NASA Astrophysics Data System (ADS)
Chang, Shenteng; Lu, Chungsying; Lin, Kun-Yi Andrew
2015-01-01
Graphene oxide (GO), sodium Y-type zeolite (NaY) and granular activated carbon (GAC) are selected as adsorbents to study their kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide (TMAH) adsorption from water. The adsorption kinetics follows the pseudo-second-order rate law while the adsorption thermodynamics shows an exothermic reaction with GO and GAC but displays an endothermic reaction with NaY. The adsorbed TMAH can be readily desorbed from the surface of GO and NaY by 0.05 M NaCl solution. A comparative study on the cyclic TMAH adsorption with GO, NaY and GAC is also conducted and the results reveal that GO exhibits the greatest TMAH adsorption capacity as well as superior reversibility of TMAH adsorption over 10 cycles of adsorption and desorption process. These features indicate that GO is a promising and efficient adsorbent for TMAH removal in wastewater treatment.
NASA Astrophysics Data System (ADS)
Weiying, Ou; Yao, Zhang; Hailing, Li; Lei, Zhao; Chunlan, Zhou; Hongwei, Diao; Min, Liu; Weiming, Lu; Jun, Zhang; Wenjing, Wang
2010-10-01
Etching was performed on (100) silicon wafers using silicon-dissolved tetramethylammonium hydroxide (TMAH) solutions without the addition of surfactant. Experiments were carried out in different TMAH concentrations at different temperatures for different etching times. The surface phenomena, etching rates, surface morphology and surface reflectance were analyzed. Experimental results show that the resulting surface covered with uniform pyramids can be realized with a small change in etching rates during the etching process. The etching mechanism is explained based on the experimental results and the theoretical considerations. It is suggested that all the components in the TMAH solutions play important roles in the etching process. Moreover, TMA+ ions may increase the wettability of the textured surface. A good textured surface can be obtained in conditions where the absorption of OH-/H2O is in equilibrium with that of TMA+/SiO2 (OH)22-.
Anisotropic etching of silicon in solutions containing tensioactive compounds
NASA Astrophysics Data System (ADS)
Zubel, Irena
2016-12-01
The results of investigations concerning anisotropic etching in 3M KOH and 25% TMAH solutions modified by tensioactive compounds such as alcohols, diols and a typical surfactant Triton X100 have been compared. Etching anisotropy was assessed on the basis of etch rates ratio V(110)/V(100). It was stated that the relation between surface tension of the solutions and etch rates of particular planes depend not only on the kind of surfactant but also on the kind of etching solution (KOH, TMAH). It points out an important role of TMA+ ions in the etching process, probably in the process of forming an adsorption layer, consisting of the molecules of tensioactive compounds on Si surface, which decides about etch rate. We have observed that this phenomenon occurs only at high concentration of TMA+ ions (25% TMAH). Reduction of TMAH concentration changes the properties of surfactant containing TMAH solutions. From all investigated solutions, the solutions that assured developing of (110) plane inclined at the angle of 45° to (100) substrate were selected. Such planes can be used as micromirrors in MOEMS structures. The solutions provide the etch rate ratio V(110)/V(100)<0.7, thus they were selected from hydroxide solutions containing surfactants. A simple way for etch rate anisotropy V(110)/V(100) assessment based on microscopic images etched structures has been proposed.
Citraningrum, H M; Liu, Jhy-Chern
Tetramethylammonium hydroxide (TMAH, TMA(+)) has been widely used as the photoresist developer in semiconductor and thin film transistor liquid crystal display manufacturing. In this study, TMAH-containing wastewater was treated by ion exchange method. Strong acid cation exchange resin was used. A kinetics study revealed that the ion exchange reaction reached equilibrium within 20 min and it could be described by a pseudo-second-order model. To assess the effects of competing ions, wastewater was spiked with three different amines, namely ethylamine (EA(+)), diethylamine (DEA(+)), and triethylamine (TEA(+)). TMAH uptake decreased when in the presence of amines, and it decreased in the order EA(+) < DEA(+) < TEA(+). It could be attributed to different proton affinity (PA) and the strength of affinity between amine molecules and resin matrix, as found from the ab initio calculation values and Langmuir isotherm parameters. However, the interaction energy between sulphonic acid groups and interfering amines in solution using density functional theory (DFT) calculation resulted in a different trend compared with that of PA. The difference might be caused by stabilization of amines by resin matrix and different molecular structures.
Shadkami, Farzad; Helleur, Robert
2009-07-31
A simple and direct approach was developed for thermochemolytic analysis of a wide range of biomolecules present in plant materials using an injection port of a gas chromatograph/mass spectrometer (GC/MS) and a novel solids injector consisting of a coiled stainless steel wire placed inside a modified needle syringe. Optimum thermochemolysis (or Thermally Assisted Hydrolysis/Methylation) was achieved by using a suitable methanolic solution of trimethylsulfonium hydroxide (TMSH) or tetramethylammonium hydroxide (TMAH) with an injection port temperature of 350 degrees C. Intact, methylated flavonoids, saccharides, phenolic and fatty acids, lignin dimers and diterpene resin acids were identified. Samples include tea leaves, hemicelluloses, lignin isolates and herbal medicines. Unexpected chromatographic results using TMAH reagent revealed the presence of intact methylated trisaccharides (658 Da) and structurally informative dimer lignin markers.
T.R. Filley; P.G. Hatcher; W.C. Shortle
2000-01-01
This paper presents the results from an assessment of the application of a new molecular analytical procedure, 13C-TMAH thermochemolysis, to study the chemical modification of lignin by white-rot and brown-rot fungi. This technique differs from other molecular chemolysis procedures (e.g. TMAH thermochemolysis and CuO alkaline oxidation) as it...
NASA Astrophysics Data System (ADS)
Asoh, Hidetaka; Fujihara, Kosuke; Ono, Sachiko
2012-07-01
The morphological change of silicon macropore arrays formed by metal-assisted chemical etching using shape-controlled Au thin film arrays was investigated during anisotropic chemical etching in tetramethylammonium hydroxide (TMAH) aqueous solution. After the deposition of Au as the etching catalyst on (111) silicon through a honeycomb mask prepared by sphere lithography, the specimens were etched in a mixed solution of HF and H2O2 at room temperature, resulting in the formation of ordered macropores in silicon along the [111] direction, which is not achievable by conventional chemical etching without a catalyst. In the anisotropic etching in TMAH, the macropores changed from being circular to being hexagonal and finally to being triangular, owing to the difference in etching rate between the crystal planes.
Hu, Tai-Ho; Whang, Liang-Ming; Liu, Pao-Wen Grace; Hung, Yu-Ching; Chen, Hung-Wei; Lin, Li-Bin; Chen, Chia-Fu; Chen, Sheng-Kun; Hsu, Shu Fu; Shen, Wason; Fu, Ryan; Hsu, Romel
2012-06-01
This study evaluated biological treatment of TMAH in a full-scale methanogenic up-flow anaerobic sludge blanket (UASB) followed by an aerobic bioreactor. In general, the UASB was able to perform a satisfactory TMAH degradation efficiency, but the effluent COD of the aerobic bioreactor seemed to increase with an increased TMAH in the influent wastewater. The batch test results confirmed that the UASB sludge under methanogenic conditions would be favored over the aerobic ones for TMAH treatment due to its superb ability of handling high strength of TMAH-containing wastewaters. Based on batch experiments, inhibitory chemicals present in TFT-LCD wastewater like surfactants and sulfate should be avoided to secure a stable methanogenic TMAH degradation. Finally, molecular monitoring of Methanomethylovorans hollandica and Methanosarcina mazei in the full-scale plant, the dominant methanogens in the UASB responsible for TMAH degradation, may be beneficial for a stable TMAH treatment performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hu, T H; Whang, L M; Lei, C N; Chen, C F; Chiang, T Y; Lin, L B; Chen, H W; Liu, P W G; Cheng, S S
2010-01-01
This study evaluated TMAH biodegradation under methanogenic conditions. Under methanogenic conditions, a sludge from a full-scale UASB treating TFT-LCD wastewater was able to degrade 2,000 mg/L of TMAH within 10 h and attained a specific degradation rate of 19.2 mgTMAH/gVSS-h. Furthermore, several chemicals including some surfactants, DMSO, and sulfate were examined for their potential inhibitory effects on TMAH biodegradation under methanogenic conditions. The results indicated that surfactant S1 (up to 2%) and DMSO (up to 1,000 mg/L) presented negligible inhibitory effects on TMAH degradation, while surfactant S2 (0.2-1%) might inhibit methanogenic reaction without any TMAH degradation for 3-5 h. At sulfate concentrations higher than 300 mg/L, a complete inhibition of methanogenic reaction and TMAH biodegradation was observed. Results from cloning and sequencing of archaeal 16S rRNA gene fragments showed that Methanosarcina barkeri and Methanosarcina mazei were the dominant methanogens in the UASB treating TMAH-containing TFT-LCD wastewater.
Huang, Jingting; Wang, Kai-Sung; Liang, Chenju
2017-07-29
Tetramethylammonium hydroxide (TMAH) is widely used in high-tech industries as a developing agent. Ultraviolet (UV) light-activated persulfate (PS, S 2 O 8 2- ) can be used to generate strongly oxidative sulfate radicals, and it also exhibits the potential to treat TMAH-containing wastewater. This study initially investigated the effect of S 2 O 8 2- concentration and UV strength on the UV/S 2 O 8 2- process for the degradation of TMAH in a batch reactor. The results suggested that 15 watts (W) of UV-activated S 2 O 8 2- at concentrations of 10 or 50 mM resulted in pseudo-first-order TMAH degradation rate constants of 3.1-4.2 × 10 -2 min -1 , which was adopted for determining the hydraulic retention time (HRT) in a continuous stirred tank reactor (CSTR). The operating conditions (15 W UV/10 mM S 2 O 8 2- ) with a HRT of 129 min resulted in stable residual concentrations of S 2 O 8 2- and TMAH at approximately 2.6 mM and 20 mg L -1 in effluent, respectively. Several TMAH degradation intermediates including trimethylamine, dimethylamine, and methylamine were also detected. The effluent was adjusted to a neutral pH and evaluated for its biological acute toxicity using Cyprinus carpio as a bioassay organism. The "bio-acute toxicity unit" (TU a ) was determined to be 1.41, which indicated that the effluent was acceptable for being discharged into an aquatic ecosystem.
Investigation of Magnetic Properties and Mechanical Responses on Hydrogel-TMAH-Magnetite
NASA Astrophysics Data System (ADS)
Sunaryono; Hidayat, M. F.; Insjaf, C.; Taufiq, A.; Mufti, N.; Munasir
2018-05-01
Hydrogel-TMAH-Magnetite (ferrogel) was fabricated by using polyvinyl alcohol (PVA) hydrogel and magnetite fluids with tetramethylammonium hydroxide (TMAH) surfactant. Iron sand as the raw material was used to synthesize magnetite nanoparticles by co-precipitation method. Magnetite nanoparticles and ferrogel were characterized using X-Ray Fluorescence (XRF) to determine the content of elements in it. To know the functional group network of magnetite nanoparticles, magnetite enclosed with TMAH and ferrogel; we investigated using Fourier Transform Infra-Red (FTIR). Meanwhile, the magnetic properties of the hydrogel-TMAH-magnetite were measured by using Vibrating Sample Magnetometer (VSM). Furthermore, the composition analysis of the ferrogels using FTIR showed that all the synthesis materials were inside the ferrogels. The saturation magnetization of the hydrogel-TMAH-magnetite with a composition of TMAH 1.2 mL (3.95 emu·g-1) was higher than that of TMAH 0.8 mL (0.85 emu·g-1). It exhibited that the composition of TMAH 1.2 mL was an optimum composition to produce nanoparticle magnetite-TMAH having a stable and high performance. Furthermore, the magneto-elasticity of hydrogel-TMAH-magnetite in the effect of the external magnetic field had a good response. However, the composition of the nanoparticle magnetite-TMAH in the ferrogel did not significantly affect the elongation of the gel.
Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures
NASA Astrophysics Data System (ADS)
Reddy, M. Siva Pratap; Lee, Jung-Hee; Jang, Ja-Soon
2014-03-01
The electrical characteristics and reverse leakage mechanisms of tetramethylammonium hydroxide (TMAH) surface-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes were investigated by using the current-voltage ( I-V) and capacitance-voltage ( C-V) characteristics. The MIS diode was formed on n-GaN after etching the AlGaN in the AlGaN/GaN heterostructures. The TMAH-treated MIS diode showed better Schottky characteristics with a lower ideality factor, higher barrier height and lower reverse leakage current compared to the TMAH-free MIS diode. In addition, the TMAH-free MIS diodes exhibited a transition from Poole-Frenkel emission at low voltages to Schottky emission at high voltages, whereas the TMAH-treated MIS diodes showed Schottky emission over the entire voltage range. Reasonable mechanisms for the improved device-performance characteristics in the TMAH-treated MIS diode are discussed in terms of the decreased interface state density or traps associated with an oxide material and the reduced tunneling probability.
3D silicon shapes through bulk nano structuration by focused ion beam implantation and wet etching
NASA Astrophysics Data System (ADS)
Salhi, Billel; Troadec, David; Boukherroub, Rabah
2017-05-01
The work presented in this paper concerns the synthesis of silicon (Si) 2D and 3D nanostructures using the delayed effect, caused by implanted Ga ions, on the dissolution of Si in aqueous solutions of tetramethylammonium hydroxide (TMAH). The crystalline silicon substrates (100) are first cleaned and then hydrogenated by immersion in an aqueous solution of hydrofluoric acid. The ion implantation is then carried out by a focused ion beam by varying the dose and the exposure time. Chemical etching in aqueous solutions of TMAH at 80 °C leads to the selective dissolution of the Si planes not exposed to the ions. The preliminary results obtained in the laboratory made it possible to optimize the experimental conditions for the synthesis of 2D and 3D nanoobjects of controlled shape and size. Analysis by transmission electron microscopy and energy dispersive x-ray showed the amorphous nature of the nanostructures obtained and the presence of 5%-20% Ga in these nanoobjects. The first experiments of recrystallization by rapid thermal annealing allowed to reconstitute the crystal structure of these nanoobjects.
3D silicon shapes through bulk nano structuration by focused ion beam implantation and wet etching.
Salhi, Billel; Troadec, David; Boukherroub, Rabah
2017-05-19
The work presented in this paper concerns the synthesis of silicon (Si) 2D and 3D nanostructures using the delayed effect, caused by implanted Ga ions, on the dissolution of Si in aqueous solutions of tetramethylammonium hydroxide (TMAH). The crystalline silicon substrates (100) are first cleaned and then hydrogenated by immersion in an aqueous solution of hydrofluoric acid. The ion implantation is then carried out by a focused ion beam by varying the dose and the exposure time. Chemical etching in aqueous solutions of TMAH at 80 °C leads to the selective dissolution of the Si planes not exposed to the ions. The preliminary results obtained in the laboratory made it possible to optimize the experimental conditions for the synthesis of 2D and 3D nanoobjects of controlled shape and size. Analysis by transmission electron microscopy and energy dispersive x-ray showed the amorphous nature of the nanostructures obtained and the presence of 5%-20% Ga in these nanoobjects. The first experiments of recrystallization by rapid thermal annealing allowed to reconstitute the crystal structure of these nanoobjects.
Yusoh, Siti Noorhaniah
2016-01-01
Summary The optimization of etchant parameters in wet etching plays an important role in the fabrication of semiconductor devices. Wet etching of tetramethylammonium hydroxide (TMAH)/isopropyl alcohol (IPA) on silicon nanowires fabricated by AFM lithography is studied herein. TMAH (25 wt %) with different IPA concentrations (0, 10, 20, and 30 vol %) and etching time durations (30, 40, and 50 s) were investigated. The relationships between etching depth and width, and etching rate and surface roughness of silicon nanowires were characterized in detail using atomic force microscopy (AFM). The obtained results indicate that increased IPA concentration in TMAH produced greater width of the silicon nanowires with a smooth surface. It was also observed that the use of a longer etching time causes more unmasked silicon layers to be removed. Importantly, throughout this study, wet etching with optimized parameters can be applied in the design of the devices with excellent performance for many applications. PMID:27826521
Ye, Bo; Lu, Yaobin; Luo, Haiping; Liu, Guangli; Zhang, Renduo
2018-03-01
The aim of this study was to investigate the feasibility to improve the tetramethyl ammonium hydroxide (TMAH) production in the microbial electrolysis desalination and chemical-production cell (MEDCC) with long anode of 48 cm. Different concentrations of tetramethylammonium chloride (0.3-0.7 M) and applied voltages (1.5-3.5 V) were tested in the MEDCC. With 0.6 M of tetramethylammonium chloride as the raw material and under the applied voltage of 3.5 V, the maximum TMAH production rate in the MEDCC reached 1.13 ± 0.12 mmol/h, which was 9.4 times higher than those previously reported in the MEDCCs. The maximum current density of 41.0 ± 4.0 A/m 2 in the MEDCC was obtained, which was the highest value in the bioelectrochemical systems using the carbon cloth or carbon brush as the anode so far. Our results should provide a promising method to improve the TMAH production and boost the MEDCC application. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Zhenjiang; Wang, Bin; Ge, Shufang; Yan, Lailai; Liu, Yingying; Li, Zhiwen; Ren, Aiguo
2016-12-01
Polycyclic aromatic hydrocarbons (PAHs), nicotine, cotinine, and metals in human hair have been used as important environmental exposure markers. We aimed to develop a simple method to simultaneously analyze these pollutants using a small quantity of hair. The digestion performances of tetramethylammonium hydroxide (TMAH) and sodium hydroxide (NaOH) for human hair were compared. Various solvents or their mixtures including n-hexane (HEX), dichloromethane (DCM) and trichloromethane (TCM), HEX:DCM32 (3/2) and HEX:TCM73 (7/3) were adopted to extract organics. The recoveries of metals were determined under an optimal operation of digestion and extraction. Our results showed that TMAH performed well in dissolving human hair and even better than NaOH. Overall, the recoveries for five solutions were acceptable for PAHs, nicotine in the range of 80%-110%. Except for HEX, other four extraction solutions had acceptable extraction efficiency for cotinine from HEX:TCM73 (88 ± 4.1%) to HEX:DCM32 (100 ± 2.8%). HEX:DCM32 was chosen as the optimal solvent in consideration of its extraction efficiency and lower density than water. The recoveries of 12 typical major or trace metals were mainly in the range of 90%-110% and some of them were close to 100%. In conclusion, the simultaneous analysis of PAHs, nicotine, cotinine, and metals was feasible. Our study provided a simple and low-cost technique for environmental epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Normally-off AlGaN/GaN-based MOS-HEMT with self-terminating TMAH wet recess etching
NASA Astrophysics Data System (ADS)
Son, Dong-Hyeok; Jo, Young-Woo; Won, Chul-Ho; Lee, Jun-Hyeok; Seo, Jae Hwa; Lee, Sang-Heung; Lim, Jong-Won; Kim, Ji Heon; Kang, In Man; Cristoloveanu, Sorin; Lee, Jung-Hee
2018-03-01
Normally-off AlGaN/GaN-based MOS-HEMT has been fabricated by utilizing damage-free self-terminating tetramethyl ammonium hydroxide (TMAH) recess etching. The device exhibited a threshold voltage of +2.0 V with good uniformity, extremely small hysteresis of ∼20 mV, and maximum drain current of 210 mA/mm. The device also exhibited excellent off-state performances, such as breakdown voltage of ∼800 V with off-state leakage current as low as ∼10-12 A and high on/off current ratio (Ion/Ioff) of 1010. These excellent device performances are believed to be due to the high quality recessed surface, provided by the simple self-terminating TMAH etching.
Interferences in the direct quantification of bisphenol S in paper by means of thermochemolysis.
Becerra, Valentina; Odermatt, Jürgen
2013-02-01
This article analyses the interferences in the quantification of traces of bisphenol S in paper by applying the direct analytical method "analytical pyrolysis gas chromatography mass spectrometry" (Py-GC/MS) in conjunction with on-line derivatisation with tetramethylammonium hydroxide (TMAH). As the analytes are simultaneously analysed with the matrix, the interferences derive from the matrix. The investigated interferences are found in the analysis of paper samples, which include bisphenol S derivative compounds. As the free bisphenol S is the hydrolysis product of the bisphenol S derivative compounds, the detected amount of bisphenol S in the sample may be overestimated. It is found that the formation of free bisphenol S from the bisphenol S derivative compounds is enhanced in the presence of tetramethylammonium hydroxide (TMAH) under pyrolytic conditions. In order to avoid the formation of bisphenol S trimethylsulphonium hydroxide (TMSH) is introduced. Different parameters are optimised in the development of the quantification method with TMSH. The quantification method based on TMSH thermochemolysis has been validated in terms of reproducibility and accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi
2015-03-01
We investigated the eco-friendly electron beam (EB) and extreme-ultraviolet (EUV) lithography using a high-sensitive negative type of green resist material derived from biomass to take advantage of organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques. A water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB lithography was developed for environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of TMAH. The material design concept to use the water-soluble resist material with acceptable properties such as pillar patterns with less than 100 nm in high EB sensitivity of 10 μC/cm2 and etch selectivity with a silicon-based middle layer in CF4 plasma treatment was demonstrated for EB and EUV lithography.
Wu, Chen-Long; Su, Shih-Bin; Lien, Hsiao-Yin; Guo, How-Ran
2012-11-01
To evaluate the role of the chemical burns caused by hydroxide ion in the fatal effects of tetramethylammonium ion (TMA) in dermal exposure to tetramethylammonium hydroxide (TMAH), we conducted a rat study consisting of two-step treatments with dermal exposure to NaOH and tetramethylammonium chloride (TMACl). In the first step, NaOH or saline was administered in the gauze on the shaved skin for 5 min, and in the second step, TMAH, TMACl, or saline was administered in the same way. The mean blood pressure (MBP), heart rate (HR), and survival in rats were compared among seven groups. Dermal exposure to saline and then 2.75 M TMACl introduced limited and temporary non-fatal effects. Exposure to 2.75 M NaOH and then saline had almost no effects and caused no deaths. Treatments with more concentrated NaOH or TMACl resulted in suppressions of MBP and HR, and deaths were observed after the dosing of TMACl. The toxicity of dermal exposure to TMA alone is limited, but fatal effects can be introduced by pre-treatment with hydroxide ion. Therefore, the chemical burn caused by hydroxide ion plays an essential role in the toxicity, implicating that effective neutralizing may help decreasing the fatality rate. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.
Arslan, Zikri; Ates, Mehmet; McDuffy, Wanaki; Agachan, M. Sabri; Farah, Ibrahim O.; Yu, W. William; Bednar, Anthony J.
2011-01-01
Cadmium selenide nanoparticles (CdSe NPs) exhibit novel optoelectronic properties for potential biomedical applications. However, their metabolic stability is not fully understood because of the difficulties in measurement of free Cd from biological tissues of exposed individuals. In this study, alkaline dissolution with tetramethylammonium hydroxide (TMAH) is demonstrated for selective determination of free Cd and intact NPs from liver and kidney samples of animals that were exposed to thiol-capped CdSe NPs. Aqueous suspensions of CdSe NPs (3.2 nm) were used to optimize the conditions for extracting free Cd without affecting NPs. Nanoparticles were found to aggregate when heated in TMAH without releasing any significant Cd to solution. Performance of the method in discriminating free Cd and intact NPs were verified by Dogfish Liver (DOLT-4) certified reference material. The samples from the animals were digested in 4 mL TMAH at 70 °C to extract free Cd followed by analysis of aqueous phase by ICP-MS. Both liver and kidney contained significant levels of free Cd. Total Cd was higher in the liver, while kidney accumulated mostly free Cd such that up to 47.9% of total Cd in the kidney was free Cd when NPs were exposed to UV-light before injection. PMID:21700388
NASA Astrophysics Data System (ADS)
Reddy, M. Siva Pratap; Puneetha, Peddathimula; Reddy, V. Rajagopal; Lee, Jung-Hee; Jeong, Seong-Hoon; Park, Chinho
2016-11-01
The temperature-dependent electrical properties and carrier transport mechanisms of tetramethylammonium hydroxide (TMAH)-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes have been investigated by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements. The experimental results reveal that the barrier height ( I- V) increases whereas the ideality factor decreases with increasing temperature. The TMAH-treated Ni/Au/Al2O3/GaN MIS diode showed nonideal behaviors which indicate the presence of a nonuniform distribution of interface states ( N SS) and effect of series resistance ( R S). The obtained R S and N SS were found to decrease with increasing temperature. Furthermore, it was found that different transport mechanisms dominated in the TMAH-treated Ni/Au/Al2O3/GaN MIS diode. At 150 K to 250 K, Poole-Frenkel emission (PFE) was found to be responsible for the reverse leakage, while Schottky emission (SE) was the dominant mechanism at high electric fields in the temperature range from 300 K to 400 K. Feasible energy band diagrams and possible carrier transport mechanisms for the TMAH-treated Ni/Au/Al2O3/GaN MIS diode are discussed based on PFE and SE.
Lei, Chin-Nan; Whang, Liang-Ming; Chen, Po-Chun
2010-09-01
The amount of pollutants produced during manufacturing processes of thin-film transistor liquid crystal display (TFT-LCD) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. This study presents the treatment performance of one aerobic and one anoxic/oxic (A/O) sequencing batch reactors (SBRs) treating synthetic TFT-LCD wastewater containing dimethyl sulfoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH). The long-term monitoring results for the aerobic and A/O SBRs demonstrate that stable biodegradation of DMSO, MEA, and TMAH can be achieved without any considerably adverse impacts. The ammonium released during MEA and TMAH degradation can also be completely oxidized to nitrate through nitrification in both SBRs. Batch studies on biodegradation rates for DMSO, MEA, and TMAH under anaerobic, anoxic, and aerobic conditions indicate that effective MEA degradation can be easily achieved under all three conditions examined, while efficient DMSO and TMAH degradation can be attained only under anaerobic and aerobic conditions, respectively. The potential odor problem caused by the formation of malodorous dimethyl sulfide from DMSO degradation under anaerobic conditions, however, requires insightful consideration in treating DMSO-containing wastewater. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi
2018-05-30
To reconstruct 131 I deposition and identify the source of radioiodine due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, 129 I activity and 129 I/ 127 I atom ratio should be obtained by preparing and analyzing large numbers of samples economically. In this study, great efforts were made to realize mild TMAH (tetramethyl ammonium hydroxide) extraction of environmental samples at 90 °C to obtain solutions suitable for the following triple-quadrupole inductively coupled plasma-mass spectrometry (ICP-QQQ) MS/MS mode analysis. After releasing iodine from organic matter in the TMAH extraction solution via K 2 S 2 O 8 oxidation, organic matter was removed effectively by solvent extraction and back-extraction to avoid a serious matrix effect during ICP-QQQ analysis. At the same time, interfering elements, especially, Mo, Cd, and In were also removed effectively, to avoid their undesirable interferences during mass spectrometric analysis. In addition, 0.01% (NH 4 ) 2 SO 3 was selected to introduce I - into ICP-QQQ to ensure there was no memory effect and a stable signal was gotten. Subsequently, ICP-QQQ MS/MS mode was applied to further eliminate polyatomic interferences ( 127 I(H 2 and D) + , 97 MoO 2 + , 113 InO + , and 113 CdO + ) and isobaric interference from 129 Xe + . Finally, the developed method was successfully applied to measure 129 I/ 127 I atom ratios ((2.61-27.0) × 10 -7 ) and 129 I activities (3.51-11.4 mBq kg -1 ) in soil samples. The developed method allows a greater number of ordinary laboratories to participate in the field of radioiodine analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Ultrasound-assisted vapor generation of mercury.
Ribeiro, Anderson S; Vieira, Mariana A; Willie, Scott; Sturgeon, Ralph E
2007-06-01
Cold vapor generation arising from reduction of both Hg(2+) and CH(3)Hg(+) occurs using ultrasonic (US) fields of sufficient density to achieve both localized heating as well as radical-based attack in solutions of formic and acetic acids and tetramethylammonium hydroxide (TMAH). A batch sonoreactor utilizing an ultrasonic probe as an energy source and a flow through system based on a US bath were optimized for this purpose. Reduction of CH(3)Hg(+) to Hg(0) occurs only at relatively high US field density (>10 W cm(-3) of sample solution) and is thus not observed when a conventional US bath is used for cold vapor generation. Speciation of mercury is thus possible by altering the power density during the measurement process. Thermal reduction of Hg(2+) is efficient in formic acid and TMAH at 70 degrees C and occurs in the absence of the US field. Room temperature studies with the batch sonoreactor reveal a slow reduction process, producing temporally broad signals having an efficiency of approximately 68% of that arising from use of a conventional SnCl(2) reduction system. Molecular species of mercury are generated at high concentrations of formic and acetic acid. Factors affecting the generation of Hg(0) were optimized and the batch sonoreactor used for the determination of total mercury in SLRS-4 river water reference material.
Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration
NASA Astrophysics Data System (ADS)
Laconte, Jean; Flandre, D.; Raskin, Jean-Pierre
Co-integration of sensors with their associated electronics on a single silicon chip may provide many significant benefits regarding performance, reliability, miniaturization and process simplicity without significantly increasing the total cost. Micromachined Thin-Film Sensors for SOI-CMOS Co-integration covers the challenges and interests and demonstrates the successful co-integration of gas flow sensors on dielectric membrane, with their associated electronics, in CMOS-SOI technology. We firstly investigate the extraction of residual stress in thin layers and in their stacking and the release, in post-processing, of a 1 μm-thick robust and flat dielectric multilayered membrane using Tetramethyl Ammonium Hydroxide (TMAH) silicon micromachining solution.
An improved method for total organic iodine in drinking water.
Sayess, Rassil; Reckhow, David A
2017-01-01
A concise, rapid, and sensitive method is developed to measure organically-bound iodine in water. Total organic iodine (TOI) is used as an integrative surrogate that reflects the amount of iodinated organics in a water sample and is quantified using a refined method that builds on previous adsorption and detection approaches. The proposed method combines adsorption, combustion, and trapping of combustion products, with an offline inductively coupled plasma/mass spectrometer (ICP-MS) for iodide detection. During method development, three analytical variables (factors) were varied across two levels each in order to optimize the method for iodine recovery: 1) the sample pH prior to adsorption on the granular activated carbon (GAC); 2) the amount of base addition to the trap solution; and 3) composition of the ICP-MS wash solution. These factors were tested with solutions of eight iodinated model organic compounds, two iodinated inorganic compounds, and field water samples using a full factorial experimental design. An analysis of variance (ANOVA) and related statistical methods were deployed to identify the best combination of conditions (i.e., treatment) that results in the most complete recovery of iodine from the model compounds and the highest rejection of inorganic iodine. The chosen treatment for TOI measurement incorporates a sample pH of less than 1 prior to adsorption onto the GAC, a solution of 2% (v/v) tetramethyl ammonium hydroxide (TMAH) for trapping of combustion products, and a TMAH wash solution of 0.1% (v/v) for the ICP-MS. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.
2007-03-01
Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has given only semi-quantitative results. The limits of detection (3 σ) were in the range 0.5-1.2 mg kg - 1 As dry weight (wt.) for direct ETAAS analysis of extracts in both TMAH and MeOH. Within-run precision (RSD%) was 5-15% and 7-20% for TMAH and MeOH extracts at As levels 4-50 mg kg - 1 dry wt., respectively. The hydride active fraction of As species in extracts, i.e. the sum of toxicologically-relevant arsenic species (inorganic As(III), inorganic As(V), monomethylarsonate (MMA) and dimethylarsinate (DMA)) was determined by FI-HG-ETAAS in diluted tissue extracts. Arsine, monomethylarsine and dimethylarsine were generated from diluted TMAH and MeOH extracts in the presence of 0.06-0.09 mol l - 1 hydrochloric acid and 0.075 mol l - 1 L-cysteine. Collection, pyrolysis and atomization temperatures were 450, 500, 2100 and 2150 °C, respectively. The LODs for the determination of hydride forming fraction (arsenite + arsenate + MMA + DMA) in TMAH and MeOH extracts were in the range 0.003-0.02 mg kg - 1 As dry wt. Within-run precision (RSD%) was 3-12% and 3-7% for TMAH and methanol extracts at As levels 0.15-2.4 mg kg - 1 dry wt., respectively. Results for the hydride forming fraction of As in TMAH and MeOH extract as % from the certified value for total As (for CRMs) or vs. the total As in TMAH extract (for real marine samples) are generally in agreement.
Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater.
Lei, C N; Whang, L M; Lin, H L
2008-01-01
The amount of pollutants produced during manufacturing processes of TFT-LCD (thin-film transistor liquid crystal display) substantially increases due to an increasing production of the opto-electronic industry in Taiwan. The total amount of wastewater from TFT-LCD manufacturing plants is expected to exceed 200,000 CMD in the near future. Typically, organic solvents used in TFT-LCD manufacturing processes account for more than 33% of the total TFT-LCD wastewater. The main components of these organic solvents are composed of the stripper (dimethyl sulphoxide (DMSO) and monoethanolamine (MEA)), developer (tetra-methyl ammonium hydroxide (TMAH)) and chelating agents. These compounds are recognized as non-or slow-biodegradable organic compounds and little information is available regarding their biological treatability. In this study, the performance of an A/O SBR (anoxic/oxic sequencing batch reactor) treating synthetic TFT-LCD wastewater was evaluated. The long-term experimental results indicated that the A/O SBR was able to achieve stable and satisfactory removal performance for DMSO, MEA and TMAH at influent concentrations of 430, 800, and 190 mg/L, respectively. The removal efficiencies for all three compounds examined were more than 99%. In addition, batch tests were conducted to study the degradation kinetics of DMSO, MEA, and TMAH under aerobic, anoxic, and anaerobic conditions, respectively. The organic substrate of batch tests conducted included 400 mg/L of DMSO, 250 mg/L of MEA, and 120 mg/L of TMAH. For DMSO, specific DMSO degradation rates under aerobic and anoxic conditions were both lower than 4 mg DMSO/g VSS-hr. Under anaerobic conditions, the specific DMSO degradation rate was estimated to be 14 mg DMSO/g VSS-hr, which was much higher than those obtained under aerobic and anoxic conditions. The optimum specific MEA and TMAH degradation rates were obtained under aerobic conditions with values of 26.5 mg MEA/g VSS-hr and 17.3 mg TMAH/g VSS-hr, respectively. Compared to aerobic conditions, anaerobic biodegradation of MEA and TMAH was much less significant with values of 5.6 mg MEA/g VSS-hr and 0 mg TMAH/g VSS-hr, respectively. In summary, biological treatment of TFT-LCD wastewater containing DMSO, MEA, and TMAH is feasible, but appropriate conditions for optimum biodegradation of DMSO, MEA, and TMAH are crucial and require carefully operational consideration. Copyright IWA Publishing 2008.
Modified TMAH based etchant for improved etching characteristics on Si{1 0 0} wafer
NASA Astrophysics Data System (ADS)
Swarnalatha, V.; Narasimha Rao, A. V.; Ashok, A.; Singh, S. S.; Pal, P.
2017-08-01
Wet bulk micromachining is a popular technique for the fabrication of microstructures in research labs as well as in industry. However, increasing the throughput still remains an active area of research, and can be done by increasing the etching rate. Moreover, the release time of a freestanding structure can be reduced if the undercutting rate at convex corners can be improved. In this paper, we investigate a non-conventional etchant in the form of NH2OH added in 5 wt% tetramethylammonium hydroxide (TMAH) to determine its etching characteristics. Our analysis is focused on a Si{1 0 0} wafer as this is the most widely used in the fabrication of planer devices (e.g. complementary metal oxide semiconductors) and microelectromechanical systems (e.g. inertial sensors). We perform a systematic and parametric analysis with concentrations of NH2OH varying from 5% to 20% in step of 5%, all in 5 wt% TMAH, to obtain the optimum concentration for achieving improved etching characteristics including higher etch rate, undercutting at convex corners, and smooth etched surface morphology. Average surface roughness (R a), etch depth, and undercutting length are measured using a 3D scanning laser microscope. Surface morphology of the etched Si{1 0 0} surface is examined using a scanning electron microscope. Our investigation has revealed a two-fold increment in the etch rate of a {1 0 0} surface with the addition of NH2OH in the TMAH solution. Additionally, the incorporation of NH2OH significantly improves the etched surface morphology and the undercutting at convex corners, which is highly desirable for the quick release of microstructures from the substrate. The results presented in this paper are extremely useful for engineering applications and will open a new direction of research for scientists in both academic and industrial laboratories.
Pilot-scale production of biodiesel from waste fats and oils using tetramethylammonium hydroxide.
Šánek, Lubomír; Pecha, Jiří; Kolomazník, Karel; Bařinová, Michaela
2016-02-01
Annually, a great amount of waste fats and oils not suitable for human consumption or which cannot be further treated are produced around the world. A potential way of utilizing this low-cost feedstock is its conversion into biodiesel. The majority of biodiesel production processes today are based on the utilization of inorganic alkali catalysts. However, it has been proved that an organic base - tetramethylammonium hydroxide - can be used as a very efficient transesterification catalyst. Furthermore, it can be employed for the esterification of free fatty acids - reducing even high free fatty acid contents to the required level in just one step. The work presented herein, is focused on biodiesel production from waste frying oils and animal fats using tetramethylammonium hydroxide at the pilot-plant level. The results showed that the process performance in the pilot unit - using methanol and TMAH as a catalyst, is comparable to the laboratory procedure, even when the biodiesel is produced from waste vegetable oils or animal fats with high free fatty acid content. The reaction conditions were set at: 1.5% w/w of TMAH, reaction temperature 65°C, the feedstock to methanol molar ratio to 1:6, and the reaction time to 120min. The conversion of triglycerides to FAME was approximately 98%. The cloud point of the biodiesel obtained from waste animal fat was also determined. Copyright © 2015 Elsevier Ltd. All rights reserved.
He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi
2016-12-27
Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.
Savio, Marianela; Ortiz, María S; Almeida, César A; Olsina, Roberto A; Martinez, Luis D; Gil, Raúl A
2014-09-15
Trace metals have negative effects on the oxidative stability of edible oils and they are important because of possibility for oils characterisation. A single-step procedure for trace elemental analysis of edible oils is presented. To this aim, a solubilisation with tetramethylammonium hydroxide (TMAH) was assayed prior to inductively coupled plasma mass spectrometry detection. Small amounts of TMAH were used, resulting in high elemental concentrations. This method was applied to edible oils commercially available in Argentine. Elements present in small amounts (Cu, Ge, Mn, Mo, Ni, Sb, Sr, Ti, and V) were determined in olive, corn, almond and sunflower oils. The limits of detection were between 0.004 μg g(-1) for Mn and Sr, and 0.32 μg g(-1) for Sb. Principal components analysis was used to correlate the content of trace metals with the type of oils. The two first principal components retained 91.6% of the variability of the system. This is a relatively simple and safe procedure, and could be an attractive alternative for quality control, traceability and routine analysis of edible oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chemical characterization and sorption capacity measurements of degraded newsprint from a landfill
Chen, Lixia; Nanny, Mark A.; Knappe, Detlef R. U.; Wagner, Travis B.; Ratasuk, Nopawan
2004-01-01
Newsprint samples collected from 12−16 ft (top layer (TNP)), 20−24 ft (middle layer (MNP)), and 32−36 ft (bottom layer (BNP)) below the surface of the Norman Landfill (NLF) were characterized by infrared (IR) spectroscopy, cross-polarization, magic-angle spinning 13C nuclear magnetic resonance (CP-MAS 13C NMR) spectroscopy, and tetramethylammonium hydroxide (TMAH) thermochemolysis gas chromatography/mass spectrometry (GC/MS). The extent of NLF newsprint degradation was evaluated by comparing the chemical composition of NLF newsprint to that of fresh newsprint (FNP) and newsprint degraded in the laboratory under methanogenic conditions (DNP). The O-alkyl/alkyl, cellulose/lignin, and lignin/resin acid ratios showed that BNP was the most degraded, and that all three NLF newsprint samples were more degraded than DNP. 13C NMR and TMAH thermochemolysis data demonstrated selective enrichment of lignin over cellulose, and TMAH thermochemolysis further exhibited selective enrichment of resin acids over lignin. In addition, the crystallinity of cellulose in NLF newsprint samples was significantly lower relative to that of FNP and DNP as shown by 13C NMR spectra. The yield of lignin monomers from TMAH thermochemolysis suggested that hydroxyl groups were removed from the propyl side chain of lignin during the anaerobic decomposition of newsprint in the NLF. Moreover, the vanillyl acid/aldehyde ratio, which successfully describes aerobic lignin degradation, was not a good indicator of the anaerobic degradation of lignin on the basis of the TMAH data. The toluene sorption capacity increased as the degree of newsprint degradation increased or as the O-alkyl/alkyl ratio of newsprint decreased. The results of this study further verified that the sorbent O-alkyl/alkyl ratio is useful for predicting sorption capacities of natural organic materials for hydrophobic organic contaminants.
NASA Astrophysics Data System (ADS)
Deshmukh, Ruchi; Mehra, Anurag; Thaokar, Rochish
2017-01-01
Chemically induced shape transformations of isotropic seeds, comprised of iron oxyhydroxides and iron oxide borate into nanorods, is reported. Transient growth studies show that the nanorods are formed via phase transformation and aggregation of various metastable species. Addition of tetra- methyl-ammonium hydroxide (TMAH) to the in situ synthesized seeds ensures a typical reaction pathway that favors formation of magnetite (Fe 3 O 4) via the steps of chemical etching, phase transformation of intermediates, and crystal consolidation. Whereas, with addition of sodium hydroxide (NaOH), either magnetite (Fe 3 O 4) or a mixture of ( γ-Fe 2 O 3 + α-FeOOH) is obtained. The shape with both the additives is always that of nanorods. When the seeds treated with TMAH were aged in an ultrasonication bath, rods with almost twice the length and diameter (length = 2800 nm, diameter = 345 nm) are obtained as compared to the sample aged without ultrasonication (length = 1535 nm, diameter = 172 nm). The morphology of nanostructures depending upon other experimental conditions such as, aging the sample at 60 ∘C, seeds synthesized under ultrasonication/ stirring or externally added are also examined and discussed in detail. All the samples show high coercivity and strong ferromagnetic behavior at room temperature and should be promising candidates as ferro-fluids for various applications.
Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4.
Askarinejad, Azadeh; Morsali, Ali
2009-01-01
A simple sonochemical method was developed to synthesize uniform sphere-like or cubic Co(3)O(4) and Mn(3)O(4) nanocrystals by using acetate salts and sodium hydroxide or tetramethylammonium hydroxide (TMAH) as precursors. Influence of some parameters such as time of reaction, alkali salts, and power of the ultrasound and the molar ratio of the starting materials on the size, morphology and degree of crystallinity of the products was studied. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), FTIR spectroscopy, Thermal gravimetry analysis and differential thermal analysis (TGA/DTA) were used to characterize the nanocrystals.
NASA Astrophysics Data System (ADS)
Drmota, A.; Žnidaršič, A.; Košak, A.
2010-01-01
Strontium hexaferrite (SrFe12O19) nanoparticles have been prepared with co-precipitation in aqueous solutions and precipitation in microemulsion system water/SDS/n-butanol/cyclohexane, using iron and strontium nitrates in different molar rations as a starting materials. The mixed Sr2+, Fe3+ hydroxide precursors obtained during the reaction between corresponding metal nitrates and tetramethylammonium hydroxide (TMAH), which served as a precipitating reagent, were calcined in a wide temperature range, from 350 °C to 1000 °C in a static air atmosphere. The influence of the Sr2+/Fe3+ molar ratio and the calcination temperature to the chemistry of the product formation, its crystallite size, morphology and magnetic properties were investigated. It was found that the formation of single phase SrFe12O19 with relatively high specific magnetization (54 Am2/kg) was achieved at the Sr2+/Fe3+ molar ration of 6.4 and calcination at 800 °C for 3h with heating/cooling rate 5 °C/min. The prepared powders were characterized using X-ray diffractometry (XRD) and specific surface area measurements (BET). The specific magnetization (DSM-10, magneto-susceptometer) of the prepared samples was measured.
NASA Astrophysics Data System (ADS)
Fu, Liang; Xie, Hualin; Shi, Shuyun; Chen, Xiaoqing
2018-06-01
The content of non-metallic impurities in high-purity tetramethylammonium hydroxide (HPTMAH) aqueous solution has an important influence on the yield, electrical properties and reliability of the integrated circuit during the process of chip etching and cleaning. Therefore, an efficient analytical method to directly quantify the content of non-metallic impurities in HPTMAH aqueous solutions is necessary. The present study was aimed to develop a novel method that can accurately determine seven non-metallic impurities (B, Si, P, S, Cl, As, and Se) in an aqueous solution of HPTMAH by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The samples were measured using a direct injection method. In the MS/MS mode, oxygen and hydrogen were used as reaction gases in the octopole reaction system (ORS) to eliminate mass spectral interferences during the analytical process. The detection limits of B, Si, P, S, Cl, As, and Se were 0.31, 0.48, 0.051, 0.27, 3.10, 0.008, and 0.005 μg L-1, respectively. The samples were analyzed by the developed method and the sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) was used for contrastive analysis. The values of these seven elements measured using ICP-MS/MS were consistent with those measured by SF-ICP-MS. The proposed method can be utilized to analyze non-metallic impurities in HPTMAH aqueous solution. Table S2 Multiple potential interferences on the analytes. Table S3 Parameters of calibration curve and the detection limit (DL). Table S4 Results obtained for 25% concentration high-purity grade TMAH aqueous solution samples (μg L-1, mean ± standard deviation, n = 10).
Romarís-Hortas, Vanessa; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar
2009-08-15
The feasibility of microwave energy to assist the solubilisation of edible seaweed samples by tetramethylammonium hydroxide (TMAH) has been investigated to extract iodine and bromine. Inductively coupled plasma-mass spectrometry (ICP-MS) has been used as a multi-element detector. Variables affecting the microwave assisted extraction/solubilisation (temperature, TMAH volume, ramp time and hold time) were firstly screened by applying a fractional factorial design (2(5-1)+2), resolution V and 2 centre points. When extracting both halogens, results showed statistical significance (confidence interval of 95%) for TMAH volume and temperature, and also for the two order interaction between both variables. Therefore, these two variables were finally optimized by a 2(2)+star orthogonal central composite design with 5 centre points and 2 replicates, and optimum values of 200 degrees C and 10 mL for temperature and TMAH volume, respectively, were found. The extraction time (ramp and hold times) was found statistically non-significant, and values of 10 and 5 min were chosen for the ramp time and the hold time, respectively. This means a fast microwave heating cycle. Repeatability of the over-all procedure has been found to be 6% for both elements, while iodine and bromine concentrations of 24.6 and 19.9 ng g(-1), respectively, were established for the limit of detection. Accuracy of the method was assessed by analyzing the NIES-09 (Sargasso, Sargassum fulvellum) certified reference material (CRM) and the iodine and bromine concentrations found have been in good agreement with the indicative values for this CRM. Finally, the method was applied to several edible dried and canned seaweed samples.
NASA Astrophysics Data System (ADS)
Williams, A. J.; Eigenbrode, J. L.; Wilhelm, M. B.; Johnson, S. S.; Craft, K.; O'Reilly, S.; Lewis, J. M. T.; Williams, R.; Summons, R. E.; Benison, K. C.; Mahaffy, P. R.
2017-12-01
The Curiosity rover is exploring sedimentary rock sequences in Gale Crater for evidence of habitability and searching for organic compounds using the Sample Analysis at Mars (SAM) instrument suite. SAM includes a gas chromatograph mass spectrometer (GC-MS) and pyrolysis ovens. SAM has the ability to perform wet chemistry experiments, one of which uses tetramethylammonium hydroxide (TMAH) thermochemolysis to liberate bound lipids, making them sufficiently volatile for detection by GC-MS. To determine the effectiveness of the SAM-like TMAH experiment on fatty acid methyl ester (FAME) biomarker identification, rock and sediment samples were collected from a variety of Mars analog environments including iron oxides from a modern mineral precipitate and older surface gossan at Iron Mountain, CA, as well as modern acid salt and neutral lake sediments with mixed iron oxides and clays from Western Australia; siliceous sinter from recently inactive and modern near-vent Icelandic hot springs deposits; modern carbonate ooids from The Bahamas, and organic-rich shale from Germany. Samples underwent pyrolysis with TMAH. Fatty acids were analyzed by pyro-GC-MS using a SAM-like heating ramp (35°C/min) as well as a 500°C flash on a Frontier pyrolyzer and Agilent GC-MS instrument. Results reveal that FAMEs were detectable with the TMAH experiment in nearly all samples. Low molecular weight (MW) C6:0-C10:0 FAMEs were present in all samples, medium MW C11:0-C18:2 FAMEs were present in select samples, and high MW (HMW) C20:0-C30:0 FAMEs were present in the shale sample. Many of these samples exhibited an even-over-odd carbon number preference, indicating biological production. These experiments demonstrate that TMAH thermochemolysis with SAM-like pyro-GC-MS is effective in fatty acid analysis from natural Mars-analog samples that vary in mineralogy, age, and microbial community input. HMW FAMEs are not detected in iron-dominated samples, and may not be detectable at low concentrations. Although mineralogies such as sinter, carbonates, and shales are not likely in Gale Crater, iron oxides mixed with clays are known to be present in the path of the Curiosity rover. Environments with these mineralogies may provide the optimal opportunity to detect fatty acids, if present in Gale Crater.
Preparation of immobilized glucose oxidase wafer enzyme on calcium-bentonite modified by surfactant
NASA Astrophysics Data System (ADS)
Widi, R. K.; Trisulo, D. C.; Budhyantoro, A.; Chrisnasari, R.
2017-07-01
Wafer glucose oxidase (GOx) enzymes was produced by addition of PAH (Poly-Allyamine Hydrochloride) polymer into immobilized GOx enzyme on modified-Tetramethylammonium Hydroxide (TMAH) 5%-calsium-bentonite. The use of surfactant molecul (TMAH) is to modify the surface properties and pore size distribution of the Ca-bentonite. These properties are very important to ensure GOx molecules can be bound on the Ca-bentonit surface to be immobilized. The addition of the polymer (PAH) is expected to lead the substrates to be adsorbed onto the enzyme. In this study, wafer enzymes were made in various concentration ratio (Ca-bentonite : PAH) which are 1:0, 1:1, 1:2 and 1:3. The effect of PAH (Poly-Allyamine Hydrochloride) polymer added with various ratios of concentrations can be shown from the capacitance value on LCR meter and enzyme activity using DNS method. The addition of the polymer (PAH) showed effect on the activity of GOx, it can be shown from the decreasing of capacitance value by increasing of PAH concentration.
Fabrication and RF characterization of zinc oxide based Film Bulk Acoustic Resonator
NASA Astrophysics Data System (ADS)
Patel, Raju; Bansal, Deepak; Agrawal, Vimal Kumar; Rangra, Kamaljit; Boolchandani, Dharmendar
2018-06-01
This work reports fabrication and characterization of Film Bulk Acoustic Resonator (FBAR) to improve the performance characteristics for RF filter and sensing application. Zinc oxide as a piezoelectric (PZE) material was deposited on an aluminum bottom electrode using an RF magnetron sputtering, at room temperature, and gold as top electrode for the resonator. Tetramethyl ammonium hydroxide (TMAH) setup was used for bulk silicon etching to make back side cavity to confine the acoustic signals. The transmission characteristics show that the FBARs have a central frequency at 1.77 GHz with a return loss of -10.7 dB.
Gaviño, Maria; Hermosin, Bernardo; Vergès-Belmin, Véronique; Nowik, Witold; Saiz-Jimenez, Cesareo
2004-05-01
The organic fraction of black crusts from Saint Denis Basilica, France, is composed of a complex mixture of aliphatic and aromatic compounds. These compounds were studied by two different analytical approaches: tetramethyl ammonium hydroxide (TMAH) thermochemolysis in combination with gas chromatography-mass spectrometry (GC-MS), and solvent extraction, fractionation by silica column, and identification of the fraction components by GC-MS. The first approach, feasible at the microscale level, is able to supply fairly general information on a wide range of compounds. Using the second approach, we were able to separate the complex mixture of compounds into four fractions, enabling a better identification of the extractable compounds. These compounds belong to different classes: aliphatic hydrocarbons (nalkanes, n-alkenes), aliphatic and aromatic carboxylic acids (n-fatty acids, alpha,omega-dicarboxylic acids, and benzenecarboxylic acids), polycyclic aromatic hydrocarbons (PAH), and molecular biomarkers (isoprenoid hydrocarbons, diterpenoids, and triterpenoids). With each approach, similar classes of compounds were identified, although TMAH thermochemolysis failed to identify compounds present at low concentrations in black crusts. The two proposed methodological approaches are complementary, particularly in the study of polar fractions.
NASA Astrophysics Data System (ADS)
Buch, A.; Freissinet, C.; Sternberg, R.; Szopa, C.; Coll, P. J.; Brault, A.; Pinnick, V.; Siljeström, S.; Raulin, F.; Steininger, H.; Goesmann, F.; MOMA Team
2011-12-01
With the aim of separating and detecting organic compounds from Martian soil onboard the Mars Organic Molecule Analyzer (MOMA) experiment of the ExoMars 2018 upcoming joint ESA/NASA mission, we have developed three different space compatible sample preparation techniques compatible with space missions, able to extract and analyze by GC-MS a wide range of volatile and refractory compounds, including chirality analysis. Then, a sample processing utilizing three derivatization/extraction reactions has been carried out. The first reaction is based on a silyl reagent N-Methyl-N- (Tert-Butyldimethylsilyl)trifluoroacetamide (MTBSTFA) [1], the second one, N,N-Dimethylformamide Dimethylacetal (DMF-DMA) [2,3] is dedicated to the chirality detection and the third one is a thermochemolysis based on the use of tetramethylammoniumhydroxide (TMAH). The sample processing system is performed in an oven, dedicated to the MOMA experiment containing the solid sample (50-100mg). The internal temperature of the oven ranges from 20 to 900 °C. The extraction step is achieved by using thermodesorption in the range of 100 to 300°C for 5 to 20 min. Then, the chemical derivatization of the extracted compounds is performed directly on the soil sample by using a derivatyization capsule which contains a mixture of MTBSTFA-DMF or DMF-DMA solution when enantiomeric separation is required. By decreasing the polarity of the targeted molecules, this step allows their volatilization at a temperature below 250°C without any thermal degradation. Once derivatized, the volatile target molecules are trapped in a chemical trap and promptly desorbed into the gas chromatograph coupled to a mass spectrometer. Thermochemolysis is directly performed in the oven at 400°C during 5 min with a 25% (w/w) methanol solution of tetramethylammonium hydroxide (TMAH). Then, pyrolysis in the presence of TMAH allows both an efficient cleavage of polar bonds and the subsequent methylation of COOH, OH and NH2 groups, hence the release of less polar, GC-amenable compounds. By using thermochemolysis several families of biological molecules were detected such as fatty acids, n-alkenes and n-alkanols [4]. [1] A. Buch et al., Development of a gas chromatography compatible Sample Processing System (SPS) for the in-situ analysis of refractory organic matter in martian soil: preliminary result. Advances in Space Research 43, 143-151, 2009. [2] C. Freissinet et al., Journal of Chromatography A.1217 (5), 731-740, 2010. [3] U. Meierhenrich et al., Journal of Analytical and Applied Pyrolysis 60, 13-26, 2001. [4] C. Geffroy-Rodier et al., Journal of Analytical and Applied Pyrolysis, 85, 2009.
Huynh, Dao; Zhou, Shao Jia; Gibson, Robert; Palmer, Lyndon; Muhlhausler, Beverly
2015-01-01
In this study a novel method to determine iodine concentrations in human breast milk was developed and validated. The iodine was analyzed by inductively coupled plasma mass spectrometry (ICPMS) following tetramethylammonium hydroxide (TMAH) extraction at 90°C in disposable polypropylene tubes. While similar approaches have been used previously, this method adopted a shorter extraction time (1h vs. 3h) and used antimony (Sb) as the internal standard, which exhibited greater stability in breast milk and milk powder matrices compared to tellurium (Te). Method validation included: defining iodine linearity up to 200μgL(-1); confirming recovery of iodine from NIST 1549 milk powder. A recovery of 94-98% was also achieved for the NIST 1549 milk powder and human breast milk samples spiked with sodium iodide and thyroxine (T4) solutions. The method quantitation limit (MQL) for human breast milk was 1.6μgL(-1). The intra-assay and inter-assay coefficient of variation for the breast milk samples and NIST powder were <1% and <3.5%, respectively. NIST 1549 milk powder, human breast milk samples and calibration standards spiked with the internal standard were all stable for at least 2.5 months after extraction. The results of the validation process confirmed that this newly developed method provides greater accuracy and precision in the assessment of iodine concentrations in human breast milk than previous methods and therefore offers a more reliable approach for assessing iodine concentrations in human breast milk. Copyright © 2014 Elsevier GmbH. All rights reserved.
Fan, Xingjun; Song, Jianzhong; Peng, Ping'an
2013-11-01
Humic-like substances (HULIS) are significant constituents of aerosols, and the isolation and characterization of HULIS by solid-phase extraction methods are dependent on the sorbents used. In this study, we used the following five methods: ENVI-18, HLB-M, HLB-N, XAD-8 and DEAE, to isolate atmospheric HULIS at an urban site. Then we conducted a comparative investigation of the HULIS chemical characteristics by means of elemental analysis, Fourier transform infrared spectroscopy, (1)H nuclear magnetic resonance spectroscopy and off-line thermochemolysis with tetramethylammonium hydroxide. The results indicate that HULIS isolated using different methods show many similarities in chemical composition and structure. Some differences were however also observed between the five isolated HULIS: HULISHLB-M contains a relatively high content of OCH group, compared to HULISENVI-18 and HULISXAD-8; HULISXAD-8 contains a relatively high content of hydrophobic and aromatic components, compared to HULISENVI-18 and HULISHLB-M; HULISDEAE contains the highest content of aromatic functional groups, as inferred by (1)H NMR spectra, but a great amount of salts generally present in the HULISDEAE and thereby limited the choices for characterizing the materials (i.e., elemental analysis and TMAH thermochemolysis); HULISHLB-N has relatively high levels of H and N, a high N/C atomic ratio, and includes N-containing functional groups, which suggests that it has been altered by 2% ammonia introduced in the eluents. In summary, we found that ENVI-18, HLB-M, and XAD-8 are preferable methods for isolation and characterization of HULIS in atmospheric aerosols. These results also suggest that caution is required when applying DEAE and HLB-N isolating methods for characterizing atmospheric HULIS. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Santillan, Julius Joseph; Itani, Toshiro
2017-03-01
This work focuses on the application of a high-speed atomic force microscope (HS-AFM) for the in situ observation / quantification of the resist dissolution process. Specifically, this paper discusses on the existence of what the authors refer to as "nano-swelling" which occurs in the extreme ultraviolet (EUV) exposed areas of a positive-tone chemically amplified resist, just before it dissolves into the aqueous tetramethylammonium hydroxide (TMAH) developer solution. In earlier experiments using typical EUVL resist materials (e.g. polyhydroxystyrene (PHS) polymer and hybrid PHS-methacryl polymer model resists), it was understood that nano-swelling is mainly material type-dependent. As shown in the investigations/results in this paper, nano-swelling has variations in the timing of occurrence and amount/size depending on the size of the dissolvable areas (i.e. larger dissolvable areas dissolve faster, swell more compared to smaller ones). Lastly, a comparison of surface analyses results of a resist pattern before, during, and after the occurrence of nano-swelling suggests the significant impact of these kinds of non-uniformities in the formation of line edge/line width roughness (LER/LWR).
NASA Astrophysics Data System (ADS)
Rao, A. V. Narasimha; Swarnalatha, V.; Pal, P.
2017-12-01
Anisotropic wet etching is a most widely employed for the fabrication of MEMS/NEMS structures using silicon bulk micromachining. The use of Si{110} in MEMS is inevitable when a microstructure with vertical sidewall is to be fabricated using wet anisotropic etching. In most commonly employed etchants (i.e. TMAH and KOH), potassium hydroxide (KOH) exhibits higher etch rate and provides improved anisotropy between Si{111} and Si{110} planes. In the manufacturing company, high etch rate is demanded to increase the productivity that eventually reduces the cost of end product. In order to modify the etching characteristics of KOH for the micromachining of Si{110}, we have investigated the effect of hydroxylamine (NH2OH) in 20 wt% KOH solution. The concentration of NH2OH is varied from 0 to 20% and the etching is carried out at 75 °C. The etching characteristics which are studied in this work includes the etch rates of Si{110} and silicon dioxide, etched surface morphology, and undercutting at convex corners. The etch rate of Si{110} in 20 wt% KOH + 15% NH2OH solution is measured to be four times more than that of pure 20 wt% KOH. Moreover, the addition of NH2OH increases the undercutting at convex corners and enhances the etch selectivity between Si and SiO2.
Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover.
Chen, Qin; Marshall, Megan N; Geib, Scott M; Tien, Ming; Richard, Tom L
2012-08-01
The aim of this study was to explore the synergies of laccase, a ligninolytic enzyme, with cellulose and hemicellulase amendments on ensiled corn stover. Molecular signals of lignin decomposition were observed by tetramethylammonium hydroxide thermochemolysis and gas chromatography-mass spectroscopy (TMAH-GC-MS) analysis. The significant findings suggest that ensilage might provide a platform for biological pretreatment. By partially hydrolyzing cellulose and hemicellulose into soluble sugars, ensilage facilitates laccase penetration into the lignocellulose complex to enhance lignin degradation. Downstream cellulose hydrolysis was improved 7% with increasing laccase loading rate. These results demonstrate the potential of enzymes, either directly amended or expressed by microbes during ensilage, to maximize utilization of corn stover for cellulosic biofuels and other downstream fermentations. Copyright © 2012. Published by Elsevier Ltd.
Berg; Boon; Pastorova; Spetter
2000-04-01
Diterpenoid resins from larch and pine trees and the corresponding fractions in a >100-year-old wax-resin adhesive and varnish and a 200-year-old resin/oil paint sample were analysed with by gas chromatography/mass spectrometry (GC/MS) using several off-line and on-line derivatization methods. The main resin compounds were highly oxidized abietic acids. Important products found are hydroxydehydroabietic acids (OH-DHAs), 7-oxoDHA, di-OH-DHAs and 15-OH-7-oxoDHA. The last two compounds have not been reported to occur in artworks before. Larixyl acetate, an important marker from larch resins, was found to be still present in high amounts in the adhesive. A large number of mass spectra of the different oxidation products and larixol and larixyl acetate are presented and their fragmentation behaviour under electron impact conditions is discussed. An index for the degree of oxidation (IDOX) of the abietic acids is presented as an indicator of the degree of oxidation of the matrix in which the resin is present. The IDOX was 0.10, 0.67, 0.81 and 0.76 for the fresh resins, the dark-aged adhesive, the aged varnish and the resin/oil paint, respectively (measured with pyrolysis (Py)-tetramethylammonium hydroxide (TMAH)-GC/MS). Py-TMAH-GC/MS and direct temperature-resolved mass spectrometry are reliable, valuable and fast techniques for the assessment of the presence and degree of oxidation of diterpenoid resins. Copyright 2000 John Wiley & Sons, Ltd.
Soares, Aline Rodrigues; Nascentes, Clésia Cristina
2013-02-15
A simple method was developed for determining the total lead content in lipstick samples by graphite furnace atomic absorption spectrometry (GFAAS) after treatment with tetramethylammonium hydroxide (TMAH). Multivariate optimization was used to establish the optimal conditions of sample preparation. The graphite furnace heating program was optimized through pyrolysis and atomization curves. An aliquot containing approximately 50mg of the sample was mixed with TMAH and heated in a water bath at 60°C for 60 min. Using Nb as the permanent modifier and Pd as the chemical modifier, the optimal temperatures were 900°C and 1800°C for pyrolysis and atomization, respectively. Under optimum conditions, the working range was from 1.73 to 50.0 μg L(-1), with detection and quantification limits of 0.20 and 0.34 μg g(-1), respectively. The precision was evaluated under conditions of repeatability and intermediate precision and showed standard deviations of 2.37%-4.61% and 4.93%-9.75%, respectively. The % recovery ranged from 96.2% to 109%, and no significant differences were found between the results obtained using the proposed method and the microwave decomposition method for real samples. Lead was detected in 21 tested lipstick samples; the lead content in these samples ranged from 0.27 to 4.54 μg g(-1). Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hayes, J. M.; Blair, N. E.
2017-12-01
Increasingly industrial agriculture and food processing practices have created greater demand for water resources. In an attempt to meet this demand, many rivers have been dammed, however the resulting effects of the carbon cycle via carbon sequestration and methane production are not well understood. The organic geochemistry of sediment cores from Lake Decatur, IL, a 95-year-old impoundment on the Sangamon River in the Intensively Managed Landscape - Critical Zone Observatory (IML-CZO), was studied to assess the sources of organic matter to the lake. Online tetramethylammonium hydroxide (TMAH) thermochemolysis GC-MS was used to provide a broad-spectrum analysis using small samples with a minimum of preparation. Intensive corn and soy production have dominated Lake Decatur's nearly 2400 km2 watershed throughout its history. The agricultural land use has led to rapid soil erosion and infilling of the lake. Along with the eroded soil came organic matter enriched in 13C, which is attributed to corn, a C4 plant. This is consistent with an angiosperm-derived lignin signal, as indicated by high syringic/vanillic and cinnamic/vanillic lignin phenol ratios. Since approximately 1980, accumulating organic carbon has become increasingly 13C-depleted, indicating a change in organic carbon input to a more C3 plant signature. However, this is not due to a decrease in corn cultivation acreage, according to land use records. Instead, the ratio of algal (short chain, C12-C18) fatty acids to lignin increases correspondingly from this point, suggesting that this isotopic trend is the result of eutrophication in the lake due to agricultural fertilizer runoff. In the last decade, the organic carbon has become more 13C-enriched again, breaking the trend of the three previous decades. This inflection is captured in the return to a lower fatty acid to lignin ratio in the most recently deposited sediments. We speculate that this recent change in organic carbon input could be the result of practices to mitigate fertilizer runoff. The organic geochemical record in the reservoir allows us to temporally resolve the agricultural impacts on soil erosion and nutrient runoff in the watershed.
Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram; Valdez, Thomas; Kumta, Prashant; Kim, Y.
2005-01-01
A sol-gel process has been developed as a superior alternative to a prior process for making platinum-ruthenium alloy catalysts for electro-oxidation of methanol in fuel cells. The starting materials in the prior process are chloride salts of platinum and ruthenium. The process involves multiple steps, is time-consuming, and yields a Pt-Ru product that has relatively low specific surface area and contains some chloride residue. Low specific surface area translates to incomplete utilization of the catalytic activity that might otherwise be available, while chloride residue further reduces catalytic activity ("poisons" the catalyst). In contrast, the sol-gel process involves fewer steps and less time, does not leave chloride residue, and yields a product of greater specific area and, hence, greater catalytic activity. In this sol-gel process (see figure), the starting materials are platinum(II) acetylacetonate [Pt(C5H7O2)2, also denoted Pt-acac] and ruthenium(III) acetylacetonate [Ru(C5H7O2)3, also denoted Ru-acac]. First, Pt-acac and Ru-acac are dissolved in acetone at the desired concentrations (typically, 0.00338 moles of each salt per 100 mL of acetone) at a temperature of 50 C. A solution of 25 percent tetramethylammonium hydroxide [(CH3)4NOH, also denoted TMAH] in methanol is added to the Pt-acac/Ruacac/ acetone solution to act as a high-molecular-weight hydrolyzing agent. The addition of the TMAH counteracts the undesired tendency of Pt-acac and Ru-acac to precipitate as separate phases during the subsequent evaporation of the solvent, thereby helping to yield a desired homogeneous amorphous gel. The solution is stirred for 10 minutes, then the solvent is evaporated until the solution becomes viscous, eventually transforming into a gel. The viscous gel is dried in air at a temperature of 170 C for about 10 hours. The dried gel is crushed to make a powder that is the immediate precursor of the final catalytic product. The precursor powder is converted to the final product in a controlled-atmosphere heat treatment. Desirably, the final product is a phase-pure (Pt phase only) Pt-Ru powder with a high specific surface area. The conditions of the controlled- atmosphere heat are critical for obtaining the aforementioned desired properties. A typical heat treatment that yields best results for a catalytic alloy of equimolar amounts of Pt and Ru consists of at least two cycles of heating to a temperature of 300 C and holding at 300 C for several hours, all carried out in an atmosphere of 1 percent O2 and 99 percent N2. The resulting powder consists of crystallites with typical linear dimensions of <10 nm. Tests have shown that the powder is highly effective in catalyzing the electro-oxidation of methanol.
Weishaar, J.L.; Aiken, George R.; Bergamaschi, Brian A.; Fram, Miranda S.; Fujii, Roger; Mopper, K.
2003-01-01
Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetramethylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements.
Determination of the MRI contrast agent Gd-DTPA by SEC-ICP-MS.
Loreti, Valeria; Bettmer, Jörg
2004-08-01
The simultaneous determination of Gd(3+) and Gd-DTPA (DTPA: diethylenetriamino-pentaacetic acid), often used as contrast agent, is described. The proposed approach combines size-exclusion chromatography (SEC) and inductively coupled plasma-mass spectrometry (ICP-MS) for element-selective detection in order to determine also high-molecular Gd-complexes if present. This method was applied to the analysis of urine samples of a patient to whom Gd-DTPA was intravenously administered. The results showed that no conversion or adsorption of Gd-DTPA could be observed in any sample, even free Gd(3+) could not be detected. Urine excretion behaviour was monitored and it was proved that Gd-DTPA was almost completely (>99%) excreted by urination within one day. Traces of Gd-DTPA could be measured in hair samples, but extraction with tetramethylammonium hydroxide (TMAH) resulted in degradation of Gd-DTPA.
Peeters, Kelly; Lespes, Gaëtane; Milačič, Radmila; Ščančar, Janez
2015-10-01
Biotic and abiotic degradation of toxic organotin compounds (OTCs) in landfill leachates is usually not complete. In this work adsorption and degradation processes of tributyltin (TBT) and trimethyltin (TMeT) in leachate sample treated with different iron nanoparticles (FeNPs): Fe(0) (nZVI), FeO and Fe3O4 were investigated to find conditions for their efficient removal. One sample aliquot was kept untreated (pH 8), while to the others (pH 8) FeNPs dispersed with tetramethyl ammonium hydroxide (TMAH) or by mixing were added and samples shaken under aerated conditions for 7 days. The same experiments were done in leachates in which the pH was adjusted to 3 with citric acid. Size distribution of TBT and TMeT between particles >5 µm, 0.45-5 µm, 2.5-0.45 µm, and <2.5 nm was determined by sequential filtration and their concentrations in a given fraction by gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS). Results revealed that most of the TBT or TMeT was present in fractions with particles >2.5 or <2.5 nm, respectively. At pH 8 adsorption of TBT to FeNPs prevailed, while at pH 3, the Fenton reaction provoked degradation of TBT by hydroxyl radicals. TBT was the most effectively removed (96%) when sequential treatment of leachate with nZVI (dispersed by mixing) was applied first at pH 8, followed by nZVI treatment of the aqueous phase, previously acidified to pH 3 with citric acid. Such treatment less effectively removed TMeT (about 40%). It was proven that TMAH provoked methylation of tin, so mixing was recommended for dispersion of nZVI. Copyright © 2015 Elsevier Inc. All rights reserved.
Conversion coatings prepared or treated with calcium hydroxide solutions
NASA Technical Reports Server (NTRS)
Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor); Minevski, Zoran (Inventor); Clarke, Eric (Inventor)
2002-01-01
A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.
PROCESS FOR RECOVERY OF URANIUM VALUES FROM IMPURE SOLUTIONS THEREOF
Kilner, S.B.
1959-11-01
A process is presented for the recovery of uraninm values from impure solutions which are obtained, for example, by washing residual uranium salt or uranium metal deposits from stainless steel surfaces using an aqueous or certain acidic aqueous solutions. The solutions include uranyl and oxidized iron, chromium, nickel, and copper ions and may contain manganese, zinc, and silver ions. In accordance with one procedure. the uranyl ions are reduced to the uranous state, and the impurity ions are complexed with cyanide under acidic conditions. The solution is then treated with ammonium hydroxide or alkali metal hydroxide to precipitate uranous hydroxide away from the complexed impurity ions in the solution. Alternatively, an excess of alkali metal cyanide is added to the reduced solution until the solution becomes sufficiently alkaline for the uranons hydroxide to precipitate. An essential feature in operating the process is in maintaining the pH of the solution sufficiently acid during the complexing operation to prevent the precipitation of the impurity metal hydroxides.
Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices
Liu, Yang; Deng, Lingxiao; Zhang, Mingliang; Zhang, Shuyuan; Ma, Jing; Song, Peishuai; Liu, Qing; Ji, An; Yang, Fuhua; Wang, Xiaodong
2018-01-01
Heavily boron-doped silicon layers and boron etch-stop techniques have been widely used in the fabrication of microelectromechanical systems (MEMS). This paper provides an introduction to the fabrication process of nanoscale silicon thermoelectric devices. Low-dimensional structures such as silicon nanowire (SiNW) have been considered as a promising alternative for thermoelectric applications in order to achieve a higher thermoelectric figure of merit (ZT) than bulk silicon. Here, heavily boron-doped silicon layers and boron etch-stop processes for the fabrication of suspended SiNWs will be discussed in detail, including boron diffusion, electron beam lithography, inductively coupled plasma (ICP) etching and tetramethylammonium hydroxide (TMAH) etch-stop processes. A 7 μm long nanowire structure with a height of 280 nm and a width of 55 nm was achieved, indicating that the proposed technique is useful for nanoscale fabrication. Furthermore, a SiNW thermoelectric device has also been demonstrated, and its performance shows an obvious reduction in thermal conductivity. PMID:29385759
EB and EUV lithography using inedible cellulose-based biomass resist material
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi
2016-03-01
The validity of our approach of inedible cellulose-based resist material derived from woody biomass has been confirmed experimentally for the use of pure water in organic solvent-free water spin-coating and tetramethylammonium hydroxide(TMAH)-free water-developable techniques of eco-conscious electron beam (EB) and extreme-ultraviolet (EUV) lithography. The water developable, non-chemically amplified, high sensitive, and negative tone resist material in EB and EUV lithography was developed for environmental affair, safety, easiness of handling, and health of the working people. The inedible cellulose-based biomass resist material was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB and EUV sensitive groups. The 50-100 nm line and space width, and little footing profiles of cellulose-based biomass resist material on hardmask and layer were resolved at the doses of 10-30 μC/cm2. The eco-conscious lithography techniques was referred to as green EB and EUV lithography using inedible cellulose-based biomass resist material.
Kronimus, Alexander; Schwarzbauer, Jan
2007-05-01
Subaquatic sediment samples derived form Elbe and Mulde Rivers, Germany, were analyzed for extractable and non-extractable anthropogenic organic compounds by a non-target screening approach. Applied methodologies were gas chromatography-mass spectrometry, dispersion extraction and degradation procedures, particularly alkaline and acidic hydrolysis, boron tribromide treatment, ruthenium tetroxide oxidation as well as pyrolysis and TMAH (tetramethylammonium hydroxide)-thermochemolysis. Numerous compounds were identified, including halogenated benzenes, anisoles, styrenes, alkanes, diphenylmethane derivates, anilines, phenols and diphenyl ethers. The results were interpreted with respect to compound specific modes of incorporation as well as to potential sources (e.g. municipal, agricultural, industrial). Extractable and non-extractable fractions differed significantly with respect to their qualitative and quantitative composition. For example, quantities in the extractable and non-extractable fractions of chlorinated benzenes differed up to factor 50. Among other significant results, the investigation revealed hints for a dependence of the mode of incorporation of chlorinated benzenes on their substitution pattern.
Enzymatic grafting of simple phenols on flax and sisal pulp fibres using laccases.
Aracri, Elisabetta; Fillat, Amanda; Colom, José F; Gutiérrez, Ana; Del Río, José C; Martínez, Angel T; Vidal, Teresa
2010-11-01
Flax and sisal pulps were treated with two laccases (from Pycnoporus cinnabarinus, PcL and Trametes villosa, TvL, respectively), in the presence of different phenolic compounds (syringaldehyde, acetosyringone and p-coumaric acid in the case of flax pulp, and coniferaldehyde, sinapaldehyde, ferulic acid and sinapic acid in the case of sisal pulp). In most cases the enzymatic treatments resulted in increased kappa number of pulps suggesting the incorporation of the phenols into fibres. The covalent binding of these compounds to fibres was evidenced by the analysis of the treated pulps, after acetone extraction, by pyrolysis coupled with gas chromatography/mass spectrometry in the absence and/or in the presence of tetramethylammonium hydroxide (TMAH) as methylating agent. The highest extents of phenol incorporation were observed with the p-hydroxycinnamic acids, p-coumaric and ferulic acids. The present work shows for the first time the use of analytical pyrolysis as an effective approach to study fibre functionalization by laccase-induced grafting of phenols. Copyright 2010 Elsevier Ltd. All rights reserved.
ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS
Alter, H.W.; Barney, D.L.
1958-09-30
A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.
PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS
Faris, B.F.
1960-04-01
A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.
Method of determining pH by the alkaline absorption of carbon dioxide
Hobbs, David T.
1992-01-01
A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.
Friction modifier using adherent metallic multilayered or mixed element layer conversion coatings
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Defalco, Frank G. (Inventor); Starks, Sr., Lloyd L. (Inventor)
2012-01-01
A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, silicon, and one or more non-alkaline metals. The process comprises forming a first aqueous solution of silicate, potassium hydroxide, and ammonium hydroxide; forming a second aqueous solution of water, phosphoric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals, and then combining the first solution with the second solution to form a final solution. This final solution forms an anti-friction multi-layer conversion coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly or as an additive in lubricating fluids.
Dissolution mechanism of aluminum hydroxides in acid media
NASA Astrophysics Data System (ADS)
Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.
2008-08-01
The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.
Method of determining pH by the alkaline absorption of carbon dioxide
Hobbs, D.T.
1992-10-06
A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.
PROCESS OF SEPARATING PLUTONIUM FROM URANIUM
Brown, H.S.; Hill, O.F.
1958-09-01
A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.
Code of Federal Regulations, 2013 CFR
2013-07-01
... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50 mL of the hydroxylamine hydrochloride solution...
Code of Federal Regulations, 2014 CFR
2014-07-01
... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50 mL of the hydroxylamine hydrochloride solution...
METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE
Faris, B.F.
1961-04-25
Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.
Alkaline solution absorption of carbon dioxide method and apparatus
Hobbs, D.T.
1991-01-01
Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.
2011-01-01
Background Termites are highly effective at degrading lignocelluloses, and thus can be used as a model for studying plant cell-wall degradation in biological systems. However, the process of lignin deconstruction and/or degradation in termites is still not well understood. Methods We investigated the associated structural modification caused by termites in the lignin biomolecular assembly in softwood tissues crucial for cell-wall degradation. We conducted comparative studies on the termite-digested (i.e. termite feces) and native (control) softwood tissues with the aid of advanced analytical techniques: 13C crosspolarization magic angle spinning and nuclear magnetic resonance (CP-MAS-NMR) spectroscopy, flash pyrolysis with gas chromatography mass spectrometry (Py-GC/MS), and Py-GC-MS in the presence of tetramethylammonium hydroxide (Py-TMAH)-GC/MS. Results The 13C CP/MAS NMR spectroscopic analysis revealed an increased level of guaiacyl-derived (G unit) polymeric framework in the termite-digested softwood (feces), while providing specific evidence of cellulose degradation. The Py-GC/MS data were in agreement with the 13C CP/MAS NMR spectroscopic studies, thus indicating dehydroxylation and modification of selective intermonomer side-chain linkages in the lignin in the termite feces. Moreover, Py-TMAH-GC/MS analysis showed significant differences in the product distribution between control and termite feces. This strongly suggests that the structural modification in lignin could be associated with the formation of additional condensed interunit linkages. Conclusion Collectively, these data further establish: 1) that the major β-O-4' (β-aryl ether) was conserved, albeit with substructure degeneracy, and 2) that the nature of the resulting polymer in termite feces retained most of its original aromatic moieties (G unit-derived). Overall, these results provide insight into lignin-unlocking mechanisms for understanding plant cell-wall deconstruction, which could be useful in development of new enzymatic pretreatment processes mimicking the termite system for biochemical conversion of lignocellulosic biomass to fuels and chemicals. PMID:21672247
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Naoko, E-mail: naoko.sano@ncl.ac.uk; Barlow, Anders J.; Cumpson, Peter J.
The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars andmore » Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.« less
Kinetics of de-N-acetylation of the chitin disaccharide in aqueous sodium hydroxide solution.
Khong, Thang Trung; Aachmann, Finn L; Vårum, Kjell M
2012-05-01
Chitosan is prepared from chitin, a process which is carried out at highly alkaline conditions, and that can be performed either on chitin in solution (homogeneous deacetylation) or heterogeneously with the chitin as a solid throughout the reaction. We report here a study of the de-N-acetylation reaction of the chitin dimer (GlcNAc-GlcNAc) in solution. The reaction was followed by (1)H NMR spectroscopy in deuterated aqueous sodium hydroxide solution as a function of time, sodium-hydroxide concentration and temperature. The (1)H NMR spectrum of GlcNAc-GlcNAc in 2.77 M deuterated aqueous sodium hydroxide solution was assigned. The interpretation of the (1)H NMR spectra allowed us to determine the rates of de-N-acetylation of the reducing and non-reducing ends, showing that the reaction rate at the reducing end is twice the rate at the non-reducing end. The total deacetylation reaction rate was determined as a function of the hydroxide ion concentration, showing for the first time that this de-N-acetylation reaction is second order with respect to hydroxide ion concentration. No significant difference in the deacetylation rates in deuterated water compared to water was observed. The activation energy for the reaction (26-54 °C) was determined to 114.4 and 98.6 kJ/mol at 2.77 and 5.5 M in deuterated aqueous sodium hydroxide solution, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.
2018-01-01
Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.
NASA Astrophysics Data System (ADS)
Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang
2011-05-01
Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.
Kilner, S.B.
1959-12-29
A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.
NASA Astrophysics Data System (ADS)
Sekiguchi, Atsushi
2013-03-01
The QCM method allows measurements of impedance, an index of swelling layer viscosity in a photoresist during development. While impedance is sometimes used as a qualitative index of change in the viscosity of the swelling layer, it has to date not been used quantitatively, for data analysis. We explored a method for converting impedance values to elastic modulus (Pa), a coefficient expressing viscosity. Applying this method, we compared changes in the viscosity of the swelling layer in an ArF resist generated during development in a TMAH developing solution and in a TBAH developing solution. This paper reports the results of this comparative study.
21 CFR 184.1631 - Potassium hydroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg. No. 1310-58-3) is also... powders. Potassium hydroxide is obtained commercially from the electrolysis of potassium chloride solution...
Fractal Structures on Fe3O4 Ferrofluid: A Small-Angle Neutron Scattering Study
NASA Astrophysics Data System (ADS)
Giri Rachman Putra, Edy; Seong, Baek Seok; Shin, Eunjoo; Ikram, Abarrul; Ani, Sistin Ari; Darminto
2010-10-01
A small-angle neutron scattering (SANS) which is a powerful technique to reveal the large scale structures was applied to investigate the fractal structures of water-based Fe3O4ferrofluid, magnetic fluid. The natural magnetite Fe3O4 from iron sand of several rivers in East Java Province of Indonesia was extracted and purified using magnetic separator. Four different ferrofluid concentrations, i.e. 0.5, 1.0, 2.0 and 3.0 Molar (M) were synthesized through a co-precipitation method and then dispersed in tetramethyl ammonium hydroxide (TMAH) as surfactant. The fractal aggregates in ferrofluid samples were observed from their SANS scattering distributions confirming the correlations to their concentrations. The mass fractal dimension changed from about 3 to 2 as ferrofluid concentration increased showing a deviation slope at intermediate scattering vector q range. The size of primary magnetic particle as a building block was determined by fitting the scattering profiles with a log-normal sphere model calculation. The mean average size of those magnetic particles is about 60 - 100 Å in diameter with a particle size distribution σ = 0.5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN andmore » Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.« less
The effects of lithium hydroxide solution on alkali silica reaction gels created with opal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick
The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), {sup 29}Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhapsmore » stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type.« less
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition
Nakayama, Hirokazu; Hayashi, Aki
2014-01-01
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.
Nakayama, Hirokazu; Hayashi, Aki
2014-07-30
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.
Chang, Menglei; Li, Denian; Wang, Wen; Chen, Dongchu; Zhang, Yuyuan; Hu, Huawen; Ye, Xiufang
2017-11-01
Sodium hydroxide (NaOH) and calcium hydroxide (Ca(OH) 2 ) respectively dissolved in water and 70% glycerol were applied to treat sugarcane bagasse (SCB) under the condition of 80°C for 2h. NaOH solutions could remove more lignin and obtain higher enzymatic hydrolysis efficiency of SCB than Ca(OH) 2 solutions. Compared with the alkali-water solutions, the enzymatic hydrolysis of SCB treated in NaOH-glycerol solution decreased, while that in Ca(OH) 2 -glycerol solution increased. The lignin in NaOH-water pretreatment liquor could be easily recovered by calcium chloride (CaCl 2 ) at room temperature, but that in Ca(OH) 2 -water pretreatment liquor couldn't. NaOH pretreatment is more suitable for facilitating enzymatic hydrolysis and lignin recovery of SCB than Ca(OH) 2 pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ammonium hydroxide is a colorless liquid chemical solution. It is in a class of substances called caustics. Ammonium hydroxide forms when ammonia dissolves in water. This article discusses poisoning from ...
Fate and transport of lignin in the soil-water continuum
NASA Astrophysics Data System (ADS)
Williams, J. S.; Dungait, J.; Bol, R.; Abbott, G. D.
2011-12-01
Soils have been identified as having the potential to store greater amounts of carbon (C) in soil organic matter (SOM) through appropriate land uses and management practices to increase the input of recalcitrant components of organic matter, such as lignin. Lignin is allocated to the 'slow' soil C pools with residence times between 15 - 100 yrs. Lignin is 30% of the C fixed by plants and is an important C input to soils. However, Recent research has shown that the configuration of lignin monomers within the lignin macromolecule is not random [1], that lignin degradation is monomer specific [2], and that lignin is preferentially degraded relative to the bulk SOM [3], thereby questioning the role of lignin in C sequestration. Although guaiacyl (G) and syringyl (S) lignin monomers have been identified in fresh, estuarine, and marine waters [4], the initial forms to which lignin is degraded into water-transportable products and lost from the soil C reservoir are not known. The aims of this project are to (i) identify and quantify the lignin-derived products entering the soluble phase in soils, and (ii) determine the rate of lignin degradation into water-soluble components, and their rate of transport through soil. In experiment 1 we tested the best approach to extract and analyse dissolved lignin from outflows from grassland and woodland sites. C18 solid phase extraction (SPE) or freeze-drying (FD) was used to isolate water-borne lignin monomers. Gas chromatography-mass spectrometry (GC-MS) of trimethylsilyl (TMS) derivatives or tetramethylammonium hydroxide (TMAH) thermochemolysis was used to analyse the samples. In a subsequent experiment, we allowed leaves from different vegetation types (Lolium perenne, Ranunculus repens, Fraxinus excelsior, Quercus robur), corresponding to the vegetation at our initial sites in Experiment 1, to degrade in soil lysimeters for 1.5 years to determine the rates of decomposition of different plant material and dominant form of lignin moving into the aqueous phase in each case. Our results showed that C18 silica-based SPE recovered a greater proportion of detectable dissolved lignin than FD both in terms of number of compounds identified as well as total mass of lignin. More lignin-derived compounds were identified using TMAH/GC-MS than GC-MS of TMS derivatives. The lysimeter experiment showed that Ranunculus repens and Lolium perenne decomposition was most rapid and generated the highest leachate TOC values. TMAH/GC/MS analysis identified G, S, and p-hydroxyphenyl (P) units in the vegetation leachates with side-chains ranging from one to three carbons, with varying degrees of oxidation. This research provides new insight into the complexity of lignin breakdown and movement through soils.
REMOVAL OF CESIUM BY SORPTION FROM AQUEOUS SOLUTIONS
Ames, L.L.
1962-01-16
ABS>A process is given for selectively removing cesium from acid aqueous solutions containing cesium in microquantities and other cations in macroquantities by absorption on clinoptilolite. The cesium can be eluted from the clinoptilolite with a solution of ammonia, potassium hydroxide, or rubidium hydroxide. (AEC)
Miyazaki, Kohei; Iizuka, Asuka; Mikata, Koji; Fukutsuka, Tomokazu; Abe, Takeshi
2017-09-05
The intercalation of hydroxide ions (OH - ) into graphite formed graphite intercalation compounds (GICs) in high ionic strength solutions. GICs of solvated OH - anions with two water molecules (OH - ·2H 2 O) in alkaline aqueous solutions and GICs of only OH - anions in a molten NaOH-KOH salt solution were electrochemically synthesized.
Calcium leaching behavior of cementitious materials in hydrochloric acid solution.
Yang, Huashan; Che, Yujun; Leng, Faguang
2018-06-11
The calcium leaching behavior of cement paste and silica fume modified calcium hydroxide paste, exposed to hydrochloric acid solution, is reported in this paper. The kinetic of degradation was assessed by the changes of pH of hydrochloric acid solution with time. The changes of compressive strength of specimens in hydrochloric acid with time were tested. Hydration products of leached specimens were also analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric (TG), and atomic force microscope (AFM). Tests results show that there is a dynamic equilibrium in the supply and consumption of calcium hydroxide in hydrochloric acid solution, which govern the stability of hydration products such as calcium silicate hydrate (C-S-H). The decrease of compressive strength indicates that C-S-H are decomposed due to the lower concentration of calcium hydroxide in the pore solution than the equilibrium concentration of the hydration products. Furthermore, the hydration of unhydrated clinker delayed the decomposition of C-S-H in hydrochloric acid solution due to the increase of calcium hydroxide in pore solution of cementitious materials.
METHOD OF PROCESSING MONAZITE SAND
Calkins, G.D.
1957-10-29
A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.
Treatment of As(V) and As(III) by electrocoagulation using Al and Fe electrode.
Kuan, W H; Hu, C Y; Chiang, M C
2009-01-01
A batch electrocoagulation (EC) process with bipolar electrode and potentiodynamic polarization tests with monopolar systems were investigated as methods to explore the effects of electrode materials and initial solution pH on the As(V) and As(III) removal. The results displayed that the system with Al electrode has higher reaction rate during the initial period from 0 to 25 minutes than that of Fe electrode for alkaline condition. The pH increased with the EC time because the As(V) and As(III) removal by either co-precipitation or adsorption resulted in that the OH positions in Al-hydroxide or Fe-hydroxide were substituted by As(V) and As(III). The pH in Fe electrode system elevate higher than that in Al electrode because the As(V) removal substitutes more OH position in Fe-hydroxide than that in Al-hydroxide. EC system with Fe electrode can successfully remove the As(III) but system with Al electrode cannot because As(III) can strongly bind to the surface of Fe-hydroxide with forming inner-sphere species but weakly adsorb to the Al-hydroxide surface with forming outer-sphere species. The acidic solution can destroy the deposited hydroxide passive film then allow the metallic ions liberate into the solution, therefore, the acidic initial solution can enhance the As(V) and As(III) removal. The over potential calculation and potentiodynamic polarization tests reveal that the Fe electrode systems possess higher over potential and pitting potential than that of Al electrode system due to the fast hydrolysis of and the occurrence of Fe-hydroxide passive film.
Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Aritra; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Tokmakoff, Andrei, E-mail: tokmakoff@uchicago.edu
2015-11-21
We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm{sup −1}. We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occursmore » in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.« less
NASA Astrophysics Data System (ADS)
Flores, Gary E.; Loftus, James E.
1992-06-01
The use of surfactants in today's society ranges over a wide variety of technologies, from soaps and detergents to house paints and electronic materials. In the semiconductor industry, surfactants are commonly used as coating additives in photoresists, as additives in wet chemical etchants, as additives in developer solutions, and in other areas where surface activity is desirable. In most applications, the mechanisms of surfactant chemistry are well established, yet there has been only a limited amount of published literature pertaining to characterizing the behavior of surfactants in developer systems for photoresists. This project explores the application of surfactants in an aqueous tetramethyl ammonium hydroxide (TMAH) based developer for two optical resists, one incorporating a 2,1,4- diazonaphthoquinone (DNQ) sensitizer, while the other incorporates a 2,1,5-DNQ sensitizer. In addition, each optical resist is based on different positive novolac resins with distinct structural properties. This feature aids in illustrating the improtance of matching the developer surfactant with the photoresist resin structure. Four distinct non-ionic surfactants with well published physical and chemical properties are examined. Properties of the surfactants explored include differences in structure, surfactant concentration, various degrees of hydrophilic versus lipophilic content (known as the HLB, or hydrophilic - lipophilic balance), and the differences in reported critical micelle concentration (CMC). Previous research investigated the performance characteristics of the 2,1,5-DNQ for these four surfactants. This investigation is an extension of the previous project by next considering a significantly different photoresist. A discussion of potential mechanisms of the solubilization and wetting effects is utilized to promote an understanding of surfactant effects in resist/developer systems. Also, because of the extensive characterization involved in screening surfactants, a recommended selection and screening scheme is proposed.
78 FR 3967 - Notice of Application for Special Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-17
...). transportation in Branchburg, NJ. commerce of PG II corrosive materials described as Potassium Hydroxide Solution, UN 1814 and Sodium Hydroxide Solution, UN 1824 in a UN 50G Fiberboard Large Packaging. (modes 1, 2, 3...
NASA Astrophysics Data System (ADS)
Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.
2016-02-01
Geopolymer concrete is zero-Portland cement concrete containing alumino-silicate based inorganic polymer as binder. The polymer is obtained by chemical activation of alumina and silica bearing materials, blast furnace slag by highly alkaline solutions such as hydroxide and silicates of alkali metals. Sodium hydroxide solutions of different concentrations are commonly used in making GPC mixes. Often, it is seen that sodium hydroxide solution of very high concentration is diluted with water to obtain SHS of desired concentration. While doing so it was observed that the solute particles of NaOH in SHS tend to occupy lower volumes as the degree of dilution increases. This aspect is discussed in this paper. The observed phenomenon needs to be understood while formulating the GPC mixes since this influences considerably the relationship between concentration and density of SHS. This paper suggests an empirical formula to relate density of SHS directly to concentration expressed by w/w.
NASA Astrophysics Data System (ADS)
de Oliveira, Henrique Bortolaz; Wypych, Fernando
2016-11-01
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.
Code of Federal Regulations, 2013 CFR
2013-07-01
... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... prestandardized pH meter, 1.0 N hydrochloric acid, 0.1 N hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50...
Code of Federal Regulations, 2012 CFR
2012-07-01
... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... prestandardized pH meter, 1.0 N hydrochloric acid, 0.1 N hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50...
Code of Federal Regulations, 2014 CFR
2014-07-01
... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... prestandardized pH meter, 1.0 N hydrochloric acid, 0.1 N hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50...
Howell, J M
1991-11-01
Alkaline cleaning products are a cause of serious esophageal injury. Over time, legislation has diminished the concentration of many such non-industrial solutions and solids; however several products presently do not list either the pH or relative concentrations of alkaline constituents. This study measures the pHs of several non-industrial cleaning products containing either ammonium chloride, sodium hydroxide, or potassium hydroxide. Three pH measurements were performed on each of 10 non-industrial alkaline cleaning products (eight liquid, two solid). Two 0.1% ammonium chloride solutions had pHs of 12.06 +/- 0.00 and 12.06 +/- 0.01, whereas a pH of 12.43 +/- 0.00 was recorded in a 0.2% ammonium chloride solution. Concentrations of sodium hydroxide and potassium hydroxide were listed on only one of five liquid cleaning product labels. The pHs for these five products varied between 12.83 +/- 0.009 and 13.5 +/- .0.2. The pHs of three sodium hydroxide solutions differed from values reported in Micromedex (Micromedex Inc, Denver CO) by up to 0.32 pH units. Ten percent (v/v) solutions of two solid lye products had pHs of 13.62 +/- 0.008 and 13.74 +/- 0.02. The investigator found that selected non-industrial cleaning products, including ammonia solutions, retain the ability to cause clinically important esophageal damage.
LEACHING OF TITANIUM FROM MONOSODIUM TITANATE AND MODIFIED MST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-Pashow, K.; Fondeur, F.; Fink, S.
2012-08-01
Analysis of a fouled coalescer and pre-filters from Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU) operations showed evidence of Ti containing solids. Based on these results a series of tests were planned to examine the extent of Ti leaching from monosodium titanate (MST) and modified monosodium titanate (mMST) in various solutions. The solutions tested included a series of salt solutions with varying free hydroxide concentrations, two sodium hydroxide concentrations, 9 wt % and 15 wt %, nitric and oxalic acid solutions. Overall, the amount of Ti leached from the MST and mMST was much greater in the acidmore » solutions compared to the sodium hydroxide or salt solutions, which is consistent with the expected trend. The leaching data also showed that increasing hydroxide concentration, whether pure NaOH solution used for filter cleaning in ARP or the waste salt solution, increased the amount of Ti leached from both the MST and mMST. For the respective nominal contact times with the MST solids - for filter cleaning or the normal filter operation, the dissolved Ti concentrations are comparable suggesting either cause may contribute to the increased Ti fouling on the MCU coalescers. Tests showed that Ti containing solids could be precipitated from solution after the addition of scrub acid and a decrease in temperature similar to expected in MCU operations. FTIR analysis of these solids showed some similarity to the solids observed on the fouled coalescer and pre-filters. Although only a cursory study, this information suggests that the practice of increasing free hydroxide in feed solutions to MCU as a mitigation to aluminosilicate formation may be offset by the impact of formation of Ti solids in the overall process. Additional consideration of this finding from MCU and SWPF operation is warranted.« less
RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS
Calkins, G.D.
1958-06-10
>A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.
Solvent and process for recovery of hydroxide from aqueous mixtures
Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.
2001-01-01
Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.
Roveri, Flávia Lopes; Paranhos, Beatriz Aparecida Passos Bismara; Yonamine, Mauricio
2016-08-01
A method for identification and quantification of phenobarbital in hair samples by liquid phase microextraction (LPME) and gas chromatography-mass spectrometry (GC-MS) has been presented. Drug-free hair specimens were collected and separated in 50mg aliquots. Each aliquot was washed with 2.0mL of dichloromethane for 15min at 37°C. Standards and deuterated internal standards for calibration and quality control samples were added to the washed hair aliquot and the sample was submitted to complete digestion with sodium hydroxide (NaOH) 1.0mol/L for 15min at 70°C. The dissolved sample was submitted to LPME. After extraction, the residue was derivatized with tetramethylammonium hydroxide (TMAH) and analyzed by GC-MS. The limit of detection (LOD) was 0.1ng/mg and the limit of quantification (LOQ) was 0.25ng/mg. The calibration curve was linear over a concentration range of 0.25ng/mg to 10ng/mg (r(2)>0.99). The intra- and inter-assay precisions, given by RSD, were less than 6% for phenobarbital. Fortified samples of secobarbital and pentobarbital were also submitted to the validated method. The method was successfully applied to hair samples collected from three volunteers who reported regular use of phenobarbital (clinical treatment). The concentrations found were 9.5, 15.1 and 16.3ng/mg of phenobarbital. To contemplate the concentrations found, dilution integrity tests were also validated. The LPME and GC-MS method showed to be suitable for the detection of phenobarbital in hair samples and can be promptly used for different purposes whenever required. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Titration of Monoprotic Acids with Sodium Hydroxide Contaminated by Sodium Carbonate.
ERIC Educational Resources Information Center
Michalowski, Tadeusz
1988-01-01
Discusses the effects of using carbon dioxide contaminated sodium hydroxide solution as a titrant for a solution of a weak monoprotic acid and the resulting distortion of the titration curve in comparison to one obtained when an uncontaminated titrant is used. (CW)
Investigation of optical properties of anthocyanin doped into sol-gel based matrix
NASA Astrophysics Data System (ADS)
Hashim, Hasrina; Abdul Aziz, Nik Mohd Azmi Nik; Isnin, Aishah
2012-06-01
Anthocyanin dye was extracted from petal of Hibiscus rosasinensis (Bunga Raya) and doped into sol-gel based matrix to investigate an effect of pH change on its optical properties. Sol-gel matrix based on Vinyl triethoxysilene (VTES) as a precursor was prepared through Sol-gel process at pH 7. The sol was doped with 0.1% of Anthocyanin and the same amount of dye was also dissolved in ethanol as a comparative sample. Hydrochloric Acid, HCl and Tetramethylammonium Hydroxide, TMAH were used to change the pH value by adding them at various concentrations into each sample. The emission spectra and chemical structures of the samples were measured by Spectrofluorometer and Fourier Transform Infrared (FTIR) respectively. When excited at 410 nm, two emission peaks at about 492 and 574 nm were observed for Anthocyanin in acidic environment both in ethanol and VTES sol. In base environment however, only Anthocyanin dissolved in ethanol produced emission peak with a single peak at about 539 nm. The sensitivity of Anthocyanin dye toward pH changes in VTES open a possibility to use it as sensing element in which sol-gel based matrix are known to have higher mechanical strength and thermal stability.
Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.
1994-01-01
A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.
Corrosion resistance of porous binary tantalum and titanium carbides of various composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artyunina, N.P.; Komratov, G.N.; Bolonova, E.A.
1993-12-20
Resistance of porous binary tantalum and titanium carbides in solutions of mineral acids and their mixtures, of several organic acids, and of ammonium and potassium hydroxide was studied. It has been shown that as the content of tantalum in a material increases its resistance in solutions of oxidizing acids is improved, but it is reduced in solutions of sulfuric and hydrofluoric acids and also in solutions of potassium hydroxide.
Method of preparing electrolyte for use in fuel cells
Kinoshita, Kimio; Ackerman, John P.
1978-01-01
An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.
Developing New Alternative Energy in Virginia: Bio-Diesel from Algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatcher, Patrick
The overall objective of this study was to select chemical processing equipment, install and operate that equipment to directly convert algae to biodiesel via a reaction patented by Old Dominion University (Pat. No. US 8,080,679B2). This reaction is a high temperature (250- 330{degrees}C) methylation reaction utilizing tetramethylammonium hydroxide (TMAH) to produce biodiesel. As originally envisioned, algal biomass could be treated with TMAH in methanol without the need to separately extract triacylglycerides (TAG). The reactor temperature allows volatilization and condensation of the methyl esters whereas the spent algae solids can be utilized as a high-value fertilizer because they are minimally charred.more » During the course of this work and immediately prior to commencing, we discovered that glycerol, a major by-product of the conventional transesterification reaction for biofuels, is not formed but rather three methoxylated glycerol derivatives are produced. These derivatives are high-value specialty green chemicals that strongly upgrade the economics of the process, rendering this approach as one that now values the biofuel only as a by-product, the main value products being the methoxylated glycerols. A horizontal agitated thin-film evaporator (one square foot heat transfer area) proved effective as the primary reactor facilitating the reaction and vaporization of the products, and subsequent discharge of the spent algae solids that are suitable for supplementing petrochemicalbased fertilizers for agriculture. Because of the size chosen for the reactor, we encountered problems with delivery of the algal feed to the reaction zone, but envision that this problem could easily disappear upon scale-up or can be replaced economically by incorporating an extraction process. The objective for production of biodiesel from algae in quantities that could be tested could not be met, but we implemented use of soybean oil as a surrogate TAG feed to overcome this limitation. The positive economics of this process are influenced by the following: 1. the weight percent of dry algae in suspension that can be fed into the evaporator, 2. the alga species’ ability to produce a higher yield of biodiesel, 3. the isolation of valuable methoxylated by-products, 4. recycling and regeneration of methanol and TMAH, and 5. the market value of biodiesel, commercial agricultural fertilizer, and the three methoxylated by-products. The negative economics of the process are the following: 1. the cost of producing dried, ground algae, 2. the capital cost of the equipment required for feedstock mixing, reaction, separation and recovery of products, and reactant recycling, and 3. the electrical cost and other utilities. In this report, the economic factors and results are assembled to predict the commercialization cost and its viability. This direct conversion process and equipment discussed herein can be adapted for various feedstocks including: other algal species, vegetable oil, jatropha oil, peanut oil, sunflower oil, and other TAG containing raw materials as a renewable energy resource.« less
Effect of water-table fluctuations on the degradation of Sphagnum phenols in surficial peats
NASA Astrophysics Data System (ADS)
Abbott, Geoffrey D.; Swain, Eleanor Y.; Muhammad, Aminu B.; Allton, Kathryn; Belyea, Lisa R.; Laing, Christopher G.; Cowie, Greg L.
2013-04-01
A much improved understanding of how water-table fluctuations near the surface affect decomposition and preservation of peat-forming plant litter and surficial peats is needed in order to predict possible feedbacks between the peatland carbon cycle and the global climate system. In this study peatland plants (bryophytes and vascular plants), their litter and peat cores were collected from the Ryggmossen peatland in the boreonemoral zone of central Sweden. The extracted insoluble residues from whole plant tissues were depolymerized using thermally assisted hydrolysis and methylation (THM) in the presence of both unlabelled and 13C-labelled tetramethylammonium hydroxide (TMAH) which yielded both vascular plant- and Sphagnum-derived phenols. Methylated 4-isopropenylphenol (IUPAC: 1-methoxy-4-(prop-1-en-2-yl)benzene), methylated cis- and trans-3-(4'-hydroxyphen-1-yl)but-2-enoic acid (IUPAC: (E/Z)-methyl 3-(4-methoxyphenyl)but-2-enoate), and methylated 3-(4'-hydroxyphen-1-yl)but-3-enoic acid (IUPAC: methyl 3-(4-methoxyphenyl)but-3-enoate) (van der Heijden et al., 1997) are confirmed as TMAH thermochemolysis products of "bound" sphagnum acid and also as being specific to Sphagnum mosses. These putative biomarkers were also significant components in the unlabelled TMAH thermochemolysis products from the depolymerization of ultrasonically extracted samples from eight peat cores, one from a hummock and one from a hollow at each of the four stages along the bog plateau-to-swamp forest gradient. We have proposed and measured two parameters namely (i) σ which is defined as the total amount of these four molecules normalised to 100 mg of OC; and (ii) an index (SR%) which is the ratio of σ to the Λ parameter giving a measure of the relative amounts of "bound" sphagnum acid to the "bound" vascular plant phenols in peat moss and the surficial peat layers. Changes in σ and SR% down the bog plateau (BP), bog margin (BM) and fen lagg (FL) cores in the Ryggmossen mire indicates that the sphagnum acid bound into the peat is being degraded in the unsaturated and seasonally-saturated layers. There is then a stabilisation of Sphagnum-derived phenols in the deepest horizons of the seasonally-saturated layer and into the permanently-saturated layer. These results suggest that "bound" sphagnum acid will be stabilised in peatlands shifting to a wetter and more variable precipitation regime whereas it will be gradually stripped away (e.g. by hydrolysis/enzymatic activity) in surficial peats shifting to a drier climate, such that any subsequent rewetting of the peat could lead to anaerobic hydrolysis and fermentation of the newly exposed carbohydrates. This highlights the sensitivity of Sphagnum surficial peats to climate-induced changes in water levels albeit there may be differences in the extent of degradation along the bog-fen gradient.
Code of Federal Regulations, 2011 CFR
2011-01-01
... hydroxide (Lye) prepared in a fresh solution in the proportion of not less than 1 pound avoirdupois of... in case any of the sodium hydroxide solution should come in contact with the body. (2) This solution...) Dissolve the salt in the proportion of 90 pounds of salt to 100 gallons of water. Add 23/4 gallons of C. P...
Code of Federal Regulations, 2014 CFR
2014-01-01
... hydroxide (Lye) prepared in a fresh solution in the proportion of not less than 1 pound avoirdupois of... in case any of the sodium hydroxide solution should come in contact with the body. (2) This solution...) Dissolve the salt in the proportion of 90 pounds of salt to 100 gallons of water. Add 23/4 gallons of C. P...
Code of Federal Regulations, 2013 CFR
2013-01-01
... hydroxide (Lye) prepared in a fresh solution in the proportion of not less than 1 pound avoirdupois of... in case any of the sodium hydroxide solution should come in contact with the body. (2) This solution...) Dissolve the salt in the proportion of 90 pounds of salt to 100 gallons of water. Add 23/4 gallons of C. P...
Method of purifying isosaccharinate
Rai, Dhanpat; Moore, Robert C.; Tucker, Mark D.
2010-09-07
A method of purifying isosaccharinate by mixing sodium carbonate, potassium carbonate, sodium hydroxide or potassium hydroxide with calcium isosaccharinate, removing the precipitated calcium carbonate and adjusting the pH to between approximately 4.5 to 5.0 thereby removing excess carbonate and hydroxide to provide an acidic solution containing isosaccharinate.
Sodium to sodium carbonate conversion process
Herrmann, Steven D.
1997-01-01
A method of converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO.sub.2 are introduced into a thin film evaporator with the CO.sub.2 present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and T1 can be converted into a low level non-hazardous waste using the thin film evaporator of the invention.
Aqueous Ammonia or Ammonium Hydroxide? Identifying a Base as Strong or Weak
ERIC Educational Resources Information Center
Sanger, Michael J.; Danner, Matthew
2010-01-01
When grocery stores sell solutions of ammonia, they are labeled "ammonia"; however, when the same solution is purchased from chemical supply stores, they are labeled "ammonium hydroxide". The goal of this experiment is for students to determine which name is more appropriate. In this experiment, students use several different experimental methods…
Hinsin, Duangduean; Pdungsap, Laddawan; Shiowatana, Juwadee
2002-12-06
A continuous-flow extraction system originally developed for sequential extraction was applied to study elemental association of a synthetic metal-doped amorphous iron hydroxide phase. The homogeneity and metal association of the precipitates were evaluated by gradual leaching using the system. Leachate was collected in fractions for determination of elemental concentrations. The result obtained as extractograms indicated that the doped metals were adsorbed more on the outermost surface rather than homogeneously distributed in the precipitates. The continuous-flow extraction method was also used for effective removal of surface adsorbed metals to obtain a homogeneous metal-doped synthetic iron hydroxide by a sequential extraction using acetic acid and small volume of hydroxylamine hydrochloride solution. The system not only ensures complete washing, but the extent of metal immobilization in the synthetic iron hydroxide could be determined with high accuracy from the extractograms. The initial metal/iron mole ratio (M/Fe) in solution affected the M/Fe mole ratio in homogeneous doped iron hydroxide phase. The M/Fe mole ratio of metal incorporation was approximately 0.01-0.02 and 0.03-0.06, for initial solution M/Fe mole ratio of 0.025 and 0.100, respectively.
Method for producing nuclear fuel
Haas, Paul A.
1983-01-01
Nuclear fuel is made by contacting an aqueous solution containing an actinide salt with an aqueous solution containing ammonium hydroxide, ammonium oxalate, or oxalic acid in an amount that will react with a fraction of the actinide salt to form a precipitate consisting of the hydroxide or oxalate of the actinide. A slurry consisting of the precipitate and solution containing the unreacted actinide salt is formed into drops which are gelled, calcined, and pressed to form pellets.
Inagaki, Kazumi; Narukawa, Tomohiro; Yarita, Takashi; Takatsu, Akiko; Okamoto, Kensaku; Chiba, Koichi
2007-10-01
A coprecipitation method using sample constituents as carrier precipitants was developed that can remove molybdenum, which interferes with the determination of cadmium in grain samples via isotope dilution inductively coupled plasma mass spectrometry (ID-ICPMS). Samples were digested with HNO3, HF, and HClO4, and then purified 6 M sodium hydroxide solution was added to generate colloidal hydrolysis compounds, mainly magnesium hydroxide. Cadmium can be effectively separated from molybdenum because the cadmium forms hydroxides and adsorbs onto and/or is occluded in the colloid, while the molybdenum does not form hydroxides or adsorb onto the hydrolysis colloid. The colloid was separated by centrifugation and then dissolved with 0.2 M HNO3 solution to recover the cadmium. The recovery of Cd achieved using the coprecipitation was >97%, and the removal efficiency of Mo was approximately 99.9%. An extremely low procedural blank (below the detection limit of ICPMS) was achieved by purifying the 6 M sodium hydroxide solution via Mg coprecipitation using Mg(NO3)2 solution. The proposed method was applied to two certified reference materials (NIST SRM 1567a wheat flour and SRM 1568a rice flour) and CCQM-P64 soybean powder. Good analytical results with small uncertainties were obtained for all samples. This method is simple and reliable for the determination of Cd in grain samples by ID-ICPMS.
ERIC Educational Resources Information Center
Menéndez, M. Isabel; Borge, Javier
2014-01-01
The heterogeneous equilibrium of the solubility of calcium hydroxide in water is used to predict both its solubility product from solubility and solubility values from solubility product when inert salts, in any concentration, are present. Accepting the necessity of including activity coefficients to treat the saturated solution of calcium…
A wet chemical method for the estimation of carbon in uranium carbides.
Chandramouli, V; Yadav, R B; Rao, P R
1987-09-01
A wet chemical method for the estimation of carbon in uranium carbides has been developed, based on oxidation with a saturated solution of sodium dichromate in 9M sulphuric acid, absorption of the evolved carbon dioxide in a known excess of barium hydroxide solution, and titration of the excess of barium hydroxide with standard potassium hydrogen phthalate solution. The carbon content obtained is in good agreement with that obtained by combustion and titration.
Sodium to sodium carbonate conversion process
Herrmann, S.D.
1997-10-14
A method is described for converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO{sub 2} are introduced into a thin film evaporator with the CO{sub 2} present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and Tl can be converted into a low level non-hazardous waste using the thin film evaporator of the invention. 3 figs.
PROCESS FOR REMOVING ALUMINUM COATINGS
Flox, J.
1959-07-01
A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least
Method and apparatus for the production of metal oxide powder
Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.
1993-01-01
The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.
Method and apparatus for the production of metal oxide powder
Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.
1992-01-01
The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.
Method and apparatus for the production of metal oxide powder
Harris, M.T.; Scott, T.C.; Byers, C.H.
1992-06-16
The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.
Method of treating inflammatory diseases using a radiolabeled ferric hydroxide calloid
Atcher, Robert W.; Hines, John J.
1992-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
Arslan, Hakan; Gok, Tuba; Saygili, Gokhan; Altintop, Hülya; Akçay, Merve; Çapar, Ismail Davut
2014-11-01
The aims of the present study were to evaluate the effect of various irrigating solutions on the removal of calcium hydroxide mixed with 2% chlorhexidine gel from an artificial groove created in a root canal and the generation of orange-brown precipitate in the remaining calcium hydroxide mixed with 2% chlorhexidine gel after irrigation with the various irrigating solutions. The root canals of 48 mandibular premolars were prepared using ProTaper Universal Rotary instruments (Dentsply Maillefer, Ballaigues, Switzerland) up to size F4. The roots were split longitudinally, and a standardized groove was prepared in the apical part of 1 segment. The root halves were reassembled, and calcium hydroxide mixed with 2% chlorhexidine gel medicament was placed into the grooves. The roots were randomly divided into 4 experimental groups specified by the irrigation solution used: 1% NaOCl, 17% EDTA, 7% maleic acid, and 10% citric acid (n = 12). The amount of remaining medicament was evaluated under a stereomicroscope using a 4-grade scoring system. After irrigation, the specimens were also evaluated for the presence/absence of orange-brown precipitate. The effects of the different irrigation solutions on medicament removal were statistically evaluated using the Kruskal-Wallis and Mann-Whitney U tests with Bonferroni correction at a 95% confidence level (P = .0083). Solutions of 7% maleic acid and 10% citric acid were superior to solutions of 1% NaOCl and 17% EDTA in removing calcium hydroxide mixed with 2% chlorhexidine gel (P < .0083). There were no significant differences among the other groups (P > .0083). Orange-brown precipitate was observed in all specimens of the NaOCl group but in no specimens in the other groups. Irrigation solutions of 7% maleic acid and 10% citric acid were more effective in the removal of calcium hydroxide mixed with 2% chlorhexidine gel than those of 1% NaOCl and 17% EDTA. Orange-brown precipitate was found in all specimens of the NaOCl-irrigated groups. However, the precipitate was not observed in specimens in the groups irrigated with 17% EDTA, 7% maleic acid, and 10% citric acid. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Guo Gao, Tong; Yuan Xu, Yuan; Jiang, Feng; Zhen Li, Bao; Shui Yang, Jin; Tao Wang, En; Li Yuan, Hong
2015-01-01
The lignite biodegradation procedure to produce water-soluble humic materials (WSHM) with a Penicillium stain was established by previous studies in our laboratory. This study researched the effects of WSHM on the growth of Bradyrhizobium liaoningense CCBAU05525 and its nodulation on soybean. Results showed that WSHM enhanced the cell density of CCBAU05525 in culture, and increased the nodule number, nodule fresh weight and nitrogenase activity of the inoculated soybean plants. Then the chemical compounds of WSHM were analyzed and flavonoid analogues were identified in WSHM through tetramethyl ammonium hydroxide (TMAH)-py-GC/MS analysis. Protein expression profiles and nod gene expression of CCBAU05525 in response to WSHM or genistein were compared to illustrate the working mechanism of WSHM. The differently expressed proteins in response to WSHM were involved in nitrogen and carbon metabolism, nucleic acid metabolism, signaling, energy production and some transmembrane transports. WSHM was found more effective than genistein in inducing the nod gene expression. These results demonstrated that WSHM stimulated cell metabolism and nutrient transport, which resulted in increased cell density of CCBAU05525 and prepared the bacteria for better bacteroid development. Furthermore, WSHM had similar but superior functions to flavone in inducing nod gene and nitrogen fixation related proteins expression in CCBAU05525. PMID:26054030
Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.
Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi
2006-08-15
The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.
Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xiaorui, E-mail: gxr_1320@sina.com; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA
Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and amore » diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.
2000-09-28
This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantifymore » the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.« less
A mini-type hydrogen generator from aluminum for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Wang, Er-Dong; Shi, Peng-Fei; Du, Chun-Yu; Wang, Xiao-Rui
A safe and simple hydrogen generator, which produced hydrogen by chemical reaction of aluminum and sodium hydroxide solution, was proposed for proton exchange membrane fuel cells. The effects of concentration, dropping rate and initial temperature of sodium hydroxide solution on hydrogen generation rate were investigated. The results showed that about 38 ml min -1 of hydrogen generation rate was obtained with 25 wt.% concentration and 0.01 ml s -1 dropping rate of sodium hydroxide solution. The cell fueled by hydrogen from the generator exhibited performance improvement at low current densities, which was mainly due to the humidified hydrogen reduced the protonic resistivity of the proton exchange membrane. The hydrogen generator could stably operate a single cell under 500 mA for nearly 5 h with about 77% hydrogen utilization ratio.
Recycling positive-electrode material of a lithium-ion battery
Sloop, Steven E.
2017-11-21
Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.
Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation.
Huang, P X; Wu, F; Zhu, B L; Li, G R; Wang, Y L; Gao, X P; Zhu, H Y; Yan, T Y; Huang, W P; Zhang, S M; Song, D Y
2006-02-02
Praseodymium hydroxide nanorods were synthesized by a two-step approach: First, metallic praseodymium was used to form praseodymium chloride, which reacted subsequently with KOH solution to produce praseodymium hydroxide. In the second step the hydroxide was treated with a concentrated alkaline solution at 180 degrees C for 45 h, yielding nanorods as shown by the scanning and transmission electron microscopy images. The results of X-ray diffraction and energy-dispersive X-ray spectroscopy experiments indicate that these nanorods are pure praseodymium hydroxide with a hexagonal structure, which can be converted into praseodymium oxide (Pr6O11) nanorods of a face-centered cubic structure after calcination at 600 degrees C for 2 h in air. Gold was loaded on the praseodymium oxide nanorods using HAuCl4 as the gold source, and NaBH4 was used to reduce the gold species to metallic nanoparticles with sizes of 8-12 nm on the nanorod surface. These Au/Pr6O11 nanorods exhibit superior catalytic activity for CO oxidation.
Mori, Graziela Garrido; Garcia, Roberto Brandão; Gomes de Moraes, Ivaldo; Bramante, Clóvis Monteiro; Bernardineli, Norberti
2007-08-01
The use of substances that inhibit root resorption may be an alternative for cases of unsuccessful reimplants. Hence, the purpose of this study was to test a solution of alendronate, a resorption inhibitor, as an intracanal therapeutic agent for teeth submitted to late reimplantation. Thirty rat maxillary right central incisors were avulsed and kept dry for 30 min. The teeth were instrumented, and the root surfaces treated with 1% hypochlorite solution followed by application of 2% sodium fluoride. Thereafter, the teeth were divided in two groups according to the intracanal dressing: (i) group I, solution of alendronate and (ii) group II, calcium hydroxide paste. Teeth were then reimplanted in their respective sockets. The animals were killed at 15, 30 and 60 days after reimplantation and the samples processed for morphometric and microscopic analysis. The results demonstrated that the solution of alendronate and the calcium hydroxide paste limited the root resorption, yet did not impair its occurrence. It may be concluded that alendronate and calcium hydroxide paste demonstrated similar behavior.
Ammonia induced precipitation of cobalt hydroxide: observation of turbostratic disorder
NASA Astrophysics Data System (ADS)
Ramesh, T. N.; Rajamathi, Michael; Kamath, P. Vishnu
2003-05-01
Cobalt hydroxide freshly precipitated from aqueous solutions of Co salts using ammonia, is a layered phase having a 9.17 Å interlayer spacing. DIFFaX simulations of the PXRD pattern reveal that it is turbostratically disordered.
NASA Technical Reports Server (NTRS)
Boclair, J. W.; Braterman, P. S.
1999-01-01
Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.
Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries
Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Nelson, Lee O [Idaho Falls, ID
2005-01-04
The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.
CONCENTRATION OF Pu USING AN IODATE PRECIPITATE
Fries, B.A.
1960-02-23
A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.
Dunbar, W E; Schilt, A A
1972-09-01
Seven new hydroxy-substituted 1,10-phenanthroline derivatives have been evaluated as chromogenic reagents for the determination of copper in strongly alkaline solution. The most sensitive of these, 2,9-dimethyl-4,7-dihydroxy-1,10-phenanthroline, has proven to be highly effective in a simple, rapid procedure for determining trace amounts of copper in sodium hydroxide, potassium carbonate, sodium phosphate or ammonium hydroxide.
Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S
2016-04-15
Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Removal of Lead Hydroxides Complexes from Solutions Formed in Silver/Gold: Cyanidation Process
NASA Astrophysics Data System (ADS)
Parga, José R.; Martinez, Raul Flores; Moreno, Hector; Gomes, Andrew Jewel; Cocke, David L.
2014-04-01
The presence of lead hydroxides in "pregnant cyanide solution" decreases the quality of the Dore obtained in the recovery processes of gold and silver, so it is convenient to remove them. The adsorbent capacity of the low cost cow bone powder was investigated for the removal of lead ions from a solution of lead hydroxide complexes at different initial metal ion concentrations (10 to 50 mg/L), and reaction time. Experiments were carried out in batches. The maximum sorption capacity of lead determined by the Langmuir model was found to be 126.58 mg/g, and the separation factor R L was between 0 and 1, indicating a significant affinity of bone for lead. Experimental data follow pseudo-second order kinetics suggesting chemisorption. It is concluded that cow bone powder can be successfully used for the removal of lead ions, and improves the quality of the silver-gold cyanides precipitate.
Megyes, Tünde; Bálint, Szabolcs; Grósz, Tamás; Radnai, Tamás; Bakó, Imre; Sipos, Pál
2008-01-28
To determine the structure of aqueous sodium hydroxide solutions, results obtained from x-ray diffraction and computer simulation (molecular dynamics and Car-Parrinello) have been compared. The capabilities and limitations of the methods in describing the solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in describing the hydration spheres of the sodium ion and yield structural information on the anion's hydration structure. Classical molecular dynamics simulations were not able to correctly describe the bulk structure of these solutions. However, Car-Parrinello simulation proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions and bulk structure of solutions. The results of Car-Parrinello simulations were compared with the findings of diffraction experiments.
PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES
After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...
An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.
Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie
2013-06-12
Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
Sharma, Rashmi; Acharya, Shveta; Sharma, Arun Kumar
2011-01-01
The aim of this study is to reduce the percent SO2 in environment and to produce a byproduct with SO2, to control air pollution. The present work envisages a situation that compares the efficiency of three different reagents, viz. sodium hydroxide, calcium hydroxide and waste product of water treatment plant containing CaO in removal of SO2 that would be generated in this situation. Various parameters were also observed with variation involving percent concentration of reactants, pH of the solution, time for reaction , temperature of solution and flow of flue gas in impingers. Pet coke with lime stone is being used for power generation in power plant during the experiment, the pet coke having 6% sulphur resulting in emission of SO2. Hence experiments have been conducted to trap these gases to produce sulphates. Waste product of water treatment plant, calcium hydroxide, and sodium hydroxide in various permutation and combination have been used with control flow by SO2 monitoring kit for preparation of calcium sulphate and sodium sulphate. Thus sodium hydroxide turned out to be better as compared to calcium hydroxide and sludge. It is also concluded that pH of the solution should be alkaline for good absorption of SO2 and maximum absorption of SO2 found in direct passing of SO2 in impinger as compared to indirect passing of SO2 in impingers. Good absorption of SO2 found at temperature range between 20-25 degrees C and it seems to be optimum. Maximum recovery of SO2 was obtained when the reaction took place for long time period.
Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.
1958-11-18
The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.
Calkins, G.D.; Bohlmann, E.G.
1957-12-01
A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.
Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang
2008-11-01
Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).
NASA Astrophysics Data System (ADS)
Ma, Wei; Ma, Renzhi; Liang, Jianbo; Wang, Chengxiang; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi
2014-10-01
Layered zinc hydroxide nanocones intercalated with DS- have been synthesized for the first time via a convenient synthetic approach, using homogeneous precipitation in the presence of urea and sodium dodecyl sulfate (SDS). SDS plays a significant role in controlling the morphologies of as-synthesized samples. Conical samples intercalated with various anions were transformed through an anion-exchange route in ethanol solution, and the original conical structure was perfectly maintained. Additionally, these DS--inserted nanocones can be transformed into square-like nanoplates in aqueous solution at room temperature, fulfilling the need for different morphology-dependent properties. Corresponding ZnO nanocones and nanoplates have been further obtained through the thermal calcination of NO3--intercalating zinc hydroxide nanocones/nanoplates. These ZnO nanostructures with different morphologies exhibit promising photocatalytic properties.Layered zinc hydroxide nanocones intercalated with DS- have been synthesized for the first time via a convenient synthetic approach, using homogeneous precipitation in the presence of urea and sodium dodecyl sulfate (SDS). SDS plays a significant role in controlling the morphologies of as-synthesized samples. Conical samples intercalated with various anions were transformed through an anion-exchange route in ethanol solution, and the original conical structure was perfectly maintained. Additionally, these DS--inserted nanocones can be transformed into square-like nanoplates in aqueous solution at room temperature, fulfilling the need for different morphology-dependent properties. Corresponding ZnO nanocones and nanoplates have been further obtained through the thermal calcination of NO3--intercalating zinc hydroxide nanocones/nanoplates. These ZnO nanostructures with different morphologies exhibit promising photocatalytic properties. Electronic supplementary information (ESI) available: Typical SEM images, TGA curves and XRD patterns of as-prepared samples. See DOI: 10.1039/c4nr04166f
PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS
Carter, J.M.; Kamen, M.D.
1958-10-14
A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.
PHYSICAL SOLUTIONS FOR ACID MINE DRAINAGE AT REMOTE MINE SITES (SLIDES)
After completing extensive bench-scale testing to determine optimum treatment approaches, the technology has been taken to the field. Preliminary results show that calcium hydroxide precipitates the bulk of the arsenic and zinc; the granular ferric hydroxide removes the rest of ...
A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au
NASA Astrophysics Data System (ADS)
Dunwell, Marco; Yan, Yushan; Xu, Bingjun
2016-08-01
The potential dependent behavior of near-surface water on Au film electrodes in acidic and alkaline solutions is studied using a combination of attenuated total reflectance surface enhanced infrared spectroscopy and chronoamperometry. In acid, sharp νOH peaks appear at 3583 cm- 1 at high potentials attributed to non-H-bonded water coadsorbed in the hydration sphere of perchlorate near the electrode surface. Adsorbed hydronium bending mode at near 1680 cm- 1 is observed at low potentials in low pH solutions (1.4, 4.0, 6.8). At high pH (10.0, 12.3), a potential-dependent OH stretching band assigned to adsorbed hydroxide emerges from 3400-3506 cm- 1. The observation of adsorbed hydroxide, even on a weakly oxophilic metal such as Au, provides the framework for further studies of hydroxide adsorption on other electrodes to determine the role of adsorbed hydroxide on important reactions such as the hydrogen oxidation reaction.
NASA Technical Reports Server (NTRS)
Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.
1999-01-01
Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.
Brdicka, R
1936-07-20
1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lihua; He, Xiaoman; Qu, Jun
Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kineticsmore » with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.« less
Colloid labelled with radionuclide and method
Atcher, R.W.; Hines, J.J.
1990-11-13
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings
Method of making colloid labeled with radionuclide
Atcher, Robert W.; Hines, John J.
1991-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
Colloid labelled with radionuclide and method
Atcher, Robert W.; Hines, John J.
1990-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.... 3.8Timer. 4. Reagents 4.1Standardized 1.0 N sodium hydroxide solution. 4.2Hydroxylamine.... Start the timer. 5.6Stir for 5 minutes. Titrate to pH 4.0 with standardized 1.0 N sodium hydroxide...
Grunewald, G L; Pleiss, M A; Gatchell, C L; Pazhenchevsky, R; Rafferty, M F
1984-06-01
The use of gas chromatography (GC) for the determination of 0.1 M sodium hydroxide-octanol partition coefficients (log P) for a wide variety of ethylamines is demonstrated. The conventional shake-flask procedure (SFP) is utilized, with the addition of an internal reference, which is cleanly separated from the desired solute and solvents on a 10% Apiezon L, 2% potassium hydroxide on 80-100 mesh Chromosorb W AW column. The partitioned solute is extracted from the aqueous phase with chloroform and analyzed by GC. The method provides an accurate and highly reproducible means of determining log P values, as demonstrated by the low relative standard errors. The technique is both rapid and extremely versatile. The use of the internal standard method of analysis introduces consistency, since variables like the exact weight of solute are not necessary (unlike the traditional SFP) and the volume of sample injected is not critical. The technique is readily accessible to microgram quantities of solutes, making it ideal for a wide range of volatile, amine-bearing compounds.
NASA Technical Reports Server (NTRS)
Moser, L.
1988-01-01
The action of hydrogen superoxide on copper salts in alcoholic solutions is studied. The action of hydrogen peroxide on copper hydroxide in alcoholic suspensions, and the action of ethereal hydrogen peroxide on copper hydroxide are discussed. It is concluded that using the procedure proposed excludes almost entirely the harmful effect of hydrolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Bazilevskaya; D Archibald; M Aryanpour
2011-12-31
Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitatesmore » were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with {<=}20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with {>=}25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with {<=}25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with 30 mol% Al (at pH {approx}2.25 for Fe{sup 3+} and at pH {approx}4 for Al{sup 3+}), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 Mol% Al) in clustered arrangement (i.e., the formation of diaspore-like clusters) were in good agreement with available experimental data whereas optimized unit cell parameters for isolated Al atoms were not, and (ii) Al-substituted goethites with Al in diaspore-like clusters resulted in more energetically favored structures. Combined experimental and DFT results are consistent with the coprecipitation of Al with Fe (hydr)oxides and with the formation of diaspore-like clusters, whereas DFT results suggest isomorphous Al for Fe substitution within goethite is unlike at 8 mol% Al substitution.« less
Zhang, Hengzhong; Waychunas, Glenn A.; Banfield, Jillian F.
2015-07-29
Nucleation is a fundamental step in crystal growth. Of environmental and materials relevance are reactions that lead to nucleation of iron oxyhydroxides in aqueous solutions. These reactions are difficult to study experimentally due to their rapid kinetics. Here, we used classical molecular dynamics simulations to investigate nucleation of iron hydroxide/oxyhydroxide nanoparticles in aqueous solutions. Results show that in a solution containing ferric ions and hydroxyl groups, iron–hydroxyl molecular clusters form by merging ferric monomers, dimers, and other oligomers, driven by strong affinity of ferric ions to hydroxyls. When deprotonation reactions are not considered in the simulations, these clusters aggregate tomore » form small iron hydroxide nanocrystals with a six-membered ring-like layered structure allomeric to gibbsite. By comparison, in a solution containing iron chloride and sodium hydroxide, the presence of chlorine drives cluster assembly along a different direction to form long molecular chains (rather than rings) composed of Fe–O octahedra linked by edge sharing. Further, in chlorine-free solutions, when deprotonation reactions are considered, the simulations predict ultimate formation of amorphous iron oxyhydroxide nanoparticles with local atomic structure similar to that of ferrihydrite nanoparticles. Overall, our simulation results reveal that nucleation of iron oxyhydroxide nanoparticles proceeds via a cluster aggregation-based nonclassical pathway.« less
Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.
Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G
2010-01-01
The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.
The Pyrolytic Profile of Lyophilized and Deep-Frozen Compact Part of the Human Bone
Lodowska, Jolanta; Wolny, Daniel; Kurkiewicz, Sławomir; Węglarz, Ludmiła
2012-01-01
Background. Bone grafts are used in the treatment of nonunion of fractures, bone tumors and in arthroplasty. Tissues preserved by lyophilization or deep freezing are used as implants nowadays. Lyophilized grafts are utilized in the therapy of birth defects and bone benign tumors, while deep-frozen ones are applied in orthopedics. The aim of the study was to compare the pyrolytic pattern, as an indirect means of the analysis of organic composition of deep-frozen and lyophilized compact part of the human bone. Methods. Samples of preserved bone tissue were subjected to thermolysis and tetrahydroammonium-hydroxide- (TMAH-) associated thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). Results. Derivatives of benzene, pyridine, pyrrole, phenol, sulfur compounds, nitriles, saturated and unsaturated aliphatic hydrocarbons, and fatty acids (C12–C20) were identified in the pyrolytic pattern. The pyrolyzates were the most abundant in derivatives of pyrrole and nitriles originated from proteins. The predominant product in pyrolytic pattern of the investigated bone was pyrrolo[1,2-α]piperazine-3,6-dione derived from collagen. The content of this compound significantly differentiated the lyophilized graft from the deep-frozen one. Oleic and palmitic acid were predominant among fatty acids of the investigated samples. The deep-frozen implants were characterized by higher percentage of long-chain fatty acids than lyophilized grafts. PMID:22619606
DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES
Fries, B.A.
1959-11-10
A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.
USDA-ARS?s Scientific Manuscript database
A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed in a spray cabinet with various concentrations of lauric acid (LA)-potassium hydroxide (KOH) solutions. Fifty eviscerated carcasses and 5 ceca were obtained from the processing line of...
2007-09-01
Pb2+. Under alkaline conditions, elemental lead will oxidize under most circumstances to form a lead hydroxide complex Pb(OH)53-. Lead that exists...lead hydroxide [Pb(OH)2], lead carbonate [PbCO3, cerrusite], or basic lead carbonate [Pb3(OH)2 (CO3)2, hydrocerrusite]. The overall lead solubility...in a natural system is fundamentally determined by the concentrations of the anions in solution (e.g., the hydroxide and carbonate ions) and by the
Mitsumata, Hiroshi; Mori, Toshio; Maeda, Tatsuo; Kita, Yoshiyuki; Kohatsu, Osamu
2006-02-01
We have established a simple method for assaying the quantity of soluble bromine in the discharge tubes of an extra-high-pressure mercury discharge lamp. Each discharge tube is destroyed in 5 ml of 10 mM sodium hydroxide, and the recovered sodium hydroxide solution is analyzed by suppressed-ion chromatography using gradient elution. We have clarified that this method can assay less than 1 microg of soluble bromine in a discharge tube.
Brdička, R.
1936-01-01
1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions. PMID:19872968
Miao, Yuqing; Ouyang, Lei; Zhou, Shilin; Xu, Lina; Yang, Zhuoyuan; Xiao, Mingshu; Ouyang, Ruizhuo
2014-03-15
The electrocatalysis toward small molecules, especially small organic compounds, is of importance in a variety of areas. Nickel based materials such as nickel, its oxides, hydroxides as well as oxyhydroxides exhibit excellent electrocatalysis performances toward many small molecules, which are widely used for fuel cells, energy storage, organic synthesis, wastewater treatment, and electrochemical sensors for pharmaceutical, medical, food or environmental analysis. Their electrocatalytic mechanisms are proposed from three aspects such as Ni(OH)2/NiOOH mediated electrolysis, direct electrocatalysis of Ni(OH)2 or NiOOH. Under exposure to air or aqueous solution, two distinct layers form on the Ni surface with a Ni hydroxide layer at the air-oxide interface and an oxide layer between the metal substrate and the outer hydroxide layer. The transformation from nickel or its oxides to hydroxides or oxyhydroxides could be further speeded up in the strong alkaline solution under the cyclic scanning at relatively high positive potential. The redox transition between Ni(OH)2 and NiOOH is also contributed to the electrocatalytic oxidation of Ni and its oxides toward small molecules in alkaline media. In addition, nickel based materials or nanomaterials, their preparations and applications are also overviewed here. © 2013 Elsevier B.V. All rights reserved.
Plasma graft-polymerization for synthesis of highly stable hydroxide exchange membrane
NASA Astrophysics Data System (ADS)
Hu, Jue; Zhang, Chengxu; Jiang, Lin; Fang, Shidong; Zhang, Xiaodong; Wang, Xiangke; Meng, Yuedong
2014-02-01
A novel plasma graft-polymerization approach is adopted to prepare hydroxide exchange membranes (HEMs) using cardo polyetherketone powders (PEK-C) and vinylbenzyl chloride. The benzylic chloromethyl groups can be successfully introduced into the PEK-C polymer matrix via plasma graft-polymerization. This approach enables a well preservation in the structure of functional groups and formation of a highly cross-linked structure in the membrane, leading to an improvement on the stability and performance of HEMs. The chemical stabilities, including alkaline and oxidative stability, are evaluated under severe conditions by measuring hydroxide conductivity and weight changes during aging. The obtained PGP-NOH membrane retains 86% of the initial hydroxide conductivity in 6 mol L-1 KOH solution at 60 °C for 120 h, and 94% of the initial weight in 3 wt% H2O2 solution at 60 °C for 262 h. The PGP-NOH membrane also possesses excellent thermal stability (safely used below 120 °C), alcohol resistance (ethanol permeability of 6.6 × 10-11 m2 s-1 and diffusion coefficient of 3.7 × 10-13 m2 s-1), and an acceptable hydroxide conductivity (8.3 mS cm-1 at 20 °C in deionized water), suggesting a good candidate of PGP-NOH membrane for HEMFC applications.
Xia, Futing; Zhu, Hua
2011-09-01
The alkaline hydrolysis reaction of ethylene phosphate (EP) has been investigated using a supermolecule model, in which several explicit water molecules are included. The structures and single-point energies for all of the stationary points are calculated in the gas phase and in solution at the B3LYP/6-31++G(df,p) and MP2/6-311++G(df,2p) levels. The effect of water bulk solvent is introduced by the polarizable continuum model (PCM). Water attack and hydroxide attack pathways are taken into account for the alkaline hydrolysis of EP. An associative mechanism is observed for both of the two pathways with a kinetically insignificant intermediate. The water attack pathway involves a water molecule attacking and a proton transfer from the attacking water to the hydroxide in the first step, followed by an endocyclic bond cleavage to the leaving group. While in the first step of the hydroxide attack pathway the nucleophile is the hydroxide anion. The calculated barriers in aqueous solution for the water attack and hydroxide attack pathways are all about 22 kcal/mol. The excellent agreement between the calculated and observed values demonstrates that both of the two pathways are possible for the alkaline hydrolysis of EP. Copyright © 2011 Wiley Periodicals, Inc.
Evaluation of Military Field-Water Quality. Volume 3. Opportunity Poisons
1987-12-01
Acidic chemical cleaners fluoric acid, nitric acid, perchloric Spent acid acid, sulfuric acid Alkalies Miscellaneous caustic products Ammonia, lime...calcium oxide), potassium Alkaline battery fluid hydroxide, sodium hydroxide, sodium Caustic wastewater silicate Cleaning solutions Lye Nonhalogenated...Laboratory chemicals chloride, polychlorinated biphenyls, zinc Paint and varnish removers naphthenate , copper naphthenate , dichloro- Capacitors and
In Situ Clay Formation: Evaluation of a Proposed New Technology for Stable Containment Barriers
2004-03-01
situ layered double hydroxide precipitation........... 23 4.2.1 Solution preparation and column mixing...22 Table 4.2 Summary of in situ precipitation of layered double hydroxide (LDH...effect on permeability for the smallest volume precipitated is sheet silicates or layered -clay phases (hereafter called “clays”). In natural
Mao, Yiyin; shi, Li; Huang, Hubiao; Cao, Wei; Li, Junwei; Sun, Luwei; Jin, Xianda; Peng, Xinsheng
2013-06-25
Large scale, robust, well intergrown free-standing HKUST-1 membranes were converted from copper hydroxide nanostrand free-standing films in 1,3,5-benzenetricarboxylic acid water-ethanol solution at room temperature, and explored for gas separation. The truncated crystals are controllable and favorable for the dense intergrowth.
USDA-ARS?s Scientific Manuscript database
A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) (w/v) solution. Forty eviscerated carcasses and 5 ceca were obtained from the processing l...
Tailoring transition-metal hydroxides and oxides by photon-induced reactions
Niu, Kai -Yang; Fang, Liang; Ye, Rong; ...
2016-10-18
Controlled synthesis of transition-metal hydroxides and oxides with earth-abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition-metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni 2+, Mn 2+, and Co 2+ ion-containing aqueous solution undergoes photo-induced reactions and produces hollow metal-oxide nanospheres (Ni 0.18Mn 0.45Co 0.37O x) or core–shell metal hydroxide nanoflowers ([Ni 0.15Mnmore » 0.15Co 0.7(OH) 2](NO 3) 0.2•H 2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo-induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. As a result, the study of photon-induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra
In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.
Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra
2017-12-01
In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.
1981-07-01
phos. Code 29 impregnation phonium chloride (90%. in water) 12.5.5%, sodium hydroxide 150%. in water) 2.16%, urea 2.06/%, a liquid melamine 4.35...1.08%.. dicyandlamide 4.54%. (9) impregnation formaldehyde (37%) 4.32%. phosphoric acid 7.06%. water $3.0%. UOFP_2 Pressure Treating solution: Urea 1.44...sodium hydroxide (500o in water) 0.8710, urea 0.800o. a liquid melamine 1.74°o, water 91.570 o. 29 Pressure impregnation Treating solution: Tetrakis
Kazemipoor, Maryam; Tabrizizadeh, Mehdi; Dastani, Milad; Hakimian, Roqayeh
2012-01-01
Aim: To compare pH changes at the cervical, middle and apical surfaces of root dentin in retreated and non- retreated teeth, after canal obturation with two different calcium hydroxide pastes. Materials and Methods: After instrumentation of 55 extracted teeth, three cavities with 0.75 mm depth and 1.5 mm in diameter were drilled at buccal root surface. The teeth were randomly divided into five groups. Canals in the first two groups were filled with either mixture of calcium hydroxide and saline solution and calcium hydroxide and 2% chlorhexidine (CHX). In the third and fourth groups canals were first obturated with gutta-percha and AH26 sealer, and then materials were removed. After 2 days canals were filled with two different calcium hydroxide pastes similar to the first and the second groups. The pH was measured in the prepared cavities at 1, 3, 7 and 14 days. Results: In the non-retreated groups, pH at the surface of the roots was significantly higher in comparison to the retreated ones (P value < 0.001). pH values were significantly higher in the non-retreated teeth filling with calcium hydroxide and saline solution (P value < 0.001). Conclusion: Regarding to the little pH changes at the surface of dentin in retreated teeth, the hydroxyl ions cannot penetrate into the dentinal tubules. Thus, to achieve higher pH at the root surface in retreated teeth, it is clinically advisable to remove more dentin from the inner walls and to use normal saline as a vehicle for calcium hydroxide rather than acidic pH materials. PMID:23112482
Kazemipoor, Maryam; Tabrizizadeh, Mehdi; Dastani, Milad; Hakimian, Roqayeh
2012-10-01
To compare pH changes at the cervical, middle and apical surfaces of root dentin in retreated and non- retreated teeth, after canal obturation with two different calcium hydroxide pastes. After instrumentation of 55 extracted teeth, three cavities with 0.75 mm depth and 1.5 mm in diameter were drilled at buccal root surface. The teeth were randomly divided into five groups. Canals in the first two groups were filled with either mixture of calcium hydroxide and saline solution and calcium hydroxide and 2% chlorhexidine (CHX). In the third and fourth groups canals were first obturated with gutta-percha and AH26 sealer, and then materials were removed. After 2 days canals were filled with two different calcium hydroxide pastes similar to the first and the second groups. The pH was measured in the prepared cavities at 1, 3, 7 and 14 days. In the non-retreated groups, pH at the surface of the roots was significantly higher in comparison to the retreated ones (P value < 0.001). pH values were significantly higher in the non-retreated teeth filling with calcium hydroxide and saline solution (P value < 0.001). Regarding to the little pH changes at the surface of dentin in retreated teeth, the hydroxyl ions cannot penetrate into the dentinal tubules. Thus, to achieve higher pH at the root surface in retreated teeth, it is clinically advisable to remove more dentin from the inner walls and to use normal saline as a vehicle for calcium hydroxide rather than acidic pH materials.
Effect of ammonium hydroxide on ultrastructure and tenderness of buffalo meat.
Naveena, B M; Kiran, M; Reddy, K Sudhakar; Ramakrishna, C; Vaithiyanathan, S; Devatkal, Suresh K
2011-08-01
This study was conducted with an objective to improve the tenderness of tough buffalo meat using ammonium hydroxide. Buffalo meat chunks from Biceps femoris muscle were marinated with distilled water (control), 0.1%, 0.5% and 1.0% solution of ammonium hydroxide for 48 h at 4±1 °C and subjected to various physico-chemical analysis and ultrastructural studies. Ammonium hydroxide increased (P<0.05) the pH, water holding capacity (WHC), collagen solubility, total and salt soluble protein extractability and cooking yield. Reduction (P<0.05) in Warner-Bratzler shear force values were observed in all ammonium hydroxide treated samples compared to non-treated control. Electrophoretic pattern of muscle proteins exhibited reduction in the intensity and number of certain protein bands for 0.1% and 0.5% ammonium hydroxide treated samples compared to control. Scanning and transmission electron microscopy also revealed breakdown of endothelium layers surrounding muscle fibers and weakening of Z-discs respectively, in treated samples compared to controls. These results suggest that ammonium hydroxide might be used to tenderize tough buffalo meat. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Asrah, Hidayati; Mirasa, Abdul Karim; Bolong, Nurmin
2018-02-01
This study investigated the mechanism of how POFA mitigated the ASR expansion. Two types of POFA; the UPOFA and GPOFA with different fineness were used to replace the cement at 20% and 40% and their effects on the mortar bar expansion, calcium hydroxide, alkali dilution, and calcium concentration were investigated. The results showed that UPOFA has a significant ability to mitigate the ASR, even at a lower level of replacement (20%) compared to GPOFA. The mechanism of UPOFA in mitigating the ASR expansion was through a reduction in the calcium hydroxide content, which produced low calcium concentration within the mortar pore solution. Low pore solution alkalinity signified that UPOFA had good alkali dilution effect. Meanwhile, a higher dosage of GPOFA was required to mitigate the ASR expansion. An increase in the pore solution alkalinity of GPOFA mortar indicated higher penetration of alkalis from the NaOH solution, which reduced the alkali dilution effect. However, this was compensated by the increase in the cement dilution effect at higher GPOFA replacement, which controlled the mortar bar expansion below the ASTM limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gado, M, E-mail: parq28@yahoo.com; Zaki, S
2016-01-01
The titanium hydroxide prepared from Rosetta ilmenite concentrate has been applied for Th (IV) adsorption from its acid aqueous solutions. The prepared hydroxide is first characterized by both Fourier transform infrared (FT-IR) spectrum and thermogravimetric analysis. The relevant factors affecting the adsorption process have been studied. The obtained equilibrium data fits well with the Langmuir isotherm rather than Freundlich isotherm, while the adsorption kinetic data follow the pseudo-second order model. The different thermodynamic parameters have also been calculated and indicate that the adsorption process is spontaneous.
Fly ash/Kaolin based geopolymer green concretes and their mechanical properties
Okoye, F.N.; Durgaprasad, J.; Singh, N.B.
2015-01-01
Geopolymer concrete mixes were cast using fly ash, kaolin, sodium hydroxide, potassium hydroxide, sodium silicate and aggregates. Portland cement concrete (M30) was used as a reference sample. The effect of silica fume, temperature (40 °C, 60 °C, 80 °C, 100 °C and 120 °C), sodium and potassium hydroxides and different superplasticizers on the compressive strength are reported [1]. Maximum strength was found at 100 °C and 14 M alkali solution [1]. PMID:26693505
Fly ash/Kaolin based geopolymer green concretes and their mechanical properties.
Okoye, F N; Durgaprasad, J; Singh, N B
2015-12-01
Geopolymer concrete mixes were cast using fly ash, kaolin, sodium hydroxide, potassium hydroxide, sodium silicate and aggregates. Portland cement concrete (M30) was used as a reference sample. The effect of silica fume, temperature (40 °C, 60 °C, 80 °C, 100 °C and 120 °C), sodium and potassium hydroxides and different superplasticizers on the compressive strength are reported [1]. Maximum strength was found at 100 °C and 14 M alkali solution [1].
METHOD FOR THE RECOVERY OF CESIUM VALUES
Rimshaw, S.J.
1960-02-16
A method is given for recovering Cs/sup 137/ from radioactive waste solutions together with extraneous impurities. Ammonium alum is precipitated in the waste solution. The alum, which carries the cesium, is separated from the supernatant liquid and then dissolved in water. The resulting aqueous solution is then provided with a source of hydroxyl ions, which precipitates aluminum as the hydroxide, and the aluminum hydroxide is separated from the resulting liquid. This liquid, which contains anionic impurities together with ammonium and cesium, is passed through an anion exchange resin bed which removes the anionic impurities. The ammonium in the effluent is removed by destructive distiilation, leaving a substantiaily pure cesium salt in the effluent.
NASA Astrophysics Data System (ADS)
Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.
2015-12-01
The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.
PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS
Sutton, J.B.
1958-02-18
This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.
NASA Astrophysics Data System (ADS)
Kraemer, Dennis; Tepe, Nathalie; Pourret, Olivier; Bau, Michael
2017-01-01
We present experimental results on the sorption behavior of rare earth elements and yttrium (REY) on precipitating manganese (hydr)oxide in the presence of the biogenic siderophore desferrioxamine B (DFOB). In marked contrast to inorganic systems, where preferential adsorption of HREY and depletion of LREY is commonly observed in manganese (hydr)oxide precipitates, sorption of REY in presence of the DFOB siderophore leads to HREY-depleted and LREY-enriched patterns in the precipitates. Moreover, our data indicate that surface oxidation of Ce(III) to Ce(IV) during sorption onto manganese (hydr)oxides and the resulting development of a positive Ce anomaly, which are commonly observed in inorganic experiments, are prevented in the presence of DFOB. Instead, Ce(III) is oxidized to Ce(IV) but associated with the dissolved desferrioxamine B which forms complexes with Ce(IV), that are at least twenty orders of magnitude more stable than those with Ce(III) and REY(III). The overall result is the formation of a positive Ce anomaly in the solution and a negative Ce anomaly in the Mn (hydr)oxides. The distribution of the strictly trivalent REY and Eu(III) between the manganese (hydr)oxide phase and the remaining ambient solution mimics the distribution of published stability constants for complexes of REY(III) with DFOB, i.e. the heavy REY form more stable complexes with the ligand and hence are better shielded from sorption than the LREY. Surface complexation modeling corroborates our experimental results. Negative Ce anomalies in Mn precipitates have been described from biogenic Mn oxides. Our results provide experimental evidence for the development of negative Ce anomalies in abiogenic Mn (hydr)oxide precipitates and show that the presence of the widespread siderophore desferrioxamine B during mineral precipitation results in HREY-depleted Mn (hydr)oxides with negative Ce anomalies.
NASA Astrophysics Data System (ADS)
Butko, A. V.; Butko, V. Yu.; Lebedev, S. P.; Lebedev, A. A.; Kumzerov, Yu. A.
2017-10-01
For the creation of new promising chemical sensors, it is very important to study the influence of the interface between graphene and aqueous solutions of acids and alkalis on the transistor characteristics of graphene. Transistor structures on the basis of graphene grown by thermal decomposition of silicon carbide were created and studied. For the interface of graphene with aqueous solutions of acetic acid and potassium hydroxide in the transistor geometry, with a variation in the gate-to-source voltage, the field effect corresponding to the hole type of charge carriers in graphene was observed. It is established that an increase in the concentration of molecular ions in these solutions leads to an increase in the dependence of the resistance of the transistor on the gate voltage.
Why can a gold salt react as a base?
Anania, Mariarosa; Jašíková, Lucie; Jašík, Juraj; Roithová, Jana
2017-09-26
This study shows that gold salts [(L)AuX] (L = PMe 3 , PPh 3 , JohnPhos, IPr; X = SbF 6 , PF 6 , BF 4 , TfO, Tf 2 N) act as bases in aqueous solutions and can transform acetone to digold acetonyl complexes [(L) 2 Au 2 (CH 2 COCH 3 )] + without any additional base present in solution. The key step is the formation of digold hydroxide complexes [(L) 2 Au 2 (OH)] + . The kinetics of the formation of the digold complexes and their mutual transformation is studied by electrospray ionization mass spectrometry and the delayed reactant labelling method. We show that the formation of digold hydroxide is the essential first step towards the formation of the digold acetonyl complex, the reaction is favoured by more polar solvents, and the effect of counter ions is negligible. DFT calculations suggest that digold hydroxide and digold acetonyl complexes can exist in solution only due to the stabilization by the interaction with two gold atoms. The reaction between the digold hydroxide and acetone proceeds towards the dimer {[(L)Au(OH)]·[(L)Au(CH 3 COCH 3 )] + }. The monomeric units interact at the gold atoms in the perpendicular arrangement typical of the gold clusters bound by the aurophilic interaction. The hydrogen is transferred within the dimer and the reaction continues towards the digold acetonyl complex and water.
Opalka, Daniel; Sprik, Michiel
2014-06-10
The electronic structure of simple hydrated ions represents one of the most challenging problems in electronic-structure theory. Spectroscopic experiments identified the lowest excited state of the solvated hydroxide as a charge-transfer-to-solvent (CTTS) state. In the present work we report computations of the absorption spectrum of the solvated hydroxide ion, treating both solvent and solute strictly at the same level of theory. The average absorption spectrum up to 25 eV has been computed for samples taken from periodic ab initio molecular dynamics simulations. The experimentally observed CTTS state near the onset of the absorption threshold has been analyzed at the generalized-gradient approximation (GGA) and with a hybrid density-functional. Based on results for the lowest excitation energies computed with the HSE hybrid functional and a Davidson diagonalization scheme, the CTTS transition has been found 0.6 eV below the first absorption band of liquid water. The transfer of an electron to the solvent can be assigned to an excitation from the solute 2pπ orbitals, which are subject to a small energetic splitting due to the asymmetric solvent environment, to the significantly delocalized lowest unoccupied orbital of the solvent. The distribution of the centers of the excited state shows that CTTS along the OH(-) axis of the hydroxide ion is avoided. Furthermore, our simulations indicate that the systematic error arising in the calculated spectrum at the GGA originates from a poor description of the valence band energies in the solution.
NASA Astrophysics Data System (ADS)
Xiao, Qian; Lu, Zhanpeng; Chen, Junjie; Yao, Meiyi; Chen, Zhen; Ejaz, Ahsan
2016-11-01
The effects of temperature, solution composition and dissolved oxygen on the corrosion rate and electrochemical behavior of an A508III low alloy steel in boric acid solution with lithium hydroxide at 25-95 °C are investigated. In aerated solutions, increasing the boric acid concentration increases the corrosion rate and the anodic current density. The corrosion rate in deaerated solutions increases with increasing temperature. A corrosion rate peak value is found at approximately 75 °C in aerated solutions. Increasing temperature increases the oxygen diffusion coefficient, decreases the dissolved oxygen concentration, accelerates the hydrogen evolution reaction, and accelerates both the active dissolution and the film forming reactions. Increasing dissolved oxygen concentration does not significantly affect the corrosion rate at 50 and 60 °C, increases the corrosion rate at 70 and 80 °C, and decreases the corrosion rate at 87.5 and 95 °C in a high concentration boric acid solution with lithium hydroxide.
Wang, Jie-Xin; Sun, Qian; Chen, Bo; Wu, Xi; Zeng, Xiao-Fei; Zhang, Cong; Zou, Hai-Kui; Chen, Jian-Feng
2015-05-15
Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1-2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells.
Kodama, Hanayo; Tamura, Yoshinaga; Kamei, Ichiro; Sato, Kyoko; Akiyama, Hiroshi
2017-01-01
Microcrystalline cellulose (MCC) is used globally as an inactive ingredient in food and nutraceutical products and is commonly used as a food additive. To confirm the conformity of MCC to the solubility requirements stipulated in international specifications, the solubilities of commercially available MCC products were tested in sodium hydroxide (NaOH) solution. All of the samples were insoluble in NaOH solution, which is inconsistent with the descriptions provided in international specifications. We also prepared celluloses with different degree of polymerization (DP) values by acid hydrolysis. Celluloses with lower DP were prepared using a three-step process, and their solubilities were tested in NaOH solution. These celluloses were found to be insoluble, which is inconsistent with the descriptions provided in international specifications. The present study suggests that the descriptions of the solubility of the celluloses in NaOH solution found in the current international specifications should be revised.
NASA Astrophysics Data System (ADS)
Mufakhir, F. R.; Mubarok, M. Z.; Ichlas, Z. T.
2018-01-01
The present paper reports the leaching behavior of silicon from ferronickel slag under atmospheric pressure using sodium hydroxide solution. The effect of several experimental variables, namely concentration of leaching agent, operating temperature, stirring speed, and slurry density was investigated. The leaching kinetic was also investigated by using shrinking core model. It was determined that leaching of silicon from the slag was controlled by diffusion through product layer, although the activation energy was found to be 85.84 kJ/mol, which was unusually high for such a diffusion-controlled process.
Synthetic carbonaceous fuels and feedstocks
Steinberg, Meyer
1980-01-01
This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.
Investigation of new hypergol scrubber technology
NASA Technical Reports Server (NTRS)
Glasscock, Barbara H.
1994-01-01
The ultimate goal of this work is to minimize the liquid waste generated from the scrubbing of hypergolic vent gases. In particular, nitrogen tetroxide, a strong oxidizer used in hypergolic propellant systems, is currently scrubbed with a sodium hydroxide solution resulting in a hazardous liquid waste. This study investigated the use of a solution of potassium hydroxide and hydrogen peroxide for the nitrogen textroxide vent scrubber system. The potassium nitrate formed would be potentially usable as a fertilizer. The hydrogen peroxide is added to convert the potassium nitrite that is formed into more potassium nitrate. Smallscale laboratory tests were conducted to establish the stability of hydrogen peroxide in the proposed scrubbing solution and to evaluate the effectiveness of hydrogen peroxide in converting nitrite to nitrate.
An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc
NASA Technical Reports Server (NTRS)
Reid, M. A.
1978-01-01
A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9-8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.
An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc
NASA Technical Reports Server (NTRS)
Reid, M. A.
1978-01-01
A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9 - 8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.
Yuan, J P; Chen, F
1999-01-01
The reaction kinetics for the hydrolysis of astaxanthin esters and the degradation of astaxanthin during saponification of the pigment extract from the microalga Haematococcus pluvialis were investigated. Different concentrations of sodium hydroxide in methanol were used for the saponification under nitrogen in darkness at ambient temperature (22 degrees C) followed by the analysis of astaxanthins and other carotenoids using an HPLC method. The concentration of methanolic NaOH solution was important for promoting the hydrolysis of astaxanthin esters and minimizing the degradation of astaxanthin during saponification. With a higher concentration of methanolic NaOH solution, the reaction rate of hydrolysis was high, but the degradation of astaxanthin occurred significantly. The rate constants of the hydrolysis reaction (first order) of astaxanthin esters and the degradation reaction (zero-order) of astaxanthin were directly proportional to the concentration of sodium hydroxide in the saponified solution. Although the concentration of sodium hydroxide in the saponified solution was 0.018 M, complete hydrolysis of astaxanthin esters was achieved in 6 h for different concentrations (10-100 mg/L) of pigment extracts. Results also indicated that a higher temperature should be avoided to minimize the degradation of astaxanthin. In addition, during saponification, no loss of lutein, beta-carotene, and canthaxanthin was found.
Huber, Charles S; Vale, Maria Goreti R; Dessuy, Morgana B; Svoboda, Milan; Musil, Stanislav; Dědina, Jiři
2017-12-01
A slurry sampling procedure for arsenic speciation analysis in baby food by arsane generation, cryogenic trapping and detection with atomic absorption spectrometry is presented. Several procedures were tested for slurry preparation, including different reagents (HNO 3 , HCl and tetramethylammonium hydroxide - TMAH) and their concentrations, water bath heating and ultrasound-assisted agitation. The best results for inorganic arsenic (iAs) and dimethylarsinate (DMA) were reached when using 3molL -1 HCl under heating and ultrasound-assisted agitation. The developed method was applied for the analysis of five porridge powder and six baby meal samples. The trueness of the method was checked with a certified reference material (CRM) of total arsenic (tAs), iAs and DMA in rice (ERM-BC211). Arsenic recoveries (mass balance) for all samples and CRM were performed by the determination of the tAs by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion and its comparison against the sum of the results from the speciation analysis. The relative limits of detection were 0.44, 0.24 and 0.16µgkg -1 for iAs, methylarsonate and DMA, respectively. The concentrations of the most toxic arsenic species (iAs) in the analyzed baby food samples ranged between 4.2 and 99µgkg -1 which were below the limits of 300, 200 and 100µgkg -1 set by the Brazilian, Chinese and European legislation, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Yin, Huajie; Zhao, Shenlong; Zhao, Kun; Muqsit, Abdul; Tang, Hongjie; Chang, Lin; Zhao, Huijun; Gao, Yan; Tang, Zhiyong
2015-03-02
Design and synthesis of effective electrocatalysts for hydrogen evolution reaction in alkaline environments is critical to reduce energy losses in alkaline water electrolysis. Here we report a hybrid nanomaterial comprising of one-dimensional ultrathin platinum nanowires grown on two-dimensional single-layered nickel hydroxide. Judicious surface chemistry to generate the fully exfoliated nickel hydroxide single layers is explored to be the key for controllable growth of ultrathin platinum nanowires with diameters of about 1.8 nm. Impressively, this hybrid nanomaterial exhibits superior electrocatalytic activity for hydrogen evolution reaction in alkaline solution, which outperforms currently reported catalysts, and the obviously improved catalytic stability. We believe that this work may lead towards the development of single-layered metal hydroxide-based hybrid materials for applications in catalysis and energy conversion.
Hydroxide Solvation and Transport in Anion Exchange Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E.
Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationicmore » groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.« less
Hydroxide Solvation and Transport in Anion Exchange Membranes.
Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A
2016-01-27
Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.
Polarographic Analysis of Primers
1945-03-30
also in 0.5 M sodium acetate, ammonium acetate, aoetlc acid, sodium acetate plus acetic acid, and sodium tartrate plus tartaric &cid. In all these...potassium tartrate end potassium hydroxide (4 M pot as; ^ura hydroxide plus 2 11 potassium tartrate , the anodic sulfide tjave is well defined, but the...our experiments. Solutions of "synthetic" stibnite, formed by adding stoichinmetric amounts of potassium antimony! tartrate and sodium sulfide to
Study on improving the heat storage property of Ba(OH)2·8H2O with paraffin
NASA Astrophysics Data System (ADS)
Cui, Kaixuan; Liu, Liqiang; Sun, Mingjie
2017-12-01
Barium hydroxide octahydrate is the crystalline hydration salt with the highest latent heat density within the phase change temperature interval of 0-120 °C and it has a broad application prospect as a phase-change material (PCM). Firstly, red copper test tube was used for the melting—solidification heat cycle experiment in this paper, which was verified by the corrosion experiment of barium hydroxide solution. After the thermogravimetric analysis, it is found that paraffin can effectively reduce the evaporation escape of barium hydroxide octahydrate crystal water within 100 °C. Repeated heat cycle experiments indicated that the paraffin with larger coverage mass fraction can reduce the inhibiting effect of barium hydroxide octahydrate crystal water more obviously. X-ray diffraction analysis indicated that the phase composition of the barium hydroxide octahydrate sample covered with 50 wt% paraffin nearly had no change, while the sample not covered with paraffin has the weight loss ratio of 34.67% and reacted with CO2 in the air, generating BaCO3. In summary, paraffin can not only inhibit the evaporation of crystal water, but also effectively isolate the air to prevent barium hydroxide octahydrate from denaturation. This greatly improved the practicability of barium hydroxide octahydrate as a PCM, laying a good foundation for the further application of barium hydroxide octahydrate.
NASA Astrophysics Data System (ADS)
Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee
2018-05-01
We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.
Optimum mix for fly ash geopolymer binder based on workability and compressive strength
NASA Astrophysics Data System (ADS)
Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.
2018-04-01
The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.
Methods of making metal oxide nanostructures and methods of controlling morphology of same
Wong, Stanislaus S; Hongjun, Zhou
2012-11-27
The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.
[Endodontic microbiology: antimicrobial canal medications].
Seltzer, S; Farber, P A
1989-06-01
Medicaments used for reducing or eliminating microorganisms from infected root canals include: irrigating solutions, such as sodium hypochlorite, urea peroxide and hydrogen peroxide, chloramine, iodine-potassium-iodide solution, and chlorhexidine solution. In addition, various intracanal drugs, such as calcium hydroxide and antibiotics, are in use. The characteristics of these drugs are discussed.
NASA Astrophysics Data System (ADS)
Hashim, Norhayati; Sharif, Sharifah Norain Mohd; Isa, Illyas Md; Hamid, Shahidah Abdul; Hussein, Mohd Zobir; Bakar, Suriani Abu; Mamat, Mazidah
2017-06-01
The intercalation of L-phenylalanate (LP) into the interlayer gallery of zinc layered hydroxide (ZLH) has been successfully executed using a simple direct reaction method. The synthesised intercalation compound, zinc layered hydroxide-L-phenylalanate (ZLH-LP), was characterised using PXRD, FTIR, CHNS, ICP-OES, TGA/DTG, FESEM and TEM. The PXRD patterns of the intercalation compound demonstrate an intense and symmetrical peak, indicating a well-ordered crystalline layered structure. The appearance of an intercalation peak at a low angle of 2θ with a basal spacing of 16.3 Å, signifies the successful intercalation of the L-phenylalanate anion into the interlayer gallery of the host. The intercalation is also validated by FTIR spectroscopy and CHNS elemental analysis. Thermogravimetric analysis confirms that the ZLH-LP intercalation compound has higher thermal stability than the pristine L-phenylalanine. The observed percentage of L-phenylalanate accumulated release varies in each release media, with 84.5%, 79.8%, 63.8% and 61.8% release in phosphate buffer saline (PBS) solution at pH 4.8, deionised water, PBS solution at pH 7.4 and NaCl solution, respectively. The release behaviour of LP from its intercalation compounds in deionised water and PBS solution at pH 4.8 follows pseudo second order, whereas in NaCl solution and PBS solution at pH 7.4, it follows the parabolic diffusion model. This study shows that the synthesised ZLH-LP intercalation compound can be used for the formation of a new generation of materials for targeted drug release with controlled release properties.
Rau, Gregory Hudson
2014-07-01
A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.
TRANSURANIC ELEMENT, COMPOSITION THEREOF, AND METHODS FOR PRODUCING SEPARATING AND PURIFYING SAME
Wahl, A.C.
1961-09-19
A process of separating plutonium from fission products contained in an aqueous solution is described. Plutonium, in the tri- or tetravalent state, and the fission products are coprecipitated on lanthanum fluoride, lanthanum oxalate, cerous fluoride, cerous phosphate, ceric iodate, zirconyl phosphate, thorium iodate, or thorium fluoride. The precipitate is dissolved in acid, and the plutonium is oxidized to the hexavalent state. The fission products are selectively precipitated on a carrier of the above group but different from that used for the coprecipitation. The plutonium in the solution, after removal of the fission product precipitate, is reduced to at least the tetravalent state and precipitated on lanthanum fluoride, lanthanum phosphate, lanthanum oxalate, lanthanum hydroxide, cerous fluoride, cerous phosphate, cerous oxalate, cerous hydroxide, ceric iodate, zirconyl phosphate, zirconyl iodate, zirconium hydroxide, thorium fluoride, thorium oxalate, thorium iodate, thorium peroxide, uranium iodate, uranium oxalate, or uranium peroxide, again using a different carrier than that used for the precipitation of the fission products.
Synthesis of three commercial products from Bayer electrofilter powders.
Ayala, Julia; Fernández, Begoña; Sancho, José Pedro; García, Purificación
2010-06-15
Electrofilter powders, a by-product of the Bayer process for the production of alumina from bauxite, were leached with sulphuric acid to dissolve gibbsite and transition aluminas, thus obtaining a commercial aluminium sulphate solution and a solid residue. This residue is treated again under more drastic conditions with sulphuric acidic in a furnace at a higher temperature, is then leached with water and filtered, a small amount of solid remaining (alpha-alumina). The liquid is a highly acidic aluminium sulphate solution which does not fulfil commercial grade specifications; the liquor is accordingly treated with potassium hydroxide or ammonium hydroxide to obtain potassium or ammonium alum. Experimental tests were conducted to investigate the synthesis of alum by crystallization. The effects on alum formation of various operating conditions, including the amount of potassium or ammonium hydroxide, temperature and seed alum dosage, were examined. The crystallization process was found to be quite effective in obtaining alum. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Steven A.; Boitnott, Ginger E.; Korhonen, Charles J.
2006-04-15
Tricalcium silicate was hydrated at 274, 278, 283, 298, and 313 K in stirred suspensions of saturated CaO solutions under a nitrogen-gas atmosphere until the end of deceleratory period. The suspension conductivities and energy flows were measured continuously. The individual reaction rates for tricalcium silicate dissolution, calcium silicate hydrate precipitation, and calcium hydroxide precipitation were calculated from these measurements. The results suggest that the proportion of tricalcium silicate dissolved was determined by the rate of tricalcium silicate dissolution and the time to very rapid calcium hydroxide precipitation. The time to very rapid calcium hydroxide precipitation was more sensitive to changesmore » in temperature than was the rate of tricalcium silicate dissolution, so that the proportion of tricalcium silicate hydration dissolved by the deceleratory period increased with decreasing temperature. The average chain length of the calcium silicate hydrate ascertained by magic-angle spinning nuclear magnetic resonance spectroscopy increased with increasing temperature.« less
Removal of Zn or Cd and cyanide from cyanide electroplating wastes
Moore, Fletcher L.
1977-05-31
A method is described for the efficient stripping of stable complexes of a selected quaternary amine and a cyanide of Zn or Cd. An alkali metal hydroxide solution such as NaOH or KOH will quantitatively strip a pregnant extract of the quaternary ammonium complex of its metal and cyanide content and regenerate a quaternary ammonium hydroxide salt which can be used for extracting further metal cyanide values.
Rau, Gregory Hudson [Castro Valley, CA
2012-05-15
A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.
de Freitas, Rafaela Pignatti; Greatti, Vanessa Raquel; Alcalde, Murilo Priori; Cavenago, Bruno Cavalini; Vivan, Rodrigo Ricci; Duarte, Marco Antonio Hungaro; Weckwerth, Ana Carolina Villas Bôas; Weckwerth, Paulo Henrique
2017-01-01
The objective of the present study was to evaluate the in vitro antibiofilm activity and pH of calcium hydroxide associated with different nonsteroidal anti-inflammatory drugs (NSAIDs). The groups analyzed were as follows: group 1, calcium hydroxide paste with propylene glycol; group 2, calcium hydroxide paste with propylene glycol + 5% diclofenac sodium; group 3, calcium hydroxide paste with propylene glycol + 5% ibuprofen; group 4, calcium hydroxide paste with propylene glycol + 5% ciprofloxacin; and group 6, positive control (without medication). For analysis of the pH, the pastes were inserted into tubes and immersed in flasks containing ultrapure water. At the time intervals of 3, 24, 72, and 168 hours, the pH was measured with a calibrated pH meter. For microbial analysis, biofilm was induced in 30 bovine dentin blocks for 21 days. Subsequently, the pastes were placed on the blocks with biofilm for 7 days. Afterward, the pastes were removed by irrigation with sterile water, and the specimens were analyzed with a laser scanning confocal microscope with the 50 μL Live/Dead BacLight Bacterial Viability solution L7012 Kit (Molecular Probes, Inc, Eugene, OR). Data were subjected to statistical analysis at a significance level of 5%. The highest pH values were found for calcium hydroxide associated with ciprofloxacin in all periods analyzed. With the exception of pure calcium hydroxide paste, the other groups showed statistically significant differences (P < .05) in comparison with the positive control. The association of NSAIDs or antibiotic did not interfere with the pH of calcium hydroxide paste and increased the antimicrobial action of calcium hydroxide paste against Enterococcus faecalis biofilm formation. Published by Elsevier Inc.
Wang, Yujuan; Lin, Hui; Jin, Fangyuan; Niu, Junfeng; Zhao, Jinbo; Bi, Ying; Li, Ying
2016-07-01
Batch experiments were conducted to investigate the effects of cathode materials and anions (Cl(-), SO4(2-), NO3(-), and CO3(2-)/HCO3(-)) on perfluorooctanoate (PFOA) removal in electrocoagulation process using zinc anode. The results indicated that the hydroxide flocs generated in-situ in the electrocoagulation process using the stainless steel rod as cathode were more effective than those using aluminum rod as cathode for the removal of PFOA after 20min of electrocoagulation at a current density of 0.5mAcm(-2). Hydroxide flocs generated in-situ in the electrocoagulation in the presence of Cl(-)/NO3(-) could effectively remove PFOA from aqueous solution with the removal ratios of 99.7%/98.1% and 98.9%/97.3% using stainless steel rod and aluminum rod as cathode, respectively. However, the PFOA removal ratios were 96.2%/4.1% and 7.4%/4.6% using stainless steel rod and aluminum rod as cathode, respectively, in the presence of SO4(2-) and CO3(2-)/HCO3(-). The different removal ratios of PFOA during the electrocoagulation process were primarily due to the fact that the hydroxide flocs generated in-situ were different in the presence of diverse cathodes and anions. We firstly demonstrated that Zn0.70Al0.30(OH)2(CO3)0.15·xH2O and ZnO generated in-situ in the electrocoagulation process (except for CO3(2-)/HCO3(-)) using zinc anode and aluminum/stainless steel rod cathode governed the sorption of PFOA. The adsorbent hydroxide flocs in-situ generated in the presence of Cl(-) could effectively remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion at the initial hydroxide flocs concentration of 2000mgL(-1). These results provided an effective and alternative method to remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion. Copyright © 2016 Elsevier B.V. All rights reserved.
Barman, Kalyan; Asrey, Ram; Pal, R K; Jha, S K; Sharma, Swati
2015-01-01
Sapburn injury in mango is regarded as the most serious problem as it reduces the aesthetic appeal and downgrade the fruit quality with considerable economic losses. For the control of sapburn injury, physiologically mature mango fruits of cv. Chausa were harvested along with 5-8 cm stalk attached. Immediately after harvesting, fruits were de-stemmed and treated with different desapping agent solutions [calcium hydroxide (1 %), sodium hydroxide (1 %), alum (0.5 and 1 %)] by dipping them for 5 min. In control fruits, the pedicels were removed and sap was allowed to spread freely over the fruit surface. After treatment application, fruits were air-dried and stored at ambient condition (30 ± 2 °C) for 12 days. Among the treatments, fruits desapped with sodium hydroxide (1 %) showed significantly lower (7.6-fold) sapburn injury followed by alum (0.5 %) treatment than control. Respiration and ethylene evolution rates were also significantly suppressed and delayed with sodium hydroxide (1 %) treatment. Fruit firmness and functional properties like, antioxidant capacity, total carotenoids and total phenolics content were also found higher in sodium hydroxide (1 %) treated fruits. Pectin methyl esterase and polygalacturonase enzyme activity were recorded higher in fruits of control and calcium hydroxide treatment however; it was suppressed by sodium hydroxide and alum treatments. Fruit quality parameters like color, total soluble solids, titratable acidity and total sugars content were found higher in calcium hydroxide and sodium hydroxide treated fruits than control and alum treated fruits.
SURFACE TREATMENT OF MOLYBDENUM METAL
Coffer, C.O.
1961-12-01
A process of descaling molybdenum articles comprises first immersing them in an aqueous sodium hydroxide-potassium permanganate solution of between 60 and 85 deg C, rinsing, and then immersing them in an aqueous solution containing a mixture of sulfuric, hydrochloric, and chromic acids.
NASA Astrophysics Data System (ADS)
Place, Bryan K.; Quilty, Aleya T.; Di Lorenzo, Robert A.; Ziegler, Susan E.; VandenBoer, Trevor C.
2017-03-01
Amines are important drivers in particle formation and growth, which have implications for Earth's climate. In this work, we developed an ion chromatographic (IC) method using sample cation-exchange preconcentration for separating and quantifying the nine most abundant atmospheric alkylamines (monomethylamine (MMAH+), dimethylamine (DMAH+), trimethylamine (TMAH+), monoethylamine (MEAH+), diethylamine (DEAH+), triethylamine (TEAH+), monopropylamine (MPAH+), isomonopropylamine (iMPAH+), and monobutylamine (MBAH+)) and two alkyl diamines (1, 4-diaminobutane (DABH+) and 1, 5-diaminopentane (DAPH+)). Further, the developed method separates the suite of amines from five common atmospheric inorganic cations (Na+, NH4+, K+, Mg2+, Ca2+). All 16 cations are greater than 95 % baseline resolved and elute in a runtime of 35 min. This paper describes the first successful separation of DEAH+ and TMAH+ by IC and achieves separation between three sets of structural isomers, providing specificity not possible by mass spectrometry. The method detection limits for the alkylamines are in the picogram per injection range and the method precision (±1σ) analyzed over 3 months was within 16 % for all the cations. The performance of the IC method for atmospheric application was tested with biomass-burning (BB) particle extracts collected from two forest fire plumes in Canada. In extracts of a size-resolved BB sample from an aged plume, we detected and quantified MMAH+, DMAH+, TMAH+, MEAH+, DEAH+, and TEAH+ in the presence of Na+, NH4+, and K+ at molar ratios of amine to inorganic cation ranging from 1 : 2 to 1 : 1000. Quantities of DEAH+ and DMAH+ of 0.2-200 and 3-1200 ng m-3, respectively, were present in the extracts and an unprecedented amine-to-ammonium molar ratio greater than 1 was observed in particles with diameters spanning 56-180 nm. Extracts of respirable fine-mode particles (PM2. 5) from a summer forest fire in British Columbia in 2015 were found to contain iMPAH+, TMAH+, DEAH+ and TEAH+ at molar ratios of 1 : 300 with the dominant cations. The amine-to-ammonium ratio in a time series of samples never exceeded 0.15 during the sampling of the plume. These results and an amine standard addition demonstrate the robustness and sensitivity of the developed method when applied to the complex matrix of BB particle samples. The detection of multiple alkylamines in the analyzed BB samples indicates that this speciation and quantitation approach can be used to constrain BB emission estimates and the biogeochemical cycling of these reduced nitrogen species.
Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R
2014-08-01
Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.
Method for providing uranium articles with a corrosion resistant anodized coating
Waldrop, Forrest B.; Washington, Charles A.
1982-01-01
Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.
Production of high specific activity silicon-32
Phillips, Dennis R.; Brzezinski, Mark A.
1994-01-01
A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
High specific activity silicon-32
Phillips, Dennis R.; Brzezinski, Mark A.
1996-01-01
A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
High specific activity silicon-32
Phillips, D.R.; Brzezinski, M.A.
1996-06-11
A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidation state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
Method for hot pressing beryllium oxide articles
Ballard, Ambrose H.; Godfrey, Jr., Thomas G.; Mowery, Erb H.
1988-01-01
The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.
Basu, Ankan; Schreiber, Madeline E
2013-11-15
At a former As mine site, arsenopyrite oxidation has resulted in formation of scorodite and As-bearing iron hydroxide, both in host rock and mine tailings. Electron microprobe analysis documents that arsenopyrite weathers along two pathways: one that involves formation of sulfur, and one that does not. In both pathways, arsenopyrite oxidizes to form scorodite, which dissolves incongruently to form As-bearing iron hydroxides. From a mass balance perspective, arsenopyrite oxidation to scorodite conserves As, but as scorodite dissolves incongruently to iron hydroxides, As is released to solution, resulting in elevated As concentrations in the headwater stream adjacent to the site. The As-bearing iron hydroxide is the dominant solid phase reservoir of As in mine tailings and stream sediment, as suggested by sequential extraction. This As-bearing iron hydroxide is stable under the aerobic and pH 4-6 conditions at the site; however, changes in biogeochemical conditions resulting from sediment burial or future remedial efforts, which could promote As release from this reservoir due to reductive dissolution, should be avoided. Copyright © 2012 Elsevier B.V. All rights reserved.
Atomic hydrogen in. gamma. -irradiated hydroxides of alkaline-earth elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spitsyn, V.I.; Yurik, T.K.; Barsova, L.I.
1982-04-01
Atomic hydrogen is an important intermediate product formed in the radiolysis of compounds containing X-H bonds. H atoms have been detected in irradiated matrices of H/sub 2/ and inert gases at 4/sup 0/K, in irradiated ice and frozen solutions of acids in irradiated salts and in other systems. Here results are presented from a study of the ESR spectra of H atoms generated in polycrystalline hydroxides of alkaline-earth elements that have been ..gamma..-irradiated at 77/sup 0/K, after preliminary treatment at various temperatures. For the first time stabilization of atomic hydrogen in ..gamma..-irradiated polycrystalline alkaline-earth element hydroxides has been detected. Dependingmore » on the degree of dehydroxylation, several types of hydrogen atoms may be stabilized in the hydroxides, these hydrogen atoms having different radiospectroscopic parameters. In the magnesium-calcium-strontium-barium hydroxide series, a regular decrease has been found in the hfi constants for H atoms with the cations in the immediate surroundings. A direct proportionality has been found between the parameters ..delta..A/A/sub 0/ and the polarizability of the cation.« less
Determination of thorium and of rare earth elements in cerium earth minerals and ores
Carron, M.K.; Skinner, D.L.; Stevens, R.E.
1955-01-01
The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.
NASA Astrophysics Data System (ADS)
Vazquez, A.; Hernández, S.; Rasmussen, C.; Chorover, J.
2010-12-01
Al and Fe oxy-hydroxide minerals have been implicated in dissolved organic matter (DOM) stabilization. DOM solutions from a Pinus ponderosa forest floor (PPDOM) were used to irrigate polypropylene columns, 3.2 cm long by 0.9 cm diameter (total volume 2.0 cm3), that were packed with quartz sand (QS), gibbsite-quartz sand (Al-QS), and goethite-quartz sand (Fe-QS) mixtures. To investigate the mobilization and fractionation of DOM during reactive transport, effluent solutions were characterized by UV-Vis absorbance and excitation-emission matrix (EEM) fluorescence spectroscopies. Magnitude of PPDOM sorption followed the trend Al-QS > Fe-QS > QS during the initial transport. Effluent pH values suggest that ligand exchange is a primary mechanism for PPDOM sorption onto oxy-hydroxide minerals. Low molar absorptivity values were observed in effluent solutions of early pore volumes, indicating preferential mobilization of compounds with low aromatic character. Compounds traditionally characterized by EEM spectroscopy as being more highly humified were favorably absorbed onto the gibbsite and goethite surfaces. Humification index values (HIX) were also correlated with DOM aromaticity. HIX results suggest that the presence of low mass fractions of oxy-hydroxide minerals affect the preferential uptake of high molar mass constituents of PPDOM during reactive transport.
Maki, Hideshi; Takigawa, Masashi; Mizuhata, Minoru
2015-08-12
The direct synthesis of the adhered Ni-Al LDH thin film onto the surface of electrically conductive substrates by the liquid phase deposition (LPD) reaction is carried out for the development of the positive electrode. The complexation and solution equilibria of the dissolved species in the LPD reaction have been clarified by a theoretical approach, and the LPD reaction conditions for the Ni-Al LDH depositions are shown to be optimized by controlling the fluoride ion concentration and the pH of the LPD reaction solutions. The yields of metal oxides and hydroxides by the LPD method are very sensitive to the supersaturation state of the hydroxide in the reaction solution. The surfaces of conductive substrates are completely covered by the minute mesh-like Ni-Al LDH thin film; furthermore, there is no gap between the surfaces of conductive substrates and the deposited Ni-Al LDH thin film. The active material layer thickness was able to be controlled within the range from 100 nm to 1 μm by the LPD reaction time. The high-crystallinity and the arbitrary-thickness thin films on the conductive substrate surface will be beneficial for the interface control of charge transfer reaction fields and the internal resistance reduction of various secondary batteries.
Seaborg, G.T.; Thompson, S.G.
1960-08-23
A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.
The high-pressure phase transitions of hydroxides
NASA Astrophysics Data System (ADS)
Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.
2017-12-01
The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed the phase transition of δ-AlOOH to its higher pressure phase at above 170 GPa although further experimental study should be required to determine the precise structure. Based on these experimental and theoretical results, the stability and phase transitions of hydrous phases in the lower mantle will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Lin Li; Robertson, D.H.; Chambers, J.Q.
1996-10-01
This work describes the electrochemical reduction of nitrate in alkaline solutions. Conditions which maximize the current efficiency for the production of dinitrogen and/or ammonia gases could be very important for the treatment of radioactive waste solutions.
Kühn, Susanne; van Werven, Bernike; van Oyen, Albert; Meijboom, André; Bravo Rebolledo, Elisa L; van Franeker, Jan A
2017-02-15
In studies of plastic ingestion by marine wildlife, visual separation of plastic particles from gastrointestinal tracts or their dietary content can be challenging. Earlier studies have used solutions to dissolve organic materials leaving synthetic particles unaffected. However, insufficient tests have been conducted to ensure that different categories of consumer products partly degraded in the environment and/or in gastrointestinal tracts were not affected. In this study 63 synthetic materials and 11 other dietary items and non-plastic marine debris were tested. Irrespective of shape or preceding environmental history, most polymers resisted potassium hydroxide (KOH) solution, with the exceptions of cellulose acetate from cigarette filters, some biodegradable plastics and a single polyethylene sheet. Exposure of hard diet components and other marine debris showed variable results. In conclusion, the results confirm that usage of KOH solutions can be a useful approach in general quantitative studies of plastic ingestion by marine wildlife. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Gray, Evan P; Coleman, Jessica G; Bednar, Anthony J; Kennedy, Alan J; Ranville, James F; Higgins, Christopher P
2013-12-17
Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media.
NASA Astrophysics Data System (ADS)
Morisson, Marietta; Buch, Arnaud; Szopa, Cyril; Raulin, François; Stambouli, Moncef
2017-04-01
Martian surface is exposed to harsh radiative and oxidative conditions which are destructive for organic molecules. That is why the future ExoMars rover will examine the molecular composition of samples acquired from depths down to two meters below the Martian surface, where organics may have been protected from radiative and oxidative degradation. The samples will then be analyzed by the Pyrolysis-Gas Chromatography-Mass Spectrometry (Pyr-GC-MS) operational mode of the Mars Organic Molecule Analyzer (MOMA) instrument. To prevent thermal alteration of organic molecules during pyrolysis, thermochemolysis with tetramethylammonium hydroxide (TMAH) will extract the organics from the mineral matrix and methylate the polar functional groups, allowing the volatilization of molecules at lower temperatures and protecting the most labile chemical groups from thermal degradation. This study has been carried out on a Martian regolith analogue (JSC-Mars-1) with a high organic content with the aim of optimizing the thermochemolysis temperature within operating conditions similar to the MOMA experiment ones. We also performed Pyrolysis-GC-MS analysis as a comparison. The results show that, unlike pyrolysis alone - which mainly produces aromatics, namely thermally altered molecules - thermochemolysis allows the extraction and identification of numerous organic molecules of astrobiological interest. They also show that the main compounds start to be detectable at low thermochemolysis temperatures ranging from 400°C to 600°C. However, we noticed that the more the temperature increases, the more the chromatograms are saturated with thermally evolved molecules leading to many coelutions and making identification difficult.
PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT
Thompson, S.G.
1958-07-01
A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.
Zheng, Xiaoyu; Quan, Honglin; Li, Xiaoxin; He, Hai; Ye, Qinglan; Xu, Xuetang; Wang, Fan
2016-09-29
Three-dimensional (3D) hybrid nanostructured arrays grown on a flexible substrate have recently attracted great attention owing to their potential application as supercapacitor electrodes in portable and wearable electronic devices. Here, we report an in situ conversion of Ni-Co active electrode materials for the fabrication of high-performance electrodes. Ni-Co carbonate hydroxide nanowire arrays on carbon cloth were initially synthesized via a hydrothermal method, and they were gradually converted to Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays after soaking in an alkaline solution. The evolution of the supercapacitor performance of the soaked electrode was investigated in detail. The areal capacitance increases from 281 mF cm -2 at 1 mA cm -2 to 3710 and 3900 mF cm -2 after soaking for 36 h and 48 h, respectively. More interestingly, the electrode also shows an increased capacitance with charge/discharge cycles due to the long-time soaking in KOH solution, suggesting novel cycling durability. The enhancement in capacitive performance should be related to the formation of a unique nanowire-supported nanoflake array architecture, which controls the agglomeration of nanoflakes, making them fully activated. As a result, the facile in situ fabrication of the hybrid architectural design in this study provides a new approach to fabricate high-performance Ni/Co based hydroxide nanostructure arrays for next-generation energy storage devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xi; Blue Sky Technology Corporation, Beijing 100083; Ma, Hongwen, E-mail: mahw@cugb.edu.cn
Highlights: • We use the anti-drop precipitation method for synthesis of magnesium hydroxide. • Boron mud which is solid waste from a borax factory is used as the magnesium source. • The magnesium hydroxide nanoflowers are prepared in a short time. • The as-prepared magnesium hydroxide can be used as an effective flame retardant. - Abstract: Using boron mud as the starting material, the flower-like magnesium hydroxide (MH) has been successfully prepared via anti-drop precipitation method. The effect of NH{sub 3}·H{sub 2}O concentration, aging time, and surfactant on the morphology of MH was investigated. The optimum precipitation conditions are droppingmore » MgSO{sub 4} solution in 5% NH{sub 3}·H{sub 2}O solution, with 3% polyethylene glycol as surfactant, aging for 30 min. XRD, SEM, FI-IR, and TG/DTA have been employed to characterize the as-prepared samples. XRD reveals that MH with high purity has the brucite structure. SEM images show that the flower-like MH exists in the form of mono-disperse well uniform spherical aggregation with diameter of 3–5 μm. TG/DTA shows a total percentage of weight loss 33.6% with a well-defined endothermic peak near 381.3 °C corresponding to the decomposition of MH. Furthermore, it reports that the extremely fast primary nucleation is of significance for crystal growth of MH.« less
NASA Astrophysics Data System (ADS)
Spycher, Nicolas F.; Issarangkun, Montarat; Stewart, Brandy D.; Sevinç Şengör, S.; Belding, Eileen; Ginn, Tim R.; Peyton, Brent M.; Sani, Rajesh K.
2011-08-01
One option for immobilizing uranium present in subsurface contaminated groundwater is in situ bioremediation, whereby dissimilatory metal-reducing bacteria and/or sulfate-reducing bacteria are stimulated to catalyze the reduction of soluble U(VI) and precipitate it as uraninite (UO 2). This is typically accomplished by amending groundwater with an organic electron donor. It has been shown, however, that once the electron donor is entirely consumed, Fe(III) (hydr)oxides can reoxidize biogenically produced UO 2, thus potentially impeding cleanup efforts. On the basis of published experiments showing that such reoxidation takes place even under highly reducing conditions (e.g., sulfate-reducing conditions), thermodynamic and kinetic constraints affecting this reoxidation are examined using multicomponent biogeochemical simulations, with particular focus on the role of sulfide and Fe(II) in solution. The solubility of UO 2 and Fe(III) (hydr)oxides are presented, and the effect of nanoscale particle size on stability is discussed. Thermodynamically, sulfide is preferentially oxidized by Fe(III) (hydr)oxides, compared to biogenic UO 2, and for this reason the relative rates of sulfide and UO 2 oxidation play a key role on whether or not UO 2 reoxidizes. The amount of Fe(II) in solution is another important factor, with the precipitation of Fe(II) minerals lowering the Fe +2 activity in solution and increasing the potential for both sulfide and UO 2 reoxidation. The greater (and unintuitive) UO 2 reoxidation by hematite compared to ferrihydrite previously reported in some experiments can be explained by the exhaustion of this mineral from reaction with sulfide. Simulations also confirm previous studies suggesting that carbonate produced by the degradation of organic electron donors used for bioreduction may significantly increase the potential for UO 2 reoxidation through formation of uranyl carbonate aqueous complexes.
Geopolymer lightweight bricks manufactured from fly ash and foaming agent
NASA Astrophysics Data System (ADS)
Ibrahim, Wan Mastura Wan; Hussin, Kamarudin; Abdullah, Mohd Mustafa Al Bakri; Kadir, Aeslina Abdul
2017-04-01
This paper deals with the development of lightweight geopolymer bricks by using foaming agent and fly ash. The mix parameters analysed through a laboratory experiment with fix ratio of sodium silicate/sodium hydroxide solution mass ratio 2.5, fly ash/alkaline activator solution mass ratio 2.0, foaming agent/paste mass ratio 1:2 and molarity of sodium hydroxide solution used was 12M. Different curing temperature (Room Temperature, 60, 80) and foaming agent/water mass ratio (1:10 and 1:20) were studied. Compressive strength, density analysis, and water absorption has been investigated. The results show that the foamed geopolymer bricks with a lower foam/water mass ratio (1:10)and high curing temperature (80°C) leading to a better properties. Mixtures with a low density of around 1420 kg/m3 and a compressive strength of around 10 MPa were achieved.
Method for providing uranium articles with a corrosion-resistant anodized coating
Waldrop, F.B.; Washington, C.A.
1981-01-07
Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75/sup 0/C with a current flow of less than about 0.036 A/cm/sup 2/ of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.
Accidental contamination of a German town's drinking water with sodium hydroxide.
Lendowski, Luba; Färber, Harald; Holy, Andreas; Darius, Anke; Ehrich, Bernd; Wippermann, Christine; Küfner, Bernd; Exner, Martin
2015-05-01
Case report of a very serious drinking water incident putting up to 50,000 inhabitants of a town near Bonn in North Rhine-Westphalia, Germany at risk. A concentrated solution of highly alkaline water by sodium hydroxide was accidentally washed into the town's drinking water at a pumping station and increased the pH-value of the water to 12. Residents who came into contact with the contaminated water immediately had a toxic reaction. The incident was detected by complaints from customers and after that was stopped within several hours. The pipes were flushed and the customers were warned not to use the water till the all clear. After this immediate management there was an investigation and the cause of the incident was detected as an accidental release of accumulated sodium hydroxide (NaOH) solution. The lack of a network alarm system and the automatic cut-off mechanisms as deficiencies in the design of the station were rectified by the water company immediately after the incident. Copyright © 2015 Elsevier GmbH. All rights reserved.
Corrosion Behavior of Cu40Zn in Sulfide-Polluted 3.5% NaCl Solution
NASA Astrophysics Data System (ADS)
Song, Q. N.; Xu, N.; Bao, Y. F.; Jiang, Y. F.; Gu, W.; Yang, Z.; Zheng, Y. G.; Qiao, Y. X.
2017-10-01
The corrosion behavior of a duplex-phase brass Cu40Zn in clean and sulfide-polluted 3.5% NaCl solutions was investigated by conducting electrochemical and gravimetric measurements. The corrosion product films were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The presence of sulfide shifted the corrosion potential of Cu40Zn toward a more negative value by 100 mV and increased the mass loss rate by a factor of 1.257 compared with the result in the clean solution. The corrosion product film in the clean solution was thin and compact; it mainly consisted of oxides, such as ZnO and Cu2O. By contrast, the film in the sulfide-polluted solution was thick and porous. It mainly contained sulfides and zinc hydroxide chloride (i.e., Zn5(OH)8Cl2·H2O). The presence of sulfide ions accelerated the corrosion damage of Cu40Zn by hindering the formation of protective oxides and promoting the formation of a defective film which consisted of sulfides and hydroxide chlorides.
Biomimetic Mineralization on a Macroporous Cellulose-Based Matrix for Bone Regeneration
Petrauskaite, Odeta; Gomes, Pedro de Sousa; Fernandes, Maria Helena; Juodzbalys, Gintaras; Maminskas, Julius
2013-01-01
The aim of this study is to investigate the biomimetic mineralization on a cellulose-based porous matrix with an improved biological profile. The cellulose matrix was precalcified using three methods: (i) cellulose samples were treated with a solution of calcium chloride and diammonium hydrogen phosphate; (ii) the carboxymethylated cellulose matrix was stored in a saturated calcium hydroxide solution; (iii) the cellulose matrix was mixed with a calcium silicate solution in order to introduce silanol groups and to combine them with calcium ions. All the methods resulted in a mineralization of the cellulose surfaces after immersion in a simulated body fluid solution. Over a period of 14 days, the matrix was completely covered with hydroxyapatite crystals. Hydroxyapatite formation depended on functional groups on the matrix surface as well as on the precalcification method. The largest hydroxyapatite crystals were obtained on the carboxymethylated cellulose matrix treated with calcium hydroxide solution. The porous cellulose matrix was not cytotoxic, allowing the adhesion and proliferation of human osteoblastic cells. Comparatively, improved cell adhesion and growth rate were achieved on the mineralized cellulose matrices. PMID:24163816
"Mud" + "Blood"--A Very Colorful Demonstration.
ERIC Educational Resources Information Center
Hambly, Gordon
1998-01-01
Describes a demonstration in which a bloodred-colored solution of hydrogen peroxide, sodium hydroxide, and phenolphthalein indicator is added to a mud-colored solution of potassium permanganate, hydrated manganous chloride, and sulfuric acid. The mixture turns clear when added together. Draws parallels between the demonstration and the Old…
Code of Federal Regulations, 2010 CFR
2010-07-01
... cooking (digesting) wood chips in a water solution of sodium hydroxide and sodium sulfide (white liquor) at high temperature and pressure. Regeneration of the cooking chemicals through a recovery process is... any operation in which pulp is produced from wood by cooking (digesting) wood chips in a solution of...
Friction Modifier Using Adherent Metallic Multilayered or Mixed Element Layer Conversion Coatings
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor); Defalco, Francis G. (Inventor); Starks, Lloyd L., Sr. (Inventor)
2013-01-01
A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, and one or more non-alkaline metals and/or one or more metalloids. The process comprises forming an aqueous solution of water, phosphoric acid or sulfuric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals and/or one or more metalloids. The aqueous solution forms an anti-friction multilayer conversion and/or mixed element coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly without the use of applied external electromotive force, or as an additive in lubricating fluids.
The analytical biochemistry of chromium.
Katz, S A
1991-01-01
The essentiality and carcinogenicity of chromium depend on its chemical form. Oxidation state and solubility are particularly important in determining the biological effects of chromium compounds. For this reason, total chromium measurements are of little value in assessing its nutritional benefits or its toxicological hazards. Aqueous sodium carbonate-sodium hydroxide solutions have been successfully used for extracting hexavalent chromium from a variety of environmental and biological matrices while preserving its oxidation state. Typical recoveries are 90 to 105% in samples spiked with both trivalent and hexavalent chromium. Determination of hexavalent chromium after extraction with sodium carbonate-sodium hydroxide solution, coupled with the determination of total chromium after nitric acid-hydrogen peroxide digestion, has been applied to the evaluation of chromium speciation in airborne particulates, sludges, and biological tissues. PMID:1935842
Acharya, H; Bhowmick, Anil K
2007-01-01
Ethylene propylene diene terpolymer (EPDM)/MgAl layered double hydroxide (LDH) nanocomposites have been synthesized by solution intercalation using organically modified LDH (DS-LDH). The molecular level dispersion of LDH nanolayers has been verified by the disappearance of basal XRD peak of DS-LDH in the composites. The internal structures, of the nanocomposite with the dispersion nature of LDH particles in EPDM matrix have been studied by TEM and AFM. Thermogravimetric analysis (TGA) shows thermal stability of nanocomposites improved by ≈40 °C when 10% weight loss was selected as point of comparison. The degradation for pure EPDM is faster above 380 °C while in case of its nanocomposites, it is much slower.
Yang, Xia; Chai, Zhifang; Wang, Dongqi
2015-03-21
Four types of reaction mechanisms for the oxo ligand exchange of monomeric and dimeric neptunyl(VI) hydroxide in aqueous solution were explored computationally using density functional theory (DFT) and ab initio classical molecular dynamics. The obtained results were compared with previous studies on the oxo exchange of uranyl hydroxide, as well as with experiments. It is found that the stable T-shaped [NpO3(OH)3](3-) intermediate is a key species for oxo exchange in the proton transfer in mononuclear Path I and binuclear Path IV, similar to the case of uranyl(VI) hydroxide. Path I is thought to be the preferred oxo exchange mechanism for neptunyl(VI) hydroxide in our calculations, due to the lower activation energy (22.7 and 13.1 kcal mol(-1) for ΔG(‡) and ΔH(‡), respectively) of the overall reaction. Path II via a cis-neptunyl structure assisted by a water molecule might be a competitive channel against Path I with a mononuclear mechanism, owing to a rapid dynamical process occurring in Path II. In Path IV with the binuclear mechanism, oxo exchange is accomplished via the interaction between [NpO2(OH)4](2-) and T-shaped [NpO3(OH)3](3-) with a low activation energy for the rate-determining step, however, the overall energy required to fulfill the reaction is slightly higher than that in mononuclear Path I, suggesting a possible binuclear process in the higher energy region. The chemical bonding evolution along the reaction pathways was discussed by using topological methodologies of the electron localization function (ELF).
Lee, Dongwook; Seo, Jiwon
2014-01-01
The three-dimensionally networked and layered structure of graphene hydroxide (GH) was investigated. After lengthy immersion in a NaOH solution, most of the epoxy groups in the graphene oxide were destroyed, and more hydroxyl groups were generated, transforming the graphene oxide into graphene hydroxide. Additionally, benzoic acid groups were formed, and the ether groups link the neighboring layers, creating a near-3D structure in the GH. To utilize these unique structural features, electrodes with large pores for use in supercapacitors were fabricated using thermal reduction in vacuum. The reduced GH maintained its layered structure and developed a lot of large of pores between/inside the layers. The GH electrodes exhibited high gravimetric as well as high volumetric capacitance. PMID:25492227
NASA Astrophysics Data System (ADS)
Lee, Dongwook; Seo, Jiwon
2014-12-01
The three-dimensionally networked and layered structure of graphene hydroxide (GH) was investigated. After lengthy immersion in a NaOH solution, most of the epoxy groups in the graphene oxide were destroyed, and more hydroxyl groups were generated, transforming the graphene oxide into graphene hydroxide. Additionally, benzoic acid groups were formed, and the ether groups link the neighboring layers, creating a near-3D structure in the GH. To utilize these unique structural features, electrodes with large pores for use in supercapacitors were fabricated using thermal reduction in vacuum. The reduced GH maintained its layered structure and developed a lot of large of pores between/inside the layers. The GH electrodes exhibited high gravimetric as well as high volumetric capacitance.
Lee, Dongwook; Seo, Jiwon
2014-12-10
The three-dimensionally networked and layered structure of graphene hydroxide (GH) was investigated. After lengthy immersion in a NaOH solution, most of the epoxy groups in the graphene oxide were destroyed, and more hydroxyl groups were generated, transforming the graphene oxide into graphene hydroxide. Additionally, benzoic acid groups were formed, and the ether groups link the neighboring layers, creating a near-3D structure in the GH. To utilize these unique structural features, electrodes with large pores for use in supercapacitors were fabricated using thermal reduction in vacuum. The reduced GH maintained its layered structure and developed a lot of large of pores between/inside the layers. The GH electrodes exhibited high gravimetric as well as high volumetric capacitance.
Bean, Amanda C; Garcia, Eduardo; Scott, Brian L; Runde, Wolfgang
2004-10-04
Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.
Sequential extractions can provide analytical constraints on the identification of mineral phases that control arsenic speciation in sediments. Model solids were used in this study to evaluate different solutions designed to extract arsenic from relatively labile solid phases. ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... cooking (digesting) wood chips in a water solution of sodium hydroxide and sodium sulfide (white liquor... any operation in which pulp is produced from wood by cooking (digesting) wood chips in a solution of... wood in white liquor, and associated flash tank(s), blow tank(s), chip steamer(s), and condenser(s). (e...
Code of Federal Regulations, 2013 CFR
2013-07-01
... cooking (digesting) wood chips in a water solution of sodium hydroxide and sodium sulfide (white liquor... any operation in which pulp is produced from wood by cooking (digesting) wood chips in a solution of... wood in white liquor, and associated flash tank(s), blow tank(s), chip steamer(s), and condenser(s). (e...
Code of Federal Regulations, 2014 CFR
2014-07-01
... cooking (digesting) wood chips in a water solution of sodium hydroxide and sodium sulfide (white liquor... any operation in which pulp is produced from wood by cooking (digesting) wood chips in a solution of... wood in white liquor, and associated flash tank(s), blow tank(s), chip steamer(s), and condenser(s). (e...
Increased water resistance of paper treated with amylose-fatty ammonium salt inclusion complexes
USDA-ARS?s Scientific Manuscript database
Amylose inclusion complexes were prepared from high amylose corn starch and the HCl salts of hexadecylamine and octadecylamine. Solutions of the complexes were applied to paper at concentrations of 2-4%. After the treated papers were dried, sodium hydroxide solution was applied to convert the adsorb...
Aggregative stability of fungicidal nanomodifier based on zinc hydrosilicates
NASA Astrophysics Data System (ADS)
Grishina, Anna; Korolev, Evgeniy
2018-03-01
Currently, there is a strong need of high performance multi functional materials in high-rise construction. Obviously, such materials should be characterized by high strength; but for interior rooms biosafety is important as well. The promising direction to obtain both high strength and maintain biosafety in buildings and structures is to manage the structure of mineral binders by means of fungicidal nanomodifier based on zinc hydrosilicates. In the present work the aggregative stability of colloidal solutions of zinc hydrosilicates after one year of storage was studied. It has been established that the concentration of iron (III) hydroxide used to prepare the precursor of zinc hydrosilicates has a significant effect on the long-term aggregative stability: as the concentration of iron (III) hydroxide increases, the resistance of the fungicidal nanomodifier increases. It was found that, despite the minimal concentration of nano-sized zinc hydrosilicates (0.028%), the colloidal solution possesses a low long-term aggregative stability; while in the initial period (not less than 14 days) the colloidal solution of the nanomodifier is aggregatively stable. It is shown that when the ratio in the colloidal solution of the amount of the substance CH3COOH / SiO2 = 0.43 is reached, an increase in the polymerization rate is observed, which is the main cause of low aggregative stability. Colloidal solutions containing zinc hydrosilicates synthesized at a concentration of iron (III) hydroxide used to produce a precursor equal to 0.7% have a long-term aggregative stability and do not significantly change the reduced particle. Such compositions are to be expediently used for the nanomodifying of building composites in order to control their structure formation and to create conditions that impede the development of various mycelial fungi.
Nagase, Hiroyasu; Tsujino, Hidekazu; Kurihara, Daisuke; Saito, Hiroshi; Kawase, Masaya
2014-04-01
Organic environmental pollutants are now being detected with remarkably high frequency in the aquatic environment. Photodegradation by ultraviolet light is sometimes used as a method for removing organic chemicals from water; however, this method is relatively inefficient because of the low degradation rates involved, and more efficient methods are under development. Here we show that the removal of various organic pollutants can be assisted by calcined dolomite in aqueous solution under irradiation with ultraviolet light. It was possible to achieve substantial removal of bisphenol A, chlorophenols, alkylphenols, 1-naphthol and 17β-estradiol. The major component of dolomite responsible for the removal was calcium hydroxide. Our results demonstrate that the use of calcium hydroxide with ultraviolet light irradiation can be a very effective method of rapidly removing organic environmental pollutants from water. This is a new role for calcium hydroxide and dolomite in water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chemical treatment of wastewater from flue gas desulphurisation
NASA Astrophysics Data System (ADS)
Pasiecznik, Iwona; Szczepaniak, Włodzimierz
2017-11-01
The article presents results of laboratory tests of removing boron and arsenium from non-ideal solutions using double-layered magnesium/aluminium hydroxides (Mg/Al Double-Layered Hydroxide - DLH) produced with nitrate-chloride method. In research, wastewater from an installation for flue gas desulfurization was examined. Double-layered hydroxides are perfect absorbents for anionic compounds. The research proved high effectiveness of preparation with reference to arsenium, as well as confirmed the effect of presence of sulfatic and arsenate ions on the effectiveness of boron removal. On the basis of research on absorption kinetics a theoretical dose of DLH/NO3-Cl/M preparation was calculated and compared with a dose that ensures emimination of boron below the limit standarized by the national regulations. Application of double-layered magnesium/aluminium hydroxides for boron elimination from industrial wastewater requires significantly higher doses of preparation than those calculated in model investigations. It is due to the priority of removal of multivalent ions, such as sulfatic, arsenate or phosphate ions, by DLH/NO3-Cl/M.
Development of silicon grisms and immersion gratings for high-resolution infrared spectroscopy
NASA Astrophysics Data System (ADS)
Ge, Jian; McDavitt, Daniel L.; Bernecker, John L.; Miller, Shane; Ciarlo, Dino R.; Kuzmenko, Paul J.
2002-01-01
We report new results on silicon grism and immersion grating development using photolithography and anisotropic chemical etching techniques, which include process recipe finding, prototype grism fabrication, lab performance evaluation and initial scientific observations. The very high refractive index of silicon (n=3.4) enables much higher dispersion power for silicon-based gratings than conventional gratings, e.g. a silicon immersion grating can offer a factor of 3.4 times the dispersion of a conventional immersion grating. Good transmission in the infrared (IR) allows silicon-based gratings to operate in the broad IR wavelength regions (~1- 10 micrometers and far-IR), which make them attractive for both ground and space-based spectroscopic observations. Coarser gratings can be fabricated with these new techniques rather than conventional techniques, allowing observations at very high dispersion orders for larger simultaneous wavelength coverage. We have found new etching techniques for fabricating high quality silicon grisms with low wavefront distortion, low scattered light and high efficiency. Particularly, a new etching process using tetramethyl ammonium hydroxide (TMAH) is significantly simplifying the fabrication process on large, thick silicon substrates, while providing comparable grating quality to our traditional potassium hydroxide (KOH) process. This technique is being used for fabricating inch size silicon grisms for several IR instruments and is planned to be used for fabricating ~ 4 inch size silicon immersion gratings later. We have obtained complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 5000 using a silicon echelle grism with a 5 mm pupil diameter at the Lick 3m telescope. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon- based gratings. The future of silicon-based grating applications in ground and space-based IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R>100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.
Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.
Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly
2013-01-01
Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.
Tatlican, Semih; Eren, Cemile; Yamangokturk, Burcu; Eskioglu, Fatma; Bostanci, Seher
2010-02-01
Treatment of ingrown toenails using chemical matricectomy in patients with diabetes has been difficult, because delayed wound healing, wound infections, and digital ischemia can interfere with the procedure. Chemical matricectomy with 10% sodium hydroxide is an effective treatment for ingrown toenails in a normal population. Investigation of the effectiveness and safety of chemical matricectomy with 10% sodium hydroxide solution for ingrown toenails in patients with diabetes. Thirty patients with diabetes with 40 ingrown toenails and 30 patients without diabetes with 41 ingrown toenails were enrolled in the study. After partial avulsion of the affected edge, germinal matrix was treated for 1 minute with 10% sodium hydroxide. Patients were observed on alternate days until complete healing was achieved and followed for up to 24 months for recurrence. Assessment of the treatment in both groups for complete healing, postoperative pain, tissue damage, drainage, infections, and rate of recurrences revealed no statistically significant difference. The partial avulsion of the affected edge and the treatment of the germinal matrix for 1 minute with 10% sodium hydroxide preceded by matrix curettage is an effective and safe treatment modality for ingrown toenails in people with diabetes.
Yang, Chih-Hui; Wang, Chih-Yu; Huang, Keng-Shiang; Yeh, Chen-Sheng; Wang, Andrew H. -J.; Wang, Wei-Ting; Lin, Ming-Yu
2012-01-01
Macroporous chitosan spheres encapsulating superparamagnetic iron oxide nanoparticles were synthesized by a facile and effective one-step fabrication process. Ferro-gels containing ferrous cations, ferric cations and chitosan were dropped into a sodium hydroxide solution through a syringe pump. In addition, a sodium hydroxide solution was employed for both gelation (chitosan) and co-precipitation (ferrous cations and ferric cations) of the ferro-gels. The results showed that the in-situ co-precipitation of ferro-ions gave rise to a radial morphology with non-spheroid macro pores (large cavities) inside the chitosan spheres. The particle size of iron oxide can be adjusted from 2.5 nm to 5.4 nm by tuning the concentration of the sodium hydroxide solution. Using Fourier Transform Infrared Spectroscopy and X-ray diffraction spectra, the synthesized nanoparticles were illustrated as Fe3O4 nanoparticles. In addition, the prepared macroporous chitosan spheres presented a super-paramagnetic behaviour at room temperature with a saturation magnetization value as high as ca. 18 emu/g. The cytotoxicity was estimated using cell viability by incubating doses (0∼1000 µg/mL) of the macroporous chitosan spheres. The result showed good viability (above 80%) with alginate chitosan particles below 1000 µg/mL, indicating that macroporous chitosan spheres were potentially useful for biomedical applications in the future. PMID:23226207
Valera, Marcia Carneiro; Cardoso, Flávia Goulart da Rosa; Maekawa, Lilian Eiko; Camargo, Carlos Henrique Ribeiro; de Oliveira, Luciane Dias; Carvalho, Cláudio Antônio Talge
2015-01-01
This study was conducted in vitro to compare the effectiveness of Zingiber Officinale as an auxiliary chemical substance followed by placement of different intra-canal medication in removing endotoxins and cultivable micro-organisms from infected root canals. Seventy-two root canals were contaminated with Enterococcus faecalis, Candida albicans and Escherichia coli for 28 days. After, the teeth were instrumented using Zingiber Officinale and divided into six groups according to the intra-canal medication: chlorhexidine gel; calcium hydroxide + chlorhexidine gel; glycolic ginger extract; calcium hydroxide + glycolic ginger extract; calcium hydroxide + saline solution and saline solution (control). Sample collections were performed after root canal contamination (Baseline; S1), after instrumentation (S2), 7 days after instrumentation (S3), after 14 days with intra-canal medication (S4) and 7 days after removal of intra-canal medication (S5). The results were analyzed by the Kruskal-Wallis and Dunn tests. It was observed that in S2 and S3 there was significant reduction of the micro-organisms and the quantity of endotoxins after instrumentation. In samples S4 and S5 there was complete elimination of micro-organisms and significant reduction of endotoxins. It was concluded that Zingiber Officinale as an auxiliary chemical substance was effective on the micro-organisms tested, yet was unable to eliminate the endotoxins. Similarly, the intra-canal medication were effective on micro-organisms, yet did not completely eliminate the endotoxins.
21 CFR 163.112 - Breakfast cocoa.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ingredients. Ammonium, potassium, or sodium bicarbonate, carbonate, or hydroxide, or magnesium carbonate or oxide, used as such, or in aqueous solution; (2) Neutralizing agents. Phosphoric acid, citric acid and L...
Brandt, H.L.
1962-02-20
A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)
Adsorption of NO on alumina-supported oxides and oxide-hydroxides of manganese.
Spasova, I; Nikolov, P; Mehandjiev, D
2005-10-15
The adsorption capacity for NO of alumina-supported oxides and oxide-hydroxides of manganese have been studied. Two series of samples have been prepared by precipitation on gamma-alumina and appropriate thermal treatment. The samples have been characterized by adsorption methods, magnetic methods, electronic paramagnetic resonance (EPR), transient response technique, and temperature-programmed desorption (TPD). The influence of the concentration of the initial manganese-containing solution has been investigated. The sample, prepared with a solution with Mn concentration of 4 g/100 ml, has been shown to be the best adsorbent for NO under the conditions of the experiment. It has been found that the presence mainly of Mn3+ ions on the surface of the support is probably responsible for the enhanced adsorption capacity.
Iguchi, Shoji; Teramura, Kentaro; Hosokawa, Saburo; Tanaka, Tsunehiro
2015-07-21
The photocatalytic conversion of CO2 into useful chemical compounds in water without using organic sacrificial reagents is a promising method to overcome environmental and energy problems. Various synthesized layered double hydroxides (LDHs) are capable of reducing CO2 to CO in an aqueous solution under UV light irradiation. However, it is difficult to oxidize H2O to O2 in a photocatalytic system using LDHs as photocatalysts. In this study, we investigated the photocatalytic conversion of CO2 using a Ni-Al LDH in an aqueous solution of NaCl. Hypochlorous acid (HClO) was produced as an oxidation product of Cl(-) with the formation of reduction products such as CO and H2 under photoirradiation. We propose the inclusion of Cl(-) in the reaction solution to be one of the most promising ways for obtaining a hole scavenger, an approach that would enable the construction of an artificial photosynthesis system for the conversion of CO2.
Toyofuku, Chiharu; Alam, Md Shahin; Yamada, Masashi; Komura, Miyuki; Suzuki, Mayuko; Hakim, Hakimullah; Sangsriratanakul, Natthanan; Shoham, Dany; Takehara, Kazuaki
2017-06-16
An alkaline agent, namely food additive grade calcium hydroxide (FdCa(OH) 2 ) in solution at 0.17%, was evaluated for its bactericidal efficacies in chiller water with sodium hypochlorite (NaOCl) at a concentration of 200 ppm total residual chlorine. Without organic material presence, NaOCl could inactivate Salmonella Infantis and Escherichia coli within 5 sec, but in the presence of fetal bovine serum (FBS) at 0.5%, the bactericidal effects of NaOCl were diminished completely. FdCa(OH) 2 solution required 3 min to inactivate bacteria with or without 5% FBS. When NaOCl and FdCa(OH) 2 were mixed at the final concentration of 200 ppm and 0.17%, respectively, the mixed solution could inactivate bacteria at acceptable level (10 3 reduction of bacterial titer) within 30 sec in the presence of 0.5% FBS. The mixed solution also inhibited cross-contamination with S. Infantis or E. coli on chicken meats. It was confirmed and elucidated that FdCa(OH) 2 has a synergistic effect together with NaOCl for inactivating microorganisms.
Camargo, Caio Lamunier de Abreu; Belda, Walter; Fagundes, Luiz Jorge; Romiti, Ricardo
2014-01-01
BACKGROUND Genital warts are caused by human papillomavirus infection and represent one of the most common sexually transmitted diseases. Many infections are transient but the virus may recur, persist, or become latent. To date, there is no effective antiviral treatment to eliminate HPV infection and most therapies are aimed at the destruction of visible lesions. Potassium hydroxide is a strong alkali that has been shown to be safe and effective for the treatment of genital warts and molluscum contagiosum. Cryotherapy is considered one of the most established treatments for genital warts. No comparative trials have been reported to date on the use of potassium hydroxide for genital warts. OBJECTIVE A prospective, open-label, randomized clinical trial was conducted to compare topical potassium hydroxide versus cryotherapy in the treatment of genital warts affecting immunocompetent, sexually active men. METHODS Over a period of 10 months, 48 patients were enrolled. They were randomly divided into two groups and selected on an alternative basis for either potassium hydroxide therapy or cryotherapy. While response to therapy did not differ substantially between both treatment modalities, side effects such as local pain and post-treatment hypopigmentation were considerably more prevalent in the groups treated using cryotherapy. RESULT In our study, potassium hydroxide therapy proved to be at least as effective as cryotherapy and offered the benefit of a better safety profile. CONCLUSION Topical 5% potassium hydroxide presents an effective, safe, and low-cost treatment modality for genital warts in men and should be included in the spectrum of therapies for genital warts. PMID:24770498
Camargo, Caio Lamunier de Abreu; Belda Junior, Walter; Fagundes, Luiz Jorge; Romiti, Ricardo
2014-01-01
Genital warts are caused by human papillomavirus infection and represent one of the most common sexually transmitted diseases. Many infections are transient but the virus may recur, persist, or become latent. To date, there is no effective antiviral treatment to eliminate HPV infection and most therapies are aimed at the destruction of visible lesions. Potassium hydroxide is a strong alkali that has been shown to be safe and effective for the treatment of genital warts and molluscum contagiosum. Cryotherapy is considered one of the most established treatments for genital warts. No comparative trials have been reported to date on the use of potassium hydroxide for genital warts. A prospective, open-label, randomized clinical trial was conducted to compare topical potassium hydroxide versus cryotherapy in the treatment of genital warts affecting immunocompetent, sexually active men. Over a period of 10 months, 48 patients were enrolled. They were randomly divided into two groups and selected on an alternative basis for either potassium hydroxide therapy or cryotherapy. While response to therapy did not differ substantially between both treatment modalities, side effects such as local pain and post-treatment hypopigmentation were considerably more prevalent in the groups treated using cryotherapy. In our study, potassium hydroxide therapy proved to be at least as effective as cryotherapy and offered the benefit of a better safety profile. Topical 5% potassium hydroxide presents an effective, safe, and low-cost treatment modality for genital warts in men and should be included in the spectrum of therapies for genital warts.
Release of MEMS devices with hard-baked polyimide sacrificial layer
NASA Astrophysics Data System (ADS)
Boroumand Azad, Javaneh; Rezadad, Imen; Nath, Janardan; Smith, Evan; Peale, Robert E.
2013-03-01
Removal of polyimides used as sacrificial layer in fabricating MEMS devices can be challenging after hardbaking, which may easily result by the end of multiple-step processing. We consider the specific commercial co-developable polyimide ProLift 100 (Brewer Science). Excessive heat hardens this material, so that during wet release in TMAH based solvents, intact sheets break free from the substrate, move around in the solution, and break delicate structures. On the other hand, dry reactive-ion etching of hard-baked ProLift is so slow, that MEMS structures are damaged from undesirably-prolonged physical bombardment by plasma ions. We found that blanket exposure to ultraviolet light allows rapid dry etch of the ProLift surrounding the desired structures without damaging them. Subsequent removal of ProLift from under the devices can then be safely performed using wet or dry etch. We demonstrate the approach on PECVD-grown silicon-oxide cantilevers of 100 micron × 100 micron area supported 2 microns above the substrate by ~100-micron-long 8-micron-wide oxide arms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl; Rodríguez, C.A.; Porcile-Saavedra, P.F.
Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films. - Graphical abstract: “Study of themore » crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution” by M. G. Sandoval-Paz, C. A. Rodríguez, P. F. Porcile-Saavedra, C. Trejo-Cruz. Display Omitted - Highlights: • Copper (I) selenide thin films were obtained by chemical bath deposition. • Orthorhombic to cubic phase change was induced by varying the reaction solution pH. • Orthorhombic phase is obtained mainly from a hydroxides cluster mechanism. • Cubic phase is obtained mainly from an ion by ion mechanism. • Structural, optical and electrical properties are presented as a function of pH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurel, F.; Knosp, B.; Backhaus-Ricoult, M.
2000-01-01
To better understand the decrease in storage capacity of AB{sub 5}-type alloys in rechargeable Ni/MH batteries undergoing repeated charge/discharge cycles, the corrosion of a MnNi{sub 3.55}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.3} alloy in aqueous KOH electrolyte was studied. The crystal structure, chemical composition, and distribution of corrosion products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Hollow and filed needles of a mixed rare earth hydroxide Mn(OH){sub 3} were found to cover a continuous nanocrystalline corrosion scale composed of metal (Ni, Co) solid solution, oxide (Ni,Co)O solid solution and rare earth hydroxide, and a Mn-depleted alloy subscale. Corrosionmore » kinetics were measured for three different temperatures. Growth kinetics of the continuous corrosion scale and of the Mm(OH){sub 3} needles obeyed linear and parabolic rate laws, respectively. Models for the corrosion mechanism were developed on the basis of diffusional transport of Mn and OH through the hydroxide needles and subsequent diffusion along grain boundaries through the nanocrystalline scale.« less
Furushima, K; Shinagawa, M
1980-09-01
In order to detect to radioactive band on the paper strip developed by focusing chromatography, plate-making-film was used for the autoradiography and beta-spots were photographed. Thereafter the film was etched with sodium hydroxide solution to find the alpha-tracks. Paper strip used for the sample was prepared by the precipitation focusing chromatography of 226Ra and its daughter nuclides using HCl-KF solution as a developer. The film used was not high in its beta-sensitivity, but because of its high resolution good photographic results were obtained according to the intensity of beta-activity when the proper conditions of photographic development were fulfilled. The simple alpha-spectrometry was made possible by counting the numbers of tracks according to the etching depth of the film. The film was hard and thick enough for etching with 6M sodium hydroxide solution at 50 degrees C for more than 50 hrs to measure the depth of tracks.
Characterization of alkaline hydroxide-preserved whole poultry as a dry byproduct meal.
Shafer, D J; Burgess, R P; Conrad, K A; Prochaska, J F; Carey, J B
2001-11-01
Studies were conducted to examine the chemical preservation of whole broiler carcasses by using aqueous alkaline hydroxide solutions. Conversion of the preserved carcasses and solutions into an acceptable poultry byproduct meal was examined. Carcasses and alkaline solutions at a 1:1 ratio were blended and freeze-dried to produce a high fat whole poultry byproduct meal. The dry meal was analyzed for nutrient composition, true metabolizable energy, and amino acid content. Viable bacteria were not recovered after inoculation of the experimental meal with Salmonella enteritidis. The meal was incorporated at 5 and 10% of chick starter diets. Chicks found the meal-containing diets acceptable. Feed consumption, water consumption, BW, and mortality were not significantly different among the dietary treatments in either of the two feeding trials. Necropsy samples revealed no pathological or histological differences attributable to consumption of the alkaline poultry byproduct and blood serum evaluation found no variation in blood chemistry. Alkaline treatment of whole broiler carcasses was an effective preservation method and acceptable as a dry poultry byproduct meal.
NASA Astrophysics Data System (ADS)
Zeng, Min
2011-05-01
Well-crystallized cubic phase BaTiO 3 particles were prepared by heating the mixture of barium hydroxide aqueous solution and titania derived from the hydrolysis of titanium isopropoxide (TTIP) at 328 K, 348 K or 368 K for 24 h. The morphology and size of obtained particles depended on the reaction temperature and the Ba(OH) 2/TTIP molar ratio. By the direct hydrolytic reaction of titanium tetraisopropoxide, the high surface area titania (TiO 2) was obtained. The surface adsorption characteristics of the titania particles had been studied with different electric charges OH - ions or H + ions. The formation mechanism and kinetics of BaTiO 3 were examined by measuring the concentration of [Ba 2+] ions in the solution during the heating process. The experimental results showed that the heterogeneous nucleation of BaTiO 3 occurred on the titania surface, according to the Avrami's equation.
Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3 (btc)2).
Majano, Gerardo; Pérez-Ramírez, Javier
2013-02-20
Copper(II) hydroxide is converted directly to HKUST-1 (Cu(3) (btc)(2) ) after only 5 min at room-temperature in aqueous ethanolic solution without the need of additional solvents. Scale up to the kilogram scale does not influence porous properties yielding pure-phase product with a remarkable total surface area exceeding 1700 m(2) g(-1) featuring aggregates of nanometer-sized crystals (<600 nm) and extremely high space-time yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for separating contaminants from solution employing an organic-stabilized metal-hydroxy gel
Alexander, Donald H.
1996-01-01
Metals and organics are extracted from solution by co-precipitating them with a gel comprising aluminum hydroxide and a complexing agent such as EDTA. After the gel is processed to remove the metals and organics, it can be recycled for further use by dissolving it in a high-pH solution, leaving no secondary waste stream. A number of alternative complexing agents perform better than EDTA.
21 CFR 184.1666 - Propylene glycol.
Code of Federal Regulations, 2014 CFR
2014-04-01
... chlorinated water to form the chlorohydrin which is converted to the glycol by treatment with sodium carbonate solution. It is also prepared by heating glyercol with sodium hydroxide. (b) The ingredient meets the...
NASA Astrophysics Data System (ADS)
Wang, Minmin; Xue, Junying; Zhang, Fangming; Ma, Wenle; Cui, Hongtao
2015-02-01
In this work, nickel-cobalt double hydroxide nanosheets with high rate capability are prepared by a facile epoxide precipitation route. The synthetic procedure includes an oxidization step using ammonium persulfate as oxidant and a precipitation step using propylene oxide as precipitation agent. As shown in the results of electrochemical characterization, high specific capacitance of 2548 F g-1 for this material can be obtained at current density of 0.9 A g-1 in aqueous solution of 3 mol L-1 KOH. It is surprising to notice that the capacitance of material still remains 1587 F g-1 at high current density of 35.7 A g-1. These results demonstrate that the as-prepared nickel-cobalt double hydroxide nanosheets are promising electrode material for supercapacitor application as a primary power source.
Thermodynamics of complexation in an aqueous solution of Tb(III) nitrate at 298 K
NASA Astrophysics Data System (ADS)
Lobacheva, O. L.; Berlinskii, I. V.; Dzhevaga, N. V.
2017-01-01
The pH of the formation of hydroxo complexes and hydrates in an aqueous solution of terbium Tb(III) is determined using combined means of potentiometric and conductometric titration. The stability constants of the hydroxo complexes, the products of hydroxide solubility, and the Gibbs energy of terbium hydroxo complex formation are calculated.
9 CFR 91.18 - Cleaning and disinfection of transport carriers for export.
Code of Federal Regulations, 2014 CFR
2014-01-01
... prepared solution of: (a) Sodium carbonate (4 percent) in the proportion of 1 pound to 3 gallons of water... in a fresh solution in the proportion of not less than 1 pound avoirdupois of sodium hydroxide of not... contact with the body. For carriers returning from other foreign countries, the approved disinfectant...
9 CFR 91.18 - Cleaning and disinfection of transport carriers for export.
Code of Federal Regulations, 2013 CFR
2013-01-01
... prepared solution of: (a) Sodium carbonate (4 percent) in the proportion of 1 pound to 3 gallons of water... in a fresh solution in the proportion of not less than 1 pound avoirdupois of sodium hydroxide of not... contact with the body. For carriers returning from other foreign countries, the approved disinfectant...
9 CFR 91.18 - Cleaning and disinfection of transport carriers for export.
Code of Federal Regulations, 2012 CFR
2012-01-01
... prepared solution of: (a) Sodium carbonate (4 percent) in the proportion of 1 pound to 3 gallons of water... in a fresh solution in the proportion of not less than 1 pound avoirdupois of sodium hydroxide of not... contact with the body. For carriers returning from other foreign countries, the approved disinfectant...
NASA Astrophysics Data System (ADS)
Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an
2018-05-01
In this study, the molecular structures of primary humic-like substances (HULIS) in fine smoke particles emitted from the combustion of biomass materials (including rice straw, corn straw, and pine branches) and coal, and atmospheric HULIS were determined by off-line tetramethylammonium hydroxide thermochemolysis coupled with gas chromatography and mass spectrometry (TMAH-GC/MS). A total of 89 pyrolysates were identified by the thermochemolysis of primary and atmospheric HULIS. The main groups were polysaccharide derivatives, N-containing compounds, lignin derivatives, aromatic acid methyl ester, aliphatic acid methyl ester, and diterpenoid derivatives. Both the type and distribution of pyrolysates among primary HULIS were comparable to those in atmospheric HULIS. This indicates that primary HULIS from combustion processes are important contributors to atmospheric HULIS. Some distinct differences were also observed. The aromatic compounds, including lignin derivatives and aromatic acid methyl ester, were the major pyrolysates (53.0%-84.9%) in all HULIS fractions, suggesting that primary HULIS significantly contributed aromatic structures to atmospheric HULIS. In addition, primary HULIS from biomass burning (BB) contained a relatively high abundance of lignin and polysaccharide derivatives, which is consistent with the large amounts of lignin and cellulose structures contained in biomass materials. Aliphatic acid methyl ester and benzyl methyl ether were prominent pyrolysates in atmospheric HULIS. Moreover, some molecular markers of specific sources were obtained from the thermochemolysis of primary and atmospheric HULIS. For example, polysaccharide derivatives, pyridine and pyrrole derivatives, and lignin derivatives can be used as tracers of fresh HULIS emitted from BB. Diterpenoid derivatives are important markers of HULIS from pine wood combustion sources. Finally, the differences in pyrolysate types and the distributions between primary and atmospheric HULIS suggested that the primary HULIS would undergo many atmospheric processes to reconstruct the macromolecular organic matter in atmospheric aerosols.
Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H
2011-04-01
An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images.
Ch, Muhammad Ishtiaq; Wen, Yang F; Cheng, YiYu
2007-01-01
This paper describes a simple and novel on-column derivatization procedure used with gas chromatography/mass spectrometry (GC/MS) for the analysis of essential oil of Houttuynia cordata Thunb (HCT), a traditional Chinese medicine. In the procedure, the essential oil was obtained by hydrodistillation, and the fatty acid components were derivatized with tetramethylammonium acetate (TMAA) at 250 degrees C and identified by GC/MS. Methylation improved the determination of both the fatty acids and the other components in the essential oil of HCT. To obtain optimum methylation conditions, several important factors were investigated with pentadecane as the internal standard and a GC inlet temperature of 250 degres C. Tetramethylammonium hydroxide (TMAH) and TMAA were compared as the derivatization agent, and a 2:1 ratio of TMAA to capric acid was evaluated. Fatty acid methyl esters produced good chromatographic peak shapes and did not interfere with the determination of dodecanal and caryophyllene. TMAA is a neutral methylation reagent, and it yielded no side reactions during derivatization. It was found that the fatty acid content of the essential oil was about 81%; among the methylated fatty acids found were capric acid, methyl (43.66%), methyl laurate (16.15%), methyl hexadecanoate (9.27%), undecanoic acid, methyl (5.62%), methyl oleate (1.98%), and methyl linoleate (1.40%). Other major constituents were (-)-beta-pinene (1.02%), beta-myrcene (1.62%), 1-terpinen-4-ol (1.59%), decanal (1.49%), and 2-undecanone (1.47%). The results obtained demonstrated good efficiency for the procedure. Pure chromatograms allowed quantitation, which was obtained by total volume integration. The on-column derivatization procedure was simple to perform, and it improved the sensitivity, the peak resolution, and the selectivity of the GC/MS determination.
Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio
2013-09-27
The combination of reverse phase high performance liquid chromatography (RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of monoiodotyrosine (MIT) and diiodotyrosine (DIT) in edible seaweed. A sample pre-treatment based on ultrasound assisted enzymatic hydrolysis was optimized for the extraction of these iodinated amino acids. Pancreatin was selected as the most adequate type of enzyme, and parameters affecting the extraction efficiency (pH, temperature, mass of enzyme and extraction time) were evaluated by univariate approaches. In addition, extractable inorganic iodine (iodide) was also quantified by anion exchange high performance liquid chromatography (AE-HPLC) coupled with ICP-MS. The proposed procedure offered limits of detection of 1.1 and 4.3ngg(-1) for MIT and DIT, respectively. Total iodine contents in seaweed, as well as total iodine in enzymatic digests were measured by ICP-MS after microwave assisted alkaline digestion with tetramethylamonium hydroxide (TMAH) for total iodine assessment, and also by treating the pancreatin extracts (extractable total iodine assessment). The optimized procedure was successfully applied to five different types of edible seaweed. The highest total iodine content, and also the highest iodide levels, was found in the brown seaweed Kombu (6646±45μgg(-1)). Regarding iodinated amino acids, Nori (a red seaweed) was by far the one with the highest amount of both species (42±3 and 0.41±0.024μgg(-1) for MIT and DIT, respectively). In general, MIT concentrations were much higher than the amounts of DIT, which suggests that iodine from iodinated proteins in seaweed is most likely bound in the form of MIT residues. Copyright © 2013 Elsevier B.V. All rights reserved.
21 CFR 184.1666 - Propylene glycol.
Code of Federal Regulations, 2013 CFR
2013-04-01
... glycol by treatment with sodium carbonate solution. It is also prepared by heating glyercol with sodium hydroxide. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 255...
21 CFR 184.1666 - Propylene glycol.
Code of Federal Regulations, 2012 CFR
2012-04-01
... glycol by treatment with sodium carbonate solution. It is also prepared by heating glyercol with sodium hydroxide. (b) The ingredient meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 255...
NASA Astrophysics Data System (ADS)
Godelitsas, A.; Kokkoris, M.; Chatzitheodoridis, E.; Misaelides, P.
2008-05-01
The surface of a typical Greek (Thassian) dolomitic marble was studied after interaction with U- and Th-containing aqueous solutions (1000 mg/L, free-drift experiments for 1 week at atmospheric PCO2), using 12C-RBS and Laser μ-Raman spectroscopy. Powder-XRD and SEM-EDS were also applied to investigate the phases deposited on the surface of the interacted samples. The obtained results indicated a considerable removal of U from the aqueous medium mainly due to massive surface precipitation of amorphous UO2-hydroxide phases forming a relatively thick (μm-sized) coating on the carbonate substrate. The interaction of Th with dolomitic marble surface is also intense leading to a formation of an amorphous Th-hydroxide layer of similar thickness but of significantly lower elemental atomic proportion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Zhizhang; Ilton, Eugene S.; Prange, Micah P.
Classical molecular dynamics (MD) simulations were used to study the interactions of up to 2 M NaCl and NaNO3 aqueous solutions with the presumed inert boehmite (010) and gibbsite (001) surfaces. The force field parameters used in these simulations were validated against density functional theory calculations of Na+ and Cl- hydrated complexes adsorbed at the boehmite (010) surface. In all the classical MD simulations and regardless of the ionic strength or the nature of the anion, Na+ ions were found to preferably form inner-sphere complexes over outer-sphere complexes at the aluminum (oxy)hydroxide surfaces, adsorbing closer to the surface than bothmore » water molecules and anions. In contrast, Cl- ions were distributed almost equally between inner- and outer-sphere positions. The resulting asymmetry in adsorption strengths offers molecular-scale evidence for the observed isoelectric point (IEP) shift to higher pH at high ionic strength for aluminum (oxy)hydroxides. As such, the MD simulations also provided clear evidence against the assumption that the basal surfaces of boehmite and gibbsite are inert to background electrolytes. Finally, the MD simulations indicated that, although the adsorption behavior of Na+ in NaNO3 and NaCl solutions was similar, the different affinities of NO3- and Cl- for the aluminum (oxy)hydroxide surfaces might have macroscopic consequences, such as difference in the sensitivity of the IEP to the electrolyte concentration.« less
Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal.
Lu, Yongsheng; Xu, Lu; Shu, Weikang; Zhou, Jizhi; Chen, Xueping; Xu, Yunfeng; Qian, Guangren
2017-01-01
Nitrite, at an environmentally relevant concentration, was significantly reduced with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. The average nitrite removal rates of 1.28±0.08 and 0.65±0.02(mgL -1 )h -1 were achieved with ferrihydrite and magnetite, respectively. The results showed that nitrite removal was able to undergo multiple redox cycles with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. During the bioreduction of the following cycles, biogenic Fe(II) was subsequently chemically oxidized to Fe(III), which is associated with nitrite reduction. There was 11.18±1.26mgL -1 of NH 4 + -N generated in the process of redox cycling of ferrihydrite. Additionally, results obtained by using X-ray diffraction showed that ferrihydrite and magnetite remained mainly stable in the system. This study indicated that redox cycling of Fe in iron (hydr)oxides was a potential process associated with NO 2 - -N removal from solution, and reduced most nitrite abiotically to gaseous nitrogen species. Copyright © 2016 Elsevier Ltd. All rights reserved.
CESIUM RECOVERY FROM AQUEOUS SOLUTIONS
Schneider, R.A.
1961-06-20
Cesium may be precipitated from an aqueous solution whose acidity ranges between a pH of 1.5 and a molarity of 5 on cobaltous, zinc, cadmium, nickel, or ferrous cobalticyanide. This precipitation brings about a separation from most fission products. Ruthenium which coprecipitates to a great degree can be removed by dissolving in sulfuric acid and boiling the solution in the presence of periodic acid for volatilization; other coprecipitated fission products can then be precipitated from the sulfuric acid solution with a ferric hydroxide carrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnabas, Mary Jenisha; Parambadath, Surendran; Mathew, Aneesh
2016-01-15
A pristine Zn/Al-layered double hydroxide (Zn/Al-LDH) showed excellent adsorption ability and selectivity towards In{sup 3+} ions from aqueous solutions. The adsorption behaviour as a function of the contact time, solution pH, ionic strength, and amount of adsorbent under ambient conditions revealed a strong dependency on the pH and ionic strength over In{sup 3+} intake. The structure and properties of Zn/Al-LDH and In{sup 3+} adsorbed Zn/Al-LDH (In–Zn/Al-LDH) were examined carefully by X-ray diffraction, Fourier transform infrared spectroscopy, N{sub 2}-sorption/desorption, UV–vis spectroscopy, and X-ray photoelectron spectroscopy. The adsorbent had a sufficient number of active sites that were responsible for the In{sup 3+}more » adsorption and quite stable even after the adsorption process. The selective adsorption of In{sup 3+} on Zn/Al-LDH was also observed even from a mixture containing competing ions, such as Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, and Cu{sup 2+}. The adsorption experiments showed that Zn/Al-LDH is a promising material for the pre-concentration and selective removal of In{sup 3+} from large volumes of aqueous solutions. - Highlights: • A pristine Zn/Al-layered double hydroxide showed good selectivity for In{sup 3+} ions. • The material exhibited a maximum In{sup 3+} intake of 205 mg g{sup −1} at pH 6. • The materials showed good affinity of In{sup 3+} over Cu{sup 2+} and Pb{sup 2+} from ion mixtures.« less
Structural characterization of nickel oxide/hydroxide nanosheets produced by CBD technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taşköprü, T., E-mail: ttaskopru@anadolu.edu.tr; Department of Physics, Çankırı Karatekin University, Çankırı 18100; Zor, M.
2015-10-15
Graphical abstract: SEM images of (a) as deposited β-Ni(OH)2 and (b) NiO samples deposited with pH 10 solution. The inset figures shows the absorbance spectra of (a) β-Ni(OH)2 and (b) NiO samples. - Highlights: • The formation of β-Ni(OH){sub 2} and NiO were confirmed with XRD, SEM, FT-IR and Raman. • Porous nickel oxide was synthesized after heat treatment of nickel hydroxide. • The increase in pH value changes the nanoflake structure to hexagonal nanosheet. • On increasing the pH from 8 to 11, the band gap decreases from 3.52 to 3.37 eV. - Abstract: Nickel hydroxide samples were depositedmore » onto glass substrates using Ni(NO{sub 3}){sub 2}·6H{sub 2}O and aqueous ammonia by chemical bath deposition technique. The influence of pH of solution was investigated by means of X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, optical absorption and BET analysis. The as-deposited samples were identified as β-Ni(OH){sub 2}, were transformed into NiO after heat treatment in air at 500 °C for 2 h. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets. The optical transitions observed in the absorbance spectra below optical band gap is due to defects or Ni{sup 2+} vacancies in NiO samples. The band gap energy of NiO samples changes between 3.37 and 3.52 eV depending on the pH values.« less
Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...
2017-07-20
Despite the potential carbon-neutrality of switchgrass bio-oil, its high acidity and diverse chemical composition limit its utilization. The objectives of this research are to investigate pH neutralization of bio-oil by adding various alkali solutions in a batch system and then perform neutralization using process intensification devices, including a static mixer and a centrifugal contactor. The results indicate that sodium hydroxide and potassium hydroxide are more appropriate bases for pH neutralization of bio-oil than calcium hydroxide due to the limited solubility of calcium hydroxide in aqueous bio-oil. Mass and total acid number (TAN) balances were performed for both batch and continuous-flowmore » systems. Upon pH neutralization of bio-oil, the TAN values of the system increased after accounting the addition of alkali solution. A bio-oil heating experiment showed that the heat generated during pH neutralization did not cause a significant increase in the acidity of bio-oil. The formation of phenolic compounds during neutralization was initially suspected of increasing the system’s overall TAN value because some of these compounds (e.g., vanillic acid) act as polyprotic acids and have a stronger influence on the TAN value than monoprotic acids (e.g., acetic acid). The amount of phenolics in separated bio-oil phases, however, did not change significantly after pH neutralization. In conclusion, process intensification devices provided sufficient mixing and separation of the organic and aqueous phases, suggesting a scale-up route for the bio-oil pH neutralization process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira
Despite the potential carbon-neutrality of switchgrass bio-oil, its high acidity and diverse chemical composition limit its utilization. The objectives of this research are to investigate pH neutralization of bio-oil by adding various alkali solutions in a batch system and then perform neutralization using process intensification devices, including a static mixer and a centrifugal contactor. The results indicate that sodium hydroxide and potassium hydroxide are more appropriate bases for pH neutralization of bio-oil than calcium hydroxide due to the limited solubility of calcium hydroxide in aqueous bio-oil. Mass and total acid number (TAN) balances were performed for both batch and continuous-flowmore » systems. Upon pH neutralization of bio-oil, the TAN values of the system increased after accounting the addition of alkali solution. A bio-oil heating experiment showed that the heat generated during pH neutralization did not cause a significant increase in the acidity of bio-oil. The formation of phenolic compounds during neutralization was initially suspected of increasing the system’s overall TAN value because some of these compounds (e.g., vanillic acid) act as polyprotic acids and have a stronger influence on the TAN value than monoprotic acids (e.g., acetic acid). The amount of phenolics in separated bio-oil phases, however, did not change significantly after pH neutralization. In conclusion, process intensification devices provided sufficient mixing and separation of the organic and aqueous phases, suggesting a scale-up route for the bio-oil pH neutralization process.« less
Soares, Janir Alves; Leonardo, Mario Roberto; da Silva, Léa Assed Bezerra; Tanomaru Filho, Mario; Ito, Izabel Yoko
2006-01-01
This study aimed at evaluating the antisepsis of the root canal system (RCS) and periapical region (PR) provided by rotary instrumentation associated with chlorhexidine + calcium hydroxide as intracanal medicament. Chronic periapical lesions were induced in 26 pre-molar roots in two dogs. After microbiological sampling, automatic instrumentation using the Profile system and irrigation with 5.25% sodium hypochlorite solution, with a final rinse of 14.3% EDTA followed by profuse irrigation with physiological saline were carried out in 18 root canals. After drying the canals, a paste based on calcium hydroxide associated with a 2% chlorhexidine digluconate solution was placed inside them. After 21 days, the medication was removed, leaving the root canals empty and coronally sealed. After 96 hours, a final microbiological sample was obtained, followed by histomicrobiological processing by the Brown & Brenn method. Eight untreated root canals represented the control group (C-G). Based on the Mann-Whitney test at a confidence level of 5% (p < 0.05), the procedures of antisepsis used offered significant efficacy (p < 0.05) resulting in 100.0% of the canals free of microorganisms. In the C-G, an elevated incidence of various microbial morphotypes was confirmed in all sites of the RCS, with the presence of microbial colonies in the periapical region. In contrast, the experimental group showed a similar pattern of infection in the RCS, although less intense and a reduced level of periapical infection (p < 0.05). It was concluded that adequate instrumentation followed by the application of calcium hydroxide + chlorhexidine offered significant elimination of microorganisms.
NASA Astrophysics Data System (ADS)
Ganesh, Karthik
Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts. However, by extrapolating the necessary rate of concentration of sodium hydroxide required to produce hydrogen rates that would enable use of the system on highway drive cycles, it was deemed unsafe due to the caustic nature of the solution used.
Ponce de León, Claudia A; DeNicola, Katie; Montes Bayón, Maria; Caruso, Joseph A
2003-06-01
Different techniques have been employed in order to evaluate the most efficient procedure for the extraction of selenium from soil as required for speciation. Selenium contaminated sediments from Stewart Lake Wetland, California were used. A strong acid mineralization of the samples gives quantitative total selenium, which is then used to estimate recoveries for the milder extraction methods. The different extraction methodologies involve the sequential use of water, buffer (phosphate, pH 7) and either acid solution (e.g. HNO3 or HCl) or basic solutions (e.g. ammonium acetate, NaOH or TMAH). Pyrophosphate extraction was also evaluated and showed that selenium was not associated with humic acids. The extractants were subsequently analyzed by size exclusion chromatography (SEC) with UV (254 and 400 nm) and on-line ICP-MS detection; anion exchange chromatography, and ion-pair reversed phase chromatography with ICP-MS detection. For sequential extractions the extraction efficiencies showed that the basic extractions were more efficient than the acidic. The difference between the acidic and the basic extraction efficiency is carried to the sulfite extraction, suggesting that whatever is not extracted by the acid is subsequently extracted by the sulfite. The species identified with the different chromatographies were selenate, selenite, elemental selenium and some organic selenium.
Multicomponent Oxide Systems for Corrosion Protection.
1980-11-15
hydroxides on film growth. New types of mixed oxide coatings deposited from nonaqueous solutions of organometallic compounds were developed. Titanium -aluminum...mixed oxide coatings, deposited from solutions of titanium alkoxides in isopropanol, served as a prototype system for much of this work. It was found...45 13. Coating Steps and Analysis... ...................... 50 14. Auger Depth Profiles of Titanium -Aluminum Mixed Oxide *Coatings Deposited
Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers
Beom-Goo Lee; Roger M. Rowell
2004-01-01
Spruce, coconut coir, sugarcane bagasse, kenaf bast, kenaf core, and cotton were tested for their ability to remove copper, nickel and zinc ions from aqueous-solutions as a function of their lignin content. The fibers were analyzed for sugar and lignin content and extracted with diethyl ether, ethyl alcohol. hot water, or 1% sodium hydroxide. The order of lignin...
Watanabe, Satoshi; Kashiwagi, Rei; Matsumoto, Mutsuyoshi
2017-03-01
We discuss an alternate spray-coating technique for the direct fabrication of hydroxyapatite films using metal masks, suction-type spray nozzles and two calcification solutions of calcium hydroxide and phosphoric acid aqueous solutions. Hydroxyapatite films were formed only on the hydrophobic surface of the substrates. Scanning electron microscopy and energy dispersive X-ray spectroscopy showed that the spray-coated films consisted of hydroxyapatite nanoparticles. The Ca/P ratio was estimated to be about 1.26. X-ray diffraction patterns of the spray-coated films almost coincided with those of the hydroxyapatite powders, showing that the spray-coated films consisted of hydroxyapatite nanoparticles. Dot arrays of hydroxyapatite films at a diameter of 100 μm were formed by tuning the concentrations of calcium hydroxide and phosphoric acid aqueous solutions. This technique allows for the direct fabrication of the hydroxyapatite films without crystal growth process in hydroxyapatite precursors, the scaffolds of crystal growth such as biocompatibility SiO 2 -CaO glasses, or electrophoresis processes. By using this technique, large-area ceramic films with biocompatibility will be micropatterned with minimized material consumption, short fabrication time, and reduced equipment investments.
Xu, Zhiyuan; Shi, Jingjing; Haroone, Muhammad Sohail; Chen, Wenpeng; Zheng, Shufang; Lu, Jun
2018-04-01
Due to the superiority of metal-doped ZnO compared to TiO 2 , the Zn-M (M = Al 3+ , Ga 3+ , Cr 3+ , Ti 4+ , Ce 4+ ) mixed metal oxide solid solutions have been extensively studied for photocatalytic and photovoltaic applications. In this work, a systematic research has proceeded for the preparation of a zinc-aluminum oxide semiconductor as a photoanode for the dye-sensitized solar cells (DSSCs) by a simple pyrolysis route with the Zn-Al layered double hydroxide (LDH) as a precursor. The Zn-Al oxide solid solution has been applied for DSSCs as an electron acceptor, which is used to study the influence of different Al content and sintering temperature on the device efficiency. Finally, the Zn-Al oxide solid solution with calcination temperature 600 °C and Al 27 at.% content exhibits the best performance. The photoelectric efficiency improved 100 times when the Al 3+ content decreased from 44 to 27 at.%. The Zn x Al y O solid solution show a reasonable efficiency as photoanode materials in DSSCs, with the best preliminary performance reported so far, and shows its potential application for the photovoltaic devices. Copyright © 2018 Elsevier Inc. All rights reserved.
Kaufman, D.
1958-04-15
A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.
Effect of strong acids on red mud structural and fluoride adsorption properties.
Liang, Wentao; Couperthwaite, Sara J; Kaur, Gurkiran; Yan, Cheng; Johnstone, Dean W; Millar, Graeme J
2014-06-01
The removal of fluoride using red mud has been improved by acidifying red mud with hydrochloric, nitric and sulphuric acid. The acidification of red mud causes sodalite and cancrinite phases to dissociate, confirmed by the release of sodium and aluminium into solution as well as the disappearance of sodalite bands and peaks in infrared and X-ray diffraction data. The dissolution of these mineral phases increases the amount of available iron and aluminium oxide/hydroxide sites that are accessible for the adsorption of fluoride. However, concentrated acids have a negative effect on adsorption due to the dissolution of these iron and aluminium oxide/hydroxide sites. The removal of fluoride is dependent on the charge of iron and aluminium oxide/hydroxides on the surface of red mud. Acidifying red mud with hydrochloric, nitric and sulphuric acid resulted in surface sites of the form ≡SOH2(+) and ≡SOH. Optimum removal is obtained when the majority of surface sites are in the form ≡SOH2(+) as the substitution of a fluoride ion does not cause a significant increase in pH. This investigation shows the importance of having a low and consistent pH for the removal of fluoride from aqueous solutions using red mud. Copyright © 2014 Elsevier Inc. All rights reserved.
Production of Chromium Oxide from Turkish Chromite Concentrate Using Ethanol
NASA Astrophysics Data System (ADS)
Aktas, S.; Eyuboglu, C.; Morcali, M. H.; Özbey, S.; Sucuoglu, Y.
2015-05-01
In this study, the possibility of chromium extraction from Turkish chromite concentrate and the production of chromium oxide were investigated. For the conversion of chromium(III) into chromium(VI), NaOH was employed, as well as air with a rate of 20 L/min. The effects of the base amount, fusing temperature, and fusing time on the chromium conversion percentage were investigated in detail. The conversion kinetics of chromium(III) to chromium(VI) was also undertaken. Following the steps of dissolving the sodium chromate in water and filtering, aluminum hydroxide was precipitated by adjusting the pH level of the solution. The chromium(VI) solution was subsequently converted to Cr(III) by the combination of sulfuric acid and ethanol. Interestingly, it was observed that ethanol precipitated chromium as chromium(VI) at mildly acidic pH levels, although this effect is more pronounced for K2Cr2O7 than Na2Cr2O7. On the other hand, in the strongly acidic regime, ethanol acted as a reducing agent role in that chromium(VI) was converted into Cr(III) whereas ethanol itself was oxidized to carbon dioxide and water. Subsequently, chromium hydroxide was obtained by the help of sodium hydroxide and converted to chromium oxide by heating at 800 °C, as indicated in thermo gravimetric analysis (TGA).
Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana
2013-01-01
Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems.
Estrela, Carlos; Holland, Roberto; Bernabé, Pedro Felício Estrada; de Souza, Valdir; Estrela, Cyntia R A
2004-01-01
The objective of this study was to evaluate the influence of irrigants on the antimicrobial potential of calcium hydroxide paste in dogs' teeth with apical periodontitis. Forty-eight premolar teeth of adult mongrel dogs had their root canals opened to the oral environment for 6 months. The root canals were prepared and treated with different irrigating solutions and intracanal medicaments, according to the following groups: 1) 2.5% sodium hypochlorite (NaOCl) + calcium hydroxide paste (CHP); 2) 2% chlorhexidine (CHX) + CHP; 3) vinegar + CHP; 4) vinegar + vinegar. In group 4, both the irrigating solution and intracanal medicament were vinegar, which was renewed every 7 days. Each sample was collected by using two paper points maintained in position for 1 min, and individually transported and immersed in 7 mL of Letheen broth (LB), followed by incubation at 37 degrees C for 48 h. Microbial growth was analyzed by two methods: turbidity of the culture medium and subculture on a specific nutrient broth (brain heart infusion). After 21 days, all experimental groups had microbial growth, however, in different percentages: group 1 - 30%; group 2 - 30%; group 3 - 40%; group 4 - 60%. All materials tested had antimicrobial potential; however, the influence of calcium hydroxide paste on the control of microorganisms must be remembered.
Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie
2015-11-25
Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum-nickel hydroxide-graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts.
Autopsy results of a case of ingestion of sodium hydroxide solution.
Emoto, Yuko; Yoshizawa, Katsuhiko; Shikata, Nobuaki; Tsubura, Airo; Nagasaki, Yasushi
2016-01-01
Sodium hydroxide is a strongly corrosive alkali. We describe herein a case of suicide by ingestion of sodium hydroxide. A man in his 80s was found dead with a mug and a bottle of caustic soda. Macroscopically, liquefaction and/or disappearance of esophagus, trachea and lung tissue and a grayish discoloration of the mucosa of the stomach were seen along with blackish brown coloration of the skin, mouth, and oral cavity. The contents of the gastrointestinal tract showed a pH level of 7-8 on pH indicator strips. Histopathologically, liquefactive necrosis of remnant lung tissue and the stomach were seen. As biological reactions such as vasodilatation and inflammation were not detected in these organs, only a short number of hours must have passed between ingestion and death. This human case provides valuable information concerning the direct irritation induced by systemic exposure to corrosive substances.
In situ remediation process using divalent metal cations
Brady, Patrick V.; Khandaker, Nadim R.; Krumhansl, James L.; Teter, David M.
2004-12-14
An in situ process for treating ambient solid materials (e.g., soils, aquifer solids, sludges) by adding one or more divalent metal cations to the ambient solid material. The added divalent metal cations, such as Cu.sup.2+ or Zn.sup.2+, combine with metal oxide/hydroxides (e.g., ferric oxide/hydroxide or aluminum oxide/hydroxide) already present in the ambient solid material to form an effective sorbent material having a large number of positively-charged surface complexes that binds and immobilizes anionic contaminant species (e.g., arsenic or chromate). Divalent metal cations can be added, for example, by injecting an aqueous solution of CuSO.sub.4 into an aquifer contaminated with arsenic or chromate. Also, sludges can be stabilized against leaching of anionic contaminants through the addition of divalent metal cations. Also, an inexpensive sorbent material can be easily formed by mixing divalent metal cations with soil that has been removed from the ground.
Cho, Seungho; Jung, Sungwook; Jeong, Sanghwa; Bang, Jiwon; Park, Joonhyuck; Park, Youngrong; Kim, Sungjee
2013-01-08
Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites.
The Blue Bottle Experiment--Simple Demonstration of Self-Organization.
ERIC Educational Resources Information Center
Adamcikova, L'ubica; Sevcik, Peter
1998-01-01
Explains a way of observing pattern formation in the Blue Bottle chemistry demonstration by pouring a solution containing sodium hydroxide, glucose, and dye into a Petri dish and placing the dish on an overhead projector. (WRM)
Implementation of ferric hydroxide-based media for removal of toxic metalloids
NASA Astrophysics Data System (ADS)
Szlachta, Małgorzata; Wójtowicz, Patryk
2017-11-01
Effective removal of inorganic arsenic species is possible by application of the sorption technique with the use of iron-based sorbents. This study investigates the removal of arsenic(III) and arsenic(V) from an aqueous solution by application of a granular ferric hydroxide-based sorbent. The performance of tested media was evaluated based on the batch and fixed-bed adsorption studies. The efficiency of the process was determined with various treatment times, adsorbent doses, initial concentrations of arsenic and various solution temperatures. The obtained adsorption data were fitted with pseudo-first and second-order kinetic models and Langmuir and Freundlich isotherm equations. It was observed that the overall arsenite removal was lower when compared to the arsenate, and all tested operating parameters influenced the process efficiency. The experiments under dynamic conditions showed high treatment capacity and stability of tested adsorbent over a long period of time.
A nanostructured graphene/polyaniline hybrid material for supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Hualan; Hao, Qingli; Yang, Xujie; Lu, Lude; Wang, Xin
2010-10-01
A flexible graphene/polyaniline hybrid material as a supercapacitor electrode was synthesized by an in situ polymerization-reduction/dedoping-redoping process. This product was first prepared in an ethylene glycol medium, then treated with hot sodium hydroxide solution to obtain the reduced graphene oxide/polyaniline hybrid material. Sodium hydroxide also acted as a dedoping reagent for polyaniline in the composite. After redoping in an acidic solution, the thin, uniform and flexible conducting graphene/polyaniline product was obtained with unchanged morphology. The chemical structure of the materials was characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. The composite material showed better electrochemical performances than the pure individual components. A high specific capacitance of 1126 F g-1 was obtained with a retention life of 84% after 1000 cycles for supercapacitors. The energy density and power density were also better than those of pure component materials.
A nanostructured graphene/polyaniline hybrid material for supercapacitors.
Wang, Hualan; Hao, Qingli; Yang, Xujie; Lu, Lude; Wang, Xin
2010-10-01
A flexible graphene/polyaniline hybrid material as a supercapacitor electrode was synthesized by an in situ polymerization-reduction/dedoping-redoping process. This product was first prepared in an ethylene glycol medium, then treated with hot sodium hydroxide solution to obtain the reduced graphene oxide/polyaniline hybrid material. Sodium hydroxide also acted as a dedoping reagent for polyaniline in the composite. After redoping in an acidic solution, the thin, uniform and flexible conducting graphene/polyaniline product was obtained with unchanged morphology. The chemical structure of the materials was characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. The composite material showed better electrochemical performances than the pure individual components. A high specific capacitance of 1126 F g(-1) was obtained with a retention life of 84% after 1000 cycles for supercapacitors. The energy density and power density were also better than those of pure component materials.
Lavrynenko, O M; Pavlenko, O Yu; Shchukin, Yu S
2016-12-01
The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.
NASA Astrophysics Data System (ADS)
Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.
2016-02-01
The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.
Reduction of biselenites into polyselenides in interlayer space of layered double hydroxides
NASA Astrophysics Data System (ADS)
Kim, Myeong Shin; Lee, Yongju; Park, Yong-Min; Cha, Ji-Hyun; Jung, Duk-Young
2018-06-01
A selenous acid (H2SeO3) precursor was intercalated as biselenite (HSeO3-) ions into the interlayer gallery of carbonated magnesium aluminum layered double hydroxide (MgAl-LDH) in aqueous solution. Reduction reaction of selenous ions by aqueous hydrazine solution produced polyselenide intercalated LDHs which were consecutively exchanged with iodide through redox reaction under iodine vapor. The polyselenide containing LDHs adsorbed iodine vapor spontaneously and triiodide was incorporated in the interlayer space followed by formation of selenium polycrystalline phase. Two dimensional framework of MgAl-LDH is strong enough to resist against the reducing power of hydrazine as well as oxidation condition of iodine. The SEM data demonstrated that the shapes of LDH polycrystalline have little changed after the above redox reactions. The polyselenide and iodide LDH products were analyzed by XRD, Infrared and Raman spectra which strongly suggested the horizontal arrangement of polyselenide and triiodide in gallery space of LDHs.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., readable to 0.01 g or better. 3.2pH meter, standardized to pH 4.0 with pH 4.0 buffer and pH 7 with pH 7.0... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0, using the...
Kaneko, Kenitiro; Ono, Yasuyuki; Tainaka, Takahisa; Sumida, Wataru; Ando, Hisami
2009-07-01
Symptoms of choledochal cysts are caused by protein plugs made of lithostathine, which block the long common channel and increase pancreaticobiliary ductal pressure. Agents that dissolve protein plugs can provide relief from or prevent symptoms. In the present study, drugs reportedly effective for pancreatic and biliary stones were used in dissolution tests. Protein plugs were obtained from choledochal cysts during surgery in two children (5- and 6-year-old girls). Plugs approximately 2 mm in diameter were immersed in citric acid, tartaric acid, dimethadione, bromhexine, dehydrocholic acid, sodium citrate, hydrochloric acid, and sodium hydroxide solutions under observation with a digital microscope. The pH of each solution was measured using a pH meter. Plugs dissolved in citric acid (5.2 mM; pH 2.64), tartaric acid (6.7 mM; pH 2.51), dimethadione (75 mM; pH 3.70), hydrochloric acid (0.5 mM; pH 3.13), and sodium hydroxide (75 mM; pH 12.75) solutions. Plugs did not dissolve in dimethadione (7.5 mM; pH 4.31), bromhexine (0.1%; pH 4.68), dehydrocholic acid (5%; pH 7.45), and sodium citrate (75 mM; pH 7.23) solutions. Protein plugs in choledochal cysts are dissolved in acidic and basic solutions, which may eliminate longitudinal electrostatic interactions of the lithostathine protofibrils.
Lin, Hui; Wang, Yujuan; Niu, Junfeng; Yue, Zhihan; Huang, Qingguo
2015-09-01
Removal of environmentally persistent perfluoroalkyl acids (PFAAs), that is, perfluorooctanesulfonate (PFOS) and perfluorocarboxylic acids (PFCAs, C4 ∼ C10) were investigated through sorption on four metal hydroxide flocs generated in situ by electrocoagulation in deionized water with 10 mM NaCl as supporting electrolyte. The results indicated that the zinc hydroxide flocs yielded the highest removal efficiency with a wide range concentration of PFOA/PFOS (1.5 μM ∼ 0.5 mM) at the zinc dosage <150 mg L(-1) with the energy consumption <0.18 Wh L(-1). The sorption kinetics indicated that the zinc hydroxide flocs had an equilibrium adsorbed amount (qe) up to 5.74/7.69 mmol g(-1) (Zn) for PFOA/PFOS at the initial concentration of 0.5 mM with an initial sorption rate (v0) of 1.01 × 10(3)/1.81 × 10(3) mmol g(-1) h(-1). The sorption of PFOA/PFOS reached equilibrium within <10 min. The sorption mechanisms of PFAAs on the zinc hydroxide flocs were proposed based on the investigation of various driving forces. The results indicated that the hydrophobic interaction was primarily responsible for the PFAAs sorption. The electrocoagulation process with zinc anode may have a great potential for removing PFAAs from industrial wastewater as well as contaminated environmental waterbody.
Preparation and characterization of polystyrene/neodymium hydroxide (PS/Nd(OH)3) nano-composites
NASA Astrophysics Data System (ADS)
Alsewailem, Fares D.; Bagabas, Abdulaziz A.; Binkhodor, Yazeed A.
2018-03-01
Composites of polystyrene and Neodymium hydroxide nanrods (PS/Nd(OH)3) were formulated and characterized in this study. Cetyl (1-hexadccyl) trimethyl ammonium bromide (CTAB) was used as dispersion agent for the Nd(OH)3 rods in the PS matrix. PS/Nd(OH)3 composites were prepared by solution and melt compounding. Morphological, thermal, and mechanical properties of the prepared composites were investigated. CTAB was found to be more effective as dispersion agent in composites prepared by solution compounding in comparison with those prepared by melt compounding, and that was due to the mild conditions used in solution compounding. Nonetheless, impact strength of the composite at 0.5 wt% Nd(OH)3 was drastically reduced in the absence of CTAB. Both tensile and impact strengths were found to greatly decreased at higher loading of Nd(OH)3, e.g. 5 wt%, even with the use of CTAB. Thermal stability of the PS/Nd(OH)3 composites was noticeably increased at relatively low loading of Nd(OH)3, e.g. 0.5 wt%.
Common stock solutions, buffers, and media.
2001-05-01
This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.
Histological analysis of the biocompatibility of calcium hydroxide associated with a new vehicle.
Simi Junior, Jacy; Machado, Ricardo; Souza, Cássio José Alves de; Loyola, Adriano Motta; Vansan, Luiz Pascoal; Antoniazzi, João Humberto
2015-01-01
Several substances have been researched to act as vehicles associated with calcium hydroxide. The specific type of vehicle is directly related to the effectiveness of the ionic dissociation, antimicrobial action, and biocompatibility of this medication. To make a histological evaluation of the biocompatibility of calcium hydroxide associated with a new vehicle (triethanolamine), compared with polyethylene glycol, saline solution, and olive oil. Fifty mice of guinea pig species were randomly divided into five groups (n = 10) according to each vehicle used--Group 1: calcium hydroxide, Group 2: triethanolamine, Group 3: polyethylene glycol, Group 4: saline solution, and Group 5: olive oil--and further divided into subgroups according to the two analysis periods--(a) 30 and (b) 90 days. Teflon carriers filled with the evaluated substances were placed in standardized bone cavities in the anterior mandible region. The animals were euthanized to perform a histological analysis after the time periods analyzed. In 30 days, specimens from Groups 1, 3, and 5 showed a very pronounced inflammatory response. Specimens from Group 2 showed an inflammatory reaction ranging from mild to severe, with rapid resorption of the material and progressive advancement of osteoid tissue into the teflon carriers. Specimens from Group 4 showed a moderate inflammatory reaction. In 90 days, specimens from Group 1 showed a very pronounced fibrous replacement. In regard to Group 2 specimens, the tested material was solubilized and replaced by newly formed bone tissue. For Groups 3 and 5 specimens, the inflammatory reaction went from acute to moderate. In relation to Group 4 specimens, an organized bone formation process was observed. Specimens from Group 2 showed higher biocompatibility, especially as compared with the specimens from Groups 3 and 5.
Fujioka, Nanae; Suzuki, Moe; Kurosu, Shunji; Kawase, Yoshinori
2016-02-01
The iron elution and dissolved oxygen (DO) consumption in organic pollutant removal by nanoscale zero-valent iron (nZVI) was examined in the range of solution pH from 3.0 to 9.0. Their behaviors were linked with the removal of organic pollutant through the dissolution of iron and the formation of iron oxide/hydroxide layer affected strongly by solution pH and DO. As an example of organic pollutants, azo-dye Orange II was chosen in this study. The chemical composition analyses before and after reaction confirmed the corrosion of nZVI into ions, the formation of iron oxide/hydroxide layer on nZVI surface and the adsorption of the pollutant and its intermediates. The complete decolorization of Orange II with nZVI was accomplished very quickly. On the other hand, the total organic carbon (TOC) removal was considerably slow and the maximum TOC removal was around 40% obtained at pH 9.0. The reductive cleavage of azo-bond by emitted electrons more readily took place as compared with the cleavage of aromatic rings of Orange II leading to the degradation to smaller molecules and subsequently the mineralization. A reaction kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach was developed to elucidate mechanisms for organic pollutant removal controlled by the formation of iron oxide/hydroxide layer, the progress of which could be characterized by considering the dynamic concentration changes in Fe(2+) and DO. The dynamic profiles of Orange II removal linked with Fe(2+) and DO could be reasonably simulated in the range of pH from 3.0 to 9.0. Copyright © 2015 Elsevier Ltd. All rights reserved.
Process for extracting technetium from alkaline solutions
Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.
1995-01-01
A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.
SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES
Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.
1962-08-14
A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)
Sodium hydroxide based non-detergent decellularizing solution for rat lung.
Sengyoku, Hideyori; Tsuchiya, Tomoshi; Obata, Tomohiro; Doi, Ryoichiro; Hashimoto, Yasumasa; Ishii, Mitsutoshi; Sakai, Hiromi; Matsuo, Naoto; Taniguchi, Daisuke; Suematsu, Takashi; Lawn, Murray; Matsumoto, Keitaro; Miyazaki, Takuro; Nagayasu, Takeshi
2018-06-11
Lung transplantation is the last option for the treatment of end stage chronic lung disorders. Because the shortage of donor lung organs represents the main hurdle, lung regeneration has been considered to overcome this hurdle. Recellularization of decellularized organ scaffold is a promising option for organ regeneration. Although detergents are ordinarily used for decellularization, other approaches are possible. Here we used high alkaline (pH12) sodium hydroxide (NaOH)-PBS solution without detergents for lung decellularization and compared the efficacy on DNA elimination and ECM preservation with detergent based decellularization solutions CHAPS and SDS. Immunohistochemical image analysis showed that cell components were removed by NaOH solution as well as other detergents. A Collagen and GAG assay showed that the collagen reduction of the NaOH group was comparable to that of the CHAPS and SDS groups. However, DNA reduction was more significant in the NaOH group than in other groups (p < 0.0001). The recellularization of HUVEC revealed cell attachment was not inferior to that of the SDS group. Ex vivo functional analysis showed 100% oxygen ventilation increased oxygen partial pressure as artificial hemoglobin vesicle-PBS solution passed through regenerated lungs in the SDS or NaOH group. It was concluded that the NaOH-PBS based decellularization solution was comparable to ordinal decellularizaton solutions and competitive in cost effectiveness and residues in the decellularized scaffold negligible, thus providing another potential option to detergent for future clinical usage.
Etching fission tracks in zircons
Naeser, C.W.
1969-01-01
A new technique has been developed whereby fission tracks can be etched in zircon with a solution of sodium hydroxide at 220??C. Etching time varied between 15 minutes and 5 hours. Colored zircon required less etching time than the colorless varieties.
A method for making an alkaline battery electrode plate
NASA Technical Reports Server (NTRS)
Chida, K.; Ezaki, T.
1983-01-01
A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.
Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir
2016-01-01
The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322
Electrodialysis operation with buffer solution
Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL
2009-12-15
A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.
1991-08-01
hydroxide 66.0 17.5 1 Mineral seal oil 1.00 0.26 1.00 Fluorochemical surfactant 0.02 0.005 0.02 Sodiun carbonate 1.62 0.43 5.00 Sulfunated oleic acid ...specified rejuvenating additive is currently not added to the solution at LEAD. d Sodium salt of N-hydroxyethylethylenediamine triacetic acid , dihydrate...methylene chloride) and formic acid or I abrasive blasting. Aluminum parts are not stripped in alkaline solutions because these solutions chemically attack
Department of Transportation Inhalation Test of Neutralized GB Hydrolysate in Sprague-Dawley Rats
2009-05-01
a product solution resulting from chemically neutralizing GB with aqueous sodium hydroxide ( pH 12.8) as an acceptably treated waste that can be...transported offsite for secondary treatment. An acute inhalation toxicity test was conducted on a ph adjusted hydrolysate solution ( pH 7.8) to assess...day post-exposure period, an endpoint of the DOT study. The product solution from the neutralized ( pH 7.8) hydrolysate does not appear to pose an
Code of Federal Regulations, 2011 CFR
2011-07-01
... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 4.0 with pH 4.0 buffer and pH 7 with pH 7.0 buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3... hydrochloride solution, 100 grams per liter, pH adjusted to 4.00. 4.3Hydrochloric acid solution, 1.0 N and 0.1 N... magnetic stirrer. Confirm that the resin has dissolved. 5.4Adjust the resin/solvent solution to pH 4.0...
Low voltage operation of GaN vertical nanowire MOSFET
NASA Astrophysics Data System (ADS)
Son, Dong-Hyeok; Jo, Young-Woo; Seo, Jae Hwa; Won, Chul-Ho; Im, Ki-Sik; Lee, Yong Soo; Jang, Hwan Soo; Kim, Dae-Hyun; Kang, In Man; Lee, Jung-Hee
2018-07-01
GaN gate-all-around (GAA) vertical nanowire MOSFET (VNWMOSFET) with channel length of 300 nm and diameter of 120 nm, the narrowest GaN-based vertical nanowire transistor ever achieved from the top-down approach, was fabricated by utilizing anisotropic side-wall wet etching in TMAH solution and photoresist etch-back process. The VNWMOSFET exhibited output characteristics with very low saturation drain voltage of less than 0.5 V, which is hardly observed from the wide bandgap-based devices. Simulation results indicated that the narrow diameter of the VNWMOSFET with relatively short channel length is responsible for the low voltage operation. The VNWMOSFET also demonstrated normally-off mode with threshold voltage (VTH) of 0.7 V, extremely low leakage current of ∼10-14 A, low drain-induced barrier lowering (DIBL) of 125 mV/V, and subthreshold swing (SS) of 66-122 mV/decade. The GaN GAA VNWMOSFET with narrow channel diameter investigated in this work would be promising for new low voltage logic application. He has been a Professor with the School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu, Korea, since 1993
Characterization of manganese?gallium mixed oxide powders
NASA Astrophysics Data System (ADS)
Sánchez Escribano, Vicente; Fernández López, Enrique; Sánchez Huidobro, Paula; Panizza, Marta; Resini, Carlo; Gallardo-Amores, José M.; Busca, Guido
2003-11-01
MnGa mixed oxides have been prepared by coprecipitation of the corresponding oxo-hydroxides as powders and have been characterized in relation to their structural and optical properties. The materials have been characterized by XRD, TG-DTA, skeletal IR and UV-visible-NIR spectroscopies. Large solubility of Mn in the diaspore type α-GaOOH oxo-hydroxide has been found. The spinel related structures of hausmannite Mn 3O 4 and of β-gallia present large reciprocal solubilities at least in a metastable form. At high temperature also bixbyite-type α-Mn 2O 3 solid solutions containing up to 20% at. Ga have been observed.
Continuous Precipitation of Ceria Nanoparticles from a Continuous Flow Micromixer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Chih Heng; Paul, Brian; Chang, Chih-hung
2013-01-01
Cerium oxide nanoparticles were continuously precipitated from a solution of cerium(III) nitrate and ammonium hydroxide using a micro-scale T-mixer. Findings show that the method of mixing is important in the ceria precipitation process. In batch mixing and deposition, disintegration and agglomeration dominates the deposited film. In T-mixing and deposition, more uniform nanorod particles are attainable. In addition, it was found that the micromixing approach reduced the exposure of the Ce(OH)3 precipates to oxygen, yielding hydroxide precipates in place of CeO2 precipitates. Advantages of the micro-scale T-mixing approach include shorter mixing times, better control of nanoparticle shape and less agglomeration.
NASA Astrophysics Data System (ADS)
Musyarofah, N. R. R.; Gunlazuardi, J.; Einaga, Y.; Ivandini, T. A.
2017-04-01
Anodic stripping voltammetry (ASV) of nickel ions in phosphate buffer solution (PBS) have been investigated at boron-doped diamond (BDD) electrodes. The deposition potential at 0.1 V (vs. Ag/AgCl) for 300 s in 0.1 M PBS pH 3 was found as the optimum condition. The condition was applied for the determination of nickel contained in nickel hydroxide nanoparticles. A linear calibration curve can be achieved of Ni(OH)2-NPs in the concentration range of x to x mM with an estimated limit of detection (LOD) of 5.73 × 10-6 mol/L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britto, Sylvia, E-mail: sylviabritto11@gmail.com; Kamath, P. Vishnu
2014-07-01
“Imbibition” of Zn{sup 2+} ions into the cation vacancies of bayerite–Al(OH){sub 3} and NO{sub 3}{sup −} ions into the interlayer gallery yields an Al-rich layered double hydroxide with Al/Zn ratio ∼3. NO{sub 3}{sup −} ions are intercalated with their molecular planes inclined at an angle to the plane of the metal hydroxide slab and bonded to it by hydrogen bonds. Rietveld refinement of the structure shows that the monoclinic symmetry of the precursor bayerite is preserved in the product, showing that the imbibition is topochemical in nature. The nitrate ion is labile and is quantitatively replaced by CrO{sub 4}{sup 2−}more » ions from solution. The uptake of CrO{sub 4}{sup 2−} ions follows a Langmuir adsorption isotherm, thus showing that the hydroxide is a candidate material for green chemistry applications for the removal of CrO{sub 4}{sup 2−} ions from waste water. Rietveld refinement of the structure of the hydroxide after CrO{sub 4}{sup 2−} inclusion reveals that the CrO{sub 4}{sup 2−} ion is intercalated with one of its 2-fold axes parallel to the b-crystallographic axis of the crystal, also the principal 2 axis of the monoclinic cell. - Graphical abstract: The structure of the [Zn–Al4-nitrate] LDH viewed along the a-axis. - Highlights: • Synthesis of Al-rich layered double hydroxide with Al/Zn ratio ∼3. • Rietveld refinement indicates that the imbibition of Zn into Al(OH){sub 3} is topochemical in nature. • The uptake of CrO{sub 4}{sup 2−} ions follows a Langmuir adsorption isotherm.« less
Aluminum affects heterogeneous Fe(III) (Hydr)oxide nucleation, growth, and ostwald ripening.
Hu, Yandi; Li, Qingyun; Lee, Byeongdu; Jun, Young-Shin
2014-01-01
Heterogeneous coprecipitation of iron and aluminum oxides is an important process for pollutant immobilization and removal in natural and engineered aqueous environments. Here, using a synchrotron-based small-angle X-ray scattering technique, we studied heterogeneous nucleation and growth of Fe(III) (hydr)oxide on quartz under conditions found in acid mine drainage (at pH = 3.7 ± 0.2, [Fe(3+)] = 10(-4) M) with different initial aqueous Al/Fe ratios (0:1, 1:1, and 5:1). Interestingly, although the atomic ratios of Al/Fe in the newly formed Fe(III) (hydr)oxide precipitates were less than 1%, the in situ particle size and volume evolutions of the precipitates on quartz were significantly influenced by aqueous Al/Fe ratios. At the end of the 3 h experiments, with aqueous Al/Fe ratios of 0:1, 1:1, and 5:1, the average radii of gyration of particles on quartz were 5.7 ± 0.3, 4.6 ± 0.1, and 3.7 ± 0.3 nm, respectively, and the ratio of total particle volumes on quartz was 1.7:3.4:1.0. The Fe(III) (hydr)oxide precipitates were poorly crystallized, and were positively charged in all solutions. In the presence of Al(3+), Al(3+) adsorption onto quartz changed the surface charge of quartz from negative to positive, which caused the slower heterogeneous growth of Fe(III) (hydr)oxide on quartz. Furthermore, Al affected the amount of water included in the Fe(III) (hydr)oxides, which can influence their adsorption capacity. This study yielded important information usable for pollutant removal not only in natural environments, but also in engineered water treatment processes.
Bonding by Hydroxide-Catalyzed Hydration and Dehydration
NASA Technical Reports Server (NTRS)
Gwo, Dz-Hung
2008-01-01
A simple, inexpensive method for bonding solid objects exploits hydroxide-catalyzed hydration and dehydration to form silicate-like networks in thin surface and interfacial layers between the objects. The method can be practiced at room temperature or over a wide range of temperatures. The method was developed especially to enable the formation of precise, reliable bonds between precise optical components. The bonds thus formed exhibit the precision and transparency of bonds formed by the conventional optical-contact method and the strength and reliability of high-temperature frit bonds. The method also lends itself to numerous non-optical applications in which there are requirements for precise bonds and/or requirements for bonds, whether precise or imprecise, that can reliably withstand severe environmental conditions. Categories of such non-optical applications include forming composite materials, coating substrates, forming laminate structures, and preparing objects of defined geometry and composition. The method is applicable to materials that either (1) can form silicate-like networks in the sense that they have silicate-like molecular structures that are extensible into silicate-like networks or (2) can be chemically linked to silicate-like networks by means of hydroxide-catalyzed hydration and dehydration. When hydrated, a material of either type features surface hydroxyl (-OH) groups. In this method, a silicate-like network that bonds two substrates can be formed either by a bonding material alone or by the bonding material together with material from either or both of the substrates. Typically, an aqueous hydroxide bonding solution is dispensed and allowed to flow between the mating surfaces by capillary action. If the surface figures of the substrates do not match precisely, bonding could be improved by including a filling material in the bonding solution. Preferably, the filling material should include at least one ingredient that can be hydrated to have exposed hydroxyl groups and that can be chemically linked, by hydroxide catalysis, to a silicate-like network. The silicate-like network could be generated in situ from the filling material and/or substrate material, or could be originally present in the bonding material.
Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.
1959-08-18
A method is described for separating U/sup 233/ from thorium and fission products. The separation is effected by forming a thorium-nitric acid solution of about 3 pH, adding hydrogen peroxide to precipitate uranium and thorium peroxide, treating the peroxides with sodium hydroxide to selectively precipitate the uranium peroxide, and reacting the separated solution with nitric acid to re- precipitate the uranium peroxide.
Connick, R.E.; McVey, Wm.H.
1958-07-15
A process is described for separating plutonyl ions from the acetate ions with which they are associated in certaln carrier precipitation methods of concentrating plutonium. The method consists in adding alkaline earth metal ions and subsequently alkalizing the solution, causing formation of an alkaltne earth plutonate precipitate. Barium hydroxide is used in a preferred embodiment since it provides alkaline earth metal ion and alkalizes the solution in one step forming insoluble barium platonate.
Köse, Osman; Özmen, İbrahim; Arca, Ercan
2013-08-01
To evaluate and compare the safety and efficacy of 10% potassium hydroxide (KOH) solution and salicylic and lactic acid (SAL + LAC) combination in the treatment of molluscum contagiosum (MC). 26 patients with MC randomized into two treatment groups. 12 patients treated with 10% KOH solution and 14 patients treated with SAL + LAC combination for 6 weeks. Parents of patients were instructed to apply medication once daily only to lesions at study onset. Assessment of response of the treated lesions and side effects was performed at 2, 4 and 6 weeks of the treatment. Newly acquired lesions were not included in the study. At the end of therapy, 83.3% (n = 10) of KOH group demonstrated complete remission and 16.7% (n = 2) of them showed partial remission; four patients (33%) developed new lesions during the study. All the patients in the SAL + LAC combination group (100%) demonstrated complete remission of study entry lesions at the end of 6 weeks with five patients (35%) acquiring new lesions during the study. Minor side effects were observed in two groups. 10% KOH solution and SAL + LAC combination were found to be equally effective in the treatment of MC in children.
Salt effects on an ion-molecule reaction--hydroxide-catalyzed hydrolysis of benzocaine.
Al-Maaieh, Ahmad; Flanagan, Douglas R
2006-03-01
This work investigates the effect of various salts on the rate of a reaction involving a neutral species (benzocaine alkaline hydrolysis). Benzocaine hydrolysis kinetics in NaOH solutions in the presence of different salts were studied at 25 degrees C. Benzocaine solubility in salt solutions was also determined. Solubility data were used to estimate salt effects on benzocaine activity coefficients, and pH was used to estimate salt effects on hydroxide activity coefficients. Salts either increased or decreased benzocaine solubility. For example, solubility increased with 1.0 M tetraethylammonium chloride (TEAC) approximately 3-fold, whereas solubility decreased approximately 35% with 0.33 M Na2SO4. Salt effects on hydrolysis rates were more complex and depended on the relative magnitudes of the salt effects on the activity coefficients of benzocaine, hydroxide ion, and the transition state. As a result, some salts increased the hydrolysis rate constant, whereas others decreased it. For example, the pseudo-first-order rate constant decreased approximately 45% (to 0.0584 h(-1)) with 1 M TEAC, whereas it increased approximately 8% (to 0.116 h(-1)) with 0.33 M Na2SO4. Different salt effects on degradation kinetics can be demonstrated for a neutral compound reacting with an ion. These salt effects depend on varying effects on activity coefficients of reacting and intermediate species.
Nayak, Nadiya B.; Nayak, Bibhuti B.
2016-01-01
Aqueous sodium borohydride (NaBH4) is well known for its reducing property and well-established for the development of metal nanoparticles through reduction method. In contrary, this research paper discloses the importance of aqueous NaBH4 as a precipitating agent towards development of porous zirconium oxide. The boron species present in aqueous NaBH4 play an active role during gelation as well as phase separated out in the form of boron complex during precipitation, which helps to form boron free zirconium hydroxide [Zr(OH)4] in the as-synthesized condition. Evolved in-situ hydrogen (H2) gas-bubbles also play an important role to develop as-synthesized loose zirconium hydroxide and the presence of intra-particle voids in the loose zirconium hydroxide help to develop porous zirconium oxide during calcination process. Without any surface modification, this porous zirconium oxide quickly adsorbs almost hundred percentages of toxic lead ions from water solution within 15 minutes at normal pH condition. Adsorption kinetic models suggest that the adsorption process was surface reaction controlled chemisorption. Quick adsorption was governed by surface diffusion process and the adsorption kinetic was limited by pore diffusion. Five cycles of adsorption-desorption result suggests that the porous zirconium oxide can be reused efficiently for removal of Pb (II) ions from aqueous solution. PMID:26980545
Modeling pH variation in reverse osmosis.
Nir, Oded; Bishop, Noga Fridman; Lahav, Ori; Freger, Viatcheslav
2015-12-15
The transport of hydronium and hydroxide ions through reverse osmosis membranes constitutes a unique case of ionic species characterized by uncommonly high permeabilities. Combined with electromigration, this leads to complex behavior of permeate pH, e.g., negative rejection, as often observed for monovalent ions in nanofiltration of salt mixtures. In this work we employed a rigorous phenomenological approach combined with chemical equilibrium to describe the trans-membrane transport of hydronium and hydroxide ions along with salt transport and calculate the resulting permeate pH. Starting from the Nernst-Planck equation, a full non-linear transport equation was derived, for which an approximate solution was proposed based on the analytical solution previously developed for trace ions in a dominant salt. Using the developed approximate equation, transport coefficients were deduced from experimental results obtained using a spiral wound reverse osmosis module operated under varying permeate flux (2-11 μm/s), NaCl feed concentrations (0.04-0.18 M) and feed pH values (5.5-9.0). The approximate equation agreed well with the experimental results, corroborating the finding that diffusion and electromigration, rather than a priori neglected convection, were the major contributors to the transport of hydronium and hydroxide. The approach presented here has the potential to improve the predictive capacity of reverse osmosis transport models for acid-base species, thereby improving process design/control. Copyright © 2015 Elsevier Ltd. All rights reserved.
2013-01-01
Background Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Results Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Conclusions Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems. PMID:23849189
Effects of sodium hydroxide (NaOH) solution concentration on fly ash-based lightweight geopolymer
NASA Astrophysics Data System (ADS)
Ibrahim, W. M. W.; Hussin, K.; Abdullah, M. M. A.; Kadir, A. A.; Deraman, L. M.
2017-09-01
In this study, the effects of NaOH concentration on properties of fly ash-based lightweight geopolymer were investigated. Lightweight geopolymer was produced using fly ash as source materials and synthetic foaming agents as air entraining agent. The alkaline solutions used in this study are combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solution. Different molarities of NaOH solution (6M, 8M, 10M, 12M, and 14M) are taken for preparation of 50 x 50 x 50 mm cubes of lightweight geopolymer. The ratio of fly ash/alkaline solution, Na2SiO3/NaOH solution, foaming agent/water and foam/geopolymer paste were kept constant at 2.0, 2.5, 1:10 and 1:1 respectively. The samples were cured at 80°C for 24 hours and left at room temperature for tested at 7 days of ageing. Physical and mechanical properties such as density, water absorption, compressive strength and microstructure property were determined from the cube dried samples. The results show that the NaOH molarity had effects on the properties of lightweight geopolymer with the optimum NaOH molarity found is 12M due to the high strength of 15.6 MPa, lower water absorption (7.3%) and low density (1440 kg/m3). Microstructure analysis shows that the lightweight geopolymer contain some porous structure and unreacted fly ash particles remains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, F.; Ozawa, N.; Hanai, J.
Twenty-one water-soluble acid dyes, including eleven azo, five triphenylmethane four xanthene, one naphthol derivatives, used at practical concentrations for food coloration, were quantitatively extracted from water and various carbonated beverages into a 0.1 M quinine-chloroform solution in the presence of 0.5 M boric acid by brief shaking. Quantitative extraction of these dyes was also accomplished by the 0.1 M quinine-chloroform solution made conveniently from chloroform, quinine hydrochloride, and sodium hydroxide added successively to water or beverages containing boric acid. Quinine acted as a countercation on the dyes having sulfonic and/or carboxylic acid group(s) to form chloroform-soluble ion-pair complexes. The diacidicmore » base alkaloid interacted with each acid group of mono-, di-, tri-, and tetrasulfonic acid dyes approximately in the ratio 0.8-0.9 to 1. The dyes in the chloroform solution were quantitatively concentrated into a small volume of sodium hydroxide solution also by brief shaking. The convenient quinine-chloroform method was applicable to the quantitative extraction of a mixture of 12 dyes from carbonated beverages, which are all currently used for food coloration. A high-pressure liquid chromatographic method is also presented for the systematic separation and determination of these 12 dyes following their concentration into the aqueous alkaline solution. The chromatogram was monitored by double-wavelength absorptiometry in the visible and ultraviolet ray regions.« less
Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin
2014-10-21
Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.
Electrochemical cell with calcium anode
Cooper, John F.; Hosmer, Pamela K.; Kelly, Benjamin E.
1979-01-01
An electrochemical cell comprising a calcium anode and a suitable cathode in an alkaline electrolyte consisting essentially of an aqueous solution of an hydroxide and a chloride. Specifically disclosed is a mechanically rechargeable calcium/air fuel cell with an aqueous NaOH/NaCl electrolyte.
NASA Astrophysics Data System (ADS)
Yan, H.; Shih, K.
2015-12-01
Phosphorus (P) recovery has been frequently discussed in recent decades due to the uncertain availability and uneven distribution of global phosphate rock reserves. Sorption technology is increasingly considered as a reliable, efficient and environmentally friendly P removal method from aqueous solution. In this study, a series of Mg-Al-based layered double hydroxide nanocomposites and their corresponding calcined products were fabricated and applied as phosphate adsorbents. The prepared samples were with average size at ~50 nm and self-assembled into larger particles in irregular shapes. The results of batch adsorption experiments demonstrated that calcination significantly enhanced the adsorption ability of LDHs for phosphorus, and the maximum adsorption capacity of calcined Mg-Al-LDH was as high as 100.7 mg-P/g. Furthermore, incorporation of Zr4+ and La3+ into LDH materials increases the sorption selectivity as well as sorption amount of phosphorus in LDHs, which was confirmed by experiments operated in synthetic human urine. For the first time ammonia (NH4OH) and potassium hydroxide (KOH) solutions were employed to desorb the P-loaded LDH. Identification of solids derived from two eluting solutions showed that struvite (MgNH4PO4•6H2O, MAP) was precipitated in ammonia solution while most phosphate was desorbed into liquid phase in KOH system without crystallization of potassium struvite (MgKPO4•6H2O) due to its higher solubility. Quantitative X-ray diffraction technique was used to determine struvite contents in obtained solids and the results revealed that ~ 30% of adsorbed P was transferred into struvite form in the sample extracted by 0.5M NH4OH. Leaching tests suggested that the phosphorus releasing kinetics of ammonia treated LDH was comparable to that of pure struvite product, indicating that postsorption Mg-Al-LDH desorbed with ammonia could serve as a slow-releasing fertilizer in agriculture (see Figure 1).
Effect of aging on aluminum hydroxide complexes in dilute aqueous solutions
Smith, Ross Wilbert; Hem, John David
1972-01-01
Aqueous aluminum solutions containing 4?10 -5 mole/liter aluminum and a constant total ionic strength of 10 -2, but with varying ratios of hydroxide to aluminum (OH:Al), were prepared. Progress of these solutions toward equilibrium conditions over aging periods of as much as 2 years was studied by determining the composition and pH of the solutions at various time intervals. The solutions, after mixing, were supersaturated with respect to both crystalline and amorphous forms of aluminum oxides and aluminum hydroxides. The compositions of the solutions were determined by use of a timed colorimetric analytical procedure which allowed the estimation of three separate forms of aluminum that have been designated Al a, Al b, and Al c. Form Al a appeared to be composed of monomeric species such as Al(H20)6+3, Al(OH)(H20)5+2, Al(OH)2(H20)4 +I and Al(OH)4-. Form Al b was polynuclear material containing perhaps 20-400 aluminum atoms per structure. It appeared to be a metastable material. Form Al c was composed of relatively large, microcrystalline, clearly solid AI(OH)3 particles. For each OH :Al ratio, the concentration of Al a remained constant with aging time, Al b decreased, and Al c increased. It appeared that Al b particles were increasing in size and ultimately were converted to Al c particles. After a few weeks' aging, Al c particles had the structure of gibbsite. In all solutions, equilibrium was only very slowly achieved, and the time required depended on the OH:Al ratio and how rapidly the solution was initially prepared (mixing time). Lower ratios caused a slower approach to equilibrium; sometimes equilibrium was not achieved even after several years' aging. The more slowly base was initially added (to obtain the proper OH:Al ratio), the more slowly was equilibrium approached. Ultimate equilibrium values of dissolved aluminum concentration and pH were consistent with known thermodynamic data on monomeric aluminum species. From data determined during the aging study and by considering Al b material to consist of extremely small solid gibbsite particles, it was possible to estimate the Gibbs free energy of the (001) crystal face (?F, the gibbsite 'face') and the. Gibbs free energy of the (110) and (100) crystal faces (?E, the gibbsite 'edge') of gibbsite in equilibrium with its saturated solution. These values were: ?F=1404 ? 24 ergs/cm 2, and ?E = 483 ?-84 ergs/cm 2.
Inorganic Bi/In thermal resist as a high-etch-ratio patterning layer for CF4/CHF3/O2 plasma etch
NASA Astrophysics Data System (ADS)
Tu, Yuqiang; Chapman, Glenn H.; Peng, Jun
2004-05-01
Bimetallic thin films containing indium and with low eutectic points, such as Bi/In, have been found to form highly sensitive thermal resists. They can be exposed by lasers with a wide range of wavelengths and be developed by diluted RCA2 solutions. The exposed bimetallic resist Bi/In can work as an etch masking layer for alkaline-based (KOH, TMAH and EDP) "wet" Si anisotropic etching. Current research shows that it can also act as a patterning and masking layer for Si and SiO2 plasma "dry" etch using CF4/CHF3. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In, indicating that laser exposure is an oxidation process. Experiment result shows that single metal Indium film and bilayer Sn/In exhibit thermal resist characteristics but at higher exposure levels. They can be developed in diluted RCA2 solution and used as etch mask layers for Si anisotropic etch and plasma etch.
Reactivity of clay minerals with acids and alkalies
Carroll, Dorothy; Starkey, Harry C.
1971-01-01
One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6⋅45 N, 1:1), acetic acid (4⋅5 N, 1:3), sodium hydroxide (2⋅8 N), sodium chloride solution (pH 6⋅10; Na = 35‰; Cl = 21⋅5‰), and natural sea water (pH 7⋅85; Na = 35⋅5‰; Cl = 21⋅ 5‰) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective.
NASA Astrophysics Data System (ADS)
Oishi, Silvia Sizuka; Botelho, Edson Cocchieri; Rezende, Mirabel Cerqueira; Ferreira, Neidenêi Gomes
2017-02-01
The use of sodium hydroxide to neutralize the acid catalyst increases the storage life of poly(furfuryl alcohol) (PFA) resin avoiding its continuous polymerization. In this work, a concentrated sodium hydroxide solution (NaOH) was added directly to the PFA resin in order to minimize the production of wastes generated when PFA is washed with diluted basic solution. Thus, different amounts of this concentrated basic solution were added to the resin up to reaching pH values of around 3, 5, 7, and 9. From these four types of modified PFA two sample sets of reticulated vitreous carbon (RVC) were processed and heat treated at two different temperatures (1000 and 1700 °C). A correlation among cross-link density of PFA and RVC morphology, structural ordering and surface functionalities was systematically studied using Fourier transform infrared spectroscopy, scanning electron microscopy, Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy techniques. The PFA neutralization (pH 7) led to its higher polymerization degree, promoting a crystallinity decrease on RVC treated at 1000 °C as well as its highest percentages of carboxylic groups on surface. A NaOH excess (pH 9) substantially increased the RVC oxygen content, but its crystallinity remained similar to those for samples from pH 3 and 5 treated at 1000 °C, probably due to the reduced presence of carboxylic group and the lower polymerization degree of its cured resin. Samples with pH 3 and 5 heat treated at 1000 and 1700 °C can be considered the most ordered which indicated that small quantities of NaOH may be advantageous to minimize continuous polymerization of PFA resin increasing its storage life and improving RVC microstructure.
NASA Astrophysics Data System (ADS)
Krämer, Dennis; Tepe, Nathalie; Bau, Michael
2014-05-01
We conducted experiments with Rare Earths and Yttrium (REY), where the REY were sorbed on synthetic manganese dioxide as well as on coprecipitating manganese (hydr)oxide in the presence and absence of the siderophore desferrioxamine-B (DFOB). Siderophores are a group of globally abundant biogenic complexing agents which are excreted by plants and bacteria to enhance the bioavailability of Fe in oxic environments. The model siderophore used in this study, DFOB, is a hydroxamate siderophore occurring in almost all environmental settings with concentrations in the nanomolar to millimolar range and is one of the most thoroughly studied siderophores. In the absence of siderophores and other organic ligands, trivalent Ce is usually surface-oxidized to tetravalent Ce during sorption onto manganese (hydr)oxides. Such Mn precipitates, therefore, often show positive Ce anomalies, whereas the ambient solutions exhibit negative Ce anomalies (Ohta and Kawabe, 2001). In marked contrast, however, REY sorption in the presence of DFOB produces negative Ce anomalies in the Mn precipitates and a distinct and characteristic positive Ce anomaly in the residual siderophore-bearing solution. Furthermore, the heavy REY with ionic radii larger than the radius of Sm are also almost completely prevented from sorption onto the Mn solid phases. Sorption of REY onto Mn (hydr)oxides in the presence of DFOB creates a distinct and pronounced fractionation of Ce and the heavy REY from the light and middle REY. Apart from Ce, which is oxidized in solution by the siderophore, the distribution of the other REY mimics the stability constants for multi-dentate complexes of REY with DFOB, as determined by Christenson & Schijf (2011). Heavier REY are forming stronger complexes (and are hence better "protected" from sorption) than light REY, excluding Ce. Preferential partitioning of Ce into the liquid phase during the precipitation of Mn (hydr)oxides has only rarely been described for natural Mn (hydr)oxides (e.g., Tanaka et al., 2010, Loges et al., 2012). Our experimental results demonstrate that biogenic organic ligands such as hydroxamate siderophores, may produce solutions with positive Ce anomaly (Bau et al., 2013) and may even counteract the surface oxidation of Ce on Mn (hydr)oxides. References Bau, M., Tepe, N., Mohwinkel, D., 2013. Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water. Earth Planet. Sci. Lett. 364, 30-36. Christenson E. A. and Schijf J. (2011) Stability of YREE complexes with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength. Geochim. Cosmochim. Acta 75, 7047-7062. Loges, A., Wagner, T., Barth, M., Bau, M., Göb, S., and Markl, G. 2012. Negative Ce anomalies in Mn oxides: The role of Ce4+ mobility during water-mineral interaction. Geochimica and Cosmochimica Acta 86, 296-317 Ohta A. and Kawabe I. (2001) REE (III) adsorption onto Mn dioxide (delta-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by delta-MnO2. Geochim. Cosmochim. Acta 65, 695-703. Tanaka K., Tani Y., Takahashi Y., Tanimizu M., Suzuki Y., Kozai N. and Ohnuki T. (2010) A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. Geochim. Cosmochim. Acta 74, 5463-5477.
Mechanochemical synthesis of dodecyl sulfate anion (DS-) intercalated Cu-Al layered double hydroxide
NASA Astrophysics Data System (ADS)
Qu, Jun; He, Xiaoman; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong
2017-12-01
Dodecyl sulfate anion (DS-) was successfully intercalated into the gallery space of Cu-Al layered double hydroxides (LDH) by a non-heating mechanochemical route, in which basic cupric carbonate (Cu2(OH)2CO3) and aluminum hydroxide (Al(OH)3) were first dry ground and then agitated in SDS solution under ambient environment. The organics modified Cu-Al LDH showed good adsorption ability toward 2,4-dichlorophenoxyacetic acid (2, 4-D). The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), CHS elemental analysis and Scanning electron microscopy (SEM). The LDH precursor prepared by ball-milling could directly react with SDS molecules forming a pure phase of DS- pillared Cu-Al LDH, which was not observed with the LDH product through the ion-exchange of DS- at room temperature. The process introduced here may be applied to manufacture other types of organic modified composites for pollutants removal and other applications.
Iron ion and iron hydroxide adsorption to charge-neutral phosphatidylcholine templates
Wang, Wenjie; Zhang, Honghu; Feng, Shuren; ...
2016-07-13
Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl 3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ~3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to amore » neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. Furthermore, the strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.« less
Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites.
Ma, Renzhi; Sasaki, Takayoshi
2010-12-01
A wide variety of cation-exchangeable layered transition metal oxides and their relatively rare counterparts, anion-exchangeable layered hydroxides, have been exfoliated into individual host layers, i.e., nanosheets. Exfoliation is generally achieved via a high degree of swelling, typically driven either by intercalation of bulky organic ions (quaternary ammonium cations, propylammonium cations, etc.) for the layered oxides or by solvation with organic solvents (formamide, butanol, etc.) for the hydroxides. Ultimate two-dimensional (2D) anisotropy for the nanosheets, with thickness of around one nanometer versus lateral size ranging from submicrometer to several tens of micrometers, allows them to serve either as an ideal quantum system for fundamental study or as a basic building block for functional assembly. The charge-bearing inorganic macromolecule-like nanosheets can be assembled or organized through various solution-based processing techniques (e.g., flocculation, electrostatic sequential deposition, or the Langmuir-Blodgett method) to produce a range of nanocomposites, multilayer nanofilms, and core-shell nanoarchitectures, which have great potential for electronic, magnetic, optical, photochemical, and catalytic applications.
The Application of Electrolysis Method to Reduce Ammonia Content in Liquid Waste of Tofu
NASA Astrophysics Data System (ADS)
Prabowo, S.; Nurlaili; Muflihah; Tindangen, R. A.; Sukemi
2018-04-01
Ammonia (NH3) is known as an important chemical in industrial sector. It is also known as harmful pollutant. Ammonia is a weak base, a gas in room temperature and has 330°C of BP. The aims of research were to investigate the effect of voltage (4 to 12 volt), time (1 to 30 min.), concentration of ammonia (0.01 to 0.05 M) and potassium hydroxide concentration on the ammonia content in aqueous solution by using electrolysis method with platinum as electrodes. The ammonia content was analysed by using UV-Vis spectrophotometer. The result showed that an increment in the voltage, time and potassium hydroxide concentration could increase the amount of converted ammonia. The optimum condition to reduce the ammonia content by using electrolysis method was 10 V of electrical voltage, 25 min. of electrolysis time and 0.04 M of potassium hydroxide concentration. At the optimum condition, the electrolysis method could decrease 81.13% of ammonia content in liquid waste of tofu.
Marangoni, Rafael; Ramos, Luiz Pereira; Wypych, Fernando
2009-02-15
Different anionic blue and orange dyes have been immobilized on a zinc hydroxide nitrate (Zn(5)(OH)(8)(NO(3))(2)nH(2)O--Zn-OH-NO(3)) by anion exchange with interlayer and/or outer surface nitrate ions of the layered matrix. Orange G (OG) was totally intercalated, orange II (OII) was partially intercalated, while Niagara blue 3B (NB) and Evans blue (EV) were only adsorbed at the outer surface. Several composite films of poly(vinyl alcohol)--PVA were prepared by casting through the dispersion of the hybrid material (Zn-OH-OG) into a PVA aqueous solution and evaporation of water in a vacuum oven. The obtained composite films were transparent, colored, and capable of absorbing UV radiation. Improved mechanical properties were also obtained in relation to the nonfilled PVA films. These results demonstrate the onset of a new range of potential applications for layered hydroxide salts in the preparation of polymer composite multifunctional materials.
Hydrothermal synthesis of β-Ni(OH)2 and its supercapacitor properties
NASA Astrophysics Data System (ADS)
Waghmare, Suraj S.; Patil, Prashant B.; Baruva, Shiva K.; Rajput, Madhuri S.; Deokate, Ramesh J.; Mujawar, Sarfraj H.
2018-04-01
In present manuscript, we synthesized the Nickel hydroxide as an electrode material or supercapacitor application, using hydrothermal method with nickel nitrate as nickel source and hexamethylenetetramine as a directing agent. The reaction was carried out at 160°C temperature for 18 hrs. The structural, morphological and electrochemical characterizations were studied by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Cyclic Voltammetry (CV) and Galvanostatic Charge Discharge (GCD) respectively. Phase purity and crystalline nature of as prepared nickel hydroxide β-Ni(OH)2 was reveled from X-ray study. Using Debye Scherer's formula crystallite size of ˜15 nm was estimated for Nickel hydroxide. SEM reveals β-platelets like morphology of Ni(OH)2 average of platelets length of the order of 1 µm. Electrochemical studies (CV and GCD) were carried out in 2M KOH electrolyte solution. The maximum capacitance of 225 Fg-1 was observed for scan rate 5 mV within the potential window of 0.1 to 0.4 V.
Dissolution of root canal sealers in EDTA and NaOCl solutions.
Keleş, Ali; Köseoğlu, Mustafa
2009-01-01
Solutions of ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite (NaOCl) have been used as canal irrigants in endodontic treatment. The authors conducted a study to compare the ability of these solutions to dissolve sealers. The authors assessed the solubility of six sealers-calcium hydroxide, polyketone, zinc oxide-eugenol, silicone and two epoxy resins-in EDTA and two concentrations of NaOCl (2.5 percent and 5.0 percent). They immersed standardized samples (n = 5) of each sealer for two minutes and 10 minutes. They obtained the mean values of sealer dissolution in solutions by calculating the difference between the original preimmersion and postimmersion weights to determine the amount of sealer removed. They compared the values via factorial analysis of variance. They analyzed differences between the six sealers with respect to their solubility in EDTA or NaOCl solutions at two minutes and 10 minutes by using a one-way analysis of variance (P < .05). In comparison with NaOCl solutions, EDTA was markedly superior in dissolving root canal sealers (P < .05). There were no significant differences between the two concentrations of NaOCl. The two epoxy resins and the silicone-based sealer were of low solubility. The zinc oxide-eugenol-based sealer was significantly more soluble than were the epoxy resins and the silicone-based sealers. Polyketone and calcium hydroxide-based sealers were the most soluble sealers (P < .05). The results of this study indicate that during nonsurgical endodontic re-treatment, EDTA and NaOCl solutions used for removing smear layer aided in the retreatment by dissolving some root canal sealers.
NASA Astrophysics Data System (ADS)
Peng, Yiya; Xi, Guangcheng; Zhong, Chang; Wang, Linping; Lu, Jun; Sun, Ximeng; Zhu, Lu; Han, Qikun; Chen, Lin; Shi, Lei; Sun, Mei; Li, Qianrong; Yu, Min; Yin, Mingwen
2009-08-01
Tochilinite represents a mineral group of ordered mixed-layer structures containing alternating Fe 1-xS layers with mackinawite-like structure and metal hydroxide layers with Mg(OH) 2-like structure. In this article, we report the preparation of a series of tochilinite-originated (or Fe 1-xS-based) intercalation compounds (ICs). According to their preparation procedures, these ICs can be divided into four kinds. The first kind of IC was sodium tochilinite (Na-tochilinite), which was prepared by the hydrothermal reaction of metallic Fe particles with concentrated Na 2S·9H 2O aqueous solutions. The hydroxide layer of the Na-tochilinite was a mixed hydroxide of Na + ions along with a certain amount of Fe 2+ ions. When the hydroxide layer of the Na-tochilinite completely dissolved in aqueous solutions, a Fe-deficient mackinawite-like phase Fe 1-xS was obtained, which was probably an electron-deficient p-type conductor. The second kind of ICs was prepared by 'low-temperature direct intercalation in aqueous solutions, using Na-tochilinite as a parental precursor. When the Na-tochilinite was ultrasonicated in aqueous solutions containing Lewis basic complexing agents (like NH 3, N 2H 4, 2,2'-bipyridine (bipy), and 1,10-phenanthroline (phen)), the Na + ions of the Na-tochilinite were removed and the Lewis basic complexing agents entered the hydroxide layer of the Na-tochilinite and became coordinated with the Fe 2+ ions, and the second kind of ICs was thus produced. The second kind of ICs includes NH 3 IC, N 2H 4 IC, N 2H 4-NH 3 IC, [Fe(bipy) 3] 2+-containing IC and [Fe(phen) 3] 2+-containing IC. The third kind of ICs, which includes NH 3 IC, N 2H 4-NH 3 IC and N 2H 4-LiOH (NaOH) IC, was prepared by the hydrothermal reaction of metallic Fe particles with (NH 4) 2S aqueous solution, S (elemental) + N 2H 4·H 2O aqueous solution, and S + N 2H 4·H 2O + LiOH (NaOH) aqueous solution, respectively. The third kind of ICs has a close relationship with the second kind of ICs both in composition and structure. The fourth kind of ICs was prepared by the oxidation and reduction of some of the N 2H 4-containing ICs mentioned above, which include N 2H 2 (diazene or diimide) IC, N 2 (dinitrogen) IC and NH 3 IC. The N 2H 2 IC was prepared by mild air oxidation of the N 2H 4-LiOH IC. The N 2 IC was prepared by strong air oxidation of the N 2H 4-LiOH IC, however, we have not been able to separate the pure phase N 2 IC. Hydrothermal reduction of the N 2H 4 IC made by the direct intercalation method in strong reducing environment by H 2S + Fe (metal) led to the production of the NH 3 IC of the fourth kind of ICs. The NH 3 ICs prepared by the three methods had similar compositions and structures. As almost all the ICs reported in this paper were extremely sensitive both to air and to the electron beam, they were mainly characterized by XRD. The properties and interrelationships (or mutual transformations) of the Fe 1-xS-based ICs revealed novel chemistry occurring in the sub-nanoscopic space between the micrometer- to nanometer-sized electron-deficient Fe 1-xS layers. An important finding of this novel chemistry was that the Fe 1-xS-based ICs tended to oxidize or reduce the intercalated species when the redox state of their environments varied. The results of our experiments potentially have many cosmochemical implications. The most important implication is that our experimental results, along with previous studies, strongly suggested that some of the ammonium salts, ammonia and carbonates existing in the matrix of the CM carbonaceous chondrites may have been formed by abiotic reactions employing molecular nitrogen as the nitrogen source and carbon monoxide as the carbon source and iron sulfide and/or iron hydroxide as catalysts.
PROCESSES OF RECLAIMING URANIUM FROM SOLUTIONS
Zumwalt, L.R.
1959-02-10
A process is described for reclaiming residual enriched uranium from calutron wash solutions containing Fe, Cr, Cu, Ni, and Mn as impurities. The solution is adjusted to a pH of between 2 and 4 and is contacted with a metallic reducing agent, such as iron or zinc, in order to reduce the copper to metal and thereby remove it from the solution. At the same time the uranium present is reduced to the uranous state The solution is then contacted with a precipitate of zinc hydroxide or barium carbonate in order to precipitate and carry uranium, iron, and chromium away from the nickel and manganese ions in the solution. The uranium is then recovered fronm this precipitate.
Alkaline extraction of phenolic compounds from intact sorghum kernels
USDA-ARS?s Scientific Manuscript database
An aqueous sodium hydroxide solution was employed to extract phenolic compounds from whole grain sorghum without decortication or grinding as determined by Oxygen Radical Absorbance Capacity (ORAC). The alkaline extract ORAC values were more stable over 32 days compared to neutralized and freeze dri...
Selenium Adsorption To Aluminum-Based Water Treatment Residuals
Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...
Seaborg, G.T.; Thompson, S.G.
1960-06-14
A process for concentrating plutonium is given in which plutonium is first precipitated with bismuth phosphate and then, after redissolution, precipitated with a different carrier such as lanthanum fluoride, uranium acetate, bismuth hydroxide, or niobic oxide.
Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen
2017-01-01
Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ∼3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries. PMID:28585527
Reductive atmospheric acid leaching of spent alkaline batteries in H2SO4/Na2SO3 solutions
NASA Astrophysics Data System (ADS)
Morcali, Mehmet Hakan
2015-07-01
This work studies the optimum reductive leaching process for manganese and zinc recovery from spent alkaline battery paste. The effects of reducing agents, acid concentration, pulp density, reaction temperature, and leaching time on the dissolution of manganese and zinc were investigated in detail. Manganese dissolution by reductive acidic media is an intermediate-controlled process with an activation energy of 12.28 kJ·mol-1. After being leached, manganese and zinc were selectively precipitated with sodium hydroxide. The zinc was entirely converted into zincate (Zn(OH){4/2-}) ions and thus did not co-precipitate with manganese hydroxide during this treatment (2.0 M NaOH, 90 min, 200 r/min, pH > 13). After the manganese was removed from the solution, the Zn(OH){4/2-} was precipitated as zinc sulfate in the presence of sulfuric acid. The results indicated that this process could be effective in recovering manganese and zinc from alkaline batteries.
Transient bleaching of small PbS colloids. Influence of surface properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenadovic, M.T.; Comor, M.I.; Vasic, V.
1990-08-09
Small PbS colloids with a particle diameter of 40 {angstrom} were prepared in aqueous solution, and their absorption spectra exhibit several maxima. Injection of electrons into these particles was achieved by using the pulse radiolysis technique. Excess electrons trapped on the surface lead to a blue shift in the absorption edge of colloids. The appearance of this shift depends critically on the method of colloid preparation. PbS and CdS colloids prepared at pH < 6 have long-lived bleaching, which disappears after several seconds. On the other hand, absorption bleaching does not appear after the addition of hydroxide ions to colloidalmore » solutions (pH > 8). The existence of a hydroxide ion on the particle surface most likely removes surface defects on which electrons are trapped. PbS colloids prepared in the presence of 3-mercapto-1,2-propanediol have an unstructured absorption spectrum, which is due to a wide particle size distribution (10-50 {angstrom}).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moccari, A.; MacDonald, D.D.
The corrosion of ASTM A-470 turbine disk steel in concentrated sodium hydroxide solution (10 mol/kg) containing sodium silicate, sodium dihydrogen phosphate, sodium chromate, aniline and some of its derivatives, tannic acid, L-(-)-phenylalanine (aminopropionic acid) and octadecylamine as potential inhibitors has been studied using the potentiodynamic, AC impedance, and Tafel extrapolation techniques. All tests were performed at 115 + or - 2 C. The anodic and cathodic polarization data show that aniline and its derivatives, L-(-)-phenylalanine, NaH/sub 2/PO/sub 4/, Na/sub 2/SiO/sub 3/, and Na/sub 2/CrO/sub 4/ inhibit the anodic process, whereas tannic acid inhibits the cathodic reaction. Octadecylamine was found tomore » inhibit both the anodic and cathodic processes. The mechanisms of inhibition for some of these compounds have been inferred from the wide band width frequency dispersions of the interfacial impedance.« less
NASA Astrophysics Data System (ADS)
Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen
2017-06-01
Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.
Removal of trivalent chromium from aqueous solution using aluminum oxide hydroxide.
Bedemo, Agaje; Chandravanshi, Bhagwan Singh; Zewge, Feleke
2016-01-01
Water is second most essential for human being. Contamination of water makes it unsuitable for human consumption. Chromium ion is released to water bodies from various industries having high toxicity which affects the biota life in these waters. In this study aluminum oxide hydroxide was tested for its efficiency to remove trivalent chromium from aqueous solutions through batch mode experiments. Chromium concentrations in aqueous solutions and tannery waste water before and after adsorption experiments were determined using flame atomic absorption spectrometry. The effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(III) were studied. The study revealed that more than 99 % removal of Cr(III) was achieved over wide range of initial pH (3-10). The optimum conditions for the removal of Cr(III) were found to be at pH 4-6 with 40 g/L adsorbent dose at 60 min of contact time. The adsorption capacity was assessed using Langmuir and Freundlich isotherms. The equilibrium data at varying adsorbent dose obeyed the two isotherms. The adsorbent was found to be efficient for the removal of Cr(III) from tannery waste effluent.
Xu, Qun; Mori, Masanobu; Tanaka, Kazuhiko; Ikedo, Mikaru; Hu, Wenzhi; Haddad, Paul R
2004-07-02
The determination of hydroxide by ion chromatography (IC) is demonstrated using a monolithic octadecylsilyl (ODS)-silica gel column coated first with a nonionic surfactant (polyoxyethylene (POE)) and then with a cationic surfactant (cetyltrimethylammonium bromide (CTAB)). This stationary phase, when used in conjunction with a 10 mmol/l sodium sulfate eluent at pH 8.2, was found to be suitable for the rapid and efficient separation of hydroxide from some other anions, based on a conventional ion-exchange mechanism. The peak directions and detection responses for these ions were in agreement with their known limiting equivalent ionic conductance values. Under these conditions, a linear calibration plot was obtained for hydroxide ion over the range 16 micromol/l to 15 mmol/l, and the detection limit determined at a signal-to-noise ratio of 3 was 6.4 micromol/l. The double-coated stationary phase described above was shown to be superior to a single coating of cetyltrimethylammonium bromide alone, in terms of separation efficiency and stability of the stationary phase. A range of samples comprising solutions of some strong and weak bases was analyzed by the proposed method and the results obtained were in good agreement with those obtained by conventional potentiometric pH measurement.
SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS
Nicholls, C.M.; Wells, I.; Spence, R.
1959-10-13
The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.
NASA Astrophysics Data System (ADS)
Zhao, Cui-Cui; Zhang, Jian-Wei; Zhou, Zhong-Gao; Du, Zi-Yi
2013-02-01
The addition of strong base such as sodium hydroxide or potassium hydroxide to the aqueous solution of (2-carboxyethyl)(phenyl)phosphinic acid afforded two novel monovalent metal carboxylate-phosphinates, namely, {NaH(Phsbnd PO2sbnd C2H4sbnd COOH)2}∞ (1) and {[KH(Phsbnd PO2sbnd C2H4sbnd COOH)2]·H2O}∞ (2). They represent the first examples of phosphinate containing short, symmetric or almost symmetric O⋯H⋯O hydrogen bonds.
Combination of different methods to assess the fate of lignin in decomposing needle and leave litter
NASA Astrophysics Data System (ADS)
Klotzbücher, Thimo; Filley, Timothy; Kaiser, Klaus; Kalbitz, Karsten
2010-05-01
Lignin is a major component of plant litter. However, its fate during litter decay is still poorly understood. One reason is the difficult analysis. Commonly used methods utilize different methodological approaches and focus on different aspects, e.g., content of lignin and/or of lignin-derived phenols and the degree of oxidation. The comparability and feasibility of the methods has not been tested so far. Our aims were: (1) to compare different methods with respect to track lignin degradation during plant litter decay and (2) to evaluate possible advantages of combining the different results. We assessed lignin degradation in decaying litter by 13C-TMAH thermochemolysis and CuO oxidation (each combined with GC/MS) and by determination of acid-detergent lignin (ADL) combined with near infrared spectroscopy. Furthermore, water-extractable organic matter produced during litter decay was examined for indicators of lignin-derived compounds by UV absorbance at 280 nm, fluorescence spectroscopy, and 13C-TMAH GC/MS. The study included litter samples from 5 different tree species (acer, ash, beech, pine, spruce), exposed in litterbags to degradation in a spruce stand for 27 months. First results suggested stronger lignin degradation in coniferous than in deciduous litter. This was indicated by complementary results from various methods: Conifer litter showed a more pronounced decrease in ADL content and a stronger increase in oxidation degree of side chains (Ac/Al ratios of CuO oxidation and 13C-TMAH products). Furthermore water extracted organic matter from needles showed a higher aromaticity and molecule complexity. Thus properties of water extractable organic matter seemed to reflect the extents of lignin degradation in solid litter samples. Contents of lignin-derived phenols determined with the CuO method (VSC content) hardly changed during decay of needles and leaves. These results thus not matched the trends found with the ADL method. Our results suggested that water-soluble phenolic acids that are included in the CuO oxidation products, accumulated during decay of litter with less stable lignin and then contributed to VSC contents and to the pool of water- extractable organic matter. By combining results from different methods we gained a better understanding about the differences in lignin degradation between the litter species.
21 CFR 173.5 - Acrylate-acrylamide resins.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and acrylic acid, with the greater part of the polymer being composed of acrylamide units. (2) Sodium polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in a sodium silicate-sodium hydroxide aqueous solution, with the greater part of the polymer being composed of...
21 CFR 173.5 - Acrylate-acrylamide resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and acrylic acid, with the greater part of the polymer being composed of acrylamide units. (2) Sodium polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in a sodium silicate-sodium hydroxide aqueous solution, with the greater part of the polymer being composed of...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2011 CFR
2011-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2012 CFR
2012-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2010 CFR
2010-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2014 CFR
2014-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
21 CFR 184.1613 - Potassium bicarbonate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...
21 CFR 173.73 - Sodium polyacrylate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled...
21 CFR 173.73 - Sodium polyacrylate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled...
21 CFR 173.73 - Sodium polyacrylate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled...
Overhead Projector Demonstrations: Some Ideas from the Past.
ERIC Educational Resources Information Center
Kolb, Doris
1987-01-01
Describes nine chemistry demonstrations that can be done using an overhead projector. Includes demonstrations on common ion effect, crystal formation from supersaturated solutions, making iron positive with nitric acid, optical activity, carbon dioxide in human breath, amphoteric hydroxides, the surface tension of mercury, and natural acid-base…
21 CFR 184.1613 - Potassium bicarbonate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...
21 CFR 184.1613 - Potassium bicarbonate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...
21 CFR 184.1613 - Potassium bicarbonate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with carbon...
Bourikas, Kyriakos; Kordulis, Christos; Lycourghiotis, Alexis
2005-06-01
A new methodology is presented, called differential potentiometric titration (DPT), which allows the determination of the point of zero charge (pzc) of metal (hydr)oxides using only one potentiometric curve. By performing extensive simulations of potentiometric titrations for various model (hydr)oxides, we found that an inflection point in a H+(cons,surf) versus pH potentiometric curve (H+(cons,surf): hydrogen ions consumed on the surface of the (hydr)oxide) and a peak in the corresponding differential curve, dH+(cons,surf)/dpH versus pH, appear at a pH equal to the pzc assumed for a model (hydr)oxide. This distinguishable peak appears at the same position irrespective of the surface ionization and the interfacial model adopted as well as the assumed ionic strength. It was found that the aforementioned peak also appears in the high-resolution differential potentiometric curves experimentally determined for four oxides (SiO2, TiO2, gamma-Al2O3, and MgO) that are widely used in various environmental and other technological applications. The application of DPT to the above-mentioned oxides provided practically the same pzc values as the corresponding ones achieved by using four different techniques as well as the corresponding isoelectric point (iep) values determined by microelectrophoresis. Differences between the pzc and iep values determined using various techniques in the case of MgO were attributed to the increasing dissolution of this oxide as pH decreases and the adsorption of cations (Mg2+, Na+) on the MgO/electrolytic solution interface.
Ponnurangam, Sathish; Chernyshova, Irina V; Somasundaran, Ponisseril
2012-07-24
Notwithstanding the great practical importance, still open are the questions how, why, and to what extent the size, morphology, and surface charge of metal (hydr)oxide nanoparticles (NPs) affect the adsorption form, adsorption strength, surface density, and packing order of organic (bio)molecules containing carboxylic groups. In this article, we conclusively answer these questions for a model system of ferric (hydr)oxide NPs and demonstrate applicability of the established relationships to manipulating their hydrophobicity and dispersibility. Employing in situ Fourier transform infrared (FTIR) spectroscopy and adsorption isotherm measurements, we study the interaction of 150, 38, and 9 nm hematite (α-Fe(2)O(3)) and ∼4 nm 2-line ferrihydrite with sodium laurate (dodecanoate) in water. We discover that, independent of morphology, an increase in size of the ferric (hydr)oxide NPs significantly improves their adsorption capacity and affinity toward fatty acids. This effect favors the formation of bilayers, which in turn promotes dispersibility of the larger NPs in water. At the same time, the local order in self-assembled monolayer (SAM) strongly depends on the morphological compatibility of the NP facets with the geometry-driven well-packed arrangements of the hydrocarbon chains as well as on the ratio of the chemisorbed to the physically adsorbed carboxylate groups. Surprisingly, the geometrical constraints can be removed, and adsorption capacity can be increased by negatively polarizing the NPs due to promotion of the outer-sphere complexes of the fatty acid. We interpret these findings and discuss their implications for the nanotechnological applications of surface-functionalized metal (hydr)oxide NPs.
Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes
NASA Technical Reports Server (NTRS)
Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha
2012-01-01
Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.
Green Emission of Tb-doped Mg-Al Layered Double Hydroxide Response to L-lysine.
Chen, Yufeng; Bao, Yao; Wang, Xiaoqing
2016-05-01
The paper describes a study on the green emission of a Tb-doped Mg-Al layered double hydroxide (Tb-LDH) response to L-lysine (Lys). Fluorescent study was found that the Tb-LDH exhibited strong green emission due to (5)D4-(7)FJ (J = 5, 6) transition of Tb(3+), and the green emission almost quenched while the Tb-LDH was exposed to 0.01, 0.05, 0.1, 0.25, and 0.5 mol·L(-1) Lys solution, respectively. Meanwhile the emission attributed to Lys markedly increased as the Tb-LDH was exposed to 0.01 and 0.05 mol·L(-1) Lys solution, then decreased as the concentration of Lys solution further increased to 0.5 from 0.05 mol·L(-1). The green emission of Tb-LDH optimal response to Lys happened at 0.05 mol·L(-1) of Lys solution. XRD results revealed that no reflections ascribed to Lys appeared in the composites of Tb-LDH and Lys. IR spectra suggested that the IR spectra of Tb-LDH obviously changed after it was exposed to Lys solution. These results indicated that the green emission of Tb-LDH response to Lys was possibly owing to interaction between the Tb-LDH and Lys. Moreover, this interaction between the Tb-LDH and Lys may be resulted from absorption. The green emission of Tb-LDH response to Lys would be potential application in detecting L-lysine.
Corrosion fatigue crack growth behavior of titanium alloys in aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shipilov, S.A.
1998-01-01
The corrosion fatigue crack growth (FCG) behavior, the effect of applied potential on corrosion FCG rates, and the fracture surfaces of VT20 (near-{alpha}) and TS6 (near-{beta}) titanium alloys were studied. Environments were aqueous solutions of sodium chloride (NaCl), sodium hydroxide (NaOH), potassium hydroxide (KOH), ferric chloride (FeCl{sub 3}), and chromic acid (H{sub 2}CrO{sub 4}) with and without NaCl. Depending upon solution composition, corrosion FCG rates were found to be higher or lower than those in air. Cathodic polarization retarded the corrosion FCG, while anodic polarization accelerated insignificantly or almost did not influence it in most of the solutions investigated. However,more » cathodic polarization accelerated corrosion FCG in 0.6 M FeCl{sub 3} and 0.5 M to 2 M H{sub 2}CrO{sub 4} + 0.01 M to 0.1 M NaCl solutions by a dozen times when the maximum stress intensity (K{sub max}) exceeded certain critical values. When K{sub max} was lower than the critical values, the same cathodic polarization (with all other /conditions being equal) retarded corrosion FCG. Results suggested the accelerated crack growth at cathodic potentials resulted from hydrogen-induced cracking (HIC). Therefore, critical values of K{sub max}, as well as the stress intensity range ({Delta}K) were regarded as corresponding to the beginning of corrosion FCG according to a HIC mechanism and designated as K{sub HIC} and {Delta}K{sub HIC}.« less
NASA Astrophysics Data System (ADS)
Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon
2014-05-01
A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.
Structural Characterization of Aluminum (Oxy)hydroxide Films at the Muscovite (001)–Water Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang Soo; Schmidt, Moritz; Fister, Timothy T.
2016-01-19
The formation of Al (oxy)hydroxide on the basal surface of muscovite mica was investigated to understand how the structure of the substrate controls the nucleation and growth of secondary phases. Atomic force microscopy images showed that solid phases nucleated on the surface initially as two-dimensional islands that were <= 10 angstrom in height and <= 200 angstrom in diameter after 16-50 h of reaction in a 100 mu M AlCl3 solution at pH 4.2 at room temperature. High-resolution X-ray reflectivity data indicated that these islands were gibbsite layers whose basic unit is composed of a plane of Al ions octahedrallymore » coordinated to oxygen or hydroxyl groups. The formation of gibbsite layers is likely favored because of the structural similarity between its basal plane and the underlying mica surface. After 700-2000 h of reaction, a thicker and continuous film had formed on top of the initial gibbsite layers. X-ray diffraction data showed that this film was composed of diaspore that grew predominantly with its [040] and [140] crystallographic directions oriented along the muscovite [001] direction. These results show the structural characteristics of the muscovite (001) and Al (oxy)hydroxide film interface where presumed epitaxy had facilitated nucleation of metastable gibbsite layers which acted as a structural anchor for the subsequent growth of thermodynamically stable diaspore grown from a mildly acidic and Al-rich solution.« less
METHOD OF CHEMICAL DECONTAMINATION OF STAINLESS STEEL NUCLEAR FACILITIES
Pancer, G.P.; Zegger, J.L.
1961-12-19
A chemical method is given for removing activated corrosion products on the primary system surfaces of a pressurized water reactor. The corrosion product deposits are composed chiefly of magnetite (Fe/sub 3/O/sub 4/) with small amounts of nickel and chromium oxides. The corroded surfaces are first flushed with a caustic permanganate primary solution consisting of sodium hydroxide and potassium permanganate followed by a secondary rinse solution of ammonium citrate and citric acid containing the complexing agent Versene in small amounts. Demineralized water is used to clean out the primary and secondary solutions and a 60-minute drying period precedes the rinse solution. (AEC)
Lau, Ming Woei
2015-12-08
A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.
METHOD OF PREPARING PROTACTINIUM VALUES
Katzin, L.I.; Larson, R.G.; Thompson, R.C.; Van Winkle, Q.
1959-05-19
Separation and purification from initial acid leaches of pitchblende of Pa is described. This supernatant acid solution is treated with alkali metal carbonates to precipitate Pa. Silica is removed from the precipitate by hydroxide treatment. The Pa residue is dissolved in HNO/sub 3/ and Pa is concentrated by cyclic precipitations with MnO/sub 2/. The last solution is hydrolyzed to precipitate Pa. The Pa precipitate contains Ti and Zr which are removed by ion exchange. (T.R.H.)
NASA Technical Reports Server (NTRS)
Tanatar, S.
1987-01-01
Hydrazine sulfate in a hot aqueous solution can be catalyzed in the direction of 3 N2H4 = 4 NH3 + N2. Free hydrazine in a hot aqueous solution dissociates in the presence of platinum in the following direction: 2 N2H4 = 2 NH3 + N2 + H2. In the presence of sodium hydroxide, the catalytic dissociation of hydrazine takes a third direction: 3 N2H4 = 2 NH3 + 2 N3 + 3 H2.
Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent
NASA Astrophysics Data System (ADS)
Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.
2013-07-01
The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.
Rajasekharan, Sivaprakash; Vercruysse, Chris; Martens, Luc; Verbeeck, Ronald
2018-01-13
Tricalcium silicate cements (TSC) are used in dental traumatology and endodontics for their bioactivity which is mostly attributed to formation of calcium hydroxide during TSC hydration and its subsequent release of calcium and hydroxide ions. The aim of this study was to determine the effect of volume (Vol), exposed surface area (ESA) and pH of surrounding medium on calcium ion release. Three commercially available hydraulic alkaline dental cements were mixed and condensed into cylindrical tubes of varying length and diameter ( n = 6/group). For the effect of ESA and Vol, tubes were immersed in 10 mL of deionized water. To analyze the effect of environmental pH, the tubes were randomly immersed in 10 mL of buffer solutions with varying pH (10.4, 7.4 or 4.4). The solutions were collected and renewed at various time intervals. pH and/or calcium ion release was measured using a pH glass electrode and atomic absorption spectrophotometer respectively. The change of pH, short-term calcium ion release and rate at which calcium ion release reaches maximum were dependent on ESA ( p < 0.05) while maximum calcium ion release was dependent on Vol of TSC ( p < 0.05). Maximum calcium ion release was significantly higher in acidic solution followed by neutral and alkaline solution ( p < 0.05).
NASA Astrophysics Data System (ADS)
Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong
2017-01-01
Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.
Rajasekharan, Sivaprakash; Vercruysse, Chris; Martens, Luc; Verbeeck, Ronald
2018-01-01
Tricalcium silicate cements (TSC) are used in dental traumatology and endodontics for their bioactivity which is mostly attributed to formation of calcium hydroxide during TSC hydration and its subsequent release of calcium and hydroxide ions. The aim of this study was to determine the effect of volume (Vol), exposed surface area (ESA) and pH of surrounding medium on calcium ion release. Three commercially available hydraulic alkaline dental cements were mixed and condensed into cylindrical tubes of varying length and diameter (n = 6/group). For the effect of ESA and Vol, tubes were immersed in 10 mL of deionized water. To analyze the effect of environmental pH, the tubes were randomly immersed in 10 mL of buffer solutions with varying pH (10.4, 7.4 or 4.4). The solutions were collected and renewed at various time intervals. pH and/or calcium ion release was measured using a pH glass electrode and atomic absorption spectrophotometer respectively. The change of pH, short-term calcium ion release and rate at which calcium ion release reaches maximum were dependent on ESA (p < 0.05) while maximum calcium ion release was dependent on Vol of TSC (p < 0.05). Maximum calcium ion release was significantly higher in acidic solution followed by neutral and alkaline solution (p < 0.05). PMID:29342837
Arsenic Mobilization Influenced By Iron Reduction And Sulfidogenesis Under Dynamic Flow
NASA Astrophysics Data System (ADS)
Kocar, B. D.; Stewart, B. D.; Herbel, M.; Fendorf, S.
2004-12-01
Sulfidogenesis and iron reduction are ubiquitous processes that occur in a variety of anoxic subsurface and surface environments, which profoundly impact the cycling of arsenic. Of the iron (hydr)oxides, ferrihydrite possesses one of the highest capacities to retain arsenic, and is globally distributed within soils and sediments. Upon dissimilatory iron reduction, ferrihydrite may transform to lower surface area minerals, such as goethite and magnetite, which decreases arsenic retention, thus enhancing its transport. Here we examine how arsenic retained on ferrihydrite is mobilized under dynamic flow in the presence of Sulfurosprillum barnesii strain SES-3, a bacteria capable of reducing both As(V) and Fe(III). Ferrihydrite coated sands, loaded with 150 mg kg-1 As(V), were inoculated with S. barnesii, packed into a column and reacted with a synthetic groundwater solution. Within several days after initiation of flow, the concentration of arsenic in the column effluent increased dramatically coincident with the mineralogical transformation of ferrihydrite and As(V) reduction to As(III). Following the initial pulse of arsenic, effluent concentration then declined to less than 10 μ M. Thus, arsenic release into the aqueous phase is contingent upon the incongruent reduction of As(V) and Fe(III) as mediated by biological activity. Reaction of abiotically or biotically generated dissolved sulfide with iron (hydr)oxides may have a dramatic influence on the fate of arsenic within surface and subsurface environments. Accordingly, we examined the reaction of dissolved bisulfide and iron (hydr)oxide complexed with arsenic in both batch and column systems. Low ratios of sulfide to iron in batch reaction systems result in the formation of elemental sulfur and concomitant arsenic release from the iron (hydr)oxide surface. High sulfide to iron ratios, in contrast, appear to favor the formation of iron and arsenic sulfides. Our findings demonstrate that iron (hydr)oxides may quench reactions between sulfide and constituents sorbed to iron (hydr)oxide surfaces, forming elemental sulfur as opposed to sulfide-arsenic complexes. In addition, reductive transformation of iron (hydr)oxide by dissolved sulfide may release sorbed constituents. Hence, moderate to low concentrations of dissolved sulfide in association with iron (hydr)oxides may inhibit sequestration of important contaminants that are attenuated by Fe(III) and/or S(-II) bearing phases.
The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...
Engineering Considerations for Hydroxide Treatment of Training Ranges
2007-06-01
solutions were compared to the untreated controls. [14C] labeled samples were counted on a Packard Instruments liquid scin - tillation counter (Model...and the soil was removed to a scin - tillation vial. Unlabeled flasks had the soil and liquid analyzed for TOC and the liquid analyzed for anion content
NASA Astrophysics Data System (ADS)
Ormö, J.; Souza-Egipsy, V.; Chan, M. A.; Park, A. J.; Stich, M.; Komatsu, G.
2006-03-01
Spherical hematite concretions can form without a nucleus. Self-organized zones of super-saturated solution cause spherical precipitates of amorphous iron-hydroxide. Diffusion of Fe ions towards the outer perimeter of the amorphous sphere forms a rind, which then grows inwards.
An Inexpensive Device for Studying Electrochromism
ERIC Educational Resources Information Center
Ibanez, Jorge G.; Puente-Caballero, Rodrigo; Torres-Perez, Jonatan; Bustos, Daniel; Carmona-Orbezo, Aranzazu; Sevilla, Fortunato B., III
2012-01-01
A novel procedure for the preparation of electrochromic WO[subscript 3] films from readily available materials is presented. It is based on the electrochemical preparation of potassium tungstate from tungsten filaments of incandescent light bulbs in a potassium hydroxide solution. Tungstic acid is then produced by proton exchange using a…
21 CFR 173.73 - Sodium polyacrylate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium polyacrylate. 173.73 Section 173.73 Food and... Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium polyacrylate (CAS... polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled “Determination...
Spray washing carcasses with alkaline solutions of lauric acid to reduce bacterial contamination.
USDA-ARS?s Scientific Manuscript database
The effect of spray washing carcasses with lauric acid (LA)-potassium hydroxide (KOH) on bacteria recovered from whole-carcass-rinsates (WCR) was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Camp...
Fisher, R.W.
1957-12-10
A method is described for recovering thorium from impurities found in a slag containing thorium and said impurities, comprising leaching a composition containing thorium with water, removing the water solution, treating the residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting its acidity to 1 to 3 normal, adding oxalic acid, and thereafter separating the precipitated thorium oxalate digesting the residue from the hydrochloric acid treatment with a strong solution of sodium hydroxide at an elevated temperature, removing said solution and treating the insoluble residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting the acidity of this solution to 1 to 3 normal, adding nitric acid to oxidize the iron present, adding oxalic acid and thereafter separating the thorium oxalate thus precipitated.
METHOD OF RECOVERING URANIUM COMPOUNDS
Poirier, R.H.
1957-10-29
S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.
NASA Astrophysics Data System (ADS)
Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Bychkova, S. A.; Volkov, A. V.; Skvortsov, I. A.
2018-03-01
The enthalpies of dissolution of crystalline naproxen sodium in water and aqueous solutions of KOH at 298.15 K are measured by direct calorimetric means in a wide range of concentrations. The acid-base properties of naproxen sodium at ionic strength I 0 and I = 0.1 (KNO3) and a temperature of 298.15 K are studied by spectrophotometric means. The concentration and thermodynamic dissociation constants are determined. The standard enthalpies of the formation of naproxen sodium and the products of its dissociation in aqueous solution are calculated.
Nishimura, Satoshi; Maie, Nagamitsu; Baba, Mitsuhisa; Sudo, Takahiro; Sugiura, Toshihiro; Shima, Eikichi
2012-01-01
Chromophoric dissolved organic matter (CDOM) leached from leaf litter is a major source of humus in mineral soil of forest ecosystems. While their functions and refractoriness depend on the physicochemical structure, there is little information on the quality of CDOM, especially for that leached in the very early stages of litter decomposition when a large amount of dissolved organic matter (DOM) is leached. This study aimed to better understand the variations/changes in the composition of CDOM leached from senescent leaf litter from two tree species during the early stage of decomposition. Leaf litter from a conifer tree (Japanese cedar, D. Don) and a deciduous broad-leaved tree (Konara oak, Thunb.) were incubated in columns using simulated rainfall events periodically for a total of 300 d at 20°C. The quality of CDOM was investigated based on the fluorescence properties by using a combination of excitation-emission matrix fluorescence (EEM) and parallel factor analysis (PARAFAC). In addition, the phenolic composition of DOM was investigated at a molecular level by thermally assisted hydrolysis and methylation-gas chromatography-mass spectrometry (THM-GC-MS) in the presence of tetramethylammonium hydroxide (TMAH). The EEM was statistically decomposed into eight fluorescence components (two tannin/peptide-like peaks, one protein-like peak, and five humic-like peaks). A significant contribution of tannin/peptide-like peaks was observed at the beginning of incubation, but these peaks decreased quickly and humic-like peaks increased within 1 mo of incubation. The composition of humic-like peaks was different between tree species and changed over the incubation period. Since tannin-derived phenolic compounds were detected in the DOM collected after 254 d of incubation on THM-GC-MS, it was suggested that tannins partially changed its structure, forming various humic-like peaks during the early decomposition. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Guo, Ying; Zhang, He; Zhao, Lan; Li, Guo-Dong; Chen, Jie-Sheng; Xu, Lin
2005-06-01
Cd-Cr and Zn-Cd-Cr layered double hydroxides (CdCr-LDH and ZnCdCr-LDH) containing alkyl sulfate as the interlamellar anion have been prepared through a coprecipitation technique. The resulting compounds were characterized using X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Magnetic property measurements indicate that antiferromagnetic interactions occur between the chromium ions in the two compounds at low temperatures. The introduction of zinc influences the ligand field of Cr III and the Cr III-Cr III interactions in the LDH compound. It is found that both CdCr-LDH and ZnCdCr-LDH can be delaminated by dispersion in formamide, leading to translucent and stable colloidal solutions.
NASA Astrophysics Data System (ADS)
Liu, Jiajia; Yuen, Richard K. K.; Hu, Yuan
2017-10-01
Poly(vinyl alcohol) (PVA) nanocomposites were prepared by a “one step” method based on the coprecipitation of layered double hydroxide (LDH) nanosheets in the polymer aqueous solution. The morphology, fire resistance properties, mechanical and optical properties of the PVA/LDH nanocomposites were studied. The LDH nanosheets were homogeneously dispersed in the PVA matrix as indicated by X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) characterization. Meanwhile, the peak of heat release rate (pHRR) and total heat release (THR) were decreased by 58% and 28%, respectively. Storage modulus at 30 °C was increased, and the transmittance of more than 90% at the visible region was obtained upon addition of 5 wt% LDH.
NASA Astrophysics Data System (ADS)
Li, Dianqing; Tuo, Zhenjun; Evans, David G.; Duan, Xue
2006-10-01
An organic UV absorber has been intercalated into a layered double hydroxide (LDH) host by ion-exchange method using ZnAl-NO 3-LDH as a precursor with an aqueous solution of the sodium salt of 5-benzotriazolyl-4-hydroxy-3- sec-butylbenzenesulfonic acid (BZO). After intercalation of the UV absorber, the interlayer distance in the LDHs increases from 0.89 to 2.32 nm. Infrared spectra and thermogravimetry and differential thermal analysis (TG-DTA) curves reveal the presence of a complex system of supramolecular host-guest interactions. The thermostability of BZO is markedly enhanced by intercalation in the LDH host. ZnAl-BZO-LDHs/polypropylene composite materials exhibit excellent UV photostability.
Tan, Xiaofei; Liu, Shaobo; Liu, Yunguo; Gu, Yanling; Zeng, Guangming; Cai, Xiaoxi; Yan, ZhiLi; Yang, Chunping; Hu, Xinjiang; Chen, Bo
2016-01-01
A biochar supported calcined-Mg/Al layered double hydroxides composite (CLDHs/BC) was synthesized by a one-pot slow pyrolysis of LDHs preloaded bagasse biomass. Multiple characterizations of the product illustrated that the calcined-Mg/Al layered double hydroxides (CLDHs) were successfully coated onto the biochar in slow pyrolysis of pre-treated biomass. The as-synthesized CLDHs/BC could efficiently remove antibiotic tetracycline from aqueous solutions. The coating of CLDHs significantly increased the adsorption ability of biochar, and CLDHs/BC exhibited more than 2 times higher adsorption capacity than that of the pristine biochar (BC) in the tested pH range. The maximum adsorption capacity of CLDHs/BC for tetracycline was 1118.12 mg/g at 318 K. The experimental results suggested that the interaction with LDHs on biochar played a dominant role in tetracycline adsorption, accompanied with π–π interaction and hydrogen bond. This study provides a feasible and simple approach for the preparation of high-performance material for antibiotics contaminated wastewater treatment in a cost-effective way. PMID:28000759
Machini, Wesley B S; David-Parra, Diego N; Teixeira, Marcos F S
2015-12-01
The preparation and electrochemical characterization of a nickel hydroxide modified nickel electrode as well as its behavior as electrocatalyst toward the oxidation of hydrochlorothiazide (HCTZ) were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of HCTZ were explored using cyclic voltammetry. The voltammetric response of the modified electrode in the detection of HCTZ is based on the electrochemical oxidation of the Ni(II)/Ni(III) and a chemical redox process. The analytical parameters for the electrooxidation of HCTZ by the nickel hydroxide modified nickel electrode were obtained in NaOH solution, in which the linear voltammetric response was in the concentration range from 1.39×10(-5) to 1.67×10(-4)mol L(-1) with a limit of detection of 7.92×10(-6)mol L(-1) and a sensitivity of 0.138 μA Lmmol(-1). Tafel analysis was used to elucidate the kinetics and mechanism of HCTZ oxidation by the modified electrode. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, Zhe; Li, Wenchao; Yan, Yadong; Wang, HongXu; Zhu, Heng; Zhao, Meiming; Yan, Shicheng; Zou, Zhigang
2018-06-21
Sluggish water dissociation kinetics on nonprecious metal electrocatalysts limits the development of economical hydrogen production from water-alkali electrolyzers. Here, using Co 3 N electrocatalyst as a prototype, we find that during water splitting in alkaline electrolyte a cobalt-containing hydroxide formed on the surface of Co 3 N, which greatly decreased the activation energy of water dissociation (Volmer step, a main rate-determining step for water splitting in alkaline electrolytes). Combining the cobalt ion poisoning test and theoretical calculations, the efficient hydrogen production on Co 3 N electrocatalysts would benefit from favorable water dissociation on in-situ formed cobalt-containing hydroxide and low hydrogen production barrier on the nitrogen sites of Co 3 N. As a result, the Co 3 N catalyst exhibits a low water-splitting activation energy (26.57 kJ mol -1 ) that approaches the value of platinum electrodes (11.69 kJ mol -1 ). Our findings offer new insight into understanding the catalytic mechanism of nitride electrocatalysts, thus contributing to the development of economical hydrogen production in alkaline electrolytes.
NASA Astrophysics Data System (ADS)
Tan, Xiaofei; Liu, Shaobo; Liu, Yunguo; Gu, Yanling; Zeng, Guangming; Cai, Xiaoxi; Yan, Zhili; Yang, Chunping; Hu, Xinjiang; Chen, Bo
2016-12-01
A biochar supported calcined-Mg/Al layered double hydroxides composite (CLDHs/BC) was synthesized by a one-pot slow pyrolysis of LDHs preloaded bagasse biomass. Multiple characterizations of the product illustrated that the calcined-Mg/Al layered double hydroxides (CLDHs) were successfully coated onto the biochar in slow pyrolysis of pre-treated biomass. The as-synthesized CLDHs/BC could efficiently remove antibiotic tetracycline from aqueous solutions. The coating of CLDHs significantly increased the adsorption ability of biochar, and CLDHs/BC exhibited more than 2 times higher adsorption capacity than that of the pristine biochar (BC) in the tested pH range. The maximum adsorption capacity of CLDHs/BC for tetracycline was 1118.12 mg/g at 318 K. The experimental results suggested that the interaction with LDHs on biochar played a dominant role in tetracycline adsorption, accompanied with π-π interaction and hydrogen bond. This study provides a feasible and simple approach for the preparation of high-performance material for antibiotics contaminated wastewater treatment in a cost-effective way.
Ordeig, Olga; Banks, Craig E; Davies, Trevor J; del Campo, F Javier; Muñoz, Francesc Xavier; Compton, Richard G
2006-05-01
Gold ultra-microelectrode arrays are used to explore the electrochemical oxidation of hydroxide ions and are shown to be analytical useful. Two types of ultra-microelectrode arrays are used; the first consist of 256 individual electrodes of 5 microm in radius, 170 of which are electrochemically active in a cubic arrangement which are separated from their nearest neighbour by a distance of 100 microm. The second array compromises 2597 electrodes of 2.5 microm in radius and of which 1550 of which are electrochemically active in a hexagonal arrangement separated by the nearest neighbour by 55 microm. Well defined voltammetric waves are found with peak currents proportional to the concentration of hydroxide ions in the range 50 microM to 1 mM. Detection limits of 20 microM using the 170 ultra-microelectrode and 10 microM with the 1550 ultra-microelectrode array are shown to be possible but with a higher sensitivity of 4 mA M(-1) observed using the 1550 ultra-microelectrode array compared to 1.2 mA M(-1) with the 170 ultra-microelectrode array.
A Study on Sealing Process of Anodized Al Alloy Film
NASA Astrophysics Data System (ADS)
Tsujita, Takeshi; Sato, Hiroshi; Tsukahara, Sonoko; Ishikawa, Yuuichi
Since sealing is an important process to improve the corrosion resistance in practical application of anodized aluminum, we prepared anodic oxide films on A5052 alloy in an oxalic acid bath and a sulfuric acid bath, sealed them at various conditions, and analyzed them by scanning electron microscopy, acid-dissolution examination, admittance measurements and infrared spectroscopy. The pore radius of the oxalic acid anodized film was about 5 times larger than that of sulfuric acid anodized film, while the corrosion resistance of the former showed about 2 times higher value than the latter with the same sealed state and amount of hydroxide formed by sealing process of the former was 6 times larger than the latter, respectively. Steam sealing formed dense hydroxide and boiling water sealing formed big coral-like hydroxide, whereas the corrosion resistance of the film sealed by the former showed about 1.5 times higher value than that sealed by the latter, respectively. Thus microstructure of anodic oxide films and their surface morphology after sealing process clearly depended on their anodizing solution and the sealing condition and showed obvious relation to electric and corrosive properties.
Process for removing metals from water
Napier, John M.; Hancher, Charles M.; Hackett, Gail D.
1989-01-01
A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a flocculating agent, separating precipitate-containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions.
Process for removing metals from water
Napier, J.M.; Hancher, C.M.; Hackett, G.D.
1987-06-29
A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.
Chronoamperometric study of mild steel pitting in sodium sulfide aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otero, T.F.; Achucarro, C.
1994-08-01
Mild steel samples were studied by chronoamperometry in sodium sulfide (Na[sub 2]S) aqueous solution. Pit nucleation and growth also were monitored by optical microscopy. The influence of variables such as temperature, polarization potential, surface roughness, the presence of electrochemically generated oxide layers, and the simultaneous presence of potassium hydroxide (KOH) was studied. The influence of each parameter on pit shape and growth was reviewed. Different reactions and competitive processes were proposed based on the experimental results.
Non-pulsed electrochemical impregnation of flexible metallic battery plaques
Maskalick, Nicholas J.
1982-01-01
A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.
Midorikawa, I; Aoki, H; Omori, A; Shimizu, T; Kawaguchi, Y; Kassai, K; Murakami, T
2008-01-01
High purity phosphorus was recovered from municipal wastewater secondary effluent as phosphate, using a newly developed phosphorus adsorption and recovery system. A high-speed adsorbent having a unique porous structure was used in this system. The secondary effluent, showing total phosphorus (TP) of 0.1-2.1 mg P/L, was passed through an adsorbent packed column at high space velocity (SV) of 15 h(-1). The TP of the treated water was as low as 0.02-0.04 mg P/L, indicating that 97% of phosphorus in the secondary effluent was removed. The removed phosphorus was desorbed from the adsorbent by passing a sodium hydroxide aqueous solution through the column. Calcium hydroxide was added to this solution to precipitate the phosphorus as calcium phosphate. This precipitate was neutralized with hydrochloric acid aqueous solution, washed with water, and then solid-liquid separation was performed for the phosphorus recovery. The main constituent of the recovered phosphorus was apatite-type calcium phosphate, with 16% phosphorus content, which matched that of high-grade phosphorus ore. The hazardous elements content of the recovered phosphorus was exceedingly low. Therefore the recovered phosphorus can be applied to an alternative for phosphorus ore, or to a phosphate fertilizer. IWA Publishing 2008.
Immobilization of 99-Technetium (VII) by Fe(II)-Goethite and Limited Reoxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Chang, Hyun-Shik; Icenhower, Jonathan P.
2011-05-04
Synthesized goethite was successfully used with addition of Fe(II) to sequester Tc present in both deionized water and simulated off-gas scrubber waste solutions. Pertechnetate concentration in solution decreased immediately when the pH was raised above 7 by addition of sodium hydroxide. Removal of Tc(VII) from solution occurred most likely as a result of heterogeneous surface-catalyzed reduction to Tc(IV) and subsequent co-precipitation onto the goethite. The final Tc-bearing solid was identified as goethite-dominated Fe(III)-(oxy)hydroxide based on XRD analysis, confirming the widespread observation of its characteristic acicular habit by TEM/SEM images. Analysis of the solid precipitate by XAFS showed that the dominantmore » oxidation state of Tc was Tc(IV) and was in octahedral coordination with Tc-O, Fe-O, and Tc-Fe bond distances that are consistent with direct substitution of Tc for Fe in the goethite structure. In some experiments the final Tc-goethite product was subsequently armored with additional layers of freshly precipitated goethite. Successful incorporation of Tc(IV) within the goethite mineral lattice and subsequent goethite armoring can limit re-oxidation of Tc(IV) and its subsequent release from Tc-goethite waste forms, even when the final product is placed in oxidizing environments that typify shallow waste burial facilities.« less
Effects of radiation, acid, and base on the extractant dihexyl-(diethylcarbamoyl)methyl) phosphonate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahner, C.T.; Shoun, R.R.; McDowell, W.J.
1981-11-01
The effects of exposure to gamma radiation (/sup 60/Co) and of contact with acidic and basic aqueous solutions on dihexyl((diethylcarbamoyl)methyl)phosphonate (DHDECMP) were studied. Gamma radiation decomposes DHDECMP into a variety of products. The most troublesome of those are the acidic compounds that cause problems in stripping the actinides and lanthanides from the extractant at low acid concentrations. The rate of degradation of DHDECMP by radiation is about the same or only slightly higher than that of tri-n-butyl phosphate (TBP). It is relatively easy to remove the radiation-produced impurities by equilibration (scrubbing) with sodium carbonate or sodium hydroxide or by columnmore » chromatographic methods. The hydrolysis of DHDECMP in contact with aqueous solutions containing less than 3 M HNO/sub 3/ is not more severe than that of TBP under the same conditions but is significant above that acid concentration. Hydrolysis of DHDECMP in contact with aqueous sodium hydroxide solution does occur, but it should not pose an important problem with the short contact times such as those anticipated for the removal of the radiation-induced degradation products by caustic scrubbing. Results of various chromatographic tests to characterize the degradation products of DHDECMP are also given.« less
Stability of cefozopran hydrochloride in aqueous solutions.
Zalewski, Przemysław; Skibiński, Robert; Paczkowska, Magdalena; Garbacki, Piotr; Talaczyńska, Alicja; Cielecka-Piontek, Judyta; Jelińska, Anna
2016-01-01
The influence of pH on the stability of cefozopran hydrochloride (CZH) was investigated in the pH range of 0.44-13.00. Six degradation products were identified with a hybrid ESI-Q-TOF mass spectrometer. The degradation of CZH as a result of hydrolysis was a pseudo-first-order reaction. As general acid-base hydrolysis of CZH was not occurred in the solutions of hydrochloric acid, sodium hydroxide, acetate, borate and phosphate buffers, kobs = kpH because specific acid-base catalysis was observed. Specific acid-base catalysis of CZH consisted of the following reactions: hydrolysis of CZH catalyzed by hydrogen ions (kH+), hydrolysis of dications (k1H2O), monocations (k2H2O) and zwitter ions (k3H2O) and hydrolysis of zwitter ions (k1OH-) and monoanions (k2OH-) of CZH catalyzed by hydroxide ions. The total rate of the reaction was equal to the sum of partial reactions: [Formula: see text]. CZH similarly like other fourth generation cephalosporin was most stable at slightly acidic and neutral pH and less stable in alkaline pH. The cleavage of the β-lactam ring resulting from a nucleophilic attack on the carbonyl carbon in the β-lactam moiety is the preferred degradation pathway of β-lactam antibiotics in aqueous solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Craig W.; Kirchheim, Ana Paula; Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu
Suspensions of synthetic ye'elimite (C{sub 4}A{sub 3}S{sup ¯}) in a saturated gypsum (CS{sup ¯}H{sub 2}) and calcium hydroxide (CH) solution were examined in-situ in a wet cell by soft X-ray transmission microscopy and ex-situ by scanning electron microscopy. The most voluminous hydration product observed was ettringite. Ettringite commonly displayed acicular, filiform, reticulated, and stellate crystal habits. Additionally, pastes with C{sub 4}A{sub 3}S{sup ¯}, 15% CS{sup ¯}H{sub 2}, and varying amounts of CH were prepared and examined with X-ray diffraction (XRD) and isothermal calorimetry. The XRD experiments showed that increasing CH content caused more solid solution (SO{sub 4}{sup 2−}/OH{sup −}) AFmmore » phases to form at early ages (< 1 d) and more monosulfate to form at later ages (> 1 d). Calorimetry indicated that the increased production of solid solution AFm was accompanied with an increase in the initial (< 30 min) rate of heat evolution, and increasing CH generally reduced the time till the second maximum rate of heat evolution due to the formation of ettringite and monosulfate.« less
Inhibition of Ice Growth and Recrystallization by Zirconium Acetate and Zirconium Acetate Hydroxide
Mizrahy, Ortal; Bar-Dolev, Maya; Guy, Shlomit; Braslavsky, Ido
2013-01-01
The control over ice crystal growth, melting, and shaping is important in a variety of fields, including cell and food preservation and ice templating for the production of composite materials. Control over ice growth remains a challenge in industry, and the demand for new cryoprotectants is high. Naturally occurring cryoprotectants, such as antifreeze proteins (AFPs), present one solution for modulating ice crystal growth; however, the production of AFPs is expensive and inefficient. These obstacles can be overcome by identifying synthetic substitutes with similar AFP properties. Zirconium acetate (ZRA) was recently found to induce the formation of hexagonal cavities in materials prepared by ice templating. Here, we continue this line of study and examine the effects of ZRA and a related compound, zirconium acetate hydroxide (ZRAH), on ice growth, shaping, and recrystallization. We found that the growth rate of ice crystals was significantly reduced in the presence of ZRA and ZRAH, and that solutions containing these compounds display a small degree of thermal hysteresis, depending on the solution pH. The compounds were found to inhibit recrystallization in a manner similar to that observed in the presence of AFPs. The favorable properties of ZRA and ZRAH suggest tremendous potential utility in industrial applications. PMID:23555701
Lee, Sang-Ho; Choi, Heechul; Kim, Kyoung-Woong
2018-03-13
To develop a novel granular adsorbent to remove arsenic and antimony from water, calcined Mg/Al-layered double-hydroxide (CLDH)-incorporated polyethersulfone (PES) granular adsorbents (PES-LDH) were prepared using a core-shell method having 25% PES in an N,N-dimethylformamide solution. The PES-LDH displayed a spherical hollow shape having a rough surface and the average particle size of 1-2 mm. On the PES-LDH surface, nanosized CLDH (100-150 nm) was successfully immobilized by consolidation between PES and CLDH. The adsorption of Sb(V) by PES-LDH was found to be more favorable than for As(V), with the maximum adsorption capacity of As(V) and Sb(V) being 7.44 and 22.8 mg/g, respectively. The regeneration results indicated that a 0.5 M NaOH and 5 M NaCl mixed solution achieved an 80% regeneration efficiency in As(V) adsorption and desorption. However, the regeneration efficiency of Sb(V) gradually decreased due to its strong binding affinity, even though the PES-LDH showed much higher Sb(V) adsorption efficiency than As(V). This study suggested that PES-LDH could be a promising granular adsorbent for the remediation of As(V) and Sb(V) contained in wastewater.
Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah
2016-07-15
Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Study on the failure temperature of Ti/Pt/Au and Pt5Si2-Ti/Pt/Au metallization systems
NASA Astrophysics Data System (ADS)
Zhang, Jie; Han, Jianqiang; Yin, Yijun; Dong, Lizhen; Niu, Wenju
2017-09-01
The Ti/Pt/Au metallization system has an advantage of resisting KOH or TMAH solution etching. To form a good ohmic contact, the Ti/Pt/Au metallization system must be alloyed at 400 °C. However, the process temperatures of typical MEMS packaging technologies, such as anodic bonding, glass solder bonding and eutectic bonding, generally exceed 400 °C. It is puzzling if the Ti/Pt/Au system is destroyed during the subsequent packaging process. In the present work, the resistance of doped polysilicon resistors contacted by the Ti/Pt/Au metallization system that have undergone different temperatures and time are measured. The experimental results show that the ohmic contacts will be destroyed if heated to 500 °C. But if a 20 nm Pt film is sputtered on heavily doped polysilicon and alloyed at 700 °C before sputtering Ti/Pt/Au films, the Pt5Si2-Ti/Pt/Au metallization system has a higher service temperature of 500 °C, which exceeds process temperatures of most typical MEMS packaging technologies. Project supported by the National Natural Science Foundation of China (No. 61376114).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Line Boisen; Lipton, Andrew S.; Zorin, Vadim
Ordering of gallium(III) in a series of magnesium gallium (MgGa) layered double hydroxides (LDHs), [Mg{sub 1−x}Ga{sub x}(OH){sub 2}(NO{sub 3}){sub x}·yH{sub 2}O] was investigated using solid-state {sup 1}H and {sup 71}Ga NMR spectroscopy as well as powder X-ray diffraction. Three different proton environments from Mg{sub 3}-OH, Mg{sub 2}Ga-OH and intergallery water molecules were assigned and quantified using ({sup 1}H,{sup 71}Ga) HETCOR and {sup 1}H MAS NMR. A single {sup 71}Ga site originating from the unique Ga site in the MgGa LDH's was observed in {sup 71}Ga MAS and 3QMAS NMR spectra. Both {sup 1}H MAS NMR spectra recorded at 21.1 Tmore » (900 MHz) and elemental analysis show that the synthesized MgGa LDH's had a lower Mg:Ga ratio than that of the starting reactant solution. The origin of this is the formation of soluble [Ga(OH){sub 4}]{sup −} complexes formed during synthesis, and not due to formation of insoluble gallium (oxy)hydroxides. No sign of Ga-O-Ga connectivities or defects were detected for the MgGa LDH's. - Graphical abstract: Two types of hydroxides groups are observed in magnesium gallium layered double hydroxides revealing an ordering of Ga in the cation layer. - Highlights: • Ga is ordered in our magnesium gallium layered double hydroxides. • Ga depletion due to formation of soluble Ga complexes during synthesis. • No sign of Ga rich regions in magnesium gallium LDHs. • Solid state {sup 1}H and {sup 71}Ga give detailed insight into the structure.« less
Thin silicon-solar cell fabrication
NASA Technical Reports Server (NTRS)
Lindmayer, J.
1979-01-01
Flexible silicon slices of uniform thicknesses are fabricated by etching in sodium hydroxide solution. Maintaining uniform thickness across slices during process(fabrication) is important for cell strength and resistance to damage in handling. Slices formed by procedure have reproducible surface with fine orange peel texture, and are far superior to slices prepared by other methods.
Preparation and Analysis of Libethenite: A Project for the First-Year Laboratory
ERIC Educational Resources Information Center
Ginion, Kelly E.; Yoder, Claude H.
2004-01-01
The preparation of libethenite, a double salt of copper(II) phosphate and copper(II) hydroxide presents the opportunity to discuss the prevalence of double salts in the environment, the relationship between solubility and stability in aqueous solution, the origin of the color of transition metal compounds and gravimetric analyses. Typical results…
21 CFR 184.1613 - Potassium bicarbonate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... GRAS § 184.1613 Potassium bicarbonate. (a) Potassium bicarbonate (KHCO3, CAS Reg. No. 298-14-6) is made by the following processes: (1) By treating a solution of potassium hydroxide with carbon dioxide; (2...
21 CFR 184.1443 - Magnesium sulfate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...
21 CFR 184.1443 - Magnesium sulfate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...
21 CFR 186.1750 - Sodium chlorite.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is...
21 CFR 173.73 - Sodium polyacrylate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... for Food Treatment § 173.73 Sodium polyacrylate. Sodium polyacrylate (CAS Reg. No. 9003-04-7) may be... aqueous sodium hydroxide solution. As determined by a method entitled “Determination of Weight Average and...
21 CFR 186.1750 - Sodium chlorite.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is...
21 CFR 186.1750 - Sodium chlorite.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is...
Hydrophobic, Porous Battery Boxes
NASA Technical Reports Server (NTRS)
Bragg, Bobby J.; Casey, John E., Jr.
1995-01-01
Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.
Xing, Li-Li; Li, Da-Peng; Hu, Shu-Xin; Jing, Huai-Yu; Fu, Honglan; Mai, Zhen-Hong; Li, Ming
2006-02-08
Controllable depositing of relatively thick inorganic sublayers into organic templates to fabricate organic-inorganic superlattices is of great importance. We report a novel approach to fabricating phospholipid/Ni(OH)(2) superlattices by electrochemical deposition of the inorganic component into solid-supported multilamellar templates. The well-ordered and highly oriented multilamellar templates are produced by spreading small drops of lipid solution on silicon surfaces and letting the solvent evaporate slowly. The templates which are used as working electrodes preserve the lamellar structure in the electrolyte solution. The resulting superlattices are highly oriented. The thickness of the nickel hydroxide is controlled by the concentration of nickel ions in the electrolyte bath. The electron density profiles derived from the X-ray diffraction data reveal that the thickness of the nickel hydroxide sublayers increases from 15 to 27 A as the concentration of nickel nitrate increases from 0.005 mol/L to 0.08 mol/L. We expect that the new method can be extended to depositing a variety of inorganic components including metals, oxides, and semiconductors.
NASA Astrophysics Data System (ADS)
Gadala, Ibrahim M.; Alfantazi, Akram
2015-12-01
The key steps involved in X100 pipeline steel passivation in bicarbonate-based simulated soil solutions from the pre-passive to transpassive potential regions have been analyzed here using a step-wise anodizing-electrochemical impedance spectroscopy (EIS) routine. Pre-passive steps involve parallel dissolution-adsorption in early stages followed by clear diffusion-adsorption control shortly before iron hydroxide formation. Aggressive NS4 chlorides/sulfate promote steel dissolution whilst inhibiting diffusion in pre-passive steps. Diffusive and adsorptive effects remain during iron hydroxide formation, but withdraw shortly thereafter during its removal and the development of the stable iron carbonate passive layer. Passive layer protectiveness is evaluated using EIS fitting, current density analysis, and correlations with semiconductive parameters, consistently revealing improved robustness in colder, bicarbonate-rich, chloride/sulfate-free conditions. Ferrous oxide formation at higher potentials results in markedly lower impedances with disordered behavior, and the involvement of the iron(III) valence state is observed in Mott-Schottky tests exclusively for 75 °C conditions.
Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak
2012-09-01
The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.
Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants.
Peng, Xinsheng; Karan, Santanu; Ichinose, Izumi
2009-08-04
We developed a simple fabrication method of ultrathin nanofibrous films from the dispersion of cadmium hydroxide nanostrands and anionic surfactants. The nanostrands were prepared in a dilute aqueous solution of cadmium chloride by using 2-aminoethanol. They were highly positively charged and gave bundlelike fibers upon mixing an aqueous solution of anionic surfactant. The nanostrand/surfactant composite fibers were filtered on an inorganic membrane filter. The resultant nanofibrous film was very uniform in the area of a few centimeters square when the thickness was not less than 60 nm. The films obtained with sodium tetradecyl sulfate (STS) had a composition close to the electroneutral complex, [Cd37(OH)68(H2O)n] x 6(STS), as confirmed by energy dispersive X-ray analysis. They were water-repellent with a contact angle of 117 degrees, and the value slightly decreased with the alkyl chain length of anionic surfactants. Ultrathin nanofibrous films were stable enough to be used for ultrafiltration at pressure difference of 90 kPa. We could effectively separate Au nanoparticles of 40 nm at an extremely high filtration rate of 14000 L/(h m2 bar).
Acid Green 1 removal from wastewater by layered double hydroxides
NASA Astrophysics Data System (ADS)
Elkhattabi, El Hassan; Lakraimi, Mohamed; Berraho, Moha; Legrouri, Ahmed; Hammal, Radouan; El Gaini, Layla
2018-03-01
The paper presents the removal of Acid Green 1 (AG1) from aqueous solutions by [Zn-Al-Cl]-layered double hydroxides (LDHs). The LDH was prepared by coprecipitation at constant pH. The affinity of this material for AG1 was studied as a function of contact time, pH of the solution, LDH dose and AG1/LDH mass ratio. It was found that 32 h are enough to reach the equilibrium with a maximum retention at pH 8 for an LDH dose of 100 mg and with an AG1/LDH mass ratio higher than 2. The adsorption isotherm is of L-type, as described by the Langmuir model. The results demonstrate that AG1 retention on LDHs occurs by adsorption on external surface when AG1/LDH mass ratio is equal or lower than 2 and by both adsorption and interlayer ion exchange for ratios higher than 2. A mechanism for the AG1 removal has been confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric-differential thermal analyses and scanning electron microscopy.
Physical and Chemical Interactions between Mg:Al Layered Double Hydroxide and Hexacyanoferrate
NASA Astrophysics Data System (ADS)
Boclair, Joseph W.; Braterman, Paul S.; Brister, Brian D.; Wang, Zhiming; Yarberry, Faith
2001-11-01
The physical and chemical interactions of ferrocyanide (potassium and ammonium salts) and ferricyanide (potassium salt) with Mg:Al layered double hydroxides (LDH) (having Mg:Al ratios of 2 and 3) are investigated using powder XRD and FTIR spectroscopy. Physically, the potassium ferricyanide is shown to intercalate with a small local field deformation similar to that seen for hexacyanocobaltate (III) in similar materials. Chemically, the reduction of ferricyanide to ferrocyanide upon intercalation is confirmed. Physical interactions of ferrocyanide with 3:1 LDH are shown spectroscopically to include the possible generation of anions in differing environments. Chemically, ferrocyanide is shown to generate cubic ferrocyanides (of the type M2MgFe(CN)6, where M=K+ or NH+4) under conditions where free Mg2+ is likely present in solution, namely, solutions with a pH lower than ∼7.5. It is shown that the reported 2112-cm-1 band found in some chemically altered LDH ferrocyanide is indeed due to interlayer ferricyanide, but that the 2080 cm-1 band is due to the cubic material.
Biocompatible silver nanoparticles prepared with amino acids and a green method.
de Matos, Ricardo Almeida; Courrol, Lilia Coronato
2017-02-01
The synthesis of nanoparticles is usually carried out by chemical reduction, which is effective but uses many toxic substances, making the process potentially harmful to the environment. Hence, as part of the search for environmentally friendly or green synthetic methods, this study aimed to produce silver nanoparticles (AgNPs) using only AgNO 3 , Milli-Q water, white light from a xenon lamp (Xe) and amino acids. Nanoparticles were synthetized using 21 amino acids, and the shapes and sizes of the resultant nanoparticles were evaluated. The products were characterized by UV-Vis, zeta potential measurements and transmission electron microscopy. The synthesis of silver nanoparticles with tryptophan and tyrosine, methionine, cystine and histidine was possible through photoreduction method. Spherical nanoparticles were produced, with sizes ranging from 15 to 30 nm. Tryptophan does not require illumination nor heating, and the solution color changes immediately after the mixing of reagents if sodium hydroxide is added to the solution (pH = 10). The Xe illumination acts as sodium hydroxide in the nanoparticles synthesis, releases H + and allows the reduction of silver ions (Ag + ) in metallic silver (Ag 0 ).
Hajeb, P; Jinap, S
2012-06-13
An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.
The role of halide ions on the electrochemical behaviour of iron in alkali solutions
NASA Astrophysics Data System (ADS)
Begum, S. Nathira; Muralidharan, V. S.; Basha, C. Ahmed
2008-02-01
Active dissolution and passivation of transition metals in alkali solutions is of technological importance in batteries. The performance of alkaline batteries is decided by the presence of halides as they influence passivation. Cyclic voltammetric studies were carried out on iron in different sodium hydroxide solutions in presence of halides. In alkali solutions iron formed hydroxo complexes and their polymers in the interfacial diffusion layer. With progress of time they formed a cation selective layer. The diffusion layer turned into bipolar ion selective layer consisted of halides, a selective inner sublayer to the metal side and cation selective outer layer to the solution side. At very high anodic potentials, dehydration and deprotonation led to the conversion of salt layer into an oxide.
Method of extracting coal from a coal refuse pile
Yavorsky, Paul M.
1991-01-01
A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.
Kupaei, Ramin Hosseini; Alengaram, U Johnson; Jumaat, Mohd Zamin
2014-01-01
This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials--low calcium fly ash (FA) and oil palm shell (OPS)--as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength.
Kupaei, Ramin Hosseini; Alengaram, U. Johnson; Jumaat, Mohd Zamin
2014-01-01
This paper presents the experimental results of an on-going research project on geopolymer lightweight concrete using two locally available waste materials—low calcium fly ash (FA) and oil palm shell (OPS)—as the binder and lightweight coarse aggregate, respectively. OPS was pretreated with three different alkaline solutions of sodium hydroxide (NaOH), potassium hydroxide, and sodium silicate as well as polyvinyl alcohol (PVA) for 30 days; afterwards, oil palm shell geopolymer lightweight concrete (OPSGPC) was cast by using both pretreated and untreated OPSs. The effect of these solutions on the water absorption of OPS, and the development of compressive strength in different curing conditions of OPSGPC produced by pretreated OPS were investigated; subsequently the influence of NaOH concentration, alkaline solution to FA ratio (A/FA), and different curing regimes on the compressive strength and density of OPSGPC produced by untreated OPS was inspected. The 24-hour water absorption value for OPS pretreated with 20% and 50% PVA solution was about 4% compared to 23% for untreated OPS. OPSGPC produced from OPS treated with 50% PVA solution produced the highest compressive strength of about 30 MPa in ambient cured condition. The pretreatment with alkaline solution did not have a significant positive effect on the water absorption of OPS aggregate and the compressive strength of OPSGPC. The result revealed that a maximum compressive strength of 32 MPa could be obtained at a temperature of 65°C and curing period of 4 days. This investigation also found that an A/FA ratio of 0.45 has the optimum amount of alkaline liquid and it resulted in the highest level of compressive strength. PMID:25531006
Germanium geochemistry and mineralogy
Bernstein, L.R.
1985-01-01
Germanium is enriched in the following geologic environments: 1. (1) iron meteorites and terrestrial iron-nickel; 2. (2) sulfide ore deposits, particularly those hosted by sedimentary rocks; 3. (3) iron oxide deposits; 4. (4) oxidized zones of Ge-bearing sulfide deposits; 5. (5) pegmatites, greisens, and skarns; and 6. (6) coal and lignitized wood. In silicate melts, Ge is highly siderophile in the presence of native iron-nickel; otherwise, it is highly lithophile. Among silicate minerals, Ge is concentrated in those having less polymerized silicate tetrahedra such as olivine and topaz. In deposits formed from hydrothermal solutions, Ge tends to be enriched mostly in either sulfides or in fluorine-bearing phases; it is thus concentrated both in some hydrothermal sulfide deposits and in pegmatites, greisens, and skarns. In sulfide deposits that formed from solutions having low to moderate sulfur activity, Ge is concentrated in sphalerite in amounts up to 3000 ppm. Sulfide deposits that formed from solutions having higher sulfur activity allowed Ge to either form its own sulfides, particularly with Cu, or to substitute for As, Sn, or other metals in sulfosalts. The Ge in hydrothermal fluids probably derives from enrichment during the fractional crystallization of igneous fluids, or is due to the incorporation of Ge from the country rocks, particularly from those containing organic material. Germanium bonds to lignin-derivative organic compounds that are found in peat and lignite, accounting for its common concentration in coals and related organic material. Germanium is precipitated from water together with iron hydroxide, accounting for its concentration in some sedimentary and supergene iron oxide deposits. It also is able to substitute for Fe in magnetite in a variety of geologic environments. In the oxidized zone of Ge-bearing sulfide deposits, Ge is concentrated in oxides, hydroxides, and hydroxy-sulfates, sometimes forming its own minerals. It is particularly enriched in some iron- and manganese-bearing oxides and hydroxides, including goethite (up to 5300 ppm) and hematite (up to 7000 ppm). ?? 1985.
Metals removal from aqueous solution by iron-based bonding agents.
Deliyanni, Eleni A; Lazaridis, Nikolaos K; Peleka, Efrosini N; Matis, Konstantinos A
2004-01-01
GOAL AND SCOPE AND BACKGROUND: The application of a promising method, termed sorptive flotation, for the removal of chromium(VI) and zinc ions was the aim of the present paper. A special case of sorptive flotation is adsorbing colloid flotation. Suitable sorbent preparation techniques have been developed in the laboratory. Sorptive flotation, consisting of the sorption and flotation processes combined in series, has proved to give fast and satisfactory treatment of the industrial streams and effluents bearing dilute aqueous solutions of zinc and chromium(VI). Goethite has proved to be effective for the removal of chromium(VI) and zinc ions. Also, adsorbing colloid flotation with ferric hydroxide (as the co-precipitant) could be an alternative method to the above-mentioned separation of metal ions. In both cases, chromium(VI) (pH=4) and zinc (pH=7) removal was about 100%. The reasons for selecting the iron-based bonding materials, like goethite and/or in-situ produced ferric hydroxide, are that they are cheap, easily synthesized, suitable both for cation and anion sorption, and, furthermore, that they present low risks for adding a further pollutant to the system. Promising results were obtained. The application of goethite and in-situ produced ferric hydroxide has demonstrated their effectiveness in the removal of heavy metal ions, such as chromium anions and zinc cations. A proposed continuation of current work is the utilization of similar iron oxides, for instance synthesized akaganeite. The comparison between the results reported in this paper with the results reported in the literature, also deserves attention.
Mihajlović, Ljiljana; Nikolić-Mandić, Snezana; Vukanović, Branislav; Mihajlović, Randel
2009-03-01
Natural monocrystalline pyrite as a new indicator electrode for the potentiometric titration of weak acids in acetonitrile, propionitrile and benzonitrile was studied. The investigated electrode showed a linear dynamic response for p-toluenesulfonic acid concentrations in the range from 0.1 to 0.001 M, with a Nernstian slope of 74 mV per decade. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide (TBAH) proved to be very suitable titrating agent for this titration. The response time was less than (11 s) and the lifetime of the electrode is long. The advantages of the electrode are log-term stability, fast response, and reproducibility, while the sensor is easy to prepare and of low cost.
Thermal treatment, grain boundary composition and intergranular attack resistance of Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A.J.; Stratton, R.P.
1992-12-31
Commercial Alloy 690 PWR steam generator tubes and experimentally produced alloys with varying amounts of carbon, aluminium and titanium have been examined. After simulated mill annealing and thermal treatment, the microstructure and corrosion behaviour in corrosion tests have been investigated. Stress corrosion resistance of selected alloy 690 tubes and experimental alloys has been examined with environments based on pure water, sodium hydroxide and sodium hydroxide + sodium sulphate solutions. Effects of aluminium content and the thermal treatments on the susceptibility to intergranular attack have been examined, although they appear not to be very significant to the amounts of IGA. Samplesmore » used in thermal treatments have been further examined with a dedicated scanning transmission electron microscope to show compositional changes at grain boundaries.« less
NASA Astrophysics Data System (ADS)
Zhao, Hua-Zhang; Chang, Ying-Yue; Yang, Jing; Yang, Qin-Zheng
2013-03-01
Layered double hydroxide (LDH) films were synthesized in situ on anodic alumina/aluminium (AAO/Al). Glucose oxidase (GOD) and L-ascorbic acid (vitamin C, VC) were intercalated respectively into the in-situ grown LDH films by anion-exchange in aqueous solutions. Dodecylsulfate (SDS) was used to expand the lamellar structure before GOD intercalation into the LDH film. The resulting products were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis (TGA). The results showed that VC and GOD were successfully intercalated into the in-situ synthesized LDH film. These biomolecules loaded LDH films could have potential applications in electrode modification, safe storage and effective delivery of bioactive compounds.
Lee, Jong-Hee; Kamada, Kai; Enomoto, Naoya; Hojo, Junichi
2007-12-15
Polyhedral gold nanoparticles below 100 nm in size were fabricated by continuously delivered HAuCl(4) and PVP starting solutions into l-ascorbic acid aqueous solution in the presence of gold seeds, and under addition of sodium hydroxide (NaOH). By continuously delivered PVP and HAuCl(4) starting solutions in the presence of gold seed, the size and shape of polyhedral gold were achieved in relatively good uniformity (particle size distribution=65-95 nm). Morphological evolution was also attempted using different growth rates of crystal facets with increasing reaction temperature, and selective adsorption of PVP.
USDA-ARS?s Scientific Manuscript database
The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...
Comparison of the antibacterial activity of chelating agents using the agar diffusion method
USDA-ARS?s Scientific Manuscript database
The agar diffusion assay was used to examine antibacterial activity of 2 metal chelators. Concentrations of 0 to 40 mM of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N,N’-disuccinic acid (EDDS) were prepared in 1.0 M potassium hydroxide (KOH). The pH of the solutions was adjusted to 1...
ERIC Educational Resources Information Center
Drossman, Howard
2007-01-01
Students have standardized a sodium hydroxide solution and analyzed commercially available sports drinks by titrimetric analysis of the triprotic citric acid, dihydrogen phosphate, and dihydrogen citrate and by ion chromatography for chloride, total phosphate and citrate. These experiments are interesting examples of analyzing real-world food and…
21 CFR 184.1426 - Magnesium chloride.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS Reg. No. 7786-30-3) is a... prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous hydrochloric acid solution and...
Effects of pH adjustment and sodium ions on sour taste intensity of organic acids
USDA-ARS?s Scientific Manuscript database
Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...