3H]valproic acid was significantly reduced. A metabolic inhibitor, 10 mM sodium azide, also significantly reduced the uptake of [3H]valproic acid. Therefore, valproic acid is actively transported in a pH-dependent manner on the brush-border membrane of BeWo cells. Kinetic analysis of valproic acid uptake revealed the involvement of a non-saturable component and a saturable component. The Michaelis constant for the saturable transport (K(t)) was smaller under acidic pH, suggesting a proton-linked active transport mechanism for valproic acid in BeWo cells. In the inhibitory experiments, some short-chain fatty acids, such as acetic acid, lactic acid, propanoic acid and butyric acid, and medium-chain fatty acids, such as hexanoic acid and octanoic acid, inhibited the uptake of [3H]valproic acid. The uptake of [3H]valproic acid was also significantly decreased in the presence of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, salicylic acid and furosemide, which are well-known inhibitors of the anion exchange system. Moreover, p-aminohippuric acid significantly reduced the uptake of [3H]valproic acid. These results suggest that an active transport mechanism for valproic acid exists on the brush-border membrane of placental trophoblast cells and operates in a proton-linked manner.

  18. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS).

    PubMed

    Lee, Jihyun; Chan, Bronte Lee Shan; Mitchell, Alyson E

    2017-01-15

    Free and bound phenolic acids were measured in the pulp and peel of four varieties of apples using high resolution mass spectrometry. Twenty-five phenolic acids were identified and included: 8 hydroxybenzoic acids, 11 hydroxycinnamic acids, 5 hydroxyphenylacetic acids, and 1 hydoxyphenylpropanoic acid. Several phenolics are tentatively identified for the first time in apples and include: methyl gallate, ethyl gallate, hydroxy phenyl acetic acid, three phenylacetic acid isomers, 3-(4-hydroxyphenyl)propionic acid, and homoveratric acid. With exception of chlorogenic and caffeic acid, most phenolic acids were quantified for the first time in apples. Significant varietal differences (p<0.05) were observed in both peel and pulp. The levels of total phenolic acids were higher in the pulp as compared to apple peel (dry weight) in all varieties. Coumaroylquinic, protocatechuic, 4-hydroxybenzoic, vanillic and t-ferulic acids were present in free forms. With exception of chlorogenic acid, all other phenolic acids were present only as bound forms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  20. Isolation of aquatic yeasts with the ability to neutralize acidic media, from an extremely acidic river near Japan's Kusatsu-Shirane Volcano.

    PubMed

    Mitsuya, Daisuke; Hayashi, Takuya; Wang, Yu; Tanaka, Mami; Okai, Masahiko; Ishida, Masami; Urano, Naoto

    2017-07-01

    The Yukawa River is an extremely acidic river whose waters on the east foot of the Kusatu-Shirane Volcano (in Gunma Prefecture, Japan) contain sulfate ions. Here we isolated many acid-tolerant yeasts from the Yukawa River, and some of them neutralized an acidic R2A medium containing casamino acid. Candida fluviatilis strain CeA16 had the strongest acid tolerance and neutralizing activity against the acidic medium. To clarify these phenomena, we performed neutralization tests with strain CeA16 using casamino acid, a mixture of amino acids, and 17 single amino acid solutions adjusted to pH 3.0, respectively. Strain CeA16 neutralized not only acidic casamino acid and the mixture of amino acids but also some of the acidic single amino acid solutions. Seven amino acids were strongly decomposed by strain CeA16 and simultaneously released ammonium ions. These results suggest strain CeA16 is a potential yeast as a new tool to neutralize acidic environments. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass

    DOEpatents

    Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin

    2016-03-15

    Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.

  2. Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance.

    PubMed

    Haling, Rebecca E; Simpson, Richard J; Culvenor, Richard A; Lambers, Hans; Richardson, Alan E

    2011-03-01

    It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength. © 2010 Blackwell Publishing Ltd.

  3. Acid Response of Bifidobacterium longum subsp. longum BBMN68 Is Accompanied by Modification of the Cell Membrane Fatty Acid Composition.

    PubMed

    Liu, Songling; Ren, Fazheng; Jiang, Jingli; Zhao, Liang

    2016-07-28

    The acid response of Bifidobacterium longum subsp. longum BBMN68 has been studied in our previous study. The fab gene, which is supposed to be involved in membrane fatty acid biosynthesis, was demonstrated to be induced in acid response. In order to investigate the relationship between acid response and cell membrane fatty acid composition, the acid adaptation of BBMN68 was assessed and the membrane fatty acid composition at different adaptation conditions was identified. Indeed, the fatty acid composition was influenced by acid adaptation. Our results showed that the effective acid adaptations were accompanied with decrease in the unsaturated to saturated fatty acids ratio (UFA/SFA) and increase in cyclopropane fatty acid (CFA) content, which corresponded to previous studies. Moreover, both effective and non-effective acid adaptation conditions resulted in decrease in the C18:1 cis-9/C18:1 trans-9 ratio, indicating that the C18:1 cis-9/C18:1 trans-9 ratio is associated with acid tolerance response but not with acid adaptation response. Taken together, this study indicated that the UFA/SFA and CFA content of BBMN68 were involved in acid adaptation and the C18:1 cis-9/C18:1 trans-9 ratio was involved in acid tolerance response.

  4. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid.

    PubMed

    Piazzon, A; Vrhovsek, U; Masuero, D; Mattivi, F; Mandoj, F; Nardini, M

    2012-12-19

    The main metabolites of caffeic and ferulic acids (ferulic acid-4'-O-sulfate, caffeic acid-4'-O-sulfate, and caffeic acid-3'-O-sulfate), the most representative phenolic acids in fruits and vegetables, and the acyl glucuronide of ferulic acid were synthesized, purified, and tested for their antioxidant activity in comparison with those of their parent compounds and other related phenolics. Both the ferric reducing antioxidant power (FRAP) assay and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging method were used. Ferulic acid-4'-O-sulfate and ferulic acid-4'-O-glucuronide exhibited very low antioxidant activity, while the monosulfate derivatives of caffeic acid were 4-fold less efficient as the antioxidant than caffeic acid. The acyl glucuronide of ferulic acid showed strong antioxidant action. The antioxidant activity of caffeic acid-3'-O-glucuronide and caffeic acid-4'-O-glucuronide was also studied. Our results demonstrate that some of the products of phenolic acid metabolism still retain strong antioxidant properties. Moreover, we first demonstrate the ex vivo synthesis of the acyl glucuronide of ferulic acid by mouse liver microsomes, in addition to the phenyl glucuronide.

  5. Production and identification of a novel compound, 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Kim, Deuk-Soo; Suh, Min-Jung; Oh, Sei-Ryang; Lee, In-Jung; Kang, Sun-Chul; Hou, Ching T; Kim, Hak-Ryul

    2007-05-01

    Hydroxy fatty acids are considered as important value-added product for industrial application because of their special properties such as higher viscosity and reactivity. Microbial production of the hydroxy fatty acids from various fatty acid substrates have been actively studied using several microorganisms. The new bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were produced from oleic acid and ricinoleic acid, respectively. Based on the postulated common metabolic pathway involved in DOD and TOD formation by PR3, it was assumed that palmitoleic acid containing a singular 9-cis double bond, common structural property sharing with oleic acid and ricinoleic acid, could be utilized by PR3 to produce hydroxy fatty acid. In this study, we tried to use palmitoleic acid as substrate for production of hydroxy fatty acid by PR3 and firstly confirmed that PR3 could produce 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) with 23% yield from palmitoleic acid. DHD production was peaked at 72 h after the substrate was added to the 24-h-culture.

  6. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  7. AGARD Corrosion Handbook. Volume 1. Aircraft Corrosion: Causes and Case Histories

    DTIC Science & Technology

    1985-07-01

    Anodic coatings can be formed in chromic acid, sulphuric acid, phosphoric acid or oxalic acid solutions. Chromic acid anodizing is widely used with...and consists of a thin non-porous barrier layer next to the metal with a porous outer layer that can be sealed by hydrothermal treatment in steam...anaerobic) or an oxidative (aerobic) mechanism. Various organic acids such as citric acid, oxalic acid, gluconic acid, dodecanoic acid, etc., which may be

  8. Effect of three edible oils on the intestinal absorption of caffeic acid: An in vivo and in vitro study

    PubMed Central

    Prasadani, W. Chaturi; Senanayake, Chaturi M.; Jayathilaka, Nimanthi; Ekanayake, Sagarika

    2017-01-01

    Polyphenolic antioxidants are mainly absorbed through passive paracellular permeation regulated by tight junctions. Some fatty acids are known to modulate tight junctions. Fatty acids resulting from the digestion of edible oils may improve the absorption of polyphenolic antioxidants. Therefore, we explored the effect of three edible oils on the intestinal absorption of caffeic acid. Rats were fed with soybean oil and caffeic acid dissolved in distilled water. Caffeic acid contents in the plasma collected up to 1 hr were quantified. The experiment was repeated with coconut oil and olive oil. Component fatty acids of the oils were individually tested in vitro for their effect on permeability of caffeic acid using Caco-2 cell monolayers. Highest absorption of caffeic acid was observed in animals fed with coconut oil. In vitro transport percentages of caffeic acid in 2.5 mmol/L solutions of fatty acids were 22.01±0.12 (lauric), 15.30 ± 0.25 (myristic acid), 13.59 ± 0.35 (linoleic acid), 3.70 ± 0.09 (oleic acid) and 0.10–2.0 (all other fatty acids). Lauric acid and myristic acid are the two major fatty acids present in coconut oil. Therefore, these fatty acids may contribute to the higher absorption of caffeic acid in the presence of coconut oil. PMID:28617858

  9. Electrophilic properties of common MALDI matrix molecules

    NASA Astrophysics Data System (ADS)

    Lippa, T. P.; Eustis, S. N.; Wang, D.; Bowen, K. H.

    2007-11-01

    The negative ion photoelectron spectra of the following MALDI matrix molecules have been measured: 3-carboxypyridine (nicotinic acid), 2,5-dihydroxybenzoic acid (DHB), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid), 2,6-dihydroxyacetophenone (DHAP), 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid (ferulic acid), 3-hydroxy-2-pyridinecarboxylic acid (3HPA), and 2,6-pyridinedicarboxylic acid (dipicolinic acid). Adiabatic electron affinities and vertical detachment energies were extracted from these spectra and reported. In addition, electron affinities were calculated for DHAP, ferulic acid, dipicolinic acid and sinapinic acid. Photoelectron spectra were also measured for the dimer anions of DHB and nicotinic acid and for the fragment anion in which alpha-cyano-cinnamic acid had lost a CO2 unit. Together, these results augment the database of presently available electrophilic data on common matrix molecules along with some of their dimers and fragments.

  10. Highly Selective Deoxydehydration of Tartaric Acid over Supported and Unsupported Rhenium Catalysts with Modified Acidities.

    PubMed

    Li, Xiukai; Zhang, Yugen

    2016-10-06

    The deoxydehydration (DODH) of sugar acids to industrially important carboxylic acids is a very attractive topic. Oxorhenium complexes are the most-often employed DODH catalysts. Because of the acidity of the rhenium catalysts, the DODH products of sugar acids were usually in the form of mixture of free carboxylic acids and esters. Herein, we demonstrate strategies for the selective DODH of sugar acids to free carboxylic acids by tuning the Lewis acidity or the Brønsted acidity of the rhenium-based catalysts. Starting from tartaric acid, up to 97 % yield of free maleic acid was achieved. Based on our strategies, functional polymer immobilized heterogeneous rhenium catalysts were also developed for the selective DODH conversion of sugar acids. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy.

    PubMed

    Albishri, Hassan M; Almaghrabi, Omar A; Moussa, Tarek A A

    2013-01-01

    The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants.

  12. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.

    PubMed

    Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A

    2014-08-13

    Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

  13. Cadmium Alters the Concentration of Fatty Acids in THP-1 Macrophages.

    PubMed

    Olszowski, Tomasz; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Łukomska, Agnieszka; Drozd, Arleta; Chlubek, Dariusz

    2018-03-01

    Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl 2 ) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl 2 . Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5-200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.

  14. Comparison of clinical characteristics of chronic cough due to non-acid and acid gastroesophageal reflux.

    PubMed

    Xu, Xianghuai; Yang, Zhongmin; Chen, Qiang; Yu, Li; Liang, Siwei; Lü, Hanjing; Qiu, Zhongmin

    2015-04-01

    Little is known about non-acid gastroesophageal reflux-induced chronic cough (GERC). The purpose of the study is to explore the clinical characteristics of non-acid GERC. Clinical symptoms, cough symptom score, capsaicin cough sensitivity, gastroesophageal reflux diagnostic questionnaire (GerdQ) score, findings of multichannel intraluminal impedance-pH monitoring (MII-pH) and response to pharmacological anti-reflux therapy were retrospectively reviewed in 38 patients with non-acid GERC and compared with those of 49 patients with acid GERC. Non-acid GERC had the similar cough character, cough symptom score, and capsaicin cough sensitivity to acid GERC. However, non-acid GERC had less frequent regurgitation (15.8% vs 57.1%, χ(2)  = 13.346, P = 0.000) and heartburn (7.9% vs 32.7%, χ(2)  = 7.686, P  = 0.006), and lower GerdQ score (7.4 ± 1.4 vs 10.6 ± 2.1, t = -6.700, P = 0.003) than acid GERC. Moreover, MII-pH revealed more weakly acidic reflux episodes, gas reflux episodes and a higher symptom association probability (SAP) for non-acid reflux but lower DeMeester score, acidic reflux episodes and SAP for acid reflux in non-acid GERC than in acid GERC. Non-acid GERC usually responded to the standard anti-reflux therapy but with delayed cough resolution or attenuation when compared with acid GERC. Fewer patients with non-acid GERC needed an augmented acid suppressive therapy or treatment with baclofen. There are some differences in the clinical manifestations between non-acid and acid GERC, but MII-pH is essential to diagnose non-acid GERC. © 2014 John Wiley & Sons Ltd.

  15. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  16. Chicoric Acid Found in Basil (Ocimum basilicum L.) Leaves

    USDA-ARS?s Scientific Manuscript database

    This is the first report to identify the presence of chicoric acid (cichoric acid; also known as dicaffeoyltartaric acid) in basil leaves. Rosmarinic acid, chicoric acid, and caftaric acid (in the order of most abundant to least; all derivatives of caffeic acid) were identified in fresh basil leaves...

  17. Acute Toxicity of a Number of Chemicals of Interest to the Air Force

    DTIC Science & Technology

    1979-03-01

    Acid Azelaic Acid Dimer Acid N-Benzyl-3, 7-Dioctyl Phenothiazine Phenothiazine Dioctyl Phenothiazine Sebacic Acid ...liquid) 1,4-dihydroxyanthraquinone (solid) Sulfurized 9-octadecenoic acid (liquid) Azelaic acid (solid) Dimer acid (liquid) N-benzyl-3,7-dicotyl...dihydroxyanthra- Rat >5000 5000(0) Below Toxic quinone Sulfurized 9-octa- Rat >5000 5000(0) Below Toxic decenoic acid Azelaic acid Rat >5000

  18. Comparative fatty acid composition of four Sargassum species (Fucales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Chun; Lu, Bao-Ren; Tseng, C. K.

    1995-12-01

    Fatty acid composition of four Sargassum species from Qingdao and Shidao, Shandong Province was investigated. 16:0 (palmitic acid) was the major saturated fatty acid. C18 and C20 were the main polyunsaturated fatty acids (PUFAs). Arachidonic acid and eicosapentaenoic acid predominated among polyenoic acids in all the algal species examined, except for Sargassum sp. which had low concentration of eicosapentaenoic acid.

  19. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    PubMed

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  20. Omega-3 fatty acids in baked freshwater fish from south of Brazil.

    PubMed

    Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

    1997-03-01

    Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

Top