Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes
Bernard, Patrick; Baudry, Michelle
2000-12-05
A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.
Protein loss in human hair from combination straightening and coloring treatments.
França-Stefoni, Simone Aparecida; Dario, Michelli Ferrera; Sá-Dias, Tânia Cristina; Bedin, Valcinir; de Almeida, Adriano José; Baby, André Rolim; Velasco, Maria Valéria R
2015-09-01
Hair chemical treatments, such as dyeing and straightening products, are known to cause damage that can be assessed by protein loss. The aim of this study was to evaluate the hair protein loss caused by combined chemical treatments (dye and relaxer) using the validated bicinchoninic acid (BCA) method. Three kinds of straighteners, based on ammonium thioglycolate, guanidine hydroxide and sodium hydroxide, were evaluated and the least harmful combination indicated. Caucasian virgin dark brown hair tresses were treated with developed natural brown color oxidative hair dyeing and/or straightening commercial products based on ammonium thioglycolate, sodium hydroxide, or guanidine hydroxide. Protein loss quantification was assessed by the validated BCA method which has several advantages for quantifying protein loss in chemically treated hair. When both treatments (straightening and dyeing) were combined, a higher negative effect was observed, particularly for dyed hair treated with sodium hydroxide. In this case, a 356% increase in protein loss relative to virgin hair was observed and 208% in relation to only dyed hair. The combination of dying and relaxers based on ammonium thioglycolate or guanidine hydroxide caused a small increase in protein loss, suggesting that these straightening products could be the best alternatives for individuals wishing to combine both treatments. These results indicated that when application of both types of products is desired, ammonium thioglycolate or guanidine hydroxide should be chosen for the straightening process. © 2015 Wiley Periodicals, Inc.
Nickel hydroxides and related materials: a review of their structures, synthesis and properties
Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.
2015-01-01
This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol–gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of ‘unknown’ nickel hydroxide-based samples. PMID:25663812
Fulzele, Punit; Baliga, Sudhindra; Thosar, Nilima; Pradhan, Debaprya
2011-01-01
Aims: Evaluation of calcium ion and hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments. Objective: The purpose of this study was to evaluate calcium and hydroxyl ion release and pH levels of calcium hydroxide based products, namely, RC Cal, Metapex, calcium hydroxide with distilled water, along with the new gutta-percha points with calcium hydroxide. Materials and Methods: The materials were inserted in polyethylene tubes and immersed in deionized water. The pH variation, Ca++ and OH- release were monitored periodically for 1 week. Statistical Analysis Used: Statistical analysis was carried out using one-way analysis of variance and Tukey's post hoc tests with PASW Statistics version 18 software to compare the statistical difference. Results: After 1 week, calcium hydroxide with distilled water and RC Cal raised the pH to 12.7 and 11.8, respectively, while a small change was observed for Metapex, calcium hydroxide gutta-percha points. The calcium released after 1 week was 15.36 mg/dL from RC Cal, followed by 13.04, 1.296, 3.064 mg/dL from calcium hydroxide with sterile water, Metapex and calcium hydroxide gutta-percha points, respectively. Conclusions: Calcium hydroxide with sterile water and RC Cal pastes liberate significantly more calcium and hydroxyl ions and raise the pH higher than Metapex and calcium hydroxidegutta-percha points. PMID:22346155
Methods of using adsorption media for separating or removing constituents
Tranter, Troy J [Idaho Falls, ID; Herbst, R Scott [Idaho Falls, ID; Mann, Nicholas R [Blackfoot, ID; Todd, Terry A [Aberdeen, ID
2011-10-25
Methods of using an adsorption medium to remove at least one constituent from a feed stream. The method comprises contacting an adsorption medium with a feed stream comprising at least one constituent and removing the at least one constituent from the feed stream. The adsorption medium comprises a polyacrylonitrile (PAN) matrix and at least one metal hydroxide homogenously dispersed therein. The adsorption medium may comprise from approximately 15 wt % to approximately 90 wt % of the PAN and from approximately 10 wt % to approximately 85 wt % of the at least one metal hydroxide. The at least one metal hydroxide may be selected from the group consisting of ferric hydroxide, zirconium hydroxide, lanthanum hydroxide, cerium hydroxide, titanium hydroxide, copper hydroxide, antimony hydroxide, and molybdenum hydroxide.
Ultra precision and reliable bonding method
NASA Technical Reports Server (NTRS)
Gwo, Dz-Hung (Inventor)
2001-01-01
The bonding of two materials through hydroxide-catalyzed hydration/dehydration is achieved at room temperature by applying hydroxide ions to at least one of the two bonding surfaces and by placing the surfaces sufficiently close to each other to form a chemical bond between them. The surfaces may be placed sufficiently close to each other by simply placing one surface on top of the other. A silicate material may also be used as a filling material to help fill gaps between the surfaces caused by surface figure mismatches. A powder of a silica-based or silica-containing material may also be used as an additional filling material. The hydroxide-catalyzed bonding method forms bonds which are not only as precise and transparent as optical contact bonds, but also as strong and reliable as high-temperature frit bonds. The hydroxide-catalyzed bonding method is also simple and inexpensive.
Method and system for producing hydrogen using sodium ion separation membranes
Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Frost, Lyman
2013-05-21
A method of producing hydrogen from sodium hydroxide and water is disclosed. The method comprises separating sodium from a first aqueous sodium hydroxide stream in a sodium ion separator, feeding the sodium produced in the sodium ion separator to a sodium reactor, reacting the sodium in the sodium reactor with water, and producing a second aqueous sodium hydroxide stream and hydrogen. The method may also comprise reusing the second aqueous sodium hydroxide stream by combining the second aqueous sodium hydroxide stream with the first aqueous sodium hydroxide stream. A system of producing hydrogen is also disclosed.
Richardson, Ian G.
2013-01-01
A recently proposed method to calculate the a parameter of the unit cell of layered double hydroxides from the fraction of trivalent cations is extended to Zn- and Co-based phases. It is shown to be useful as a sanity test for extant and future structure determinations and computer-simulation studies. PMID:23873067
NASA Astrophysics Data System (ADS)
Kreuer, Klaus-Dieter; Jannasch, Patric
2018-01-01
In this work we present a practical thermogravimetric method for quantifying the IEC (ion exchange capacity) decrease of hydroxide exchange membranes (HEMs) during intrinsic degradation mainly occurring through nucleophilic attack of the anion exchanging group by hydroxide ions. The method involves measuring weight changes under controlled temperature and relative humidity. These conditions are close to these in a fuel cell, i.e. the measured degradation rate includes all effects originating from the polymeric structure, the consumption of hydroxide ions and the release of water. In particular, this approach involves no added solvents or base, thereby avoiding inaccuracies that may arise in other methods due to the presence of solvents (other than water) or co-ions (such as Na+ or K+). We demonstrate the method by characterizing the decomposition of membranes consisting of poly(2,6-dimethyl-1,4-phenylene oxide) functionalized with trimethyl-pentyl-ammonium side chains. The decomposition rate is found to depend on temperature, relative humidity RH (controlling the hydration number λ) and the total water content (controlled by the actual IEC and RH).
Beyond-use dating of lidocaine alone and in two "magic mouthwash" preparations.
Kirk, Loren Madden; Brown, Stacy D; Luu, Yao; Ogle, Amanda; Huffman, Jessica; Lewis, Paul O
2017-05-01
Beyond-use dating (BUD) of lidocaine alone and in two "magic mouthwash" preparations stored in amber oral syringes at room temperature was determined. Two formulations of mouthwash containing oral topical lidocaine 2% (viscous), diphenhydramine 2.5 mg/mL, and aluminum hydroxide-magnesium hydroxide-simethicone were prepared in 1:1:1 and 1:2.5:2.5 ratios, divided into 3-mL samples, and stored in unit-dose oral amber syringes. Unit-dose single-product lidocaine samples were also prepared to serve as controls and stored in oral amber syringes. The lidocaine concentrations in these samples were measured periodically for 90 days. A stability-indicating high-performance liquid chromatographic method was developed and validated for system suitability, accuracy, repeatability, intermediate precision, specificity, linearity, and robustness. Based on the calculated percentages versus the initial concentration and the results from an analysis of variance comparing the two formulations, a BUD of 21 days is deemed appropriate for both magic mouthwash formulations. Based on the stability data, published safety concerns, and lack of efficacy in combination, packaging and dispensing lidocaine separately from other ingredients are recommended when administering magic mouthwash mixtures. Utilizing a 90-day BUD, lidocaine can be packaged separately from other magic mouthwash ingredients in individual dosage units and applied to the oral cavity using the swish-and-spit method. The delivery of the diphenhydramine and aluminum hydroxide-magnesium hydroxide-simethicone could be separated, allowing for a swish-and-swallow method of administration. A BUD of 21 days is recommended for lidocaine prepared with diphenhydramine and aluminum hydroxide-magnesium hydroxide-simethicone in ratios of 1:1:1 and 1:2.5:2.5 and stored at room temperature in amber oral plastic syringes. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Advances in aluminum hydroxide-based adjuvant research and its mechanism.
He, Peng; Zou, Yening; Hu, Zhongyu
2015-01-01
In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully understood. Current explanations for the mode of action of aluminum hydroxide-based adjuvants include, among others, the repository effect, pro-phagocytic effect, and activation of the pro-inflammatory NLRP3 pathway. These collectively galvanize innate as well as acquired immune responses and activate the complement system. Factors that have a profound influence on responses evoked by aluminum hydroxide-based adjuvant applications include adsorption rate, strength of the adsorption, size and uniformity of aluminum hydroxide particles, dosage of adjuvant, and the nature of antigens. Although vaccines containing aluminum hydroxide-based adjuvants are beneficial, sometimes they cause adverse reactions. Further, these vaccines cannot be stored frozen. Until recently, aluminum hydroxide-based adjuvants were known to preferentially prime Th2-type immune responses. However, results of more recent studies show that depending on the vaccination route, aluminum hydroxide-based adjuvants can enhance both Th1 as well as Th2 cellular responses. Advances in systems biology have opened up new avenues for studying mechanisms of aluminum hydroxide-based adjuvants. These will assist in scaling new frontiers in aluminum hydroxide-based adjuvant research that include improvement of formulations, use of nanoparticles of aluminum hydroxide and development of composite adjuvants.
Advances in aluminum hydroxide-based adjuvant research and its mechanism
He, Peng; Zou, Yening; Hu, Zhongyu
2015-01-01
In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully understood. Current explanations for the mode of action of aluminum hydroxide-based adjuvants include, among others, the repository effect, pro-phagocytic effect, and activation of the pro-inflammatory NLRP3 pathway. These collectively galvanize innate as well as acquired immune responses and activate the complement system. Factors that have a profound influence on responses evoked by aluminum hydroxide-based adjuvant applications include adsorption rate, strength of the adsorption, size and uniformity of aluminum hydroxide particles, dosage of adjuvant, and the nature of antigens. Although vaccines containing aluminum hydroxide-based adjuvants are beneficial, sometimes they cause adverse reactions. Further, these vaccines cannot be stored frozen. Until recently, aluminum hydroxide-based adjuvants were known to preferentially prime Th2-type immune responses. However, results of more recent studies show that depending on the vaccination route, aluminum hydroxide-based adjuvants can enhance both Th1 as well as Th2 cellular responses. Advances in systems biology have opened up new avenues for studying mechanisms of aluminum hydroxide-based adjuvants. These will assist in scaling new frontiers in aluminum hydroxide-based adjuvant research that include improvement of formulations, use of nanoparticles of aluminum hydroxide and development of composite adjuvants. PMID:25692535
Multifunctional cerium-based nanomaterials and methods for producing the same
O'Keefe, Matthew J.; Castano Londono, Carlos E.; Fahrenholtz, William G.
2018-01-09
Embodiments relate to a cerium-containing nano-coating composition, the composition including an amorphous matrix including one or more of cerium oxide, cerium hydroxide, and cerium phosphate; and crystalline regions including one or more of crystalline cerium oxide, crystalline cerium hydroxide, and crystalline cerium phosphate. The diameter of each crystalline region is less than about 50 nanometers.
A wet chemical method for the estimation of carbon in uranium carbides.
Chandramouli, V; Yadav, R B; Rao, P R
1987-09-01
A wet chemical method for the estimation of carbon in uranium carbides has been developed, based on oxidation with a saturated solution of sodium dichromate in 9M sulphuric acid, absorption of the evolved carbon dioxide in a known excess of barium hydroxide solution, and titration of the excess of barium hydroxide with standard potassium hydrogen phthalate solution. The carbon content obtained is in good agreement with that obtained by combustion and titration.
Moore, Robert C [Edgewood, NM; Anderson, D Richard [Albuquerque, NM
2007-07-24
Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.
Velázquez, Sergio; Monzó, José M.; Borrachero, María V.; Payá, Jordi
2014-01-01
The pozzolanic activity of the spent catalyst produced by fluid catalytic cracking (FCC) has been studied by various methods in recent years. However, no quick and easy method has been reported for this activity based on the associated studies. In this work, the pozzolanic activity of a spent catalyst was investigated by measuring its electrical conductivity in aqueous suspensions of pozzolan/calcium hydroxide. The behavior of the FCC catalyst residue was compared to that of reactive and inert materials of similar chemical compositions. Further, the influence of temperature on the suspension was studied, and also, a new method was proposed in which the pozzolan/calcium hydroxide ratio was varied (with the initial presence of solid Ca(OH)2 in the system). It was concluded that the method is effective, fast and simple for evaluating the high reactivity of the catalyst. Therefore, this method is an alternative for the evaluation of the reactivity of pozzolanic materials. PMID:28788583
Sturgeon, Matthew R.; Macomber, Clay S.; Engtrakul, Chaiwat; ...
2015-01-21
Anion exchange membranes (AEMs) are of interest as hydroxide conducting polymer electrolytes in electrochemical devices like fuel cells and electrolyzers. AEMs require hydroxide stable covalently tetherable cations to ensure required conductivity. Benzyltrimethylammonium (BTMA) has been the covalently tetherable cation that has been most often employed in anion exchange membranes because it is reasonably basic, compact (limited number of atoms per charge), and easily/cheaply synthesized. Several reports exist that have investigated hydroxide stability of BTMA under specific conditions, but consistency within these reports and comparisons between them have not yet been made. While the hydroxide stability of BTMA has been believedmore » to be a limitation for AEMs, this stability has not been thoroughly reported. In this paper, we have found that several methods reported have inherent flaws in their findings due to the difficulty of performing degradation experiments at high temperature and high pH. In order to address these shortcomings, we have developed a reliable, standardized method of determining cation degradation under conditions similar/relevant to those expected in electrochemical devices. The experimental method has been employed to determine BTMA stabilities at varying cation concentrations and elevated temperatures, and has resulted in improved experimental accuracy and reproducibility. Finally and most notably, these results have shown that BTMA is quite stable at 80°C (half-life of ~4 years), a significant increase in stability over what had been reported previously.« less
Method of determining pH by the alkaline absorption of carbon dioxide
Hobbs, David T.
1992-01-01
A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.
Method of treating inflammatory diseases using a radiolabeled ferric hydroxide calloid
Atcher, Robert W.; Hines, John J.
1992-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
The Application of Electrolysis Method to Reduce Ammonia Content in Liquid Waste of Tofu
NASA Astrophysics Data System (ADS)
Prabowo, S.; Nurlaili; Muflihah; Tindangen, R. A.; Sukemi
2018-04-01
Ammonia (NH3) is known as an important chemical in industrial sector. It is also known as harmful pollutant. Ammonia is a weak base, a gas in room temperature and has 330°C of BP. The aims of research were to investigate the effect of voltage (4 to 12 volt), time (1 to 30 min.), concentration of ammonia (0.01 to 0.05 M) and potassium hydroxide concentration on the ammonia content in aqueous solution by using electrolysis method with platinum as electrodes. The ammonia content was analysed by using UV-Vis spectrophotometer. The result showed that an increment in the voltage, time and potassium hydroxide concentration could increase the amount of converted ammonia. The optimum condition to reduce the ammonia content by using electrolysis method was 10 V of electrical voltage, 25 min. of electrolysis time and 0.04 M of potassium hydroxide concentration. At the optimum condition, the electrolysis method could decrease 81.13% of ammonia content in liquid waste of tofu.
Method of determining pH by the alkaline absorption of carbon dioxide
Hobbs, D.T.
1992-10-06
A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.
NASA Astrophysics Data System (ADS)
Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou; Liu, Xiaohe
2016-01-01
A facile solvothermal method is developed for synthesizing layered Co-Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co-Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g-1 at a galvanic current density of 1 A g-1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co-Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.
Method of purifying isosaccharinate
Rai, Dhanpat; Moore, Robert C.; Tucker, Mark D.
2010-09-07
A method of purifying isosaccharinate by mixing sodium carbonate, potassium carbonate, sodium hydroxide or potassium hydroxide with calcium isosaccharinate, removing the precipitated calcium carbonate and adjusting the pH to between approximately 4.5 to 5.0 thereby removing excess carbonate and hydroxide to provide an acidic solution containing isosaccharinate.
NASA Astrophysics Data System (ADS)
Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.
2016-10-01
Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.
Hierarchical cobalt-based hydroxide microspheres for water oxidation.
Zhang, Ye; Cui, Bai; Derr, Olivia; Yao, Zhibo; Qin, Zhaotong; Deng, Xiangyun; Li, Jianbao; Lin, Hong
2014-03-21
3D hierarchical cobalt hydroxide carbonate hydrate (Co(CO3)0.5(OH)·0.11H2O) has been synthesized featuring a hollow urchin-like structure by a one-step hydrothermal method at modest temperature on FTO glass substrates. The functionalities of precursor surfactants were isolated and analyzed. A plausible formation mechanism of the spherical urchin-like microclusters has been furnished through time-dependent investigations. Introduction of other transitional metal doping (Cu, Ni) would give rise to a substantial morphological change associated with a surface area drop. The directly grown cobalt-based hydroxide composite electrodes were found to be capable of catalyzing oxygen evolution reaction (OER) under both neutral pH and alkaline conditions. The favorable 3D dendritic morphology and porous structure provide large surface areas and possible defect sites that are likely responsible for their robust electrochemical activity.
SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE
Watt, G.W.
1958-08-19
An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.
Alkaline solution absorption of carbon dioxide method and apparatus
Hobbs, D.T.
1991-01-01
Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.
Polysulfide intercalated layered double hydroxides for metal capture applications
Kanatzidis, Mercouri G.; Ma, Shulan
2017-04-04
Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.
Pretreatment of rapeseed straw by sodium hydroxide.
Kang, Kyeong Eop; Jeong, Gwi-Taek; Park, Don-Hee
2012-06-01
Pretreatment method for rapeseed straw by sodium hydroxide was investigated for production of bioethanol and biobutanol. Various pretreatment parameters, including temperature, time, and sodium hydroxide concentration were optimized using a statistical method which is a central composite design of response surface methodology. In the case of sodium hydroxide pretreatment, optimal pretreatment conditions were found to be 7.9% sodium hydroxide concentration, 5.5 h of reaction time, and 68.4 °C of reaction temperature. The maximum glucose yield which can be recovered by enzymatic hydrolysis at the optimum conditions was 95.7% and the experimental result was 94.0 ± 4.8%. This experimental result was in agreement with the model prediction. An increase of surface area and pore size in pretreated rapeseed straw by sodium hydroxide pretreatment was observed by scanning electron microscope.
Calcium hydroxide as a processing base in alkali-aided pH-shift protein recovery process.
Paker, Ilgin; Jaczynski, Jacek; Matak, Kristen E
2017-02-01
Protein may be recovered by using pH shifts to solubilize and precipitate protein. Typically, sodium hydroxide is used as the processing base; however, this has been shown to significantly increase sodium in the final recovered protein. Protein was extracted from black bullhead catfish (Ameiurus melas) using a pH-shift method. Protein was solubilized using either sodium hydroxide (NaOH) or calcium hydroxide (Ca(OH) 2 ) and precipitated at pH 5.5 using hydrochloric acid (HCl). Protein solubility was greater when Ca(OH) 2 was used compared to NaOH during this process. Using Ca(OH) 2 as the processing base yielded the greatest lipid recovery (P < 0.05) at 77 g 100 g -1 , whereas the greatest (P < 0.05) protein recovery yield was recorded as 53 g 100 g -1 protein using NaOH. Protein solubilized with Ca(OH) 2 had more (P < 0.05) calcium in the protein fraction, whereas using NaOH increased (P < 0.05) sodium content. Results of our study showed that protein solubility was increased and the recovered protein had significantly more calcium when Ca(OH) 2 was used as the processing base. Results showed both NaOH and Ca(OH) 2 to be an effective processing base for pH-shift protein recovery processes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Yu, Mei; Yuan, Zhiqin; Lu, Chao
2017-09-01
This work presented a facile and eco-friendly method for the determination of cobalt ions (Co(II)) in living cells based on layered double hydroxides (Mg-Al CO3-LDHs) enhanced chemiluminescence (CL) emission of a Co(II)-hydrogen peroxide-sodium hydroxide system. The enhanced CL emission was attributed to the large specific surface area of Mg-Al CO3-LDHs, which facilitates the generation of an excited-stated intermediate. The proposed method displayed high selectivity toward Co(II) over other metal ions. Under the optimal conditions, the increased CL intensity showed a linear response versus Co(II) concentration in the range of 5.0-1000 nM with a detection limit of 3.7 nM (S/N = 3). The relative standard deviation for nine repeated measurements of 100 nM Co(II) was 3.2%. Furthermore, the proposed method was successfully applied to detect Co(II) in living cell samples, and the results were agreed with those obtained by the standard ICP-MS method.
NASA Astrophysics Data System (ADS)
Bhat, Pooja B.; Bhat, Badekai Ramachandra
2016-03-01
Ultrasmall nickel hydroxide functionalised AFe2O4 (A = Mn, Ni) nanocatalyst was synthesized by traditional co-precipitation method and was examined for oxidation of aromatic alcohols to carbonyls using hydrogen peroxide as terminal oxidant. A very high surface area of 104.55 m2 g-1 was achieved for ferromagnetic MnFe2O4 and 100.50 m2 g-1 for superparamagnetic NiFe2O4, respectively. Efficient oxidation was observed due to the synergized effect of nickel hydroxide (bronsted base) on Lewis center (Fe) of the nanocatalyst. Catalyst recycling experiments revealed that the ultrasmall nanocatalyst can be easily recovered by external magnet and applied for nearly complete oxidation of alcohols for at least five successive cycles. Furthermore, the nickel hydroxide functionalised ultrasmall nanocatalyst exhibited higher efficiency for benzyl alcohol oxidation compared to Ni(OH)2, bare MnFe2O4 and NiFe2O4. Higher conversion rate was observed for nickel hydroxide functionalised NiFe2O4 compared to MnFe2O4. Ultrasmall magnetic nickel hydroxide functionalised nanocatalyst showed environmental friendly, greener route for the oxidation of alcohols without significant loss in activity and selectivity within successive runs.
Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals
NASA Technical Reports Server (NTRS)
Otterson, Dumas A.
1961-01-01
Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.
The effect of polymers onto the size of zinc layered hydroxide salt and its calcined product
NASA Astrophysics Data System (ADS)
Hussein, Mohd Zobir bin; Ghotbi, Mohammad Yeganeh; Yahaya, Asmah Hj; Abd Rahman, Mohd Zaki
2009-02-01
Zinc hydroxide nitrate, a brucite-like layered material was synthesized using pH control method. Poly(vinyl alcohol) and poly(ethylene glycol) were used at various percentages as size decreasing agents during the synthesis of zinc hydroxide nitrate. SEM and PXRD showed the decrease of size and thickness of the resultant zinc hydroxide nitrates. TG and surface area data confirmed the decrease of the particle sizes, too. When zinc hydroxide nitrates were heat treated at 500 °C, the physical properties of nano zinc oxides obtained depended on the parent material, zinc hydroxide nitrate.
Colloid labelled with radionuclide and method
Atcher, R.W.; Hines, J.J.
1990-11-13
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings
Method of making colloid labeled with radionuclide
Atcher, Robert W.; Hines, John J.
1991-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
Colloid labelled with radionuclide and method
Atcher, Robert W.; Hines, John J.
1990-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
Sodium hydroxide permethylation of heparin disaccharides.
Heiss, Christian; Wang, Zhirui; Azadi, Parastoo
2011-03-30
Permethylation is a valuable and widely used tool for the mass spectrometry of carbohydrates, improving sensitivity and fragmentation and increasing the amount of information that can be obtained from tandem mass spectrometric experiments. Permethylation of most glycans is easily performed with sodium hydroxide and iodomethane in dimethyl sulfoxide (DMSO). However, permethylation has not been widely used in the mass spectrometry of glycosaminoglycan (GAG) oligosaccharides, partly because it has required the use of the difficult Hakomori method employing the methylsulfinylmethanide ('dimsyl') base, which has to be made in a tedious process. Additionally, the Hakomori method is not as effective as the sodium hydroxide method in making fully methylated derivatives. A further problem in the permethylation of highly sulfated oligosaccharides is their limited solubility in DMSO. This paper describes the use of the triethylammonium counterion to overcome this problem, as well as the application of the sodium hydroxide method to make permethylated heparin disaccharides and their workup to yield fully methylated disaccharides for electrospray ionization mass spectrometry. The ease, speed, and effectiveness of the described methodology should open up permethylation of GAG oligosaccharides to a wider circle of mass spectrometrists and enable them to develop further derivatization schemes in the effort to rapidly elucidate the structure of these important molecules. Permethylation may also provide new ways of separating GAG oligosaccharides in LC/MS, their increased hydrophobicity making them amenable for reversed-phase chromatography without the need for ion pairing reagents. Copyright © 2011 John Wiley & Sons, Ltd.
Interferences in the direct quantification of bisphenol S in paper by means of thermochemolysis.
Becerra, Valentina; Odermatt, Jürgen
2013-02-01
This article analyses the interferences in the quantification of traces of bisphenol S in paper by applying the direct analytical method "analytical pyrolysis gas chromatography mass spectrometry" (Py-GC/MS) in conjunction with on-line derivatisation with tetramethylammonium hydroxide (TMAH). As the analytes are simultaneously analysed with the matrix, the interferences derive from the matrix. The investigated interferences are found in the analysis of paper samples, which include bisphenol S derivative compounds. As the free bisphenol S is the hydrolysis product of the bisphenol S derivative compounds, the detected amount of bisphenol S in the sample may be overestimated. It is found that the formation of free bisphenol S from the bisphenol S derivative compounds is enhanced in the presence of tetramethylammonium hydroxide (TMAH) under pyrolytic conditions. In order to avoid the formation of bisphenol S trimethylsulphonium hydroxide (TMSH) is introduced. Different parameters are optimised in the development of the quantification method with TMSH. The quantification method based on TMSH thermochemolysis has been validated in terms of reproducibility and accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.
Sodium Hydroxide and Calcium Hydroxide Hybrid Oxygen Bleaching with System
NASA Astrophysics Data System (ADS)
Doelle, K.; Bajrami, B.
2018-01-01
This study investigates the replacement of sodium hydroxide in the oxygen bleaching stage using a hybrid system consisting of sodium hydroxide calcium hydroxide. Commercial Kraft pulping was studied using yellow pine Kraft pulp obtained from a company in the US. The impact of sodium hydroxide, calcium hydroxide hybrid system in regard to concentration, reaction time and temperature for Kraft pulp was evaluated. The sodium hydroxide and calcium hydroxide dosage was varied between 0% and 15% based on oven dry fiber content. The bleaching reaction time was varied between 0 and 180 minutes whereas the bleaching temperature ranged between 70 °C and 110 °C. The ability to bleach pulp was measured by determining the Kappa number. Optimum bleaching results for the hybrid system were achieved with 4% sodium hydroxide and 2% calcium hydroxide content. Beyond this, the ability to bleach pulp decreased.
NASA Astrophysics Data System (ADS)
Wang, Dapeng; Belharouak, Ilias; Ortega, Luis H.; Zhang, Xiaofeng; Xu, Rui; Zhou, Dehua; Zhou, Guangwen; Amine, Khalil
2015-01-01
Nickel manganese hydroxide co-precipitation inside a continuous stirred tank reactor was studied with sodium hydroxide and ammonium hydroxide as the precipitation agents. The ammonium hydroxide concentration had an effect on the primary and secondary particle evolution. The two-step precipitation mechanism proposed earlier was experimentally confirmed. In cell tests, Li- and Mn-rich composite cathode materials based on the hydroxide precursors demonstrated good electrochemical performance in terms of cycle life over a wide range of lithium content.
Anodes for alkaline electrolysis
Soloveichik, Grigorii Lev [Latham, NY
2011-02-01
A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.
Dhirawani, Rajesh B; Marya, Jayant; Dhirawani, Vrinda; Kumar, Vijayendra
2017-01-01
Aim The aim of this study was to evaluate the diffusion ability of ions through dentinal tubules of different nonalcoholic calcium hydroxide-containing herbal pastes and compare it with the calcium hydroxide paste prepared with saline. Materials and methods A total of 36 single-rooted premolar teeth were used in this study. The tooth crowns were removed and the root canals were prepared. Depending on the vehicle to be used for preparing calcium hydroxide pastes, six groups were made: Group I: Ca(OH)2 saline paste (control group), group II: Ca(OH)2 papaya latex paste, group III: Ca(OH)2 coconut water paste, group IV: Ca(OH)2 Ashwagandha (Withania somnifera) paste, group V: Ca(OH)2 Tulsi (Ocimum tenuiflorum) paste, and group VI: Ca(OH)2 garlic (Allium sativum) paste. After biomechanical preparation, calcium hydroxide herbal paste dressings were applied and sealed with resin-based cement. The teeth were placed in containers with deionized water, and the pH of the water was measured at regular intervals over 3, 24, 72, and 168 hours. Results We observed that all herbal pastes allowed the diffusion of ions, but pastes prepared with Ashwagandha and papaya latex showed more ion diffusion after 168 hours and marked increase in pH, depicting better support for calcium hydroxide action. Conclusion We conclude that Ashwagandha and papaya latex allow better diffusion of calcium hydroxide through den-tinal tubules, thus enhancing its action, and advise its use as a vehicle for placing intracanal medicament. How to cite this article Dausage P, Dhirawani RB, Marya J, Dhirawani V, Kumar V. A Comparative Study of Ion Diffusion from Calcium Hydroxide with Various Herbal Pastes through Dentin. Int J Clin Pediatr Dent 2017;10(1):41-44. PMID:28377654
Dissolution mechanism of aluminum hydroxides in acid media
NASA Astrophysics Data System (ADS)
Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.
2008-08-01
The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.
Why can a gold salt react as a base?
Anania, Mariarosa; Jašíková, Lucie; Jašík, Juraj; Roithová, Jana
2017-09-26
This study shows that gold salts [(L)AuX] (L = PMe 3 , PPh 3 , JohnPhos, IPr; X = SbF 6 , PF 6 , BF 4 , TfO, Tf 2 N) act as bases in aqueous solutions and can transform acetone to digold acetonyl complexes [(L) 2 Au 2 (CH 2 COCH 3 )] + without any additional base present in solution. The key step is the formation of digold hydroxide complexes [(L) 2 Au 2 (OH)] + . The kinetics of the formation of the digold complexes and their mutual transformation is studied by electrospray ionization mass spectrometry and the delayed reactant labelling method. We show that the formation of digold hydroxide is the essential first step towards the formation of the digold acetonyl complex, the reaction is favoured by more polar solvents, and the effect of counter ions is negligible. DFT calculations suggest that digold hydroxide and digold acetonyl complexes can exist in solution only due to the stabilization by the interaction with two gold atoms. The reaction between the digold hydroxide and acetone proceeds towards the dimer {[(L)Au(OH)]·[(L)Au(CH 3 COCH 3 )] + }. The monomeric units interact at the gold atoms in the perpendicular arrangement typical of the gold clusters bound by the aurophilic interaction. The hydrogen is transferred within the dimer and the reaction continues towards the digold acetonyl complex and water.
Thermal diffusion through amalgam and cement base: comparison of in vitro and in vivo measurements.
Tibbetts, V R; Schnell, R J; Swartz, M L; Phillips, R W
1976-01-01
Thermal diffusion was measured in vitro and in vivo through amalgam and amalgam underlaid with bases of zinc phosphate, zinc oxide-eugenol, and calcium hydroxide cements. Although the magnitudes differed, there generally was good agreement between in vitro and in vivo data with respect to the relative rates of thermal diffusivity through amalgam restorations underlaid with bases of each of the three materials. In all tests, both in vitro and in vivo, the zinc oxide-eugenol base proved to be the best thermal insulator. Calcium hydroxide was the next best thermal barrier and was followed by zinc phosphate cement. In vitro tests indicated dentin to be a better thermal insulator than zinc phosphate cement but inferior to the zinc oxide-eugenol and calcium hydroxide base materials used here. Although a method has been presented here for the in vivo assessment of the efficacy of thermal insulating bases and a number of in vivo experiments were conducted, much research remains to be done in this area. Additional investigation is needed to better define the parameters of thermal change beneath various types of restoratives and also to establish more exactly the role of base thickness in providing thermal protection beneath clinical metallic restorations.
Xu, Qun; Mori, Masanobu; Tanaka, Kazuhiko; Ikedo, Mikaru; Hu, Wenzhi; Haddad, Paul R
2004-07-02
The determination of hydroxide by ion chromatography (IC) is demonstrated using a monolithic octadecylsilyl (ODS)-silica gel column coated first with a nonionic surfactant (polyoxyethylene (POE)) and then with a cationic surfactant (cetyltrimethylammonium bromide (CTAB)). This stationary phase, when used in conjunction with a 10 mmol/l sodium sulfate eluent at pH 8.2, was found to be suitable for the rapid and efficient separation of hydroxide from some other anions, based on a conventional ion-exchange mechanism. The peak directions and detection responses for these ions were in agreement with their known limiting equivalent ionic conductance values. Under these conditions, a linear calibration plot was obtained for hydroxide ion over the range 16 micromol/l to 15 mmol/l, and the detection limit determined at a signal-to-noise ratio of 3 was 6.4 micromol/l. The double-coated stationary phase described above was shown to be superior to a single coating of cetyltrimethylammonium bromide alone, in terms of separation efficiency and stability of the stationary phase. A range of samples comprising solutions of some strong and weak bases was analyzed by the proposed method and the results obtained were in good agreement with those obtained by conventional potentiometric pH measurement.
Chemical matricectomy with sodium hydroxide: long-term follow-up results.
Bostanci, Seher; Kocyigit, Pelin; Parlak, Nehir; Gungor, Hilayda Karakok
2014-11-01
Chemical matricectomy with sodium hydroxide is a method being used successfully in the treatment of ingrown toenail. In this study, it was aimed to evaluate long-term recurrence rates after chemical matricectomy using sodium hydroxide application of different durations. Two hundred two patients with ingrown nail edges were treated with either 1-minute (Group 1) or 2-minute (Group 2) applications of sodium hydroxide matricectomy. All patients were followed for at least 2 years. Chemical matricectomy with sodium hydroxide was applied to a total of 585 nail edges of 202 cases. The overall recurrence rates in Group 1 and Group 2 were 6.4% and 7.1%, respectively, during the average 7.5-year follow-up period. No statistically significant differences were detected in terms of recurrence between the 2 groups (p = .73). Chemical matricectomy with sodium hydroxide is an easy method in the treatment of ingrown nails, with low morbidity and high success rates. There was no difference between 1-minute and 2-minute applications in terms of recurrence during the long-term follow-up. Chemical matricectomy with 1-minute application of sodium hydroxide showed high success in terms of long-term follow-up results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra
In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.
Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra
2017-12-01
In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.
2004-01-01
phase in November 1996. 1-2. BASIC HYDROGEN PEROXIDE In the early COIL work, either potassium hydroxide (KOH) or sodium hydroxide (NaOH) was the base of...the candidate refrigerants include: R22, R404a, R134a, carbon dioxide, and ammonia. 2-3-3. Surface Evaporator To improve the heat transfer efficiency...monohydrate (LiOH.H20), sodium hydroxide (NaOH), and potassium hydroxide (KOH). The use of solids allows numerous variations of blending sequence and heat
DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
OGDEN DM; KIRCH NW
2007-10-31
This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.
Demel, Jan; Pleštil, Josef; Bezdička, Petr; Janda, Pavel; Klementová, Mariana; Lang, Kamil
2011-08-15
Delamination of layered zinc hydroxide salts (LZH) into hydroxide layers provides nanobuilding blocs of a two-dimensional anisotropy. The methodology, extent of delamination, the size and stability of hydroxide lamellae are described in detail. The ability of lamellae to restack to form oriented hydroxide films depends on the solvent, original LZH salt, and conditions used for delamination. The most interesting results were obtained using LZH intercalated with dodecyl sulfate anions and LZH nitrate delaminated in butanol at 60 °C and in formamide at room temperature, respectively. The former method produces hydroxide lamellae of a lateral size of ca. 10-20 nm. The inner structure of the hydroxide layers is conserved and separated lamellae restack to the original layered structure of LZH dodecyl sulfate. The latter method yields lamellae with a size decreasing from 73.3 nm to 10 nm after a 2-week aging, while their thickness is nearly constant (2.6-3.8 nm). However, the use of formamide is complicated by the formation of Zn(II) formate. The major part of LZH intercalated with dodecyl sulfate anions is transformed during the delamination procedure to anisotropic ZnO nanoparticles, either needle-like particles prolonged in the [0 0 1] direction or disc-like particles flattened along the (0 0 1) plane. Copyright © 2011 Elsevier Inc. All rights reserved.
Mitsumata, Hiroshi; Mori, Toshio; Maeda, Tatsuo; Kita, Yoshiyuki; Kohatsu, Osamu
2006-02-01
We have established a simple method for assaying the quantity of soluble bromine in the discharge tubes of an extra-high-pressure mercury discharge lamp. Each discharge tube is destroyed in 5 ml of 10 mM sodium hydroxide, and the recovered sodium hydroxide solution is analyzed by suppressed-ion chromatography using gradient elution. We have clarified that this method can assay less than 1 microg of soluble bromine in a discharge tube.
NASA Astrophysics Data System (ADS)
Tsai, Suh-Jen Jane; Shiue, Chia-Chann; Chang, Shiow-Ing
1997-07-01
The analytical characteristics of copper in nickel-base alloys have been investigated with electrothermal atomic absorption spectrometry. Deuterium background correction was employed. The effects of various chemical modifiers on the analysis of copper were investigated. Organic modifiers which included 2-(5-bromo-2-pyridylazo)-5-(diethylamino-phenol) (Br-PADAP), ammonium citrate, 1-(2-pyridylazo)-naphthol, 4-(2-pyridylazo)resorcinol, ethylenediaminetetraacetic acid and Triton X-100 were studied. Inorganic modifiers palladium nitrate, magnesium nitrate, aluminum chloride, ammonium dihydrogen phosphate, hydrogen peroxide and potassium nitrate were also applied in this work. In addition, zirconium hydroxide and ammonium hydroxide precipitation methods have also been studied. Interference effects were effectively reduced with Br-PADAP modifier. Aqueous standards were used to construct the calibration curves. The detection limit was 1.9 pg. Standard reference materials of nickel-base alloys were used to evaluate the accuracy of the proposed method. The copper contents determined with the proposed method agreed closely with the certified values of the reference materials. The recoveries were within the range 90-100% with relative standard deviation of less than 10%. Good precision was obtained.
Two-dimensional nickel hydroxide nanosheets as high performance pseudo-capacitor electrodes
NASA Astrophysics Data System (ADS)
Bhat, Karthik S.; Nagaraja, H. S.
2018-04-01
Electrochemical supercapacitor is a vital technology for the progress of consistent energy harvesting devices. Herein, we report the fabrication of supercapacitor electrodes based on nickel hydroxide nanosheets synthesized via one-pot hydrothermal method. Structure and shape of synthesized materials were analyzed with XRD and SEM measurements. Pseudo-capacitive performances of the fabricated electrodes were evaluated through cyclic voltammetry and galvanostatic charge-discharge measurements with three-electrode configurations. Results indicated the specific capacitance of l80 F g-1 at 5 mV s-1 scan rate and complimented with capacitance retention of 76% for l500 cycles.
Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide
NASA Astrophysics Data System (ADS)
Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.
2017-06-01
The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.
Nagase, Hiroyasu; Tsujino, Hidekazu; Kurihara, Daisuke; Saito, Hiroshi; Kawase, Masaya
2014-04-01
Organic environmental pollutants are now being detected with remarkably high frequency in the aquatic environment. Photodegradation by ultraviolet light is sometimes used as a method for removing organic chemicals from water; however, this method is relatively inefficient because of the low degradation rates involved, and more efficient methods are under development. Here we show that the removal of various organic pollutants can be assisted by calcined dolomite in aqueous solution under irradiation with ultraviolet light. It was possible to achieve substantial removal of bisphenol A, chlorophenols, alkylphenols, 1-naphthol and 17β-estradiol. The major component of dolomite responsible for the removal was calcium hydroxide. Our results demonstrate that the use of calcium hydroxide with ultraviolet light irradiation can be a very effective method of rapidly removing organic environmental pollutants from water. This is a new role for calcium hydroxide and dolomite in water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kilner, S.B.
1959-12-29
A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.
Method of manufacturing positive nickel hydroxide electrodes
Gutjahr, M.A.; Schmid, R.; Beccu, K.D.
1975-12-16
A method of manufacturing a positive nickel hydroxide electrode is discussed. A highly porous core structure of organic material having a fibrous or reticular texture is uniformly coated with nickel powder and then subjected to a thermal treatment which provides sintering of the powder coating and removal of the organic core material. A consolidated, porous nickel support structure is thus produced which has substantially the same texture and porosity as the initial core structure. To provide the positive electrode including the active mass, nickel hydroxide is deposited in the pores of the nickel support structure.
Polyorach, S; Wanapat, M
2015-06-01
Four rumen-fistulated beef cattle were randomly assigned to four treatments according to a 4 × 4 Latin square design to study the influence of urea and calcium hydroxide [Ca(OH)2 ] treatment of rice straw to improve the nutritive value of rice straw. Four dietary treatments were as follows: untreated rice straw, 50 g/kg urea-treated rice straw, 20 g/kg urea + 20 g/kg calcium hydroxide-treated rice straw and 30 g/kg urea + 20 g/kg calcium hydroxide-treated rice straw. All animals were kept in individual pens and fed with concentrate at 0.5 g/kg of BW (DM), rice straw was fed ad libitum. The experiment was conducted for four periods, and each period lasted for 21 days. During the first 14 days, DM feed intake measurements were made while during the last 7 days, all cattle were moved to metabolism crates for total faeces and urine collections. The results revealed that 20 g/kg urea + 20 g/kg calcium hydroxide-treated rice straw improved the nutritive value of rice straw, in terms of dry matter intake, digestibility, ruminal volatile fatty acids, population of bacteria and fungi, nitrogen retention and microbial protein synthesis. Based on this study, it could be concluded that using urea plus calcium hydroxide was one alternative method to improve the nutritive value of rice straw, rumen ecology and fermentation and thus a reduction of treatment cost. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Complications of sodium hydroxide chemical matrixectomy: nail dystrophy, allodynia, hyperalgesia.
Bostancı, Seher; Koçyiğit, Pelin; Güngör, Hilayda Karakök; Parlak, Nehir
2014-11-01
Ingrown toenails are seen most commonly in young adults, and they can seriously affect daily life. Partial nail avulsion with chemical matrixectomy, generally by using either sodium hydroxide or phenol, is one of the most effective treatment methods. Known complications of phenol matrixectomy are unpredictable tissue damage, prolonged postoperative drainage, increased secondary infection rates, periostitis, and poor cosmetic results. To our knowledge, there have been no reports about the complications related to sodium hydroxide matrixectomy. Herein, we describe three patients who developed nail dystrophy, allodynia, and hyperalgesia after sodium hydroxide matrixectomy.
Influence of calcium hydroxide debris on the quality of endodontic apical seal.
Contardo, L; De Luca, M; Bevilacqua, L; Breschi, L; Di Lenarda, R
2007-10-01
The aim of the study was to study investigate the influence of calcium hydroxide used as intermediate medication on the quality of apical seal of a silicon based and an experimental resin based endodontic sealer. Eighty endodontic canals were prepared and divided in four groups. Calcium hydroxide was applied in groups 2 and 4. After 7 days, medication was removed and canals were filled with gutta-percha and RoekoSeal Automix (groups 1 and 2) or Scotchbond MP+C&B cement B (groups 3 and 4). Specimens were placed into India ink, cleared and analyzed under a stereomicroscope to investigate apical leakage. Specimens that received calcium hydroxide medication showed leakage means higher than the corresponding untreated ones (i.e. group 1< group 2 and group 3< group 4; P<0.001). Calcium hydroxide interferes with the sealing ability of silicon based sealer, since it frequently remains entrapped within the endodontic space even after careful removal procedures.
NASA Astrophysics Data System (ADS)
Li, Songnan; Zhang, Jiawei; Jamil, Saba; Cai, Qinghai; Zang, Shuying
In this paper, flower-like layered double hydroxides were synthesized with eggshell membrane assistant. The as-prepared samples were characterized by a series of techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermal gravity-differential thermal analysis and Nitrogen sorption/desorption. The resulting layered double hydroxides were composed of nanoplates with edge-to-face particle interactions. The specific surface area and total pore volume of the as-prepared flower-like layered double hydroxides were 160m2/g and 0.65m3/g, respectively. The adsorption capacity of flower-like layered double hydroxides to Congo Red was 258mg/g, which was higher than that of layered double hydroxides synthesized by the traditional method.
Hydroxide catalysts for lignin depolymerization
Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew
2017-10-17
Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.
Hydroxide catalysts for lignin depolymerization
Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew
2017-04-25
Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.
Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ruihua; Li, Haitao; Kong, Weiqian
2013-07-15
Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright bluemore » photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.« less
Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Liu, Xiaohe; Ma, Renzhi; Qiu, Guanzhou
2014-10-04
Nickel foam supported Zn-Co hydroxide nanoflakes were fabricated by a facile solvothermal method. Benefited from the unique structure of Zn-Co hydroxide nanoflakes on a nickel foam substrate, the as prepared materials exhibited an excellent specific capacitance of 901 F g(-1) at 5 A g(-1) and remarkable cycling stability as electrode materials in supercapacitors.
Improvement of the process for electrochemical impregnation of nickel hydroxide electrodes
NASA Technical Reports Server (NTRS)
Comtat, M.; Lafage, B.; Leonardi, J.
1986-01-01
Nickel hydroxide electrodes containing 11g/dsqm hydroxide, with capacities of 3.6 to 3.8 Ah/dsqm were prepared at 353 K by electrochemical impregnation. The reproducibility of the results is obtained by readjusting the pH before each preparation. The control of each electrode is done during two cycles of charge and discharge following the manufacture by a potential relaxation method.
Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review
Shalavi, S; Yazdizadeh, M
2012-01-01
The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217
NASA Astrophysics Data System (ADS)
Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan
2018-03-01
Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.
Barahuie, Farahnaz; Hussein, Mohd Zobir; Abd Gani, Shafinaz; Fakurazi, Sharida; Zainal, Zulkarnain
2014-01-01
Background We characterize a novel nanocomposite that acts as an efficient anticancer agent. Methods This nanocomposite consists of zinc layered hydroxide intercalated with protocatechuate (an anionic form of protocatechuic acid), that has been synthesized using a direct method with zinc oxide and protocatechuic acid as precursors. Results The resulting protocatechuic acid nanocomposite (PAN) showed a basal spacing of 12.7 Å, indicating that protocatechuate was intercalated in a monolayer arrangement, with an angle of 54° from the Z-axis between the interlayers of the zinc layered hydroxide, and an estimated drug loading of about 35.7%. PAN exhibited the properties of a mesoporous type material, with greatly enhanced thermal stability of protocatechuate as compared to its free counterpart. The presence of protocatechuate in the interlayers of the zinc layered hydroxide was further supported by Fourier transform infrared spectroscopy. Protocatechuate was released from PAN in a slow and sustained manner. This mechanism of release was well represented by a pseudo-second order kinetics model. PAN has shown increased cytotoxicity compared to the free form of protocatechuic acid in all cancer cell lines tested. Tumor growth suppression was extensive, particularly in HepG2 and HT29 cell lines. Conclusion PAN is suitable for use as a controlled release formulation, and our in vitro evidence indicates that PAN is an effective anticancer agent. PAN may have potential as a chemotherapeutic drug for human cancer. PMID:25061291
Nagaraju, Goli; Chandra Sekhar, S; Krishna Bharat, L; Yu, Jae Su
2017-11-28
We report a flexible battery-type electrode based on binder-free nickel cobalt layered double hydroxide nanosheets adhered to nickel cobalt layered double hydroxide nanoflake arrays on nickel fabric (NC LDH NFAs@NSs/Ni fabric) using facile and eco-friendly synthesis methods. Herein, we utilized discarded polyester fabric as a cost-effective substrate for in situ electroless deposition of Ni, which exhibited good flexibility, light weight, and high conductivity. Subsequently, the vertically aligned NC LDH NFAs were grown on Ni fabric by means of a hot-air oven-based method, and fluffy-like NC LDH NS branches are further decorated on NC LDH NFAs by a simple electrochemical deposition method. The as-prepared core-shell-like nanoarchitectures improve the specific surface area and electrochemical activity, which provides the ideal pathways for electrolyte diffusion and charge transportation. When the electrochemical performance was tested in 1 M KOH aqueous solution, the core-shell-like NC LDH NFAs@NSs/Ni fabric electrode liberated a maximum areal capacity of 536.96 μAh/cm 2 at a current density of 2 mA/cm 2 and excellent rate capability of 78.3% at 30 mA/cm 2 (420.5 μAh/cm 2 ) with a good cycling stability. Moreover, a fabric-based hybrid supercapacitor (SC) was assembled, which achieves a stable operational potential window of 1.6 V, a large areal capacitance of 1147.23 mF/cm 2 at 3 mA/cm 2 , and a high energy density of 0.392 mWh/cm 2 at a power density of 2.353 mW/cm 2 . Utilizing such high energy storage abilities and flexible properties, the fabricated hybrid SC operated the wearable digital watch and electric motor fan for real-time applications.
An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc
NASA Technical Reports Server (NTRS)
Reid, M. A.
1978-01-01
A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9-8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.
An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc
NASA Technical Reports Server (NTRS)
Reid, M. A.
1978-01-01
A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9 - 8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.
Method for making polysilsesquioxanes and organohydridosilanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loy, Douglas A.; Rahimian, Kamyar
2001-01-01
A method for disproportionation of an oligohydridosiloxane to produce a polysilsesquioxane compound and an organohydridosilane compound when contacted with a basic catalyst. The basic catalyst can be a tetraalkylammonium hydroxide, an alkali metal hydroxide, and an alkali earth hydroxide. These basic catalysts are generally dissolved in an organic solvent for delivery. The hydroxide catalysts are attractive because many readily decompose by heating above 150.degree. C., thus being easily removed from the final materials. The oligohydridosiloxane is contacted with the basic catalyst under conditions effective to catalytically convert the oligohydridosiloxane into a polysilsesquioxane compound and an organohydridosilane compound. The reaction canmore » occur in either an inert or oxidative atmosphere and can occur without heating, at room temperature. Both polysilsesquioxane foams and gels of the formula (RSiO.sub.1.5).sub.n can be produced.« less
Nickel hydroxide/cobalt-ferrite magnetic nanocatalyst for alcohol oxidation.
Bhat, Pooja B; Inam, Fawad; Bhat, Badekai Ramachandra
2014-08-11
A magnetically separable, active nickel hydroxide (Brønsted base) coated nanocobalt ferrite catalyst has been developed for oxidation of alcohols. High surface area was achieved by tuning the particle size with surfactant. The surface area of 120.94 m2 g(-1) has been achieved for the coated nanocobalt ferrite. Improved catalytic activity and selectivity were obtained by synergistic effect of transition metal hydroxide (basic hydroxide) on nanocobalt ferrite. The nanocatalyst oxidizes primary and secondary alcohols efficiently (87%) to corresponding carbonyls in good yields.
Rapid synthesis of barium titanate microcubes using composite-hydroxides-mediated avenue
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xi; Ouyang, Jing, E-mail: jingouyang@csu.edu.cn; Jin, Jiao
2014-04-01
Highlights: • Barium titanate oxides microcubes can be synthesized within 1 min. • Composite-hydroxides-mediated strategy provided a possible large scale production. • BST obtained in the strategy showed fairly good crystallinity and tetragonality. - Abstract: This paper reports the rapid synthesis of barium titanate (BaTiO{sub 3}, BTO) microcubes via composite-hydroxides-mediated reaction within 1 min. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectrum (EDS) results confirmed both cubic and tetragonal lattices in the sample and the uniform microcubes with an average size of 1 μm. Ultraviolet–visible (UV–vis) spectrum indicated that the band gap of the BTO powder wasmore » 3.05 eV. Ferroelectric polarization vs. electric field (P–E) tests showed that the ferroelectric domains had formed in the as-synthesized BTO microcubes and sintered ceramics. BTO ceramics sintered at 1100 °C for 3 h showed fairly good tetragonality and possessed a maximum polarization of 0.21 μC/cm{sup 2}, indicating that the sintering temperature for the BTO powders prepared via this method was relatively low. The process and equipment reported herein provided a potential method for the rapid synthesis of titanate based perovskites.« less
Biomimetic Mineralization on a Macroporous Cellulose-Based Matrix for Bone Regeneration
Petrauskaite, Odeta; Gomes, Pedro de Sousa; Fernandes, Maria Helena; Juodzbalys, Gintaras; Maminskas, Julius
2013-01-01
The aim of this study is to investigate the biomimetic mineralization on a cellulose-based porous matrix with an improved biological profile. The cellulose matrix was precalcified using three methods: (i) cellulose samples were treated with a solution of calcium chloride and diammonium hydrogen phosphate; (ii) the carboxymethylated cellulose matrix was stored in a saturated calcium hydroxide solution; (iii) the cellulose matrix was mixed with a calcium silicate solution in order to introduce silanol groups and to combine them with calcium ions. All the methods resulted in a mineralization of the cellulose surfaces after immersion in a simulated body fluid solution. Over a period of 14 days, the matrix was completely covered with hydroxyapatite crystals. Hydroxyapatite formation depended on functional groups on the matrix surface as well as on the precalcification method. The largest hydroxyapatite crystals were obtained on the carboxymethylated cellulose matrix treated with calcium hydroxide solution. The porous cellulose matrix was not cytotoxic, allowing the adhesion and proliferation of human osteoblastic cells. Comparatively, improved cell adhesion and growth rate were achieved on the mineralized cellulose matrices. PMID:24163816
Biotoxicity of commonly used root canal sealers: A meta-analysis
Kaur, Amandeep; Shah, Naseem; Logani, Ajay; Mishra, Navin
2015-01-01
Introduction: The main objective of a root canal sealer is to provide a fluid tight seal. The purpose of this systematic meta-analysis was to determine the relative toxicity of commonly used root canal sealers like zinc oxide eugenol, calcium hydroxide, and resin-based sealers. Materials and Methods: An online search was conducted in peer-reviewed journals listed in PubMed, Cochrane, EBSCO, and IndMed databases between 2000 and 2012). Statistical analysis was carried out by using analysis of variance (ANOVA) followed by post-hoc comparison by Bonferroni method. The comparison between toxicity at 24 h and between 3 and 7 days was done by using paired t-test for each sealer. Results: At 24 h, the relative biotoxicity of the three sealers reported was insignificant (P- value 0.29), but the difference in toxicity was found significant (P < 0.001) after 3 days. Conclusion: Calcium hydroxide sealer and zinc oxide eugenol were found to be significantly biotoxic as compared to resin-based sealers after 3 days. PMID:25829682
Process for the production of hydrogen from water
Miller, William E [Naperville, IL; Maroni, Victor A [Naperville, IL; Willit, James L [Batavia, IL
2010-05-25
A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.
Process development for production of coal/sorbent agglomerates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, D.M.
1991-01-01
The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spacesmore » are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.« less
Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites.
Ma, Renzhi; Sasaki, Takayoshi
2010-12-01
A wide variety of cation-exchangeable layered transition metal oxides and their relatively rare counterparts, anion-exchangeable layered hydroxides, have been exfoliated into individual host layers, i.e., nanosheets. Exfoliation is generally achieved via a high degree of swelling, typically driven either by intercalation of bulky organic ions (quaternary ammonium cations, propylammonium cations, etc.) for the layered oxides or by solvation with organic solvents (formamide, butanol, etc.) for the hydroxides. Ultimate two-dimensional (2D) anisotropy for the nanosheets, with thickness of around one nanometer versus lateral size ranging from submicrometer to several tens of micrometers, allows them to serve either as an ideal quantum system for fundamental study or as a basic building block for functional assembly. The charge-bearing inorganic macromolecule-like nanosheets can be assembled or organized through various solution-based processing techniques (e.g., flocculation, electrostatic sequential deposition, or the Langmuir-Blodgett method) to produce a range of nanocomposites, multilayer nanofilms, and core-shell nanoarchitectures, which have great potential for electronic, magnetic, optical, photochemical, and catalytic applications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... prestandardized pH meter, 1.0 N hydrochloric acid, 0.1 N hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50...
Code of Federal Regulations, 2012 CFR
2012-07-01
... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... prestandardized pH meter, 1.0 N hydrochloric acid, 0.1 N hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50...
Code of Federal Regulations, 2014 CFR
2014-07-01
... buffer. 3.350-mL burette for 1.0 N sodium hydroxide. 3.4Magnetic stirrer and stir bars. 3.5250-mL beaker... N sodium hydroxide solution. 4.2Hydroxylamine hydrochloride solution, 100 grams per liter, pH... prestandardized pH meter, 1.0 N hydrochloric acid, 0.1 N hydrochloric acid, and 0.1 N sodium hydroxide. 5.5Add 50...
NASA Astrophysics Data System (ADS)
Liu, Jianqiang; Qin, Yaowei; Zhang, Liangji; Xiao, Hongdi; Song, Jianye; Liu, Dehe; Leng, Mingzhe; Hou, Wanguo; Du, Na
2013-12-01
Mixed metal oxides (MMO) are always obtained from layered double hydroxide (LDH) by thermal decomposition. In the present work, a zinc titanium LDH with the zinc titanium molar ratio of 4.25 was prepared by urea method and ZnO-based mixed oxides were obtained by calcining at or over 500°C. The MMO was used as electrodes for dye sensitized solar cell (DSSC). The cells constructed by films of prepared composite materials using a N719 as dye were prepared. The efficiency values of these cells are 0.691%, 0.572% and 0.302% with MMO prepared at 500, 600 and 700°C, respectively.
NASA Astrophysics Data System (ADS)
Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.
2018-01-01
Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Lixia; Graduate School of Chinese Academy of Sciences; Zhu Yingjie
Nickel hydroxide nanosheets and flowers have been hydrothermally synthesized using Ni(CH{sub 3}COO){sub 2}.4H{sub 2}O in mixed solvents of ethylene glycol (EG) or ethanol and deionized water at 200 deg. C for different time. The phase and morphology of the obtained products can be controlled by adjusting the experimental parameters, including the hydrothermal time and the volume ratio of water to EG or ethanol. The possible reaction mechanism and growth of the nanosheets and nanoflowers are discussed based on the experimental results. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets in air at 400 deg. C. The productsmore » were characterized by using various methods including X-ray diffraction (XRD), fourier transform infrared (FTIR), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), field emission scanning electron microscopy (FESEM). The electrochemical property of {beta}-Ni(OH){sub 2} nanosheets was investigated through the cyclic voltammogram (CV) measurement. - Graphical abstract: Nickel hydroxide nanosheets and flowers have been hydrothermally synthesized using Ni(CH{sub 3}COO){sub 2}.4H{sub 2}O in mixed solvents of ethylene glycol (EG) or ethanol and deionized water at 200 deg. C for different reaction time. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets in air at 400 deg. C.« less
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition
Nakayama, Hirokazu; Hayashi, Aki
2014-01-01
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007
Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.
Nakayama, Hirokazu; Hayashi, Aki
2014-07-30
The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.
NASA Astrophysics Data System (ADS)
Korovin, M. S.; Fomenko, A. N.
2017-09-01
Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less researchers' attention has been paid to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However, recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with different aluminum oxide/hydroxide nanoparticles and nanostructures.
Method of preparing electrolyte for use in fuel cells
Kinoshita, Kimio; Ackerman, John P.
1978-01-01
An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Tao; Li, Ruiyi; Li, Zaijun, E-mail: zaijunli@263.net
2014-03-01
Graphical abstract: The microwave heating reflux approach was developed for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets, in which ammonia and ethanol were used as the precipitator and medium for the synthesis. The obtained composite shows a 3D flowerclusters morphology with nanonetwork structure and largely enhanced supercapacitive performance. - Highlights: • The paper reported the microwave synthesis of nickel–cobalt layered double hydroxide/graphene composite. • The novel synthesis method is rapid, green, efficient and can be well used to the mass production. • The as-synthesized composite offers a 3D flowerclusters morphology with nanonetwork structure. •more » The composite offers excellent supercapacitive performance. • This study provides a promising route to design and synthesis of advanced graphene-based materials with the superiorities of time-saving and cost-effective characteristics. - Abstract: The study reported a novel microwave heating reflux method for the fabrication of nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets (GS/NiCo-LDH). Ammonia and ethanol were employed as precipitant and reaction medium for the synthesis, respectively. The resulting GS/NiCo-LDH offers a 3D flowerclusters morphology with nanonetwork structure. Due to the greatly enhanced rate of electron transfer and mass transport, the GS/NiCo-LDH electrode exhibits excellent supercapacitive performances. The maximum specific capacitance was found to be 1980.7 F g{sup −1} at the current density of 1 A g{sup −1}. The specific capacitance can remain 1274.7 F g{sup −1} at the current density of 15 A g{sup −1} and it has an increase of about 2.9% after 1500 cycles. Moreover, the study also provides a promising approach for the design and synthesis of metallic double hydroxides/graphene hybrid materials with time-saving and cost-effective characteristics, which can be potentially applied in the energy storage/conversion devices.« less
Staining of Tissue Sections for Electron Microscopy with Heavy Metals
Watson, Michael L.
1958-01-01
Descriptions of three heavy metal stains and methods of application to tissue sections for electron microscopy are presented. Lead hydroxide stains rather selectively two types of particles in liver: those associated with the endoplasmic reticulum and containing ribonucleic acid and other somewhat larger particles. Barium hydroxide emphasizes certain bodies within vesicles of the Golgi region of hepatic cells. Alkalized lead acetate is useful as a general stain, as are also lead and barium hydroxides. PMID:13610936
Solvent and process for recovery of hydroxide from aqueous mixtures
Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.
2001-01-01
Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.
METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE
Faris, B.F.
1961-04-25
Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.
Construction Material And Method
Wagh, Arun S.; Antink, Allison L.
2006-02-21
A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.
Method of binding structural material
Wagh, Arun S.; Antink, Allison L.
2007-12-25
A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.
Determination of hydroxide and carbonate contents of alkaline electrolytes containing zinc
NASA Technical Reports Server (NTRS)
Otterson, D. A.
1975-01-01
A method to prevent zinc interference with the titration of OH- and CO3-2 ions in alkaline electrolytes with standard acid is presented. The Ba-EDTA complex was tested and shown to prevent zinc interference with acid-base titrations without introducing other types of interference. Theoretical considerations indicate that this method can be used to prevent interference by other metals.
Pumarola Suñé, J; Espias Gómez, A; Canalda Sahli, C
1989-01-01
We have compared the microbiological activity of the following cavity liners: Life, Dycal II, Calcipulpe, Pure calcium hydroxide and Cavitec; against five different bacterial strains: Veillonella parvula, Bacteroides fragilis, Peptococcus s.p., Staphylococcus aureus, and Streptococcus beta hemolytic: The results demonstrate the higher antimicrobial activity of the manufactured cavity liners with calcium hydroxide base in comparison with the pure calcium hydroxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, D.M.
1991-12-31
The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spacesmore » are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.« less
Inagaki, Kazumi; Narukawa, Tomohiro; Yarita, Takashi; Takatsu, Akiko; Okamoto, Kensaku; Chiba, Koichi
2007-10-01
A coprecipitation method using sample constituents as carrier precipitants was developed that can remove molybdenum, which interferes with the determination of cadmium in grain samples via isotope dilution inductively coupled plasma mass spectrometry (ID-ICPMS). Samples were digested with HNO3, HF, and HClO4, and then purified 6 M sodium hydroxide solution was added to generate colloidal hydrolysis compounds, mainly magnesium hydroxide. Cadmium can be effectively separated from molybdenum because the cadmium forms hydroxides and adsorbs onto and/or is occluded in the colloid, while the molybdenum does not form hydroxides or adsorb onto the hydrolysis colloid. The colloid was separated by centrifugation and then dissolved with 0.2 M HNO3 solution to recover the cadmium. The recovery of Cd achieved using the coprecipitation was >97%, and the removal efficiency of Mo was approximately 99.9%. An extremely low procedural blank (below the detection limit of ICPMS) was achieved by purifying the 6 M sodium hydroxide solution via Mg coprecipitation using Mg(NO3)2 solution. The proposed method was applied to two certified reference materials (NIST SRM 1567a wheat flour and SRM 1568a rice flour) and CCQM-P64 soybean powder. Good analytical results with small uncertainties were obtained for all samples. This method is simple and reliable for the determination of Cd in grain samples by ID-ICPMS.
The effect of calcium hydroxide on the antibiotic component of Odontopaste and Ledermix paste.
Athanassiadis, M; Jacobsen, N; Nassery, K; Parashos, P
2013-06-01
To investigate the chemical interaction of calcium hydroxide with the antibiotics demeclocycline calcium in Ledermix Paste and clindamycin hydrochloride in Odontopaste. Validated methods were developed to analyse the interaction of calcium hydroxide in two forms, Pulpdent and calcium hydroxide powder, with the two antibiotics. High-performance liquid chromatography (HPLC) was used to analyse the mixed samples of the pastes and calcium hydroxide. The concentration of demeclocycline calcium over 0-, 1-, 18-, 24-, 72-h and 7-day time-points was determined. The concentration of clindamycin hydrochloride over 1-, 6-, 24-, 72-h and 7-day time-points was determined. All tests with HPLC involved testing of the standard in duplicate alongside the samples. Linearity, precision and specificity of the testing procedures and apparatus were validated. Descriptive statistics are provided. The antibiotics in both Odontopaste and Ledermix Paste were affected by the addition of calcium hydroxide. When mixed with calcium hydroxide powder, Odontopaste had a 2% loss of clindamycin hydrochloride over 7 days, but when mixed with Pulpdent, there was a 36% loss over 7 days. Ledermix Paste showed an 80% loss of demeclocycline calcium over 7 days when mixed with calcium hydroxide powder and a 19% loss when mixed with Pulpdent over the 7-day period. The addition of calcium hydroxide to Odontopaste or Ledermix Paste results in reductions of the respective antibiotic over a 7-day time period. © 2012 International Endodontic Journal. Published by Blackwell Publishing Ltd.
Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors
NASA Astrophysics Data System (ADS)
You, Zheng; Shen, Kui; Wu, Zhicheng; Wang, Xiaofeng; Kong, Xianghua
2012-08-01
Zn-doped α-nickel hydroxide materials with flower-like nanostructures are synthesized by electrochemical deposition method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and electrochemical measurements. XRD spectra indicate nickel hydroxide doped with Zn is α-Ni(OH)2 with excellent crystallization. The SEM observation shows that the formation of Zn-doped Ni(OH)2 includes two steps: a honeycomb-like film forms on the substrate first, then flower-like particles forms on the films. The nickel hydroxide doped with 5% Zn can maintain a maximum specific capacitance of 860 F g-1, suggesting its potential application in electrochemical capacitors.
PROCESS FOR SEPARATING PLUTONIUM BY REPEATED PRECIPITATION WITH AMPHOTERIC HYDROXIDE CARRIERS
Faris, B.F.
1960-04-01
A multiple carrier precipitation method is described for separating and recovering plutonium from an aqueous solution. The hydroxide of an amphoteric metal is precipitated in an aqueous plutonium-containing solution. This precipitate, which carries plutonium, is then separated from the supernatant liquid and dissolved in an aqueous hydroxide solution, forming a second plutonium- containing solution. lons of an amphoteric metal which forms an insoluble hydroxide under the conditions existing in this second solution are added to the second solution. The precipitate which forms and which carries plutonium is separated from the supernatant liquid. Amphoteric metals which may be employed are aluminum, bibmuth, copper, cobalt, iron, lanthanum, nickel, and zirconium.
METHOD OF PROCESSING MONAZITE SAND
Calkins, G.D.
1957-10-29
A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.
Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method
NASA Astrophysics Data System (ADS)
Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer
2018-05-01
The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.
Badiee, Parisa; Nejabat, Mahmood; Alborzi, Abdolvahab; Keshavarz, Fatemeh; Shakiba, Elaheh
2010-01-01
This study seeks to evaluate the efficacy and practicality of the molecular method, compared to the standard microbiological techniques for diagnosing fungal keratitis (FK). Patients with eye findings suspected of FK were enrolled for cornea sampling. Scrapings from the affected areas of the infected corneas were obtained and were divided into two parts: one for smears and cultures, and the other for nested PCR analysis. Of the 38 eyes, 28 were judged to have fungal infections based on clinical and positive findings in the culture, smear and responses to antifungal treatment. Potassium hydroxide, Gram staining, culture and nested PCR results (either positive or negative) matched in 76.3, 42.1, 68.4 and 81.6%, respectively. PCR is a sensitive method but due to the lack of sophisticated facilities in routine laboratory procedures, it can serve only complementarily and cannot replace conventional methods. Copyright © 2010 S. Karger AG, Basel.
Comparative evaluation of different forms of calcium hydroxide in apexification.
Ghosh, Subhankar; Mazumdar, Dibyendu; Ray, Pradip Kumar; Bhattacharya, Bhaswar
2014-01-01
One out of every two children sustains a dental injury most often between 8 and 10 years of age. Majority of these teeth subsequently become non-vital and most often with immature apex. Management of these teeth is an enormous challenge for lack of apical stop. Calcium hydroxide in various formulations has maximum literature support in favor of successful apexification or induced apical closure. The aim of the following study is to determine the efficacy of calcium hydroxide in a different formulation to induce apexification. The present study was undertaken on 51 children of 8-10 years of age (both sexes) at Dr. R Ahmed Dental College and Hospital from April 2006 to March 2007. All children had one or two maxillary permanent central incisor (s), non-vital and apices open. In all the cases, apexification was attempted with either calcium hydroxide mixed with sterile distilled water, or calcium hydroxide plus iodoform in methyl cellulose base, or calcium hydroxide plus iodoform in polysilicone oil base. The success of apexification was determined on the basis of clinical and radiographic criteria. In the pre-operative asymptomatic cases (72.55%), failure occurred in only 5.45% cases and pre-operative symptomatic cases failure rate was as high as 35.71%. Success rate was 94.6% in cases with narrow open apices, whereas 64.28% in wide open apices. In cases with pre-existing apical radiolucencies, successful apexification occurred in 63.63% and success rate was 92.5% in the cases without pre-existing apical radiolucencies. Average time consumed for apexification was minimum with calcium hydroxide plus iodoform in polysilicone oil base. The overall success rate observed to be 86.27%, which is in close proximity to the findings of most of the previous studies across the globe.
Soares, Janir Alves; Leonardo, Mario Roberto; da Silva, Léa Assed Bezerra; Tanomaru Filho, Mario; Ito, Izabel Yoko
2006-01-01
This study aimed at evaluating the antisepsis of the root canal system (RCS) and periapical region (PR) provided by rotary instrumentation associated with chlorhexidine + calcium hydroxide as intracanal medicament. Chronic periapical lesions were induced in 26 pre-molar roots in two dogs. After microbiological sampling, automatic instrumentation using the Profile system and irrigation with 5.25% sodium hypochlorite solution, with a final rinse of 14.3% EDTA followed by profuse irrigation with physiological saline were carried out in 18 root canals. After drying the canals, a paste based on calcium hydroxide associated with a 2% chlorhexidine digluconate solution was placed inside them. After 21 days, the medication was removed, leaving the root canals empty and coronally sealed. After 96 hours, a final microbiological sample was obtained, followed by histomicrobiological processing by the Brown & Brenn method. Eight untreated root canals represented the control group (C-G). Based on the Mann-Whitney test at a confidence level of 5% (p < 0.05), the procedures of antisepsis used offered significant efficacy (p < 0.05) resulting in 100.0% of the canals free of microorganisms. In the C-G, an elevated incidence of various microbial morphotypes was confirmed in all sites of the RCS, with the presence of microbial colonies in the periapical region. In contrast, the experimental group showed a similar pattern of infection in the RCS, although less intense and a reduced level of periapical infection (p < 0.05). It was concluded that adequate instrumentation followed by the application of calcium hydroxide + chlorhexidine offered significant elimination of microorganisms.
Guo, Cheng-ye; Wang, Hou-yu; Liu, Xiao-ping; Fan, Liu-yin; Zhang, Lei; Cao, Cheng-xi
2013-05-01
In this paper, moving reaction boundary titration (MRBT) was developed for rapid and accurate quantification of total protein in infant milk powder, from the concept of moving reaction boundary (MRB) electrophoresis. In the method, the MRB was formed by the hydroxide ions and the acidic residues of milk proteins immobilized via cross-linked polyacrylamide gel (PAG), an acid-base indicator was used to denote the boundary motion. As a proof of concept, we chose five brands of infant milk powders to study the feasibility of MRBT method. The calibration curve of MRB velocity versus logarithmic total protein content of infant milk powder sample was established based on the visual signal of MRB motion as a function of logarithmic milk protein content. Weak influence of nonprotein nitrogen (NPN) reagents (e.g., melamine and urea) on MRBT method was observed, due to the fact that MRB was formed with hydroxide ions and the acidic residues of captured milk proteins, rather than the alkaline residues or the NPN reagents added. The total protein contents in infant milk powder samples detected via the MRBT method were in good agreement with those achieved by the classic Kjeldahl method. In addition, the developed method had much faster measuring speed compared with the Kjeldahl method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of producing hydrogen, and rendering a contaminated biomass inert
Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID
2010-02-23
A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.
Sodium to sodium carbonate conversion process
Herrmann, Steven D.
1997-01-01
A method of converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO.sub.2 are introduced into a thin film evaporator with the CO.sub.2 present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and T1 can be converted into a low level non-hazardous waste using the thin film evaporator of the invention.
Horstkotte, Burkhard; Alonso, Juan Carlos; Miró, Manuel; Cerdà, Víctor
2010-01-15
An integrated analyzer based on the multisyringe flow injection analysis approach is proposed for the automated determination of dissolved oxygen in seawater. The entire Winkler method including precipitation of manganese(II) hydroxide, fixation of dissolved oxygen, dissolution of the oxidized manganese hydroxide precipitate, and generation of iodine and tri-iodide ion are in-line effected within the flow network. Spectrophotometric quantification of iodine and tri-iodide at the isosbestic wavelength of 466nm renders enhanced method reliability. The calibration function is linear up to 19mgL(-1) dissolved oxygen and an injection frequency of 17 per hour is achieved. The multisyringe system features a highly satisfying signal stability with repeatabilities of 2.2% RSD that make it suitable for continuous determination of dissolved oxygen in seawater. Compared to the manual starch-end-point titrimetric Winkler method and early reported automated systems, concentrations and consumption of reagents and sample are reduced up to hundredfold. The versatility of the multisyringe assembly was exploited in the implementation of an ancillary automatic batch-wise Winkler titrator using a single syringe of the module for accurate titration of the released iodine/tri-iodide with thiosulfate.
NASA Astrophysics Data System (ADS)
Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander
2013-04-01
The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid lead to increasing conversion of hemicellulose to xylose. In contrast, increasing sodium hydroxide concentrations degrade the hemicellulose to unknown derivates. Consequently, almost no sugars from hemicellulose remain for fermentation. The hydrolysis of sulfuric acid pretreated straw results in a maximum glucose concentration of 100 g/kg straw and a xylose concentration of nearly 30 g/kg. Sodium hydroxide pretreated and hydrolyzed straw leads to a maximum glucose concentration of 90 g/kg straw and a xylose concentration of nearly 20 g/kg. In comparison to the two chemical pretreatment methods (sodium hydroxide and sulfuric acid pretreatment), the steam explosion pretreatment (conditions: temperature 190°C, time 20 minutes) results in a higher glucose concentration of about 190 g/kg straw and a xylose concentration of nearly 75 g/kg straw after enzymatic hydrolysis of the dried straw. Because of the small effect the sodium hydroxide pretreatment has on xylose recovery, this method won't be used for separation and conversion of hemicellulose into xylose and arabinose. Although pretreatment with sulfuric acid achieved promising results, further research and economical considerations have to be performed. In conclusion, the steam explosion method is still the state of the art pretreatment method for the production of lignocellulosic biofuels. Alkaline methods destroy most of the xylose part of the sugar fraction and a loss of up to 25 % of the fermentable sugars is not acceptable for a sustainable biofuel production. The acid pretreatment yields high amounts of accessible hemicellulose and cellulose, but the consumption of chemicals for acid pretreatment and neutralization has to be taken into account when considering technical implementation.
The effect of calcium hydroxide on the steroid component of Ledermix and Odontopaste.
Athanassiadis, M; Jacobsen, N; Parashos, P
2011-12-01
To investigate the chemical interaction of calcium hydroxide with the corticosteroid triamcinolone acetonide in Ledermix Paste and in Odontopaste, a new steroid/antibiotic paste. Validated methods were developed to analyse the interaction of calcium hydroxide in two forms, Pulpdent Paste and calcium hydroxide powder, with triamcinolone acetonide within Odontopaste and Ledermix Paste. High-performance liquid chromatography (HPLC) was used to analyse the mixed samples of the pastes and calcium hydroxide. The concentration of triamcinolone acetonide within the pastes was determined over 0, 2, 6, 24 and 72-h time-points. All tests with the HPLC involved the testing of the standard with triplicate injections alongside the samples. All samples were tested in duplicate with each injected twice; therefore, four tests were performed for each investigation. Linearity, precision and specificity of the testing procedures and apparatus were validated. Descriptive statistics are provided. In both pastes, there was a marked rapid destruction of the triamcinolone acetonide steroid upon mixing with calcium hydroxide. Odontopaste suffered a lower rate of destruction of the triamcinolone acetonide component than Ledermix Paste, but both pastes showed very similar degrees of steroid destruction after 72 h. When using calcium hydroxide powder with Ledermix Paste, the triamcinolone was destroyed entirely and immediately. The addition of calcium hydroxide to Odontopaste or Ledermix Paste results in the rapid destruction of the steroid. © 2011 International Endodontic Journal.
NASA Astrophysics Data System (ADS)
Faraji, Soheila; Ani, Farid Nasir
2014-10-01
Electrochemical capacitors (ECs), also known as pseudocapacitors or supercapacitors (SCs), is receiving great attention for its potential applications in electric and hybrid electric vehicles because of their ability to store energy, alongside with the advantage of delivering the stored energy much more rapidly than batteries, namely power density. To become primary devices for power supply, supercapacitors must be developed further to improve their ability to deliver high energy and power simultaneously. In this concern, a lot of effort is devoted to the investigation of pseudocapacitive transition-metal-based oxides/hydroxides such as ruthenium oxide, manganese oxide, cobalt oxide, nickel oxide, cobalt hydroxide, nickel hydroxide, and mixed metal oxides/hydroxides such as nickel cobaltite and nickel-cobalt oxy-hydroxides. This is mainly due to the fact that they can produce much higher specific capacitances than typical carbon-based electric double-layer capacitors and electronically conducting polymers. This review presents supercapacitor performance data of metal oxide thin film electrodes by microwave-assisted as an inexpensive, quick and versatile technique. Supercapacitors have established the specific capacitance (Cs) principles, therefore, it is likely that metal oxide films will continue to play a major role in supercapacitor technology and are expected to considerably increase the capabilities of these devices in near future.
Chen, Daqi; Sun, Xiyang; Zhang, Kaihuan; Fan, Guokang; Wang, You; Li, Guang; Hu, Ruifen
2017-07-21
Dibutyl phthalate (DBP) is a widely used plasticizer which has been found to be a reproductive and developmental toxicant and ubiquitously existing in the air. A highly sensitive method for DBP monitoring in the environment is urgently needed. A DBP sensor based on a homemade wireless-electrodeless quartz crystal microbalance with dissipation (QCM-D) coated with nano-structured nickel hydroxide is presented. With the noncontact configuration, the sensing system could work at a higher resonance frequency (the 3rd overtone) and the response of the system was even more stable compared with a conventional quartz crystal microbalance (QCM). The sensor achieved a sensitivity of 7.3 Hz/ppb to DBP in a concentration range of 0.4-40 ppb and an ultra-low detection limit of 0.4 ppb of DBP has also been achieved.
Sun, Xiyang; Zhang, Kaihuan; Fan, Guokang; Wang, You; Li, Guang; Hu, Ruifen
2017-01-01
Dibutyl phthalate (DBP) is a widely used plasticizer which has been found to be a reproductive and developmental toxicant and ubiquitously existing in the air. A highly sensitive method for DBP monitoring in the environment is urgently needed. A DBP sensor based on a homemade wireless-electrodeless quartz crystal microbalance with dissipation (QCM-D) coated with nano-structured nickel hydroxide is presented. With the noncontact configuration, the sensing system could work at a higher resonance frequency (the 3rd overtone) and the response of the system was even more stable compared with a conventional quartz crystal microbalance (QCM). The sensor achieved a sensitivity of 7.3 Hz/ppb to DBP in a concentration range of 0.4–40 ppb and an ultra-low detection limit of 0.4 ppb of DBP has also been achieved. PMID:28753974
NASA Astrophysics Data System (ADS)
Liu, Jiajia; Yuen, Richard K. K.; Hu, Yuan
2017-10-01
Poly(vinyl alcohol) (PVA) nanocomposites were prepared by a “one step” method based on the coprecipitation of layered double hydroxide (LDH) nanosheets in the polymer aqueous solution. The morphology, fire resistance properties, mechanical and optical properties of the PVA/LDH nanocomposites were studied. The LDH nanosheets were homogeneously dispersed in the PVA matrix as indicated by X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) characterization. Meanwhile, the peak of heat release rate (pHRR) and total heat release (THR) were decreased by 58% and 28%, respectively. Storage modulus at 30 °C was increased, and the transmittance of more than 90% at the visible region was obtained upon addition of 5 wt% LDH.
NASA Technical Reports Server (NTRS)
Gwo, Dz-Hung (Inventor)
2003-01-01
A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.
Zhang, Liuyang; Gong, Hao
2015-12-08
Carbon-based substrates offer unprecedented advantages in lightweight supercapacitors. However, it is still challenging to achieve high coverage or loading. Different from the traditional belief that a lack of defects or functional groups is the cause of poor growth on carbon-based substrates, we reckon that the major cause is the discrepancy between the hydrophilic nature of the metal oxide/hydroxide and the hydrophobic nature of carbon. To solve this incompatibility, we introduced ethanol into the precursor solution. The method to synthesize nickel copper hydroxide on carbon fiber paper employs only water and ethanol, in addition to nickel acetate and copper acetate. The results revealed good growth and tight adhesion of active materials on carbon fiber paper substrates. The specific capacitance and energy density per total weight of the active material plus substrate (carbon fiber paper, current collector) reached 770 F g(-1) and 33 Wh kg(-1) (1798 F g(-1) and 54 Wh kg(-1) per weight of the active materials), owing to the high loading of active material and the light weight of carbon fiber paper. These results signified the achievability of light, cheap and high-performance supercapacitors by an environmental-friendly approach.
NASA Astrophysics Data System (ADS)
Zhang, Liuyang; Gong, Hao
2015-12-01
Carbon-based substrates offer unprecedented advantages in lightweight supercapacitors. However, it is still challenging to achieve high coverage or loading. Different from the traditional belief that a lack of defects or functional groups is the cause of poor growth on carbon-based substrates, we reckon that the major cause is the discrepancy between the hydrophilic nature of the metal oxide/hydroxide and the hydrophobic nature of carbon. To solve this incompatibility, we introduced ethanol into the precursor solution. The method to synthesize nickel copper hydroxide on carbon fiber paper employs only water and ethanol, in addition to nickel acetate and copper acetate. The results revealed good growth and tight adhesion of active materials on carbon fiber paper substrates. The specific capacitance and energy density per total weight of the active material plus substrate (carbon fiber paper, current collector) reached 770 F g-1 and 33 Wh kg-1 (1798 F g-1 and 54 Wh kg-1 per weight of the active materials), owing to the high loading of active material and the light weight of carbon fiber paper. These results signified the achievability of light, cheap and high-performance supercapacitors by an environmental-friendly approach.
Zhang, Liuyang; Gong, Hao
2015-01-01
Carbon-based substrates offer unprecedented advantages in lightweight supercapacitors. However, it is still challenging to achieve high coverage or loading. Different from the traditional belief that a lack of defects or functional groups is the cause of poor growth on carbon-based substrates, we reckon that the major cause is the discrepancy between the hydrophilic nature of the metal oxide/hydroxide and the hydrophobic nature of carbon. To solve this incompatibility, we introduced ethanol into the precursor solution. The method to synthesize nickel copper hydroxide on carbon fiber paper employs only water and ethanol, in addition to nickel acetate and copper acetate. The results revealed good growth and tight adhesion of active materials on carbon fiber paper substrates. The specific capacitance and energy density per total weight of the active material plus substrate (carbon fiber paper, current collector) reached 770 F g−1 and 33 Wh kg−1 (1798 F g−1 and 54 Wh kg−1 per weight of the active materials), owing to the high loading of active material and the light weight of carbon fiber paper. These results signified the achievability of light, cheap and high-performance supercapacitors by an environmental-friendly approach. PMID:26643665
Du, Junyi; Sabatini, David A; Butler, Elizabeth C
2014-04-01
Simple aluminum (hydr)oxides and layered double hydroxides were synthesized using common chemicals and equipment by varying synthesis temperature, concentrations of extra sulfate and citrate, and metal oxide amendments. Aluminum (hydr)oxide samples were aged at either 25 or 200°C during synthesis and, in some cases, calcined at 600 °C. Despite yielding increased crystallinity and mineral phase changes, higher temperatures had a generally negative effect on fluoride adsorption. Addition of extra sulfate during synthesis of aluminum (hydr)oxides led to significantly higher fluoride adsorption capacity compared to aluminum (hydr)oxides prepared with extra citrate or no extra ligands. X-ray diffraction results suggest that extra sulfate led to the formation of both pseudoboehmite (γ-AlOOH) and basaluminite (Al4SO4(OH)10⋅4H2O) at 200 °C; energy dispersive X-ray spectroscopy confirmed the presence of sulfur in this solid. Treatment of aluminum (hydr)oxides with magnesium, manganese, and iron oxides did not significantly impact fluoride adsorption. While layered double hydroxides exhibited high maximum fluoride adsorption capacities, their adsorption capacities at dissolved fluoride concentrations close to the World Health Organization drinking water guideline of 1.5 mg L(-1) were much lower than those for the aluminum (hydr)oxides. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method
Hu, Zhimi; Xiao, Xu; Jin, Huanyu; Li, Tianqi; Chen, Ming; Liang, Zhun; Guo, Zhengfeng; Li, Jia; Wan, Jun; Huang, Liang; Zhang, Yanrong; Feng, Guang; Zhou, Jun
2017-01-01
Because of their exotic electronic properties and abundant active sites, two-dimensional (2D) materials have potential in various fields. Pursuing a general synthesis methodology of 2D materials and advancing it from the laboratory to industry is of great importance. This type of method should be low cost, rapid and highly efficient. Here, we report the high-yield synthesis of 2D metal oxides and hydroxides via a molten salts method. We obtained a high-yield of 2D ion-intercalated metal oxides and hydroxides, such as cation-intercalated manganese oxides (Na0.55Mn2O4·1.5H2O and K0.27MnO2·0.54H2O), cation-intercalated tungsten oxides (Li2WO4 and Na2W4O13), and anion-intercalated metal hydroxides (Zn5(OH)8(NO3)2·2H2O and Cu2(OH)3NO3), with a large lateral size and nanometre thickness in a short time. Using 2D Na2W4O13 as an electrode, a high performance electrochemical supercapacitor is achieved. We anticipate that our method will enable new path to the high-yield synthesis of 2D materials for applications in energy-related fields and beyond. PMID:28555669
Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact.
Matsuya, Shigeki; Lin, Xin; Udoh, Koh-ichi; Nakagawa, Masaharu; Shimogoryo, Ryoji; Terada, Yoshihiro; Ishikawa, Kunio
2007-07-01
Calcium carbonate (CaCO(3)) has been widely used as a bone substitute material because of its excellent tissue response and good resorbability. In this experimental study, we propose a new method obtaining porous CaCO(3) monolith for an artificial bone substitute. In the method, calcium hydroxide compacts were exposed to carbon dioxide saturated with water vapor at room temperature. Carbonation completed within 3 days and calcite was the only product. The mechanical strength of CaCO(3) monolith increased with carbonation period and molding pressure. Development of mechanical strength proceeded through two steps; the first rapid increase by bonding with calcite layer formed at the surface of calcium hydroxide particles and the latter increase by the full conversion of calcium hydroxide to calcite. The latter process was thought to be controlled by the diffusion of CO(2) through micropores in the surface calcite layer. Porosity of calcite blocks thus prepared had 36.8-48.1% depending on molding pressure between 1 MPa and 5 MPa. We concluded that the present method may be useful for the preparation of bone substitutes or the preparation of source material for bone substitutes since this method succeeded in fabricating a low-crystalline, and thus a highly reactive, porous calcite block.
The effects of lithium hydroxide solution on alkali silica reaction gels created with opal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick
The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), {sup 29}Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhapsmore » stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type.« less
Biomedical application of hierarchically built structures based on metal oxides
NASA Astrophysics Data System (ADS)
Korovin, M. S.; Fomenko, A. N.
2017-12-01
Nowadays, the use of hierarchically built structures in biology and medicine arouses much interest. The aim of this work is to review and summarize the available literature data about hierarchically organized structures in biomedical application. Nanoparticles can serve as an example of such structures. Medicine holds a special place among various application methods of similar systems. Special attention is paid to inorganic nanoparticles based on different metal oxides and hydroxides, such as iron, zinc, copper, and aluminum. Our investigations show that low-dimensional nanostructures based on aluminum oxides and hydroxides have an inhibitory effect on tumor cells and possess an antimicrobial activity. At the same time, it is obvious that the large-scale use of nanoparticles by humans needs to thoroughly study their properties. Special attention should be paid to the study of nanoparticle interaction with living biological objects. The numerous data show that there is no clear understanding of interaction mechanisms between nanoparticles and various cell types.
Zheng, Xiaoyu; Quan, Honglin; Li, Xiaoxin; He, Hai; Ye, Qinglan; Xu, Xuetang; Wang, Fan
2016-09-29
Three-dimensional (3D) hybrid nanostructured arrays grown on a flexible substrate have recently attracted great attention owing to their potential application as supercapacitor electrodes in portable and wearable electronic devices. Here, we report an in situ conversion of Ni-Co active electrode materials for the fabrication of high-performance electrodes. Ni-Co carbonate hydroxide nanowire arrays on carbon cloth were initially synthesized via a hydrothermal method, and they were gradually converted to Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays after soaking in an alkaline solution. The evolution of the supercapacitor performance of the soaked electrode was investigated in detail. The areal capacitance increases from 281 mF cm -2 at 1 mA cm -2 to 3710 and 3900 mF cm -2 after soaking for 36 h and 48 h, respectively. More interestingly, the electrode also shows an increased capacitance with charge/discharge cycles due to the long-time soaking in KOH solution, suggesting novel cycling durability. The enhancement in capacitive performance should be related to the formation of a unique nanowire-supported nanoflake array architecture, which controls the agglomeration of nanoflakes, making them fully activated. As a result, the facile in situ fabrication of the hybrid architectural design in this study provides a new approach to fabricate high-performance Ni/Co based hydroxide nanostructure arrays for next-generation energy storage devices.
NASA Astrophysics Data System (ADS)
Kumar, C. R. Ravi; Santosh, M. S.; Nagaswarupa, H. P.; Prashantha, S. C.; Yallappa, S.; Kumar, M. R. Anil
2017-06-01
In this study, the electrode material (nickel hydroxide powder) has been synthesized by a co-precipitation method using sodium hydroxide and nickel sulphate as precipitator and nickel source, respectively. The obtained nickel hydroxide powder has been subsequently embedded with biosynthesized MgO and ZnO nanoparticles as nanohybrids, which have been investigated as a novel hybrid electrode material for power-storage applications. The powder x-ray diffraction pattern of nickel hydroxide (Ni(OH)2)-based nanohybrid materials reveals a typical β-phase. Fourier transform infrared spectroscopy confirms the embedded structures of nanohybrids and thermal stability by thermogravimetry and differential thermal) analysis. The electrochemical properties of these materials have been studied using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The specific capacitance values are found to be 439, 1076, and 622 F g-1 for bare β-Ni(OH)2, and for β-Ni(OH)2 embedded with ZnO and MgO nanohybrids, respectively, at a scan rate of 10 mVs-1. The enhanced capacitance of nanohybrids is also evident from EIS measurements. Galvanostatic charge-discharge tests for these designed nanohybrids show excellent capacitance performance in battery and supercapacitor applications. These innovative results could be considered for the expansion of novel resources to scale for power-storage applications and may contribute to the development of this niche area at large.
Catalytic and inhibiting effects of lithium peroxide and hydroxide on sodium chlorate decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannon, J.C.; Zhang, Y.
1995-09-01
Chemical oxygen generators based on sodium chlorate and lithium perchlorate are used in airplanes, submarines, diving, and mine rescue. Catalytic decomposition of sodium chlorate in the presence of cobalt oxide, lithium peroxide, and lithium hydroxide is studied using thermal gravimetric analysis. Lithium peroxide and hydroxide are both moderately active catalysts for the decomposition of sodium chlorate when used alone, and inhibitors when used with the more active catalyst cobalt oxide.
Rapid green synthesis of ZnO nanoparticles using a hydroelectric cell without an electrolyte
NASA Astrophysics Data System (ADS)
Shah, Jyoti; Kumar Kotnala, Ravinder
2017-09-01
In this study, zinc oxide (ZnO) nanoparticles were synthesized using a novel environmentally friendly hydroelectric cell without an electrolyte or external current source. The hydroelectric cell comprised a nanoporous Li substituted magnesium ferrite pellet in contact with two electrodes, with zinc as the anode and silver as an inert cathode. The surface unsaturated cations and oxygen vacancies in the nanoporous ferrite dissociated water molecules into hydronium and hydroxide ions when the hydroelectric cell was dipped into deionized water. Hydroxide ions migrated toward the zinc electrode to form zinc hydroxide and the hydronium ions were evolved as H2 gas at the silver electrode. The zinc hydroxide collected as anode mud was converted into ZnO nanoparticles by heating at 250 °C. Structural analysis using Raman spectroscopy indicated the good crystallinity of the ZnO nanoparticles according to the presence of a high intensity E2-(high) mode. The nanoparticle size distribution was 5-20 nm according to high resolution transmission electron microscopy. An indirect band gap of 2.75 eV was determined based on the Tauc plot, which indicated the existence of an interstitial cation level in ZnO. Near band edge and blue emissions were detected in photoluminescence spectral studies. The blue emissions obtained from the ZnO nanoparticles could potentially have applications in blue lasers and LEDs. The ZnO nanoparticles synthesized using this method had a high dielectric constant value of 5 at a frequency of 1 MHz, which could be useful for fabricating nano-oscillators. This facile, clean, and cost-effective method obtained a significant yield of 0.017 g for ZnO nanoparticles without applying an external current source.
Bourzami, Riadh; Eyele-Mezui, Séraphin; Delahaye, Emilie; Drillon, Marc; Rabu, Pierre; Parizel, Nathalie; Choua, Sylvie; Turek, Philippe; Rogez, Guillaume
2014-01-21
A series of new hybrid multilayers has been synthesized by insertion-grafting of transition metal (Cu(II), Co(II), Ni(II), and Zn(II)) tetrasulfonato phthalocyanines between layers of Cu(II) and Co(II) simple hydroxides. The structural and spectroscopic investigations confirm the formation of new layered hybrid materials in which the phthalocyanines act as pillars between the inorganic layers. The magnetic investigations show that all copper hydroxide-based compounds behave similarly, presenting an overall antiferromagnetic behavior with no ordering down to 1.8 K. On the contrary, the cobalt hydroxide-based compounds present a ferrimagnetic ordering around 6 K, regardless of the nature of the metal phthalocyanine between the inorganic layers. The latter observation points to strictly dipolar interactions between the inorganic layers. The amplitude of the dipolar field has been evaluated from X-band and Q-band EPR spectroscopy investigation (Bdipolar ≈ 30 mT).
Britto, Sylvia; Kamath, P Vishnu
2009-12-21
The double hydroxides of Li with Al, obtained by the imbibition of Li salts into bayerite and gibbsite-Al(OH)(3), are not different polytypes of the same symmetry but actually crystallize in two different symmetries. The bayerite-derived double hydroxides crystallize with monoclinic symmetry, while the gibbsite-derived hydroxides crystallize with hexagonal symmetry. Successive metal hydroxide layers in the bayerite-derived LDHs are translated by the vector ( approximately -1/3, 0, 1) with respect to each other. The exigency of hydrogen bonding drives the intercalated Cl(-) ion to a site with 2-fold coordination, whereas the intercalated water occupies a site with 6-fold coordination having a pseudotrigonal prismatic symmetry. The nonideal nature of the interlayer sites has implications for the observed selectivity of Li-Al LDHs toward anions of different symmetries.
Interactions of Water Vapor with Oxides at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight
2003-01-01
Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.
Titrimetric Analysis of Han-Based Liquid Propellants
1988-03-01
acid-base and Karl Fischer titrimetry, procedures that quantitatively determine the three major propellant components. The method developed converts...sodium hydroxide as titrant for both HAN and TEAN. Water is determined by Karl Fischer titration using the proprietary reagent "Hydranal". Each major...water, react with one or more of the components of the Karl Fischer reagent. One of the newer Karl Fischer titrants is "Hydranal", a proprietary reagent
Metals removal from aqueous solution by iron-based bonding agents.
Deliyanni, Eleni A; Lazaridis, Nikolaos K; Peleka, Efrosini N; Matis, Konstantinos A
2004-01-01
GOAL AND SCOPE AND BACKGROUND: The application of a promising method, termed sorptive flotation, for the removal of chromium(VI) and zinc ions was the aim of the present paper. A special case of sorptive flotation is adsorbing colloid flotation. Suitable sorbent preparation techniques have been developed in the laboratory. Sorptive flotation, consisting of the sorption and flotation processes combined in series, has proved to give fast and satisfactory treatment of the industrial streams and effluents bearing dilute aqueous solutions of zinc and chromium(VI). Goethite has proved to be effective for the removal of chromium(VI) and zinc ions. Also, adsorbing colloid flotation with ferric hydroxide (as the co-precipitant) could be an alternative method to the above-mentioned separation of metal ions. In both cases, chromium(VI) (pH=4) and zinc (pH=7) removal was about 100%. The reasons for selecting the iron-based bonding materials, like goethite and/or in-situ produced ferric hydroxide, are that they are cheap, easily synthesized, suitable both for cation and anion sorption, and, furthermore, that they present low risks for adding a further pollutant to the system. Promising results were obtained. The application of goethite and in-situ produced ferric hydroxide has demonstrated their effectiveness in the removal of heavy metal ions, such as chromium anions and zinc cations. A proposed continuation of current work is the utilization of similar iron oxides, for instance synthesized akaganeite. The comparison between the results reported in this paper with the results reported in the literature, also deserves attention.
Kumar, Manish; Das, Nilotpal; Goswami, Ritusmita; Sarma, Kali Prasad; Bhattacharya, Prosun; Ramanathan, A L
2016-12-01
The present work is an attempt to study As and F+ coevality using laboratory based assays which couples fractionation and batch dissolution experiments. Sequential extraction procedure (SEP) resulting into five "operationally defined phases", was performed on sediment and soil samples collected from the Brahmaputra flood plains, Assam, India. High correlation between the Fe (hydr)oxide fraction and total As content of the soil/sediment sample indicates the involvement of Fe (hydr)oxides as the principal source of As. F - being an anion has high potential to be sorbed onto positively charged surfaces. Findings of the SEP were used to design the batch desorption experiments by controlling the Fe (hydr)oxide content of the soil/sediment. Desorption of As and F - was observed under acidic, neutral and alkaline pH from untreated and Fe (hydr)oxide removed samples. Highest amount of As and F - were found to be released from untreated samples under alkaline pH, while the amount leached from samples with no Fe (hydr)oxide was low. The study showed that the Fe (hydr)oxide fraction commonly found in the soils and sediments, had high affinity for negatively charged species like F - oxyanions of As, AsO 4 3- (arsenate) and AsO 3 3- (arsenite). Fe (hydr)oxide fraction was found to play the major role in co-evolution of As and F - . Two sorption coefficients were proposed based on easily leachable fraction and As present in the groundwater of sampling location for understanding of contamination vulnerability from the leaching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhou, Y; Ts'o, P O
1996-01-01
A synthetic method was developed for the synthesis of oligodeoxyribonucleotides and oligodeoxyribonucleoside methylphosphonates comprised exclusively of the fluorescent 2-pyrimidinone base for the first time. The method utilized the solid-phase 2-cyanoethylphosphoramidite and methylphosphonamidite chemistry for internucleotide couplings and a baselabile oxalyl linkage to anchor the oligomers onto the CPG support. Cleavage of the oligomers from the support was effected by a short treatment of the support with 5% ammonium hydroxide in methanol at room temperature, without any degradation of the base-sensitive 2-pyrimidinone residues or the base-sensitive methylphosphonate backbone. PMID:8758991
Shehata, Atef S.; Mukherjee, Pranab K.; Ghannoum, Mahmoud A.
2008-01-01
In this study, we determined the utility of a 2,3-bis(2-methoxy-4-nitro-5-[(sulfenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT)-based assay for determining antifungal susceptibilities of dermatophytes to terbinafine, ciclopirox, and voriconazole in comparison to the Clinical and Laboratory Standards Institute (CLSI) M38-A2 method. Forty-eight dermatophyte isolates, including Trichophyton rubrum (n = 15), Trichophyton mentagrophytes (n = 7), Trichophyton tonsurans (n = 11), and Epidermophyton floccosum (n = 13), and two quality control strains, were tested. In the XTT-based method, MICs were determined spectrophotometrically at 490 nm after addition of XTT and menadione. For the CLSI method, the MICs were determined visually. With T. rubrum, the XTT assay revealed MIC ranges of 0.004 to >64 μg/ml, 0.125 to 0.25 μg/ml, and 0.008 to 0.025 μg/ml for terbinafine, ciclopirox, and voriconazole, respectively. Similar MIC ranges were obtained against T. rubrum by using the CLSI method. Additionally, when tested with T. mentagrophytes, T. tonsurans, and E. floccosum isolates, the XTT and CLSI methods resulted in comparable MIC ranges. Both methods revealed similar lowest drug concentrations that inhibited 90% of the isolates for the majority of tested drug-dermatophyte combinations. The levels of agreement within 1 dilution between both methods were as follows: 100% with terbinafine, 97.8% with ciclopirox, and 89.1% with voriconazole. However, the agreement within 2 dilutions between these two methods was 100% for all tested drugs. Our results revealed that the XTT assay can be a useful tool for antifungal susceptibility testing of dermatophytes. PMID:18832129
Sodium to sodium carbonate conversion process
Herrmann, S.D.
1997-10-14
A method is described for converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO{sub 2} are introduced into a thin film evaporator with the CO{sub 2} present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and Tl can be converted into a low level non-hazardous waste using the thin film evaporator of the invention. 3 figs.
Hopkins, F B; Gravett, M R; Self, A J; Wang, M; Chua, Hoe-Chee; Hoe-Chee, C; Lee, H S Nancy; Sim, N Lee Hoi; Jones, J T A; Timperley, C M; Riches, J R
2014-08-01
Detailed chemical analysis of solutions used to decontaminate chemical warfare agents can be used to support verification and forensic attribution. Decontamination solutions are amongst the most difficult matrices for chemical analysis because of their corrosive and potentially emulsion-based nature. Consequently, there are relatively few publications that report their detailed chemical analysis. This paper describes the application of modern analytical techniques to the analysis of decontamination solutions following decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). We confirm the formation of N,N-diisopropylformamide and N,N-diisopropylamine following decontamination of VX with hypochlorite-based solution, whereas they were not detected in extracts of hydroxide-based decontamination solutions by nuclear magnetic resonance (NMR) spectroscopy or gas chromatography-mass spectrometry. We report the electron ionisation and chemical ionisation mass spectroscopic details, retention indices, and NMR spectra of N,N-diisopropylformamide and N,N-diisopropylamine, as well as analytical methods suitable for their analysis and identification in solvent extracts and decontamination residues.
Color stable phosphors for LED lamps and methods for preparing them
Murphy, James Edward; Setlur, Anant Achyut; Camardello, Samuel Joseph
2013-11-26
An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.sub.y-)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, NA, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 0
Kriplani, R; Thosar, N; Baliga, M S; Kulkarni, P; Shah, N; Yeluri, R
2013-01-01
this study was conducted to evaluate the antimicrobial effectiveness of 6 root canal filling materials and a negative control agent against 18 strains of bacteria isolated from infected root canals of primary molar teeth using agar diffusion assay. Aloevera with sterile water Zinc oxide and Eugenol, Zinc oxide-Eugenol with aloevera, Calcium hydroxide and sterile water, Calcium hydroxide with sterile water and aloevera, Calcium hydroxide and Iodoform (Metapex) and Vaseline (Control). MIC and MBC of aloevera was calculated. All materials except Vaseline showed varied antimicrobial activity against the test bacterias. The zones of inhibition were ranked into 4 inhibition categories based on the proportional distribution of the data. All the 18 bacterial isolates were classified under 2 groups based on Gram positive and Gram negative aerobes. Statistical analysis was carried out to compare the antimicrobial effectiveness between materials tested with each of the bacterial groupings. Aloevera + Sterile Water was found to have superior antimicrobial activity against most of the microorganisms followed by ZOE + Aloevera, calcium hydroxide + Aloevera, ZOE, calcium hydroxide, Metapex in the descending order and Vaseline showed no inhibition.
NASA Astrophysics Data System (ADS)
Pradhan, Sangita R.; Dash, Barsha; Sanjay, Kali; Subbaiah, T.
2013-04-01
The extraction of nickel (II) from a spent hydro-desulfurization catalyst containing 11.6 pct Ni was carried out through sulfuric acid leaching. Variations of parameters such as the concentration of acid, temperature, and time, were studied and optimized. Nickel hydroxide was precipitated from the leach liquor via neutralization with 1 M sodium hydroxide up to pH 12 in three different methods: normal neutralization precipitation, and then neutralization precipitation followed by aging at 353 K (80 °C) for 4 hours and neutralization of the leach liquor with 10 pct (v/v) of 0.1 N sodium lauryl sulfate. X-ray diffraction (XRD) and transmission electron microscopy (TEM) microanalysis shows a difference in crystallinity with the method of precipitation. The nickel hydroxide contains Cu(II), Co(II), Zn(II), and Mn(II) as trace impurities. The discharge capacities of the precipitated nickel hydroxides were 120 mAhg-1, 140.72 mAhg-1, and 145.2 mAhg-1 for aged sample, sample without surfactant, and with surfactant respectively.
Compositions and methods for removing arsenic in water
Gadgil, Ashok Jagannth [El Cerrito, CA
2011-02-22
Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.
PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT
Thompson, S.G.
1958-07-01
A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.
Consumption of Base by Glassware.
ERIC Educational Resources Information Center
Smith, Allen A.
1986-01-01
Discusses effects of Kimax and Pyrex glass on: (1) 0.4956 molar (M) ethanolic potassium hydroxide; (2) 0.1116 M aqueous sodium Hydroxide (NaOH); (3) 0.01081 M aqueous NaOH; (4) 0.001148 M aqueous NaOH; and on (5) distilled water. (JN)
Szabados, Márton; Varga, Gábor; Kónya, Zoltán; Kukovecz, Ákos; Carlson, Stefan; Sipos, Pál; Pálinkó, István
2018-01-01
An ultrasonically-enhanced mechanochemical method was developed to synthesize CaFe-layered double hydroxides (LDHs) with various interlayer anions (CO 3 2- , NO 3 - , ClO 4 - , N 3 - , F - , Cl - , Br - and I - ). The duration of pre-milling and ultrasonic irradiation and the variation of synthesis temperature in the wet chemical step were investigated to obtain the optimal parameters of preparation. The main method to characterize the products was X-ray diffractometry, but infrared and synchrotron-based X-ray absorption spectroscopies as well as thermogravimetric measurements were also used to learn about fine structural details. The synthesis method afforded successful intercalation of the anions, among others the azide anion, a rarely used counter ion providing a system, which enables safe handling the otherwise highly reactive anion. The X-ray absorption spectroscopic measurements revealed that the quality of the interlayered anions could modulate the spatial arrangement of the calcium ions around the iron(III) ions, but only in the second coordination sphere. Copyright © 2017 Elsevier B.V. All rights reserved.
Method and apparatus for regenerating cold traps within liquid-metal systems
McKee, Jr., John M.
1976-01-01
Oxide and hydride impurities of a liquid metal such as sodium are removed from a cold trap by heating to a temperature at which the metal hydroxide is stable in a molten state. The partial pressure of hydrogen within the system is measured to determine if excess hydride or oxide is present. Excess hydride is removed by venting hydrogen gas while excess oxide can be converted to molten hydroxide through the addition of hydrogen. The resulting, molten hydroxide is drained from the trap which is then returned to service at cold trap temperatures within the liquid-metal system.
Treatment of As(V) and As(III) by electrocoagulation using Al and Fe electrode.
Kuan, W H; Hu, C Y; Chiang, M C
2009-01-01
A batch electrocoagulation (EC) process with bipolar electrode and potentiodynamic polarization tests with monopolar systems were investigated as methods to explore the effects of electrode materials and initial solution pH on the As(V) and As(III) removal. The results displayed that the system with Al electrode has higher reaction rate during the initial period from 0 to 25 minutes than that of Fe electrode for alkaline condition. The pH increased with the EC time because the As(V) and As(III) removal by either co-precipitation or adsorption resulted in that the OH positions in Al-hydroxide or Fe-hydroxide were substituted by As(V) and As(III). The pH in Fe electrode system elevate higher than that in Al electrode because the As(V) removal substitutes more OH position in Fe-hydroxide than that in Al-hydroxide. EC system with Fe electrode can successfully remove the As(III) but system with Al electrode cannot because As(III) can strongly bind to the surface of Fe-hydroxide with forming inner-sphere species but weakly adsorb to the Al-hydroxide surface with forming outer-sphere species. The acidic solution can destroy the deposited hydroxide passive film then allow the metallic ions liberate into the solution, therefore, the acidic initial solution can enhance the As(V) and As(III) removal. The over potential calculation and potentiodynamic polarization tests reveal that the Fe electrode systems possess higher over potential and pitting potential than that of Al electrode system due to the fast hydrolysis of and the occurrence of Fe-hydroxide passive film.
Multi-component removal in flue gas by aqua ammonia
Yeh, James T [Bethel Park, PA; Pennline, Henry W [Bethel Park, PA
2007-08-14
A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.
Giannakoudakis, Dimitrios A; Bandosz, Teresa J
2014-12-15
Zinc hydroxide/graphite oxide/AuNPs composites with various levels of complexity were synthesized using an in situ precipitation method. Then they were used as H2S adsorbents in visible light. The materials' surfaces were characterized before and after H2S adsorption by various physical and chemical methods (XRD, FTIR, thermal analysis, potentiometric titration, adsorption of nitrogen and SEM/EDX). Significant differences in surface features and synergistic effects were found depending on the materials' composition. Addition of graphite oxide and the deposition of gold nanoparticles resulted in a marked increase in the adsorption capacity in comparison with that on the zinc hydroxide and zinc hydroxide/AuNP. Addition of AuNPs to zinc hydroxide led to a crystalline ZnO/AuNP composite while the zinc hydroxide/graphite oxide/AuNP composite was amorphous. The ZnOH/GO/AuNPs composite exhibited the greatest H2S adsorption capacity due to the increased number of OH terminal groups and the conductive properties of GO that facilitated the electron transfer and consequently the formation of superoxide ions promoting oxidation of hydrogen sulfide. AuNPs present in the composite increased the conductivity, helped with electron transfer to oxygen, and prevented the fast recombination of the electrons and holes. Copyright © 2014 Elsevier Inc. All rights reserved.
Wagh, Arun S [Orland Park, IL; Antink, Allison L [Bolingbrook, IL
2008-07-22
A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.
Vijaya Saradhi, U V R; Prabhakar, S; Jagadeshwar Reddy, T; Murty, M R V S
2007-07-20
In the present paper, we report an improved ion-pair solid-phase extraction (IP-SPE) method for the analysis of alkylphosphonic acids, namely, methyl, ethyl and propylphosphonic acids, present in the aqueous sample. The aqueous sample was mixed with an ion-pair reagent, phenyltrimethylammonium hydroxide (PTMAH) and passed through activated charcoal SPE cartridge. The retained chemicals in the cartridge were extracted with methanol and analysed by gas chromatography-mass spectrometry (GC-MS) under the electron impact ionization (EI) mode. The analytes were converted to their methyl esters by pyrolytic methylation in the hot GC injection port. The recoveries of alkylphosphonic acids were above 95% and the minimum detection limits were as low as 10 ng/mL. The recovery of the test chemicals was tested with solvents, dichloromethane, n-hexane, ethyl acetate, acetone, acetonitrile and methanol. The chemicals could be efficiently extracted by the hydrophilic solvents. The method did not work at the highly acidic pH (when acidified with dilute HCl) but worked well from pH 4.0 to 14.0. The present method was also tested with other tetra-(methyl, ethyl, propyl and n-butyl)ammonium hydroxides. The test chemicals were not converted to their methyl and ethyl esters with tetramethyl and tetraethylammonium hydroxides, whereas they were converted to their corresponding propyl and n-butyl esters with tetrapropyl and tetra(n-butyl)ammonium hydroxides. The method was also applied to two highly cross-linked polymeric sorbents DSC-6S and Oasis HLB. The recovery of the chemicals on these sorbents was observed to be poor. Methylation using phenyltrimethylammonium hydroxide is non-hazardous and advantageous over methylation using diazomethane. The method was applied to the analysis of aqueous samples given in one of the official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons and all the spiked chemicals were identified as methyl esters.
Alternative alkaline conditioning of amidoxime based adsorbent for uranium extraction from seawater
Das, Sadananda; Liao, Wei -Po; Byers, Maggie Flicker; ...
2015-10-18
Alkaline conditioning of the amidoxime based adsorbents is a significant step in the preparation of the adsorbent for uranium uptake from seawater. The effects of various alkaline conditioning parameters such as the type of alkaline reagent, reaction temperature, and reaction time were investigated with respect to uranium adsorption capacity from simulated seawater (spiked with 8 ppm uranium) and natural seawater (from Sequim Bay, WA). An adsorbent (AF1) was prepared at the Oak Ridge National Laboratory by radiation-induced graft polymerization (RIGP) with acrylonitrile and itaconic acid onto high-surface-area polyethylene fibers. For the AF1 adsorbent, sodium hydroxide emerged as a better reagentmore » for alkaline conditioning over potassium hydroxide, which has typically been used in previous studies, because of higher uranium uptake capacity and lower cost over the other candidate alkaline reagents investigated in this study. Furthermore, the use of sodium hydroxide in place of potassium hydroxide is shown to result in a 21–30% decrease in the cost of uranium recovery.« less
Alternative Alkaline Conditioning of Amidoxime Based Adsorbent for Uranium Extraction from Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.; Liao, W. -P.; Flicker Byers, M.
2016-04-20
Alkaline conditioning of the amidoxime based adsorbents is a significant step in the preparation of the adsorbent for uranium uptake from seawater. The effects of various alkaline conditioning parameters such as the type of alkaline reagent, reaction temperature, and reaction time were investigated with respect to uranium adsorption capacity from simulated seawater (spiked with 8 ppm uranium) and natural seawater (from Sequim Bay, WA). An adsorbent (AF1) was prepared at the Oak Ridge National Laboratory by radiation-induced graft polymerization (RIGP) with acrylonitrile and itaconic acid onto high-surface-area polyethylene fibers. For the AF1 adsorbent, sodium hydroxide emerged as a better reagentmore » for alkaline conditioning over potassium hydroxide, which has typically been used in previous studies, because of higher uranium uptake capacity and lower cost over the other candidate alkaline reagents investigated in this study. Use of sodium hydroxide in place of potassium hydroxide is shown to result in a 21-30% decrease in the cost of uranium recovery.« less
Jiang, Jian; Zhu, Jianhui; Ai, Wei; Wang, Xiuli; Wang, Yanlong; Zou, Chenji; Huang, Wei; Yu, Ting
2015-01-01
Elemental sulfur cathodes for lithium/sulfur cells are still in the stage of intensive research due to their unsatisfactory capacity retention and cyclability. The undesired capacity degradation upon cycling originates from gradual diffusion of lithium polysulfides out of the cathode region. To prevent losses of certain intermediate soluble species and extend lifespan of cells, the effective encapsulation of sulfur plays a critical role. Here we report an applicable way, by using thin-layered nickel-based hydroxide as a feasible and effective encapsulation material. In addition to being a durable physical barrier, such hydroxide thin films can irreversibly react with lithium to generate protective layers that combine good ionic permeability and abundant functional polar/hydrophilic groups, leading to drastic improvements in cell behaviours (almost 100% coulombic efficiency and negligible capacity decay within total 500 cycles). Our present encapsulation strategy and understanding of hydroxide working mechanisms may advance progress on the development of lithium/sulfur cells for practical use. PMID:26470847
Alternative alkaline conditioning of amidoxime based adsorbent for uranium extraction from seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sadananda; Liao, Wei -Po; Byers, Maggie Flicker
Alkaline conditioning of the amidoxime based adsorbents is a significant step in the preparation of the adsorbent for uranium uptake from seawater. The effects of various alkaline conditioning parameters such as the type of alkaline reagent, reaction temperature, and reaction time were investigated with respect to uranium adsorption capacity from simulated seawater (spiked with 8 ppm uranium) and natural seawater (from Sequim Bay, WA). An adsorbent (AF1) was prepared at the Oak Ridge National Laboratory by radiation-induced graft polymerization (RIGP) with acrylonitrile and itaconic acid onto high-surface-area polyethylene fibers. For the AF1 adsorbent, sodium hydroxide emerged as a better reagentmore » for alkaline conditioning over potassium hydroxide, which has typically been used in previous studies, because of higher uranium uptake capacity and lower cost over the other candidate alkaline reagents investigated in this study. Furthermore, the use of sodium hydroxide in place of potassium hydroxide is shown to result in a 21–30% decrease in the cost of uranium recovery.« less
Ramli, Munirah; Hussein, Mohd Zobir; Yusoff, Khatijah
2013-01-01
A new organic-inorganic nanohybrid based on zinc-layered hydroxide intercalated with an anti-inflammatory agent was synthesized through direct reaction of salicylic acid at various concentrations with commercially available zinc oxide. The basal spacing of the pure phase nanohybrid was 15.73 Å, with the salicylate anions arranged in a monolayer form and an angle of 57 degrees between the zinc-layered hydroxide interlayers. Fourier transform infrared study further confirmed intercalation of salicylate into the interlayers of zinc-layered hydroxide. The loading of salicylate in the nanohybrid was estimated to be around 29.66%, and the nanohybrid exhibited the properties of a mesoporous-type material, with greatly enhanced thermal stability of the salicylate compared with its free counterpart. In vitro cytotoxicity assay revealed that free salicylic acid, pure zinc oxide, and the nanohybrid have a mild effect on viability of African green monkey kidney (Vero-3) cells. PMID:23345976
Method of increasing the sulfation capacity of alkaline earth sorbents
Shearer, J.A.; Turner, C.B.; Johnson, I.
1980-03-13
A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.
Method of increasing the sulfation capacity of alkaline earth sorbents
Shearer, John A.; Turner, Clarence B.; Johnson, Irving
1982-01-01
A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.
Bonding by Hydroxide-Catalyzed Hydration and Dehydration
NASA Technical Reports Server (NTRS)
Gwo, Dz-Hung
2008-01-01
A simple, inexpensive method for bonding solid objects exploits hydroxide-catalyzed hydration and dehydration to form silicate-like networks in thin surface and interfacial layers between the objects. The method can be practiced at room temperature or over a wide range of temperatures. The method was developed especially to enable the formation of precise, reliable bonds between precise optical components. The bonds thus formed exhibit the precision and transparency of bonds formed by the conventional optical-contact method and the strength and reliability of high-temperature frit bonds. The method also lends itself to numerous non-optical applications in which there are requirements for precise bonds and/or requirements for bonds, whether precise or imprecise, that can reliably withstand severe environmental conditions. Categories of such non-optical applications include forming composite materials, coating substrates, forming laminate structures, and preparing objects of defined geometry and composition. The method is applicable to materials that either (1) can form silicate-like networks in the sense that they have silicate-like molecular structures that are extensible into silicate-like networks or (2) can be chemically linked to silicate-like networks by means of hydroxide-catalyzed hydration and dehydration. When hydrated, a material of either type features surface hydroxyl (-OH) groups. In this method, a silicate-like network that bonds two substrates can be formed either by a bonding material alone or by the bonding material together with material from either or both of the substrates. Typically, an aqueous hydroxide bonding solution is dispensed and allowed to flow between the mating surfaces by capillary action. If the surface figures of the substrates do not match precisely, bonding could be improved by including a filling material in the bonding solution. Preferably, the filling material should include at least one ingredient that can be hydrated to have exposed hydroxyl groups and that can be chemically linked, by hydroxide catalysis, to a silicate-like network. The silicate-like network could be generated in situ from the filling material and/or substrate material, or could be originally present in the bonding material.
NASA Astrophysics Data System (ADS)
Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei
2017-05-01
Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.
Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes
NASA Technical Reports Server (NTRS)
Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha
2012-01-01
Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.
Biotoxicity of commonly used root canal sealers: A meta-analysis.
Kaur, Amandeep; Shah, Naseem; Logani, Ajay; Mishra, Navin
2015-01-01
The main objective of a root canal sealer is to provide a fluid tight seal. The purpose of this systematic meta-analysis was to determine the relative toxicity of commonly used root canal sealers like zinc oxide eugenol, calcium hydroxide, and resin-based sealers. An online search was conducted in peer-reviewed journals listed in PubMed, Cochrane, EBSCO, and IndMed databases between 2000 and 2012). Statistical analysis was carried out by using analysis of variance (ANOVA) followed by post-hoc comparison by Bonferroni method. The comparison between toxicity at 24 h and between 3 and 7 days was done by using paired t-test for each sealer. At 24 h, the relative biotoxicity of the three sealers reported was insignificant (P- value 0.29), but the difference in toxicity was found significant (P < 0.001) after 3 days. Calcium hydroxide sealer and zinc oxide eugenol were found to be significantly biotoxic as compared to resin-based sealers after 3 days.
NASA Astrophysics Data System (ADS)
Albayati, Talib M.; Doyle, Aidan M.
2015-02-01
Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.
NASA Astrophysics Data System (ADS)
Ding, Shou-Nian; Holzinger, Michael; Mousty, Christine; Cosnier, Serge
Single-walled carbon nanotubes (SWCNT) were combined with layered double hydroxides (LDH) intercalated with 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonate) diammonium salt [ZnCr-ABTS] to entrap and electrically connect laccase enzyme. The resulting laccase electrodes exhibited an electro-enzymatic activity for O 2 reduction. To improve this electrocatalytic activity, varying SWCNT quantities and loading methods were tested to optimize the configuration of the laccase electrodes. Furthermore, the resulting bioelectrode was successfully used as a biocathode for the elaboration of a membrane-less glucose/air biofuel cell. In 0.1 M phosphate buffer (PBS) of pH 6.0, containing glucose (5 mM) under ambient conditions, the assembled biofuel cell yielded a maximum power density of 18 μW cm -2 at a cell voltage of 0.3 V whereas this power decreased to 8.3 μW cm -2 for a biofuel cell based on the identical biocathode setup without SWCNT.
Miao, Yuqing; Ouyang, Lei; Zhou, Shilin; Xu, Lina; Yang, Zhuoyuan; Xiao, Mingshu; Ouyang, Ruizhuo
2014-03-15
The electrocatalysis toward small molecules, especially small organic compounds, is of importance in a variety of areas. Nickel based materials such as nickel, its oxides, hydroxides as well as oxyhydroxides exhibit excellent electrocatalysis performances toward many small molecules, which are widely used for fuel cells, energy storage, organic synthesis, wastewater treatment, and electrochemical sensors for pharmaceutical, medical, food or environmental analysis. Their electrocatalytic mechanisms are proposed from three aspects such as Ni(OH)2/NiOOH mediated electrolysis, direct electrocatalysis of Ni(OH)2 or NiOOH. Under exposure to air or aqueous solution, two distinct layers form on the Ni surface with a Ni hydroxide layer at the air-oxide interface and an oxide layer between the metal substrate and the outer hydroxide layer. The transformation from nickel or its oxides to hydroxides or oxyhydroxides could be further speeded up in the strong alkaline solution under the cyclic scanning at relatively high positive potential. The redox transition between Ni(OH)2 and NiOOH is also contributed to the electrocatalytic oxidation of Ni and its oxides toward small molecules in alkaline media. In addition, nickel based materials or nanomaterials, their preparations and applications are also overviewed here. © 2013 Elsevier B.V. All rights reserved.
Fly ash/Kaolin based geopolymer green concretes and their mechanical properties
Okoye, F.N.; Durgaprasad, J.; Singh, N.B.
2015-01-01
Geopolymer concrete mixes were cast using fly ash, kaolin, sodium hydroxide, potassium hydroxide, sodium silicate and aggregates. Portland cement concrete (M30) was used as a reference sample. The effect of silica fume, temperature (40 °C, 60 °C, 80 °C, 100 °C and 120 °C), sodium and potassium hydroxides and different superplasticizers on the compressive strength are reported [1]. Maximum strength was found at 100 °C and 14 M alkali solution [1]. PMID:26693505
Fly ash/Kaolin based geopolymer green concretes and their mechanical properties.
Okoye, F N; Durgaprasad, J; Singh, N B
2015-12-01
Geopolymer concrete mixes were cast using fly ash, kaolin, sodium hydroxide, potassium hydroxide, sodium silicate and aggregates. Portland cement concrete (M30) was used as a reference sample. The effect of silica fume, temperature (40 °C, 60 °C, 80 °C, 100 °C and 120 °C), sodium and potassium hydroxides and different superplasticizers on the compressive strength are reported [1]. Maximum strength was found at 100 °C and 14 M alkali solution [1].
Methods of synthesizing hydroxyapatite powders and bulk materials
Luo, Ping
1999-01-12
Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.
Methods of synthesizing hydroxyapatite powders and bulk materials
Luo, P.
1999-01-12
Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 {micro}m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogeneous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided. 26 figs.
Shi, Wenying; Fu, Yi; Li, Zhixiong; Wei, Min
2015-01-14
Multiple and configurable fluorescence logic gates were fabricated via self-assembly of layered double hydroxides and various chromophores. These logic gates were operated by observation of different emissions with the same excitation wavelength, which achieve YES, NOT, AND, INH and INHIBIT logic operations, respectively.
Carbon Dioxide Absorbers: An Engaging Experiment for the General Chemistry Laboratory
ERIC Educational Resources Information Center
Ticich, Thomas M.
2011-01-01
A simple and direct method for measuring the absorption of carbon dioxide by two different substances is described. Lithium hydroxide has been used for decades to remove the gas from enclosed living spaces, such as spacecraft and submarines. The ratio of the mass of carbon dioxide absorbed to the mass of lithium hydroxide used obtained from this…
Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition
NASA Astrophysics Data System (ADS)
Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.
2016-04-01
In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.
Yin, Huajie; Zhao, Shenlong; Zhao, Kun; Muqsit, Abdul; Tang, Hongjie; Chang, Lin; Zhao, Huijun; Gao, Yan; Tang, Zhiyong
2015-03-02
Design and synthesis of effective electrocatalysts for hydrogen evolution reaction in alkaline environments is critical to reduce energy losses in alkaline water electrolysis. Here we report a hybrid nanomaterial comprising of one-dimensional ultrathin platinum nanowires grown on two-dimensional single-layered nickel hydroxide. Judicious surface chemistry to generate the fully exfoliated nickel hydroxide single layers is explored to be the key for controllable growth of ultrathin platinum nanowires with diameters of about 1.8 nm. Impressively, this hybrid nanomaterial exhibits superior electrocatalytic activity for hydrogen evolution reaction in alkaline solution, which outperforms currently reported catalysts, and the obviously improved catalytic stability. We believe that this work may lead towards the development of single-layered metal hydroxide-based hybrid materials for applications in catalysis and energy conversion.
Nanostructures based on alumina hydroxides inhibit tumor growth
NASA Astrophysics Data System (ADS)
Fomenko, A. N.; Korovin, M. S.
2017-09-01
Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less research attention has been payed to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with AlOOH nanoparticles.
NASA Astrophysics Data System (ADS)
Tsukanov, Alexey A.; Psakhie, Sergey G.
2016-08-01
Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.
Rapid method to determine actinides and 89/90Sr in limestone and marble samples
Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; ...
2016-04-12
A new method for the determination of actinides and radiostrontium in limestone and marble samples has been developed that utilizes a rapid sodium hydroxide fusion to digest the sample. Following rapid pre-concentration steps to remove sample matrix interferences, the actinides and 89/90Sr are separated using extraction chromatographic resins and measured radiometrically. The advantages of sodium hydroxide fusion versus other fusion techniques will be discussed. Lastly, this approach has a sample preparation time for limestone and marble samples of <4 hours.
Aqueous Ammonia or Ammonium Hydroxide? Identifying a Base as Strong or Weak
ERIC Educational Resources Information Center
Sanger, Michael J.; Danner, Matthew
2010-01-01
When grocery stores sell solutions of ammonia, they are labeled "ammonia"; however, when the same solution is purchased from chemical supply stores, they are labeled "ammonium hydroxide". The goal of this experiment is for students to determine which name is more appropriate. In this experiment, students use several different experimental methods…
Periodicity in the Acid-Base Behavior of Oxides and Hydroxides.
ERIC Educational Resources Information Center
Rich, Ronald L.
1985-01-01
Aqueous solubilities of many important hydrous oxides and hydroxides are displayed, for the various elements, as functions primarily of pH. These graphs are then arranged in groups to facilitate studies of the effects of oxidation state, electron structure, and position in the periodic table, along with size and coordination number. (JN)
The role of SO{sub 4}{sup 2−} surface distribution in arsenic removal by iron oxy-hydroxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tresintsi, S.; Simeonidis, K., E-mail: ksime@physics.auth.gr; Department of Mechanical Engineering, University of Thessaly, 38334 Volos
2014-05-01
This study investigates the contribution of chemisorbed SO{sub 4}{sup 2−} in improving arsenic removal properties of iron oxy-hydroxides through an ion-exchange mechanism. An analytical methodology was developed for the accurate quantification of sulfate ion (SO{sub 4}{sup 2−}) distribution onto the surface and structural compartments of iron oxy-hydroxides synthesized by FeSO{sub 4} precipitation. The procedure is based on the sequential determination of SO{sub 4}{sup 2−} presence in the diffuse and Stern layers, and the structure of these materials as defined by the sulfate-rich environments during the reaction and the variation in acidity (pH 3–12). Physically sorbed SO{sub 4}{sup 2−}, extracted inmore » distilled water, and physically/chemically adsorbed ions on the oxy-hydroxide's surface leached by a 5 mM NaOH solution, were determined using ion chromatography. Total sulfate content was gravimetrically measured by precipitation as BaSO{sub 4}. To validate the suggested method, results were verified by X-ray photoelectron and Fourier-transformed infrared spectroscopy. Results showed that low precipitation pH-values favor the incorporation of sulfate ions into the structure and the inner double layer, while under alkaline conditions ions shift to the diffuse layer. - Graphical abstract: An analytical methodology for the accurate quantification of sulfate ions (SO{sub 4}{sup 2−}) distribution onto the diffuse layer, the Stern layer and the structure of iron oxy-hydroxides used as arsenic removal agents. - Highlights: • Quantification of sulfate ions presence in FeOOH surface compartments. • Preparation pH defines the distribution of sulfates. • XPS and FTIR verify the presence of SO{sub 4}{sup 2−} in the structure, the Stern layer the diffuse layer of FeOOH. • Chemically adsorbed sulfates control the arsenic removal efficiency of iron oxyhydroxides.« less
Influence of calcium hydroxide on the post-treatment pain in Endodontics: A systematic review
Anjaneyulu, K.; Nivedhitha, Malli Sureshbabu
2014-01-01
Introduction: Pain of endodontic origin has been a major concern to the patients and the clinicians for many years. Post-operative pain is associated with inflammation in the periradicular tissues caused by irritants egressing from root canal during treatment. It has been suggested that calcium hydroxide intra-canal medicament has pain-preventive properties because of its anti-microbial or tissue altering effects. Some dispute this and reasoned that calcium hydroxide may initiate or increase pain by inducing or increasing inflammation. Objective: To evaluate the effectiveness of calcium hydroxide in reducing the post-treatment pain when used as an intra-canal medicament Materials and Methods: The following databases were searched: PubMed CENTRAL (until July 2013), MEDLINE, and Cochrane Database of Systematic Reviews. Bibliographies of clinical studies and reviews identified in the electronic search were analyzed for studies published outside the electronically searched journals. The primary outcome measure was to evaluate the post-treatment pain reduction when calcium hydroxide is used as an intra-canal medicament in patients undergoing root canal therapy. Results: The reviews found some clinical evidence that calcium hydroxide is not very effective in reducing post-treatment pain when it is used alone, but its effectiveness can be increased when used in combination with other medicaments like chlorhexidine and camphorated monochlorophenol (CMCP). Conclusion: Even though calcium hydroxide is one of the most widely used intra-canal medicament due to its anti-microbial properties, there is no clear evidence of its effect on the post-treatment pain after the chemo-mechanical root canal preparation. PMID:24944439
Camargo, Caio Lamunier de Abreu; Belda, Walter; Fagundes, Luiz Jorge; Romiti, Ricardo
2014-01-01
BACKGROUND Genital warts are caused by human papillomavirus infection and represent one of the most common sexually transmitted diseases. Many infections are transient but the virus may recur, persist, or become latent. To date, there is no effective antiviral treatment to eliminate HPV infection and most therapies are aimed at the destruction of visible lesions. Potassium hydroxide is a strong alkali that has been shown to be safe and effective for the treatment of genital warts and molluscum contagiosum. Cryotherapy is considered one of the most established treatments for genital warts. No comparative trials have been reported to date on the use of potassium hydroxide for genital warts. OBJECTIVE A prospective, open-label, randomized clinical trial was conducted to compare topical potassium hydroxide versus cryotherapy in the treatment of genital warts affecting immunocompetent, sexually active men. METHODS Over a period of 10 months, 48 patients were enrolled. They were randomly divided into two groups and selected on an alternative basis for either potassium hydroxide therapy or cryotherapy. While response to therapy did not differ substantially between both treatment modalities, side effects such as local pain and post-treatment hypopigmentation were considerably more prevalent in the groups treated using cryotherapy. RESULT In our study, potassium hydroxide therapy proved to be at least as effective as cryotherapy and offered the benefit of a better safety profile. CONCLUSION Topical 5% potassium hydroxide presents an effective, safe, and low-cost treatment modality for genital warts in men and should be included in the spectrum of therapies for genital warts. PMID:24770498
Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine
Barahuie, Farahnaz; Hussein, Mohd Zobir; Fakurazi, Sharida; Zainal, Zulkarnain
2014-01-01
Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life. PMID:24802876
NASA Astrophysics Data System (ADS)
Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping
2017-03-01
Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co0.54Fe0.46OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co0.54Fe0.46OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.
Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping
2017-03-08
Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co 0.54 Fe 0.46 OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co 0.54 Fe 0.46 OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.
Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation
Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.
1990-04-10
An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.
NASA Astrophysics Data System (ADS)
Kwiatkowski, Mirosław
2017-12-01
The paper presents the results of the research on the application of the new analytical models of multilayer adsorption on heterogeneous surfaces with the unique fast multivariant identification procedure, together called LBET method, as a tool for analysing the microporous structure of the activated carbon fibres obtained from polyacrylonitrile by chemical activation using potassium and sodium hydroxides. The novel LBET method was employed particularly to evaluate the impact of the used activator and the hydroxide to polyacrylonitrile ratio on the obtained microporous structure of the activated carbon fibres.
NASA Astrophysics Data System (ADS)
Zhu, Yatong; Wang, Dali; Yang, Xiaoyu; Liu, Sha; Liu, Dong; Liu, Jie; Xiao, Hongdi; Hao, Xiaotao; Liu, Jianqiang
2017-10-01
In this paper, the anode materials for dye-sensitized solar cell (DSSC) were prepared by a facile calcination method using the ZnAl-layered double hydroxide (LDH) as a precursor. The ZnAl-LDHs with different molar ratios (Zn:Al = 2, 4, 6, 8) were prepared by the urea method and the mixed metal oxides (MMO) were prepared by calcining the LDHs at 500 °C. A series of cells were assembled by the corresponding MMOs and different dyes (N3 and N719). The basic parameters were investigated by X-ray diffraction, scanning electron microscope, thermogravimetric and differential thermal analysis, nitrogen sorption analysis and UV-Vis absorption spectrum. The photovoltaic performance of DSSCs was measured by electrochemical method. It could be seen that ZnAl molar ratios and different dyes had great influence on the efficiency of DSSC. The efficiency improved explicitly with increasing ZnAl molar ratio and the DSSC made of N3 showed better efficiency than that of N719. The best efficiency of N3 conditions reached 0.55% when the ratio of ZnAl-LDH precursor was 8:1.
Abdolmohammad-Zadeh, Hossein; Tavarid, Keyvan; Talleb, Zeynab
2012-01-01
Nanostructured nickel-aluminum-zirconium ternary layered double hydroxide was successfully applied as a solid-phase extraction sorbent for the separation and pre-concentration of trace levels of iodate in food, environmental and biological samples. An indirect method was used for monitoring of the extracted iodate ions. The method is based on the reaction of the iodate with iodide in acidic solution to produce iodine, which can be spectrophotometrically monitored at 352 nm. The absorbance is directly proportional to the concentration of iodate in the sample. The effect of several parameters such as pH, sample flow rate, amount of nanosorbent, elution conditions, sample volume, and coexisting ions on the recovery was investigated. In the optimum experimental conditions, the limit of detection (3s) and enrichment factor were 0.12 μg mL−1 and 20, respectively. The calibration graph using the preconcentration system was linear in the range of 0.2–2.8 μg mL−1 with a correlation coefficient of 0.998. In order to validate the presented method, a certified reference material, NIST SRM 1549, was also analyzed. PMID:22619590
Method for hot pressing beryllium oxide articles
Ballard, Ambrose H.; Godfrey, Jr., Thomas G.; Mowery, Erb H.
1988-01-01
The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.
Method for the safe disposal of alkali metal
Johnson, Terry R.
1977-01-01
Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.
Hinsin, Duangduean; Pdungsap, Laddawan; Shiowatana, Juwadee
2002-12-06
A continuous-flow extraction system originally developed for sequential extraction was applied to study elemental association of a synthetic metal-doped amorphous iron hydroxide phase. The homogeneity and metal association of the precipitates were evaluated by gradual leaching using the system. Leachate was collected in fractions for determination of elemental concentrations. The result obtained as extractograms indicated that the doped metals were adsorbed more on the outermost surface rather than homogeneously distributed in the precipitates. The continuous-flow extraction method was also used for effective removal of surface adsorbed metals to obtain a homogeneous metal-doped synthetic iron hydroxide by a sequential extraction using acetic acid and small volume of hydroxylamine hydrochloride solution. The system not only ensures complete washing, but the extent of metal immobilization in the synthetic iron hydroxide could be determined with high accuracy from the extractograms. The initial metal/iron mole ratio (M/Fe) in solution affected the M/Fe mole ratio in homogeneous doped iron hydroxide phase. The M/Fe mole ratio of metal incorporation was approximately 0.01-0.02 and 0.03-0.06, for initial solution M/Fe mole ratio of 0.025 and 0.100, respectively.
NASA Astrophysics Data System (ADS)
Jahangiri, Soran; Mosey, Nicholas J.
2018-01-01
Nickel hydroxide is a material composed of two-dimensional layers that can be rolled up to form cylindrical nanotubes belonging to a class of inorganic metal hydroxide nanotubes that are candidates for applications in catalysis, energy storage, and microelectronics. The stabilities and other properties of this class of inorganic nanotubes have not yet been investigated in detail. The present study uses self-consistent-charge density-functional tight-binding calculations to examine the stabilities, mechanical properties, and electronic properties of nickel hydroxide nanotubes along with the energetics associated with the adsorption of water by these systems. The tight-binding model was parametrized for this system based on the results of first-principles calculations. The stabilities of the nanotubes were examined by calculating strain energies and performing molecular dynamics simulations. The results indicate that single-walled nickel hydroxide nanotubes are stable at room temperature, which is consistent with experimental investigations. The nanotubes possess size-dependent mechanical properties that are similar in magnitude to those of other inorganic nanotubes. The electronic properties of the nanotubes were also found to be size-dependent and small nickel oxyhydroxide nanotubes are predicted to be semiconductors. Despite this size-dependence, both the mechanical and electronic properties were found to be almost independent of the helical structure of the nanotubes. The calculations also show that water molecules have higher adsorption energies when binding to the interior of the nickel hydroxide nanotubes when compared to adsorption in nanotubes formed from other two-dimensional materials such as graphene. The increased adsorption energy is due to the hydrophilic nature of nickel hydroxide. Due to the broad applications of nickel hydroxide, the nanotubes investigated here are also expected to be used in catalysis, electronics, and clean energy production.
NASA Astrophysics Data System (ADS)
Tsukanov, A. A.; Psakhie, S. G.
2016-01-01
The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.
Aluminum Hydroxide and Magnesium Hydroxide
Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ao, Yanhui, E-mail: andyao@hhu.edu.cn; Wang, Dandan; Wang, Peifang
Highlights: • 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite was prepared. • The nanocomposites exhibited high photocatalytic activities on different organic pollutants. • The mechanism of the enhanced activity were investigated. - Abstract: A facile anion-exchange precipitation method was employed to synthesize 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite photocatalyst. Results showed that Ag{sub 2}CO{sub 3} nanoparticles dispersed uniformly on the petals of the flower-like Mg-Al LDH. The obtained nanocomposites exhibited high photocatalytic activities on different organic pollutants (cationic and anionic dyes, phenol) under visible light illumination. The high photocatalytic activity can be ascribed to themore » special structure which accomplishes the wide-distribution of Ag{sub 2}CO{sub 3} nanoparticles on the surfaces of the 3D flower-like nanocomposites. Therefore, it can provide much more active sites for the degradation of organic pollutant. Then the photocatalytic mechanism was also verified by reactive species trapping experiments in detail. The work would pave a facile way to prepare LDHs based hierarchical photocatalysts with high activity for the degradation of wide range organic pollutants under visible light irradiation.« less
Grunewald, G L; Pleiss, M A; Gatchell, C L; Pazhenchevsky, R; Rafferty, M F
1984-06-01
The use of gas chromatography (GC) for the determination of 0.1 M sodium hydroxide-octanol partition coefficients (log P) for a wide variety of ethylamines is demonstrated. The conventional shake-flask procedure (SFP) is utilized, with the addition of an internal reference, which is cleanly separated from the desired solute and solvents on a 10% Apiezon L, 2% potassium hydroxide on 80-100 mesh Chromosorb W AW column. The partitioned solute is extracted from the aqueous phase with chloroform and analyzed by GC. The method provides an accurate and highly reproducible means of determining log P values, as demonstrated by the low relative standard errors. The technique is both rapid and extremely versatile. The use of the internal standard method of analysis introduces consistency, since variables like the exact weight of solute are not necessary (unlike the traditional SFP) and the volume of sample injected is not critical. The technique is readily accessible to microgram quantities of solutes, making it ideal for a wide range of volatile, amine-bearing compounds.
Aerosol synthesis of nano and micro-scale zero valent metal particles from oxide precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Jonathan; Luhrs, Claudia; Lesman, Zayd
2010-01-01
In this work a novel aerosol method, derived form the batch Reduction/Expansion Synthesis (RES) method, for production of nano / micro-scale metal particles from oxides and hydroxides is presented. In the Aerosol-RES (A-RES) method, an aerosol, consisting of a physical mixture of urea and metal oxide or hydroxides, is passed through a heated oven (1000 C) with a residence time of the order of 1 second, producing pure (zero valent) metal particles. It appears that the process is flexible regarding metal or alloy identity, allows control of particle size and can be readily scaled to very large throughput. Current workmore » is focused on creating nanoparticles of metal and metal alloy using this method. Although this is primarily a report on observations, some key elements of the chemistry are clear. In particular, the reducing species produced by urea decomposition are the primary agents responsible for reduction of oxides and hydroxides to metal. It is also likely that the rapid expansion that takes place when solid/liquid urea decomposes to form gas species influences the final morphology of the particles.« less
Removal of Zn or Cd and cyanide from cyanide electroplating wastes
Moore, Fletcher L.
1977-05-31
A method is described for the efficient stripping of stable complexes of a selected quaternary amine and a cyanide of Zn or Cd. An alkali metal hydroxide solution such as NaOH or KOH will quantitatively strip a pregnant extract of the quaternary ammonium complex of its metal and cyanide content and regenerate a quaternary ammonium hydroxide salt which can be used for extracting further metal cyanide values.
Recycling positive-electrode material of a lithium-ion battery
Sloop, Steven E.
2017-11-21
Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.
NASA Astrophysics Data System (ADS)
Romisuhani, A.; AlBakri, M. M.; Kamarudin, H.; Andrei, S. V.
2017-11-01
The influence of sintering method on kaolin-based geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene as binder were studied. Geopolymer were formed at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. 12 M of sodium hydroxide solution were mixed with sodium silicate at a ratio of 0.24 to form alkaline activator. Powder metallurgy technique were used in order to produce kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene. The samples were heated at temperature of 1200 °C with two different sintering method which are conventional method and two-step sintering method. The strength and density were tested.
Chemical treatment of wastewater from flue gas desulphurisation
NASA Astrophysics Data System (ADS)
Pasiecznik, Iwona; Szczepaniak, Włodzimierz
2017-11-01
The article presents results of laboratory tests of removing boron and arsenium from non-ideal solutions using double-layered magnesium/aluminium hydroxides (Mg/Al Double-Layered Hydroxide - DLH) produced with nitrate-chloride method. In research, wastewater from an installation for flue gas desulfurization was examined. Double-layered hydroxides are perfect absorbents for anionic compounds. The research proved high effectiveness of preparation with reference to arsenium, as well as confirmed the effect of presence of sulfatic and arsenate ions on the effectiveness of boron removal. On the basis of research on absorption kinetics a theoretical dose of DLH/NO3-Cl/M preparation was calculated and compared with a dose that ensures emimination of boron below the limit standarized by the national regulations. Application of double-layered magnesium/aluminium hydroxides for boron elimination from industrial wastewater requires significantly higher doses of preparation than those calculated in model investigations. It is due to the priority of removal of multivalent ions, such as sulfatic, arsenate or phosphate ions, by DLH/NO3-Cl/M.
Electrochemical Formation of Multilayer SnO2-Sb x O y Coating in Complex Electrolyte
NASA Astrophysics Data System (ADS)
Maizelis, Antonina; Bairachniy, Boris
2017-02-01
The multilayer antimony-doped tin dioxide coating was obtained by cathodic deposition of multilayer metal-hydroxide coating with near 100-nm thickness layers on the alloy underlayer accompanied by the anodic oxidation of this coating. The potential regions of deposition of tin, antimony, tin-antimony alloy, and mixture of this metals and their hydroxides in the pyrophosphate-tartrate electrolyte were revealed by the cyclic voltammetric method. The possibility of oxidation of cathodic deposit consisting of tin and Sn(II) hydroxide compounds to the hydrated tin dioxide in the same electrolyte was demonstrated. The operations of alloy underlayer deposition and oxidation of multilayer metal-hydroxide coating were proposed to carry out in the diluted pyrophosphate-tartrate electrolyte, similar to the main electrolyte. The accelerated tests showed higher service life of the titanium electrode with multilayer antimony-doped tin dioxide coating compared to both electrode with single-layer electrodeposited coating and the electrode with the coating obtained using prolonged heat treatment step.
Electrochemical Formation of Multilayer SnO2-Sb x O y Coating in Complex Electrolyte.
Maizelis, Antonina; Bairachniy, Boris
2017-12-01
The multilayer antimony-doped tin dioxide coating was obtained by cathodic deposition of multilayer metal-hydroxide coating with near 100-nm thickness layers on the alloy underlayer accompanied by the anodic oxidation of this coating. The potential regions of deposition of tin, antimony, tin-antimony alloy, and mixture of this metals and their hydroxides in the pyrophosphate-tartrate electrolyte were revealed by the cyclic voltammetric method. The possibility of oxidation of cathodic deposit consisting of tin and Sn(II) hydroxide compounds to the hydrated tin dioxide in the same electrolyte was demonstrated.The operations of alloy underlayer deposition and oxidation of multilayer metal-hydroxide coating were proposed to carry out in the diluted pyrophosphate-tartrate electrolyte, similar to the main electrolyte.The accelerated tests showed higher service life of the titanium electrode with multilayer antimony-doped tin dioxide coating compared to both electrode with single-layer electrodeposited coating and the electrode with the coating obtained using prolonged heat treatment step.
Saifullah, Bullo; El Zowalaty, Mohamed E; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin M; Hussein, Mohd Zobir
2014-01-01
The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis. PMID:25114509
Alkalization of tumor microenvironment for cancer treatment
NASA Astrophysics Data System (ADS)
Lozhkomoev, A. S.
2017-09-01
The paper is devoted to describing how boehmite, magnesium hydroxide and calcium hydroxide nanoparticles in the form of nanoplates with a size of 20-200 nm having cytotoxic properties to tumor cells were synthesized. It is shown that calcium hydroxide has the highest cytotoxicity, while boehmite has the lowest one. The characterization of the synthesized nanostructures demonstrated that the major antitumor factors probably are the acid-base surface properties. It is established that calcium hydroxide raises the pH of the cell culture medium up to 12.8, magnesium hydroxide—up to 10.8, boehmite—up to 8.6. At the same time, synthesized nanoplates are less toxic to the normal cell lines. The approach presented can be used for synthesis of materials that are able to change tumor cells microenvironment acidity in the defined range for anticancer therapy, and also potentiating standard chemotherapy drugs effect due to extracellular acidosis decreasing.
Kazemipoor, Maryam; Tabrizizadeh, Mehdi; Dastani, Milad; Hakimian, Roqayeh
2012-01-01
Aim: To compare pH changes at the cervical, middle and apical surfaces of root dentin in retreated and non- retreated teeth, after canal obturation with two different calcium hydroxide pastes. Materials and Methods: After instrumentation of 55 extracted teeth, three cavities with 0.75 mm depth and 1.5 mm in diameter were drilled at buccal root surface. The teeth were randomly divided into five groups. Canals in the first two groups were filled with either mixture of calcium hydroxide and saline solution and calcium hydroxide and 2% chlorhexidine (CHX). In the third and fourth groups canals were first obturated with gutta-percha and AH26 sealer, and then materials were removed. After 2 days canals were filled with two different calcium hydroxide pastes similar to the first and the second groups. The pH was measured in the prepared cavities at 1, 3, 7 and 14 days. Results: In the non-retreated groups, pH at the surface of the roots was significantly higher in comparison to the retreated ones (P value < 0.001). pH values were significantly higher in the non-retreated teeth filling with calcium hydroxide and saline solution (P value < 0.001). Conclusion: Regarding to the little pH changes at the surface of dentin in retreated teeth, the hydroxyl ions cannot penetrate into the dentinal tubules. Thus, to achieve higher pH at the root surface in retreated teeth, it is clinically advisable to remove more dentin from the inner walls and to use normal saline as a vehicle for calcium hydroxide rather than acidic pH materials. PMID:23112482
NASA Astrophysics Data System (ADS)
Ermakov, A. I.; Mashutin, V. Y.; Vishnjakov, A. V.
With the help of the results of semiempirical (parametric method 3) and ab initio (second-order Møller-Plesset [MP2] unrestricted Hartree-Fock [UHF] 6-31G**, unrestricted density functional theory [UDFT] 6-31G** Becke's three-parameter exchange functional and the gradient-corrected functional of Lee, Yang, and Paar [B3LYP] and UDFT LANL2DZ B3LYP) quantum-chemical calculations has been studied the complexation CO and NO with molecular hydroxide of copper(I). The influence of charge defects has been simulated by the calculations of anionic, neutral, and cationic systems. It is shown that CO and NO are mainly coordinated by nonoxygen atom on an atom of copper(I) hydroxide as one- and two-center forms. These forms are suitable for appearance of prereactionary complexes of catalytic oxidation CO by molecular oxygen and decomposition NO into atoms of nitrogen and oxygen. The corresponding prereactionary complexes for systems with participation of copper(II) hydroxide and copper(III) hydroxide are not revealed. The calculations predict inhibiting impact of copper(II) and copper(III) of the observed reactions. Computed stability of complexes CO and NO with copper(I) hydroxide and activation energy of catalytic conversion of monooxides essentially depend on an excessive charge of the system. Introduction of electron-donating additives into copper(I) hydroxide promotes rise of catalytic activity of copper(I) compound.
PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS
Sutton, J.B.
1958-02-18
This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barahuie, Farahnaz; Hussein, Mohd Zobir, E-mail: mzobir@putra.upm.edu.my; Arulselvan, Palanisamy
A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the propertiesmore » of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites with slightly different physico-chemical properties. • Chlorogenate-zinc aluminium layered double hydroxide nanohybrids have the potential to be used as a controlled release formulation. • The thermal stability of chlorogenic acid is markedly enhanced upon the intercalation process. • The inhibition of cancer cell growth is higher for nanohybrids than for free chlorogenic acid.« less
NASA Astrophysics Data System (ADS)
Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min
2018-04-01
The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.
Method for producing nuclear fuel
Haas, Paul A.
1983-01-01
Nuclear fuel is made by contacting an aqueous solution containing an actinide salt with an aqueous solution containing ammonium hydroxide, ammonium oxalate, or oxalic acid in an amount that will react with a fraction of the actinide salt to form a precipitate consisting of the hydroxide or oxalate of the actinide. A slurry consisting of the precipitate and solution containing the unreacted actinide salt is formed into drops which are gelled, calcined, and pressed to form pellets.
Menakaya, Ifeoma N; Adegbulugbe, Ilemobade C; Oderinu, Olabisi H; Shaba, Olufemi P
2015-08-01
To compare the efficacy of calcium hydroxide powder mixed with 0.2% chlorhexidine digluconate or mixed with normal saline as intracanal medicament in the treatment of apical periodontitis. Subjects were 55 in number aged 17 to 60 years. Two-visit conventional root canal treatment was performed on 70 teeth. The teeth were divided by randomization (balloting) into two groups: control group and experimental group, each with 35 teeth treated with calcium hydroxide mixed with normal saline or with 0.2% chlorhexidine digluconate as intracanal medicament respectively. All treated teeth were evaluated clinically and radiographically for signs and symptom of periapical infection at specified periods postoperatively. Overall efficacy of medicament was rated based on quality guidelines for endodontic treatment by the European Society of Endodontology 2006. A postoperative favorable outcome of 97.1% in the control group and 94.3% in the experimental group was observed at 6-month review. This difference was not statistically significant (p > 0.05). The use of normal saline or 0.2% chlorhexidine digluconate to mix calcium hydroxide used as intracanal medicament during endodontic treatment resulted in high postoperative favorable outcomes. Efficacy of 0.2% chlorhexidine digluconate as a vehicle for mixing calcium hydroxide as an intracanal medicament in the treatment of apical periodontitis is comparable to the efficacy of calcium hydroxide mixed with normal saline.
Adewoyin, Malik; Mohsin, Sumaiyah Megat Nabil; Arulselvan, Palanisamy; Hussein, Mohd Zobir; Fakurazi, Sharida
2015-01-01
Background Cinnamic acid (CA) is a phytochemical originally derived from Cinnamomum cassia, a plant with numerous pharmacological properties. The intercalation of CA with a nanocarrier, zinc layered hydroxide, produces cinnamate-zinc layered hydroxide (ZCA), which has been previously characterized. Intercalation is expected to improve the solubility and cell specificity of CA. The nanocarrier will also protect CA from degradation and sustain its release. The aim of this study was to assess the effect of intercalation on the anti-inflammatory capacity of CA. Methods In this study, the anti-inflammatory activity of ZCA was investigated and compared with that of nonintercalated CA. Evaluations were based on the capacity of ZCA and CA to modulate the release of nitric oxide, prostaglandin E2, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 in lipopolysaccharide-induced RAW 264.7 cells. Additionally, the expression of proinflammatory enzymes, ie, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B (NF-κB), were examined. Results Although both ZCA and CA downregulated nitric oxide, prostaglandin E2, tumor necrosis factor alpha, IL-1β, and IL-6, ZCA clearly displayed better activity. Similarly, expression of cyclooxygenase-2 and inducible nitric oxide synthase were inhibited in samples treated with ZCA and CA. The two compounds effectively inactivated the transcription factor NF-κB, but the anti-inflammatory cytokine, IL-10, was significantly upregulated by ZCA only. Conclusion The present findings suggest that ZCA possesses better anti-inflammatory potential than CA, while zinc layered hydroxide had little or no effect, and these results were comparable with the positive control. PMID:25995619
NASA Technical Reports Server (NTRS)
Bode, H.; Dennstedt, W.
1981-01-01
Electrochemical experiments performed at sintered and bulk electrodes show that beta nickel hydroxide contains an electrochemically inactive proportion of cadmium hydroxide of up to 10%. The electrochemically ineffective cadmium hydroxide is homogeneously dissolved in beta nickel hydroxide.
Grout formulation for disposal of low-level and hazardous waste streams containing fluoride
McDaniel, E.W.; Sams, T.L.; Tallent, O.K.
1987-06-02
A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.
Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.
Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly
2013-01-01
Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.
Neilson, James R; Kurzman, Joshua A; Seshadri, Ram; Morse, Daniel E
2010-09-03
Structures of layered metal hydroxides are not well described by traditional crystallography. Total scattering from a synthesis-controlled subset of these materials, as described here, reveals that different cobalt coordination polyhedra cluster within each layer on short length scales, offering new insights and approaches for understanding the properties of these and related layered materials. Structures related to that of brucite [Mg(OH)(2)] are ubiquitous in the mineral world and offer a variety of useful functions ranging from catalysis and ion-exchange to sequestration and energy transduction, including applications in batteries. However, it has been difficult to resolve the atomic structure of these layered compounds because interlayer disorder disrupts the long-range periodicity necessary for diffraction-based structure determination. For this reason, traditional unit-cell-based descriptions have remained inaccurate. Here we apply, for the first time to such layered hydroxides, synchrotron X-ray total scattering methods-analyzing both the Bragg and diffuse components-to resolve the intralayer structure of three different alpha-cobalt hydroxides, revealing the nature and distribution of metal site coordination. The different compounds with incorporated chloride ions have been prepared with kinetic control of hydrolysis to yield different ratios of octahedrally and tetrahedrally coordinated cobalt ions within the layers, as confirmed by total scattering. Real-space analyses indicate local clustering of polyhedra within the layers, manifested in the weighted average of different ordered phases with fixed fractions of tetrahedrally coordinated cobalt sites. These results, hidden from an averaged unit-cell description, reveal new structural characteristics that are essential to understanding the origin of fundamental material properties such as color, anion exchange capacity, and magnetic behavior. Our results also provide further insights into the detailed mechanisms of aqueous hydrolysis chemistry of hydrated metal salts. We emphasize the power of the methods used here for establishing structure-property correlations in functional materials with related layered structures.
Radiometric Method for the Detection of Coliform Organisms in Water
Bachrach, Uriel; Bachrach, Zelilah
1974-01-01
A new radiometric method for the detection of coliform bacteria in water has been described. The method is based on the release of 14CO2 from [14C]lactose by bacteria suspended in growth medium and incubated at 37 C. The evolved 14CO2 is trapped by hyamine hydroxide and counted in a liquid scintillation spectrometer. The method permits the detection of 1 to 10 organisms within 6 h of incubation. Coliform bacteria suspended in water for several days recover from starvation and may be quantitated by the proposed method. Bacteria from water samples may also be concentrated by filtration through membrane filters and detected by the radiometric assay. PMID:4605007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xi; Blue Sky Technology Corporation, Beijing 100083; Ma, Hongwen, E-mail: mahw@cugb.edu.cn
Highlights: • We use the anti-drop precipitation method for synthesis of magnesium hydroxide. • Boron mud which is solid waste from a borax factory is used as the magnesium source. • The magnesium hydroxide nanoflowers are prepared in a short time. • The as-prepared magnesium hydroxide can be used as an effective flame retardant. - Abstract: Using boron mud as the starting material, the flower-like magnesium hydroxide (MH) has been successfully prepared via anti-drop precipitation method. The effect of NH{sub 3}·H{sub 2}O concentration, aging time, and surfactant on the morphology of MH was investigated. The optimum precipitation conditions are droppingmore » MgSO{sub 4} solution in 5% NH{sub 3}·H{sub 2}O solution, with 3% polyethylene glycol as surfactant, aging for 30 min. XRD, SEM, FI-IR, and TG/DTA have been employed to characterize the as-prepared samples. XRD reveals that MH with high purity has the brucite structure. SEM images show that the flower-like MH exists in the form of mono-disperse well uniform spherical aggregation with diameter of 3–5 μm. TG/DTA shows a total percentage of weight loss 33.6% with a well-defined endothermic peak near 381.3 °C corresponding to the decomposition of MH. Furthermore, it reports that the extremely fast primary nucleation is of significance for crystal growth of MH.« less
Konjhodzic-Prcic, Alma; Jakupovic, Selma; Hasic-Brankovic, Lajla; Vukovic, Amra
2015-01-01
Introduction: The purpose of the current study was to estimate the biocompatibility of endodontic sealers with different bases on L929 mouse fibroblasts permanent cell line using Multiscan EX Spectrophotometer. Materials and Methods: Endodontics sealers used in this study were GuttaFlow (Roeko) silicone based sealer, AH plus (De Tray-DENTSPLY) epoxy resin based, Apexit (Vivadent) calcium hydroxide based and Endorez (Ultradent) methacrylate based sealer. Sealer were tested trough time, freshly mixed 24 h, 48h and 7 days after setting. Biocompatibility was determinate on permanent cell lines L929 mouse fibroblasts trough cytotoxicity using MTT assay. Level of absorption was measured with multi scan EX spectrophotometer on length 420-600 nm. Results: Sealer based on calcium hydroxide Apexit Plus, GuttaFlow silicone based sealer and AH plus epoxy resin based sealer, have shown a low cytotoxicity through the all periods of time on culture of L292 mouse fibroblasts. Methacrylate based sealer, Endorez showed moderate cytotoxicity when freshly mixed and after 7 days. After 24 hours the visibility of the cells was 74,0% and after 48 hours 65,1%. which is slightly cytotoxic. Conclusions: According to results of this study there is a statistically significant difference among the groups p<0,05 for all the tested sealers. Apexit Plus, GuttaFlow and AH plus can be considered as biocompatibile. EndoREZ sealer which is based on methacrylate, after 7 days shows 50,1% of visible live cells which is considered as moderate cytotoxicity. PMID:26236077
Techniques of Celloidin Removal From Temporal Bone Sections
O’Malley, Jennifer T.; Burgess, Barbara J.; Jones, Diane D.; Adams, Joe C.; Merchant, Saumil N.
2009-01-01
Objectives We sought to determine whether the technique of celloidin removal influences the results of immunostaining in celloidin-embedded cochleae. Methods We compared four protocols of celloidin removal, including those using clove oil, acetone, ether-alcohol, and methanol saturated with sodium hydroxide. By optimally fixing our tissue (perfused mice), and keeping constant the fixative type (formalin plus acetic acid), fixation time (25 hours), and decalcification time (ethylenediaminetetraacetic acid for 7 days), we determined whether the technique of celloidin removal influenced the immunostaining results. Six antibodies were used with each removal method: prostaglandin D synthase, sodium, potassium adenosine triphosphatase (Na+,K+-ATPase), aquaporin 1, connective tissue growth factor, tubulin, and 200 kd neurofilament. Results Clove oil, acetone, and ether-alcohol resulted in incomplete removal of the celloidin, thereby negatively affecting the results of immunostaining. The methanol–sodium hydroxide method was effective in completely removing the celloidin; it produced the cleanest and most reproducible immunostaining for all six antibodies. Conclusions Freshly prepared methanol saturated with sodium hydroxide and diluted 1:2 with methanol was the best solvent for removing celloidin from mouse temporal bone sections, resulting in consistent and reproducible immunostaining with the six antibodies tested. PMID:19663375
Farías-Sánchez, Juan Carlos; López-Miranda, Javier; Castro-Montoya, Agustín Jaime; Saucedo-Luna, Jaime; Carrillo-Parra, Artemio; López-Albarrán, Pablo; Pineda-Pimentel, María Guadalupe; Rutiaga-Quiñones, José Guadalupe
2015-01-01
To benefit from the use of a waste product such as pine sawdust from a sawmill in Michoacán, Mexico, five different pretreatments for the production of reducing sugars by enzymatic hydrolysis were evaluated (sodium hydroxide, sulfuric acid, steam explosion, organosolv and combined method nitric acid / sodium hydroxide). The main finding of the study was that the pretreatment with 6 % HNO3 and 1 % NaOH led to better yields than those obtained with sodium hydroxide, dilute sulfuric acid, steam explosion, and organosolv pretreatments. Also, HNO3 yields were maximized by the factorial method. With those results the maxima concentration of reducing sugar found was 97.83 ± 1.59, obtained after pretreatment with 7.5 % HNO3 at 120 °C for 30 minutes; followed by 1 % of NaOH at 90 °C for 30 minutes at pH 4.5 for 168 hours with a load enzyme of 25 FPU/g of total carbohydrates. Comparing the results obtained by the authors with those reported in the literature, the combined method was found to be suitable for use in the exploitation of sawdust. PMID:26535036
Farías-Sánchez, Juan Carlos; López-Miranda, Javier; Castro-Montoya, Agustín Jaime; Saucedo-Luna, Jaime; Carrillo-Parra, Artemio; López-Albarrán, Pablo; Pineda-Pimentel, María Guadalupe; Rutiaga-Quiñones, José Guadalupe
2015-01-01
To benefit from the use of a waste product such as pine sawdust from a sawmill in Michoacán, Mexico, five different pretreatments for the production of reducing sugars by enzymatic hydrolysis were evaluated (sodium hydroxide, sulfuric acid, steam explosion, organosolv and combined method nitric acid / sodium hydroxide). The main finding of the study was that the pretreatment with 6 % HNO3 and 1 % NaOH led to better yields than those obtained with sodium hydroxide, dilute sulfuric acid, steam explosion, and organosolv pretreatments. Also, HNO3 yields were maximized by the factorial method. With those results the maxima concentration of reducing sugar found was 97.83 ± 1.59, obtained after pretreatment with 7.5 % HNO3 at 120 °C for 30 minutes; followed by 1 % of NaOH at 90 °C for 30 minutes at pH 4.5 for 168 hours with a load enzyme of 25 FPU/g of total carbohydrates. Comparing the results obtained by the authors with those reported in the literature, the combined method was found to be suitable for use in the exploitation of sawdust.
Velmathi, Sivan; Reena, Vijayaraghavan; Suganya, Sivalingam; Anandan, Sambandam
2012-01-01
An efficient colorimetric sensor with pyrrole-NH moiety as binding site and nitro group as a signaling unit has been synthesized by a one step procedure and characterized by spectroscopic techniques, which displays excellent selectivity and sensitivity for fluoride and hydroxide ions. The hydrogen bonding with these anions provides remarkable colorimetric responses. (1)H NMR and FT IR studies has been carried out to confirm the hydrogen bonding. UV-vis and fluorescence spectral changes can be exploited for real time and on site application.
Study of CO2 sorbents for extravehicular activity
NASA Technical Reports Server (NTRS)
Colombo, G. V.
1973-01-01
Portable life support equipment was studied for meeting the requirements of extravehicular activities. Previous studies indicate that the most promising method for performing the CO2 removal function removal function were metallic oxides and/or metallic hydroxides. Mgo, Ag2, and Zno metallic oxides and Mg(OH)2 and Zn(OH)2 metallic hydroxides were studied, by measuring sorption and regeneration properties of each material. The hydroxides of Mg and Zn were not regenerable and the zinc oxide compounds showed no stable form. A silver oxide formulation was developed which rapidly absorbs approximately 95% of its 0.19 Kg CO2 Kg oxide and has shown no sorption or structural degeneration through 22 regenerations. It is recommended that the basic formula be further developed and tested in large-scale beds under simulated conditions.
Saifullah, Bullo; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida
2013-01-01
We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours. PMID:24255593
Musil, Martin; Skopal, Frantisek; Hájek, Martin; Vavra, Ales
2018-07-15
Biodiesel is a mixture of esters of fatty acids (most often palmitic, stearic and oleic) and lower alcohols (in our work butanol) produced by transesterification. It is a renewable source of energy, prepared from triacylglycerides, which are contained in vegetable oils and animal fats. This work focuses on alkaline catalyzed transesterification of rapeseed oil with butanol and comparison of two catalysts (potassium hydroxide and potassium tert-butoxide). In industry is usually transesterification of rapeseed oil carried out like reaction catalyzed by potassium hydroxide. Potassium hydroxide have high content of K 2 CO 3 , KHCO 3 and water. Moreover water is formed by neutralization of potassium hydroxide with free fatty acids contained in oil. In cause of tert-butoxide catalyzed reaction, it is not possible because tert-butoxide have not a OH - aniont, which is needed for water forming. The influence of various conditions (addition of water, temperature of separation, intensity of stirring and type of catalyst) on butanolysis process was studied for both catalysts. For both catalysts dependence of conversions on time were plotted. When tert-butoxide was used, satisfactory phase separation was not achieved. The only way was separation of hot crude reaction mixture without adding water. Ester formed by this method had high content of free glycerol and soaps, but reached higher conversion. The best results were obtained with KOH and subsequent separation of cold crude reaction mixture with the addition of water and slow stirring. The difference between reactions catalyzed by potassium hydroxide and potassium tert-butoxide was described. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cabezon, L M; Caballero, M; Cela, R; Perez-Bustamante, J A
1984-08-01
A method is proposed for the simultaneous quantitative separation of traces ofCu(II), Cd(II) and Co(II) from sea-water samples by means of the co-flotation (adsorbing colloid flotation) technique with ferric hydroxide as co-precipitant and octadecylamine as collector. The experimental parameters have been studied and optimized. The drawbacks arising from the low solubility of octadecylamine and the corresponding sublates in water have been avoided by use of a 6M hydrochloric acid-MIBK-ethanol (1:2:2 v v ) mixture. The results obtained by means of the proposed method have been compared with those given by the usual ammonium pyrrolidine dithiocarbamate/MIBK extraction method.
Anion exchange membrane crosslinked in the easiest way stands out for fuel cells
NASA Astrophysics Data System (ADS)
Hossain, Md. Masem; Wu, Liang; Liang, Xian; Yang, Zhengjin; Hou, Jianqiu; Xu, Tongwen
2018-06-01
Covalent crosslinking is an effective method to stabilize anion exchange membranes (AEMs) against water swelling and high alkaline environment, yet complicated process is required. We report herein a straightforward approach to prepare highly crosslinked, transparent and flexible AEM by simply immersing a halo-alkylated polymer (e.g., brominated poly-(2,6-dimethyl-phenylene oxide)) based membrane in aqueous dimethylamine solution at room temperature and the following methylation. During this crosslinking process, a robust self-crosslinking network is formed which shows a gel fraction in N-methyl-2-pyrrolidone of (up to) 94%. Self-crosslinked membranes show low water uptakes (20-42%) and dimensional swelling (9-16%) compared to non-crosslinked membrane but good hydroxide conductivities (up to 26 mS cm-1) at room temperature. Besides, the resulting membranes show some interesting features: the membranes do not immensely change its room temperature water swelling properties at high temperature but exhibits good hydroxide conductivities (up to 60 mS cm-1 at 80 °C). Noting that, the self-crosslinked AEM reported here has no β-hydrogens, exhibiting extremely high alkaline stability (no decline in hydroxide conductivity in 1 M KOH at 60 °C for 360h). Membrane electrode assembly consists of fabricated membrane shows moderate fuel cell performance reaching peak power density 31 mW cm-2 at 60 °C in a H2/O2 alkaline fuel cell.
Kusche, Matthias; Bustillo, Karen; Agel, Friederike; ...
2015-01-29
Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H 2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H 2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang, Xiujiang; Sun, Meiyu; Ma, Xiuming
The synthesis of Mg{sub 2}Al–NO{sub 3} layered double hydroxide (LDH) nanosheets by coprecipitation using a T-type microchannel reactor is reported. Aqueous LDH nanosheet dispersions were obtained. The LDH nanosheets were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy and particle size analysis, and the transmittance and viscosity of LDH nanosheet dispersions were examined. The two-dimensional LDH nanosheets consisted of 1–2 brucite-like layers and were stable for ca. 16 h at room temperature. In addition, the co-assembly between LDH nanosheets and dodecyl sulfate (DS) anions was carried out, and a DS intercalated LDH nanohybrid was obtained. To the bestmore » of our knowledge, this is the first report of LDH nanosheets being directly prepared in bulk aqueous solution. This simple, cheap method can provide naked LDH nanosheets in high quantities, which can be used as building blocks for functional materials. - Graphical abstract: Layered double hydroxide (LDH) nanosheets were synthesized by coprecipitation using a T-type microchannel reactor, and could be used as basic building blocks for LDH-based functional materials. Display Omitted - Highlights: • LDH nanosheets were synthesized by coprecipitation using a T-type microchannel reactor. • Naked LDH nanosheets were dispersed in aqueous media. • LDH nanosheets can be used as building blocks for functional materials.« less
2016-01-01
During clinical endodontic treatment, we often find radiopaque filling material beyond the root apex. Accidental extrusion of calcium hydroxide could cause the injury of inferior alveolar nerve, such as paresthesia or continuous inflammatory response. This case report presents the extrusion of calcium hydroxide and treatment procedures including surgical intervention. A 48 yr old female patient experienced Calcipex II extrusion in to the inferior alveolar canal on left mandibular area during endodontic treatment. After completion of endodontic treatment on left mandibular first molar, surgical intervention was planned under general anesthesia. After cortical bone osteotomy and debridement, neuroma resection and neurorrhaphy was performed, and prognosis was observed. But no improvement in sensory nerve was seen following surgical intervention after 20 mon. A clinician should be aware of extrusion of intracanal medicaments and the possibility of damage on inferior alveolar canal. Injectable type of calcium hydroxide should be applied with care for preventing nerve injury. The alternative delivery method such as lentulo spiral was suggested on the posterior mandibular molar. PMID:26877992
Study on Kinetic Mechanism of Bastnaesite Concentrates Decomposition Using Calcium Hydroxide
NASA Astrophysics Data System (ADS)
Cen, Peng; Wu, Wenyuan; Bian, Xue
2018-06-01
The thermal decomposition of bastnaesite concentrates using calcium hydroxide was studied. Calcium hydroxide can effectively inhibit the emission of fluorine during roasting by transforming it to calcium fluoride. The decomposition rate increased with increasing reaction temperature and amount of calcium hydroxide. The decomposition kinetics were investigated. The decomposition reaction was determined to be a heterogeneous gas-solid reaction, and it followed an unreacted shrinking core model. By means of the integrated rate equation method, the reaction was proven to be kinetically first order. Different reaction models were fit to the experimental data to determine the reaction control process. The chemical reaction at the phase interface controlled the reaction rate in the temperatures ranging from 673 K to 773 K (400 °C to 500 °C) with an apparent activation energy of 82.044 kJ·mol-1. From 773 K to 973 K (500 °C to 700 °C), diffusion through the solid product's layer became the determining step, with a lower activation energy of 15.841 kJ·mol-1.
NASA Astrophysics Data System (ADS)
Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.
2016-02-01
Geopolymer concrete is zero-Portland cement concrete containing alumino-silicate based inorganic polymer as binder. The polymer is obtained by chemical activation of alumina and silica bearing materials, blast furnace slag by highly alkaline solutions such as hydroxide and silicates of alkali metals. Sodium hydroxide solutions of different concentrations are commonly used in making GPC mixes. Often, it is seen that sodium hydroxide solution of very high concentration is diluted with water to obtain SHS of desired concentration. While doing so it was observed that the solute particles of NaOH in SHS tend to occupy lower volumes as the degree of dilution increases. This aspect is discussed in this paper. The observed phenomenon needs to be understood while formulating the GPC mixes since this influences considerably the relationship between concentration and density of SHS. This paper suggests an empirical formula to relate density of SHS directly to concentration expressed by w/w.
Yu, Shujun; Wang, Xiangxue; Chen, Zhongshan; Wang, Jian; Wang, Suhua; Hayat, Tasawar; Wang, Xiangke
2017-01-05
Aniline is toxic and hard to be degraded, and thereby causes the environmental pollution seriously. Herein, a practical and green hydrothermal method was applied to fabricate terephthalic acid and pyromellitic acid intercalated layered double hydroxides (LDH) (named as TAL and PAL) for aniline efficient removal. The sorption of aniline on LDH-based materials were investigated at different experimental conditions, and the results indicated that aniline sorption on LDH, TAL and PAL were strongly dependent on pH and independent of ionic strength. The maximum sorption capacities of aniline on TAL and PAL at pH 5.0 and 293K were 90.4 and 130.0mg/g, respectively, which were significantly higher than that of aniline on LDH (52.6mg/g). Based on the BET, FTIR and XPS analysis, the higher sorption capacities of TAL and PAL were mainly due to high surface area and basal spacing as well as the abundant functional groups (e.g. -COO - ). The interactions of aniline with TAL and PAL were mainly dominated by hydrogen bonds and electrostatic interactions. Such a facile synthesis method, efficient removal performance and superior reusability indicated that the aromatic acid modified LDH materials had potential application for efficient treatment of organic pollutants in environmental pollution cleanup. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou
2017-11-01
Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagaraju, Goli; Cha, Sung Min; Yu, Jae Su
2017-03-01
Three-dimensional hierarchical honeycomb-like activated porous carbon pillared ultrathin Ni(OH)2 nanosheets (Ni(OH)2 NSs@HAPC) for use as supercapacitor materials were facilely synthesized. With an aid of pine cone flowers as a biomass source, HAPC conducting scaffolds were prepared by the alkali treatment and pyrolysis methods under an inert gas atmosphere. Subsequently, the Ni(OH)2 NSs were synthesized evenly on the surface of HAPC via a solvothermal method. The resulting HAPC and Ni(OH)2 NSs@HAPC composite materials offered free pathways for effective diffusion of electrolyte ions and fast transportation of electrons when employed as an electrode material. The Ni(OH)2 NSs@HAPC composite electrode exhibited excellent electrochemical properties including a relatively high specific capacitance (Csp) value of ~ 916.4 F/g at 1 A/g with good cycling stability compared to the pristine HAPC and Ni(OH)2 NSs electrodes. Such bio-friendly derived carbon-based materials with transition metal hydroxide/oxide composite materials could be a promising approach for high-performance energy storage devices because of their advantageous properties of cost effectiveness and easy availability.
Samuei, Sara; Fakkar, Jila; Rezvani, Zolfaghar; Shomali, Ashkan; Habibi, Biuck
2017-03-15
In the present work, a novel nanocomposite based on the graphene quantum dots and CoNiAl-layered double-hydroxide was successfully synthesized by co-precipitation method. To achieve the morphological, structural and compositional information, the resulted nanocomposite was characterized by scanning electron microscopy X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and photoluminescence. Then, the nanocomposite was used as a modifier to fabricate a modified carbon paste electrode as a non-enzymatic sensor for glucose determination. Electrochemical behavior and determination of glucose at the nanocomposite modified carbon paste electrode were investigated by cyclic voltammetry and chronoamperometry methods, respectively. The prepared sensor offered good electrocatalytic properties, fast response time, high reproducibility and stability. At the optimum conditions, the constructed sensor exhibits wide linear range; 0.01-14.0 mM with a detection limit of 6 μM (S/N = 3) and high sensitivity of 48.717 μAmM -1 . Finally, the sensor was successfully applied to determine the glucose in real samples which demonstrated its applicability. Copyright © 2017 Elsevier Inc. All rights reserved.
Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.
Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi
2006-08-15
The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.
Nickel hydroxide electrode. 3: Thermogravimetric investigations of nickel (II) hydroxides
NASA Technical Reports Server (NTRS)
Dennstedt, W.; Loeser, W.
1982-01-01
Water contained in Ni hydroxide influences its electrochemical reactivity. The water content of alpha and beta Ni hydroxides is different with respect to the amount and bond strength. Thermogravimetric experiments show that the water of the beta Ni hydroxides exceeding the stoichiometric composition is completely removed at 160 deg. The water contained in the interlayers of the beta hydroxide, however, is removed only at higher temperatures, together with the water originating from the decomposition of the hydroxide. These differences are attributed to the formation of II bonds within the interlayers and between interlayers and adjacent main layers. An attempt is made to explain the relations between water content and the oxidizability of the Ni hydroxides.
Feed gas contaminant removal in ion transport membrane systems
Carolan, Michael Francis [Allentown, PA; Miller, Christopher Francis [Macungie, PA
2008-09-16
Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.
Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash.
Ganvir, Vivek; Das, Kalyan
2011-01-30
Fluoride content in groundwater that is greater than the WHO limit of 1.5mg/L, causes dental and skeletal fluorosis. In India, several states are affected with excess fluoride in groundwater. The problem is aggravated due to the lack of appropriate and user friendly defluoridation technology. Several fluoride removal techniques are reported in the literature amongst which the Nalgonda technique and use of activated alumina have been studied extensively. However a simple, efficient and cost effective technology is not available for widespread use in many affected regions. In this paper, we present a novel cost effective defluoridation method that is based on surface modification of rice husk ash (RHA) by coating aluminum hydroxide. RHA is obtained by burning rice/paddy husk which is an abundantly available and is an inexpensive raw material. The results showed excellent fluoride removal efficiency and the adsorption capacity was found to be between 9 and 10mg/g. Copyright © 2010 Elsevier B.V. All rights reserved.
Reverse microemulsion synthesis of layered gadolinium hydroxide nanoparticles
NASA Astrophysics Data System (ADS)
Xu, Yadong; Suthar, Jugal; Egbu, Raphael; Weston, Andrew J.; Fogg, Andrew M.; Williams, Gareth R.
2018-02-01
A reverse microemulsion approach has been explored for the synthesis of layered gadolinium hydroxide (LGdH) nanoparticles in this work. This method uses oleylamine as a multifunctional agent, acting as surfactant, oil phase and base. 1-butanol is additionally used as a co-surfactant. A systematic study of the key reaction parameters was undertaken, including the volume ratio of surfactant (oleylamine) to water, the reaction time, synthesis temperature, and the amount of co-surfactant (1-butanol) added. It proved possible to obtain pristine LGdH materials at temperatures of 120 °C or below with an oleylamine: water ratio of 1:4. Using larger amounts of surfactant or higher temperatures caused the formation of Gd(OH)3, either as the sole product or as a major impurity phase. The LGdH particles produced have sizes of ca. 200 nm, with this size being largely independent of temperature or reaction time. Adjusting the amount of 1-butanol co-surfactant added permits the size to be varied between 200 and 300 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Hui; Guo Shaohuan; Zou Kang
The thermal evolution of a crystalline organic-inorganic nanohybrid captopril intercalated Mg-Al layered double hydroxide (LDH) [Mg{sub 0.68}Al{sub 0.32}(OH){sub 2}] (C{sub 9}H{sub 13}NO{sub 3}S){sub 0.130}(CO{sub 3}){sub 0.030}.0.53H{sub 2}O obtained by coprecipitation method is studied based upon in situ high-temperature X-ray diffraction, in situ infrared and thermogravimetric analysis coupled with mass spectroscopy analysis. The results reveal that a metastable quasi-interstratified layered nanohybrid involving carbonate-LDH and reoriented less ordered captopril-LDH was firstly observed as captopril-LDH heat-treated between 140 and 230 deg. C. The major decomposition/combustion of interlayer organics occur between 270 and 550 deg. C. A schematic model on chemical and microstructural evolutionmore » of this particular drug-inorganic nanohybrid upon heating in air atmosphere is proposed.« less
Nutraceutically inspired pectin-Mg(OH)₂ nanocomposites for bioactive packaging applications.
Moreira, Francys K V; De Camargo, Lais A; Marconcini, José M; Mattoso, Luiz H C
2013-07-24
This paper reports on the development of bioactive edible films based on pectin as a dietary matrix and magnesium hydroxide (Mg(OH)2) nanoplates as a reinforcing filler. Nanocomposites of high-methoxyl (HM) and low-methoxyl (LM) pectins were prepared using the casting method at concentrations of Mg(OH)2 ranging from 0.5 to 5 wt %. Atomic force microscopy and FTIR spectroscopy were employed to characterize the nanocomposite structure. The tensile properties and thermal stability of the nanocomposites were also examined to ascertain the effect of Mg(OH)2 inclusion and degree of methoxylation. The results provided evidence that the Mg(OH)2 nanoplates were uniformly dispersed and interacted strongly with the film matrix. The mechanical and thermal properties were significantly improved in the nanocomposite films compared to the control. Mg(OH)2 nanoplates were more effective in improving properties of LM pectin. Preliminary migration studies using arugula leaves confirmed that pectin-Mg(OH)2 nanocomposites can release magnesium hydroxide by contact, demonstrating their potential for magnesium supplementation in bioactive packaging.
Crowley, J.K.; Williams, D.E.; Hammarstrom1, J.M.; Piatak, N.; Mars, J.C.; Chou, I-Ming
2006-01-01
Fifteen Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate mineral species commonly associated with sulphide bearing mine wastes were characterized by using X-ray powder diffraction and scanning electron microscope methods. Diffuse reflectance spectra of the samples show diagnostic absorption features related to electronic processes involving ferric and/or ferrous iron, and to vibrational processes involving water and hydroxyl ions. Such spectral features enable field and remote sensing based studies of the mineral distributions. Because secondary minerals are sensitive indicators of pH, Eh, relative humidity, and other environmental conditions, spectral mapping of these minerals promises to have important applications to mine waste remediation studies. This report releases digital (ascii) spectra (spectral_data_files.zip) of the fifteen mineral samples to facilitate usage of the data with spectral libraries and spectral analysis software. The spectral data are provided in a two-column format listing wavelength (in micrometers) and reflectance, respectively.
Simple morphological control over functional diversity of SERS materials
NASA Astrophysics Data System (ADS)
Semenova, A. A.; Goodilin, E. A.
2018-03-01
Nowadays, surface-enhanced Raman spectroscopy (SERS) becomes a promising universal low-cost and real-time tool in biomedical applications, medical screening or forensic analysis allowing for detection of different molecules below nanomolar concentrations. Silver nanoparticles and nanostructures have proven to be a common choice for SERS measurements due to a tunable plasmon resonance, high stability and facile fabrication methods. However, a proper design of silver-based nanomaterials for highly sensitive SERS applications still remains a challenge. In this work, effective and simple preparation methods of various silver nanostructures are proposed and systematically developed using aqueous diamminesilver (I) hydroxide as a precursor.
Rapid Method for Sodium Hydroxide Fusion of Asphalt ...
Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 The method will be used for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in asphalt matrices samples.
INFLUENCE OF IODOFORM ON ANTIMICROBIAL POTENTIAL OF CALCIUM HYDROXIDE
Estrela, Carlos; Estrela, Cyntia Rodrigues de Araújo; Hollanda, Augusto César Braz; Decurcio, Daniel de Almeida; Pécora, Jesus Djalma
2006-01-01
The purpose of this research was to verify the influence of Iodoform on antimicrobial potential of calcium hydroxide. S. aureus, E. faecalis, P. aeruginosa, B. subtilis, C. albicans were the biological indicators. The substances tested were: calcium hydroxide + saline; calcium hydroxide + Iodoform + saline; Iodoform + saline. For the agar diffusion test, 18 Petri plates with 20 ml of BHI agar were inoculated with the microbial suspensions. Fifty-four cavities were made and filled with the substances tested. The diameters of microbial inhibition were then measured. In direct exposure test, 162 #50 sterile absorbent paper points were immersed in the experimental suspensions for 5 min, and covered with the pastes. At intervals of 24, 48 and 72 hours, the paper points were immersed in 10 ml of Letheen Broth, followed by incubation at 37°°C for 48h. Microbial growth was evaluated by turbidity of the culture medium. A 0.1 ml inoculum obtained from the Letheen Broth was transferred to 7 ml of BHI, and incubated at 37°°C for 48h. Bacterial growth was again evaluated by turbidity of the culture medium. The calcium hydroxide associated with the saline or the iodoform plus saline showed antimicrobial effectiveness in both experimental methods. The iodoform paste presented antimicrobial ineffectiveness for the agar diffusion test on all biological microorganisms and for the direct exposure test on B. subtilis and on the mixture. PMID:19089027
NASA Astrophysics Data System (ADS)
Miao, Chengcheng; Zhu, Yanjuan; Huang, Liangguo; Zhao, Tengqi
2015-01-01
The multi-element doped alpha nickel hydroxide has been prepared by supersonic co-precipitation method. Three kinds of samples A, B and C are prepared by chemically coprecipitating Ni/Al, Ni/Al/Mn and Ni/Al/Mn/Yb, respectively. Inductively coupled plasma atomic emission spectroscopy (ICP-AES), Particle size distribution (PSD) measurement, X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR) are used to characterize the physical properties of the synthesized α-Ni(OH)2 samples, such as chemical composition, morphology, structural stability of the crystal. The results show that all samples are nano-sized materials and the interlayer spacing becomes larger and the structural stability becomes better with the increase of doped elements and doped ratio. The prepared alpha nickel hydroxide samples are added into micro-sized beta nickel hydroxide to form biphase electrode materials for Ni-MH battery. The electrochemical characterization of the biphase electrodes, including cyclic voltammetry (CV) and charge/discharge test, are also performed. The results demonstrate that the biphase electrode with sample C exhibits better electrochemical reversibility and cyclic stability, higher charge efficient and discharge potential, larger proton diffusion coefficient (5.81 × 10-12 cm2 s-1) and discharge capacity (309.0 mAh g-1). Hence, it indicates that all doped elements can produce the synergic effect and further improve the electrochemical properties of the alpha nickel hydroxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Bazilevskaya; D Archibald; M Aryanpour
2011-12-31
Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitatesmore » were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with {<=}20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with {>=}25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with {<=}25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with 30 mol% Al (at pH {approx}2.25 for Fe{sup 3+} and at pH {approx}4 for Al{sup 3+}), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 Mol% Al) in clustered arrangement (i.e., the formation of diaspore-like clusters) were in good agreement with available experimental data whereas optimized unit cell parameters for isolated Al atoms were not, and (ii) Al-substituted goethites with Al in diaspore-like clusters resulted in more energetically favored structures. Combined experimental and DFT results are consistent with the coprecipitation of Al with Fe (hydr)oxides and with the formation of diaspore-like clusters, whereas DFT results suggest isomorphous Al for Fe substitution within goethite is unlike at 8 mol% Al substitution.« less
21 CFR 184.1631 - Potassium hydroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...
21 CFR 184.1631 - Potassium hydroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...
Influence of bases on hydrothermal synthesis of titanate nanostructures
NASA Astrophysics Data System (ADS)
Sikhwivhilu, Lucky M.; Sinha Ray, Suprakas; Coville, Neil J.
2009-03-01
A hydrothermal treatment of titanium dioxide (TiO2) with various bases (i.e., LiOH, NaOH, KOH, and NH4OH) was used to prepare materials with unique morphologies, relatively small crystallite sizes, and large specific surface areas. The experimental results show that the formation of TiO2 is largely dependent on the type, strength and concentration of a base. The effect of the nature of the base used and the concentration of the base on the formation of nanostructures were investigated using X-ray diffraction, Raman spectroscopy, transmission and scanning electron microscopy, as well as surface area measurements. Sodium hydroxide (NaOH) and potassium hydroxide (KOH) were both used to transform the morphology of starting TiO2 material.
NASA Astrophysics Data System (ADS)
Shang, Xiao; Yan, Kai-Li; Lu, Shan-Shan; Dong, Bin; Gao, Wen-Kun; Chi, Jing-Qi; Liu, Zi-Zhang; Chai, Yong-Ming; Liu, Chen-Guang
2017-09-01
Developing cost-effective electrocatalysts with both high activity and stability remains challenging for oxygen evolution reaction (OER) in water electrolysis. Herein, based on V-doped nickel sulfide nanowire on nickel foam (NiVS/NF), we further conduct controllable electrodeposition of Fe hydroxides film on NiVS/NF (eFe/NiVS/NF) to further improve OER performance and stability. For comparison, ultrafast chemical deposition of Fe hydroxides on NiVS/NF (uFe/NiVS/NF) is also utilized. V-doping of NiVS/NF may introduce more active sites for OER, and nanowire structure can expose abundant active sites and facilitate mass transport. Both of the two depositions generate amorphous Fe hydroxides film covering on the surface of nanowires and lead to enhanced OER activities. Furthermore, electrodeposition strategy realizes uniform Fe hydroxides film on eFe/NiVS/NF confirmed by superior OER activity of eFe/NiVS/NF than uFe/NiVS/NF with relatively enhanced stability. The OER activity of eFe/NiVS/NF depends on various electrodepositon time, and the optimal time (15 s) is obtained with maximum OER activity. Therefore, the controllable electrodeposition of Fe may provide an efficient and simple strategy to enhance the OER properties of electrocatalysts.
NASA Astrophysics Data System (ADS)
Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee
2018-05-01
We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.
21 CFR 184.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... is prepared as a white precipitate by the addition of sodium hydroxide to a water soluble magnesium... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...
21 CFR 184.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... is prepared as a white precipitate by the addition of sodium hydroxide to a water soluble magnesium... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...
21 CFR 184.1631 - Potassium hydroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg. No. 1310-58-3) is also... powders. Potassium hydroxide is obtained commercially from the electrolysis of potassium chloride solution...
Synthesis and characterization of α-cobalt hydroxide nanobelts
NASA Astrophysics Data System (ADS)
Tian, L.; Zhu, J. L.; Chen, L.; An, B.; Liu, Q. Q.; Huang, K. L.
2011-08-01
α-Cobalt hydroxide was synthesized by a facile hydrothermal process from Co(Ac)2 and NH3·H2O in the presence of 1,3-propanediol. The large-scale-prepared cobalt hydroxide has a uniform nanobelt morphology with a considerably high aspect-ratio more than 20 which may be advantageous for exploration of their physicochemical properties. This synthetic method is convenient, economical, and controllable. The samples were characterized by powder X-ray diffraction, energy dispersive spectrum, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, CHN element analysis, thermogravimetric and differential-thermogravimetric analysis, which revealed the compound is lamellar structural cobalt organic-inorganic hybrid with the chemical formula of Co(OH)1.49(NH3)0.01(CO3 2-)0.22(Ac-)0.07(H2O)0.11 and single-crystalline.
Microbial susceptibility to calcium hydroxide pastes and their vehicles.
Gomes, Brenda Paula Figueiredo de Almeida; Ferraz, Caio Cezar Randi; Garrido, Fabio Devora; Rosalen, Pedro Luiz; Zaia, Alexandre Augusto; Teixeira, Fabricio Batista; de Souza-Filho, Francisco José
2002-11-01
The aim of this study was to investigate the susceptibility of some microorganisms commonly isolated from root canals to calcium hydroxide in combination with several vehicles by the agar diffusion method. Stainless-steel cylinders were placed on each inoculated agar medium. The test medications and their controls were placed inside the cylinders. The zones of growth inhibition were measured and recorded after the incubation period for each plate, and the results were analyzed statistically. Enterococcus faecalis was most resistant, whereas the anaerobic Porphyromonas endodontalis was more susceptible to all medications, followed by P. gingivalis and Prevotella intermedial intermedia. Ca(OH)2 + CMCP + glycerin showed significantly larger mean zones of inhibition when compared with the other medications. We conclude that anaerobic Gram-negative bacteria are more susceptible to calcium hydroxide pastes than facultative Gram-positive microorganisms.
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Maki, Hirotaka; Sugahara, Kigen; Ito, Kenta; Hanabata, Makoto
2015-07-01
An electron beam (EB) lithography method using inedible cellulose-based resist material derived from woody biomass has been successfully developed. This method allows the use of pure water in the development process instead of the conventionally used tetramethylammonium hydroxide and anisole. The inedible cellulose-based biomass resist material, as an alternative to alpha-linked disaccharides in sugar derivatives that compete with food supplies, was developed by replacing the hydroxyl groups in the beta-linked disaccharides with EB-sensitive 2-methacryloyloxyethyl groups. A 75 nm line and space pattern at an exposure dose of 19 μC/cm2, a resist thickness uniformity of less than 0.4 nm on a 200 mm wafer, and low film thickness shrinkage under EB irradiation were achieved with this inedible cellulose-based biomass resist material using a water-based development process.
Thermochemical Concrete Pavement Scaling Mechanism: Navy F/A-18 Jet Aircraft Parking Apron Problem
1998-06-01
boiling and recondensation) in hot, concentrated potassium hydroxide (E): Eqn 11 Alkaline Hydrolysis of Esters with Potassium Hydroxide KOH...RC02R’ -> KC02R + R’OH potassium alkyl ester (B) potassium ethanol(L) hydroxide (E) carboxylate (F) The overall reaction appears to make sense...carbonate (H) water 2. The parallel between calcium hydroxide and potassium hydroxide is not very accurate. Potassium hydroxide is a much stronger alkali
METHOD FOR THE RECOVERY OF CESIUM VALUES
Rimshaw, S.J.
1960-02-16
A method is given for recovering Cs/sup 137/ from radioactive waste solutions together with extraneous impurities. Ammonium alum is precipitated in the waste solution. The alum, which carries the cesium, is separated from the supernatant liquid and then dissolved in water. The resulting aqueous solution is then provided with a source of hydroxyl ions, which precipitates aluminum as the hydroxide, and the aluminum hydroxide is separated from the resulting liquid. This liquid, which contains anionic impurities together with ammonium and cesium, is passed through an anion exchange resin bed which removes the anionic impurities. The ammonium in the effluent is removed by destructive distiilation, leaving a substantiaily pure cesium salt in the effluent.
21 CFR 184.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... addition of sodium hydroxide to a water soluble magnesium salt or by hydration of reactive grades of... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide (Mg(OH)2, CAS Reg. No. 1309-42-8) occurs...
Eftekhar, Behrooz; Moghimipour, Eskandar; Eini, Ebrahim; Jafarzadeh, Mansour; Behrooz, Narges
2014-08-01
Intra canal medicaments are used to reduce the number of bacteria and reinfection in endodontic procedures. Calcium Hydroxide was introduced to endodontics by Herman as an intracanal antimicrobial agent. The aim of this study was to present an injectable formulation of calcium hydroxide then compare the final pH of this new formulation with Metapaste and evaluate the effect of a mixture of Calcium Hydroxide powder with water on human extracted teeth. A total of 49 extracted human single-canal roots without caries and visible microcracks were included in this study. The teeth were decoronated and length of teeth was measured 1 mm anatomic apex. The canals were prepared using step-back technique. A cavity was created in the middle third of the buccal surface of all roots. The teeth were randomly divided into five groups: Group A (n = 15): In this group the root canals were filled with a mixture of calcium hydroxide powder and distilled water. Group B (n = 15): Included roots that were filled with Metapaste. Group C (n = 15): Root canals of this group were filled with new formulation of calcium hydroxide paste. Group D (negative control, n = 2): Included roots that were filled with a mixture of calcium hydroxide powder and distilled water. Group E (positive control, n = 2): Root canals of this group were filled with a mixture of calcium hydroxide powder and distilled water. Each tooth was immersed in a separate closed container with 4 mL saline for 2 weeks, pH of liquids were measured with an electrical pH meter after 7 and 14 days. The SPSS software (version 13) was used for data analysis. Analysis of variance (ANOVA) and Tukey tests were used for the statistical evaluation of results. There was no significant difference at 7th day between the groups (P = 0.17) but at 14th day, a significant difference was observed between the groups (P = 0.04). The new formulation of calcium hydroxide with methylcellulose base has slower ionic dissolution, more durability and longevity of alkaline properties in comparison to combination of powder with distilled water and is comparable with other commercial products.
Guo, Yi; Zetterlund, Per B
2011-10-18
A novel method for synthesis of ultrafine polymeric nanoparticles of diameters less than 20 nm has been developed. The method is based on miniemulsion polymerization exploiting combination of the in situ surfactant generation approach (whereby the surfactant is formed at the oil-water interface by reaction between an organic acid and a base) and ultrasonication. Conventional radical polymerization and nitroxide-mediated radical polymerization of styrene have been conducted in miniemulsion using oleic acid/potassium hydroxide, demonstrating that particles with diameters less than 20 nm can be obtained by this approach at surfactant contents much lower than traditionally required in microemulsion polymerizations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Tanyuan; Nam, Gyutae; Jin, Yue; Wang, Xingyu; Ren, Pengju; Kim, Min Gyu; Liang, Jiashun; Wen, Xiaodong; Jang, Haeseong; Han, Jiantao; Huang, Yunhui; Li, Qing; Cho, Jaephil
2018-05-21
A facile H 2 O 2 oxidation treatment to tune the properties of metal disulfides for oxygen evolution reaction (OER) activity enhancement is introduced. With this method, the degree of oxidation can be readily controlled and the effect of surface S residues in the resulted metal (oxy)hydroxides for the OER is revealed for the first time. The developed NiFe (oxy)hydroxide catalyst with residual S demonstrates an extraordinarily low OER overpotential of 190 mV at the current density of 10 mA cm -2 after coupling with carbon nanotubes, and outstanding performance in Zn-air battery tests. Theoretical calculation suggests that the surface S residues can significantly reduce the adsorption free energy difference between O* and OH* intermediates on the Fe sites, which should account for the high OER activity of NiFe (oxy)hydroxide catalysts. This work provides significant insight regarding the effect of surface heteroatom residues in OER electrocatalysis and offers a new strategy to design high-performance and cost-efficient OER catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.
Li, Yinshi; Sun, Xianda; Feng, Ying
2017-05-22
Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors
Owusu, Kwadwo Asare; Qu, Longbing; Li, Jiantao; Wang, Zhaoyang; Zhao, Kangning; Yang, Chao; Hercule, Kalele Mulonda; Lin, Chao; Shi, Changwei; Wei, Qiulong; Zhou, Liang; Mai, Liqiang
2017-01-01
Carbon materials are generally preferred as anodes in supercapacitors; however, their low capacitance limits the attained energy density of supercapacitor devices with aqueous electrolytes. Here, we report a low-crystalline iron oxide hydroxide nanoparticle anode with comprehensive electrochemical performance at a wide potential window. The iron oxide hydroxide nanoparticles present capacitances of 1,066 and 716 F g−1 at mass loadings of 1.6 and 9.1 mg cm−2, respectively, a rate capability with 74.6% of capacitance retention at 30 A g−1, and cycling stability retaining 91% of capacitance after 10,000 cycles. The performance is attributed to a dominant capacitive charge-storage mechanism. An aqueous hybrid supercapacitor based on the iron oxide hydroxide anode shows stability during float voltage test for 450 h and an energy density of 104 Wh kg−1 at a power density of 1.27 kW kg−1. A packaged device delivers gravimetric and volumetric energy densities of 33.14 Wh kg−1 and 17.24 Wh l−1, respectively. PMID:28262797
Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66).
Abid, Hussein Rasool; Ang, Ha Ming; Wang, Shaobin
2012-05-21
Several zirconium-based metal-organic frameworks (Zr-MOFs) have been synthesized using ammonium hydroxide as an additive in the synthesis process. Their physicochemical properties have been characterized by N(2) adsorption/desorption, XRD, SEM, FTIR, and TGA, and their application in CO(2) adsorption was evaluated. It was found that addition of ammonium hydroxide produced some effects on the structure and adsorption behavior of Zr-MOFs. The pore size and pore volume of Zr-MOFs were enhanced with the additive, however, specific surface area of Zr-MOFs was reduced. Using an ammonium hydroxide additive, the crystal size of Zr-MOF was reduced with increasing amount of the additive. All the samples presented strong thermal stability. Adsorption tests showed that capacity of CO(2) adsorption on the Zr-MOFs under standard conditions was reduced due to decreased micropore fractions. However, modified Zr-MOFs had significantly lower adsorption heat. The adsorption capacity of carbon dioxide was increased at high pressure, reaching 8.63 mmol g(-1) at 987 kPa for Zr-MOF-NH(4)-2.
Kim, Ji Eun; Lim, Joonwon; Lee, Gil Yong; Choi, Sun Hee; Maiti, Uday Narayan; Lee, Won Jun; Lee, Ho Jin; Kim, Sang Ouk
2016-01-27
Electrochemical oxygen redox reactions are the crucial elements for energy conversion and storage including fuel cells and metal air batteries. Despite tremendous research efforts, developing high-efficient, low-cost, and durable bifunctional oxygen catalysts remains a major challenge. We report a new class of hybrid material consisting of subnanometer thick amorphous cobalt hydroxide anchored on NCNT as a durable ORR/OER bifunctional catalyst. Although amorphous cobalt species-based catalysts are known as good OER catalysts, hybridizing with NCNT successfully enhanced ORR activity by promoting a 4e reduction pathway. Abundant charge carriers in amorphous cobalt hydroxide are found to trigger the superior OER activity with high current density and low Tafel slope as low as 36 mV/decade. A remarkably high OER turnover frequency (TOF) of 2.3 s(-1) at an overpotential of 300 mV was obtained, one of the highest values reported so far. Moreover, the catalytic activity was maintained over 120 h of cycling. The unique subnanometer scale morphology of amorphous hydroxide cobalt species along with intimate cobalt species-NCNT interaction minimizes the deactivation of catalyst during prolonged repeated cycles.
NASA Technical Reports Server (NTRS)
Rock, M.
1981-01-01
Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.
Precipitation of molybdenum(V) as the hydroxide and its separation from rhenium.
Yatirajam, V; Ahuja, U; Kakkar, L R
1975-03-01
A study of the conditions for precipitation of molybdenum(V) hydroxide shows that for Mo concentration 1 mg ml about 97.5% of the Mo can be precipitated between pH 5 and 5.8. Lower concentrations of molybdenum(V) or molybdenum(VI) can be precipitated quantitatively by using 20 times the amount of zirconium as collector, at the same pH. On this basis, a simple method is given for quantitative separation of rhenium from large amounts of molybdenum and is attested by analysis of synthetic and molybdenite samples.
Comparison of pretreatment methods on the enzymatic Saccharification of aspen wood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, J.H.; Kamden, D.P.
Five different chemical pretreatments, using dilute sulfuric acid, sodium hydroxide, hydrogen peroxide and sodium hydroxide, peroxy-monosulfate, and acetic acid, were applied to aspen thermomechanical fibers. The pretreated fibers were submitted to enzymatic hydrolysis and the liberated glucose was monitored. High glucose concentrations were observed for the peroxymonosulfate and the acetic acid pretreated samples. Glucose concentrations greater than 25 g/L were obtained in these cases. This corresponds to conversions on the order of 90% of the retreated substrate glucose content. 18 refs., 1 fig., 4 tabs.
SEPARATION OF PROTACTINIUM FROM CONTAMINANTS
Malm, J.G.; Fried, S.
1959-07-01
The separation of protactinium by volatilization method is described. According to the invention, neutron irradiated finely divided thorium is reacted with aluminum trichloride or a mixture of aluminum trichloride and chlorine gas at a temperature of preferably between about 200 and 400 deg C. Following the chlorinating step the protactinium chloride along with aluminum chloride is selectively distilled from the mixture at a temperature of approximately 100 deg C. The protactinium chloride may be recovered from the mixture by treatment with sodium hydroxide, which converts the aluminum chloride to a soluble salt and forms insoluble protactinium hydroxide.
NASA Astrophysics Data System (ADS)
Cooper, Anne Marie
This study investigates the effect of the virgin granular activated carbon (GAC) on the properties of synthesized iron (hydr)oxide nanoparticles impregnated GAC (Fe-GAC) media and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Fe-GAC media were synthesized from bituminous and lignite-based virgin GAC via three variations of a permanganate/Fe(II) synthesis method. Data obtained from an array of characterization techniques indicated that differences in pore size distribution and surface chemistry of the virgin GAC favor different reaction paths for the iron (hydr)oxide nanoparticles formation. Batch equilibrium isotherm testing (120 microg-As/L; 6 mg-TCE/L, 10 mM NaHCO3 at pH = 7.2 +/- 0.1 and pH = 8.2 +/- 0.1) showed arsenic removal capability was increased as a result of iron (nanoparticles) impregnation, while TCE removal properties were decreased in Fe-GAC media. This tradeoff was displayed by both lignite and bituminous Fe-GAC but was most pronounced in lignite-based Fe-GAC having the highest Fe content (13.4% Fe) which showed the most favorable Freundlich adsorption and intensity parameters for arsenic of Ka = 72.6 (microg-As/g-FeGAC)(L/microg-As)1/n, 1/n = 0.6; and least favorable adsorption for TCE of Ka = 0.8 (mg-TCE/g-FeGAC)(L/mg-TCE)1/n, 1/n = 4.47. It was concluded that iron content was the main factor contributing to enhanced arsenic removal and that this was affected by base GAC properties such as pore size distribution and surface functional groups. However high Fe content can result in pore blockage; reduction in available adsorption sites for organic co-contaminants; and have a significant effect on the Fe-GACs overall adsorption capacity.
Determination of the zincate diffusion coefficient and its application to alkaline battery problems
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, Harold E.
1978-01-01
The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 X 10 to the minus 7th power squared cm per sec + or - 30 percent in 45 percent potassium hydroxide and 1.4 x 10 to the minus 7 squared cm per sec + or - 25 percent in 40 percent sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite size chambers. Details and discussion of the experimental method are also given.
Determination of the zincate diffusion coefficient and its application to alkaline battery problems
NASA Technical Reports Server (NTRS)
May, C. E.; Kautz, H. E.
1978-01-01
The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 x 10 to the -7th power sq cm/sec + or - 30% in 45% potassium hydroxide and 1.4 x 10 to the -7th power sq cm/sec + or - 25% in 40% sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half-cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite-size chambers. Details and discussion of the experimental method are also given.
NASA Astrophysics Data System (ADS)
Sun, Jianchao; Fan, Hai; Wang, Nan; Ai, Shiyun
2014-09-01
Vancomycin (Van)- and terephthalate (TA)-comodified europium-doped layered double hydroxides (Van-TA-Eu-LDHs) nanoparticles were successfully prepared by a two-step method, in which, TA acted as a sensitizer to enhance the fluorescent property and Van was modified on the surface of LDH to act as an affinity reagent to bacteria. The obtained products were characterized by X-ray diffraction, transmission electron microscope and fluorescent spectroscopy. The results demonstrated that the prepared Van- and TA-comodified europium-doped layered double hydroxides (Van-TA-Eu-LDHs) nanoparticles with diameter of 50 nm in size showed highly efficient fluorescent property. Furthermore, due to the high affinity of Van to bacteria, the prepared Van-TA-Eu-LDHs nanoparticles showed efficient bacteria labelling by fluorescent property. The prepared nanoparticles may have wide applications in the biological fields, such as biomolecular labelling and cell imaging.
DIFFERENTIAL THERMOMETRIC TITRATIONS AND THE DETERMINATION OF HEATS OF REACTION,
TITRATION , THERMISTORS), (*HEAT OF REACTION, TITRATION ), SILVER COMPOUNDS, NITRATES, AMMONIA, PYRIDINES, ETHYLENEDIAMINE, AMINES, ALCOHOLS, BUTANOLS, PROPANOLS, SODIUM COMPOUNDS, HYDROXIDES, TEST METHODS
Antibacterial action of calcium hydroxide vehicles and calcium hydroxide pastes.
Pacios, María Gabriela; Silva, Clara; López, María Elena; Cecilia, Marta
2012-11-01
To evaluate the in vitro action of vehicles alone and with calcium hydroxide against different bacterial species. Agar plates were inoculated with the microbial suspensions, and wells were made and filled with the calcium hydroxide pastes and the vehicles used to prepare the pastes. The zones of inhibited bacterial growth were recorded, and the resulting measurements were statistically analyzed. Enterococcus faecalis was the most resistant microorganism to all medicaments. Calcium hydroxide + p-monochlorophenol; calcium hydroxide + p-monochlorophenol-propylene glycol pastes; and p-monochlorophenol, p-monochlorophenol-propylene glycol, and chlorhexidine gluconate gel alone showed the largest zones of inhibition against all the tested microorganisms. The vehicle used to prepare the calcium hydroxide paste might contribute to its antibacterial action. Chlorhexidine gluconate gel used alone, and camphorated p-monochlorophenol and camphorated p-monochlorophenol-propylene glycol as vehicles of calcium hydroxide, could be recommended, in an antimicrobial sense. © 2012 Wiley Publishing Asia Pty Ltd.
Method and composition for testing for the presence of an alkali metal
Guon, Jerold
1981-01-01
A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques.
Seredych, Mykola; Mabayoje, Oluwaniyi; Bandosz, Teresa J
2012-01-17
Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions. © 2011 American Chemical Society
Lin, Hui; Wang, Yujuan; Niu, Junfeng; Yue, Zhihan; Huang, Qingguo
2015-09-01
Removal of environmentally persistent perfluoroalkyl acids (PFAAs), that is, perfluorooctanesulfonate (PFOS) and perfluorocarboxylic acids (PFCAs, C4 ∼ C10) were investigated through sorption on four metal hydroxide flocs generated in situ by electrocoagulation in deionized water with 10 mM NaCl as supporting electrolyte. The results indicated that the zinc hydroxide flocs yielded the highest removal efficiency with a wide range concentration of PFOA/PFOS (1.5 μM ∼ 0.5 mM) at the zinc dosage <150 mg L(-1) with the energy consumption <0.18 Wh L(-1). The sorption kinetics indicated that the zinc hydroxide flocs had an equilibrium adsorbed amount (qe) up to 5.74/7.69 mmol g(-1) (Zn) for PFOA/PFOS at the initial concentration of 0.5 mM with an initial sorption rate (v0) of 1.01 × 10(3)/1.81 × 10(3) mmol g(-1) h(-1). The sorption of PFOA/PFOS reached equilibrium within <10 min. The sorption mechanisms of PFAAs on the zinc hydroxide flocs were proposed based on the investigation of various driving forces. The results indicated that the hydrophobic interaction was primarily responsible for the PFAAs sorption. The electrocoagulation process with zinc anode may have a great potential for removing PFAAs from industrial wastewater as well as contaminated environmental waterbody.
NASA Astrophysics Data System (ADS)
Poggi, G.; Toccafondi, N.; Melita, L. N.; Knowles, J. C.; Bozec, L.; Giorgi, R.; Baglioni, P.
2014-03-01
Alkaline earth metal hydroxide nanoparticles dispersions have demonstrated to be efficient for the preservation of cellulose-based artifacts, providing a stable neutral environment and, if in excess, turning into mild alkaline species. New formulations tailored for specific conservation issues have been recently obtained via a solvothermal reaction, starting from bulk metal, and short chain alcohols. Using this synthetic procedure, stable, and high concentrated calcium hydroxide nanoparticles dispersions can be obtained. The characterization of nanoparticles was carried out by dynamic light scattering, transmission electron microscopy and X-ray powder diffraction and showed that the dispersed systems are particularly suitable for the application on porous substrates. In a direct application of this technology, acidic paper and canvas samples were artificially aged after deacidification using calcium hydroxide nanoparticles dispersed in short chain alcohols. Cellulose viscosimetric polymerization degree (DPv), cellulose pyrolysis temperature, and samples' pH were evaluated upon the aging and in terms of protective action arising from the applied treatment. In particular, determinations of DPv clearly showed that the degradation of acidic paper and canvas samples proceeds at higher rates with respect to deacidified samples. These evidences were also confirmed by the thermogravimetric analysis of samples, in which the benefits due to the deacidification treatments are measured in terms of pyrolysis temperature of cellulose. These new formulations of nanoparticles dispersions expand the palette of available tools for the conservation of cellulose-based works of art, such as easel paintings, and manuscripts, potentially opening the way for the intervention on parchment and leather, whose preservation is a particularly challenging task.
Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G
2012-08-28
We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.
Trofimova, E S; Zykova, M V; Ligacheva, A A; Sherstoboev, E Y; Zhdanov, V V; Belousov, M V; Yusubov, M S; Krivoshchekov, S V; Danilets, M G; Dygai, A M
2017-04-01
We studied activation of macrophages with humic acids extracted from peat of large deposits in the Tomsk region by two extraction methods: by hydroxide or sodium pyrophosphate. Humic acid of lowland peat types containing large amounts of aromatic carbon, phenolic and alcohol groups, carbohydrate residues and ethers, irrespectively of the extraction methods contained LPS admixture that probably determines their activating properties. Humic acid of upland peat types characterized by high content of carbonyl, carboxyl, and ester groups enhance NO production and reduce arginase expression, but these effects were minimized when sodium hydroxide was used as an extraction solvent. Pyrophosphate samples of the upland peat types were characterized by aromaticity and diversity of functional groups and have a significant advantage because of they induce specific endotoxin-independent stimulating action on antigen presenting cells.
Arizaga, Gregorio Guadalupe Carbajal; Mangrich, Antonio Salvio; Wypych, Fernando
2008-04-01
A layered zinc hydroxide nitrate (Zn5(OH)8(NO3)2.2H2O) and a layered double hydroxide (Zn/Al-NO3) were synthesized by coprecipitation and doped with different amounts of Cu2+ (0.2, 1, and 10 mol%), as paramagnetic probe. Although the literature reports that the nitrate ion is free (with D3h symmetry) between the layers of these two structures, the FTIR spectra of two zinc hydroxide nitrate samples show the C2v symmetry for the nitrate ion, whereas the g ||/A || value in the EPR spectra of Cu2+ is high. This fact suggests bonding of some nitrate ions to the layers of the zinc hydroxide nitrate. The zinc hydroxide nitrate was used as matrix in the intercalation reaction with benzoate, o-chlorobenzoate, and o-iodobenzoate ions. FTIR spectra confirm the ionic exchange reaction and the EPR spectroscopy reveals bonding of the organic ions to the inorganic layers of the zinc hydroxide nitrate, while the layered double hydroxides show only exchange reactions.
A method for making an alkaline battery electrode plate
NASA Technical Reports Server (NTRS)
Chida, K.; Ezaki, T.
1983-01-01
A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.
Method and apparatus for the production of metal oxide powder
Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.
1993-01-01
The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.
Method and apparatus for the production of metal oxide powder
Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.
1992-01-01
The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.
Method and apparatus for the production of metal oxide powder
Harris, M.T.; Scott, T.C.; Byers, C.H.
1992-06-16
The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.
Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation
Johnson, Jr., A. Burtron; Levy, Ira S.; Trimble, Dennis J.; Lanning, Donald D.; Gerber, Franna S.
1990-01-01
An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-bsed materials is disclosed. Samples of zirconium-based materials having different composition and/or fabrication are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280.degree. to 316.degree. C.). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hyriding for the same materials when subject to in-reactor (irradiated) corrision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britto, Sylvia, E-mail: sylviabritto11@gmail.com; Kamath, P. Vishnu
2014-07-01
“Imbibition” of Zn{sup 2+} ions into the cation vacancies of bayerite–Al(OH){sub 3} and NO{sub 3}{sup −} ions into the interlayer gallery yields an Al-rich layered double hydroxide with Al/Zn ratio ∼3. NO{sub 3}{sup −} ions are intercalated with their molecular planes inclined at an angle to the plane of the metal hydroxide slab and bonded to it by hydrogen bonds. Rietveld refinement of the structure shows that the monoclinic symmetry of the precursor bayerite is preserved in the product, showing that the imbibition is topochemical in nature. The nitrate ion is labile and is quantitatively replaced by CrO{sub 4}{sup 2−}more » ions from solution. The uptake of CrO{sub 4}{sup 2−} ions follows a Langmuir adsorption isotherm, thus showing that the hydroxide is a candidate material for green chemistry applications for the removal of CrO{sub 4}{sup 2−} ions from waste water. Rietveld refinement of the structure of the hydroxide after CrO{sub 4}{sup 2−} inclusion reveals that the CrO{sub 4}{sup 2−} ion is intercalated with one of its 2-fold axes parallel to the b-crystallographic axis of the crystal, also the principal 2 axis of the monoclinic cell. - Graphical abstract: The structure of the [Zn–Al4-nitrate] LDH viewed along the a-axis. - Highlights: • Synthesis of Al-rich layered double hydroxide with Al/Zn ratio ∼3. • Rietveld refinement indicates that the imbibition of Zn into Al(OH){sub 3} is topochemical in nature. • The uptake of CrO{sub 4}{sup 2−} ions follows a Langmuir adsorption isotherm.« less
Aluminum affects heterogeneous Fe(III) (Hydr)oxide nucleation, growth, and ostwald ripening.
Hu, Yandi; Li, Qingyun; Lee, Byeongdu; Jun, Young-Shin
2014-01-01
Heterogeneous coprecipitation of iron and aluminum oxides is an important process for pollutant immobilization and removal in natural and engineered aqueous environments. Here, using a synchrotron-based small-angle X-ray scattering technique, we studied heterogeneous nucleation and growth of Fe(III) (hydr)oxide on quartz under conditions found in acid mine drainage (at pH = 3.7 ± 0.2, [Fe(3+)] = 10(-4) M) with different initial aqueous Al/Fe ratios (0:1, 1:1, and 5:1). Interestingly, although the atomic ratios of Al/Fe in the newly formed Fe(III) (hydr)oxide precipitates were less than 1%, the in situ particle size and volume evolutions of the precipitates on quartz were significantly influenced by aqueous Al/Fe ratios. At the end of the 3 h experiments, with aqueous Al/Fe ratios of 0:1, 1:1, and 5:1, the average radii of gyration of particles on quartz were 5.7 ± 0.3, 4.6 ± 0.1, and 3.7 ± 0.3 nm, respectively, and the ratio of total particle volumes on quartz was 1.7:3.4:1.0. The Fe(III) (hydr)oxide precipitates were poorly crystallized, and were positively charged in all solutions. In the presence of Al(3+), Al(3+) adsorption onto quartz changed the surface charge of quartz from negative to positive, which caused the slower heterogeneous growth of Fe(III) (hydr)oxide on quartz. Furthermore, Al affected the amount of water included in the Fe(III) (hydr)oxides, which can influence their adsorption capacity. This study yielded important information usable for pollutant removal not only in natural environments, but also in engineered water treatment processes.
Qing, Qing; Guo, Qi; Zhou, Linlin; He, Yucai; Wang, Liqun; Zhang, Yue
2017-01-01
A stepwise pretreatment method that combines sodium hydroxide and organic acid pretreatments was proposed and investigated to maximize the recovery of main constituents of lignocellulose. The sodium hydroxide pretreatment was firstly optimized by a designed orthogonal experiment with the optimum pretreatment conditions determined as 1 wt% NaOH at 70 °C for 1 h, and 60.42 % of lignin was successfully removed during this stage. In the second stage, 0.5 % acetic acid was selected to pretreat the first-stage solid residue at 80 °C for 40 min in order to decompose hemicelluloses to soluble oligomers or monomers. Then, the whole slurry was subjected to in situ enzymatic saccharification by cellullase with a supplementation of xylanase to further degrade the xylooligosaccharides generated during the acetic acid pretreatment. The maximum reducing sugar and glucose yields achieved were 20.74 and 12.03 g/L, respectively. Furthermore, rapid ethanol fermentation and a yield of 80.3 % also testified this pretreatment method, and the in situ saccharification did not bring any negative impact on ethanol fermentation and has a broad application prospect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Lijing; Xu Xiangyu; Evans, David G.
2010-05-15
An MgAl-NO{sub 3}-layered double hydroxide (LDH) precursor has been prepared by a method involving separate nucleation and aging steps (SNAS). Reaction with iminodiacetic acid (IDA) under weakly acidic conditions led to the replacement of the interlayer nitrate anions by iminodiacetic acid anions. The product was characterized by XRD, FT-IR, TG-DTA, ICP, elemental analysis and SEM. The results show that the original interlayer nitrate anions of LDHs precursor were replaced by iminodiacetic acid anions and that the resulting intercalation product MgAl-IDA-LDH has an ordered crystalline structure. MgAl-IDA-LDH was mixed with low density polyethylene (LDPE) using a masterbatch method. LDPE films filledmore » with MgAl-IDA-LDH showed a higher mid to far infrared absorption than films filled with MgAl-CO{sub 3}-LDH in the 7-25 {mu}m range, particularly in the key 9-11 {mu}m range required for application in agricultural plastic films. - Graphical abstract: Intercalation of iminodiacetic acid (IDA) anions in a MgAl-NO{sub 3}-layered double hydroxide host leads to an enhancement of its infrared absorbing ability for application in agricultural plastic films.« less
Thermodynamics of Volatile Species in the Silicon-Oxygen-Hydrogen System Studied
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Opila, Elizabeth J.; Copland, Evan H.; Myers, Dwight
2005-01-01
The volatilization of silica (SiO2) to silicon hydroxides and oxyhydroxides because of reaction with water vapor is important in a variety of high-temperature corrosion processes. For example, the lifetimes of silicon carbide (SiC) and silicon nitride (Si3N4) - based components in combustion environments are limited by silica volatility. To understand and model this process, it is essential to have accurate thermodynamic data for the formation of volatile silicon hydroxides and oxyhydroxides.
Disordered anodes for Ni-metal rechargeable battery
Young, Kwo-hsiung; Wang, Lixin; Mays, William C.
2016-11-22
An electrochemical cell is provided that includes a structurally and compositionally disordered electrochemically active alloy material as an anode active material with unexpected capacity against a nickel hydroxide based cathode active material. The disordered metal hydroxide alloy includes three or more transition metal elements and is formed in such a way so as to produce the necessary disorder in the overall system. When an anode active material includes nickel as a predominant, the resulting cells represent the first demonstration of a functional Ni/Ni cell.
40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 415.310 - Applicability; description of the calcium hydroxide production subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... calcium hydroxide production subcategory. 415.310 Section 415.310 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Hydroxide Production Subcategory § 415.310 Applicability; description of the calcium hydroxide production subcategory. The provisions of this subpart are applicable to discharges...
Hydrogen generation by reaction of Si nanopowder with neutral water
NASA Astrophysics Data System (ADS)
Kobayashi, Yuki; Matsuda, Shinsuke; Imamura, Kentaro; Kobayashi, Hikaru
2017-05-01
Si and its oxide are nonpoisonous materials, and thus, it can be taken for medical effects. We have developed a method of generation of hydrogen by use of reactions of Si nanopowder with water in the neutral pH region. Si nanopowder is fabricated by the simple bead milling method. Si nanopowder reacts with water to generate hydrogen even in cases where pH is set at the neutral region between 7.0 and 8.6. The hydrogen generation rate strongly depends on pH and in the case of pH 8.0, ˜55 ml/g hydrogen which corresponds to that contained in approximately 3 L saturated hydrogen-rich water is generated in 1 h. The reaction rate for hydrogen generation greatly increases with pH, indicating that the reacting species is hydroxide ions. The change of pH after the hydrogen generation reaction is negligibly low compared with that estimated assuming that hydroxide ions are consumed by the reaction. From these results, we conclude the following reaction mechanism: Si nanopowder reacts with hydroxide ions in the rate-determining reaction to form hydrogen molecules, SiO2, and electrons in the conduction band. Then, generated electrons are accepted by water molecules, resulting in production of hydrogen molecules and hydroxide ions. The hydrogen generation rate strongly depends on the crystallite size of Si nanopowder, but not on the size of aggregates of Si nanopowder. The present study shows a possibility to use Si nanopowder for hydrogen generation in the body in order to eliminate hydroxyl radicals which cause various diseases.
Qiu, Haifa; Du, Tengfei; Wu, Junfeng; Wang, Yonglong; Liu, Jian; Ye, Shihai; Liu, Sheng
2018-05-22
Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.
Meng, Zilin; Li, Xiaowei; Lv, Fengzhu; Zhang, Qian; Chu, Paul K; Zhang, Yihe
2015-11-01
Aspirin or acetylsalicylic acid (AA), a non-steroidal anti-inflammatory drug, is intercalated into Zn-Al-layered double hydroxides (ZnAl-LDHs) by co-precipitation and reconstruction methods. The composition, structure, and morphology of the intercalated products as well as their release behavior are determined experimentally and theoretically by Material Studio 5.5. Experimental results disclose the strong interaction between the LDHs sheets and AA in the intercalated ZnAl-LDHs produced by co-precipitation and slow release of AA from the intercalated ZnAl-LDHs in both phosphate buffered saline (PBS) and borate buffered saline (BBS) solutions. The percentage of AA released from the ZnAl-LDHs prepared by both methods in PBS (96.87% and 98.12%) are much more than those in BBS (68.59% and 81.22%) implying that both H4BO4(-) and H2PO4(-) can exchange with AA in the ZnAl-LDHs. After AA is released to PBS, ZnAl-LDHs break into small pieces. The experimental results are explained theoretically based on the calculation of the bonding energy between the anions and LDHs sheets as well as the AlO bond length change in the LDHs sheets. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Haifeng; Tang, Pinggui; Feng, Yongjun, E-mail: yjfeng@mail.buct.edu.cn
2012-03-15
Highlights: Black-Right-Pointing-Pointer PMIDA anions were intercalated into Mg{sub 2}Al-NO{sub 3} LDH by anion-exchange method. Black-Right-Pointing-Pointer The prepared material has highly selective IR absorption property in 9-11 {mu}m. Black-Right-Pointing-Pointer The obtained material has practical applications as heat-retaining additive. -- Abstract: N-phosphonomethyl aminodiacetic acid (PMIDA) was intercalated into the interlayer spacing of layered double hydroxides (LDH) by an anion-exchange method. The intercalated LDHs were characterized by various techniques such as powder X-ray diffraction (XRD), FT-IR spectroscopy, elemental analysis and simultaneous thermogravimetric and mass spectrometry (TG-MS) in details. The results show the formation of Mg{sub 2}Al-PMIDA LDH based on the expansion of d-spacingmore » from 0.89 nm to 1.22 nm and the disappearance of the characteristic IR absorption band at 1384 cm{sup -1} for NO{sub 3}{sup -} anions. The incorporation of Mg{sub 2}Al-PMIDA LDH into the low density polyethylene (LDPE) as an additive enhances the selectivity of IR absorption in the main wavelength region 9-11 {mu}m for radiant heat loss at night. Mg{sub 2}Al-PMIDA LDH as a heat-retaining additive has practical application in agricultural plastic films.« less
NASA Astrophysics Data System (ADS)
Ganesh, Karthik
Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts. However, by extrapolating the necessary rate of concentration of sodium hydroxide required to produce hydrogen rates that would enable use of the system on highway drive cycles, it was deemed unsafe due to the caustic nature of the solution used.
Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C
2003-07-28
A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wan; Liang, Na; Peng, Pai
2017-02-15
Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10{sup −2} S cm{sup −1} at 60 °C. - Graphical abstract: Anion-exchange membrane based onmore » quaternized polysulfone and exfoliated layered double hydroxide is optically transparent and has good ionic properties.« less
Chen, Pei; Bryden, Noella
2015-01-01
A single-laboratory validation was performed on a practical ultra-HPLC (UHPLC)-diode array detector (DAD)/tandem MS method for determination of yohimbine in yohimbe barks and related dietary supplements. Good separation was achieved using a Waters Acquity ethylene bridged hybrid C18 column with gradient elution using 0.1% (v/v) aqueous ammonium hydroxide and 0.1% ammonium hydroxide in methanol as the mobile phases. The method can separate corynanthine from yohimbine in yohimbe bark extract, which is critical for accurate quantitation of yohimbine in yohimbe bark and related dietary supplements. Accuracy of the method was demonstrated using standard addition methods. Both intraday and interday precisions of the method were good. The method can be used without MS since yohimbine concentration in yohimbe barks and related dietary supplements are usually high enough for DAD detection, which can make it an easy and economical method for routine analysis of yohimbe barks and related dietary supplements. On the other hand, the method can be used with MS if desired for more challenging work such as biological and/or clinical studies.
21 CFR 582.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...
40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section for...
21 CFR 582.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...
21 CFR 582.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...
40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide surface...
21 CFR 582.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...
40 CFR 721.10504 - Surface modified magnesium hydroxide (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Surface modified magnesium hydroxide... Specific Chemical Substances § 721.10504 Surface modified magnesium hydroxide (generic). (a) Chemical... as surface modified magnesium hydroxide (PMN P-06-682) is subject to reporting under this section for...
40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide surface...
21 CFR 582.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium hydroxide. 582.1428 Section 582.1428 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1428 Magnesium hydroxide. (a) Product. Magnesium hydroxide. (b) Conditions of use. This...
21 CFR 582.1205 - Calcium hydroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium hydroxide. 582.1205 Section 582.1205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This...
21 CFR 582.1631 - Potassium hydroxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...
21 CFR 582.1631 - Potassium hydroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...
21 CFR 582.1631 - Potassium hydroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...
21 CFR 582.1631 - Potassium hydroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...
21 CFR 582.1631 - Potassium hydroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...
Process for changing caking coals to noncaking coals
Beeson, Justin L.
1980-01-01
Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.
Alkali Silica Reaction In The Presence Of Metakaolin - The Significant Role of Calcium Hydroxide
NASA Astrophysics Data System (ADS)
Zapała-Sławeta, Justyna
2017-10-01
Reducing the internal corrosion, which is the result of reactions between alkalis and reactive aggregates is especially important in ensuring durability properties of concrete. One of the methods of inhibiting the reaction is using some mineral additives which have pozzolanic properties. This paper presents the efficacy of high-reactivity metakaolin in reducing expansion due to alkali-silica reaction. It was demonstrated that metakaolin in the amount from 5% to 20% by mass of Portland cement reduce linear expansion of mortar bars with opal aggregate. Nevertheless, the safe expansion level in the specimens, classified as non-destructive to concrete, was recorded for the mortars prepared with 20% addition of metakaolin. Depletion of free calcium hydroxide content was considered as one of the most beneficial effects of metakaolin in controlling alkali silica reaction. Based on thermogravimetric analysis (TGA) performed on mortar bars with and without metakaolin the differences in portlandite content were determined. Microstructural observation of the specimens containing metakaolin indicated the presence of a reaction products but fewer in number than those forming in the mortars without mineral additives.
NASA Astrophysics Data System (ADS)
Amalraj, Augustine; Pius, Anitha
2017-10-01
The aim of this study is to design and develop a novel cost effective method for fluoride removal, applicable to rural areas of developing countries. Adsorption is widely considered as one of the appropriate technologies for water defluoridation. This study investigates the feasibility of using low-cost biomass based activated carbon from the bark of Morinda tinctoria coated with aluminum hydroxide (AHAC) for water defluoridation, at neutral pH range. Characterization of AHAC was done through IR, SEM with EDAX studies before and after fluoride treatment. The fluoride adsorption capacity of AHAC as a function of contact time, pH and initial fluoride concentration was investigated. The role of co-existing interfering ions also was studied. The isotherm and kinetic models were used to understand the nature of the fluoride adsorption onto AHAC. Freundlich isotherm and intra-particle diffusion were the best-fitting models for the adsorption of fluoride on AHAC. Fluoride adsorption kinetics well fitted with pseudo-second order model. The results showed excellent fluoride adsorption capacity was found to be 26.03 mg g-1 at neutral pH.
NASA Astrophysics Data System (ADS)
Aghazadeh, Mustafa; Rashidi, Amir; Ganjali, Mohammad Reza
2018-01-01
In this paper, the well-defined nano-sheets of α-Co(OH)2 were prepared through the cathodic electrosynthesis from an additive-free aqueous cobalt nitrate bath. The pulse current cathodic electro-deposition (PC-CED) was used as the means for the controlling the OH- electrogeneration on the cathode surface. The characteristics and electrochemical behavior of the prepared cobalt hydroxide were also assessed through SEM, TEM, XRD, BET, and IR. The results proved the product to be composed of crystalline pure α phase of cobalt hydroxide with sheet-like morphology at nanoscale. Evaluations of the electrochemical behaviour of the α-Co(OH)2 nano-sheets revealed that they are capable to delivering the specific capacitance of 1122 F g-1 at a discharge load of 3 A g-1 and SC retention of 84% after 4000 continues discharging cycles, suggesting the nano-sheets as promising candidates for use in electrochemical supercapacitors. Further, the method used for the preparation of the compounds enjoys the capability of being scaled up. [Figure not available: see fulltext.
Qiao, Lu; Guo, Yemin; Sun, Xia; Jiao, Yancui; Wang, Xiangyou
2015-08-01
A sensitive electrochemical immunosensor based on NiAl-layered double hydroxide/graphene nanocomposites (NiAl-LDH/G) and hollow gold nanospheres (HGNs) was proposed for chlorpyrifos detection. The NiAl-LDH/G was prepared using a conventional coprecipitation process and reduction of the supporting graphene oxide. Subsequently, the nanocomposites were dispersed with chitosan (CS). The NiAl-LDH/G possessed good electrochemical behavior and high binding affinity to the electrode. The high surface areas of HGNs and the vast aminos and hydroxyls of CS provided a platform for the covalently crosslinking of antibody. Under optimal conditions, the immunosensor exhibited a wide linear range from 5 to 150 μg/mL and from 150 to 2 μg/mL, with a detection limit of 0.052 ng/mL. The detection results showed good agreement with standard gas chromatography method. The constructed immunosensor exhibited good reproducibility, high specificity, acceptable stability and regeneration performance, which provided a new promising tool for chlorpyrifos detection in real samples.
Pretreatment of spent mushroom substrate for enhancing the conversion of fermentable sugar.
Wu, Songqing; Lan, Yanjiao; Wu, Zhimao; Peng, Yan; Chen, Siqi; Huang, Zhipeng; Xu, Lei; Gelbič, Ivan; Guan, Xiong; Zhang, Lingling; Zou, Shuangquan
2013-11-01
To develop a cost-effective biopesticide, spent mushroom substrate (SMS) extract was studied as a potential carbon source for cultivating Bacillus thuringiensis (Bt). Several pretreatments were compared to determine the optimal method for degrading cellulose to produce reducing sugars, including dilute sulfuric acid (0.5-2.0% v/v, 50-121°C, 1h), sodium hydroxide (0.5-2% w/v, 50-121°C, 1h), calcium hydroxide (0.2-4% w/v, 50-121°C, 1h), and hot water (50-121°C, 1h). Pretreatment was followed by standard enzymatic hydrolysis and fermentation. Results showed that the highest cellulose degradation was obtained using 2% dilute sulfuric acid pretreatment at 121°C for 1h, resulting in a high yield of reducing sugar (284.24 g/kg SMS). Sporulation was also highest using the same pretreatment. Use of SMS is not only an alternative way to commercialize Bt-based biopesticide, but also a potential solution for the environmental pollution associated with accumulation of the spent substrate of the mushroom industry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yu, Shuai; Zhang, Yingxi; Lou, Gaobo; Wu, Yatao; Zhu, Xinqiang; Chen, Hao; Shen, Zhehong; Fu, Shenyuan; Bao, Binfu; Wu, Limin
2018-03-27
One of the key challenges for pseudocapacitive electrode materials with highly effective capacitance output and future practical applications is how to rationally construct hierarchical and ordered hybrid nanoarchitecture through the simple process. Herein, we design and synthesize a novel NiMn-layered double hydroxide nanosheet@Ni 3 S 2 nanorod hybrid array supported on porous nickel foam via a one-pot hydrothermal method. Benefited from the ultrathin and rough nature, the well-defined porous structure of the hybrid array, as well as the synergetic effect between NiMn-layered double hydroxide nanosheets and Ni 3 S 2 nanorods, the as-fabricated hybrid array-based electrode exhibits an ultrahigh specific capacitance of 2703 F g -1 at 3 A g -1 . Moreover, the asymmetric supercapacitor with this hybrid array as a positive electrode and wood-derived activated carbon as a negative electrode demonstrates high energy density (57 Wh Kg -1 at 738 W Kg -1 ) and very good electrochemical cycling stability.
NASA Astrophysics Data System (ADS)
Zhou, Wei; Zhang, Wenpeng; Chen, Zilin
2017-01-01
Preparation and immobilization of layered double hydroxides (LDHs) film onto multiple substrates is important and challenging in functional materials fields by date. In this work, a simple and universal polydopamine (PD)-based layer-by-layer assembly strategy was developed for the immobilization of LDHs film onto surfaces such as polypropylene chip, glass slides and metal coins. The surface of substrates was firstly modified by polydopamine functionalization, and then LDHs film was synthesized via urea method and directly immobilized on the PD layer by in situ growing strategy in one step. The PD layer as well as the final LDHs film was characterized by energy dispersive X-ray spectroscopy, scanning electron microscope, infrared spectroscopy, X-ray diffraction pattern and X-ray photoelectron spectra. It has been demonstrated the formation of the dense and homogeneous nanoscaled LDHs film with 400 nm thickness. Adsorption behavior of the fabricated NiAl-LDHs film toward anionic dyes and pharmaceuticals was further assessed. To demonstrate their extensive application, fast and high efficient adsorption of anionic dyes and pharmaceuticals was achieved by NiAl-LDHs-modified polypropylene centrifugal tube.
Qin, Jiayang; Wang, Xiuwen; Zheng, Zhaojuan; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping
2010-10-01
A sodium lactate tolerant mutant strain named Bacillus sp. Na-2 was obtained and applied to sodium hydroxide-based L-lactic acid (LA) production process. The influences of aeration and pH were investigated to further improve the resistance of strain Na-2 against sodium lactate stress and to obtain the most efficient L-LA production process. Although mild aeration was favorable for cell growth and L-LA production, vigorous aeration resulted in a metabolic shift from homolactic to mixed-acid/acetoin fermentation. Therefore, a two-stage aeration control strategy was employed. Optimum pH was found to be 6.0. A total of 106.0 g/l L-LA was produced in 30 h by Bacillus sp. Na-2 using sodium hydroxide as neutralizing agent. Productivity, conversion rate and optical purity were 3.53 g/l/h, 94% and 99.5%, respectively. The remarkable fermentation traits of Bacillus sp. Na-2 and the environment-friendly characteristics of NaOH-based process represent new insight for industrial scale production of L-LA. Copyright 2010 Elsevier Ltd. All rights reserved.
40 CFR 721.4600 - Recovered metal hydroxide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Recovered metal hydroxide. 721.4600... Substances § 721.4600 Recovered metal hydroxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a recovered metal hydroxide (PMN P-91-809...
21 CFR 73.1010 - Alumina (dried aluminum hydroxide).
Code of Federal Regulations, 2010 CFR
2010-04-01
... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless, tasteless, amorphous powder consisting essentially of aluminum hydroxide (Al2 O3· XH2 O). (2) Color additive...
21 CFR 73.1326 - Chromium hydroxide green.
Code of Federal Regulations, 2010 CFR
2010-04-01
... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide (Cr2O3·XH2O). (2) Color additive mixtures for drug use made with chromium hydroxide green may contain only those...
Code of Federal Regulations, 2010 CFR
2010-07-01
... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...
Code of Federal Regulations, 2012 CFR
2012-07-01
... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...
21 CFR 184.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... salt or by hydration of reactive grades of magnesium oxide. (b) The ingredient meets the specifications... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... Listing of Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide...
21 CFR 184.1428 - Magnesium hydroxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... hydration of reactive grades of magnesium oxide. (b) The ingredient meets the specifications of the Food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium hydroxide. 184.1428 Section 184.1428 Food... Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide (Mg(OH)2, CAS...
21 CFR 582.1763 - Sodium hydroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This substance...
21 CFR 582.1763 - Sodium hydroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This substance...
21 CFR 582.1763 - Sodium hydroxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This substance...
21 CFR 582.1763 - Sodium hydroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This substance...
21 CFR 582.1763 - Sodium hydroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This substance...
Code of Federal Regulations, 2011 CFR
2011-07-01
... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...
Code of Federal Regulations, 2014 CFR
2014-07-01
... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...
Code of Federal Regulations, 2013 CFR
2013-07-01
... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...
Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.
1958-11-18
The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.
2013-06-01
method is intended for trace analysis of explosives and propellant residues by high performance liquid chromatography (HPLC) using an ultraviolet (UV...detector set at 254 nm. The HPLC used for this analysis was a Dionex Summit System with a UV detector equipped with Dionex E1 and E2 columns...Ca(OH)2) and sodium hydroxide (NaOH) were evaluated as sources of hydroxide ion for the alkaline hydrolysis of M1 propellant in soil from Camp
An easy access to nanocrystalline alkaline earth metal fluorides - just by shaking
NASA Astrophysics Data System (ADS)
Dreger, M.; Scholz, G.; Kemnitz, E.
2012-04-01
High energy ball milling as fast, direct and solvent free method allows an easy access to nanocrystalline alkaline earth metal fluorides MF2 (M: Mg, Ca, Sr, Ba). Comparable metal sources (acetates, carbonates, hydroxides, alkoxides) were used for the reaction with NH4F as fluorinating agent. Even very simple manual shaking experiments between NH4F and the corresponding hydroxides in the stoichiometric ratio (M:F = 1:2, M: Ca, Sr, Ba) give phase pure fluorides. Moreover, comparable classical thermal reactions in closed crucibles at higher temperatures provide phase pure crystalline fluorides in nearly all cases as well.
Study Of Phase Separation In Glass
NASA Technical Reports Server (NTRS)
Neilson, George F.; Weinberg, Michael C.; Smith, Gary L.
1989-01-01
Report describes an experimental study of effect of hydroxide content on phase separation in soda/silica glasses. Ordinary and gel glasses melted at 1,565 degree C, and melts stirred periodically. "Wet" glasses produced by passing bubbles of N2 saturated with water through melts; "dry" glasses prepared in similar manner, except N2 dried before passage through melts. Analyses of compositions of glasses performed by atomic-absorption and index-of-refraction measurements. Authors conclude hydroxide speeds up phase separation, regardless of method (gel or ordinary) by which glass prepared. Eventually helps material scientists to find ways to control morphology of phase separation.
Sun, Jianghao; Chen, Pei
2012-03-05
A practical ultra high-performance liquid chromatography (UHPLC) method was developed for fingerprint analysis of and determination of yohimbine in yohimbe barks and related dietary supplements. Good separation was achieved using a Waters Acquity BEH C(18) column with gradient elution using 0.1% (v/v) aqueous ammonium hydroxide and 0.1% ammonium hydroxide in methanol as the mobile phases. The study is the first reported chromatographic method that separates corynanthine from yohimbine in yohimbe bark extract. The chromatographic fingerprint analysis was applied to the analysis of 18 yohimbe commercial dietary supplement samples. Quantitation of yohimbine, the traditional method for analysis of yohimbe barks, were also performed to evaluate the results of the fingerprint analysis. Wide variability was observed in fingerprints and yohimbine content among yohimbe dietary supplement samples. For most of the dietary supplements, the yohimbine content was not consistent with the label claims. Copyright © 2011. Published by Elsevier B.V.
Bhardwaj, Anuj; Ballal, Suma; Velmurugan, Natanasabapathy
2012-01-01
Aim: A comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain, and aloe vera (all in gel formulations), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis—an in vitro study. Materials and Methods: The antimicrobial efficacy was assessed in vitro using dentin shavings collected at 2 depths of 200 and 400 μm. The total colony forming units at the end of 1, 3, and 5 days were assessed. Results: The overall percentage inhibition of bacterial growth (200 and 400 μm depth) was 100% with chlorhexidine gel. This was followed by M. citrifolia gel (86.02%), which showed better antimicrobial efficacy as compared with aloe vera gel (78.9%), papain gel (67.3%), and calcium hydroxide (64.3%). There was no statistical difference between data at 200 and 400 μm depth. Conclusion: Chlorhexidine gel showed the maximum antimicrobial activity against E. faecalis, whereas calcium hydroxide showed the least. Among the natural intracanal medicaments, M. citrifolia gel consistently exhibited good inhibition up to the 5th day followed by aloe vera gel and papain gel. PMID:22876022
2017-01-01
We have performed a systematic ab initio study on alkali and alkaline earth hydroxide neutral (MOH) and anionic (MOH−) species where M = Li, Na, K, Rb, Cs or Be, Mg, Ca, Sr, Ba. The CCSD(T) method with extended basis sets and Dirac-Fock relativistic effective core potentials for the heavier atoms has been used to study their equilibrium geometries, interaction energies, electron affinities, electric dipole moment, and potential energy surfaces. All neutral and anionic species exhibit a linear shape with the exception of BeOH, BeOH−, and MgOH−, for which the equilibrium structure is found to be bent. Our analysis shows that the alkaline earth hydroxide anions are valence-bound whereas the alkali hydroxide anions are dipole bound. In the context of sympathetic cooling of OH− by collision with ultracold alkali and alkaline earth atoms, we investigate the 2D MOH− potential energy surfaces and the associative detachment reaction M + OH→− MOH + e−, which is the only energetically allowed reactive channel in the cold regime. We discuss the implication for the sympathetic cooling of OH− and conclude that Li and K are the best candidates for an ultracold buffer gas. PMID:28527437
Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee
2016-09-01
In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Functional Inorganic Materials by Soft Chemical Process Using Ion-Exchange Reactions
NASA Astrophysics Data System (ADS)
Feng, Qi
Our study on soft chemical process using the metal oxide and metal hydroxide nanosheets obtained by exfoliation their layered compounds were reviewed. Ni(OH)2⁄MnO2 sandwich layered nanostructure can be prepared by layer by-layer stacking of exfoliated manganese oxide nanosheets and nickel hydroxide layers. Manganese oxide nanotubes can be obtained by curling the manganese oxide nanosheets using the cationic surfactants as the template. The layered titanate oriented thin film can be prepared by restacking the titanate nanosheets on a polycrystalline substrate, and transformed to the oriented BaTiO3 and TiO2 thin films by the topotactic structural transformation reactions, respectively. The titanate nanosheets can be transformed anatase-type TiO2 nanocrystals under hydrothermal conditions. The TiO2 nanocrystals are formed by a topotactic structural transformation reaction. The TiO2 nanocrystals prepared by this method expose specific crystal plane on their surfaces, and show high photocatalytic activity and high dye adsorption capacity for high performance dye-sensitized solar cell. A series of layered basic metal salt (LBMS) compounds were prepared by hydrothermal reactions of transition metal hydroxides and organic acids. We succeeded in the exfoliation of these LBMS compounds in alcohol solvents, and obtained the transition metal hydroxide nanosheets for the first time.
Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir
2016-01-01
The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322
X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method
NASA Astrophysics Data System (ADS)
Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo
2017-12-01
Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.
Megyes, Tünde; Bálint, Szabolcs; Grósz, Tamás; Radnai, Tamás; Bakó, Imre; Sipos, Pál
2008-01-28
To determine the structure of aqueous sodium hydroxide solutions, results obtained from x-ray diffraction and computer simulation (molecular dynamics and Car-Parrinello) have been compared. The capabilities and limitations of the methods in describing the solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in describing the hydration spheres of the sodium ion and yield structural information on the anion's hydration structure. Classical molecular dynamics simulations were not able to correctly describe the bulk structure of these solutions. However, Car-Parrinello simulation proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions and bulk structure of solutions. The results of Car-Parrinello simulations were compared with the findings of diffraction experiments.
Adsorption of NO on alumina-supported oxides and oxide-hydroxides of manganese.
Spasova, I; Nikolov, P; Mehandjiev, D
2005-10-15
The adsorption capacity for NO of alumina-supported oxides and oxide-hydroxides of manganese have been studied. Two series of samples have been prepared by precipitation on gamma-alumina and appropriate thermal treatment. The samples have been characterized by adsorption methods, magnetic methods, electronic paramagnetic resonance (EPR), transient response technique, and temperature-programmed desorption (TPD). The influence of the concentration of the initial manganese-containing solution has been investigated. The sample, prepared with a solution with Mn concentration of 4 g/100 ml, has been shown to be the best adsorbent for NO under the conditions of the experiment. It has been found that the presence mainly of Mn3+ ions on the surface of the support is probably responsible for the enhanced adsorption capacity.
Comellas, L; Portillo, J L; Vaquero, M T
1993-12-24
A procedure for determining linear alkylbenzenesulphonates (LASs) in sewage sludge and amended soils has been developed. Extraction by sample treatment with 0.5 M potassium hydroxide in methanol and reflux was compared with a previously described extraction procedure in Soxhlet with methanol and solid sodium hydroxide in the sample. Repeatability results were similar with savings in extraction time, solvents and evaporation time. A clean-up method involving a C18 cartridge has been developed. Analytes were quantified by a reversed-phase HPLC method with UV and fluorescence detectors. Recoveries obtained were higher than 84%. The standing procedure was applied to high doses of sewage sludge-amended soils (15%) with increasing quantities of added LASs. Degradation data for a 116-day period are presented.
21 CFR 872.3250 - Calcium hydroxide cavity liner.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...
21 CFR 872.3250 - Calcium hydroxide cavity liner.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...
21 CFR 184.1763 - Sodium hydroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye. The...
21 CFR 184.1763 - Sodium hydroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye. The...
21 CFR 184.1763 - Sodium hydroxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye. The...
21 CFR 184.1763 - Sodium hydroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye. The...
21 CFR 872.3250 - Calcium hydroxide cavity liner.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...
21 CFR 872.3250 - Calcium hydroxide cavity liner.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...
21 CFR 872.3250 - Calcium hydroxide cavity liner.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...
21 CFR 73.1326 - Chromium hydroxide green.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide (Cr2O3·XH2O...
NASA Astrophysics Data System (ADS)
He, Xiangming; Wang, Li; Li, Wen; Jiang, Changyin; Wan, Chunrong
The Yb/Co coated nickel hydroxides were prepared by precipitation of Yb(OH) 3 on the surface of spherical nickel hydroxide, followed by precipitation of Co(OH) 2 on its surface. The optimum coating content of ytterbium was around 2% (atomic concentration) to obtain high discharge capacity at 60 °C. It was shown that the discharge capacity of nickel hydroxide at high temperatures was improved by coating of ytterbium and cobalt hydroxide. The high temperature performances of the sealed AAA-sized Ni-MH batteries using Yb/Co coated nickel hydroxide as positive electrodes were carried out, showing much better than those using the un-coated and only Co(OH) 2 coated nickel hydroxide electrodes. The charge acceptance of the battery using 2% Yb and 2% Co coated nickel hydroxide reached 92% at 60 °C, where the charge acceptances for the un-coated and only cobalt coated ones were only 42 and 46%, respectively. It has shown that the Yb/Co coating is an effective way to improve the high temperature performance of nickel hydroxide for nickel-metal hydride batteries.
Bostanci, Seher; Kocyigit, Pelin; Gürgey, Erbak
2007-06-01
Chemical matricectomy is performed mainly by two agents: phenol and sodium hydroxide. Both agents have excellent cure rates, but there are no data about the comparison of postoperative healing periods. This study was designed to compare the postoperative morbidity rates of sodium hydroxide and phenol matricectomies. Forty-six patients with 154 ingrowing nail sides were treated with either sodium hydroxide or phenol matricectomy. In the postoperative period, the patients were evaluated for the duration and severity of pain, drainage, and peripheral tissue destruction; complete healing periods; and overall success rates. The incidence of pain was higher in the sodium hydroxide group on the first visit, on the second day, but all patients became pain-free after that. The incidence and duration of drainage and peripheral tissue destruction was significantly higher in the phenol group. The mean period for complete recovery was 10.8 days in the sodium hydroxide group, whereas it was 18.02 days in the phenol group. The overall success rates in the sodium hydroxide and phenol groups were found to be 95.1 and 95.8%, respectively. Both sodium hydroxide and phenol are effective agents giving high success rates, but sodium hydroxide causes less postoperative morbidity and provides faster recovery.
Antimicrobial activity of calcium hydroxide and chlorhexidine on intratubular Candida albicans
Jacques Rezende Delgado, Ronan; Helena Gasparoto, Thaís; Renata Sipert, Carla; Ramos Pinheiro, Claudia; Gomes de Moraes, Ivaldo; Brandão Garcia, Roberto; Antônio Hungaro Duarte, Marco; Monteiro Bramante, Clóvis; Aparecido Torres, Sérgio; Pompermaier Garlet, Gustavo; Paula Campanelli, Ana; Bernardineli, Norberti
2013-01-01
This study investigated the efficacy of calcium hydroxide and chlorhexidine gel for the elimination of intratubular Candida albicans (C. albicans). Human single-rooted teeth contaminated with C. albicans were treated with calcium hydroxide, 2% chlorhexidine gel, calcium hydroxide plus 2% chlorhexidine gel, or saline (0.9% sodium chloride) as a positive control. The samples obtained at depths of 0–100 and 100–200 µm from the root canal system were analyzed for C. albicans load by counting the number of colony forming units and for the percentage of viable C. albicans using fluorescence microscopy. First, the antimicrobial activity of calcium hydroxide and the 2% chlorhexidine gel was evaluated by counting the number of colony forming units. After 14 days of intracanal medication, there was a significant decrease in the number of C. albicans colony forming units at a depth of 0–100 µm with chlorhexidine treatment either with or without calcium hydroxide compared with the calcium hydroxide only treatment. However, there were no differences in the number of colony forming units at the 100–200 µm depth for any of the medications investigated. C. albicans viability was also evaluated by vital staining techniques and fluorescence microscopy analysis. Antifungal activity against C. albicans significantly increased at both depths in the chlorhexidine groups with and without calcium hydroxide compared with the groups treated with calcium hydroxide only. Treatments with only chlorhexidine or chlorhexidine in combination with calcium hydroxide were effective for elimination of C. albicans. PMID:23538639
Vongehr, Sascha
2017-05-22
It is argued that the main claims of "Flexible Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates" are strongly exaggerated. By selecting first a subregion (ΔV) of the total voltage drop, the capacitance (C ΔV ) is inflated by 30 %. Then, by selecting different regions for different properties and using different ΔV values in different terms of a single expression for the energy density (E ΔV ), the value is doubled. A bending angle of only 45° is instead claimed to be 180°. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novic, Milko; Liu, Yan; Avdalovic, Nebojsa; Pihlar, Boris
2002-05-31
Classical gradient elution, based on the application of a gradient pump used for mixing two or more prepared eluent components in pre-determined concentrations, was replaced by a chromatography system equipped with an isocratic pump and an electrolytic KOH generator. The isocratic pump delivered a constant concentration eluent composed of pure hydrogencarbonate solution. Carbonate ions, the main component of carbonate/hydrogencarbonate-based eluents, were formed by titration of hydrogencarbonate with KOH formed on-line in the electrolytic KOH generator. By changing the concentration of electrolytically-generated KOH, the eluent composition could be changed from pure hydrogencarbonate to a carbonate/hydrogencarbonate buffer, and finally to a carbonate/hydroxide-based eluent. The described system was tested to achieve pH-based changes of retention behavior of phosphate under constant inflow eluent composition conditions.
Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie
2015-11-25
Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum-nickel hydroxide-graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts.
Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S
2016-04-15
Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza, Oscar, E-mail: oamendoz@unal.edu.co; Giraldo, Carolina; Camargo, Sergio S.
This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement inmore » calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure.« less
RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS
Calkins, G.D.
1958-06-10
>A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.
Cho, Seungho; Jung, Sungwook; Jeong, Sanghwa; Bang, Jiwon; Park, Joonhyuck; Park, Youngrong; Kim, Sungjee
2013-01-08
Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites.
NASA Astrophysics Data System (ADS)
Hashim, Norhayati; Sharif, Sharifah Norain Mohd; Isa, Illyas Md; Hamid, Shahidah Abdul; Hussein, Mohd Zobir; Bakar, Suriani Abu; Mamat, Mazidah
2017-06-01
The intercalation of L-phenylalanate (LP) into the interlayer gallery of zinc layered hydroxide (ZLH) has been successfully executed using a simple direct reaction method. The synthesised intercalation compound, zinc layered hydroxide-L-phenylalanate (ZLH-LP), was characterised using PXRD, FTIR, CHNS, ICP-OES, TGA/DTG, FESEM and TEM. The PXRD patterns of the intercalation compound demonstrate an intense and symmetrical peak, indicating a well-ordered crystalline layered structure. The appearance of an intercalation peak at a low angle of 2θ with a basal spacing of 16.3 Å, signifies the successful intercalation of the L-phenylalanate anion into the interlayer gallery of the host. The intercalation is also validated by FTIR spectroscopy and CHNS elemental analysis. Thermogravimetric analysis confirms that the ZLH-LP intercalation compound has higher thermal stability than the pristine L-phenylalanine. The observed percentage of L-phenylalanate accumulated release varies in each release media, with 84.5%, 79.8%, 63.8% and 61.8% release in phosphate buffer saline (PBS) solution at pH 4.8, deionised water, PBS solution at pH 7.4 and NaCl solution, respectively. The release behaviour of LP from its intercalation compounds in deionised water and PBS solution at pH 4.8 follows pseudo second order, whereas in NaCl solution and PBS solution at pH 7.4, it follows the parabolic diffusion model. This study shows that the synthesised ZLH-LP intercalation compound can be used for the formation of a new generation of materials for targeted drug release with controlled release properties.
40 CFR 721.4600 - Recovered metal hydroxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... this new information, and any information on methods for protecting against such risk, into an MSDS as... Section 721.4600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... new use of this substance is any manner or method of manufacture, import, or processing associated...
Thorstensen, C W; Christiansen, A
2001-09-01
A method for the extraction of bentazone, dichlorprop, and MCPA in three selected Norwegian soils of different textures is described. Initially three different extraction methods were tested on one soil type. All methods gave recoveries >80% for the pesticide mixture, but extraction with sodium hydroxide in combination with solid-phase preconcentration was used for further recovery tests with soils of different properties spiked at four herbicide concentration levels (0.001-10 microg/g of wet soil). The method was rapid and easy and required a minimum of organic solvents. The recoveries were in the range of 82-109, 80-123, and 45-91% for the soils containing 1.4 (Hole), 2.5 (Kroer), and 37.8% (Froland) organic carbon, respectively. Limits of quantification using GC-MS were 0.0003 microg/g of wet soil for bentazone and 0.0001 microg/g of wet soil for both dichlorprop and MCPA.
21 CFR 184.1205 - Calcium hydroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium hydroxide. 184.1205 Section 184.1205 Food... Specific Substances Affirmed as GRAS § 184.1205 Calcium hydroxide. (a) Calcium hydroxide (Ca(OH)2, CAS Reg. No. 1305-62-0) is also known as slaked lime or calcium hydrate. It is produced by the hydration of...
21 CFR 184.1763 - Sodium hydroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium hydroxide. 184.1763 Section 184.1763 Food... GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye. The empirical formula is NaOH. Sodium...
21 CFR 184.1205 - Calcium hydroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium hydroxide. 184.1205 Section 184.1205 Food... GRAS § 184.1205 Calcium hydroxide. (a) Calcium hydroxide (Ca(OH)2, CAS Reg. No. 1305-62-0) is also known as slaked lime or calcium hydrate. It is produced by the hydration of lime. (b) The ingredient...
The alpha-form of the hydroxides of bivalent metals
NASA Technical Reports Server (NTRS)
Feitknecht, W.
1984-01-01
X-ray analyses were made of the hydroxides of the bivalent metals. The freshly pptd. hydroxide is usually in the alpha-form, which on standing is converted to another form or other forms. The alpha and c grating dimensions of the alpha-form and the C6-type of Co, Zn, C, Co-Zn and Ni-Zn hydroxides are tabulated. Ni hydroxide does not exhibit an alpha-form. The alpha-Co(OH)2, the blue form, is stabilized by sugar or by the higher alcohols: these compounds do not stabilize alpha-Zn(OH)2.
Rapid Method for Sodium Hydroxide Fusion of Asphalt ...
Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 Rapid method developed for analysis of Americium-241 (241Am), plutonium-238 (238Pu), plutonium-239 (239Pu), radium-226 (226Ra), strontium-90 (90Sr), uranium-234 (234U), uranium-235 (235U) and uranium-238 (238U) in asphalt roofing material samples
NASA Astrophysics Data System (ADS)
George, Giphin; Saravanakumar, M. P.
2017-11-01
The layered double hydroxides (LDH) which are anionic clay substances comprising of stacked cationic layers and interlayer anions. The cationic sheets contain octahedral structure consisting the divalent and trivalent ions in the center and hydroxyl bunches in the corners, gathered by three bonding with the neighbouring octahedra on every side of the layer. The ratio between the quantity of cations and OH- ions is 2:1, so a positive charge shows up on the layer because of the presence of trivalent cations. The interlayer space gives the compensation anions and water molecules, assuring a balanced out layered structure. The LDH materials were successfully synthesised from magnesium, aluminium, zinc and chromium chloride salts utilizing the co-precipitation technique. A Zn-Al LDH was researched as a potential sorbent material. This article reviews the recent advances in the preparation and intercalation of layered double hydroxides and its application in the fabrication of Dye Sensitized Solar Cell (DSSC).
TRANSURANIC ELEMENT, COMPOSITION THEREOF, AND METHODS FOR PRODUCING SEPARATING AND PURIFYING SAME
Wahl, A.C.
1961-09-19
A process of separating plutonium from fission products contained in an aqueous solution is described. Plutonium, in the tri- or tetravalent state, and the fission products are coprecipitated on lanthanum fluoride, lanthanum oxalate, cerous fluoride, cerous phosphate, ceric iodate, zirconyl phosphate, thorium iodate, or thorium fluoride. The precipitate is dissolved in acid, and the plutonium is oxidized to the hexavalent state. The fission products are selectively precipitated on a carrier of the above group but different from that used for the coprecipitation. The plutonium in the solution, after removal of the fission product precipitate, is reduced to at least the tetravalent state and precipitated on lanthanum fluoride, lanthanum phosphate, lanthanum oxalate, lanthanum hydroxide, cerous fluoride, cerous phosphate, cerous oxalate, cerous hydroxide, ceric iodate, zirconyl phosphate, zirconyl iodate, zirconium hydroxide, thorium fluoride, thorium oxalate, thorium iodate, thorium peroxide, uranium iodate, uranium oxalate, or uranium peroxide, again using a different carrier than that used for the precipitation of the fission products.
Lee, Gyeonghee; Varanasi, Chakrapani V; Liu, Jie
2015-02-21
It is well known that both the structural morphology and chemical doping are important factors that affect the properties of metal hydroxide materials in electrochemical energy storage devices. In this work, an effective method to tailor the morphology and chemical doping of metal hydroxides is developed. It is shown that the morphology and the degree of crystallinity of Ni(OH)2 can be changed by adding glucose in the ethanol-mediated solvothermal synthesis. Ni(OH)2 produced in this manner exhibited an increased specific capacitance, which is partially attributed to its increased surface area. Interestingly, the effect of morphology on cobalt doped-Ni(OH)2 is found to be more effective at low cobalt contents than at high cobalt contents in terms of improving the electrochemical performance. This result reveals the existence of competitive effects between chemical doping and morphology change. These findings will provide important insights to design effective materials for energy storage devices.
NASA Astrophysics Data System (ADS)
Ghotbi, Mohammad Yeganeh; bin Hussein, Mohd Zobir; Yahaya, Asmah Hj; Abd Rahman, Mohd Zaki
2009-12-01
A series of brucite-like materials, undoped and doped zinc layered hydroxide nitrate with 2% (molar) Fe 3+, Co 2+ and Ni 2+ were synthesized. Organic-inorganic nanohybrid material with gallate anion as a guest, and zinc hydroxide nitrate, as an inorganic layered host was prepared by the ion-exchange method. The nanohybrid materials were heat-treated at various temperatures, 400-700 °C. X-ray diffraction, thermal analysis and also Fourier transform infrared results showed that incorporation of the doping agents within the zinc layered hydroxide salt layers has enhanced the heat-resistivity of the nanohybrid materials in the thermal decomposition pathway. Porous carbon materials can be obtained from the heat-treating the nanohybrids at 600 and 700 °C. Calcination of the nanohybrids at 700 °C under nitrogen atmosphere produces mesoporous and high pore volume carbon materials.
Hydrothermal synthesis of β-Ni(OH)2 and its supercapacitor properties
NASA Astrophysics Data System (ADS)
Waghmare, Suraj S.; Patil, Prashant B.; Baruva, Shiva K.; Rajput, Madhuri S.; Deokate, Ramesh J.; Mujawar, Sarfraj H.
2018-04-01
In present manuscript, we synthesized the Nickel hydroxide as an electrode material or supercapacitor application, using hydrothermal method with nickel nitrate as nickel source and hexamethylenetetramine as a directing agent. The reaction was carried out at 160°C temperature for 18 hrs. The structural, morphological and electrochemical characterizations were studied by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Cyclic Voltammetry (CV) and Galvanostatic Charge Discharge (GCD) respectively. Phase purity and crystalline nature of as prepared nickel hydroxide β-Ni(OH)2 was reveled from X-ray study. Using Debye Scherer's formula crystallite size of ˜15 nm was estimated for Nickel hydroxide. SEM reveals β-platelets like morphology of Ni(OH)2 average of platelets length of the order of 1 µm. Electrochemical studies (CV and GCD) were carried out in 2M KOH electrolyte solution. The maximum capacitance of 225 Fg-1 was observed for scan rate 5 mV within the potential window of 0.1 to 0.4 V.
NASA Astrophysics Data System (ADS)
Yuliasmi, S.; Pardede, T. R.; Nerdy; Syahputra, H.
2017-03-01
Oil palm midrib is one of the waste generated by palm plants containing 34.89% cellulose. Cellulose has the potential to produce microcrystalline cellulose can be used as an excipient in tablet formulations by direct compression. Microcrystalline cellulose is the result of a controlled hydrolysis of alpha cellulose, so the alpha cellulose extraction process of oil palm midrib greatly affect the quality of the resulting microcrystalline cellulose. The purpose of this study was to compare the microcrystalline cellulose produced from alpha cellulose extracted from oil palm midrib by two different methods. Fisrt delignization method uses sodium hydroxide. Second method uses a mixture of nitric acid and sodium nitrite, and continued with sodium hydroxide and sodium sulfite. Microcrystalline cellulose obtained by both method was characterized separately, including organoleptic test, color reagents test, dissolution test, pH test and determination of functional groups by FTIR. The results was compared with microcrystalline cellulose which has been available on the market. The characterization results showed that microcrystalline cellulose obtained by first method has the most similar characteristics to the microcrystalline cellulose available in the market.
NASA Technical Reports Server (NTRS)
1972-01-01
A fuel cell technology program was established to advance the state-of-the art of hydrogen oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Cell and component testing confirmed that low temperature, potassium hydroxide electrolyte technology is compatible with the requirements of the space shuttle Phase B contractors. Testing of the DM-1 powerplant demonstrated all of the important requirements of the shuttle except operating life. Testing also identified DM-1 powerplant life limiting mechanisms; hydrogen pump gear wear and pressurization of the cell stack over its design limits.
NASA Astrophysics Data System (ADS)
Fujii, Toshiyuki; Moynier, Frédéric; Abe, Minori; Nemoto, Keisuke; Albarède, Francis
2013-06-01
Isotope fractionation between the common Cu species present in solution (Cu+, Cu2+, hydroxide, chloride, sulfide, carbonate, oxalate, and ascorbate) has been investigated using both ab initio methods and experimental solvent extraction techniques. In order to establish unambiguously the existence of equilibrium isotope fractionation (as opposed to kinetic isotope fractionation), we first performed laboratory-scale liquid-liquid distribution experiments. Upon exchange between HCl medium and a macrocyclic complex, the 65Cu/63Cu ratio fractionated by -1.06‰ to -0.39‰. The acidity dependence of the fractionation was appropriately explained by ligand exchange reactions between hydrated H2O and Cl- via intramolecular vibrations. The magnitude of the Cu isotope fractionation among important Cu ligands was also estimated by ab initio methods. The magnitude of the nuclear field shift effect to the Cu isotope fractionation represents only ˜3% of the mass-dependent fractionation. The theoretical estimation was expanded to chlorides, hydroxides, sulfides, sulfates, and carbonates under different conditions of pH. Copper isotope fractionation of up to 2‰ is expected for different forms of Cu present in seawater and for different sediments (carbonates, hydroxides, and sulfides). We found that Cu in dissolved carbonates and sulfates is isotopically much heavier (+0.6‰) than free Cu. Isotope fractionation of Cu in hydroxide is minimal. The relevance of these new results to the understanding of metabolic processes was also discussed. Copper is an essential element used by a large number of proteins for electron transfer. Further theoretical estimates of δ65Cu in hydrated Cu(I) and Cu(II) ions, Cu(II) ascorbates, and Cu(II) oxalate predict Cu isotope fractionation during the breakdown of ascorbate into oxalate and account for the isotopically heavy Cu found in animal kidneys.
Abdolmohammad-Zadeh, Hossein; Jouyban, Abolghasem; Amini, Roghayeh
2013-11-15
A selective solid phase extraction method, based on nano-structured Mg-Al-Fe(NO3(-)) ternary layered double hydroxide as a sorbent, is developed for the pre-concentration of ultra-trace levels of arsenic (As) prior to determination by electrothermal atomic absorption spectrometry. It is found that both As(III) and As(V) could be quantitatively retained on the sorbent within a wide pH range of 4-12. Accordingly, the presented method is applied to determination of total inorganic As in aqueous solutions. Maximum analytical signal of As is achieved when the pyrolysis and atomization temperatures are close to 900 °C and 2300 °C, respectively. Several variables affecting the extraction efficiency including pH, sample flow rate, amount of nano-sorbent, elution conditions and sample volume are optimized. Under the optimized conditions, the limit of detection (3Sb/m) and the relative standard deviation are 4.6 pg mL(-1) and 3.9%, respectively. The calibration graph is linear in the range of 15.0-650 pg mL(-1) with a correlation coefficient of 0.9979, sorption capacity and pre-concentration factor are 8.68 mg g(-1) and 300, respectively. The developed method is validated by the analysis of a standard reference material (SRM 1643e) and is successfully applied to the determination of ultra-trace amounts of As in different water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Ammonium hydroxide is a colorless liquid chemical solution. It is in a class of substances called caustics. Ammonium hydroxide forms when ammonia dissolves in water. This article discusses poisoning from ...
Ahangari, Zohreh; Naseri, Mandana; Jalili, Maryam; Mansouri, Yasaman; Mashhadiabbas, Fatemeh; Torkaman, Anahita
2012-01-01
Objective: Evaluation of the effect of Propolis as a bioactive material on quality of dentin and presence of dental pulp stem cells. Materials and Methods: For conducting this experimental split-mouth study,a total of 48 maxillary and mandibular incisors of male guinea pigs were randomly divided into an experimental Propolis group and a control calcium hydroxide group. Cutting the crowns and using Propolis or calcium hydroxide to cap the pulp, all of the cavities were sealed. Sections of the teeth were obtained after sacrificing 4 guinea pigs from each group on the 10th, 15th and 30th day. After they had been stained by hematoxylin and eosin (H&E), specimens underwent a histological evaluation under a light microscope for identification of the presence of odontoblast-like cells, pulp vitality, congestion, inflammation of the pulp and the presence of remnants of the material used. The immunohistochemistry (IHC) method using CD29 and CD146 was performed to evaluate the presence of stem cells and the results were statistically evaluated by Kruskal-Wallis, Chi Square and Fisher tests. Results: In H&E stained specimens, there was no difference between the two groups in the presence of odontoblast-like cells, pulp vitality, congestion, inflammation of the pulp and the presence of remnants of used material(p>0.05). There was a significant difference between the quality of regenerative dentin on the 15th and 30th days (p<0.05): all of the Propolis cases presented tubular dentin while 14% of the calcium hydroxide cases produced porous dentin. There was no significant difference between Propolis and calcium hydroxide in stimulation of dental pulp stem cells (DPSCs). Conclusion: This study which is the first one that documented the stimulation of stem cells by Propolis, provides evidence that this material has advantages over calcium hydroxide as a capping agent in vital pulp therapy. In addition to producing no pulpal inflammation, infection or necrosis this material induces the production of high quality tubular dentin. PMID:23508294
Synthesis of transparent dispersions of aluminium hydroxide nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M.; Chen, Jian-Feng
2018-07-01
Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.
Synthesis of transparent dispersions of aluminium hydroxide nanoparticles.
Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M; Chen, Jian-Feng
2018-07-27
Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.
Ndiaye, D; Diongue, K; Bane, K; Seck, A; Niang, S O; Lèye Benoist, F; Ndiaye, D; Touré, B
2016-12-01
Endodontic flora is dominated in the apical part of the channels by strict anaerobic and some facultative anaerobic bacteria but also by Candida yeasts, especially Candida albicans species that are involved in the maintenance and persistence of endodontic infections. Their elimination of the canal system in practice by chemo-mechanical methods of disinfection is not always guaranteed. Thus, this in vitro study was performed to determine the sensitivity of C. albicans with sodium hypochlorite (NaOCl) dosed at 2.5 %, the chlorhexidine digluconate 0.5 % and calcium hydroxide used in inter-session medication. The diffusion method was used initially to test the sensitivity of C. albicans strains with the above products. Then a dilution technique has allowed us to determine the minimum inhibitory concentration of these active products on C. albicans. Strains from infected pulp teeth of patients showed a sensitivity of C. albicans to sodium hypochlorite to a minimum inhibitory concentration less than 70μg/mL and 30μg/mL for chlorhexidine. This study demonstrated a sensitivity of C. albicans to sodium hypochlorite and chlorhexidine. Copyright © 2016. Published by Elsevier Masson SAS.
21 CFR 582.1139 - Ammonium hydroxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...
21 CFR 582.1205 - Calcium hydroxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...
Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...
Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...
21 CFR 582.1205 - Calcium hydroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...
21 CFR 582.1139 - Ammonium hydroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...
21 CFR 582.1205 - Calcium hydroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...
21 CFR 582.1139 - Ammonium hydroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...
21 CFR 582.1139 - Ammonium hydroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...
21 CFR 582.1139 - Ammonium hydroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Additives § 582.1139 Ammonium hydroxide. (a) Product. Ammonium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...
21 CFR 582.1205 - Calcium hydroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding...
Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan
2015-04-28
Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.
Extraction of starch from hulled and hull-less barley with papain and aqueous sodium hydroxide.
Sharma, Priyanka; Tejinder, S
2014-12-01
Starch was isolated from hulled (VJM 201) and hull-less (BL 134) barley with papain and aqueous sodium hydroxide treatments. For enzyme-assisted extraction, barley was steeped in water containing 0.2 % SO2 + 0.55 % lactic acid at 50° ± 2 °C for 4-5 h. The slurry was mixed with 0.4-2.0 g papain/kg barley and incubated at 50° ± 2 °C for 1-5 h. Aqueous sodium hydroxide (0.01-0.05 M) was added to the finely ground barley meal. The alkaline slurry was incubated at ambient temperature (25° ± 2 °C) for 15-60 min. The starch and grain fractions were isolated by screening and centrifugation. Increases in the time of treatment significantly affected the fiber, centrifugation and non-starch residue losses. Concentration of papain and sodium hydroxide had negligible effect on extraction losses. The enzyme-assisted extraction efficiency of starch was higher (80.7-84.6 %) than the alkaline method (70.9-83.7 %). The hulled barley showed higher extraction efficiency than the hull-less barley. The slurry treated with 0.4 g papain/kg barley for 5 h and 0.03 M sodium hydroxide for 60 min produced maximal yield of starch. Barley starch showed desirably high pasting temperature, water binding capacity and hold viscosity; and low final and setback viscosity compared with the commercial corn starch. The alkaline extracted hull-less barley starch showed exceptionally high peak and hold viscosities.
Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang
2008-11-01
Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).
NASA Astrophysics Data System (ADS)
Chang, Z.; Evans, D. G.; Duan, X.; Vial, C.; Ghanbaja, J.; Prevot, V.; de Roy, M.; Forano, C.
2005-09-01
A continuous co-precipitation method under steady-state conditions has been investigated for the preparation of nanometer-size layered double hydroxide (LDH) particles using Zn 2Al(OH) 6(CO 3) 0.5·2H 2O as a prototype. The objective was to shorten the preparation time by working without an aging step, using a short and controlled residence time in order to maintain a constant supersaturation level in the reactor and constant particle properties in the exit stream over time. The effects of varying the operating conditions on the structural and textural properties of the LDHs have been studied, including total cation concentration, solvent, residence time, pH and intercalation anion. The products have been characterized using ICP, XRD, FTIR, BET, SEM and TEM. The LDHs prepared by the continuous coprecipitation method have a poorer crystallinity and lower crystallite sizes than those synthesized by the conventional batch method. The results have shown that increasing either cation concentration or the fraction of monoethylene glycol (MEG) in MEG/H 2O mixtures up to 80% (v/v) affect salt solubility and supersaturation, which gives rise to smaller crystallites, larger surface areas and more amorphous compounds. This increase is however limited by the precipitation of zinc and aluminum hydroxides occurring around a total cation concentration of 3.0×10 -1 M in pure water and 3.0×10 -2 M in H 2O/EtOH mixtures. Crystallite size increases with residence time, suggesting a precipitation process controlled by growth. Finally, the continuous coprecipitation method under steady-state conditions has been shown to be a promising alternative to the traditional coprecipitation technique in either pure water or mixed H 2O/MEG solvents.
Base-Catalyzed Depolymerization of Biorefinery Lignins
Katahira, Rui; Mittal, Ashutosh; McKinney, Kellene; ...
2016-01-12
Lignocellulosic biorefineries will produce a substantial pool of lignin-enriched residues, which are currently slated to be burned for heat and power. Going forward, however, valorization strategies for residual solid lignin will be essential to the economic viability of modern biorefineries. To achieve these strategies, effective lignin depolymerization processes will be required that can convert specific lignin-enriched biorefinery substrates into products of sufficient value and market size. Base-catalyzed depolymerization (BCD) of lignin using sodium hydroxide and other basic media has been shown to be an effective depolymerization approach when using technical and isolated lignins relevant to the pulp and paper industry.more » Moreover, to gain insights in the application of BCD to lignin-rich, biofuels-relevant residues, here we apply BCD with sodium hydroxide at two catalyst loadings and temperatures of 270, 300, and 330 °C for 40 min to residual biomass from typical and emerging biochemical conversion processes. We obtained mass balances for each fraction from BCD, and characterized the resulting aqueous and solid residues using gel permeation chromatography, NMR, and GC–MS. When taken together, these results indicate that a significant fraction (45–78%) of the starting lignin-rich material can be depolymerized to low molecular weight, water-soluble species. The yield of the aqueous soluble fraction depends significantly on biomass processing method used prior to BCD. Namely, dilute acid pretreatment results in lower water-soluble yields compared to biomass processing that involves no acid pretreatment. We also find that the BCD product selectivity can be tuned with temperature to give higher yields of methoxyphenols at lower temperature, and a higher relative content of benzenediols with a greater extent of alkylation on the aromatic rings at higher temperature. Our study shows that residual, lignin-rich biomass produced from conventional and emerging biochemical conversion processes can be depolymerized with sodium hydroxide to produce significant yields of low molecular weight aromatics that potentially can be upgraded to fuels or chemicals.« less
Base-Catalyzed Depolymerization of Biorefinery Lignins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katahira, Rui; Mittal, Ashutosh; McKinney, Kellene
Lignocellulosic biorefineries will produce a substantial pool of lignin-enriched residues, which are currently slated to be burned for heat and power. Going forward, however, valorization strategies for residual solid lignin will be essential to the economic viability of modern biorefineries. To achieve these strategies, effective lignin depolymerization processes will be required that can convert specific lignin-enriched biorefinery substrates into products of sufficient value and market size. Base-catalyzed depolymerization (BCD) of lignin using sodium hydroxide and other basic media has been shown to be an effective depolymerization approach when using technical and isolated lignins relevant to the pulp and paper industry.more » Moreover, to gain insights in the application of BCD to lignin-rich, biofuels-relevant residues, here we apply BCD with sodium hydroxide at two catalyst loadings and temperatures of 270, 300, and 330 °C for 40 min to residual biomass from typical and emerging biochemical conversion processes. We obtained mass balances for each fraction from BCD, and characterized the resulting aqueous and solid residues using gel permeation chromatography, NMR, and GC–MS. When taken together, these results indicate that a significant fraction (45–78%) of the starting lignin-rich material can be depolymerized to low molecular weight, water-soluble species. The yield of the aqueous soluble fraction depends significantly on biomass processing method used prior to BCD. Namely, dilute acid pretreatment results in lower water-soluble yields compared to biomass processing that involves no acid pretreatment. We also find that the BCD product selectivity can be tuned with temperature to give higher yields of methoxyphenols at lower temperature, and a higher relative content of benzenediols with a greater extent of alkylation on the aromatic rings at higher temperature. Our study shows that residual, lignin-rich biomass produced from conventional and emerging biochemical conversion processes can be depolymerized with sodium hydroxide to produce significant yields of low molecular weight aromatics that potentially can be upgraded to fuels or chemicals.« less
Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...
Regeneration of strong-base anion-exchange resins by sequential chemical displacement
Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.
2002-01-01
A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.
NASA Astrophysics Data System (ADS)
Smalenskaite, A.; Salak, A. N.; Ferreira, M. G. S.; Skaudzius, R.; Kareiva, A.
2018-06-01
Mg3/Al1 and Mg3Al1-xTbx layered double hydroxides (LDHs) intercalated with terephthalate anion were synthesized using sol-gel method. The obtained materials were characterized by X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, fluorescence spectroscopy (FLS) and scanning electron microscopy (SEM). The Tb3+ substitution effects in the Mg3Al1-xTbx LDHs were investigated by changing the Tb3+ concentration in the cation layers. The study indicates that the organic guest-terephthalate in the interlayer spacing of the LDH host influences the luminescence of the hybrid inorganic-organic materials.
Continuous Precipitation of Ceria Nanoparticles from a Continuous Flow Micromixer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Chih Heng; Paul, Brian; Chang, Chih-hung
2013-01-01
Cerium oxide nanoparticles were continuously precipitated from a solution of cerium(III) nitrate and ammonium hydroxide using a micro-scale T-mixer. Findings show that the method of mixing is important in the ceria precipitation process. In batch mixing and deposition, disintegration and agglomeration dominates the deposited film. In T-mixing and deposition, more uniform nanorod particles are attainable. In addition, it was found that the micromixing approach reduced the exposure of the Ce(OH)3 precipates to oxygen, yielding hydroxide precipates in place of CeO2 precipitates. Advantages of the micro-scale T-mixing approach include shorter mixing times, better control of nanoparticle shape and less agglomeration.
CONCENTRATION OF Pu USING AN IODATE PRECIPITATE
Fries, B.A.
1960-02-23
A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.
Lifetime of Sodium Beta-Alumina Membranes in Molten Sodium Hydroxide
2008-07-01
ABSTRACT Summary: Sodium metal can be made by electrolysis of molten sodium hydroxide in sodium beta-alumina membrane electrolysis cells... electrolysis of molten sodium hydroxide in sodium ”-alumina membrane electrolysis cells. However, there are some uncertainties about the lifetime of the...the properties of the membrane degrade upon long term contact with molten sodium hydroxide. Electrolysis cells were designed, but it proved
Implementation of ferric hydroxide-based media for removal of toxic metalloids
NASA Astrophysics Data System (ADS)
Szlachta, Małgorzata; Wójtowicz, Patryk
2017-11-01
Effective removal of inorganic arsenic species is possible by application of the sorption technique with the use of iron-based sorbents. This study investigates the removal of arsenic(III) and arsenic(V) from an aqueous solution by application of a granular ferric hydroxide-based sorbent. The performance of tested media was evaluated based on the batch and fixed-bed adsorption studies. The efficiency of the process was determined with various treatment times, adsorbent doses, initial concentrations of arsenic and various solution temperatures. The obtained adsorption data were fitted with pseudo-first and second-order kinetic models and Langmuir and Freundlich isotherm equations. It was observed that the overall arsenite removal was lower when compared to the arsenate, and all tested operating parameters influenced the process efficiency. The experiments under dynamic conditions showed high treatment capacity and stability of tested adsorbent over a long period of time.
Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Oberste, M Steven; Boog, Claire J; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M
2013-11-12
An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle income countries in the context of the Global Polio Eradication Initiative. Safety and immunogenicity of the Sabin-IPV was evaluated in a double-blind, randomized, controlled, phase I 'proof-of-concept' trial. Healthy male adults received a single intramuscular injection with Sabin-IPV, Sabin-IPV adjuvanted with aluminum hydroxide or conventional IPV. Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after vaccination. No vaccine-related serious adverse events were observed, and all local and systemic reactions were mild or moderate and transient. In all subjects, an increase in antibody titer for all types of poliovirus (both Sabin and wild strains) was observed 28 days after vaccination. Sabin-IPV and Sabin-IPV adjuvanted with aluminum hydroxide administered as a booster dose were equally immunogenic and safe as conventional IPV. EudraCTnr: 2010-024581-22, NCT01708720. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nato Lopez, Frank D.
Worldwide, there is an ever increasing need for sustainable, renewable fuels that will accommodate the rapidly increasing energy demand and provide independence from fossil fuels. The search for a sustainable alternative to petroleum based fuels has been a great challenge to the scientific community; therefore, great efforts are being made to overcome the fossil fuels dependence by exploring the prominent field of biofuels (bioethanol and biodiesel). Traditional biodiesel is produced from feedstocks such as vegetable oils and animal fats by converting the triglycerides with methanol in the presence of a homogeneous catalyst to produce fatty acid methyl esters (FAMEs). However, drawbacks of this process are the undesired glycerol byproduct and post reaction processing, including separation from reaction mixture, that results in high costs factors. In the present work, the reaction kinetics of a glycerol-free biodiesel method is studied. This method consists of the transesterification of a vegetable oil (i.e. canola oil) using dimethyl carbonate (DMC) as an alternative methylating agent in presence of layered double hydroxides doped with triazabicyclodecene catalyst (a basic organocatalyst). Furthermore, is theorized that this heterogeneous catalyst (TBD/LDH) simultaneously converts both FFAs and triglycerides due to acid sites formed by Al3+ active sites of the LDH structure. Additionally, the versatility of the Raman in situ technique was used as quantitative analysis tool to monitor the reaction kinetics and collect real time data.
Li, Lun; Dou, Liguang; Zhang, Hui
2014-04-07
M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 ± 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ∼0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h(-1)) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br
Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN andmore » Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.« less
de Freitas, Rafaela Pignatti; Greatti, Vanessa Raquel; Alcalde, Murilo Priori; Cavenago, Bruno Cavalini; Vivan, Rodrigo Ricci; Duarte, Marco Antonio Hungaro; Weckwerth, Ana Carolina Villas Bôas; Weckwerth, Paulo Henrique
2017-01-01
The objective of the present study was to evaluate the in vitro antibiofilm activity and pH of calcium hydroxide associated with different nonsteroidal anti-inflammatory drugs (NSAIDs). The groups analyzed were as follows: group 1, calcium hydroxide paste with propylene glycol; group 2, calcium hydroxide paste with propylene glycol + 5% diclofenac sodium; group 3, calcium hydroxide paste with propylene glycol + 5% ibuprofen; group 4, calcium hydroxide paste with propylene glycol + 5% ciprofloxacin; and group 6, positive control (without medication). For analysis of the pH, the pastes were inserted into tubes and immersed in flasks containing ultrapure water. At the time intervals of 3, 24, 72, and 168 hours, the pH was measured with a calibrated pH meter. For microbial analysis, biofilm was induced in 30 bovine dentin blocks for 21 days. Subsequently, the pastes were placed on the blocks with biofilm for 7 days. Afterward, the pastes were removed by irrigation with sterile water, and the specimens were analyzed with a laser scanning confocal microscope with the 50 μL Live/Dead BacLight Bacterial Viability solution L7012 Kit (Molecular Probes, Inc, Eugene, OR). Data were subjected to statistical analysis at a significance level of 5%. The highest pH values were found for calcium hydroxide associated with ciprofloxacin in all periods analyzed. With the exception of pure calcium hydroxide paste, the other groups showed statistically significant differences (P < .05) in comparison with the positive control. The association of NSAIDs or antibiotic did not interfere with the pH of calcium hydroxide paste and increased the antimicrobial action of calcium hydroxide paste against Enterococcus faecalis biofilm formation. Published by Elsevier Inc.
Pai, Swathi; Vivekananda Pai, A. R.; Thomas, Manuel S.; Bhat, Vishal
2014-01-01
Aim: To evaluate and compare the effect of antibacterial intracanal medicaments on inter-appointment flare-up in diabetic patients. Materials and Methods: Fifty diabetic patients requiring root canal treatment were assigned into groups I, II, and III. In group I, no intracanal medicament was placed. In groups II and III, calcium hydroxide and triple antibiotic pastes were placed as intracanal medicaments, respectively. Patients were instructed to record their pain on days 1, 2, 3, 7, and 14. Inter-appointment flare-up was evaluated using verbal rating scale (VRS). Results: Overall incidence of inter-appointment flare-up among diabetic patients was found to be 16%. In group I, 50% of the patients and in group II, 15% of the patients developed inter-appointment flare-up. However, no patients in group III developed inter-appointment flare-up. The comparison of these results was found to be statistically significant (P = 0.002; χ2 = 12.426). However, with respect to intergroup comparison, only the difference between groups I and III was found to be statistically significant (P = 0.002; χ2 = 12.00). Conclusions: Calcium hydroxide and triple antibiotic paste are effective for managing inter-appointment flare-ups in diabetic patients. Triple antibiotic paste is more effective than calcium hydroxide in preventing the occurrence of flare-up in diabetic patients. PMID:24944440
Orosensory responsiveness to and preference for hydroxide-containing salts in mice.
St John, Steven J; Boughter, John D
2009-07-01
Historically, taste researchers have considered the possibility that the gustatory system detects basic compounds, such as those containing the hydroxide ion, but evidence for an "alkaline taste" has not been strong. We found that, in 48 h, 2-bottle preference tests, C3HeB/FeJ (C3) mice showed a preference for Ca(OH)(2), whereas SWR/J (SW) mice showed avoidance. Strain differences were also apparent to NaOH but not CaCl(2). Follow-up studies showed that the strain difference for Ca(OH)(2) was stable over time (Experiment 2) but that C3 and SW mice did not differ in their responses to Ca(OH)(2) or NaOH in brief-access tests, where both mice avoided high concentrations of these compounds (Experiment 3). In order to assess the perceived quality of Ca(OH)(2), mice were tested in 2 taste aversion generalization experiments (Experiments 4 and 5). Aversions to Ca(OH)(2) generalized to NaOH but not CaCl(2) in both strains, suggesting that the generalization was based on the hydroxide ion. Both strains also generalized aversions to quinine, suggesting the possibility that the hydroxide ion has a bitter taste quality to these mice, despite the preference shown by C3 mice to middle concentrations in long-term tests.
Senko, John M.; Dewers , Thomas A.; Krumholz, Lee R.
2005-01-01
A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.
Scherer, William P; Scherer, Michael D
2004-01-01
An investigative study was performed to compare the results from two mycology laboratories for the diagnosis of onychomycosis in a geriatric population and to determine the possible pharmacologic treatments based on the two laboratories' results. In this study, 85 cases of suspected onychomycosis involving men and women 65 years and older from a nursing home setting in South Florida were used. Samples were taken from the hallux toenail and sent to two different mycology laboratories for fluorescent potassium hydroxide preparation and microscopic examination of a fungal culture. Of the 85 cases studied, the two mycology laboratories reported similar potassium hydroxide preparation results for 58.8% of the patients and similar fungal culture results for genus and species identification for 37.6% of the patients. When the potassium hydroxide preparation and fungal culture results were combined, the two mycology laboratories reported similar results for only 27.1% of the patients. As a result of the two mycology laboratories' findings, the possible US Food and Drug Administration-approved pharmacologic treatments may differ for 43.5% of the patients studied. The discrepancy between the two independent laboratories leaves physicians to question the reproducibility of fluorescent potassium hydroxide preparation and fungal culture analysis in a geriatric patient population for the diagnosis of onychomycosis.
Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids
NASA Astrophysics Data System (ADS)
Arízaga, Gregorio Guadalupe Carbajal
2012-01-01
Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn5(OH)8Cl2·2H2O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C.
Hydroxide Solvation and Transport in Anion Exchange Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E.
Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationicmore » groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.« less
Hydroxide Solvation and Transport in Anion Exchange Membranes.
Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A
2016-01-27
Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.
Smithwick, R W; Stratigos, C B; David, H L
1975-01-01
A method is presented for the decontamination, liquefaction, and concentration of sputum specimens that are in transport more than 24 h. The method is inexpensive, and culture results compare well with those obtained with the accepted N-acetyl-L-cysteine and sodium hydroxide method for the isolation of tubercle bacilli. The working solution, 1% cetylpyridinium chloride and 2% sodium chloride, is mixed in equal volumes with sputum before the specimens are shipped. Tubercle bacilli remained viable after 8 days of exposure to this solution. Only Lowenstein-Jensen medium was used because the cetylpyridinium chloride in the inoculum remains active on 7H10 or other agar base media and partially inhibits the growth of tubercle bacilli. PMID:809478
Rapid Mix Preparation of Bioinspired Nanoscale Hydroxyapatite for Biomedical Applications
Wilcock, Caroline J.; Gentile, Piergiorgio; Hatton, Paul V.; Miller, Cheryl A.
2017-01-01
Hydroxyapatite (HA) has been widely used as a medical ceramic due to its good biocompatibility and osteoconductivity. Recently there has been interest regarding the use of bioinspired nanoscale hydroxyapatite (nHA). However, biological apatite is known to be calcium-deficient and carbonate-substituted with a nanoscale platelet-like morphology. Bioinspired nHA has the potential to stimulate optimal bone tissue regeneration due to its similarity to bone and tooth enamel mineral. Many of the methods currently used to fabricate nHA both in the laboratory and commercially, involve lengthy processes and complex equipment. Therefore, the aim of this study was to develop a rapid and reliable method to prepare high quality bioinspired nHA. The rapid mixing method developed was based upon an acid-base reaction involving calcium hydroxide and phosphoric acid. Briefly, a phosphoric acid solution was poured into a calcium hydroxide solution followed by stirring, washing and drying stages. Part of the batch was sintered at 1,000 °C for 2 h in order to investigate the products' high temperature stability. X-ray diffraction analysis showed the successful formation of HA, which showed thermal decomposition to β-tricalcium phosphate after high temperature processing, which is typical for calcium-deficient HA. Fourier transform infrared spectroscopy showed the presence of carbonate groups in the precipitated product. The nHA particles had a low aspect ratio with approximate dimensions of 50 x 30 nm, close to the dimensions of biological apatite. The material was also calcium deficient with a Ca:P molar ratio of 1.63, which like biological apatite is lower than the stoichiometric HA ratio of 1.67. This new method is therefore a reliable and far more convenient process for the manufacture of bioinspired nHA, overcoming the need for lengthy titrations and complex equipment. The resulting bioinspired HA product is suitable for use in a wide variety of medical and consumer health applications. PMID:28287572
Rapid Mix Preparation of Bioinspired Nanoscale Hydroxyapatite for Biomedical Applications.
Wilcock, Caroline J; Gentile, Piergiorgio; Hatton, Paul V; Miller, Cheryl A
2017-02-23
Hydroxyapatite (HA) has been widely used as a medical ceramic due to its good biocompatibility and osteoconductivity. Recently there has been interest regarding the use of bioinspired nanoscale hydroxyapatite (nHA). However, biological apatite is known to be calcium-deficient and carbonate-substituted with a nanoscale platelet-like morphology. Bioinspired nHA has the potential to stimulate optimal bone tissue regeneration due to its similarity to bone and tooth enamel mineral. Many of the methods currently used to fabricate nHA both in the laboratory and commercially, involve lengthy processes and complex equipment. Therefore, the aim of this study was to develop a rapid and reliable method to prepare high quality bioinspired nHA. The rapid mixing method developed was based upon an acid-base reaction involving calcium hydroxide and phosphoric acid. Briefly, a phosphoric acid solution was poured into a calcium hydroxide solution followed by stirring, washing and drying stages. Part of the batch was sintered at 1,000 °C for 2 h in order to investigate the products' high temperature stability. X-ray diffraction analysis showed the successful formation of HA, which showed thermal decomposition to β-tricalcium phosphate after high temperature processing, which is typical for calcium-deficient HA. Fourier transform infrared spectroscopy showed the presence of carbonate groups in the precipitated product. The nHA particles had a low aspect ratio with approximate dimensions of 50 x 30 nm, close to the dimensions of biological apatite. The material was also calcium deficient with a Ca:P molar ratio of 1.63, which like biological apatite is lower than the stoichiometric HA ratio of 1.67. This new method is therefore a reliable and far more convenient process for the manufacture of bioinspired nHA, overcoming the need for lengthy titrations and complex equipment. The resulting bioinspired HA product is suitable for use in a wide variety of medical and consumer health applications.
Method of synthesizing silica nanofibers using sound waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Jaswinder K.; Datskos, Panos G.
A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up tomore » an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.« less
Method of synthesizing silica nanofibers using sound waves
Sharma, Jaswinder K.; Datskos, Panos G.
2015-09-15
A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.
NASA Astrophysics Data System (ADS)
Peng, Yiya; Xi, Guangcheng; Zhong, Chang; Wang, Linping; Lu, Jun; Sun, Ximeng; Zhu, Lu; Han, Qikun; Chen, Lin; Shi, Lei; Sun, Mei; Li, Qianrong; Yu, Min; Yin, Mingwen
2009-08-01
Tochilinite represents a mineral group of ordered mixed-layer structures containing alternating Fe 1-xS layers with mackinawite-like structure and metal hydroxide layers with Mg(OH) 2-like structure. In this article, we report the preparation of a series of tochilinite-originated (or Fe 1-xS-based) intercalation compounds (ICs). According to their preparation procedures, these ICs can be divided into four kinds. The first kind of IC was sodium tochilinite (Na-tochilinite), which was prepared by the hydrothermal reaction of metallic Fe particles with concentrated Na 2S·9H 2O aqueous solutions. The hydroxide layer of the Na-tochilinite was a mixed hydroxide of Na + ions along with a certain amount of Fe 2+ ions. When the hydroxide layer of the Na-tochilinite completely dissolved in aqueous solutions, a Fe-deficient mackinawite-like phase Fe 1-xS was obtained, which was probably an electron-deficient p-type conductor. The second kind of ICs was prepared by 'low-temperature direct intercalation in aqueous solutions, using Na-tochilinite as a parental precursor. When the Na-tochilinite was ultrasonicated in aqueous solutions containing Lewis basic complexing agents (like NH 3, N 2H 4, 2,2'-bipyridine (bipy), and 1,10-phenanthroline (phen)), the Na + ions of the Na-tochilinite were removed and the Lewis basic complexing agents entered the hydroxide layer of the Na-tochilinite and became coordinated with the Fe 2+ ions, and the second kind of ICs was thus produced. The second kind of ICs includes NH 3 IC, N 2H 4 IC, N 2H 4-NH 3 IC, [Fe(bipy) 3] 2+-containing IC and [Fe(phen) 3] 2+-containing IC. The third kind of ICs, which includes NH 3 IC, N 2H 4-NH 3 IC and N 2H 4-LiOH (NaOH) IC, was prepared by the hydrothermal reaction of metallic Fe particles with (NH 4) 2S aqueous solution, S (elemental) + N 2H 4·H 2O aqueous solution, and S + N 2H 4·H 2O + LiOH (NaOH) aqueous solution, respectively. The third kind of ICs has a close relationship with the second kind of ICs both in composition and structure. The fourth kind of ICs was prepared by the oxidation and reduction of some of the N 2H 4-containing ICs mentioned above, which include N 2H 2 (diazene or diimide) IC, N 2 (dinitrogen) IC and NH 3 IC. The N 2H 2 IC was prepared by mild air oxidation of the N 2H 4-LiOH IC. The N 2 IC was prepared by strong air oxidation of the N 2H 4-LiOH IC, however, we have not been able to separate the pure phase N 2 IC. Hydrothermal reduction of the N 2H 4 IC made by the direct intercalation method in strong reducing environment by H 2S + Fe (metal) led to the production of the NH 3 IC of the fourth kind of ICs. The NH 3 ICs prepared by the three methods had similar compositions and structures. As almost all the ICs reported in this paper were extremely sensitive both to air and to the electron beam, they were mainly characterized by XRD. The properties and interrelationships (or mutual transformations) of the Fe 1-xS-based ICs revealed novel chemistry occurring in the sub-nanoscopic space between the micrometer- to nanometer-sized electron-deficient Fe 1-xS layers. An important finding of this novel chemistry was that the Fe 1-xS-based ICs tended to oxidize or reduce the intercalated species when the redox state of their environments varied. The results of our experiments potentially have many cosmochemical implications. The most important implication is that our experimental results, along with previous studies, strongly suggested that some of the ammonium salts, ammonia and carbonates existing in the matrix of the CM carbonaceous chondrites may have been formed by abiotic reactions employing molecular nitrogen as the nitrogen source and carbon monoxide as the carbon source and iron sulfide and/or iron hydroxide as catalysts.
Effect of ammonium hydroxide on ultrastructure and tenderness of buffalo meat.
Naveena, B M; Kiran, M; Reddy, K Sudhakar; Ramakrishna, C; Vaithiyanathan, S; Devatkal, Suresh K
2011-08-01
This study was conducted with an objective to improve the tenderness of tough buffalo meat using ammonium hydroxide. Buffalo meat chunks from Biceps femoris muscle were marinated with distilled water (control), 0.1%, 0.5% and 1.0% solution of ammonium hydroxide for 48 h at 4±1 °C and subjected to various physico-chemical analysis and ultrastructural studies. Ammonium hydroxide increased (P<0.05) the pH, water holding capacity (WHC), collagen solubility, total and salt soluble protein extractability and cooking yield. Reduction (P<0.05) in Warner-Bratzler shear force values were observed in all ammonium hydroxide treated samples compared to non-treated control. Electrophoretic pattern of muscle proteins exhibited reduction in the intensity and number of certain protein bands for 0.1% and 0.5% ammonium hydroxide treated samples compared to control. Scanning and transmission electron microscopy also revealed breakdown of endothelium layers surrounding muscle fibers and weakening of Z-discs respectively, in treated samples compared to controls. These results suggest that ammonium hydroxide might be used to tenderize tough buffalo meat. Copyright © 2011 Elsevier Ltd. All rights reserved.
Calcium hydroxide suppresses Porphyromonas endodontalis lipopolysaccharide-induced bone destruction.
Guo, J; Yang, D; Okamura, H; Teramachi, J; Ochiai, K; Qiu, L; Haneji, T
2014-05-01
Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS-induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS-suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS-induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS-induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.
Freeman, Laura A; Anwer, Bilal; Brady, Ryan P; Smith, Benjamin C; Edelman, Theresa L; Misselt, Andrew J; Cressman, Erik N K
2010-03-01
To measure and compare temperature changes in a recently developed gel phantom for thermochemical ablation as a function of reagent strength and concentration with several acids and bases. Aliquots (0.5-1 mL) of hydrochloric acid or acetic acid and sodium hydroxide or aqueous ammonia were injected for 5 seconds into a hydrophobic gel phantom. Stepwise increments in concentration were used to survey the temperature changes caused by these reactions. Injections were performed in triplicate, measured with a thermocouple probe, and plotted as functions of concentration and time. Maximum temperatures were reached almost immediately in all cases, reaching 75 degrees C-110 degrees C at the higher concentrations. The highest temperatures were seen with hydrochloric acid and either base. More concentrated solutions of sodium hydroxide tended to mix incompletely, such that experiments at 9 M and higher were difficult to perform consistently. Higher concentrations for any reagent resulted in higher temperatures. Stronger acid and base combinations resulted in higher temperatures versus weak acid and base combinations at the same concentration. Maximum temperatures obtained are in a range known to cause tissue coagulation, and all combinations tested therefore appeared suitable for further investigation in thermochemical ablation. Because of the loss of the reaction chamber shape at higher concentrations of stronger agents, the phantom does not allow complete characterization under these circumstances. Adequate mixing of reagents to maximize heating potential and avoid systemic exposure to unreacted acid and base must be addressed if the method is to be safely employed in tissues. In addition, understanding factors that control lesion shape in a more realistic tissue model will be critical. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.
Fixation of tritium in a highly stable polymer form
Steinberg, Meyer; Colombo, Peter; Pruzansky, Jacob
1977-01-01
A method for the fixation of tritium comprising reacting tritiated water with calcium carbide to produce calcium hydroxide and tritiated acetylene, polymerizing the acetylene, and then incorporating the polymer in a solidifying matrix.
40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...
40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...
40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...
40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...
40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...
Kang, Kyeong Eop; Jeong, Gwi-Taek; Park, Don-Hee
2013-08-01
In this study, we carried out sodium hydroxide and sonication pretreatments of rapeseed straw (Brassica napus) to obtain monosugar suitable for production of biofuels. To optimize the pretreatment conditions, we applied a statistical response-surface methodology. The optimal pretreatment conditions using sodium hydroxide under sonication irradiation were determined to be 75.0 °C, 7.0 % sodium hydroxide, and 6.8 h. For these conditions, we predicted 97.3 % enzymatic digestibility. In repeated experiments to validate the predicted value, 98.9 ± 0.3 % enzymatic digestibility was obtained, which was well within the range of the predicted model. Moreover, sonication irradiation was found to have a good effect on pretreatment in the lower temperature range and at all concentrations of sodium hydroxide. According to scanning electron microscopy images, the surface area and pore size of the pretreated rapeseed straw were modified by the sodium hydroxide pretreatment under sonication irradiation.
Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides
NASA Astrophysics Data System (ADS)
Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z.; Kukovecz, Á.; Kónya, Z.; Carlson, S.; Sipos, P.; Pálinkó, I.
2016-01-01
A mechanochemical method (grinding the components without added water - dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution - wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic-inorganic nanocomposites: LDHs intercalated with amino acid anions.
Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating
NASA Astrophysics Data System (ADS)
Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.
2018-03-01
Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.
Asnaashari, Mohammad; Ashraf, Hengameh; Rahmati, Afsaneh; Amini, Neda
2017-03-01
Insufficient root canal disinfection is one of the main reasons for persistent periapical pathology. Photodynamic therapy (PDT) has been proven effective in disinfecting infected root canals. The aim of this study was to evaluate the antimicrobial effect of photo activated disinfection (PAD) when using toluidine blue as photosensitizer and a LED lamp after the conventional treatment, and comparing it with calcium hydroxide therapy in vivo. This clinical trial includes 20 patients with molars requiring endodontic retreatment. After the conventional treatment, first microbiological samples were obtained using sterile rotary ProTaper F2 file and 3 paper points and transferred to a microbiology laboratory. Group 1 (n=10) specimens underwent PAD with photosensitizer (PS) solution (0.1mg/mL TB) and irradiation with Fotosan light emitting diode (LED) lamp (635nm, 200mW/cm2) for 60s. Creamy Ca(OH)2 paste was used in group 2 (n=10) for two weeks. A second sample was then obtained. The samples were cultured and then bacterial colonies were counted. Data included number of colony forming units (CFUs) before and after treatments, analyzed by t-test and analysis of covariance (ANCOVA) using SPSS vs.18. A significant difference between results of before and after treatment of both groups (calcium hydroxide therapy p=0.02<0.05, PAD p<0.0001) indicated the efficacy of both treatments. The mean numbers for log 10CFUs/mL before calcium hydroxide therapy and PAD with LED irradiation was 10.1968 and 11.3773. After treatment, the mean numbers were 9.4202 and 8.3772, respectively. The difference in results after treatment between groups was significant (p=0.01<0.05) and indicate that PAD was more effective. PAD and calcium hydroxide therapy, as auxiliary methods adjunct to conventional root canal therapy, are both effective in root canal disinfection. In comparison with calcium hydroxide therapy, PAD leads to a greater reduction in enterococcus faecalis number in the infected root canals. Copyright © 2016 Elsevier B.V. All rights reserved.
Cotti, Elisabetta; Mereu, Manuela; Lusso, Daniela
2008-05-01
This case report describes the treatment of a necrotic immature permanent central incisor with complete crown fracture, suspected root fracture, and sinus tract, which was not treated with conventional apexification techniques. Instead, a regenerative approach based on the trauma literature's methods for revascularization was provided. The root canal was gently debrided of necrotic tissue with a sharp spoon excavator and irrigated for only one third of its length with NaOCl and then medicated with calcium hydroxide. After 15 days the sinus tract had healed, and the tooth was asymptomatic. The tooth was accessed, calcium hydroxide was removed, bleeding was stimulated to form an intracanal blood clot, and mineral trioxide aggregate was placed coronally to the blood clot. After 8 months, a coronal calcified barrier was radiographically evident and accompanied with progressive thickening of the root wall and apical closure. Two and a half years after treatment was initiated, the tooth remained asymptomatic, and the sinus tract had not reappeared. The progressive increase in the thickness of the dentinal walls and subsequent apical development suggest that appropriate biologic responses can occur with this type of treatment of the necrotic immature permanent tooth with sinus tract.
Potential of potassium hydroxide pretreatment of switchgrass for fermentable sugar production.
Sharma, Rajat; Palled, Vijaykumar; Sharma-Shivappa, Ratna R; Osborne, Jason
2013-02-01
Chemical pretreatment of lignocellulosic biomass has been extensively investigated for sugar generation and subsequent fuel production. Alkaline pretreatment has emerged as one of the popular chemical pretreatment methods, but most attempts thus far have utilized NaOH for the pretreatment process. This study aimed at investigating the potential of potassium hydroxide (KOH) as a viable alternative alkaline reagent for lignocellulosic pretreatment based on its different reactivity patterns compared to NaOH. Performer switchgrass was pretreated at KOH concentrations of 0.5-2% for varying treatment times of 6-48 h, 6-24 h, and 0.25-1 h at 21, 50, and 121 °C, respectively. The pretreatments resulted in the highest percent sugar retention of 99.26% at 0.5%, 21 °C, 12 h while delignification up to 55.4% was observed with 2% KOH, 121 °C, 1 h. Six pretreatment conditions were selected for subsequent enzymatic hydrolysis with Cellic CTec2® for sugar generation. The pretreatment condition of 0.5% KOH, 24 h, 21 °C was determined to be the most effective as it utilized the least amount of KOH while generating 582.4 mg sugar/g raw biomass for a corresponding percent carbohydrate conversion of 91.8%.
Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.
Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun
2016-01-01
In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields. Copyright © 2015 Elsevier B.V. All rights reserved.
Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jun, E-mail: zhqw1888@sohu.co; College of Chemical Engineering, Harbin Institute of Technology, Harbin 150001; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, 150001
2010-11-15
We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 {sup o}C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m{sup 2}/g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs havingmore » different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO{sub 3} LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted« less
New SnO2/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching.
Dvininov, E; Ignat, M; Barvinschi, P; Smithers, M A; Popovici, E
2010-05-15
A new type of nanocomposite containing SnO(2) has been obtained by wet impregnation of dehydrated Mg/Al-hydrotalcite-type compounds with ethanolic solutions of SnCl(4).2H(2)O. Tin chloride hydrolysis was achieved using NaOH or NH(4)OH aqueous solutions, at pH around 9, followed by the conversion into corresponding hydroxides through calcinations. The powder X-ray diffraction (PXRD) and UV-Vis diffuse reflectance (UV-DR) methods confirmed the structure of as-synthesized solids. The chemical composition and morphology of the synthesized materials were investigated by energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The as-synthesized materials were used for photocatalytic studies showing a good activity for methylene blue decolourization, which varies with SnO(2) content and used as a hydrolysing agent. The proposed mechanism is based on the shifting of flat band potential of SnO(2) due to the interaction with Mg/Al-LDH, this being energetically favourable to the formation of hydroxyl radicals responsible for methylene blue degradation. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Korwar, Atish; Sharma, Sidhartha; Logani, Ajay; Shah, Naseem
2015-01-01
Aims and Objectives: The study aims at determining pulp response of two high fluoride releasing materials silver diamine fluoride (SDF) and Type VII glass ionomer cement (GIC) when used as indirect pulp treatment (IPT) materials. Materials and Methods: Deep Class V cavities were made on four first premolars indicated for extraction for orthodontic reasons. SDF, Type VII GIC, and calcium hydroxide base are given in three premolars, and one is kept control. Premolars were extracted 6 weeks after the procedure and subjected to histopathological examination to determine the pulp response. The results were analyzed using Chi-square test. Results: No inflammatory changes were observed in any of the groups. Significantly more number of specimens in SDF and Type VII GIC groups showed tertiary dentin deposition (TDD) when compared to control group. No significant difference was seen in TDD when intergroup comparison was made. Odontoblasts were seen as short cuboidal cells with dense basophilic nucleus in SDF and Type VII GIC group. Conclusion: The study demonstrated TDD inducing ability of SDF and Type VII GIC and also established the biocompatibility when used as IPT materials. PMID:26321822
Methods of making metal oxide nanostructures and methods of controlling morphology of same
Wong, Stanislaus S; Hongjun, Zhou
2012-11-27
The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.
Barman, Kalyan; Asrey, Ram; Pal, R K; Jha, S K; Sharma, Swati
2015-01-01
Sapburn injury in mango is regarded as the most serious problem as it reduces the aesthetic appeal and downgrade the fruit quality with considerable economic losses. For the control of sapburn injury, physiologically mature mango fruits of cv. Chausa were harvested along with 5-8 cm stalk attached. Immediately after harvesting, fruits were de-stemmed and treated with different desapping agent solutions [calcium hydroxide (1 %), sodium hydroxide (1 %), alum (0.5 and 1 %)] by dipping them for 5 min. In control fruits, the pedicels were removed and sap was allowed to spread freely over the fruit surface. After treatment application, fruits were air-dried and stored at ambient condition (30 ± 2 °C) for 12 days. Among the treatments, fruits desapped with sodium hydroxide (1 %) showed significantly lower (7.6-fold) sapburn injury followed by alum (0.5 %) treatment than control. Respiration and ethylene evolution rates were also significantly suppressed and delayed with sodium hydroxide (1 %) treatment. Fruit firmness and functional properties like, antioxidant capacity, total carotenoids and total phenolics content were also found higher in sodium hydroxide (1 %) treated fruits. Pectin methyl esterase and polygalacturonase enzyme activity were recorded higher in fruits of control and calcium hydroxide treatment however; it was suppressed by sodium hydroxide and alum treatments. Fruit quality parameters like color, total soluble solids, titratable acidity and total sugars content were found higher in calcium hydroxide and sodium hydroxide treated fruits than control and alum treated fruits.
Quasi-Monolithic Structures for Spaceflight Using Hydroxide-Catalysis Bonding
NASA Technical Reports Server (NTRS)
Preston, Alix; Thorpe, J. Ira; Miner, Linda
2012-01-01
Future space-based missions will take measurements of the universe with unprecedented results. To do this, these missions will require materials and bonding techniques with ever-increasing stability in order to make their measurements. As an example, the Laser Interferometer Space Antenna (LISA) will detect and observe gravitational waves in the 0.1 mHz to 1 Hz frequency range with strain sensitivities on the order of 10(exp -21) at its most sensitive frequency. To make these measurements, critical components such as the optical bench or telescope support structure, will need to have path-length stabilities of better than 1 pm/(square root)Hz. The baseline construction method for the LISA optical bench is to affix fused silica optical components to a Zerodur baseplate using hydroxide-catalysis bonding (HCB). HCB is a recently developed technique that allows the bonding of glasses, some metals, and silicon carbide with significant strength and stability with a bond thickness of less than a few micrometers. In addition, a wide range of surface profiles can be bonded using only a small amount of hydroxide solution. These characteristics make HCB ideal for adhering optical components in complex optical systems. In addition to being used to construct the LISA optical bench, the HCB technique shows great promise for constructing other structures such as hollow retroreflectors to be used for lunar laser ranging, or a visible nulling coronograph to be used for exo-planet detection. Here we present construction techniques that could be used to make an optical bench, hollow retroreflector, nulling coronograph, or other quasi-monolithic structures using HCB. In addition, we present dimensional stability results of an optical bench that was made using HCB, as well as HCB strength measurements.
NASA Astrophysics Data System (ADS)
Keiluweit, Marco; Bougoure, Jeremy J.; Zeglin, Lydia H.; Myrold, David D.; Weber, Peter K.; Pett-Ridge, Jennifer; Kleber, Markus; Nico, Peter S.
2012-10-01
Amino sugars in fungal cell walls (such as chitin) represent an important source of nitrogen (N) in many forest soil ecosystems. Despite the importance of this material in soil nitrogen cycling, comparatively little is known about abiotic and biotic controls on and the timescale of its turnover. Part of the reason for this lack of information is the inaccessibility of these materials to classic bulk extraction methods. To address this issue, we used advanced visualization tools to examine transformation pathways of chitin-rich fungal cell wall residues as they interact with microorganisms, soil organic matter and mineral surfaces. Our goal was to document initial micro-scale dynamics of the incorporation of 13C- and 15N-labeled chitin into fungi-dominated microenvironments in O-horizons of old-growth forest soils. At the end of a 3-week incubation experiment, high-resolution secondary ion mass spectrometry imaging of hyphae-associated soil microstructures revealed a preferential association of 15N with Fe-rich particles. Synchrotron-based scanning transmission X-ray spectromicroscopy (STXM/NEXAFS) of the same samples showed that thin organic coatings on these soil microstructures are enriched in aliphatic C and amide N on Fe (hydr)oxides, suggesting a concentration of microbial lipids and proteins on these surfaces. A possible explanation for the results of our micro-scale investigation of chemical and spatial patterns is that amide N from chitinous fungal cell walls was assimilated by hyphae-associated bacteria, resynthesized into proteinaceous amide N, and subsequently concentrated onto Fe (hydr)oxide surfaces. If confirmed in other soil ecosystems, such rapid association of microbial N with hydroxylated Fe oxide surfaces may have important implications for mechanistic models of microbial cycling of C and N.
NASA Astrophysics Data System (ADS)
Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole
2016-11-01
Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However, MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.
Study of nickel hydroxide electrodes. 2: Oxidation products of nickel (2) hydroxides
NASA Technical Reports Server (NTRS)
Bode, H.; Demelt, K.; White, J.
1986-01-01
Pure phases of some oxidized Ni oxides were prepared galvanimetrically with the Ni(2) hydroxide electrode of an alkaline battery. The crystallographic data of these phases, their chemical behavior, and conditions of transition were studied.
System for removal of arsenic from water
Moore, Robert C.; Anderson, D. Richard
2004-11-23
Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.
NASA Technical Reports Server (NTRS)
Boclair, J. W.; Braterman, P. S.
1999-01-01
Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.
Conversion coatings prepared or treated with calcium hydroxide solutions
NASA Technical Reports Server (NTRS)
Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor); Minevski, Zoran (Inventor); Clarke, Eric (Inventor)
2002-01-01
A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.
Biodiesel synthesis using calcined layered double hydroxide catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumaker, J. Link; Crofcheck, Czarena; TAckett, S. Adam
2008-01-01
The catalytic properties of calcined Li-Al, Mg-Al and Mg-Fe layered double hydroxides (LDHs) were examined in two transesterification reactions, namely, the reaction of glyceryl tributyrate with methanol, and the reaction of soybean oil with methanol. While the Li-Al catalysts showed high activity in these reactions at the reflux temperature of methanol, the Mg-Fe and Mg-Al catalysts exhibited much lower methyl ester yields. CO2 TPD measurements revealed the presence of sites of weak, medium and strong basicity on both Mg-Al and Li-Al catalysts, the latter showing higher concentrations of medium and strong base sites; by implication, these are the main sitesmore » active in transesterification catalyzed by calcined Li-Al LDHs. Maximum activity was observed for the Li-Al catalysts when a calcination temperature of 450-500 aC was applied, corresponding to decomposition of the layered double hydroxide to the mixed oxide without formation of crystalline lithium aluminate phases.« less
Protons and Hydroxide Ions in Aqueous Systems.
Agmon, Noam; Bakker, Huib J; Campen, R Kramer; Henchman, Richard H; Pohl, Peter; Roke, Sylvie; Thämer, Martin; Hassanali, Ali
2016-07-13
Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics.
Iron ion and iron hydroxide adsorption to charge-neutral phosphatidylcholine templates
Wang, Wenjie; Zhang, Honghu; Feng, Shuren; ...
2016-07-13
Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl 3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ~3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to amore » neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. Furthermore, the strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.« less
Study on improving the heat storage property of Ba(OH)2·8H2O with paraffin
NASA Astrophysics Data System (ADS)
Cui, Kaixuan; Liu, Liqiang; Sun, Mingjie
2017-12-01
Barium hydroxide octahydrate is the crystalline hydration salt with the highest latent heat density within the phase change temperature interval of 0-120 °C and it has a broad application prospect as a phase-change material (PCM). Firstly, red copper test tube was used for the melting—solidification heat cycle experiment in this paper, which was verified by the corrosion experiment of barium hydroxide solution. After the thermogravimetric analysis, it is found that paraffin can effectively reduce the evaporation escape of barium hydroxide octahydrate crystal water within 100 °C. Repeated heat cycle experiments indicated that the paraffin with larger coverage mass fraction can reduce the inhibiting effect of barium hydroxide octahydrate crystal water more obviously. X-ray diffraction analysis indicated that the phase composition of the barium hydroxide octahydrate sample covered with 50 wt% paraffin nearly had no change, while the sample not covered with paraffin has the weight loss ratio of 34.67% and reacted with CO2 in the air, generating BaCO3. In summary, paraffin can not only inhibit the evaporation of crystal water, but also effectively isolate the air to prevent barium hydroxide octahydrate from denaturation. This greatly improved the practicability of barium hydroxide octahydrate as a PCM, laying a good foundation for the further application of barium hydroxide octahydrate.
Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method
NASA Astrophysics Data System (ADS)
Wiyantoko, Bayu; Rahmah, Nafisa
2017-12-01
The cation exchange capacity (CEC)measurement has been carried out in natural zeolite by percolation method. The natural zeolite samples used for cation exchange capacity measurement were activated beforehand with physical activation and chemical activation. The physically activated zeolite was done by calcination process at 600 °C for 4 hours. The natural zeolite was activated chemically by using sodium hydroxide by refluxing process at 60-80 °C for 3 hours. In summary, cation exchange capacity (CEC) determination was performed by percolation, distillation and titration processes. Based on the measurement that has been done, the exchange rate results from physical activated and chemical activated of natural zeolite were 181.90cmol (+)/kg and 901.49cmol (+)/kg respectively.
Stout, Norman D.; Newkirk, Herbert W.
1991-01-01
An inventive method is described for chemically machining rhenium, rhenium and tungsten alloy, and group 5b and 6b crucibles or molds from included ingots and castings comprised of oxide crystals including YAG and YAG based crystals, garnets, corundum crystals, and ceramic oxides. A mixture of potassium hydroxide and 15 to 90 weight percent of potassium nitrate is prepared and maintained at a temperature above melting and below the lower of 500 degrees centigrade or the temperature of decomposition of the mixture. The enveloping metal container together with its included oxide crystal object is rotated within the heated KOH-KNO.sub.3 mixture, until the container is safely chemically machined away from the included oxide crystal object.
Ostermann, Annika I; Müller, Maike; Willenberg, Ina; Schebb, Nils Helge
2014-12-01
Analysis of the fatty acid (FA) composition in biological samples is commonly carried out using gas liquid chromatography (GC) after transesterification to volatile FA methyl esters (FAME). We compared the efficacy of six frequently used protocols for derivatization of different lipid classes as well as for plasma and tissue samples. Transesterification with trimethylsulfonium hydroxide (TMSH) led to insufficient derivatization efficacies for polyunsaturated FAs (PUFA, <50%). Derivatization in presence of potassium hydroxide (KOH) failed at derivatizing free FAs (FFAs). Boron trifluoride (BF3) 7% in hexane/MeOH (1:1) was insufficient for the transesterification of cholesterol ester (CE) as well as triacylglycerols (TGs). In contrast, methanolic hydrochloric acid (HCl) as well as a combination of BF3 with methanolic sodium hydroxide (NaOH+BF3) were suitable for the derivatization of FFAs, polar lipids, TGs, and CEs (derivatization rate >80% for all tested lipids). Regarding plasma samples, all methods led to an overall similar relative FA pattern. However, significant differences were observed, for example, for the relative amount of EPA+DHA (n3-index). Absolute FA plasma concentrations differed considerably among the methods, with low yields for KOH and BF3. We also demonstrate that lipid extraction with tert-butyl methyl ether/methanol (MTBE/MeOH) is as efficient as the classical method according to Bligh and Dyer, making it possible to replace (environmentally) toxic chloroform.We conclude that HCl-catalyzed derivatization in combination with MeOH/MTBE extraction is the most appropriate among the methods tested for the analysis of FA concentrations and FA pattern in small biological samples. A detailed protocol for the analysis of plasma and tissues is included in this article.
Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students
ERIC Educational Resources Information Center
Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.
2011-01-01
This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…
The effect of alkaline pretreatment methods on cellulose structure and accessibility
Bali, Garima; Meng, Xianzhi; Deneff, Jacob I.; ...
2014-11-24
The effects of different alkaline pretreatments on cellulose structural features and accessibility are compared and correlated with the enzymatic hydrolysis of Populus. The pretreatments are shown to modify polysaccharides and lignin content to enhance the accessibility for cellulase enzymes. The highest increase in the cellulose accessibility was observed in dilute sodium hydroxide, followed by methods using ammonia soaking and lime (Ca(OH) 2). The biggest increase of cellulose accessibility occurs during the first 10 min of pretreatment, with further increases at a slower rate as severity increases. Low temperature ammonia soaking at longer residence times dissolved a major portion of hemicellulosemore » and exhibited higher cellulose accessibility than high temperature soaking. Moreover, the most significant reduction of degree of polymerization (DP) occurred for dilute sodium hydroxide (NaOH) and ammonia pretreated Populus samples. The study thus identifies important cellulose structural features and relevant parameters related to biomass recalcitrance.« less
Wu, Junsheng; Peng, Dongdong; He, Yuntao; Du, Xiaoqiong; Zhang, Zhan; Zhang, Bowei; Li, Xiaogang; Huang, Yizhong
2017-01-01
A layered double hydroxide (LDH) film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V) film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM). The corrosion-resistant performance was analyzed by electrochemical impedance spectroscopy (EIS), scanning electrochemical microscopy (SECM), and a salt-spray test (SST).The SEM results showed that a complete and defect-free surface was formed on the LDH-VS film. The anticorrosion results revealed that the LDH-VS film had better corrosion-resistant properties than the LDH-S film, especially long-term corrosion resistance. The mechanism of corrosion protection was proposed to consist of the self-healing effect of the decavanadate intercalation and the shielding effect of the sol-gel film. PMID:28772785
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mane, S. M., E-mail: manesagar99@gmail.com; Vijaysingh Mohite Patil Mahavidyalaya Natepute, Solapur-413109; Tirmali, P. M., E-mail: pravintirmali@gmail.com
2016-04-13
Co{sub 1–x} Ni{sub x}Fe{sub 2}O{sub 4} (where x=0.1) were prepared by using the hydroxide co-precipitation method. An obtained precipitate was sintered at 1100°C by microwave sintering technique. The structural analysis confirms the single-phase cubic spinel structure with Fd-3m space group. The magnetic characterization was carried out at temperature 300K.Saturation magnetisation and coercivity is 77.22 and 908 Oe. Irreversibility is observed between the ZFC and FC curves at 100 Oe. The variation in the dielectric constant and loss tangent are studied at room temperature with increasing frequency. Continues decrease in the the dielectric constant with increasing frequency shows inverse dependence onmore » frequency. Morphological and elemental studies were done by using the scanning electron microscope with EDAX.« less
NASA Astrophysics Data System (ADS)
Muráth, Szabolcs; Dudás, Csilla; Kukovecz, Ákos; Kónya, Zoltán; Sipos, Pál; Pálinkó, István
2017-07-01
The syntheses of nicotinate anion- and NAD coenzyme-layered double hydroxide (LDH) composites were performed with the aim of having the organic component among the layers. In-house prepared CaAl-LDHs were the host materials. Intercalation was attempted by direct ion exchange or by the dehydration-rehydration method applying aqueous solvent mixtures (containing ethanol, propanol, acetone, N,N-dimethylformamide). For structural characterization, beside X-ray diffractometry, X-ray photoelectron and IR spectroscopies, transmission and scanning electron microscopies as well as energy-dispersive X-ray analysis were used. Molecular modelling served for the visualization of the arrangements of the intercalated ions among the layers of the LDH samples. Although not all the intercalation methods and solvent mixtures led to intercalated composite materials, successful ones could be identified. The combination of spectroscopic methods helped in proposing sensible spatial arrangements for the intercalated anions. The NAD-CaAl-LDH composite proved to be an active catalyst in the oxidation of hydroquinone to 1,4-bezoquinoe in the presence of H2O2.
Zheng, Yilei
2018-01-01
Differential scanning calorimeter was used to extensively investigate the non-isothermal crystallization of polypropylene (PP)/layered double hydroxides (LDHs) nanocomposites prepared through wet solid-state shear milling. The corresponding crystallization kinetics was further investigated by using Ozawa, modified Avrami and combined Avrami–Ozawa method, respectively. The results showed that the Ozawa method could not well describe the crystallization kinetics of pure PP and its nanocomposites. Comparatively, the modified Avrami method as well as the combined Avrami–Ozawa method gives the satisfactory results. Under the effect of pan-milling, the produced LDH nano intercalated/exfoliated particles exhibit the inhibitive effect on the PP nucleation but more remarkable promotion effect on the spherulite growth, leading to enhancement in the overall crystallization rate. This is reflected in increase of the calculated fold surface free energy σe and also the supercooling degree ΔT required for crystallization nucleation. In addition, the polarized optical microscopy observation also verifies the higher spherulite growth rate of PP/LDHs nanocomposites than that of pure PP. PMID:29410819
Guo, Hongwei; Chang, Juan; Yin, Qingqiang; Wang, Ping; Lu, Min; Wang, Xiao; Dang, Xiaowei
2013-11-01
In order to improve corn straw degradation, steam explosion, sodium hydroxide soaking and Aspergillus oryzae fermentation were used. The optimal sodium hydroxide pretreatment condition for lignin degradation was obtained. The degradation rates of hemicellulose, cellulose and lignin were 54.68%, 17.76% and 33.14% for the exploded straw (P<0.05); 67.92%, 2.44% (P>0.05) and 76.54% for the alkali-treated straw (P<0.05); 75.98%, 39.93% and 77.88% for the exploded and alkali-treated straw (P<0.05), respectively. The following microbial fermentation could degrade hemicellulose and cellulose further (P<0.05). Cellulase, amylase and protease activities produced during microbial fermentation in the pretreated corn straw were lower than that in the untreated one (P<0.05); however, glucose content was increased by microbial fermentation (P<0.05). It can be concluded that the combined treatments of steam explosion, sodium hydroxide and microbial fermentation will be a good method for straw degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tardio, Sabrina, E-mail: s.tardio@surrey.ac.uk; Abel, Marie-Laure; Castle, James E.
2015-09-15
The very thin native oxide film on stainless steel, of the order of 2 nm, is known to be readily modified by immersion in aqueous media. In this paper, X-ray photoelectron spectroscopy (XPS) and time of flight secondary ions mass spectrometry are employed to investigate the nature of the air-formed film and modification after water emersion. The film is described in terms of oxide, hydroxide, and water content. The preferential dissolution of iron is shown to occur on immersion. It is shown that a water absorbed layer and a hydroxide layer are present above the oxide-like passive film. The concentrations ofmore » water and hydroxide appear to be higher in the case of exposure to water. A secure method for the peak fitting of Fe2p and Cr2p XPS spectra of such films on their metallic substrates is described. The importance of XPS survey spectra is underlined and the feasibility of C{sub 60}{sup +} SIMS depth profiling of a thin oxide layer is shown.« less
Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application
2013-01-01
Background Zinc layered hydroxide (ZLH) intercalated with cinnamate, an anionic form of cinnamic acid (CA), an efficient UVA and UVB absorber, have been synthesized by direct method using zinc oxide (ZnO) and cinnamic acid as the precursor. Results The resulting obtained intercalation compound, ZCA, showed a basal spacing of 23.9 Å as a result of cinnamate intercalated in a bilayer arrangement between the interlayer spaces of ZLH with estimated percentage loading of cinnamate of about 40.4 % w/w. The UV–vis absorption spectrum of the intercalation compound showed excellent UVA and UVB absorption ability. Retention of cinnamate in ZLH interlayers was tested against media usually came across with sunscreen usage to show low release over an extended period of time. MTT assay of the intercalation compound on human dermal fibroblast (HDF) cells showed cytotoxicity of ZCA to be concentration dependent and is overall less toxic than its precursor, ZnO. Conclusions (Cinnamate-zinc layered hydroxide) intercalation compound is suitable to be used as a safe and effective sunscreen with long UV protection effect. PMID:23383738